WorldWideScience

Sample records for volume scattering effects

  1. Scattering from Star Polymers including Excluded Volume Effects

    CERN Document Server

    Li, Xin; Liu, Yun; Sánchez-Diáz, Luis E; Hong, Kunlun; Smith, Gregory S; Chen, Wei-Ren

    2014-01-01

    In this work we present a new model for the form factor of a star polymer consisting of self-avoiding branches. This new model incorporates excluded volume effects and is derived from the two point correlation function for a star polymer.. We compare this model to small angle neutron scattering (SANS) measurements from polystyrene (PS) stars immersed in a good solvent, tetrahydrofuran (THF). It is shown that this model provides a good description of the scattering signature originating from the excluded volume effect and it explicitly elucidates the connection between the global conformation of a star polymer and the local stiffness of its constituent branch.

  2. Size, flexibility, and scattering functions of semiflexible polyelectrolytes with excluded volume effects: Monte Carlo simulations and neutron scattering experiments

    DEFF Research Database (Denmark)

    Cannavacciuolo, L.; Sommer, C.; Pedersen, J.S.;

    2000-01-01

    We present a systematic Monte Carlo study of the scattering function S(q) of semiflexible polyelectrolytes at infinite dilution, in solutions with different concentrations of added salt. In the spirit of a theoretical description of polyelectrolytes in terms of the equivalent parameters, namely...... outlined in the Odijk-Skolnick-Fixman theory, in which the behavior of charged polymers is described only in terms of increasing local rigidity and excluded volume effects. Moreover, the Monte Carlo data are found to be in very good agreement with experimental scattering measurements with equilibrium...

  3. Finite volume effects in low-energy neutron-deuteron scattering

    CERN Document Server

    Rokash, Alexander; Krebs, Hermann; Lee, Dean; Meißner, Ulf-G

    2013-01-01

    We present a lattice calculation of neutron-deuteron scattering at very low energies and investigate in detail the impact of the topological finite-volume corrections. Our calculations are carried out in the framework of pionless effective field theory at leading order in the low-energy expansion. Using lattice sizes and a lattice spacing comparable to those employed in nuclear lattice simulations, we find that the topological volume corrections must be taken into account in order to obtain correct results for the neutron-proton S-wave scattering lengths.

  4. Finite volume effects in pion-kaon scattering and reconstruction of the kappa(800) resonance

    CERN Document Server

    Döring, M

    2011-01-01

    Simulating the kappa(800) on the lattice is a challenging task that starts to become feasible due to the rapid progress in recent-years lattice QCD calculations. As the resonance is broad, special attention to finite-volume effects has to be paid, because no sharp resonance signal as from avoided level crossing can be expected. In the present article, we investigate the finite volume effects in the framework of unitarized chiral perturbation theory using next-to-leading order terms. After a fit to meson-meson partial wave data, lattice levels for piK scattering are predicted. In addition, levels are shown for the quantum numbers in which the sigma(600), f_0(980), a_0(980), phi(1020), K*(892), and rho(770) appear, as well as the repulsive channels. Methods to extract the kappa(800) signal from the lattice spectrum are presented. Using pseudo-data, we estimate the precision that lattice data should have to allow for a clear-cut extraction of this resonance. To put the results into context, in particular the req...

  5. The Effects of Sand Sediment Volume Heterogeneities on Sound Propagation and Scattering

    Science.gov (United States)

    2012-09-30

    14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 7 19a. NAME OF RESPONSIBLE...Jones and D. R. Jackson, “Small perturbation method of high-frequency bistatic volume scattering from marine sediments,” Oceanic Engineering, IEEE J. of

  6. Effects of subsurface volume scattering on the lunar microwave brightness temperature spectrum

    Science.gov (United States)

    Keihm, S. J.

    1982-01-01

    The effects of volumetric scattering on the lunar microwave brightness temperature are examined for a broad range of feasible lunar rock population distributions. Mie-scattering phase functions and the radiative transfer method are utilized. Surveyor and Apollo data relevant to lunar rock size distributions are discussed, and parameters are chosen for nine scattering models which liberally cover the range of studied rock population distributions. Scattering model brightness temperature predictions are analyzed in terms of the lunar disk center emission averaged over a lunation for wavelengths of 3-30 cm. The effects of scattering on the amplitude of disk center brightness temperature variations and resultant deductions of regolith electrical loss are examined. Constraints on the global scale variability of subsurface scatterers imposed by microwave brightness temperature maps are considered.

  7. Refractive index effects on the scatter volume location and Doppler velocity estimates of ionospheric HF backscatter echoes

    Directory of Open Access Journals (Sweden)

    P. V. Ponomarenko

    2009-11-01

    Full Text Available Ionospheric E×B plasma drift velocities derived from the Super Dual Auroral Radar Network (SuperDARN Doppler data exhibit systematically smaller (by 20–30% magnitudes than those measured by the Defence Meteorological Satellites Program (DMSP satellites. A part of the disagreement was previously attributed to the change in the E/B ratio due to the altitude difference between the satellite orbit and the location of the effective scatter volume for the radar signals. Another important factor arises from the free-space propagation assumption used in converting the measured Doppler frequency shift into the line-of-sight velocity. In this work, we have applied numerical ray-tracing to identify the location of the effective scattering volume of the ionosphere and to estimate the ionospheric refractive index. The simulations show that the major contribution to the radar echoes should be provided by the Pedersen and/or escaping rays that are scattered in the vicinity of the F-layer maximum. This conclusion is supported by a statistical analysis of the experimental elevation angle data, which have a signature consistent with scattering from the F-region peak. A detailed analysis of the simulations has allowed us to propose a simple velocity correction procedure, which we have successfully tested against the SuperDARN/DMSP comparison data set.

  8. Composed Scattering Model for Direct Volume Rendering

    Institute of Scientific and Technical Information of China (English)

    蔡文立; 石教英

    1996-01-01

    Based on the equation of transfer in transport theory of optical physics,a new volume rendering model,called composed scattering model(CSM),is presented.In calculating the scattering term of the equation,it is decomposed into volume scattering intensity and surface scattering intensity,and they are composed with the boundary detection operator as the weight function.This proposed model differs from the most current volume rendering models in the aspect that in CSM segmentation and illumination intensity calculation are taken as two coherent parts while in existing models they are regarded as two separate ones.This model has been applied to the direct volume rendering of 3D data sets obtained by CT and MRI.The resultant images show not only rich details but also clear boundary surfaces.CSM is demonstrated to be an accurate volume rendering model suitable for CT and MRI data sets.

  9. Neutrophil volume, conductivity and scatter parameters with effective modeling of molecular activity statistical program gives better results in neonatal sepsis.

    Science.gov (United States)

    Celik, I H; Demirel, G; Sukhachev, D; Erdeve, O; Dilmen, U

    2013-02-01

    Neonatal sepsis remains an important clinical syndrome despite advances in neonatology. Current hematology analyzers can determine cell volume (V), conductivity for internal composition of cell (C) and light scatter for cytoplasmic granularity and nuclear structure (S), and standard deviations which are effective in the diagnosis of sepsis. Statistical models can be used to strengthen the diagnosis. Effective modeling of molecular activity (EMMA) uses combinatorial algorithm of the selection parameters for regression equation based on modified stepwise procedure. It allows obtaining different regression models with different combinations of parameters. We investigated these parameters in screening of neonatal sepsis. We used LH780 hematological analyzer (Beckman Coulter, Fullerton, CA, USA). We combined these parameters with interleukin-6 (IL-6) and C-reactive protein (CRP) and developed models by EMMA. A total of 304 newborns, 76 proven sepsis, 130 clinical sepsis and 98 controls, were enrolled in the study. Mean neutrophil volume (MNV) and volume distribution width (VDW) were higher in both proven and clinical sepsis groups. We developed three models using MNV, VDW, IL-6, and CRP. These models gave more sensitivity and specificity than the usage of each marker alone. We suggest to use the combination of MNV and VDW with markers such as CRP and IL-6, and use diagnostic models created by EMMA. © 2012 Blackwell Publishing Ltd.

  10. Electromagnetic scattering by spheroidal volumes of discrete random medium

    Science.gov (United States)

    Mishchenko, Michael I.; Dlugach, Janna M.

    2017-10-01

    We use the superposition T-matrix method to compare the far-field scattering matrices generated by spheroidal and spherical volumes of discrete random medium having the same volume and populated by identical spherical particles. Our results fully confirm the robustness of the previously identified coherent and diffuse scattering regimes and associated optical phenomena exhibited by spherical particulate volumes and support their explanation in terms of the interference phenomenon coupled with the order-of-scattering expansion of the far-field Foldy equations. We also show that increasing nonsphericity of particulate volumes causes discernible (albeit less pronounced) optical effects in forward and backscattering directions and explain them in terms of the same interference/multiple-scattering phenomenon.

  11. Account of Nuclear Scattering at Volume Reflection

    CERN Document Server

    Bondarenco, M V

    2011-01-01

    For a particle traversing a bent crystal in the regime of volume reflection we evaluate the probability of interaction with atomic nuclei. Regardless of the continuous potential shape, this probability is found to differ from the corresponding value in an amorphous target by an amount proportional to the crystal bending radius, and the particle deflection angle. Based on this result, we evaluate the rate of inelastic nuclear interactions, and the final beam angular dispersion due to multiple Coulomb scattering. The theoretical predictions are compared with the experiments. The impact of multiple Coulomb scattering on the mean volume reflection angle is also discussed.

  12. Finite volume corrections to pi pi scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Ikuro; Bedaque, Paulo F.; Walker-Loud, Andre

    2006-01-13

    Lattice QCD studies of hadron-hadron interactions are performed by computing the energy levels of the system in a finite box. The shifts in energy levels proportional to inverse powers of the volume are related to scattering parameters in a model independent way. In addition, there are non-universal exponentially suppressed corrections that distort this relation. These terms are proportional to e-m{sub pi} L and become relevant as the chiral limit is approached. In this paper we report on a one-loop chiral perturbation theory calculation of the leading exponential corrections in the case of I=2 pi pi scattering near threshold.

  13. Efficient light propagation for multiple anisotropic volume scattering

    Energy Technology Data Exchange (ETDEWEB)

    Max, N. [Lawrence Livermore National Lab., CA (United States)]|[California Univ., Davis, CA (United States)

    1993-12-01

    Realistic rendering of participating media like clouds requires multiple anisotropic light scattering. This paper presents a propagation approximation for light scattered into M direction bins, which reduces the ``ray effect`` problem in the traditional ``discrete ordinates`` method. For a volume of n{sup 3} elements, it takes O(M n{sup 3} log n + M{sup 2} n{sup 3}) time and O(M n{sup 3}) space.

  14. Radiative properties of materials with surface scattering or volume scattering: A review

    Institute of Scientific and Technical Information of China (English)

    Qunzhi ZHU; Hyunjin LEE; Zhuomin M. ZHANG

    2009-01-01

    Radiative properties of rough surfaces, parti-culate media and porous materials are important in thermal engineering and many other applications. These properties are often needed for calculating heat transfer between surfaces and volume elements in participating media, as well as for accurate radiometric temperature measure-ments. In this paper, recent research on scattering of thermal radiation by rough surfaces, fibrous insulation, soot, aerogel, biological materials, and polytetrafluor-oethylene (PTFE) is reviewed. Both theoretical modeling and experimental investigation are discussed. Rigorous solutions and approximation methods for surface scattering and volume scattering are described. The approach of using measured surface roughness statistics in Monte Carlo simulations to predict radiative properties of rough surfaces is emphasized. The effects of various parameters on the radiative properties of particulate media and porous materials are summarized.

  15. Deorientation of PolSAR coherency matrix for volume scattering retrieval

    Science.gov (United States)

    Kumar, Shashi; Garg, R. D.; Kushwaha, S. P. S.

    2016-05-01

    Polarimetric SAR data has proven its potential to extract scattering information for different features appearing in single resolution cell. Several decomposition modelling approaches have been developed to retrieve scattering information from PolSAR data. During scattering power decomposition based on physical scattering models it becomes very difficult to distinguish volume scattering as a result from randomly oriented vegetation from scattering nature of oblique structures which are responsible for double-bounce and volume scattering , because both are decomposed in same scattering mechanism. The polarization orientation angle (POA) of an electromagnetic wave is one of the most important character which gets changed due to scattering from geometrical structure of topographic slopes, oriented urban area and randomly oriented features like vegetation cover. The shift in POA affects the polarimetric radar signatures. So, for accurate estimation of scattering nature of feature compensation in polarization orientation shift becomes an essential procedure. The prime objective of this work was to investigate the effect of shift in POA in scattering information retrieval and to explore the effect of deorientation on regression between field-estimated aboveground biomass (AGB) and volume scattering. For this study Dudhwa National Park, U.P., India was selected as study area and fully polarimetric ALOS PALSAR data was used to retrieve scattering information from the forest area of Dudhwa National Park. Field data for DBH and tree height was collect for AGB estimation using stratified random sampling. AGB was estimated for 170 plots for different locations of the forest area. Yamaguchi four component decomposition modelling approach was utilized to retrieve surface, double-bounce, helix and volume scattering information. Shift in polarization orientation angle was estimated and deorientation of coherency matrix for compensation of POA shift was performed. Effect of

  16. Large volume high-pressure cell for inelastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Kamenev, K. V. [Centre for Science at Extreme Conditions and School of Engineering, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Sokolov, D. A.; Huxley, A. D. [SUPA, Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2011-07-15

    Inelastic neutron scattering measurements typically require two orders of magnitude longer data collection times and larger sample sizes than neutron diffraction studies. Inelastic neutron scattering measurements on pressurised samples are particularly challenging since standard high-pressure apparatus restricts sample volume, attenuates the incident and scattered beams, and contributes background scattering. Here, we present the design of a large volume two-layered piston-cylinder pressure cell with optimised transmission for inelastic neutron scattering experiments. The design and the materials selected for the construction of the cell enable its safe use to a pressure of 1.8 GPa with a sample volume in excess of 400 mm{sup 3}. The design of the piston seal eliminates the need for a sample container, thus providing a larger sample volume and reduced absorption. The integrated electrical plug with a manganin pressure gauge offers an accurate measurement of pressure over the whole range of operational temperatures. The performance of the cell is demonstrated by an inelastic neutron scattering study of UGe{sub 2}.

  17. Large volume high-pressure cell for inelastic neutron scattering

    Science.gov (United States)

    Wang, W.; Sokolov, D. A.; Huxley, A. D.; Kamenev, K. V.

    2011-07-01

    Inelastic neutron scattering measurements typically require two orders of magnitude longer data collection times and larger sample sizes than neutron diffraction studies. Inelastic neutron scattering measurements on pressurised samples are particularly challenging since standard high-pressure apparatus restricts sample volume, attenuates the incident and scattered beams, and contributes background scattering. Here, we present the design of a large volume two-layered piston-cylinder pressure cell with optimised transmission for inelastic neutron scattering experiments. The design and the materials selected for the construction of the cell enable its safe use to a pressure of 1.8 GPa with a sample volume in excess of 400 mm3. The design of the piston seal eliminates the need for a sample container, thus providing a larger sample volume and reduced absorption. The integrated electrical plug with a manganin pressure gauge offers an accurate measurement of pressure over the whole range of operational temperatures. The performance of the cell is demonstrated by an inelastic neutron scattering study of UGe2.

  18. Three-particle scattering amplitudes from a finite volume formalism

    CERN Document Server

    Briceno, Raul A

    2012-01-01

    We present a quantization condition for the spectrum of a system composed of three identical bosons in a finite volume with periodic boundary conditions. This condition gives a relation between the finite volume spectrum and infinite volume scattering amplitudes. The quantization condition presented is an integral equation that in general must be solved numerically. However, for systems with an attractive two-body force that supports a two-body bound-state, a diboson, and for energies below the diboson breakup, the quantization condition reduces to the well-known Luscher formula with exponential corrections in volume that scale with the diboson binding momentum. To accurately determine infinite volume phase shifts, it is necessary to extrapolate the phase shifts obtained from the Luscher formula for the boson-diboson system to the infinite volume limit. For energies above the breakup threshold, or for systems with no two-body bound-state (with only scattering states and resonances) the Luscher formula gets po...

  19. Multiple scattering effects on spaceborne lidar

    Science.gov (United States)

    Winker, David M.; Poole, Lamont R.

    1992-01-01

    A semianalytic Monte Carlo code originally developed for oceanographic calculations (Poole et al., 1981) has been modified for use in studying multiple scattering of space-based lidar. The approach is very similar to that described by Kunkel and Weinman (1976). The trajectory of each photon is followed from the transmitter through multiple scattering until the photon is either scattered backward out of the atmosphere, scattered forward into the ground and absorbed, or scattered out the sides of the cloud. The probability that the photon will return directly to the detector is computed and summed over all significant scattering events within the field of view of the detector. Multiple scattering of the lidar pulse causes an apparent increase in the transmittance of the medium. Multiple scattering effects for space-based lidar are more significant than for ground-based lidar due to the much larger beam diameter in the atmosphere. These larger diameters are due not only to the greater range between the lidar and the scattering volume, but also the need to maintain relatively large beam divergences to satisfy eye safety restrictions on the laser irradiance at the Earth's surface. The simulations presented here are for a wavelength of 1064 nm and the Deirmendjian C1 phase function, which yields an extinction coefficient of 17.259/km. We have looked at two cases: a space-based lidar at 296 km observing a C1 cloud 293 km from the lidar and, for comparison purposes, a ground-based lidar looking at a C1 cloud with a base height of either 2 km or 5 km. The C1 size distribution roughly approximates that of stratocumulus or altocumulus clouds (aufm Kampe and Weickmann, 1957).

  20. Effective potential for relativistic scattering

    CERN Document Server

    Elbistan, Mahmut; Balog, Janos

    2016-01-01

    We consider quantum inverse scattering with singular potentials and calculate the Sine-Gordon model effective potential in the laboratory and centre-of-mass frames. The effective potentials are frame dependent but closely resemble the zero-momentum potential of the equivalent Ruijsenaars-Schneider model.

  1. Measurements of the volume scattering function in a coastal environment

    Science.gov (United States)

    Berthon, Jean-François; Lee, Michael; Shybanov, Eugeny; Zibordi, Giuseppe

    2007-04-01

    The Volume Scattering Function (VSF) is an essential variable in the context of marine radiative transfer modeling and of the inversion of ocean colour remote sensing data. However, an important lack of knowledge on the VSF natural variability affects the present models, in particular for the coastal environment. Measurements of the Volume Scattering Function between 0.6° and 177.3° with an angular resolution of 0.3° were performed in the northern coastal Adriatic Sea onboard an oceanographic platform in October 2004 using a prototype instrument. Observed differences with the commonly used Petzold's functions are significant, in particular for the "open ocean" and "coastal" types in the backward directions. The use of an empirical relationship for the derivation of b b(λ) from a unique measurement of β(ψ,λ) at ψ=140 for the Hydroscat-6 was validated for this coastal site at that season. Finally, the use of the Kopelevich VSF model together with a measurement of b p(λ) at λ=555 nm allowed the reconstruction of the VSF to within about 35%.

  2. Effect of anisotropic scattering on radiative heat transfer in two-dimensional rectangular media

    CERN Document Server

    Hao Jin Bo

    2003-01-01

    Effect of scattering on radiative heat transfer in two-dimensional rectangular media by the finite-volume method has been studied. Compared with the existing solutions, it shows that the result obtained by the finite-volume method is reliable. Furthermore, relative errors caused by the approximation that linear and nonlinear anisotropic scattering media is simplified to isotropic scattering media have been studied.

  3. Effects of shear elasticity on sea bed scattering: numerical examples.

    Science.gov (United States)

    Ivakin, A N; Jackson, D R

    1998-01-01

    It is known that marine sediments can support both compressional and shear waves. However, published work on scattering from irregular elastic media has not examined the influence of shear on sea bed scattering in detail. A perturbation model previously developed by the authors for joint roughness-volume scattering is used to study the effects of elasticity for three sea bed types: sedimentary rock, sand with high shear speed, and sand with "normal" shear wave speed. Both bistatic and monostatic cases are considered. For sedimentary rock it is found that shear elasticity tends to increase the importance of volume scattering and decrease the importance of roughness scattering relative to the fluid case. Shear effects are shown to be small for sands.

  4. Evaluation of Influence of Multiple Scattering Effect in Light-Scattering-Based Applications

    Institute of Scientific and Technical Information of China (English)

    XU Sheng-Hua; SUN Zhi-Wei

    2007-01-01

    The extinction cross sections of a system containing two particles are calculated by the T-matrix method, and the results are compared with those of two single particles with single-scattering approximation. The necessity of the correction of the refractive indices of water and polystyrene for different incident wavelengths is particularly addressed in the calculation. By this means, the volume fractions allowed for certain accuracy requirements of single-scattering approximation in the light scattering experiment can be evaluated. The volume fractions calculated with corrected refractive indices are compared with those obtained with fixed refractive indices which have been rather commonly used, showing that fixed refractive indices may cause significant error in evaluating multiple scattering effect. The results also give a simple criterion for selecting the incident wavelength and particle size to avoid the 'blind zone' in the turbidity measurement, where the turbidity change is insensitive to aggregation of two particles.

  5. Study of scattering cross section of a plasma column using Green's function volume integral equation method

    Science.gov (United States)

    Soltanmoradi, Elmira; Shokri, Babak

    2017-05-01

    In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.

  6. Proximity effect correction concerning forward scattering

    Science.gov (United States)

    Tsunoda, Dai; Shoji, Masahiro; Tsunoe, Hiroyuki

    2010-09-01

    The Proximity Effect is a critical problem in EB Lithography which is used in Photomask writing. Proximity Effect means that an electron shot by gun scatters by collided with resist molecule or substrate atom causes CD variation depending on pattern density [1]. Scattering by collision with resist molecule is called as "forward scattering", that affects in dozens of nanometer range, and with substrate atom is called as "backward scattering, that affects approximately 10 micrometer in 50keV acceleration voltage respectively. In conventional Proximity Effect Correction (PEC) for mask writing, we don't need to think forward scattering effect. However we should think about forward scattering because of smaller feature size. We have proposed a PEC software product named "PATACON PC-Cluster"[2], which can concern forward scattering and calculate optimum dose modulation. In this communication, we explain the PEC processing throughput when the that takes forward scattering into account. The key technique is to use different processing field size for forward scattering calculation. Additionally, the possibility is shown that effective PEC may be available by connecting forward scattering and backward scattering.

  7. Finite volume treatment of $\\pi\\pi$ scattering in the $\\rho$ channel

    CERN Document Server

    Albaladejo, M; Oller, J A; Roca, L

    2013-01-01

    We make a theoretical study of $\\pi\\pi$ scattering with quantum numbers $J^{PC}=1^{--}$ in a finite box. To calculate physical observables for infinite volume from lattice QCD, the finite box dependence of the potentials is not usually considered. We quantify such effects by means of two different approaches for vector-isovector $\\pi\\pi$ scattering based on Unitarized Chiral Perturbation Theory results: the Inverse Amplitude Method and another one based on the $N/D$ method. We take into account finite box effects stemming from higher orders through loops in the crossed $t,u-$channels as well as from the renormalization of the coupling constants. The main conclusion is that for $\\pi\\pi$ phase shifts in the isovector channel one can safely apply L\\"uscher based methods for finite box sizes of $L$ greater than $2 m_\\pi^{-1}$.

  8. Monte Carlo solution of the volume-integral equation of electromagnetic scattering

    Science.gov (United States)

    Peltoniemi, J.; Muinonen, K.

    2014-07-01

    Electromagnetic scattering is often the main physical process to be understood when interpreting the observations of asteroids, comets, and meteors. Modeling the scattering faces still many problems, and one needs to assess several different cases: multiple scattering and shadowing by the rough surface, multiple scattering inside a surface element, and single scattering by a small object. Our specific goal is to extend the electromagnetic techniques to larger and more complicated objects, and derive approximations taking into account the most important effects of waves. Here we experiment with Monte Carlo techniques: can they provide something new to solving the scattering problems? The electromagnetic wave equation in the presence of a scatterer of volume V and refractive index m, with an incident wave EE_0, including boundary conditions and the scattering condition at infinity, can be presented in the form of an integral equation EE(rr)(1+suski(rr) Q(ρ))-int_{V-V_ρ}ddrr' GG(rr-rr')suski(rr')EE(rr') =EE_0, where suski(rr)=m(rr)^2-1, Q(ρ)=-1/3+{cal O}(ρ^2)+{O'}(m^2ρ^2), {O}, and {O'} are some second- and higher-order corrections for the finite-size volume V_ρ of radius ρ around the singularity and GG is the dyadic Green's function of the form GG(RR)={exp(im kR)}/{4π R}[unittensor(1+{im}/{R}-{1}/{R^2})-RRRR(1+{3im}/{R}-{3}/{R^2})]. In general, this is solved by extending the internal field in terms of some simple basis functions, e.g., plane or spherical waves or a cubic grid, approximating the integrals in a clever way, and determining the goodness of the solution somehow, e.g., moments or least square. Whatever the choice, the solution usually converges nicely towards a correct enough solution when the scatterer is small and simple, and diverges when the scatterer becomes too complicated. With certain methods, one can reach larger scatterers faster, but the memory and CPU needs can be huge. Until today, all successful solutions are based on more or less

  9. Finite volume treatment of pi pi scattering and limits to phase shifts extraction from lattice QCD

    CERN Document Server

    Albaladejo, M; Oset, E; Rios, G; Roca, L

    2012-01-01

    We study theoretically the effects of finite volume for pipi scattering in order to extract physical observables for infinite volume from lattice QCD. We compare three different approaches for pipi scattering (lowest order Bethe-Salpeter approach, N/D and inverse amplitude methods) with the aim to study the effects of the finite size of the box in the potential of the different theories, specially the left-hand cut contribution through loops in the crossed t,u-channels. We quantify the error made by neglecting these effects in usual extractions of physical observables from lattice QCD spectra. We conclude that for pipi phase-shifts in the scalar-isoscalar channel up to 800 MeV this effect is negligible for box sizes bigger than 2.5m_pi^-1 and of the order of 5% at around 1.5-2m_pi^-1. For isospin 2 the finite size effects can reach up to 10% for that energy. We also quantify the error made when using the standard Luscher method to extract physical observables from lattice QCD, which is widely used in the lite...

  10. Effect of Scatterering on Coherent Anti-Stokes Raman Scattering (CARS) signals

    CERN Document Server

    Ranasinghesagara, Janaka C; Piazza, Vincenzo; Potma, Eric O; Venugopalan, Vasan

    2016-01-01

    We develop a computational framework to examine the factors responsible for scattering-induced distortions of coherent anti-Stokes Raman scattering (CARS) signals in turbid samples. We use the Huygens-Fresnel Wave-based Electric Field Superposition (HF-WEFS) method combined with the radiating dipole approximation to compute the effects of scattering-induced distortions of focal excitation fields on the far-field CARS signal. We analyze the effect of spherical scatterers, placed in the vicinity of the focal volume, on the CARS signal emitted by different objects (2{\\mu}m diameter solid sphere, 2{\\mu}m diameter myelin cylinder and 2{\\mu}m diameter myelin tube). We find that distortions in the CARS signals arise not only from attenuation of the focal field but also from scattering-induced changes in the spatial phase that modifies the angular distribution of the CARS emission. Our simulations further show that CARS signal attenuation can be minimized by using a high numerical aperture condenser. Moreover, unlike...

  11. Three-Component Power Decomposition for Polarimetric SAR Data Based on Adaptive Volume Scatter Modeling

    Directory of Open Access Journals (Sweden)

    Sang-Eun Park

    2012-05-01

    Full Text Available In this paper, the three-component power decomposition for polarimetric SAR (PolSAR data with an adaptive volume scattering model is proposed. The volume scattering model is assumed to be reflection-symmetric but parameterized. For each image pixel, the decomposition first starts with determining the adaptive parameter based on matrix similarity metric. Then, a respective scattering power component is retrieved with the established procedure. It has been shown that the proposed method leads to complete elimination of negative powers as the result of the adaptive volume scattering model. Experiments with the PolSAR data from both the NASA/JPL (National Aeronautics and Space Administration/Jet Propulsion Laboratory Airborne SAR (AIRSAR and the JAXA (Japan Aerospace Exploration Agency ALOS-PALSAR also demonstrate that the proposed method not only obtains similar/better results in vegetated areas as compared to the existing Freeman-Durden decomposition but helps to improve discrimination of the urban regions.

  12. TIME-DOMAIN VOLUME INTEGRAL EQUATION FOR TRANSIENT SCATTERING FROM INHOMOGENEOUS OBJECTS-2D TM CASE

    Institute of Scientific and Technical Information of China (English)

    Wang Jianguo; Fan Ruyu

    2001-01-01

    This letter proposes a time-domain volume integral equation based method for analyzing the transient scattering from a 2D inhomogeneous cylinder by involking the volume equivalence principle for the transverse magnetic case. This integral equation is solved by using an MOT scheme. Numerical results obtained using this method agree very well with those obtained using the FDTD method.

  13. TIME-DOMAIN VOLUME INTEGRAL EQUATION FOR TRANSIENT SCATTERING FROM INHOMOGENEOUS OBJECTS-2D TE CASE

    Institute of Scientific and Technical Information of China (English)

    Wang Jianguo; Fan Ruyu

    2001-01-01

    This letter proposes a time-domain volume integral equation based method for analyzing the transient scattering from a 2D inhomogeneous cylinder by involking the volume equivalence principle for the transverse electric case. This integral equation is solved by using an MOT scheme. Numerical results obtained using this method agree very well with those obtained using the FDTD method.

  14. Scattering effect on entanglement propagation in RCFTs

    CERN Document Server

    Numasawa, Tokiro

    2016-01-01

    In this paper we discuss the scattering effect on entanglement propagation in RCFTs. In our setup, we consider the time evolution of excited states created by the insertion of many local operators. Our results show that because of the finiteness of quantum dimension, entanglement is not changed after the scattering in RCFTs. In this mean, entanglement is conserved after the scattering event in RCFTs, which reflects the integrability of the system. Our results are also consistent with the free quasiparticle picture after the global quenches.

  15. Multiple Scattering Using Parallel Volume Integral Equation Method: Interaction of SH Waves with Multiple Multilayered Anisotropic Elliptical Inclusions

    Directory of Open Access Journals (Sweden)

    Jungki Lee

    2015-01-01

    Full Text Available The parallel volume integral equation method (PVIEM is applied for the analysis of elastic wave scattering problems in an unbounded isotropic solid containing multiple multilayered anisotropic elliptical inclusions. This recently developed numerical method does not require the use of Green’s function for the multilayered anisotropic inclusions; only Green’s function for the unbounded isotropic matrix is needed. This method can also be applied to solve general two- and three-dimensional elastodynamic problems involving inhomogeneous and/or multilayered anisotropic inclusions whose shape and number are arbitrary. A detailed analysis of the SH wave scattering is presented for multiple triple-layered orthotropic elliptical inclusions. Numerical results are presented for the displacement fields at the interfaces for square and hexagonal packing arrays of triple-layered elliptical inclusions in a broad frequency range of practical interest. It is necessary to use standard parallel programming, such as MPI (message passing interface, to speed up computation in the volume integral equation method (VIEM. Parallel volume integral equation method as a pioneer of numerical analysis enables us to investigate the effects of single/multiple scattering, fiber packing type, fiber volume fraction, single/multiple layer(s, multilayer’s shape and geometry, isotropy/anisotropy, and softness/hardness of the multiple multilayered anisotropic elliptical inclusions on displacements at the interfaces of the inclusions.

  16. Scattering of unstable particles in a finite volume: the case of pi rho scattering and the a1(1260) resonance

    CERN Document Server

    Roca, L

    2012-01-01

    We present a way to evaluate the scattering of unstable particles quantized in a finite volume with the aim of extracting physical observables for infinite volume from lattice data. We illustrate the method with the $\\pi\\rho$ scattering which generates dynamically the axial-vector $a_1(1260)$ resonance. Energy levels in a finite box are evaluated both considering the $\\rho$ as a stable and unstable resonance and we find significant differences between both cases. We discuss how to solve the problem to get the physical scattering amplitudes in the infinite volume, and hence phase shifts, from possible lattice results on energy levels quantized inside a finite box.

  17. The effect of hemolysis on acoustic scattering from blood

    Science.gov (United States)

    Coussios, Constantin-C.; Ffowcs Williams, Shon E.

    2002-05-01

    In an attempt to develop a direct method for measuring the extent of red cell damage in vitro, the effect of the degree of hemolysis on ultrasonic scattering from blood was investigated. Starting with a suspension of 30% hematocrit, a series of suspensions containing different relative concentrations of healthy and damaged red cells in saline were prepared, with the total number of cells present in any one suspension being constant. For each sample, a suspension of equal concentration of healthy cells, but no lyzed cells, was also produced. Using a specially designed container, all samples were exposed to 15 MHz ultrasound in pulse-echo mode and measurements of backscattering were obtained. At high hematocrits, the samples containing damaged cells were found to scatter substantially more than the suspensions containing exclusively healthy cells. This indicates that damaged cells contribute significantly to the overall backscattered intensity. Below a concentration of 13% per volume of healthy cells, scattering levels from healthy and hemolyzed suspensions were comparable. A theoretical model, which treats healthy cells as weak-scattering spheres and damaged cells as hard thin disks, is proposed to interpret the observed scattering behavior.

  18. A CO2 laser based two-volume collective scattering instrument for spatially localized turbulence measurements

    DEFF Research Database (Denmark)

    Saffman, Mark; Zoletnik, S.; Basse, Nils Plesner

    2001-01-01

    We describe and demonstrate a two-volume collective scattering system for localized measurements of plasma turbulence. The finite crossfield correlation length of plasma turbulence combined with spatial variations in the magnetic field direction are used to obtain spatially localized turbulence...

  19. Noninertial effects on nonrelativistic topological quantum scattering

    Science.gov (United States)

    Mota, H. F.; Bakke, K.

    2017-08-01

    We investigate noninertial effects on the scattering problem of a nonrelativistic particle in the cosmic string spacetime. By considering the nonrelativistic limit of the Dirac equation we are able to show, in the regime of small rotational frequencies, that the phase shift has two contribution: one related to the noninertial reference frame, and the other, due to the cosmic string conical topology. We also show that both the incident wave and the scattering amplitude are altered as a consequence of the noninertial reference frame and depend on the rotational frequency.

  20. Self-pulsing effect in chaotic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jung, C [Centro de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico); MejIa-Monasterio, C [Centro de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico); Merlo, O [Institut fuer Physik der Universitaet Basel, Basel (Switzerland); Seligman, T H [Centro de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)

    2004-05-01

    We study the quantum and classical scattering of Hamiltonian systems whose chaotic saddle is described by binary or ternary horseshoes. We are interested in situations for which a stable island, associated with the inner fundamental periodic orbit of the system exists and is large, but chaos around this island is well developed. Such situations are quite common as they correspond typically to the near-integrable domain in the transition from integrable to chaotic scattering. Both classical and quantum dynamics are analysed and in both cases, the most surprising effect is a periodic response to an incoming wave packet. The period of this self-pulsing effect or scattering echoes coincides with the mean period, by which the scattering trajectories rotate around the stable orbit. This period of rotation is directly related to the development stage of the underlying horseshoe. Therefore the predicted echoes will provide experimental access to topological information. We numerically test these results in kicked one-dimensional models and in open billiards.

  1. Finite-volume Hamiltonian method for $\\pi\\pi$ scattering in lattice QCD

    CERN Document Server

    Wu, Jia-Jun; Leinweber, Derek B; Thomas, A W; Young, Ross D

    2015-01-01

    Within a formulation of $\\pi\\pi$ scattering, we investigate the use of the finite-volume Hamiltonian approach to resolving scattering observables from lattice QCD spectra. We consider spectra in the centre-of-mass and moving frames for both S- and P-wave cases. Furthermore, we investigate the multi-channel case. Here we study the use of the Hamiltonian framework as a parametrization that can be fit directly to lattice spectra. Through this method, the hadron properties, such as mass, width and coupling, can be directly extracted from the lattice spectra.

  2. Polarization effects. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Courant, E.

    1981-01-01

    The use of polarized proton beams in ISABELLE is important for several general reasons: (1) With a single longitudinally polarized proton beam, effects involving parity violation can be identified and hence processes involving weak interactions can be separated from those involving strong and electromagnetic interactions. (2) Spin effects are important in the strong interactions and can be useful for testing QCD. The technique for obtaining polarized proton beams in ISABELLE appears promising, particularly in view of the present development of a polarized proton beam for the AGS. Projections for the luminosity in ISABELLE for collisions of polarized protons - one or both beams polarized with longitudinal or transverse polarization - range from 1/100 to 1 times the luminosity for unpolarized protons.

  3. The Effect of Anisotropic Scatter on Atmospheric Neutron Transport

    Science.gov (United States)

    2015-03-26

    slab geometry, two studies were conducted exploring the relative effect of anisotropic scatter as compared to isotropic scatter in the center of mass... anisotropic scatter. In order to address this question, first anisotropic scatter was implemented, then verified, and finally, the measurement of the... measured value. The relative error between neutron counts in isotropic and anisotropic time- integrated energy bins, isotropic anisotropicrel

  4. Effective Tree Scattering at L-Band

    Science.gov (United States)

    Kurum, Mehmet; ONeill, Peggy E.; Lang, Roger H.; Joseph, Alicia T.; Cosh, Michael H.; Jackson, Thomas J.

    2011-01-01

    For routine microwave Soil Moisture (SM) retrieval through vegetation, the tau-omega [1] model [zero-order Radiative Transfer (RT) solution] is attractive due to its simplicity and eases of inversion and implementation. It is the model used in baseline retrieval algorithms for several planned microwave space missions, such as ESA's Soil Moisture Ocean Salinity (SMOS) mission (launched November 2009) and NASA's Soil Moisture Active Passive (SMAP) mission (to be launched 2014/2015) [2 and 3]. These approaches are adapted for vegetated landscapes with effective vegetation parameters tau and omega by fitting experimental data or simulation outputs of a multiple scattering model [4-7]. The model has been validated over grasslands, agricultural crops, and generally light to moderate vegetation. As the density of vegetation increases, sensitivity to the underlying SM begins to degrade significantly and errors in the retrieved SM increase accordingly. The zero-order model also loses its validity when dense vegetation (i.e. forest, mature corn, etc.) includes scatterers, such as branches and trunks (or stalks in the case of corn), which are large with respect to the wavelength. The tau-omega model (when applied over moderately to densely vegetated landscapes) will need modification (in terms of form or effective parameterization) to enable accurate characterization of vegetation parameters with respect to specific tree types, anisotropic canopy structure, presence of leaves and/or understory. More scattering terms (at least up to first-order at L-band) should be included in the RT solutions for forest canopies [8]. Although not really suitable to forests, a zero-order tau-omega model might be applied to such vegetation canopies with large scatterers, but that equivalent or effective parameters would have to be used [4]. This requires that the effective values (vegetation opacity and single scattering albedo) need to be evaluated (compared) with theoretical definitions of

  5. Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea

    Science.gov (United States)

    Berthon, Jean-François; Shybanov, Eugeny; Lee, Michael E.-G.; Zibordi, Giuseppe

    2007-08-01

    We performed measurements of the volume scattering function (VSF) between 0.5° and 179° with an angular resolution of 0.3° in the northern Adriatic Sea onboard an oceanographic platform during three different seasons, using the multispectral volume scattering meter (MVSM) instrument. We observed important differences with respect to Petzold's commonly used functions, whereas the Fournier-Forand's analytical formulation provided a rather good description of the measured VSF. The comparison of the derived scattering, bp(λ) and backscattering, bbp(λ) coefficients for particles with the measurements performed with the classical AC-9 and Hydroscat-6 showed agreement to within 20%. The use of an empirical relationship for the derivation of bb(λ) from β(ψ,λ) at ψ=140° was validated for this coastal site although ψ=118° was confirmed to be the most appropriate angle. The low value of the factor used to convert β(ψ,λ) into bb(λ) within the Hydroscat-6 processing partially contributed to the underestimation of bb(λ) with respect to the MVSM. Finally, use of the Kopelevich model together with a measurement of bp(λ) at λ=555 nm allowed us to reconstruct the VSF with average rms percent differences between 8 and 15%.

  6. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering

    Science.gov (United States)

    Moskalensky, Alexander E.; Yurkin, Maxim A.; Konokhova, Anastasiya I.; Strokotov, Dmitry I.; Nekrasov, Vyacheslav M.; Chernyshev, Andrei V.; Tsvetovskaya, Galina A.; Chikova, Elena D.; Maltsev, Valeri P.

    2013-01-01

    We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.

  7. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering.

    Science.gov (United States)

    Moskalensky, Alexander E; Yurkin, Maxim A; Konokhova, Anastasiya I; Strokotov, Dmitry I; Nekrasov, Vyacheslav M; Chernyshev, Andrei V; Tsvetovskaya, Galina A; Chikova, Elena D; Maltsev, Valeri P

    2013-01-01

    We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.

  8. Virtual Bilepton Effects in polarized Moller Scattering

    CERN Document Server

    Meirose, B

    2008-01-01

    We investigate the indirect effects of heavy vector bileptons being exchanged in polarized Moller scattering, at the next generation of linear colliders. Considering both longitudinal and transverse beam polarization, and accounting for initial-state radiation, beamstrahlung and beam energy spread, we discuss how angular distributions and asymmetries can be used to detect clear signals of virtual bileptons, and the possibility of distinguishing theoretical models that incorporate these exotic particles. We then estimate 95% C.L. bounds on the mass of these vector bileptons and on their couplings to electrons.

  9. Investigation of multiple scattering effects in aerosols

    Science.gov (United States)

    Deepak, A.

    1980-01-01

    The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.

  10. Transient analysis of scattering from ferromagnetic objects using Landau-Lifshitz-Gilbert and volume integral equations

    KAUST Repository

    Sayed, Sadeed Bin

    2016-11-02

    An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented.

  11. Two-Particle Elastic Scattering in a Finite Volume Including QED

    CERN Document Server

    Beane, Silas R

    2014-01-01

    The presence of long-range interactions violates a condition necessary to relate the energy of two particles in a finite volume to their S-matrix elements in the manner of Luscher. While in infinite volume, QED contributions to low-energy charged particle scattering must be resummed to all orders in perturbation theory (the Coulomb ladder diagrams), in a finite volume the momentum operator is gapped, allowing for a perturbative treatment. The leading QED corrections to the two-particle finite-volume energy quantization condition below the inelastic threshold, as well as approximate formulas for energy eigenvalues, are obtained. In particular, we focus on two spinless hadrons in the A1+ irreducible representation of the cubic group, and truncate the strong interactions to the s-wave. These results are necessary for the analysis of Lattice QCD+QED calculations of charged-hadron interactions, and can be straightforwardly generalized to other representations of the cubic group, to hadrons with spin, and to includ...

  12. Implications of changing scattering properties on Greenland ice sheet volume change from Cryosat-2 altimetry

    DEFF Research Database (Denmark)

    Simonsen, Sebastian Bjerregaard; Sørensen, Louise Sandberg

    2017-01-01

    Long-term observations of surface elevation change of the Greenland ice sheet (GrIS) is of utmost importance when assessing the state of the ice sheet. Satellite radar altimetry offers a long time series of data over the GrIS, starting with ERS-1 in 1991. ESA's Cryosat-2 mission, launched in 2010...... waveform parameters to be applicable for correcting for changes in volume scattering. The best results in the Synthetic Aperture Radar Interferometric mode area of the GrIS are found when applying only the backscatter correction, whereas the best result in the Low Resolution Mode area is obtained by only...... applying a leading edge width correction. Using this approach to correct for the scattering properties, a volume loss of −292±38 km3 yr −1 is found for the GrIS for the time span November 2010 until November 2014. The inclusion of waveform parameter corrections and improved relocation for the GrIS, helps...

  13. A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers

    KAUST Repository

    Bagci, Hakan

    2015-01-07

    Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability

  14. Investigation of Simulating Radar Images Concerning the Multipath Scattering Effect

    Institute of Scientific and Technical Information of China (English)

    Yang Chun-hua; Zhu Guo-qiang

    2004-01-01

    In the composed system of a target and rough surface, the electromagnetic scattering mechanism, especially the multipath scattering, is investigated. Using physical optics double bouncing algorithm, the multipath scattering model of the system has been established. Simulated by a wideband radar signal and based on fractal rough surface. the artificial echo of the target has been obtained in virtue of the established multipath scattering model. By simulating to image the target in one dimension using the artificial echo, two kinds of range profiles are attained. It is found that one is from the target and the other is from the multipath scattering effect.

  15. Multiple point scattering to determine the effective wavenumber and effective material properties of an inhomogeneous slab

    Science.gov (United States)

    Parnell, William J.; Abrahams, I. David

    2010-11-01

    In this article we attempt to clarify various notions regarding multiple point scattering. We consider several predictions for the effective material properties of an inhomogeneous slab region which can be derived from classical multiple scattering theories. In particular we are interested in the point scattering limit when wavelengths λ0 ≫ l ∼ a where l is the characteristic length-scale of the distance between inclusions and a is the characteristic length-scale of inclusions. In this limit we are able to derive effective properties which are physically valid for any volume fraction φ, except in the sound-soft scatterer case where there is a condition on the size of φ. We shall confine attention to random distributions of inclusions and employ the Quasi-Crystalline Approximation to yield results. In particular we discuss the different scenarios of acoustics and antiplane elasticity and stress the reciprocity between these two problems which means that they can be solved simultaneously. We make various statements regarding the efficacy of the various multiple scattering theories in the prediction of effective material properties in the quasi-static limit.

  16. Analysis of electromagnetic wave interactions on nonlinear scatterers using time domain volume integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2014-07-06

    Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half

  17. Robert R. Wilson Prize I: Intrabeam Scattering and Touschek Effect

    Science.gov (United States)

    Piwinski, Anton

    2017-01-01

    Intrabeam scattering and the Touschek effect are explained and compared. Especially intrabeam scattering plays an important role in colliders and synchrotron radiation sources where it limits the beam lifetime and the brightness,respectively. A short history of the consequences of both effects in different accelerators is given. An invariant due to intrabeam scattering is discussed which shows that only below transition energy a stable particle distribution is possible whereas above transition energy a stable distribution cannot exist.

  18. Monte Carlo simulations of multiple scattering effects in laser assisted free-free scattering experiments

    Science.gov (United States)

    Deharak, B. A.; Savich, J. L.; Roberts, H. M.; Brown, E. G.; McGill, M. R.; Kim, B. N.; Weaver, C. M.; Martin, N. L. S.

    2016-05-01

    We have conducted a series of Monte Carlo simulations of laser assisted free-free scattering experiments. The simulations make use of Kroll-Watson approximation to account for the effects of the laser field on the scattering process. The parameters for these simulations are believed to mimic the experimental conditions of the work reported by Wallbank and Holmes, particularly the target number density. The simulations account for the effects multiple scattering (i.e., the scattering of a single incident electron from multiple target atoms). We present a comparison of the results of these simulations to the experimental results of Wallbank and Holmes. This work was supported by the National Science Foundation under Grants Nos. PHY-0855040 (NLSM) and PHY-1402899 (BAd).

  19. Study of multiple scattering effects in heavy ion RBS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1996-12-31

    Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.

  20. Algorithms and computer codes for atomic and molecular quantum scattering theory. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, L. (ed.)

    1979-01-01

    The goals of this workshop are to identify which of the existing computer codes for solving the coupled equations of quantum molecular scattering theory perform most efficiently on a variety of test problems, and to make tested versions of those codes available to the chemistry community through the NRCC software library. To this end, many of the most active developers and users of these codes have been invited to discuss the methods and to solve a set of test problems using the LBL computers. The first volume of this workshop report is a collection of the manuscripts of the talks that were presented at the first meeting held at the Argonne National Laboratory, Argonne, Illinois June 25-27, 1979. It is hoped that this will serve as an up-to-date reference to the most popular methods with their latest refinements and implementations.

  1. Azimuthal effects in grazing surface scattering

    Energy Technology Data Exchange (ETDEWEB)

    Robin, A. E-mail: arobin@uos.de; Jensen, J.; Heiland, W

    2003-06-01

    We report on surface scattering experiments in the MeV regime. N{sup q+} (q=1, 2) ions with 0.7-1.4 MeV are scattered off a single-crystalline Pt(110)(1x2) surface under grazing incidence and specular reflection geometry. We investigate the energy loss dependency on the azimuthal angle under variation of the perpendicular energy.

  2. Relationship between the Integrated Intensity of the Power Spectrum of Scattered Light and Tissue Blood Volume by the Dynamic Light Scattering Method

    Science.gov (United States)

    Kashima, Susumu; Nishihara, Minoru; Takemoto, Yoshihiro; Osawa, Toshihiko

    1990-09-01

    The laser scattering characteristics from tissue microvasculature have been made clear by means of theoretical and experimental approaches. Our results show that the integrated intensity of the power spectrum correlates linearly with the volume of red blood cells in a given tissue provided the average collision number (\\bar{m}) between photons and moving red blood cells is less than unity. Also, the integrated intensity of the power spectrum is proportional to tissue blood volume if the density of red blood cells in blood (hematocrit) is constant.

  3. Scatterers shape effect on speckle patterns

    Science.gov (United States)

    Denisenkov, Valentin S.; Kiyko, Vadim V.; Vdovin, Gleb V.

    2015-03-01

    Laser speckle analysis is a very powerful method with various existing applications, including biomedical diagnostics. The majority of the speckle applications are based on analysis of dependence of scattered light intensity distribution from sizes of the scattereres. We propose a numerical model of speckle formation in reflected light in one-dimension which shows that properties of the scattered light are strongly dependent on the form of the scatterers. In particular, the dependence of number of speckles from the size of the scatterers was investigated for the light reflected from the surface with varying roughness; the single roughness on the surface was assumed to have the form of one-dimensional `pyramid' with the sides having either linear or parabolic descent from the top of the `pyramid' to the bottom. It was found that for the linear roughness, number of speckles decreased with increase of the roughness size, whereas for the parabolic roughness the number of speckles increased. Results of numerical simulation were compared with experiment investigations of roughness samples (0.5-2.5 μm) made of glass and copper. Due to different production processes, the glass samples are likely to have the parabolic roughness and copper samples are likely to have the linear roughness. Experiments show that the dependences of number of speckles also have different slopes, the same as in numerical simulation. These findings can lead to new analytical methods capable of determining not only the size distribution of roughness (or scatterers) but also the shape.

  4. Scattering approach to quantum transport and many body effects

    Science.gov (United States)

    Pichard, Jean-Louis; Freyn, Axel

    2010-12-01

    We review a series of works discussing how the scattering approach to quantum transport developed by Landauer and Buttiker for one body elastic scatterers can be extended to the case where electron-electron interactions act inside the scattering region and give rise to many body scattering. Firstly, we give an exact numerical result showing that at zero temperature a many body scatterer behaves as an effective one body scatterer, with an interaction dependent transmission. Secondly, we underline that this effective scatterer depends on the presence of external scatterers put in its vicinity. The implications of this non local scattering are illustrated studying the conductance of a quantum point contact where electrons interact with a scanning gate microscope. Thirdly, using the numerical renormalization group developed by Wilson for the Kondo problem, we study a double dot spinless model with an inter-dot interaction U and inter-dot hopping td, coupled to leads by hopping terms tc. We show that the quantum conductance as a function of td is given by a universal function, independently of the values of U and tc, if one measures td in units of a characteristic scale τ(U,tc). Mapping the double dot system without spin onto a single dot Anderson model with spin and magnetic field, we show that τ(U,tc) = 2TK, where TK is the Kondo temperature of the Anderson model.

  5. Using Ray Tracing to Evaluate the Performance of Several Methods for Determining the Ground Range and Refractive Index of Ionospheric Scattering Volumes

    Science.gov (United States)

    Greenwald, R. A.; Frissell, N. A.; de Larquier, S.

    2016-12-01

    In this paper, we evaluate the performance of three methods used by HF radars in the SuperDARN network for determining the ground ranges to ionospheric scattering volumes. Each method uses somewhat different approaches, but the same equivalent-path analysis. We also show that Snell's Law can be added to this analysis to determine the refractive index of each scattering volume and thereby correct Doppler velocity measurements for ionospheric refraction. Two of these methods make their predictions using the group range to the scattering volume and a virtual height model, while the third method uses the group range and the elevation angle each backscattered return. The effectiveness of each of these methods is evaluated using ray tracing analyses through the International Reference Ionosphere. Ray tracings analysis provides determinations of the initial elevation angle, group range, group range, and refractive index of each ionospheric volume that backscatters signals to the radar. The initial or final elevation angle and the group range are used as inputs to the geolocation methods and the ground range and refractive index serve as reference data against which the predictions of the geolocation methods can be evaluated. We find that the methods using virtual height models actually change the initial elevation angle determined from ray tracing to a different elevation angle that is consistent with the virtual height model. Due to this change, predictions of the ground range and refractive index of scattering volumes located with virtual-height models are rarely consistent with the predictions obtained from ray tracing. In contrast, the geolocation method that uses the group range and initial or final elevation angle yields predictions that are in good agreement with ray tracing. Modifications to the equivalent-path analysis are required to obtain consistent predictions of the ground range and refractive index of backscatter from the topside F-layer.

  6. Dielectric effects on Thomson scattering in a relativistic magnetized plasma

    DEFF Research Database (Denmark)

    Bindslev, H.

    1991-01-01

    the absorption is small. Symmetry between variables relating to incident and scattered fields is demonstrated and shown to be in agreement with the reciprocity relation. Earlier results are confirmed in the cold plasma limit. Significant relativistic effects, of practical importance to the scattering......The effects of the dielectric properties of a relativistic magnetized plasma on the scattering of electromagnetic radiation by fluctuations in electron density are investigated. The origin of the density fluctuations is not considered. Expressions for the scattering cross-section and the scattered...... power accepted by the receiving antenna are derived for a plasma with spatial dispersion. The resulting expressions allow thermal motion to be included in the description of the plasma and remain valid for frequencies of the probing radiation in the region of omega(p) and omega(ce), provided...

  7. Effects of cellular fine structure on scattered light pattern.

    Science.gov (United States)

    Liu, Caigen; Capjack, Clarence E

    2006-06-01

    Biological cells are complex in both morphological and biochemical structure. The effects of cellular fine structure on light scattered from cells are studied by employing a three-dimensional code named AETHER which solves the full set of Maxwell equations by using the finite-difference time-domain method. It is shown that changes in cellular fine structure can cause significant changes in the scattered light pattern over particular scattering angles. These changes potentially provide the possibility for distinguishability of cellular intrastructures. The effects that features of different intrastructure have on scattered light are discussed from the viewpoint of diagnosing cellular fine structure. Finally, we discuss scattered light patterns for lymphocyte-like cells and basophil-like cells.

  8. Universal dimer-dimer scattering in lattice effective field theory

    CERN Document Server

    Elhatisari, Serdar; Lee, Dean; Meißner, Ulf-G; Rupak, Gautam

    2016-01-01

    We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in many different fields including atomic, nuclear and particle physics. In the limit of large fermion-fermion scattering length $a_\\mathrm{ff}$ and zero range interaction, all properties of the system scale proportionally with the only length scale $a_\\mathrm{ff}$. We consider the case where there are bound dimers and calculate the scattering phase shifts for the two-dimer system near threshold using lattice effective field theory. From the scattering phase shifts, we extract the universal dimer-dimer scattering length $a_\\mathrm{dd}/a_\\mathrm{ff}=0.645(89)$ and effective range $r_\\mathrm{dd}/a_\\mathrm{ff}=-0.413(79)$.

  9. Analysis of multiple scattering effects in optical Doppler tomography

    DEFF Research Database (Denmark)

    Yura, H.T.; Thrane, L.; Andersen, Peter E.

    2005-01-01

    Optical Doppler tomography (ODT) combines Doppler velocimetry and optical coherence tomography (OCT) to obtain high-resolution cross-sectional imaging of particle flow velocity in scattering media such as the human retina and skin. Here, we present the results of a theoretical analysis of ODT where...... multiple scattering effects are included. The purpose of this analysis is to determine how multiple scattering affects the estimation of the depth-resolved localized flow velocity. Depth-resolved velocity estimates are obtained directly from the corresponding mean or standard deviation of the observed...... Doppler frequency spectrum. Thus, in the present analysis, the dependence of the mean and standard deviation of the Doppler shift on the scattering properties of the flowing medium are obtained. Taking the multiple scattering effects into account, we are able to explain previous measurements of depth...

  10. Complete blood count using VCS (volume, conductivity, light scatter) technology is affected by hyperlipidemia in a child with acute leukemia.

    Science.gov (United States)

    Gokcebay, D G; Azik, F M; Isik, P; Bozkaya, I O; Kara, A; Tavil, E B; Yarali, N; Tunc, B

    2011-12-01

    Asparaginase, an effective drug in the treatment of childhood acute lymphoblastic leukemia (ALL), has become an important component of most childhood ALL regimens during the remission induction or intensification phases of treatment. The incidence range of asparaginase-associated lipid abnormalities that are seen in children is 67-72%. Lipemia causes erroneous results, which uses photometric methods to analyze blood samples. We describe a case of l-asparaginase-associated severe hyperlipidemia with complete blood count abnormalities. Complete blood count analysis was performed with Beckman COULTER(®) GEN·S™ system, which uses the Coulter Volume, Conductivity, Scatter technology to probe hydrodynamically focused cells. Although an expected significant inaccuracy in hemoglobin determination occurred starting from a lipid value of 3450 mg/dl, we observed that triglyceride level was 1466 mg/dl. Complete blood count analysis revealed that exceptionally high hemoglobin, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration levels vs. discordant with red blood cell count, mean corpuscular volume, and hematocrit levels. Total leukocyte count altered spontaneously in a wide range, and was checked with blood smear. Platelet count was in expected range (Table 1). Thus, we thought it was a laboratory error, and the patient's follow-up especially for red cell parameters was made by red blood cell and hematocrit values.

  11. Weak phonon scattering effect of twin boundaries on thermal transmission.

    Science.gov (United States)

    Dong, Huicong; Xiao, Jianwei; Melnik, Roderick; Wen, Bin

    2016-01-29

    To study the effect of twin boundaries on thermal transmission, thermal conductivities of twinned diamond with different twin thicknesses have been studied by NEMD simulation. Results indicate that twin boundaries show a weak phonon scattering effect on thermal transmission, which is only caused by the additional twin boundaries' thermal resistance. Moreover, according to phonon kinetic theory, this weak phonon scattering effect of twin boundaries is mainly caused by a slightly reduced average group velocity.

  12. Weak phonon scattering effect of twin boundaries on thermal transmission

    OpenAIRE

    Huicong Dong; Jianwei Xiao; Roderick Melnik; Bin Wen

    2016-01-01

    To study the effect of twin boundaries on thermal transmission, thermal conductivities of twinned diamond with different twin thicknesses have been studied by NEMD simulation. Results indicate that twin boundaries show a weak phonon scattering effect on thermal transmission, which is only caused by the additional twin boundaries’ thermal resistance. Moreover, according to phonon kinetic theory, this weak phonon scattering effect of twin boundaries is mainly caused by a slightly reduced averag...

  13. Effects of scatter modeling on time-activity curves estimated directly from dynamic SPECT projections

    Energy Technology Data Exchange (ETDEWEB)

    Reutter, Bryan W.; Gullberg, Grant T.; Huesman, Ronald H.

    2003-10-29

    Quantitative analysis of uptake and washout of cardiac single photon emission computed tomography (SPECT) radiopharmaceuticals has the potential to provide better contrast between healthy and diseased tissue, compared to conventional reconstruction of static images. Previously, we used B-splines to model time-activity curves (TACs) for segmented volumes of interest and developed fast least-squares algorithms to estimate spline TAC coefficients and their statistical uncertainties directly from dynamic SPECT projection data. This previous work incorporated physical effects of attenuation and depth-dependent collimator response. In the present work, we incorporate scatter and use a computer simulation to study how scatter modeling affects directly estimated TACs and subsequent estimates of compartmental model parameters. An idealized single-slice emission phantom was used to simulate a 15 min dynamic {sup 99m}Tc-teboroxime cardiac patient study in which 500,000 events containing scatter were detected from the slice. When scatter was modeled, unweighted least-squares estimates of TACs had root mean square (RMS) error that was less than 0.6% for normal left ventricular myocardium, blood pool, liver, and background tissue volumes and averaged 3% for two small myocardial defects. When scatter was not modeled, RMS error increased to average values of 16% for the four larger volumes and 35% for the small defects. Noise-to-signal ratios (NSRs) for TACs ranged between 1-18% for the larger volumes and averaged 110% for the small defects when scatter was modeled. When scatter was not modeled, NSR improved by average factors of 1.04 for the larger volumes and 1.25 for the small defects, as a result of the better-posed (though more biased) inverse problem. Weighted least-squares estimates of TACs had slightly better NSR and worse RMS error, compared to unweighted least-squares estimates. Compartmental model uptake and washout parameter estimates obtained from the TACs were less

  14. Effect of polarization entanglement in photon-photon scattering

    Science.gov (United States)

    Rätzel, Dennis; Wilkens, Martin; Menzel, Ralf

    2017-01-01

    It is found that the differential cross section of photon-photon scattering is a function of the degree of polarization entanglement of the two-photon state. A reduced general expression for the differential cross section of photon-photon scattering is derived by applying simple symmetry arguments. An explicit expression is obtained for the example of photon-photon scattering due to virtual electron-positron pairs in quantum electrodynamics. It is shown how the effect in this explicit example can be explained as an effect of quantum interference and that it fits with the idea of distance-dependent forces.

  15. Evaluation of radar multiple scattering effects in Cloudsat configuration

    Directory of Open Access Journals (Sweden)

    A. Battaglia

    2007-01-01

    Full Text Available MonteCarlo simulations have been performed to evaluate the importance of multiple scattering effects in co- and cross-polar radar returns for 94 GHz radars in Cloudsat and airborne configurations. Thousands of vertically structured profiles derived from some different cloud resolving models are used as a test-bed. Mie theory is used to derive the single scattering properties of the atmospheric hydrometeors. Multiple scattering effects in the co-polar channel (reflectivity enhancement are particularly elusive, especially in airborne configuration. They can be quite consistent in satellite configurations, like CloudSat, especially in regions of high attenuation and in the presence of highly forward scattering layers associated with snow and graupel particles. When the cross polar returns are analysed [but note that CloudSat does not measure any linear depolarization ratio (LDR hereafter], high LDR values appear both in space and in airborne configurations. The LDR signatures are footprints of multiple scattering effects; although depolarization values as high as −5 dB can be generated including non-spherical particles in single scattering modelling, multiple scattering computations can produce values close to complete depolarization (i.e. LDR=0 dB. Our simulated LDR profiles from an air-borne platform well reproduce, in a simple frame, some experimental observations collected during the Wakasa Bay experiment. Since LDR instrumental uncertainties were not positively accounted for during that experiment, more focused campaigns with air-borne polarimetric radar are recommended. Multiple scattering effects can be important for CloudSat applications like rainfall and snowfall retrievals since single scattering based algorithms will be otherwise burdened by positive biases.

  16. On the Use of Generalized Volume Scattering Models for the Improvement of General Polarimetric Model-Based Decomposition

    Directory of Open Access Journals (Sweden)

    Qinghua Xie

    2017-01-01

    Full Text Available Recently, a general polarimetric model-based decomposition framework was proposed by Chen et al., which addresses several well-known limitations in previous decomposition methods and implements a simultaneous full-parameter inversion by using complete polarimetric information. However, it only employs four typical models to characterize the volume scattering component, which limits the parameter inversion performance. To overcome this issue, this paper presents two general polarimetric model-based decomposition methods by incorporating the generalized volume scattering model (GVSM or simplified adaptive volume scattering model, (SAVSM proposed by Antropov et al. and Huang et al., respectively, into the general decomposition framework proposed by Chen et al. By doing so, the final volume coherency matrix structure is selected from a wide range of volume scattering models within a continuous interval according to the data itself without adding unknowns. Moreover, the new approaches rely on one nonlinear optimization stage instead of four as in the previous method proposed by Chen et al. In addition, the parameter inversion procedure adopts the modified algorithm proposed by Xie et al. which leads to higher accuracy and more physically reliable output parameters. A number of Monte Carlo simulations of polarimetric synthetic aperture radar (PolSAR data are carried out and show that the proposed method with GVSM yields an overall improvement in the final accuracy of estimated parameters and outperforms both the version using SAVSM and the original approach. In addition, C-band Radarsat-2 and L-band AIRSAR fully polarimetric images over the San Francisco region are also used for testing purposes. A detailed comparison and analysis of decomposition results over different land-cover types are conducted. According to this study, the use of general decomposition models leads to a more accurate quantitative retrieval of target parameters. However, there

  17. Refractive effects in 9Be scattering and nuclear rainbow ghosts

    Science.gov (United States)

    Satchler, G. R.; Fulmer, C. B.; Auble, R. L.; Ball, J. B.; Bertrand, F. E.; Erb, K. A.; Gross, E. E.; Hensley, D. C.

    1983-08-01

    Data for the elastic scattering of 9Be on 12C and 16O at 158 MeV provide evidence of refractive effects that allow the optical potentials to be determined with little ambiguity. The real potentials are deep. Large angle data indicate dominance of negative-angle scattering from the far side of the target nucleus. The analysis also implies a residual rainbow phenomenon, contrary to what has been seen previously in heavy-ion scattering. We suggest this be called a rainbow ghost. Operated by Union Carbide Corporation under contract W-7405-eng-26 with the US Department of Energy.

  18. Isospin effects in elastic proton-nucleus scattering

    Science.gov (United States)

    Chinn, C. R.; Elster, Ch.; Thaler, R. M.

    1993-05-01

    Isovector effects in proton-nucleus elastic scattering at medium energies are studied. The accuracy of the Kerman-McManus-Thaler isospin averaging procedure is found to be very good for nuclei larger than 4He. Studies of 40Ca and 208Pb suggest that the surface neutrons may be pulled in somewhat relative to the protons, although uncertainties in the detailed applicability of the present truncation of the multiple scattering treatment render firm conclusions premature.

  19. Isospin effects in elastic proton-nucleus scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, C.R. (Service de Physique et Techniques Nucleaires, Centre d' Etudes de Bruyeres-le-Chatel, B.P. No. 12, 91680 Bruyeres-le-Chatel (France)); Elster, C. (Institute of Nuclear and Particle Physics and Department of Physics, Ohio University, Athens, Ohio 45701 (United States)); Thaler, R.M. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States) Case Western Reserve University, Cleveland, Ohio 44106 (United States))

    1993-05-01

    Isovector effects in proton-nucleus elastic scattering at medium energies are studied. The accuracy of the Kerman-McManus-Thaler isospin averaging procedure is found to be very good for nuclei larger than [sup 4]He. Studies of [sup 40]Ca and [sup 208]Pb suggest that the surface neutrons may be pulled in somewhat relative to the protons, although uncertainties in the detailed applicability of the present truncation of the multiple scattering treatment render firm conclusions premature.

  20. Effective gravitational fields in transplackian scattering

    CERN Document Server

    Betti, Luca S G

    2014-01-01

    After a short introduction to the general Quantum Gravity problem, we compare a result from the S-matrix description of gravitational interaction due to Amati, Ciafaloni and Veneziano (ACV) with classical General Relativity results. In Chapter 1, we introduce the metric produced by a massless particle moving at the speed of light. In Chapter 2, we review ACV's semiclassical approach to gravitation and show some of its result. In Chapter 3, we detail the computation of gravitational field expectation values in a high-energy scattering process, following ACV's prescriptions. In Chapter 4, we analyze our results. The main feature is that the leading contributions to the metric computed in terms of the Feynman diagrams deriving from ACV's model perfectly reproduce classical results.

  1. Transient analysis of electromagnetic wave interactions on high-contrast scatterers using volume electric field integral equation

    KAUST Repository

    Sayed, Sadeed Bin

    2014-07-01

    A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using band-limited but two-sided (non-causal) temporal interpolation functions and an extrapolation scheme to cast the time marching into a causal form. The extrapolation scheme is designed to be highly accurate for oscillating and exponentially decaying fields, hence it accurately captures the physical behavior of the resonant modes that are excited inside the dielectric scatterer. Numerical results demonstrate that the resulting MOT scheme maintains its stability as the number of resonant modes increases with the contrast of the scatterer.

  2. Dynamical Screening Effect on $\\alpha$-$\\alpha$ Resonant Scattering and Thermal Nuclear Scattering Rate

    CERN Document Server

    Yao, Xiaojun; Müller, Berndt

    2016-01-01

    We study the dynamical screening effect in the QED plasma on the $\\alpha$-$\\alpha$ scattering at the $^8$Be resonance. Dynamical screening leads to an imaginary part of the potential which results in a thermal width for the resonance and dominates over the previously considered static screening effect. As a result, both the resonance energy and width increase with the plasma temperature. Furthermore, dynamical screening can have a huge impact on the $\\alpha$-$\\alpha$ thermal nuclear scattering rate. For example, when the temperature is around $10$ keV, the rate is suppressed by a factor of about $900$. We expect similar thermal suppressions of nuclear reaction rates to occur in nuclear reactions dominated by an above threshold resonance with a thermal energy. Dynamical screening effects on nuclear reactions can be relevant to cosmology and astrophysics.

  3. Relativistic effects in elastic scattering of electrons in TEM.

    Science.gov (United States)

    Rother, Axel; Scheerschmidt, Kurt

    2009-01-01

    Transmission electron microscopy typically works with highly accelerated thus relativistic electrons. Consequently the scattering process is described within a relativistic formalism. In the following, we will examine three different relativistic formalisms for elastic electron scattering: Dirac, Klein-Gordon and approximated Klein-Gordon, the standard approach. This corresponds to a different consideration of spin effects and a different coupling to electromagnetic potentials. A detailed comparison is conducted by means of explicit numerical calculations. For this purpose two different formalisms have been applied to the approaches above: a numerical integration with predefined boundary conditions and the multislice algorithm, a standard procedure for such simulations. The results show a negligibly small difference between the different relativistic equations in the vicinity of electromagnetic potentials, prevailing in the electron microscope. The differences between the two numeric approaches are found to be small for small-angle scattering but eventually grow large for large-angle scattering, recorded for instance in high-angle annular dark field.

  4. Measuring the effect of rounding the corners of scattering structures

    Science.gov (United States)

    Markowskei, Audrey J.; Smith, Paul D.

    2017-05-01

    In studying acoustic or electromagnetic wave diffraction, the choice of an appropriate canonical structure to model the dominant features of a scattering scenario can be very illuminating. A common approach used when dealing with domains with corners is to round the corners, producing a smooth surface, eliminating the singularities introduced by the corners. In order to quantify the effect of corner rounding, this paper examines the diffraction from cylindrical scatterers which possess corners, that is, points at which the normal changes discontinuously. We develop a numerical method for the scattering of a plane wave normally incident on such cylindrical structures with soft, hard, or impedance loaded boundary conditions. We then examine the difference between various test structures with corners and with the corners rounded to assess the impact on near- and far-field scattering, as a function of the radius of curvature in the vicinity of the rounded corner point. We then examine the nature of the differences in the far field between the cornered and rounded scatterers as well as the effect on the differences as the frequency of the plane wave increases and obtain precise quantitative estimates for the rate of convergence of the maximum difference between the far-field solutions as the radius of curvature of the rounded scatterer approaches zero.

  5. Effective Tree Scattering and Opacity at L-Band

    Science.gov (United States)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.; Joseph, Alicia T.; Cosh, Michael H.; Jackson, Thomas J.

    2011-01-01

    This paper investigates vegetation effects at L-band by using a first-order radiative transfer (RT) model and truck-based microwave measurements over natural conifer stands to assess the applicability of the tau-omega) model over trees. The tau-omega model is a zero-order RT solution that accounts for vegetation effects with effective vegetation parameters (vegetation opacity and single-scattering albedo), which represent the canopy as a whole. This approach inherently ignores multiple-scattering effects and, therefore, has a limited validity depending on the level of scattering within the canopy. The fact that the scattering from large forest components such as branches and trunks is significant at L-band requires that zero-order vegetation parameters be evaluated (compared) along with their theoretical definitions to provide a better understanding of these parameters in the retrieval algorithms as applied to trees. This paper compares the effective vegetation opacities, computed from multi-angular pine tree brightness temperature data, against the results of two independent approaches that provide theoretical and measured optical depths. These two techniques are based on forward scattering theory and radar corner reflector measurements, respectively. The results indicate that the effective vegetation opacity values are smaller than but of similar magnitude to both radar and theoretical estimates. The effective opacity of the zero-order model is thus set equal to the theoretical opacity and an explicit expression for the effective albedo is then obtained from the zero- and first- order RT model comparison. The resultant albedo is found to have a similar magnitude as the effective albedo value obtained from brightness temperature measurements. However, it is less than half of that estimated using the theoretical calculations (0.5 - 0.6 for tree canopies at L-band). This lower observed albedo balances the scattering darkening effect of the large theoretical albedo

  6. An Effective Field Theory for Forward Scattering and Factorization Violation

    CERN Document Server

    Rothstein, Ira Z

    2016-01-01

    Starting with QCD, we derive an effective field theory description for forward scattering and factorization violation as part of the soft-collinear effective field theory (SCET) for high energy scattering. These phenomena are mediated by long distance Glauber gluon exchanges, which are static in time, localized in the longitudinal distance, where $|t| \\ll s$. In hard scattering, Glauber gluons can induce corrections which invalidate factorization. With SCET, Glauber exchange graphs can be calculated explicitly, and are distinct from graphs with soft, collinear, or ultrasoft gluons. We derive a complete basis of operators which describe the leading power effects of Glauber exchange. Key ingredients include regulating light-cone rapidity singularities and subtractions which prevent double counting. Our results include a novel all orders gauge invariant pure glue soft operator which appears between two collinear rapidity sectors. The 1-gluon Feynman rule for the soft operator coincides with the Lipatov vertex, b...

  7. Revisiting the scattering greenhouse effect of CO2 ice clouds

    CERN Document Server

    Kitzmann, Daniel

    2016-01-01

    Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO2 dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone.

  8. Multiple photon effects in $pp$ scattering at SSC energies

    CERN Document Server

    Delaney, D B; Shio, C; Siopsis, G; Ward, B F L

    1992-01-01

    The Monte Carlo program SSCYFS2 is used in conjunction with available parton distribution functions to calculate the effects of multiple photon radiation on pp scattering at SSC energies. Effects relevant to precision SSC physics such as Higgs discovery and exploration are illustrated.

  9. Coulomb distortion effects in deep-inelastic electron scattering

    Science.gov (United States)

    Co', Giampaolo; Heisenberg, Jochen

    1987-11-01

    The effects of the Coulomb distortion of the electron wave functions in the description of the electron scattering processes in the quasi-elastic region are discussed. A method to extract longitudinal and transverse response functions considering these effects is presented. While the transverse response function is remarkably affected by the Coulomb distortion, the values of the longitudinal response function are practically unchanged.

  10. Homogeneous illusion device exhibiting transformed and shifted scattering effect

    Science.gov (United States)

    Mei, Jin-Shuo; Wu, Qun; Zhang, Kuang; He, Xun-Jun; Wang, Yue

    2016-06-01

    Based on the theory of transformation optics, a type of homogeneous illusion device exhibiting transformed and shifted scattering effect is proposed in this paper. The constitutive parameters of the proposed device are derived, and full-wave simulations are performed to validate the electromagnetic properties of transformed and shifted scattering effect. The simulation results show that the proposed device not only can visually shift the image of target in two dimensions, but also can visually transform the shape of target. It is expected that such homogeneous illusion device could possess potential applications in military camouflage and other field of electromagnetic engineering.

  11. The Aharonov--Bohm effect in scattering theory

    CERN Document Server

    Sitenko, Yu A

    2013-01-01

    The Aharonov--Bohm effect is considered as a scattering event with nonrelativistic charged particles of the wavelength which is less than the transverse size of an impenetrable magnetic vortex. The quasiclassical WKB method is shown to be efficient in solving this scattering problem. We find that the scattering cross section consists of two terms, one describing the classical phenomenon of elastic reflection and another one describing the quantum phenomenon of diffraction; the Aharonov--Bohm effect is manifested as a fringe shift in the diffraction pattern. Both the classical and the quantum phenomena are independent of the choice of a boundary condition at the vortex edge, providing that probability is conserved. We show that a propagation of charged particles can be controlled by altering the flux of a magnetic vortex placed on their way.

  12. Initial Integration of Noise Prediction Tools for Acoustic Scattering Effects

    Science.gov (United States)

    Nark, Douglas M.; Burley, Casey L.; Tinetti, Ana; Rawls, John W.

    2008-01-01

    This effort provides an initial glimpse at NASA capabilities available in predicting the scattering of fan noise from a non-conventional aircraft configuration. The Aircraft NOise Prediction Program, Fast Scattering Code, and the Rotorcraft Noise Model were coupled to provide increased fidelity models of scattering effects on engine fan noise sources. The integration of these codes led to the identification of several keys issues entailed in applying such multi-fidelity approaches. In particular, for prediction at noise certification points, the inclusion of distributed sources leads to complications with the source semi-sphere approach. Computational resource requirements limit the use of the higher fidelity scattering code to predict radiated sound pressure levels for full scale configurations at relevant frequencies. And, the ability to more accurately represent complex shielding surfaces in current lower fidelity models is necessary for general application to scattering predictions. This initial step in determining the potential benefits/costs of these new methods over the existing capabilities illustrates a number of the issues that must be addressed in the development of next generation aircraft system noise prediction tools.

  13. Effect of pyrophosphate on the light scatter in KDP crystal

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Pyrophosphate doped potassium dihydrogen phosphate (KDP) crystal was grown from aqueous solution by the temperature lowering method. Light scatter in KDP crystal was detected with the ultramicroscopic method. The light scatter in KDP crystal was aggravated when pyrophosphate was doped into the growth solution, which was distributed ununiformly in prism and pyramidal sectors of KDP crystal. Different effects of pyrophosphate on prism and pyramidal sectors of KDP crystal can explain this case. The transmission in this crystal was measured, showing that pyrophosphate affects the transmission evidently.

  14. An effective scatter correction method based on single scatter simulation for a 3D whole-body PET scanner

    Institute of Scientific and Technical Information of China (English)

    Gao Fei; Yamada Ryoko; Watanabe Mitsuo; Liu Hua-Feng

    2009-01-01

    Hamamatsu SHR74000 is a newly designed full three-dimensional(3D)whole body positron emission tomography (PET)scanner with small crystal size and large field of view(FOV).With the improvement of sensitivity,the scatter events increase significantly at the same time,especially for large objects.Monte Carlo simulations help US to understand the scatter phenomena and provide good references for scatter correction.In this paper,we introduce an effective scatter correction method based on single scatter simulation for the new PET scanner,which accounts for the full 3D scatter correction.With the results from Monte Carlo simulations,we implement a new scale method with special concentration on scatter events from outside the axial FOV and multiple scatter events.The effects of scatter correction are investigated and evaluated by phantom experiments;the results show good improvements in quantitative accuracy and contrast of the images,even for large objects.

  15. Proton Elastic Scattering from 14Be and Halo Effects

    Institute of Scientific and Technical Information of China (English)

    GU Bai-Ping; REN Zhong-Zhou

    2006-01-01

    The elastic scattering ofp-14Be system at Elab = 200 MeV is evaluated within the relativistic impulse approximation. We discuss the effects of the halo neutrons on the three observables of the elastic scattering system,such as differential cross section dσ/dΩ, analyzing power Ay and spin rotation Q. The results of the three observables of the elastic scattering of p-14Be system are compared with those of p-12C and p-16O systems at the same energy as Elab = 200 MeV. We have found that in the small angular region the Ay and Q, as well as dσ/dΩ, are quite sensitive to the nucleon density distributions on the surface of the target nucleus and offer some unique behaviors of halo nuclei.

  16. Light scattering of PMMA latex particles in benzene: structural effects

    NARCIS (Netherlands)

    Nieuwenhuis, E.A.; Vrij, A.

    1979-01-01

    Intra- and interparticle structural effects were studied in polymethylmethacrylate (PMMA) latex dispersions in a nonpolar solvent with the technique of light scattering. The required transparency of the dispersions was attained by a close matching of the refractive index of PMMA and solvent, for whi

  17. Quantum noise memory effect of multiple scattered light

    CERN Document Server

    Lodahl, P

    2005-01-01

    We investigate frequency correlations in multiple scattered light that are present in the quantum fluctuations. The memory effect for quantum and classical noise is compared, and found to have markedly different frequency scaling, which was confirmed in a recent experiment. Furthermore, novel mesoscopic correlations are predicted that depend on the photon statistics of the incoming light.

  18. Scattering effect in proton beam windows at spallation targets

    CERN Document Server

    Meng, C; Jing, H T

    2010-01-01

    Proton beam window (PBW) is a boundary wall between a high vacuum area in the proton beam line and the helium atmosphere in a helium vessel at a high beam power target. The thermal and mechanical problems of the PBW have been studied in other spallation neutron sources; however, the scattering effect in PBW is seldom reported in literature but it may pose serious problems for the target design if not well treated. This paper will report the simulation studies of the scattering effect in PBW. Different materials and different structures of PBW are discussed. Taking CSNS as an example, a thin single-layer aluminum alloy PBW with edge cooling has been chosen for CSNS-I and CSNS-II, and a sandwiched aluminum alloy PBW has been chosen for CSNS-III. Simulations results of the scattering effect in the presence of beam uniformization at target by using non-linear magnets at the different CSNS PBWs are presented. The simulations show that the scattering effect at PBW is very important in the beam loss and the beam dis...

  19. Molecule scattering from solid surfaces : Orientation and surface corrugation effects

    NARCIS (Netherlands)

    Vicanek, M; Schlatholter, T; Heiland, W

    1997-01-01

    Various effects connected with orientation and surface corrugation in molecule scattering from solid surfaces are investigated by means of classical trajectories simulations for H-2 impinging on Pd(110). Primary excitation of the projectiles is modeled according to the situation in molecular beam ex

  20. Terrestrial effects on dark matter-electron scattering experiments

    DEFF Research Database (Denmark)

    Emken, Timon; Kouvaris, Chris; Shoemaker, Ian M.

    2017-01-01

    techniques involving detection of dark matter-electron scattering offer new sensitivity to sub-GeV dark matter. Typically however it is implicitly assumed that the dark matter is not altered as it traverses the Earth to arrive at the detector. In this paper we study in detail the effects of terrestrial...

  1. Effective single scattering albedo estimation using regional climate model

    CSIR Research Space (South Africa)

    Tesfaye, M

    2011-09-01

    Full Text Available In this study, by modifying the optical parameterization of Regional Climate model (RegCM), the authors have computed and compared the Effective Single-Scattering Albedo (ESSA) which is a representative of VIS spectral region. The arid, semi...

  2. Transformation Volume Effects on Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Anna Kosogor

    2013-07-01

    Full Text Available It is generally accepted that the martensitic transformations (MTs in the shape memory alloys (SMAs are mainly characterized by the shear deformation of the crystal lattice that arises in the course of MT, while a comparatively small volume change during MT is considered as the secondary effect, which can be disregarded when the basic characteristics of MTs and functional properties of SMAs are analyzed. This point of view is a subject to change nowadays due to the new experimental and theoretical findings. The present article elucidates (i the newly observed physical phenomena in different SMAs in their relation to the volume effect of MT; (ii the theoretical analysis of the aforementioned volume-related phenomena.

  3. Insight into the skew-scattering mechanism of the spin Hall effect: Potential scattering versus spin-orbit scattering

    Science.gov (United States)

    Herschbach, Christian; Fedorov, Dmitry V.; Mertig, Ingrid; Gradhand, Martin; Chadova, Kristina; Ebert, Hubert; Ködderitzsch, Diemo

    2013-11-01

    We present a detailed analysis of the skew-scattering contribution to the spin Hall conductivity using an extended version of the resonant scattering model of Fert and Levy [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.106.157208 106, 157208 (2011)]. For 5d impurities in a Cu host, the proposed phase shift model reproduces the corresponding first-principles calculations. Crucial for that agreement is the consideration of two scattering channels related to p and d impurity states since the discussed mechanism is governed by a subtle interplay between the spin-orbit and potential scattering in both angular-momentum channels. It is shown that the potential scattering strength plays a decisive role for the magnitude of the spin Hall conductivity.

  4. An effective field theory for forward scattering and factorization violation

    Science.gov (United States)

    Rothstein, Ira Z.; Stewart, Iain W.

    2016-08-01

    Starting with QCD, we derive an effective field theory description for forward scattering and factorization violation as part of the soft-collinear effective field theory (SCET) for high energy scattering. These phenomena are mediated by long distance Glauber gluon exchanges, which are static in time, localized in the longitudinal distance, and act as a kernel for forward scattering where | t| ≪ s. In hard scattering, Glauber gluons can induce corrections which invalidate factorization. With SCET, Glauber exchange graphs can be calculated explicitly, and are distinct from graphs involving soft, collinear, or ultrasoft gluons. We derive a complete basis of operators which describe the leading power effects of Glauber exchange. Key ingredients include regulating light-cone rapidity singularities and subtractions which prevent double counting. Our results include a novel all orders gauge invariant pure glue soft operator which appears between two collinear rapidity sectors. The 1-gluon Feynman rule for the soft operator coincides with the Lipatov vertex, but it also contributes to emissions with ≥ 2 soft gluons. Our Glauber operator basis is derived using tree level and one-loop matching calculations from full QCD to both SCETII and SCETI. The one-loop amplitude's rapidity renormalization involves mixing of color octet operators and yields gluon Reggeization at the amplitude level. The rapidity renormalization group equation for the leading soft and collinear functions in the forward scattering cross section are each given by the BFKL equation. Various properties of Glauber gluon exchange in the context of both forward scattering and hard scattering factorization are described. For example, we derive an explicit rule for when eikonalization is valid, and provide a direct connection to the picture of multiple Wilson lines crossing a shockwave. In hard scattering operators Glauber subtractions for soft and collinear loop diagrams ensure that we are not sensitive to

  5. Modelling Nuclear Effects in Neutrino Scattering

    CERN Document Server

    Leitner, T; Mosel, U

    2006-01-01

    We have developed a model to describe the interactions of neutrinos with nucleons and nuclei via charged and neutral currents, focusing on the region of the quasielastic and Delta(1232) peaks. For neutrino nucleon collisions a fully relativistic formalism is used. The extension to finite nuclei has been done in the framework of a coupled-channel BUU transport model where we have studied exclusive channels taking into account in-medium effects and final state interactions.

  6. Scattering and Diffraction of Electromagnetic Radiation: An Effective Probe to Material Structure

    Science.gov (United States)

    Xu, Yu-Lin

    2016-01-01

    scattered intensities are cross sections, such as for extinction, scattering, absorption, and radiation pressure, as a critical type of key quantity addressed in most theoretical and experimental studies of radiative scattering. Cross sections predicted from different scattering theories are supposed to be in general agreement. For objects of irregular shape, the GMM-PA solutions can be compared with the highly flexible Discrete Dipole Approximation (DDA) [4,5] when dividing a target to no more than 106 unit cells. Also, there are different ways to calculate the cross sections in the GMM-PA, providing an additional means to examine the accuracy of the numerical solutions and to unveil potential issues concerning the theoretical formulations and numerical aspects. To solve multiple scattering by an assembly of material volumes through classical theories such as the GMM-PA, the radiative properties of the component scatterers, the complex refractive index in particular, must be provided as input parameters. When using a PA to characterize a material body, this involves the use of an adequate theoretical tool, an effective medium theory, to connect Maxwell's phenomenogical theory with the atomistic theory of matter. In the atomic theory, one regards matter as composed of interacting particles (atoms and molecules) embedded in the vacuum [6]. However, the radiative properties of atomic-scaled particles are known to be substantially different from bulk materials. Intensive research efforts in the fields of cluster science and nanoscience attempt to bridge the gap between bulk and atom and to understand the transition from classical to quantum physics. The GMM-PA calculations, which place virtually no restriction on the component-particle size, might help to gain certain insight into the transition.

  7. Volume-effect and radiotherapy [2]. Part 2: volume-effect and normal tissue; Effet volume en radiotherapie [2]. Deuxieme partie: volume et tolerance des tissus sains

    Energy Technology Data Exchange (ETDEWEB)

    Huchet, A.; Caudry, M.; Trouette, R.; Vendrely, V.; Causse, N.; Recaldini, L.; Maire, J.P. [Hopital Saint Andre, Service de Radiotherapie, 33 - Bordeaux (France); Belkacemi, Y. [Centre de Lutte Contre le Cancer Oscar-Lambret, Dept. de Radiotherapie, 59 - Lille (France); Atlan, D. [Hopital Europeen Georges Pompidou, Service de Radiotherapie, 75 - Paris (France)

    2003-10-01

    The first part of our work has focused on the relationship bet men tumor Volume and tumor control. Indeed, it is well known that the importance of irradiated volume could be a main parameter of radiation-induced complications. Numerous mathematical models have described the correlation between the irradiated volume and the risk of adverse effects. These models should predict the complication rate of each treatment planning. At the present time late effects have been the most studied. In this report we firstly propose a review of different mathematical models described for volume effect. Secondly, we will discuss whether these theoretical considerations can influence our view of radiation treatment planning optimization. (authors)

  8. A parallel architecture for interactively rendering scattering and refraction effects.

    Science.gov (United States)

    Bernabei, Daniele; Hakke-Patil, Ajit; Banterle, Francesco; Di Benedetto, Marco; Ganovelli, Fabio; Pattanaik, Sumanta; Scopigno, Roberto

    2012-01-01

    A new method for interactive rendering of complex lighting effects combines two algorithms. The first performs accurate ray tracing in heterogeneous refractive media to compute high-frequency phenomena. The second applies lattice-Boltzmann lighting to account for low-frequency multiple-scattering effects. The two algorithms execute in parallel on modern graphics hardware. This article includes a video animation of the authors' real-time algorithm rendering a variety of scenes.

  9. Longwave scattering effects on fluxes in broken cloud fields

    Energy Technology Data Exchange (ETDEWEB)

    Takara, E.E.; Ellingson, R.G. [Univ. of Maryland, College Park, MD (United States)

    1996-04-01

    The optical properties of clouds in the radiative energy balance are important. Most works on the effects of scattering have been in the shortwave; but longwave effects can be significant. In this work, the fluxes above and below a single cloud layer are presented, along with the errors in assuming flat black plate clouds or black clouds. The predicted fluxes are the averaged results of analysis of several fields with the same cloud amount.

  10. Detection of fast flying nanoparticles by light scattering over a large volume

    NARCIS (Netherlands)

    Pettazzi, F.; Bäumer, S.M.B.; Donck, J.C.J. van der; Deutz, A.F.

    2015-01-01

    Detection of nanoparticles is of paramount importance for contamination control in ultra-clean systems. Light scattering is a well-known detection method which is applied in many different scientific and technology domains including atmospheric physics, environmental control, and biology. It allows

  11. Hydrophobic effects on partial molar volume

    Science.gov (United States)

    Imai, Takashi; Hirata, Fumio

    2005-03-01

    The hydrophobic effects on partial molar volume (PMV) are investigated as a PMV change in the transfer of a benzenelike nonpolar solute from the nonpolar solvent to water, using an integral equation theory of liquids. The volume change is divided into two effects. One is the "packing" effect in the transfer from the nonpolar solvent to hypothetical "nonpolar water" without hydrogen bonding networks. The other is the "iceberg" effect in the transfer from nonpolar water to water. The results indicate that the packing effect is negative and a half compensated by the positive iceberg effect. The packing effect is explained by the difference in the solvent compressibility. Further investigation shows that the sign and magnitude of the volume change depend on the solute size and the solvent compressibility. The finding gives a significant implication that the exposure of a hydrophobic residue caused by protein denaturation can either increase or decrease the PMV of protein depending on the size of the residue and the fluctuation of its surroundings.

  12. Volume-effect in radiation therapy part one: volume-effect and tumour; L'effet volume en radiotherapie premiere partie: effet volume et tumeur

    Energy Technology Data Exchange (ETDEWEB)

    Huchet, A.; Wu, J. [Hopital Europeen Georges-Pompidou (AP-HP), Service de Radiotherapie, 75 - Paris (France); Caudry, M.; Trouette, R.; Vendrely, V.; Causse, N.; Recaldini, L.; Dahan, O.; Maire, J.P. [Hopital Saint-Andre, Service de Radiotherapie, 33 - Bordeaux (France); Belkacemi, Y. [Centre de Lutte Contre le Cancer Oscar-Lambret, Dept. de Radiotherapie, 59 - Lille (France)

    2003-04-01

    Volume is an important parameter of radiation therapy. Local control is inversely related to tumor size and the complication rate increases with the importance of the irradiated volume. Although the effect of irradiated volume has been widely reported since the beginning of radiotherapy, it has been less studied than other radiation parameters such as dose, fractionation, or treatment duration. One of the first organ system in which the adverse effect of increased volume was well defined is the skin. Over the last twenty years, numerous mathematical models have been developed for different organs. In this report we will discuss the relation between irradiated volume and tumor control. In a second article we will study the impact of irradiated volume on radiation adverse effects. (authors)

  13. Effect of the Pauli principle in elastic scattering

    Science.gov (United States)

    Picklesimer, A.; Thaler, R. M.

    1981-01-01

    The effect of imposition of the Pauli principle for two-fragment elastic nuclear scattering is examined. It is shown that the antisymmetrized problem can be cast into the Lippmann-Schwinger form with an effective interaction in which the effect of the Pauli principle is entirely absorbed into the effective interaction potential operator. This result enables the formalism to be developed in analogy with the unsymmetrized formulation. Central to the approach is the choice of the off-shell extension of the transition operator. Comparison is made with a previously proposed treatment based on a different off-shell extension. It is shown that both the antisymmetrized transition operator and the associated optical potential proposed herein are readily expressed as spectator expansions in which the effect of the Pauli principle among the active fermions is incorporated in a physically appealing fashion at each stage of the expansion. NUCLEAR REACTIONS Antisymmetrization incorporated in elastic scattering and optical potential theory. Multiple scattering series and spectator expansion.

  14. Relativistic effects in neutron-deuteron elastic scattering

    CERN Document Server

    Witala, H; Glöckle, W; Kamada, H

    2004-01-01

    We solved the three-nucleon Faddeev equation including relativistic features such as relativistic kinematics, boost effects and Wigner spin rotations. As dynamical input a relativistic nucleon-nucleon interaction exactly on-shell equivalent to the AV18 potential has been used. The effects of Wigner rotations for elastic scattering observables were found to be small. The boost effects are significant at higher energies.They diminish the transition matrix elements at higher energies and lead in spite of the increased relativistic phase-space factor as compared to the nonrelativistic one to rather small effects in the cross section, which are mostly restricted to the backward angles.

  15. Effective Field Theory and Unitarity in Vector Boson Scattering

    CERN Document Server

    Sekulla, Marco; Ohl, Thorsten; Reuter, Jürgen

    2016-01-01

    Weak vector boson scattering at high energies will be one of the key measurements in current and upcoming LHC runs. It is most sensitive to any new physics associated with electroweak symmetry breaking. However, a conventional EFT analysis will fail at high energies. To address this problem, we present a parameter-free prescription valid for arbitrary perturbative and non-perturbative models: the T-matrix unitarization. We describe its implementation as an asymptotically consistent reference model matched to the low-energy effective theory. We show examples of typical observables of vector-boson scattering at the LHC in our unitarized framework. For many strongly-coupled models like composite Higgs models, dimension-8 operators might be actually the leading operators. In addition to those longitudinal and transversal dimension eight EFT operators, the effects of generic tensor and scalar resonances within simplified models are considered.

  16. Effective field theory and unitarity in vector boson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sekulla, Marco [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Kilian, Wolfgang [Siegen Univ. (Germany); Ohl, Thorsten [Wuerzburg Univ. (Germany); Reuter, Juergen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2016-10-15

    Weak vector boson scattering at high energies will be one of the key measurements in current and upcoming LHC runs. It is most sensitive to any new physics associated with electroweak symmetry breaking. However, a conventional EFT analysis will fail at high energies. To address this problem, we present a parameter-free prescription valid for arbitrary perturbative and non-perturbative models: the T-matrix unitarization. We describe its implementation as an asymptotically consistent reference model matched to the low-energy effective theory. We show examples of typical observables of vector-boson scattering at the LHC in our unitarized framework. For many strongly-coupled models like composite Higgs models, dimension-8 operators might be actually the leading operators. In addition to those longitudinal and transversal dimension eight EFT operators, the effects of generic tensor and scalar resonances within simplified models are considered.

  17. Transient Effects And Pump Depletion In Stimulated Raman Scattering

    Science.gov (United States)

    Carlsten, J. L.; Wenzel, R. G...; Druhl, K.

    1983-11-01

    Stimulated rotational Raman scattering in a 300-K multipass cell filled with para-H2 with a single-mode CO2-pumped laser is studied using a frequency-narrowed optical parametric oscillator (OPO) as a probe laser at the Stokes frequency for the So(0) transition. Amplification and pump depletion are examined as a function of incident pump energy. The pump depletion shows clear evidence of transient behavior. A theoretical treatment of transient stimulated Raman scattering, including effects of both pump depletion and medium saturation is presented. In a first approximation, diffraction effects are neglected, and only plane-wave interactions are considered. The theoretical results are compared to the experimental pulse shapes.

  18. The effect of magnetic impurity scattering in Au films

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The magnetic impurity scattering plays an important role in the phase coherence behavior of thin films.By using the thickness and disorder dependences of the low temperature logarithmic anomaly in resistivity we are able to determine the concentration of magnetic impurities in Au films and demonstrate that the low temperature saturation or plateau in phase decoherence time is closely related with the Kondo effect.

  19. Radar Array Signal Processing in the Presence of Scattering Effects

    Science.gov (United States)

    2008-01-15

    Final INov . 2004 - Oct. 2007 4. TITLE AND SUBTITLE Sa. CON RACT NUMBER Radar Array Signal Processing in the Presence of Scattering Effects N/A 5b. GRANT...polarization. Hence, we considered models depicting how the features of this signal are affected by the medium materials through which the signal propagates. We...security (e.g., for nuclear materials ), and particle communications. We assume Poisson distribution for each detectors measurement within the

  20. Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers

    KAUST Repository

    Guo, Z. B.

    2012-09-27

    In this paper, we report the results of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers with perpendicular magnetic anisotropy. The surface scattering effect has been extracted from the total anomalous Hall effect. By scaling surface scattering contribution with ρAHs∼ργss, the exponent γ has been found to decrease with the increase of surface scattering resistivity, which could account for the thickness-dependent anomalous Hall effect. Interface diffusion induced by rapid thermal annealing modifies not only the magnetization and longitudinal resistivity but also the anomalous Hall effect; a large exponent γ ∼ 5.7 has been attributed to interface scattering-dominated anomalous Hall effect.

  1. Hydrophobic Volume Effects in Albumin Solutions.

    Science.gov (United States)

    Schrade, P.; Klein, H.; Egry, I.; Ademovic, Z.; Klee, D.

    2001-02-15

    Density measurements of aqueous albumin solutions as a function of concentration and temperature are reported. The solvents were H(2)O, D(2)O, and a physiological H(2)O-based buffer. An anomaly of the density at very small concentrations of albumin in D(2)O was found. Furthermore, the partial specific volume of albumin is remarkably different in D(2)O and H(2)O. We attribute both effects to structural differences of the solvents. Copyright 2001 Academic Press.

  2. Hybrid Finite Element and Volume Integral Methods for Scattering Using Parametric Geometry

    DEFF Research Database (Denmark)

    Volakis, John L.; Sertel, Kubilay; Jørgensen, Erik

    2004-01-01

    n this paper we address several topics relating to the development and implementation of volume integral and hybrid finite element methods for electromagnetic modeling. Comparisons of volume integral equation formulations with the finite element-boundary integral method are given in terms of accu...... of vanishing divergence within the element but non-zero curl. In addition, a new domain decomposition is introduced for solving array problems involving several million degrees of freedom. Three orders of magnitude CPU reduction is demonstrated for such applications....

  3. Origin of light scattering variations of a latent flaw through light scattering measurement with applied stress effect

    Science.gov (United States)

    Sakata, Yoshitaro; Terasaki, Nao; Sakai, Kazufumi; Nonaka, Kazuhiro

    2016-11-01

    The stress-induced light scattering method (SILSM) was proposed for inspecting surface to detect polishing induced latent flaws. In this study, in order to clarify the mechanism of the light scattering intensity variation of latent flaws using SILSM, we have investigated stress effect of light scattering intensities using polarized light system and calculated the reflectance and the retardation using Jones matrix. As the results, we evaluated the change in the birefringence around a tip of a latent flaw between before and after stress were applied.

  4. Relativistic (Dirac equation) effects in microscopic elastic scattering calculations

    Science.gov (United States)

    Hynes, M. V.; Picklesimer, A.; Tandy, P. C.; Thaler, R. M.

    1985-04-01

    A simple relativistic extension of the first-order multiple scattering mechanism for the optical potential is employed within the context of a Dirac equation description of elastic nucleon-nucleus scattering. A formulation of this problem in terms of a momentum-space integral equation displaying an identifiable nonrelativistic sector is described and applied. Extensive calculations are presented for proton scattering from 40Ca and 16O at energies between 100 and 500 MeV. Effects arising from the relativistic description of the propagation of the projectile are isolated and are shown to be responsible for most of the departures from typical nonrelativistic (Schrödinger) results. Off-shell and nonlocal effects are included and these, together with uncertainties in the nuclear densities, are shown not to compromise the characteristic improvement of forward angle spin observable predictions provided by the relativistic approach. The sensitivity to ambiguities in the Lorentz scalar and vector composition of the optical potential is displayed and discussed.

  5. Relativistic (Dirac equation) effects in microscopic elastic scattering calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hynes, M.V.; Picklesimer, A.; Tandy, P.C.; Thaler, R.M.

    1985-04-01

    A simple relativistic extension of the first-order multiple scattering mechanism for the optical potential is employed within the context of a Dirac equation description of elastic nucleon-nucleus scattering. A formulation of this problem in terms of a momentum-space integral equation displaying an identifiable nonrelativistic sector is described and applied. Extensive calculations are presented for proton scattering from /sup 40/Ca and /sup 16/O at energies between 100 and 500 MeV. Effects arising from the relativistic description of the propagation of the projectile are isolated and are shown to be responsible for most of the departures from typical nonrelativistic (Schroedinger) results. Off-shell and nonlocal effects are included and these, together with uncertainties in the nuclear densities, are shown not to compromise the characteristic improvement of forward angle spin observable predictions provided by the relativistic approach. The sensitivity to ambiguities in the Lorentz scalar and vector composition of the optical potential is displayed and discussed.

  6. Nuclear effects in deep inelastic scattering and transition region

    CERN Document Server

    Kumano, S

    2016-01-01

    We discuss nuclear effects on neutrino-nuclear interactions in a wide kinematical range from shallow to deep inelastic scattering (DIS) region. There is necessity from neutrino communities to have precise neutrino-nucleus cross sections within several percent order for future measurements on neutrino oscillations and leptonic CP violation. We try to create a model to calculate neutrino cross sections in the wide kinematical range, from quasi-elastic scattering and resonance productions to the DIS. In this article, nuclear modifications of structure functions are mainly discussed, and a possible extension to the $Q^2 \\to 0$ region is explained. We also comment on the transition region between baryon resonances and the DIS. There are ongoing experimental efforts on nuclear modifications of structure functions or parton distribution functions such as by pA reactions at RHIC and LHC, Drell-Yan measurements at Fermilab, Miner$\

  7. Refractive effects in the scattering of loosely bound nuclei

    CERN Document Server

    Cãrstoiu, F; Tribble, R E; Gagliardi, C A

    2004-01-01

    A study of the interaction of loosely bound nuclei 6,7Li at 9 and 19 AMeV with light targets has been undertaken. With the determination of unambiguous optical potentials in mind, elastic data for four projectile-target combinations and one neutron transfer reaction 13C(7Li,8Li)12C have been measured on a large angular range. The kinematical regime encompasses a region where the mean field (optical potential) has a marked variation with mass and energy, but turns out to be sufficiently surface transparent to allow strong refractive effects to be manifested in elastic scattering data at intermediate angles. The identified exotic feature, a "plateau" in the angular distributions at intermediate angles, is fully confirmed in four reaction channels and interpreted as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier farside scattering subamplitudes.

  8. Continuum effects in the scattering of exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Druet, T. [Universite Libre de Bruxelles (ULB), Physique Quantique, C.P. 165/82, Brussels (Belgium); Universite Libre de Bruxelles (ULB), Physique Nucleaire Theorique et Physique Mathematique, Brussels (Belgium); Descouvemont, P. [Universite Libre de Bruxelles (ULB), Physique Nucleaire Theorique et Physique Mathematique, Brussels (Belgium)

    2012-10-15

    We discuss continuum effects in the scattering of exotic nuclei, and more specifically on the {sup 11}Be + {sup 64}Zn scattering. {sup 11}Be is a typical example of an exotic nucleus, with a low binding energy. Elastic, inelastic and breakup cross-sections of the {sup 11}Be + {sup 64}Zn system are computed in the Continuum Discretized Coupled Channel formalism, at energies near the Coulomb barrier. We show that converged cross-sections need high angular momenta as well as as large excitation energies in the wave functions of the projectile. Extensions to other systems are simulated by different collision energies, and by varying the binding energy of {sup 11}Be. (orig.)

  9. A Highly Stable Marching-on-in-Time Volume Integral Equation Solver for Analyzing Transient Wave Interactions on High-Contrast Scatterers

    KAUST Repository

    Bagci, Hakan

    2014-01-06

    Time domain integral equation (TDIE) solvers represent an attractive alternative to finite difference (FDTD) and finite element (FEM) schemes for analyzing transient electromagnetic interactions on composite scatterers. Current induced on a scatterer, in response to a transient incident field, generates a scattered field. First, the scattered field is expressed as a spatio-temporal convolution of the current and the Green function of the background medium. Then, a TDIE is obtained by enforcing boundary conditions and/or fundamental field relations. TDIEs are often solved for the unknown current using marching on-in-time (MOT) schemes. MOT-TDIE solvers expand the current using local spatio-temporal basis functions. Inserting this expansion into the TDIE and testing the resulting equation in space and time yields a lower triangular system of equations (termed MOT system), which can be solved by marching in time for the coefficients of the current expansion. Stability of the MOT scheme often depends on how accurately the spatio-temporal convolution of the current and the Green function is discretized. In this work, band-limited prolate-based interpolation functions are used as temporal bases in expanding the current and discretizing the spatio-temporal convolution. Unfortunately, these functions are two sided, i.e., they require ”future” current samples for interpolation, resulting in a non-causal MOT system. To alleviate the effect of non-causality and restore the ability to march in time, an extrapolation scheme can be used to estimate the future values of the currents from their past values. Here, an accurate, stable and band-limited extrapolation scheme is developed for this purpose. This extrapolation scheme uses complex exponents, rather than commonly used harmonics, so that propagating and decaying mode fields inside the dielectric scatterers are accurately modeled. The resulting MOT scheme is applied to solving the time domain volume integral equation (VIE

  10. An effective method for incoherent scattering radar's detecting ability evaluation

    Science.gov (United States)

    Lu, Ziqing; Yao, Ming; Deng, Xiaohua

    2016-06-01

    Ionospheric incoherent scatter radar (ISR), which is used to detect ionospheric electrons and ions, generally, has megawatt class transmission power and hundred meter level antenna aperture. The crucial purpose of this detecting technology is to get ionospheric parameters by acquiring the autocorrelation function and power spectrum of the target ionospheric plasma echoes. Whereas the ISR's echoes are very weak because of the small radar cross section of its target, estimating detecting ability will be significantly instructive and meaningful for ISR system design. In this paper, we evaluate the detecting ability through signal-to-noise ratio (SNR). The soft-target radar equation is deduced to be applicable to ISR, through which we use data from International Reference Ionosphere model to simulate signal-to-noise ratio (SNR) of echoes, and then comparing the measured SNR from European Incoherent Scatter Scientific Association and Advanced Modular Incoherent Scatter Radar with the simulation. The simulation results show good consistency with the measured SNR. For ISR, the topic of this paper is the first comparison between the calculated SNR and radar measurements; the detecting ability can be improved through increasing SNR. The effective method for ISR's detecting ability evaluation provides basis for design of radar system.

  11. Resolution effects and analysis of small-angle neutron scattering data

    DEFF Research Database (Denmark)

    Pedersen, J.S.

    1993-01-01

    A discussion of the instrumental smearing effects for small-angle neutron scattering (SANS) data sets is given. It is shown that these effects can be described by a resolution function, which describes the distribution of scattering vectors probed for the nominal values of the scattering vector. ...

  12. Volume Effects in Discrete beta functions

    CERN Document Server

    Liu, Yuzhi; Zou, Haiyuan

    2011-01-01

    We calculate discrete beta functions corresponding to the two-lattice matching for the 2D O(N) models and Dyson's hierarchical model. We describe and explain finite-size effects such as the appearance of a nontrivial infrared fixed point that goes to infinity at infinite volume or the merging of an infrared and an ultraviolet fixed point. We present extensions of the RG flows to the complex coupling plane. We discuss the possibility of constructing a continuous beta function from the discrete one by using functional conjugation methods. We briefly discuss the relevance of these findings for the search of nontrivial fixed points in multiflavor lattice gauge theory models.

  13. Effect of the Pauli principle in elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Picklesimer, A.; Thaler, R.M.

    1981-01-01

    The effect of imposition of the Pauli principle for two-fragment elastic nuclear scattering is examined. It is shown that the antisymmetrized problem can be cast into the Lippmann-Schwinger form with an effective interaction in which the effect of the Pauli principle is entirely absorbed into the effective interaction potential operator. This result enables the formalism to be developed in analogy with the unsymmetrized formulation. Central to the approach is the choice of the off-shell extension of the transition operator. Comparison is made with a previously proposed treatment based on a different off-shell extension. It is shown that both the antisymmetrized transition operator and the associated optical potential proposed herein are readily expressed as spectator expansions in which the effect of the Pauli principle among the active fermions is incorporated in a physically appealing fashion at each stage of the expansion.

  14. Time-Domain Volume Integral Equation for TM-Case Scattering from Nonlinear Penetrable Objects

    Institute of Scientific and Technical Information of China (English)

    WANG Jianguo; Eric Michielssen

    2001-01-01

    This paper presents the time-domainvolume integral equation (TDVIE) method to analyzescattering from nonlinear penetrable objects, whichare illuminated by the transverse magnetic (TM) in-cident pulse. The time-domain volume integral equa-tion is formulated in terms of two-dimensional (2D)Green's function, and solved by using the march-on-in time (MOT) technique. Some numerical results aregiven to validate this method, and comparisons aremade with the results obtained by using the finite-difference time-domain (FDTD) method.

  15. Terahertz scattering by granular composite materials: An effective medium theory

    Science.gov (United States)

    Kaushik, Mayank; Ng, Brian W.-H.; Fischer, Bernd M.; Abbott, Derek

    2012-01-01

    Terahertz (THz) spectroscopy and imaging have emerged as important tools for identification and classification of various substances, which exhibit absorption characteristics at distinct frequencies in the THz range. The spectral fingerprints can potentially be distorted or obscured by electromagnetic scattering caused by the granular nature of some substances. In this paper, we present THz time domain transmission measurements of granular polyethylene powders in order to investigate an effective medium theory that yields a parameterized model, which can be used to estimate the empirical measurements to good accuracy.

  16. Quantum radiation reaction effects in multiphoton Compton scattering.

    Science.gov (United States)

    Di Piazza, A; Hatsagortsyan, K Z; Keitel, C H

    2010-11-26

    Radiation reaction effects in the interaction of an electron and a strong laser field are investigated in the realm of quantum electrodynamics. We identify the quantum radiation reaction with the multiple photon recoils experienced by the laser-driven electron due to consecutive incoherent photon emissions. After determining a quantum radiation dominated regime, we demonstrate how in this regime quantum signatures of the radiation reaction strongly affect multiphoton Compton scattering spectra and that they could be measurable in principle with presently available laser technology.

  17. Nucleon-nucleon scattering from effective field theory

    CERN Document Server

    Kaplan, D B; Wise, M B; Kaplan, David B; Savage, Martin J; Wise, Mark B

    1996-01-01

    We perform a nonperturbative calculation of the 1S0 nucleon-nucleon scattering amplitude, using an effective field theory (EFT) expansion. We use dimensional regularization throughout, and the MS-bar renormalization scheme; our final result depends only on physical observables. We show that the EFT expansion of the real part of the inverse of the Feynman amplitude converges at momenta much greater than the scale that characterizes the derivative expansion of the EFT Lagrangian. Our conclusions are optimistic about the applicability of an EFT approach to the quantitative study of nuclear matter.

  18. Momentum space approach to microscopic effects in elastic proton scattering

    Science.gov (United States)

    Picklesimer, A.; Tandy, P. C.; Thaler, R. M.; Wolfe, D. H.

    1984-12-01

    The microscopic nonrelativistic first-order optical potential for proton-nucleus scattering is studied in some detail. Momentum-space calculations have been performed for a number of different target nuclei at proton energies above ~100 MeV and these microscopic predictions are compared with experimental cross section, analyzing power, and spin-rotation function data. The input to these calculations consists of the free on-shell nucleon-nucleon t matrix, its nonlocal and off-shell structure, the treatment of the full-folding integral, and target densities obtained from electron scattering. Off-shell and nonlocal effects, as well as various factorization approximations, are studied. The sensitivity to uncertainties in the off-shell extension of the t matrix, within the context of the Love-Franey model, is explicity displayed. Similarly, uncertainties due to nonlocalities and incomplete knowledge of nuclear densities are shown. Explicit calculations using the t matrix of Love and Franey indicate that these effects play significant roles only for relatively large angles (θ<~60°) and/or lower energies (~150 MeV). These studies reinforce the conclusion that the lack of agreement between such first-order predictions and the data for spin observables at small angles arises from a physical effect not included in the nonrelativistic first-order theory, rather than from any uncertainty in the calculation or in its input.

  19. Exponential reduction of finite volume effects with twisted boundary conditions

    CERN Document Server

    Cherman, Aleksey; Wagman, Michael L; Yaffe, Laurence G

    2016-01-01

    Flavor-twisted boundary conditions can be used for exponential reduction of finite volume artifacts in flavor-averaged observables in lattice QCD calculations with $SU(N_f)$ light quark flavor symmetry. Finite volume artifact reduction arises from destructive interference effects in a manner closely related to the phase averaging which leads to large $N_c$ volume independence. With a particular choice of flavor-twisted boundary conditions, finite volume artifacts for flavor-singlet observables in a hypercubic spacetime volume are reduced to the size of finite volume artifacts in a spacetime volume with periodic boundary conditions that is four times larger.

  20. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Kevin H.

    2014-07-14

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  1. Molecular anisotropy effects in carbon K-edge scattering: Depolarized diffuse scattering and optical anisotropy

    Science.gov (United States)

    Stone, Kevin H.; Kortright, Jeffrey B.

    2014-09-01

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylenelike backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  2. Effect of dust particle polarization on scattering processes in complex plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kodanova, S. K.; Ramazanov, T. S.; Bastykova, N. Kh.; Moldabekov, Zh. A. [Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Str., 050040 Almaty (Kazakhstan)

    2015-06-15

    Screened interaction potentials in dusty plasmas taking into account the polarization of dust particles have been obtained. On the basis of screened potentials scattering processes for ion-dust particle and dust particle-dust particle pairs have been studied. In particular, the scattering cross section is considered. The scattering processes for which the dust grain polarization is unimportant have been found. The effect of zero angle dust particle-dust particle scattering is predicted.

  3. Long-range effects in electron scattering by polar molecules

    Science.gov (United States)

    Fabrikant, Ilya I.

    2016-11-01

    We review long-range effects in electron collisions with polar molecules, starting with elastic scattering. We then go to rotationally and vibrationally inelastic processes and dissociative electron attachment. The last two are strongly affected by vibrational Feshbach resonances which have been observed and described theoretically in many systems from simple diatomic molecules to more complex polyatomics, biologically relevant molecules, and van der Waals clusters. We then review environmental effects which include electron interaction with molecules adsorbed on surfaces and molecules in cluster environments. We concentrate on physics rather than on listing results of ab initio calculations. With increasing complexity of targets and processes model approaches become more relevant. We demonstrate their success in the theoretical description of electron attachment to polyatomic molecules and to molecules in complex environments.

  4. Effective Field Theories from Soft Limits of Scattering Amplitudes.

    Science.gov (United States)

    Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav

    2015-06-05

    We derive scalar effective field theories-Lagrangians, symmetries, and all-from on-shell scattering amplitudes constructed purely from Lorentz invariance, factorization, a fixed power counting order in derivatives, and a fixed order at which amplitudes vanish in the soft limit. These constraints leave free parameters in the amplitude which are the coupling constants of well-known theories: Nambu-Goldstone bosons, Dirac-Born-Infeld scalars, and Galilean internal shift symmetries. Moreover, soft limits imply conditions on the Noether current which can then be inverted to derive Lagrangians for each theory. We propose a natural classification of all scalar effective field theories according to two numbers which encode the derivative power counting and soft behavior of the corresponding amplitudes. In those cases where there is no consistent amplitude, the corresponding theory does not exist.

  5. Higher twist effects in deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pirnay, Bjoern Michael

    2016-08-01

    In this work we explore the effects of higher twist power corrections on the deeply virtual Compton scattering process. The calculation of the helicity amplitudes for all possible polarization combinations is performed within the framework of QCD operator product expansion. As a result the known accuracy of the amplitudes is improved to include the (kinematic) twist-4 contributions. For the most part the analysis focuses on spin-1/2 targets, the answers for scalar targets conveniently emerge as a byproduct. We investigate the analytical structure of these corrections and prove consistency with QCD factorization. We give an estimation of the numerical impact of the sub-leading twist contributions for proton targets with the help of a phenomenological model for the nonperturbative proton generalized parton distributions. We compare different twist approximations and relate predictions for physical observables to experiments performed by the Hall A, CLAS, HERMES, H1 and ZEUS collaborations. The estimate also includes a numerical study for planned COMPASS-II runs. Throughout the analysis special emphasis is put on the convention dependence induced by finite twist truncation of scattering amplitudes.

  6. Electron scattering from neon via effective range theory

    Energy Technology Data Exchange (ETDEWEB)

    Fedus, Kamil, E-mail: kamil@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun (Poland)

    2014-07-01

    Elastic cross-sections for electron scattering on neon from 0 energy up to 16 eV are analyzed by an analytical approach to the modified effective range theory (MERT). It is shown that energy and angular variations of elastic differential, integral and momentum transfer cross sections can be accurately parameterized by six MERT coefficients up to the energy threshold for the first Feshbach resonance. MERT parameters are determined empirically by numerical comparison with large collection of available experimental data of elastic total (integral) cross-sections. The present analysis is validated against numerous electron beams and swarm experiments. The comparison of derived MERT parameters with those found for other noble gases, helium, argon and krypton, is done. The derived scattering length (for the s-partial wave) in neon, 0.227a0, agrees well with recent theories; it is small but, differently from Ar and Kr, still positive. Analogue parameters for the p-wave and the d-wave are negative and positive respectively for all the four gases compared. (author)

  7. Refractive effects in the scattering of loosely bound nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carstoiu, F.; Trache, L.; Tribble, R.E.; Gagliardi, C.A. [Texas A and M Univ., College Station, TX (United States). Cyclotron Inst; Carstoiu, F. [Laboratoire de Physique Corpusculaire, IN2P3-CNRS, ISMRA, Universite de Caen, 14 - Caen (France); Carstoiu, F. [National Institute for Physics and Nuclear Engineering, Horia Hulubei, Bucharest-Magurele (Romania)

    2004-07-01

    A study of the interaction of the loosely bound nuclei {sup 6,7}Li at 9 and 19 MeV/nucleon with light targets has been undertaken. With the determination of unambiguous optical potentials in mind, elastic data for four projectile-target combinations and one neutron transfer reaction {sup 13}C({sup 7}Li,{sup 8}Li){sup 12}C have been measured over a large angular range. The kinematical regime encompasses a region where the mean field (optical potential) has a marked variation with mass and energy, but turns out to be sufficiently surface transparent to allow strong refractive effects to be manifested in elastic scattering data at intermediate angles. The identified exotic feature, a 'plateau' in the angular distributions at intermediate angles, is fully confirmed in four reaction channels and is interpreted as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier far-side scattering sub-amplitudes. (authors)

  8. Non-perturbative QCD effects in forward scattering at LHC

    CERN Document Server

    Bahia, C A S; Luna, E G S

    2015-01-01

    We study infrared contributions to semihard parton-parton interactions by considering an effective charge whose finite infrared behavior is constrained by a dynamical mass scale. Using an eikonal QCD-based model in order to connect this semihard parton-level dynamics to the hadron-hadron scattering, we obtain predictions for the proton-proton ($pp$) and antiproton-proton ($\\bar{p}p$) total cross sections, $\\sigma_{tot}^{pp,\\bar{p}p}$, and the ratios of the real to imaginary part of the forward scattering amplitude, $\\rho^{pp,\\bar{p}p}$. We discuss the theoretical aspects of this formalism and consider the phenomenological implications of a class of energy-dependent form factors in the high-energy behavior of the forward amplitude. We introduce integral dispersion relations specially tailored to relate the real and imaginary parts of eikonals with energy-dependent form factors. Our results, obtained using a group of updated sets of parton distribution functions (PDFs), are consistent with the recent data from ...

  9. A study of finite volume effect on the multiple-frequencies coherence of VHF radar

    Science.gov (United States)

    Chen, Tsai-Yuan; Chu, Yen-Hsyang

    1993-08-01

    In the past few years, the technique of frequency domain interferometry (FDI) has been developed on VHF radar. By using this technique, the characteristics of a very thin atmospheric lay structure, which is embedded in the radar volume and cannot be solved by conventional VHF radar with only one operational frequency, can be determined through the calculation of the coherence and the phase from the two echo signals with different operational frequencies. According to FDI theory, assuming that the range and antenna beam weighting effect can be ignored, the coherence will approach zero if the layer thickness is fairly greater than the radar volume. However, in this study, it will be shown that if a rectangular pulse is transmitted and the atmospheric refractivity irregularities are distributed uniformly in the radar volume, that is, there is no narrow layer structure existing in the scattering volume, the coherence of two signals with different operational frequencies is still high and its behavior can be described by the equation C is approximately equal to Sinc((Delta)k L)/(l + N/S), where C is the coherence, Delta K is the wavenumber difference between two carrier frequencies, L is the effective scale of scattering volume, and N/S is the noise-to-signal power ratio. This feature can be interpreted physically by the finite volume filtering effect on the turbulent wavenumber spectrum. This theoretical prediction has been compared with the FDI experiments carried out by the Chung-Li VHF radar, and the results are quite reasonable. Thus, it is suggested that when the FDI technique is applied to estimate the thickness and the position of a thin layer, the finite volume filtering effect should be taken into account.

  10. Momentum space approach to microscopic effects in elastic proton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Picklesimer, A.; Tandy, P.C.; Thaler, R.M.; Wolfe, D.H.

    1984-06-01

    The microscopic non-relativistic first-order optical potential for proton-nucleus scattering is studied in some detail. Momentum-space calculations have been performed for a number of different target nucli at proton energies above approx.100 MeV and these microscopic predictions are compared with experimental cross section, analyzing power, and spin-rotation function data. The input to these calculations consists of the free on-shell nucleon-nucleon t-matrix, its non-local and off-shell structure, the treatment of the full-folding integral, and target densities obtained from electron scattering. Off-shell and non-local effects, as well as various factorization approximations, are studied. The sensitivity to uncertainies in the off-shell extension of the t-matrix, within the context of the Love-Franey model, is explicitly displayed. Similarly, uncertainties due to non-localities and incomplete knowledge of nuclear densities are shown. Explicit calculations using the t-matrix of Love and Franey indicate that these effects play significant roles only for relatively large angles (THETA less than or equal to 60/sup 0/) and/or lower energies (approx.150 MeV). These studies reinforce the conclusion that the lack of agreement between such first-order predictions and the data for spin observable at small angles arises from a physical effect not included in the non-relativistic first-order theory, rather than from any uncertainty in the calculation or in its input. 31 references.

  11. Altitude acclimatization and blood volume: effects of exogenous erythrocyte volume expansion

    DEFF Research Database (Denmark)

    Sawka, M N; Young, Jette Feveile; Rock, P B;

    1996-01-01

    We studied sea-level residents during 13 days of altitude acclimatization to determine 1) altitude acclimatization effects on erythrocyte volume and plasma volume, 2) if exogenous erythrocyte volume expansion alters subsequent erythrocyte volume and plasma volume adaptations, 3) if an increased...... blood oxygen content alters erythropoietin responses during altitude acclimatization, and 4) mechanisms responsible for plasma loss at altitude. Sixteen healthy men had a series of hematologic measurements made at sea level, on the first and ninth days of altitude (4,300 m) residence, and after...... had no effect; in addition, initially at altitude, blood oxygen content was 8% higher in erythrocyte-infused than in saline-infused subjects. The new findings regarding altitude acclimatization are summarized as follows: 1) erythrocyte volume does not change during the first 13 days...

  12. Dark matter effective field theory scattering in direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, K.; Cabrera, B.; Cerdeno, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, W.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-01

    We examine the consequences of the effective eld theory (EFT) of dark matter-nucleon scattering or current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral di*erences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  13. Dark matter effective field theory scattering in direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. Here. we demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. In conclusion, we discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  14. Dark matter effective field theory scattering in direct detection experiments

    CERN Document Server

    Schneck, K; Cerdeno, D G; Mandic, V; Rogers, H E; Agnese, R; Anderson, A J; Asai, M; Balakishiyeva, D; Barker, D; Thakur, R Basu; Bauer, D A; Billard, J; Borgland, A; Brandt, D; Brink, P L; Bunker, R; Caldwell, D O; Calkins, R; Chagani, H; Chen, Y; Cooley, J; Cornell, B; Crewdson, C H; Cushman, P; Daal, M; Di Stefano, P C F; Doughty, T; Esteban, L; Fallows, S; Figueroa-Feliciano, E; Godfrey, G L; Golwala, S R; Hall, J; Harris, H R; Hofer, T; Holmgren, D; Hsu, L; Huber, M E; Jardin, D M; Jastram, A; Kamaev, O; Kara, B; Kelsey, M H; Kennedy, A; Leder, A; Loer, B; Asamar, E Lopez; Lukens, P; Mahapatra, R; McCarthy, K A; Mirabolfathi, N; Moffatt, R A; Mendoza, J D Morales; Oser, S M; Page, K; Page, W A; Partridge, R; Pepin, M; Phipps, A; Prasad, K; Pyle, M; Qiu, H; Rau, W; Redl, P; Reisetter, A; Ricci, Y; Roberts, A; Saab, T; Sadoulet, B; Sander, J; Schnee, R W; Scorza, S; Serfass, B; Shank, B; Speller, D; Toback, D; Upadhyayula, S; Villano, A N; Welliver, B; Wilson, J S; Wright, D H; Yang, X; Yellin, S; Yen, J J; Young, B A; Zhang, J

    2015-01-01

    We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  15. Dark matter effective field theory scattering in direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  16. Radiation dose-volume effects in the lung

    DEFF Research Database (Denmark)

    Marks, Lawrence B; Bentzen, Soren M; Deasy, Joseph O;

    2010-01-01

    The three-dimensional dose, volume, and outcome data for lung are reviewed in detail. The rate of symptomatic pneumonitis is related to many dosimetric parameters, and there are no evident threshold "tolerance dose-volume" levels. There are strong volume and fractionation effects....

  17. A study of scattered radiation effect on digital radiography imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Cheol Ha [Dept. of Radiological Science, Dongseo University, Busan (Korea, Republic of)

    2017-03-15

    Scattered radiation is inherent phenomenon of x-ray, which occurs to the subject (or patient). Therefore it cannot be avoidable but also interacts as serious noise factor because the only meaningful information on x-ray radiography is primary x-ray photons. The purpose of this study was to quantify scattered radiation for various shooting parameters and to verify the effect of anti-scatter grid. We employed beam stopper method to characterize scatter to primary ratio. To evaluate effect on the projection images calculated contrast to noise ratio of given shooting parameters. From the experiments, we identified the scattered radiation increases in thicker patient and smaller air gap. Moreover, scattered radiation degraded contrast to noise ratio of the projection images. We find out that the anti-scatter grid rejected scattered radiation effectively, however there were not fewer than 100% of scatter to primary ratio in some shooting parameters. The results demonstrate that the scattered radiation was serious problem of medical x-ray system, we confirmed that the scattered radiation was not considerable factor of digital radiography.

  18. The effect of multiple scattering on the aspect sensitivity and polarization of radio auroral echoes

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, E.F.; Moorcroft, D.R. (Western Ontario, University, London (Canada))

    1992-04-01

    A Monte Carlo model of radio wave scattering in the auroral electrojet has been developed to investigate multiple scattering of radio auroral echoes. Using this model, predictions of the aspect angle behavior of first-, second-, and third-order scattered power have been made. The results indicate that multiple scattering may be an important effect for VHF radars which observe the auroral E region at large magnetic aspect angles. The model shows that linearly polarized radio waves can become depolarized because of multiple scattering if the radio transmitter is horizontally polarized but not if the radio transmitter is vertically polarized. 52 refs.

  19. Effect of volume expansion on systemic hemodynamics and central and arterial blood volume in cirrhosis

    DEFF Research Database (Denmark)

    Møller, Søren; Bendtsen, Flemming; Henriksen, Jens Henrik

    1995-01-01

    and in controls. METHODS: Thirty-nine patients with cirrhosis (12 patients with Child-Turcotte class A, 14 with class B, and 13 with class C) and 6 controls were studied. During hepatic vein catheterization, cardiac output, systemic vascular resistance, central and arterial blood volume, noncentral blood volume...... in patients with either class B or class C. Conversely, the noncentral blood volume increased in patients with class B and C. In both patients and controls, the cardiac output increased and the systemic vascular resistance decreased, whereas the mean arterial blood pressure did not change significantly......BACKGROUND & AIMS: Systemic vasodilatation in cirrhosis may lead to hemodynamic alterations with reduced effective blood volume and decreased arterial blood pressure. This study investigates the response of acute volume expansion on hemodynamics and regional blood volumes in patients with cirrhosis...

  20. Formal analogy between Compton scattering and Doppler effect

    DEFF Research Database (Denmark)

    Nielsen, A.; Olsen, Jørgen Seir

    1966-01-01

    Viewed from the scatterer, the energy of the incoming photon or particle is equal to that of the outgoing, and the angle of incidence is equal to the angle of reflection, when the direction of the velocity of the scatterer after the collision is taken as reference. This paper sets out to prove th...

  1. Transverse spin effects in polarized semi inclusive deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pappalardo, Luciano Libero

    2008-10-15

    The theoretical framework for the inclusive and semi-inclusive deep inelastic scattering is provided in Chapters 2 and 3, respectively. While a phenomenological and historical perspective is adopted in Chapter 2 for the description of the inclusive processes, a detailed treatment of the formalism concerning the physics of the transverse degrees of freedom of the nucleon is presented in Chapter 3. In Chapter 4 the main components of the HERMES experimental apparatus are presented. The extraction of the Collins and Sivers moments is discussed in Chapter 5 after a brief overview of the main steps of the data analysis. A selection of systematic studies is also reported at the end of the chapter. Chapter 6 is completely devoted to the estimate of the acceptance and smearing effects on the extracted azimuthal moments. A crucial role in the studies presented is played by a newly developed Monte Carlo generator which simulates azimuthal asymmetries arising from intrinsic quark momenta. A novel approach for the estimate of the acceptance effects is presented at the end of the chapter. The extracted Collins and Sivers moments, corrected for the acceptance effects, are shown in Chapter 7. The discussion and the interpretation of the results, together with a preliminary extraction of the Sivers polarization, are also treated in Chapter 7. Final conclusions and a brief summary are reported in Chapter 8. (orig.)

  2. Focussing effects in laser-electron Thomson scattering

    CERN Document Server

    Harvey, C; Holkundkar, A R

    2016-01-01

    We study the effects of laser pulse focussing on the spectral properties of Thomson scattered radiation. Modelling the laser as a paraxial beam we find that, in all but the most extreme cases of focussing, the temporal envelope has a much bigger effect on the spectrum than the focussing itself. For the case of ultra-short pulses where the paraxial model is no longer valid, we adopt a sub-cycle vector beam description of the field. It is found that the emission harmonics are blue shifted and broaden out in frequency space as the pulse becomes shorter. Additionally the carrier envelope phase becomes important, resulting in an angular asymmetry in the spectrum. We then use the same model to study the effects of focussing beyond the limit where the paraxial expansion is valid. It is found that fields focussed to sub-wavelength spot sizes produce spectra that are qualitatively similar to those from sub-cycle pulses due to the shortening of the pulse with focussing. Finally, we study high-intensity fields and find ...

  3. One-particle reducibility in effective scattering theory

    Science.gov (United States)

    Vereshagin, V.

    2016-10-01

    To construct the reasonable renormalization scheme suitable for the effective theories one needs to resolve the "problem of couplings" because the number of free parameters in a theory should be finite. Otherwise the theory would loose its predictive power. In the case of effective theory already the first step on this way shows the necessity to solve the above-mentioned problem for the 1-loop 2-leg function traditionally called self energy. In contrast to the customary renormalizable models the corresponding Feynman graph demonstrates divergencies that require introducing of an infinite number of prescriptions. In the recent paper [1] it has been shown that the way out of this difficulty requires the revision of the notion of one-particle reducibility. The point is that in effective scattering theory one can introduce two different notions: the graphic reducibility and the analytic one. Below we explain the main ideas of the paper [1] and recall some notions and definitions introduced earlier in [2] and [3].

  4. Inverse Scattering Method and Soliton Solution Family for String Effective Action

    Institute of Scientific and Technical Information of China (English)

    GAO Ya-Jun

    2009-01-01

    A modified Hauser-Ernst-type linear system is established and used to develop an inverse scattering method for solving the motion equations of the string effective action describing the coupled gravity, dilaton and Kalb-Ramond fields. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the proposed inverse scattering method applied fine and effective. As an application, a concrete family of soliton solutions for the considered theory is obtained.

  5. Study on the shadowing effect for optical wave scattering from randomly rough surface

    Institute of Scientific and Technical Information of China (English)

    Lixin Guo(郭立新); Yunhua Wang(王运华); Zhensen Wu(吴振森)

    2004-01-01

    Based on the Kirchhoff approximation for rough surface scattering and by calculating the shadowing function of the rough surface, the formula of the scattering cross section of the dielectric rough surface is presented with consideration of the shadowing effect for the optical wave incidence. It is obtained that in comparison with the conventional Kirchhoff solution, the shadowing effect should not be neglected for the optical wave scattering from the rough surface. The influence of the shadowing effect for different incidence angle, surface root mean square slope, and surface roughness on the scattering cross section is discussed in detail.

  6. Packing Effect of Excluded Volume on Hard-Sphere Colloids

    Institute of Scientific and Technical Information of China (English)

    肖长明; 金国钧; 马余强

    2001-01-01

    We apply the principle of maximum entropy to consider the excluded volume effect on the phase separation of binary mixtures consisting of hard spheres with two different diameters. We show that a critical volume fraction of hard spheres exists locating the packing of large spheres. In particular, through numerical calculation, we have found that the critical volume fraction becomes lower when the ratio α = σ1/σ2 of large-to-small sphere diameters increases, but becomes higher when the ratio of the large sphere volume fraction to the total volume fraction of large and small spheres increases.

  7. Sivers Effect in Dihadron Semi-Inclusive Deep Inelastic Scattering

    CERN Document Server

    Kotzinian, Aram; Thomas, Anthony W

    2014-01-01

    The Sivers effect describes the correlation of the unpolarized parton's transverse momentum with the transverse spin of the nucleon. It manifests as a sine modulation of the cross section for single hadron semi-inclusive deep inelastic scattering (SIDIS) on a transversely polarized nucleon with the azimuthal angle between the produced hadron's transverse momentum and the nucleon spin ($\\varphi_h$ and $\\varphi_S$, respectively). It has been recently suggested that the Sivers effect can also be measured in two hadron SIDIS process as sine modulations involving the azimuthal angles $\\varphi_T$ and $\\varphi_R$ of both the total and the relative transverse momenta of the hadron pair. Here we present the detailed derivation of the two hadron SIDIS cross section using simple parton-model inspired functional forms for both the parton distribution and the fragmentation functions. We show explicitly that the terms corresponding to the $\\sin(\\varphi_R-\\varphi_S)$ and $\\sin(\\varphi_T-\\varphi_S)$ modulations are non-zero....

  8. Deflection of high-energy negative particles in a bent crystal through axial channeling and multiple volume reflection stimulated by doughnut scattering

    CERN Document Server

    Taratin, AM; Chesnokov, Yu A; Denisov, A S; Dalpiaz, P; Bagli, E; Taratin, A M; Lapina, L P; Vavilov, S A; Fiorini, M; Vallazza, E; Afonin, A G; Guidi, V; Baricordi, S; Prest, M; Kovalenko, A D; Skorobogatov, V V; Scandale, W; Golovatyukh, V M; Suvorov, V M; Maisheev, V A; Vincenzi, D; Ivanov, Yu M; Hasan, S; Bolognini, D; Yazynin, I A; Della Mea, Gianantonio; Mazzolari, A; Gavrikov, Yu A; Vomiero, A; Milan, R

    2010-01-01

    Different kinds of deflection in a silicon crystal bent along the (111) axis was observed for 150 GeV/c negative particles. mainly pi(-) mesons, at one of the secondary beams of the CERN SPS. The whole beam was deflected to one side in quasi-bound states of doughnut scattering (DSB) by atomic strings with the efficiency (95.4 +/- 0.2)\\% and with the peak position close to the bend crystal angle, alpha = 185 mu rad. It was observed volume capture of pi(-) mesons into the DSB states with a probability higher than 7\\%. A beam deflection opposite to the crystal bend was observed for some orientations of the crystal axis due to doughnut scattering and subsequent multiple volume reflections of pi(-) mesons by different bent planes crossing the axis. (C) 2010 Elsevier B.V. All rights reserved.

  9. Analysis of Partial Volume Effects on Accurate Measurement of the Hippocampus Volume

    Institute of Scientific and Technical Information of China (English)

    Maryam Hajiesmaeili; Jamshid Dehmeshki; Tim Ellis

    2014-01-01

    Hippocampal volume loss is an important biomarker in distinguishing subjects with Alzheimer’s disease (AD) and its measurement in magnetic resonance images (MRI) is influenced by partial volume effects (PVE). This paper describes a post-processing approach to quantify PVE for correction of the hippocampal volume by using a spatial fuzzyC-means (SFCM) method. The algorithm is evaluated on a dataset of 20 T1-weighted MRI scans sampled at two different resolutions. The corrected volumes for left and right hippocampus (HC) which are 23% and 18% for the low resolution and 6% and 5% for the high resolution datasets, respectively are lower than hippocampal volume results from manual segmentation. Results show the importance of applying this technique in AD detection with low resolution datasets.

  10. Scattering of dislocated wavefronts by vertical vorticity and the Aharonov-Bohm effect; 1, Shallow water

    CERN Document Server

    Coste, C; Lund, F; Coste, Christophe; Umeki, Makoto; Lund, Fernando

    1999-01-01

    When a surface wave interacts with a vertical vortex in shallow water the latter induces a dislocation in the incident wavefronts that is analogous to what happens in the Aharonov-Bohm effect for the scattering of electrons by a confined magnetic field. In addition to this global similarity between these two physical systems there is scattering. This paper reports a detailed calculation of this scattering, which is quantitatively different from the electronic case in that a surface wave penetrates the inside of a vortex while electrons do not penetrate a solenoid. This difference, together with an additional difference in the equations that govern both physical systems lead to a quite different scattering in the case of surface waves, whose main characteristic is a strong asymmetry in the scattering cross section. The assumptions and approximations under which these effects happen are carefully considered, and their applicability to the case of scattering of acoustic waves by vorticity is noted.

  11. Support scattering effects on low-gain satellite antenna pattern measurements

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1973-01-01

    The purpose of the present investigation is to determine the difference between the scattering effects from two types of supports on satellite antenna pattern measurements. The difference in scattering effects is estimated by comparing low-gain antenna patterns recorded when using a foam tower an...

  12. Aharonov-Bohm effect on Aharonov-Casher scattering

    Science.gov (United States)

    Lin, Qiong-Gui

    2010-01-01

    The scattering of relativistic spin-1/2 neutral particles with a magnetic dipole moment by a long straight charged line and a magnetic flux line at the same position is studied. The scattering cross sections for unpolarized and polarized particles are obtained by solving the Dirac-Pauli equation. The results are in general the same as those for pure Aharonov-Casher scattering (by the charged line alone) as expected. However, in special cases when the incident energy, the line charge density, and the magnetic flux satisfy some relations, the cross section for polarized particles is dramatically changed. Relations between the polarization of incident particles and that of scattered ones are presented, both in the full relativistic case and the nonrelativistic limit. The characteristic difference between the general and special cases lies in the backward direction: in the general cases the incident particles are simply bounced while in the special cases their polarization is turned over simultaneously. For pure Aharonov-Casher scattering there exist cases where the helicities of all scattered particles are reversed. This seems to be remarkable but appears unnoticed previously. Two mathematical approaches are employed to deal with the singularity of the electric and magnetic field and it turns out that the physical results are essentially the same.

  13. Global effects of moon phase on nocturnal acoustic scattering layers

    KAUST Repository

    Prihartato, PK

    2016-01-18

    © Inter-Research 2016. The impact of moon phase on the global nocturnal vertical distribution of acoustic scattering layers (SLs) in the upper 200 m was studied during the Malaspina expedition that circumnavigated the world. We assessed the nocturnal weighted mean depths and the vertical extension of the SL (the range between the upper 25th percentile and lower 75th percentile of the backscatter) and used a generalized additive model to reveal the relationship between the nocturnal vertical distribution of the SL and moon phase, as well as other environmental factors. Moon phase significantly affected the SL distribution on a global scale, in contrast to other factors such as dissolved oxygen, temperature and fluorescence, which each correlated with nocturnal SL distribution during the large geographic coverage. Full moon caused a deepening effect on the nocturnal SL. Contrary to expectations, the shallowest distribution was not observed during the darkest nights (new moon) and there was no difference in vertical distribution between new moon and intermediate moon phases. We conclude that the trend of deepening SL during approximately full moon (bright nights) is a global phenomenon related to anti-predator behavior.

  14. Skew scattering dominated anomalous Hall effect in Cox(MgO)100-x granular thin films

    KAUST Repository

    Zhang, Qiang

    2017-07-31

    We investigated the mechanism(s) of the anomalous Hall effect (AHE) in magnetic granular materials by fabricating 100-nm-thick thin films of Cox(MgO)100-x with a Co volume fraction of 34≤x≤100 using co-sputtering at room temperature. We measured the temperature dependence of longitudinal resistivity (ρxx) and anomalous Hall resistivity (ρAHE) from 5 K to 300 K in all samples. We found that when x decreases from 100 to 34, the values of ρxx and ρAHE respectively increased by about four and three orders in magnitude. By linearly fitting the data, obtained at 5 K, of anomalous Hall coefficient (Rs) and of ρxx to log(Rs)~γlog(ρxx), we found that our results perfectly fell on a straight line with a slope of γ= 0.97±0.02. This fitting value of γ in Rsρxxγ clearly suggests that skew scattering dominated the AHE in this granular system. To explore the effect of the scattering on the AHE, we performed the same measurements on annealed samples. We found that although both ρxx and ρAHE significantly reduced after annealing, the correlation between them was almost the same, which was confirmed by the fitted value, γ=0.99±0.03. These data strongly suggest that the AHE originates from the skew scattering in Co-MgO granular thin films no matter how strong the scatterings of electrons by the interfaces and defects is. This observation may be of importance to the development of spintronic devices based on MgO.

  15. Radiative effects in scattering of polarized leptons by polarized nucleons and light nuclei

    CERN Document Server

    Akushevich, I V; Shumeiko, N M

    2001-01-01

    Recent developments in the field of radiative effects in polarized lepton-nuclear scattering are reviewed. The processes of inclusive, semi-inclusive, diffractive and elastic scattering are considered. The explicit formulae obtained within the covariant approach are discussed. FORTRAN codes POLRAD, RADGEN, HAPRAD, DIFFRAD and MASCARAD created on the basis of the formulae are briefly described. Applications for data analysis of the current experiments on lepton-nuclear scattering at CERN, DESY, SLAC and TJNAF are illustrated by numerical results.

  16. Image degradation due to scattering effects in two-mirror telescopes

    Science.gov (United States)

    Harvey, James E.; Krywonos, Andrey; Peterson, Gary; Bruner, Marilyn

    2010-06-01

    Image degradation due to scattered radiation is a serious problem in many short-wavelength (x-ray and EUV) imaging systems. Most currently available image analysis codes require the scattering behavior [data on the bidirectional scattering distribution function (BSDF)] as input in order to calculate the image quality from such systems. Predicting image degradation due to scattering effects is typically quite computation-intensive. If using a conventional optical design and analysis code, each geometrically traced ray spawns hundreds of scattered rays randomly distributed and weighted according to the input BSDF. These scattered rays must then be traced through the system to the focal plane using nonsequential ray-tracing techniques. For multielement imaging systems even the scattered rays spawn more scattered rays at each additional surface encountered in the system. In this paper we describe a generalization of Peterson's analytical treatment of in-field stray light in multielement imaging systems. In particular, we remove the smooth-surface limitation that ignores the scattered-scattered radiation, which can be quite large for EUV wavelengths even for state-of-the-art optical surfaces. Predictions of image degradation for a two-mirror EUV telescope with the generalized Peterson model are then numerically validated with the much more computation-intensive ZEMAX® and ASAP® codes.

  17. Ultraslow-light effects in symmetric and asymmetric waveguide structures with moon-like scatterers

    Science.gov (United States)

    Wan, Yong; Ge, Xiao-Hui; Xu, Sheng; Guo, Yue; Yuan, Feng

    2017-02-01

    Ultraslow-light effects in two-dimensional hexagonal-lattice coupled waveguide with moon-like scatterers were theoretically studied using the plane-wave expansion method. For symmetric structures, simulations showed that slow light with high group index can be achieved by shifting the scatterers and adjusting the radius of moon-like scatterers. The maximum group index was over 8:0 × 104. For asymmetric structures, simulations showed that slow light with flat band and high group index can be obtained by shifting the scatterers, adjusting the radius of moon-like scatterers, and rotating the scatterers. The maximum group index was over 5:7 × 105 with a "saddle-like" relationship between the frequency and group index.

  18. 2016 Billion-Ton Report: Environmental Sustainability Effects of Select Scenarios from Volume 1 (Volume 2)

    Energy Technology Data Exchange (ETDEWEB)

    Efroymson, R. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Langholtz, M. H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, K. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stokes, B. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-13

    On behalf of all the authors and contributors, it is a great privilege to present the 2016 Billion-Ton Report (BT16), volume 2: Environmental Sustainability Effects of Select Scenarios from volume 1. This report represents the culmination of several years of collaborative effort among national laboratories, government agencies, academic institutions, and industry. BT16 was developed to support the U.S. Department of Energy’s efforts towards national goals of energy security and associated quality of life.

  19. Neutron scattering from fractals

    DEFF Research Database (Denmark)

    Kjems, Jørgen; Freltoft, T.; Richter, D.

    1986-01-01

    The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...

  20. Diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)

    1996-12-31

    While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.

  1. Weapons Effects in Cities. Volume 2. Appendices

    Science.gov (United States)

    1974-12-01

    Volume III. Moscow: Military Publishing House, 1961. 20. Korbonski, S. Fighting Warsaw. New York: Funk and Wagnalls , 1956. 21. Losch, A. The...Cowle’s Encyclopedia of Science, Industry, and Technology. New York: Cowles Publishing Co., 1967. H-2 13. Cralg, W. Enemy at the Gates; The...City in History; Its Origins. Its Transforma- tions, and Its Prospects. New York; Harcourt, Brace and World , Inc., 1961. 25. Patton, George S

  2. Color effects from scattering on random surface structures in dielectrics

    DEFF Research Database (Denmark)

    Clausen, Jeppe; Christiansen, Alexander B; Garnæs, Jørgen;

    2012-01-01

    We show that cheap large area color filters, based on surface scattering, can be fabricated in dielectric materials by replication of random structures in silicon. The specular transmittance of three different types of structures, corresponding to three different colors, have been characterized....... The angle resolved scattering has been measured and compared to predictions based on the measured surface topography and by the use of non-paraxial scalar diffraction theory. From this it is shown that the color of the transmitted light can be predicted from the topography of the randomly textured surfaces....

  3. Experimental determination of the effective refractive index in strongly scattering media

    NARCIS (Netherlands)

    Gómez Rivas, J.; Gomez Rivas, J.; Hau, D.H.; Imhof, A.; Sprik, R.; Bret, B.P.J.; Johnson, P.M.; Hijmans, T.W.; Lagendijk, Aart

    2003-01-01

    Measurements of the angular-resolved-optical transmission through strongly scattering samples of porous gallium phosphide are described. Currently porous GaP is the strongest-scattering material for visible light. From these measurements the effective refractive index and the average reflectivity at

  4. The effect of scattered light sensor orientation on roughness measurement of curved polished surfaces

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    The effect of angular orientation of a scattered light sensor with respect to main curvature and surface lay on roughness measurements is evaluated. A commercial scattered light sensor OS 500-32 from Optosurf GmbH was used. The investigation was performed on polished cylindrical surfaces with cro...

  5. Band tailing in heavily doped semiconductors. Scattering and impurity-concentration-fluctuation effects

    Science.gov (United States)

    Serre, J.; Ghazali, A.; Hugon, P. Leroux

    1981-02-01

    Using a self-consistent multiple-scattering method, we estimate the relative importance of both effects of scattering and of impurity-concentration fluctuations on band states in heavily doped semiconductors and thus we account for band tailing. We apply this formalism to the estimate of the interband absorption spectrum in a typical case, in satisfactory agreement with experiment.

  6. Off-shell and nonlocal effects in proton-nucleus elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Picklesimer, A.; Tandy, P.C.; Thaler, R.M.; Wolfe, D.H.

    1984-04-01

    The influence of off-shell and nonlocal effects in the first-order nonrelativistic microscopic optical potential is investigated for elastic proton scattering above 100 MeV. With the free nucleon-nucleon t matrix taken from the model of Love and Franey, these effects are significant only for scattering angles greater than about 60/sup 0/ and energies below about 300 MeV. The inadequacy of the standard first-order theory for predictions of spin observables at forward scattering angles remains unchanged when these effects are included and the need for higher order processes including medium and relativistic effects is reinforced.

  7. Off-shell and nonlocal effects in proton-nucleus elastic scattering

    Science.gov (United States)

    Picklesimer, A.; Tandy, P. C.; Thaler, R. M.; Wolfe, D. H.

    1984-04-01

    The influence of off-shell and nonlocal effects in the first-order nonrelativistic microscopic optical potential is investigated for elastic proton scattering above 100 MeV. With the free nucleon-nucleon t matrix taken from the model of Love and Franey, these effects are significant only for scattering angles greater than about 60° and energies below about 300 MeV. The inadequacy of the standard first-order theory for predictions of spin observables at forward scattering angles remains unchanged when these effects are included and the need for higher order processes including medium and relativistic effects is reinforced.

  8. Effect of adaptive threshold filtering on ultrasonic nakagami parameter to detect variation in scatterer concentration.

    Science.gov (United States)

    Tsui, Po-Hsiang; Wan, Yung-Liang; Huang, Chih-Chung; Wang, Ming-Chen

    2010-10-01

    The Nakagami parameter is associated with the Nakagami distribution estimated from ultrasonic backscattered signals and closely reflects the scatterer concentrations in tissues. There is an interest in exploring the possibility of enhancing the ability of the Nakagami parameter to characterize tissues. In this paper, we explore the effect of adaptive thresholdfiltering based on the noise-assisted empirical mode decomposition of the ultrasonic backscattered signals on the Nakagami parameter as a function of scatterer concentration for improving the Nakagami parameter performance. We carried out phantom experiments using 5 MHz focused and nonfocused transducers. Before filtering, the dynamic ranges of the Nakagami parameter, estimated using focused and nonfocused transducers between the scatterer concentrations of 2 and 32 scatterers/mm3, were 0.44 and 0.1, respectively. After filtering, the dynamic ranges of the Nakagami parameter, using the focused and nonfocused transducers, were 0.71 and 0.79, respectively. The experimental results showed that the adaptive threshold filter makes the Nakagami parameter measured by a focused transducer more sensitive to the variation in the scatterer concentration. The proposed method also endows the Nakagami parameter measured by a nonfocused transducer with the ability to differentiate various scatterer concentrations. However, the Nakagami parameters estimated by focused and nonfocused transducers after adaptive threshold filtering have different physical meanings: the former represents the statistics of signals backscattered from unresolvable scatterers while the latter is associated with stronger resolvable scatterers or local inhomogeneity due to scatterer aggregation.

  9. Effects of Multiple Photon Scattering in Deciduous Tree Canopies

    Science.gov (United States)

    2009-12-01

    SCATTERING IN DECIDUOUS TREE CANOPIES 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62204F 6. AUTHOR(S...where mh 18= , 16132.0 −= mLm , and 85.0=hzm . Note that the value for mL corresponds to our own experimental results, as will be described in Section 4

  10. The polarization effect of a laser in multiphoton Compton scattering

    Science.gov (United States)

    Liang, Guo-Hua; Lü, Qing-Zheng; Teng, Ai-Ping; Li, Ying-Jun

    2014-05-01

    The multiphoton Compton scattering in a high-intensity laser beam is studied by using the laser-dressed quantum electrodynamics (QED) method, which is a non-perturbative theory for the interaction between a plane electromagnetic field and a charged particle. In order to analyze in the real experimental condition, a Lorentz transformation for the cross section of this process is derived between the laboratory frame and the initial rest frame of electrons. The energy of the scattered photon is analyzed, as well as the cross sections for different laser intensities and polarizations and different electron velocities. The angular distribution of the emitted photon is investigated in a special velocity of the electron, in which for a fixed number of absorbed photons, the electron energy will not change after the scattering in the lab frame. We obtain the conclusion that higher laser intensities suppress few-laser-photon absorption and enhance more-laser-photon absorption. A comparison between different polarizations is also made, and we find that the linearly polarized laser is more suitable to generate nonlinear Compton scattering.

  11. Characterization of the angular memory effect of scattered light in biological tissues

    CERN Document Server

    Schott, Sam; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-01-01

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues. It therefore grants access to superficial layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations (`angular memory effect') are of very short range and, in theory, only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range (and thus the possible field-of-view) by more than an order of magnitude compared to isotropic scattering for $\\sim$1\\,mm thick tissue layers.

  12. Characterization of the angular memory effect of scattered light in biological tissues

    Science.gov (United States)

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-01

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues. It therefore grants access to superficial layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations (`angular memory effect') are of very short range and, in theory, only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range (and thus the possible field-of-view) by more than an order of magnitude compared to isotropic scattering for $\\sim$1\\,mm thick tissue layers.

  13. Characterization of the angular memory effect of scattered light in biological tissues.

    Science.gov (United States)

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-18

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.

  14. Strong Coulomb scattering effects on low frequency noise in monolayer WS2 field-effect transistors

    Science.gov (United States)

    Joo, Min-Kyu; Yun, Yoojoo; Yun, Seokjoon; Lee, Young Hee; Suh, Dongseok

    2016-10-01

    When atomically thin semiconducting transition metal dichalcogenides are used as a channel material, they are inevitably exposed to supporting substrates. This situation can lead to masking of intrinsic properties by undesired extrinsic doping and/or additional conductance fluctuations from the largely distributed Coulomb impurities at the interface between the channel and the substrate. Here, we report low-frequency noise characteristics in monolayer WS2 field-effect transistors on silicon/silicon-oxide substrate. To mitigate the effect of extrinsic low-frequency noise sources, a nitrogen annealing was carried out to provide better interface quality and to suppress the channel access resistance. The carrier number fluctuation and the correlated mobility fluctuation (CNF-CMF) model was better than the sole CNF one to explain our low-frequency noise data, because of the strong Coulomb scattering effect on the effective mobility caused by carrier trapping/detrapping at oxide traps. The temperature-dependent field-effect mobility in the four-probe configuration and the Coulomb scattering parameters are presented to support this strong Coulomb scattering effect on carrier transport in monolayer WS2 field-effect transistor.

  15. VHF volume-imaging radar observation of aspect-sensitive scatterers tilted in mountain waves above a convective boundary layer

    Directory of Open Access Journals (Sweden)

    R. M. Worthington

    2005-06-01

    Full Text Available Thin stable atmospheric layers cause VHF radars to receive increased echo power from near zenith. Layers can be tilted from horizontal, for instance by gravity waves, and the direction of VHF "glinting" is measurable by spatial domain interferometry or many-beam Doppler beam swinging (DBS. This paper uses the Middle and Upper atmosphere (MU radar, Shigaraki, Japan as a volume-imaging radar with 64-beam DBS, to show tilting of layers and air flow in mountain waves. Tilt of aspect-sensitive echo power from horizontal is nearly parallel to air flow, as assumed in earlier measurements of mountain-wave alignment. Vertical-wind measurements are self-consistent from different beam zenith angles, despite the combined effects of aspect sensitivity and horizontal-wind gradients.

  16. Generalized effective mode volume for leaky optical cavities

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Van Vlack, C.; Hughes, S.

    2012-01-01

    We show explicitly how the commonly adopted prescription for calculating effective mode volumes is wrong and leads to uncontrolled errors. Instead, we introduce a generalized mode volume that can be easily evaluated based on the mode calculation methods typically applied in the literature, and wh......, and which allows one to compute the Purcell effect and other interesting optical phenomena in a rigorous and unambiguous way....

  17. Electron gyroharmonic effects on ionospheric stimulated Brillouin scatter

    Science.gov (United States)

    Mahmoudian, A.; Scales, W. A.; Bernhardt, P. A.; Isham, B.; Kendall, E.; Briczinski, S. J.; Fuentes, N. E. B.; Vega-Cancel, O.

    2014-08-01

    Stimulated Brillouin scattering (SBS) and resonant phenomena are well known in the context of laser fusion, fiber optics, and piezoelectric semiconductor plasmas, as well as in various biological applications. Due to recent advances, active space experiments using high-power high-frequency (HF) radio waves may now produce stimulated Brillouin scattering (SBS) in the ionospheric plasma. The sensitivity of the narrowband SBS emission lines to pump frequency stepping across electron gyroharmonics is reported here for the first time. Experimental observations show that SBS emission sidebands are suppressed as the HF pump frequency is stepped across the second and third electron gyroharmonics. A correlation of artificially enhanced airglow and SBS emission lines excited at the upper hybrid altitude is observed and studied for second gyroharmonic heating. The SBS behavior near electron gyroharmonics is shown to have important diagnostic applications for multilayered, multi-ion component plasmas such as the ionosphere.

  18. Effective Spectral Function for Quasielastic Scattering on Nuclei

    CERN Document Server

    Bodek, A; Coopersmith, B

    2014-01-01

    Spectral functions that are used in neutrino event generators (such as GENIE, NEUT, NUANCE, NUWRO, and GiBUU) to model quasielastic(QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritche Fermi gas with high momentum tail, and the Benhar Fantoni two dimensional spectral function. We find that the predictions of these spectral functions for the $\\frac{d\\sigma}{d\

  19. Effect of nonstoichiometry on Raman scattering of VO2 films

    Institute of Scientific and Technical Information of China (English)

    Yuan Hong-Tao; Feng Ke-Cheng; Wang Xue-Jin; Li Chao; He Chen-Juan; Nie Yu-Xin

    2004-01-01

    @@ We report on Raman scattering of VO2 films prepared by radio frequency magnetron sputtering under different conditions. Our investigations revealed that the dominated Raman peaks shift towards high frequency for both V-rich and O-rich VO2 films, compared with the stoichiometry VO2 films. The experimental evidence is presented and the cause for nonstoichiometry dependence of Raman spectra of VO2 films is discussed.

  20. Array gain for a cylindrical array with baffle scatter effects.

    Science.gov (United States)

    Bertilone, Derek C; Killeen, Damien S; Bao, Chaoying

    2007-11-01

    Cylindrical arrays used in sonar for passive underwater surveillance often have sensors surrounding a cylindrical metal baffle. In some operational sonars, the phones in each stave (i.e., each line of phones aligned with the cylinder axis) are hardwired together so that the array is equivalent to a baffled circular array of directional elements, where each element corresponds to a line array of omnidirectional phones steered to broadside. In this paper a model is introduced for computing the array gain of such an array at high frequencies, which incorporates baffle scatter using infinite, rigid cylinder scattering theory, and with ambient noise described by an angular spectral density function. In practice the phones are often offset from the baffle surface, and the acoustic field sampled by the staves is distorted at high frequencies due to interference between the incident and scattered fields. Examples are given to illustrate the resulting array gain degradation, using three noise distributions that are frequently used in sonar performance modeling: three-dimensional isotropic, two-dimensional isotropic, and surface dipole noise.

  1. Crystal effects in the neutralization of He+ ions in the low energy ion scattering regime.

    Science.gov (United States)

    Primetzhofer, D; Markin, S N; Juaristi, J I; Taglauer, E; Bauer, P

    2008-05-30

    Investigating possible crystal effects in ion scattering from elemental surfaces, measurements of the positive ion fraction P+ are reported for He+ ions scattered from single and polycrystalline Cu surfaces. In the Auger neutralization regime, the ion yield is determined by scattering from the outermost atomic layer. For Cu(110) P+ exceeds that for polycrystalline Cu by up to a factor of 2.5, thus exhibiting a strong crystal effect. It is much less pronounced at higher energies, i.e., in the reionization regime. However, there a completely different angular dependence of the ion yield is observed for poly- and single crystals, due to massive subsurface contributions in nonchanneling directions.

  2. SIMULATION OF THE Ku-BAND RADAR ALTIMETER SEA ICE EFFECTIVE SCATTERING SURFACE

    DEFF Research Database (Denmark)

    Tonboe, Rasmus; Andersen, Søren; Pedersen, Leif Toudal

    2006-01-01

    A radiative transfer model is used to simulate the sea ice radar altimeter effective scattering surface variability as a function of snow depth and density. Under dry snow conditions without layering these are the primary snow parameters affecting the scattering surface variability. The model...... is initialised with in situ data collected during the May 2004 GreenIce ice camp in the Lincoln Sea (73ºW; 85ºN). Our results show that the snow cover is important for the effective scattering surface depth in sea ice and thus for the range measurement, ice freeboard and ice thickness estimation....

  3. Effects Of Aerosol And Multiple Scattering On The Polarization Of The Twilight Sky

    CERN Document Server

    Ugolnikov, O S; Maslov, I A

    2003-01-01

    The paper contains the review of a number of wide-angle polarization CCD-measurements of the twilight sky in V and R color bands with effective wavelengths equal to 550 and 700 nm. The basic factors effecting (usually decreasing) on the polarization of the twilight sky are the atmospheric aerosol scattering and multiple scattering. The method of multiple scattering separation is being considered. The results are compared with the data of numerical simulation of radiation transfer in the atmosphere for different aerosol models. The whole twilight period is divided on the different stages with different mechanisms forming the twilight sky polarization properties.

  4. Properties of Differential Scattering Section Based on Multi-photon Nonlinear Compton Effect

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Properties of damping electrons in collision with photons based on multi-photon nonlinear Compton effect are investigated. The expressions of the differential scattering section are derived. Several useful conclusions are drawn.

  5. Strong coupling effects in near-barrier heavy-ion elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Keeley, N. [National Centre for Nuclear Research, Otwock (Poland); Kemper, K.W. [The Florida State University, Department of Physics, Tallahassee, Florida (United States); University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Rusek, K. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland)

    2014-09-15

    Accurate elastic scattering angular distribution data measured at bombarding energies just above the Coulomb barrier have shapes that can markedly differ from or be the same as the expected classical Fresnel scattering pattern depending on the structure of the projectile, the target or both. Examples are given such as {sup 18}O + {sup 184}W and {sup 16}O + {sup 148,} {sup 152}Sm, where the expected rise above Rutherford scattering due to Coulomb-nuclear interference is damped by coupling to the target excited states, and the extreme case of {sup 11}Li scattering, where coupling to the {sup 9}Li + n + n continuum leads to an elastic scattering shape that cannot be reproduced by any standard optical model parameter set. An early indication that the projectile structure can modify the elastic scattering angular distribution was the large vector analyzing powers observed in polarised {sup 6}Li scattering. The recent availability of high-quality {sup 6}He, {sup 11}Li and {sup 11}Be data provides further examples of the influence that coupling effects can have on elastic scattering. Conditions for strong projectile-target coupling effects are presented with special emphasis on the importance of the beam-target charge combination being large enough to bring about the strong coupling effects. Several measurements are proposed that can lead to further understanding of strong coupling effects by both inelastic excitation and nucleon transfer on near-barrier elastic scattering. A final note on the anomalous nature of {sup 8}B elastic scattering is presented as it possesses a more or less normal Fresnel scattering shape whereas one would a priori not expect this due to the very low breakup threshold of {sup 8}B. The special nature of {sup 11}Li is presented as it is predicted that no matter how far above the Coulomb barrier the elastic scattering is measured, its shape will not appear as Fresnel like whereas the elastic scattering of all other loosely bound nuclei studied to

  6. Absorbing aerosol radiative effects in the limb-scatter viewing geometry

    Directory of Open Access Journals (Sweden)

    A. Wiacek

    2013-02-01

    Full Text Available The limb-scatter satellite viewing geometry is well suited to detecting low-concentration aerosols in the upper troposphere due to its long observation path length (~ 50–100 km, high vertical resolution (~ 1–2 km and good geographic coverage. We use the fully three-dimensional radiative transfer code SASKTRAN to simulate the sensitivity of limb-scatter viewing Odin/OSIRIS satellite measurements to absorbing mineral dust and carbonaceous aerosols (smoke and pure soot, as well as to non-absorbing sulfate aerosols and ice in the upper troposphere.

    At long wavelengths (813 nm the addition of all aerosols (except soot to an air only atmosphere produced a radiance increase as compared to air only, on account of the low Rayleigh scattering in air only at 813 nm. The radiance reduction due to soot aerosol was negligible (< 0.1% at all heights (0–100 km.

    At short wavelengths (337, 377, 452 nm, we found that the addition of any aerosol species to an air only atmosphere caused a decrease in single-scattered radiation due to an extinction of Rayleigh scattering in the direction of OSIRIS. The reduction was clearly related to particle size first, with absorption responsible for second-order effects only. Multiple-scattered radiation could either increase or decrease in the presence of an aerosol species, depending both on particle size and absorption. Large scatterers (ice, mineral dust all increased multiple-scattered radiation within, below and above the aerosol layer. Small, highly absorbing pure soot particles produced a negligible multiple-scattering response (< 0.1% at all heights, primarily confined to within and below the soot layer. Medium-sized scatterers produced a multiple-scattering response that depended on their absorbing properties. Increased radiances were simulated as compared to air only at all short wavelengths (337, 377 and 452 nm for sulfate aerosol particles (non-absorbing while decreased radiances were

  7. Asymmetrically pumped Bragg scattering with the effects of nonlinear phase modulation

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Friis, Søren Michael Mørk; Reddy, Dileep V.

    2014-01-01

    We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM.......We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM....

  8. Coherent light scattering of heterogeneous randomly rough films and effective medium in the theory of electromagnetic wave multiple scattering

    Science.gov (United States)

    Berginc, G.

    2013-11-01

    We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell - Garnett formula at the low-frequency limit, and the Keller formula; the latter has been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength.

  9. The Effect of Scattering on the Temperature Stratification of 3D Model Atmospheres of Metal-Poor Red Giants

    Science.gov (United States)

    Collet, Remo; Hayek, Wolfgang; Asplund, Martin

    2011-08-01

    We study the effects of different approximations of scattering in 3D radiation-hydrodynamics simulations on the photospheric temperature stratification of metal-poor red giant stars. We find that assuming a Planckian source function and neglecting the contribution of scattering to extinction in optically thin layers provides a good approximation of the effects of coherent scattering on the photospheric temperature balance.

  10. Estimation of Moisture Content of Forest Canopy and Floor from SAR Data Part I: Volume Scattering Case

    Science.gov (United States)

    Moghaddam, M.; Saatchi, S.

    1996-01-01

    To understand and predict the functioning of forest biomes, their interaction with the atmosphere, and their growth rates, the knowledge of moisture content of their canopy and the floor soil is essential. The synthetic aperture radar on airborne and spaceborne platforms has proven to be a flexible tool for measuring electromagnetic back- scattering properties of vegetation related to their moisture content.

  11. Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V., E-mail: ante0226@gmail.com [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS - University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)

    2015-06-15

    In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.

  12. Suppression of the low spatial frequency effects of scattered radiation in digital radiography

    Science.gov (United States)

    Kotre, C. J.

    2016-01-01

    One of the deleterious effects of scattered radiation in the digital radiograph is to add a slowly varying background to the image. This can reduce the ability of the observer to discern low contrast signals if the background gradient over a signal feature prevents the use of a small enough display window to make the signal visible. This paper presents an image processing scheme for suppressing the low spatial frequency effects of scattered radiation in digital radiography and demonstrates it on a range of clinical and phantom images. The approach relies on the approximate separation of high atomic number bony features from the low atomic number soft tissue background, and the use of forward convolution with a scatter kernel to produce an estimate of the scatter distribution arising from the soft tissue background. This is then scaled by an estimate of the soft tissue scatter fraction and subtracted from the original image to produce the final scatter-suppressed image. The implementation employs many approximations in order to make use of information that is readily available in the image headers of current x-ray imaging systems. The performance of the image processing scheme is demonstrated on phantom and clinical images. It is argued that clinical application of the approach could employ a user-controlled scatter subtraction step that would reduce any risk of misinterpretation of the processed image.

  13. Superradiant Forward Scattering in Multiple Scattering

    CERN Document Server

    Chabe, Julien; Bienaime, Tom; Bachelard, Romain; Piovella, Nicola; Kaiser, Robin

    2012-01-01

    We report on an interference effect in multiple scattering by resonant scatterers resulting in enhanced forward scattering, violating Ohm's law for photons. The underlying mechanism of this wave effect is superradiance, which we have investigated using cold atoms as a toy model. We present numerical and experimental evidences for this superradiant forward scattering, which is robust against disorder and configuration averaging.

  14. Scattering effect of submarine hull on propeller non-cavitation noise

    Science.gov (United States)

    Wei, Yingsan; Shen, Yang; Jin, Shuanbao; Hu, Pengfei; Lan, Rensheng; Zhuang, Shuangjiang; Liu, Dezhi

    2016-05-01

    This paper investigates the non-cavitation noise caused by propeller running in the wake of submarine with the consideration of scattering effect caused by submarine's hull. The computation fluid dynamics (CFD) and acoustic analogy method are adopted to predict fluctuating pressure of propeller's blade and its underwater noise radiation in time domain, respectively. An effective iteration method which is derived in the time domain from the Helmholtz integral equation is used to solve multi-frequency waves scattering due to obstacles. Moreover, to minimize time interpolation caused numerical errors, the pressure and its derivative at the sound emission time is obtained by summation of Fourier series. It is noted that the time averaging algorithm is used to achieve a convergent result if the solution oscillated in the iteration process. Meanwhile, the developed iteration method is verified and applied to predict propeller noise scattered from submarine's hull. In accordance with analysis results, it is summarized that (1) the scattering effect of hull on pressure distribution pattern especially at the frequency higher than blade passing frequency (BPF) is proved according to the contour maps of sound pressure distribution of submarine's hull and typical detecting planes. (2) The scattering effect of the hull on the total pressure is observable in noise frequency spectrum of field points, where the maximum increment is up to 3 dB at BPF, 12.5 dB at 2BPF and 20.2 dB at 3BPF. (3) The pressure scattered from hull is negligible in near-field of propeller, since the scattering effect surrounding analyzed location of propeller on submarine's stern is significantly different from the surface ship. This work shows the importance of submarine's scattering effect in evaluating the propeller non-cavitation noise.

  15. Single-scattering properties of ice particles in the microwave regime: Temperature effect on the ice refractive index with implications in remote sensing

    Science.gov (United States)

    Ding, Jiachen; Bi, Lei; Yang, Ping; Kattawar, George W.; Weng, Fuzhong; Liu, Quanhua; Greenwald, Thomas

    2017-03-01

    An ice crystal single-scattering property database is developed in the microwave spectral region (1 to 874 GHz) to provide the scattering, absorption, and polarization properties of 12 ice crystal habits (10-plate aggregate, 5-plate aggregate, 8-column aggregate, solid hexagonal column, hollow hexagonal column, hexagonal plate, solid bullet rosette, hollow bullet rosette, droxtal, oblate spheroid, prolate spheroid, and sphere) with particle maximum dimensions from 2 μm to 10 mm. For each habit, four temperatures (160, 200, 230, and 270 K) are selected to account for temperature dependence of the ice refractive index. The microphysical and scattering properties include projected area, volume, extinction efficiency, single-scattering albedo, asymmetry factor, and six independent nonzero phase matrix elements (i.e. P11, P12, P22, P33, P43 and P44). The scattering properties are computed by the Invariant Imbedding T-Matrix (II-TM) method and the Improved Geometric Optics Method (IGOM). The computation results show that the temperature dependence of the ice single-scattering properties in the microwave region is significant, particularly at high frequencies. Potential active and passive remote sensing applications of the database are illustrated through radar reflectivity and radiative transfer calculations. For cloud radar applications, ignoring temperature dependence has little effect on ice water content measurements. For passive microwave remote sensing, ignoring temperature dependence may lead to brightness temperature biases up to 5 K in the case of a large ice water path.

  16. Effect of the third π ∗ resonance on the angular distributions for electron-pyrimidine scattering

    Science.gov (United States)

    Mašín, Zdeněk; Gorfinkiel, Jimena D.

    2016-07-01

    We present a detailed analysis of the effect of the well known third π∗ resonance on the angular behaviour of the elastic cross section in electron scattering from pyrimidine. This resonance, occurring approximately at 4.7 eV, is of mixed shape and core-excited character. Experimental and theoretical results show the presence of a peak/dip behaviour in this energy range, that is absent for other resonances. Our investigations show that the cause of the peak/dip is an interference of background p-wave to p-wave scattering amplitudes with the amplitudes for resonant scattering. The equivalent resonance in pyrazine shows the same behaviour and the effect is therefore likely to appear in other benzene-like molecules. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  17. A Stable Marching on-in-time Scheme for Solving the Time Domain Electric Field Volume Integral Equation on High-contrast Scatterers

    KAUST Repository

    Sayed, Sadeed Bin

    2015-05-05

    A time domain electric field volume integral equation (TD-EFVIE) solver is proposed for characterizing transient electromagnetic wave interactions on high-contrast dielectric scatterers. The TD-EFVIE is discretized using the Schaubert- Wilton-Glisson (SWG) and approximate prolate spherical wave (APSW) functions in space and time, respectively. The resulting system of equations can not be solved by a straightforward application of the marching on-in-time (MOT) scheme since the two-sided APSW interpolation functions require the knowledge of unknown “future” field samples during time marching. Causality of the MOT scheme is restored using an extrapolation technique that predicts the future samples from known “past” ones. Unlike the extrapolation techniques developed for MOT schemes that are used in solving time domain surface integral equations, this scheme trains the extrapolation coefficients using samples of exponentials with exponents on the complex frequency plane. This increases the stability of the MOT-TD-EFVIE solver significantly, since the temporal behavior of decaying and oscillating electromagnetic modes induced inside the scatterers is very accurately taken into account by this new extrapolation scheme. Numerical results demonstrate that the proposed MOT solver maintains its stability even when applied to analyzing wave interactions on high-contrast scatterers.

  18. Excluded-volume effects in the diffusion of hard spheres

    KAUST Repository

    Bruna, Maria

    2012-01-03

    Excluded-volume effects can play an important role in determining transport properties in diffusion of particles. Here, the diffusion of finite-sized hard-core interacting particles in two or three dimensions is considered systematically using the method of matched asymptotic expansions. The result is a nonlinear diffusion equation for the one-particle distribution function, with excluded-volume effects enhancing the overall collective diffusion rate. An expression for the effective (collective) diffusion coefficient is obtained. Stochastic simulations of the full particle system are shown to compare well with the solution of this equation for two examples. © 2012 American Physical Society.

  19. The investigation of the Coulomb breakup effect on the 6-He elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kucuk, Yasemin; Boztosun, Ismail [Erciyes University, Department of Physics, Kayseri (Turkey); Keeley, Nicholas [Andrzej Soltan Institute, Department of Nuclear Reactions (Poland)

    2009-07-01

    The elastic scattering of the halo nuclei from the heavier target exhibits a different behavior from the standart Fresnel-type diffraction at energies near the Coulomb barrier. In this paper, we have performed the CDCC calculations for 6-He elastic scattering from the different targets to investigate the effect of the Coulomb breakup coupling and we have observed that the deviation from the standard diffraction behavior due to strong breakup coupling starts at around ZT= 60.

  20. Numerical study of Kondo impurity models with strong potential scattering: - reverse Kondo effect and antiresonance -

    OpenAIRE

    Kiss, Annamaria; Kuramoto, Yoshio; Hoshino, Shintaro

    2011-01-01

    Accurate numerical results are derived for transport properties of Kondo impurity systems with potential scattering and orbital degeneracy. Using the continuous-time quantum Monte Carlo (CT-QMC) method, static and dynamic physical quantities are derived in a wide temperature range across the Kondo temperature T_K. With strong potential scattering, the resistivity tends to decrease with decreasing temperature, in contrast to the ordinary Kondo effect. Correspondingly, the quasi-particle densit...

  1. Partial Wave Analysis of Scattering with Nonlocal Aharonov-Bohm Effect

    CERN Document Server

    Lin, H

    2003-01-01

    Partial wave analysis of two dimensional scattering for an arbitray short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The nonlocal influence of magnetic flux in the cross section of scattering for hard disk with a magnetic flux is examined. Due to the ergodic property of the nonlocal effect such influence would occur in quite general potential system and may be useful in understanding phenomenon of mesoscopic phyiscs.

  2. Effective Parameter Dimension via Bayesian Model Selection in the Inverse Acoustic Scattering Problem

    Directory of Open Access Journals (Sweden)

    Abel Palafox

    2014-01-01

    Full Text Available We address a prototype inverse scattering problem in the interface of applied mathematics, statistics, and scientific computing. We pose the acoustic inverse scattering problem in a Bayesian inference perspective and simulate from the posterior distribution using MCMC. The PDE forward map is implemented using high performance computing methods. We implement a standard Bayesian model selection method to estimate an effective number of Fourier coefficients that may be retrieved from noisy data within a standard formulation.

  3. Temperature effects on multi-particle scattering in a gapped quantum magnet

    Science.gov (United States)

    Notbohm, S.; Tennant, D. A.; Lake, B.; Canfield, P. C.; Fielden, J.; Kögerler, P.; Mikeska, H.-J.; Luckmann, C.; Telling, M. T. F.

    2007-03-01

    We report measurements of the temperature effects on the dimerized antiferromagnetic chain material, copper nitrate Cu(NO3)2·2.5D2O. Using inelastic neutron scattering we have measured the temperature dependence of the one- and two-magnon excitation spectra as well as the temperature induced one-magnon intra-band scattering in a single crystal. Comparison is made with numerical evaluations of thermal averages based on the calculation for a chain of 16 spins.

  4. Neutron Angular Scatter Effects in 3DHZETRN: Quasi-Elastic

    Science.gov (United States)

    Wilson, John W.; Werneth, Charles M.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2017-01-01

    The current 3DHZETRN code has a detailed three dimensional (3D) treatment of neutron transport based on a forward/isotropic assumption and has been compared to Monte Carlo (MC) simulation codes in various geometries. In most cases, it has been found that 3DHZETRN agrees with the MC codes to the extent they agree with each other. However, a recent study of neutron leakage from finite geometries revealed that further improvements to the 3DHZETRN formalism are needed. In the present report, angular scattering corrections to the neutron fluence are provided in an attempt to improve fluence estimates from a uniform sphere. It is found that further developments in the nuclear production models are required to fully evaluate the impact of transport model updates. A model for the quasi-elastic neutron production spectra is therefore developed and implemented into 3DHZETRN.

  5. Analysis of beam plasma instability effects on incoherent scatter spectra

    Directory of Open Access Journals (Sweden)

    M. A. Diaz

    2010-12-01

    Full Text Available Naturally Enhanced Ion Acoustic Lines (NEIALs detected with Incoherent Scatter Radars (ISRs can be produced by a Langmuir decay mechanism, triggered by a bump on tail instability. A recent model of the beam-plasma instability suggests that weak-warm beams, such those associated with NEIAL events, might produce Langmuir harmonics which could be detected by a properly configured ISR. The analysis performed in this work shows that such a beam-driven wave may be simultaneously detected with NEIALs within the baseband signal of a single ISR. The analysis shows that simultaneous detection of NEIALs and the first Langmuir harmonic is more likely than simultaneous detection of NEIALs and enhanced plasma line. This detection not only would help to discriminate between current NEIAL models, but could also aid in the parameter estimation of soft precipitating electrons.

  6. Finite Volume Effect of Baryons in Strange Hadronic Matter

    Institute of Scientific and Technical Information of China (English)

    SUN Bao-Xi; LI Lei; NING Ping-Zhi; ZHAO En-Guang

    2001-01-01

    The finite volume effect of baryons in strange hadronic matter (SHM) is studied within the framework of relativistic mean-field theory. As this effect is concerned, the saturation density of SHM turns lower, and the binding energy per baryon decreases. Its influence to the compression modulus of SHM is also discussed.

  7. Effect of Coulomb scattering from trapped charges on the mobility in an organic field-effect transistor

    Science.gov (United States)

    Sharma, A.; Janssen, N. M. A.; Mathijssen, S. G. J.; de Leeuw, D. M.; Kemerink, M.; Bobbert, P. A.

    2011-03-01

    We investigate the effect of Coulomb scattering from trapped charges on the mobility in the two-dimensional channel of an organic field-effect transistor. The number of trapped charges can be tuned by applying a prolonged gate bias. Surprisingly, after increasing the number of trapped charges to a level where strong Coulomb scattering is expected, the mobility has decreased only slightly. Simulations show that this can be explained by assuming that the trapped charges are located in the gate dielectric at a significant distance from the channel instead of in or very close to the channel. The effect of Coulomb scattering is then strongly reduced.

  8. Quantum electrodynamics in finite volume and nonrelativistic effective field theories

    CERN Document Server

    Fodor, Z; Katz, S D; Lellouch, L; Portelli, A; Szabo, K K; Toth, B C

    2015-01-01

    Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.

  9. Quantum electrodynamics in finite volume and nonrelativistic effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Fodor, Z. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); Hoelbling, C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Katz, S.D. [Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); MTA-ELTE Lendület Lattice Gauge Theory Research Group, H-1117 Budapest (Hungary); Lellouch, L., E-mail: lellouch@cpt.univ-mrs.fr [CNRS, Aix-Marseille U., U. de Toulon, CPT, UMR 7332, F-13288, Marseille (France); Portelli, A. [School of Physics & Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Szabo, K.K. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Toth, B.C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany)

    2016-04-10

    Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.

  10. Quantum electrodynamics in finite volume and nonrelativistic effective field theories

    Directory of Open Access Journals (Sweden)

    Z. Fodor

    2016-04-01

    Full Text Available Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.

  11. Perturbation method for the second-order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid.

    Science.gov (United States)

    Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong

    2014-02-01

    Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects.

  12. Amplification Effect on Rayleigh Scattering and SBS in 25 km Distributed Fiber Raman Amplifier

    Institute of Scientific and Technical Information of China (English)

    Hua-Ping Gong; Zai-Xuan Zhang

    2008-01-01

    The amplification effect on stimulated Brillouin scattering (SBS) and Rayleigh scattering in the backward pumped G652 fibers Raman amplifier have been researched. The signal source is a tunable narrow spectral bandwidth (<10 MHz) ECL laser and is pumped by the tunable power 1427.2 nm fiber Raman laser. The Rayleigh scattering lines are amplified by fiber Raman amplifier, and Stokes stimulated Brillouin scattering lines are amplified by fiber Raman amplifier and fiber BriUouin amplifier. The SBS lines total gain is a production of the gain of Raman and the gain of Brillouin amplifier. In experiment, the gain of SBS is about 42 dB and the saturation gain of 25 km G652 backward FRA is about 25 dB, so the gain of fiber Brillouin amplifier is about 17 dB.

  13. Strong coupling effects in near-barrier heavy-ion elastic scattering

    CERN Document Server

    Keeley, N; Rusek, K

    2014-01-01

    Accurate elastic scattering angular distribution data measured at bombarding energies just above the Coulomb barrier have shapes that can markedly differ from or be the same as the expected classical Fresnel scattering pattern depending on the structure of the projectile, the target or both. Examples are given such as 18O + 184W and 16O + 148,152Sm where the expected rise above Rutherford scattering due to Coulomb-nuclear interference is damped by coupling to the target excited states, and the extreme case of 11Li scattering, where coupling to the 9Li + n + n continuum leads to an elastic scattering shape that cannot be reproduced by any standard optical model parameter set. The recent availability of high quality 6He, 11Li and 11Be data provides further examples of the influence that coupling effects can have on elastic scattering. Conditions for strong projectile-target coupling effects are presented with special emphasis on the importance of the beam-target charge combination being large enough to bring ab...

  14. 22 MeV polarized proton scattering from 40Ca and effective NN interactions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Analyzing powers and differential cross sections have been measured for elastic scattering of 22 MeV polarized protons from 40Ca, 16O and 12C, and diferential cross sections for inelastic scattering of 22 MeV protons from 3- (3.736 MeV)and 5-(4.491 MeV) states of 40Ca have also been measured. The experimental data for polarized proton elastic scattering have been analyzed with a phenomenological optical potential parameters, the experimental data and theoretical values are in good agreement. In the theoretical frame of microscopic single scattering model, transition densities extracted from electron inelastic scattering and M3Y and Halderson’s effective interactions have been utilized to analyze the experimental data of 22 MeV proton inelastic scattering from 40Ca. Overall, it seems that Halderson’s effective interaction can better describe the experimental data than M3Y although the degree of agreement between experimental and theoretical values needs to be improved.

  15. Comparative technique in measurements of Ge detectors effective volumes

    Science.gov (United States)

    Demidova, E. V.; Kirpichnikov, I. V.; Vasenko, A. A.

    1999-01-01

    A simple and quick procedure was proposed for measurements of large coaxial Ge detectors effective volumes. It included a comparison of background spectra collected with several detectors without any shielding in an underground laboratory. Such measurements were performed in Homestake (USA) and Canfranc (Spain) laboratories with several 1 kg and 2 kg detectors. Monte-Carlo calculations confirmed that ratios of numbers of events in continua of the spectra should be either equal or very close to the ratios of the detectors effective volumes.

  16. Finite-size effects in surface-enhanced Raman scattering in noble-metal nanoparticles: a semiclassical approach

    Science.gov (United States)

    Pustovit, Vitaliy N.; Shahbazyan, Tigran V.

    2006-06-01

    We study finite-size effects in surface-enhanced Raman scattering (SERS) from molecules adsorbed on small metal particles. Within an electromagnetic description of SERS, the enhancement of the Raman signal originates from the local field of the surface plasmon resonance in a nanoparticle. With decreasing particle sizes, this enhancement is reduced due to the size-dependent Landau damping of the surface plasmon. We show that, in small noble-metal particles, the reduction of interband screening in the surface layer leads to an additional increase in the local field acting on a molecule close to the metal surface. The overall size dependence of Raman signal enhancement is determined by the interplay between Landau damping and underscreening effects. Our calculations, based on a two-region model, show that the role of the surface layer increases for smaller nanoparticle sizes due to a larger volume fraction of the underscreened region.

  17. Ambient Occlusion Effects for Combined Volumes and Tubular Geometry

    KAUST Repository

    Schott, M.

    2013-06-01

    This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed.

  18. Multiple Scattering and Visco-Thermal Effects on 2D Phononic Crystal

    CERN Document Server

    Duclos, Aroune; Pagneux, Vincent

    2008-01-01

    In this paper, we are interested in the transition between regimes here either visco-thermal or multiple scattering effects dominate for the propagation of acoustic waves through a 2D regular square array of rigid cylinders embedded in air. An extension of the numerical method using Schl\\"omilch series is performed in order to account for visco-thermal losses. Comparison withexperimental data and results from classical homogenization theory allows to study the transition between a low frequency limit (where viscous and thermal effects dominate) and a high frequency regime (where multiple scattering effects become predominant). For this particular geometry, a large frequency domain where visco-thermal and multiple scattering effects coexist is found.

  19. Near-critical-angle scattering for the characterization of clouds of bubbles: particular effects.

    Science.gov (United States)

    Onofri, Fabrice R A; Krzysiek, Mariusz A; Barbosa, Séverine; Messager, Valérie; Ren, Kuan-Fang; Mroczka, Janusz

    2011-10-20

    We report experimental investigations on the influence of various optical effects on the far-field scattering pattern produced by a cloud of optical bubbles near the critical scattering angle. Among the effects considered, there is the change of the relative refractive index of the bubbles (gas bubbles or some liquid-liquid droplets), the influence of intensity gradients induced by the laser beam intensity profile and by the spatial filtering of the collection optics, the coherent and multiple scattering effects occurring for densely packed bubbles, and the tilt angle of spheroidal optical bubbles. The results obtained herein are thought to be fundamental for the development of future works to model these effects and for the extension of the range of applicability of an inverse technique (referenced herein as the critical angle refractometry and sizing technique), which is used to determine the size distribution and composition of bubbly flows.

  20. Neutron scattering effects on fusion ion temperature measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Lee (Bechtel/Nevada, Las Vegas, NV); Starner, Jason R.; Cooper, Gary Wayne; Ruiz, Carlos L.; Franklin, James Kenneth (Ktech Corporation, Albuquerque, NM); Casey, Daniel T.

    2006-06-01

    To support the nuclear fusion program at Sandia National Laboratories (SNL), a consistent and verifiable method to determine fusion ion temperatures needs to be developed. Since the fusion temperature directly affects the width in the spread of neutron energies produced, a measurement of the neutron energy width can yield the fusion temperature. Traditionally, the spread in neutron energies is measured by using time-of-flight to convert a spread in neutron energies at the source to a spread in time at detector. One potential obstacle to using this technique at the Z facility at SNL is the need to shield the neutron detectors from the intense bremsstrahlung produced. The shielding consists of eight inches of lead and the concern is that neutrons will scatter in the lead, artificially broaden the neutron pulse width and lead to an erroneous measurement. To address this issue, experiments were performed at the University of Rochester's Laboratory for Laser Energetics, which demonstrated that a reliable ion temperature measurement can be achieved behind eight inches of lead shielding. To further expand upon this finding, Monte Carlo N-Particle eXtended (MCNPX) was used to simulate the experimental geometric conditions and perform the neutron transport. MCNPX was able to confidently estimate results observed at the University of Rochester.

  1. Partial volume effects in dynamic contrast magnetic resonance renal studies

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, D. Rodriguez, E-mail: drodriguez@biotronics3d.co [CVSSP, Faculty of Engineering and Physical Sciences, University of Surrey (United Kingdom); Wells, K., E-mail: k.wells@surrey.ac.u [CVSSP, Faculty of Engineering and Physical Sciences, University of Surrey (United Kingdom); Diaz Montesdeoca, O., E-mail: o.diaz.montesdeoca@gmail.co [EUITT, Universidad de Las Palmas de Gran Canaria (Spain); Moran Santana, A. [EUITT, Universidad de Las Palmas de Gran Canaria (Spain); Mendichovszky, I.A., E-mail: iosifm@hotmail.co [Radiology and Physics Unit, UCL Institute of Child Health, London WC1N 1EH (United Kingdom); Gordon, I., E-mail: i.gordon@ich.ucl.ac.u [Radiology and Physics Unit, UCL Institute of Child Health, London WC1N 1EH (United Kingdom)

    2010-08-15

    This is the first study of partial volume effect in quantifying renal function on dynamic contrast enhanced magnetic resonance imaging. Dynamic image data were acquired for a cohort of 10 healthy volunteers. Following respiratory motion correction, each voxel location was assigned a mixing vector representing the 'overspilling' contributions of each tissue due to the convolution action of the imaging system's point spread function. This was used to recover the true intensities associated with each constituent tissue. Thus, non-renal contributions from liver, spleen and other surrounding tissues could be eliminated from the observed time-intensity curves derived from a typical renal cortical region of interest. This analysis produced a change in the early slope of the renal curve, which subsequently resulted in an enhanced glomerular filtration rate estimate. This effect was consistently observed in a Rutland-Patlak analysis of the time-intensity data: the volunteer cohort produced a partial volume effect corrected mean enhancement of 36% in relative glomerular filtration rate with a mean improvement of 7% in r{sup 2} fitting of the Rutland-Patlak model compared to the same analysis undertaken without partial volume effect correction. This analysis strongly supports the notion that dynamic contrast enhanced magnetic resonance imaging of kidneys is substantially affected by the partial volume effect, and that this is a significant obfuscating factor in subsequent glomerular filtration rate estimation.

  2. Extrinsic spin Hall effect induced by resonant skew scattering in graphene.

    Science.gov (United States)

    Ferreira, Aires; Rappoport, Tatiana G; Cazalilla, Miguel A; Castro Neto, A H

    2014-02-14

    We show that the extrinsic spin Hall effect can be engineered in monolayer graphene by decoration with small doses of adatoms, molecules, or nanoparticles originating local spin-orbit perturbations. The analysis of the single impurity scattering problem shows that intrinsic and Rashba spin-orbit local couplings enhance the spin Hall effect via skew scattering of charge carriers in the resonant regime. The solution of the transport equations for a random ensemble of spin-orbit impurities reveals that giant spin Hall currents are within the reach of the current state of the art in device fabrication. The spin Hall effect is robust with respect to thermal fluctuations and disorder averaging.

  3. Comparison of Canopy Volume Measurements of Scattered Eucalypt Farm Trees Derived from High Spatial Resolution Imagery and LiDAR

    Directory of Open Access Journals (Sweden)

    Niva Kiran Verma

    2016-05-01

    Full Text Available Studies estimating canopy volume are mostly based on laborious and time-consuming field measurements; hence, there is a need for easier and convenient means of estimation. Accordingly, this study investigated the use of remotely sensed data (WorldView-2 and LiDAR for estimating tree height, canopy height and crown diameter, which were then used to infer the canopy volume of remnant eucalypt trees at the Newholme/Kirby ‘SMART’ farm in north-east New South Wales. A regression model was developed with field measurements, which was then applied to remote-sensing-based measurements. LiDAR estimates of tree dimensions were generally lower than the field measurements (e.g., 6.5% for tree height although some of the parameters (such as tree height may also be overestimated by the clinometer/rangefinder protocols used. The WorldView-2 results showed both crown projected area and crown diameter to be strongly correlated to canopy volume, and that crown diameter yielded better results (Root Mean Square Error RMSE 31% than crown projected area (RMSE 42%. Although the better performance of LiDAR in the vertical dimension cannot be dismissed, as suggested by results obtained from this study and also similar studies conducted with LiDAR data for tree parameter measurements, the high price and complexity associated with the acquisition and processing of LiDAR datasets mean that the technology is beyond the reach of many applications. Therefore, given the need for easier and convenient means of tree parameters estimation, this study filled a gap and successfully used 2D multispectral WorldView-2 data for 3D canopy volume estimation with satisfactory results compared to LiDAR-based estimation. The result obtained from this study highlights the usefulness of high resolution data for canopy volume estimations at different locations as a possible alternative to existing methods.

  4. Micro-Doppler Effect of Extended Streamlined Targets Based on Sliding Scattering Centre Model

    Directory of Open Access Journals (Sweden)

    Bo Tang

    2016-06-01

    Full Text Available The scattering center of extended streamlined targets can slide when the direction of radiation is changed. The sliding scattering center has influence on the micro-Doppler effect of micro-motion of the extended streamlined target. This paper focused on the micro-Doppler of the extended streamlined target for the bistatic radar. Based on the analysis, the analytical expressions of the micro-Doppler of coning motion with sliding scattering center model were given for bistatic radar. And the results were validated by the simulated results of the scattering field based on the full-wave method of the electromagnetic computation. The results showed that the sliding of the scattering center can make the micro-Doppler be less and distorted, and the influence of the sliding is different for two different types of the sliding scattering centers: sliding on the surface and sliding on the bottom circle. The analytical expressions of the micro-Doppler are helpful to analyze the time-frequency presentations (TFR of the coning motion of the extended streamlined target and to estimate the parameters of the target.

  5. Effects of Raman scattering and attenuation in silica fiber-based parametric frequency conversion

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Andersen, Lasse Mejling; Rottwitt, Karsten

    2017-01-01

    Four-wave mixing in the form of Bragg scattering (BS) has been predicted to enable quantum noise-less frequency conversion by analytic quantum approaches. Using a semi-classical description of quantum noise that accounts for loss and stimulated and spontaneous Raman scattering, which are not curr......Four-wave mixing in the form of Bragg scattering (BS) has been predicted to enable quantum noise-less frequency conversion by analytic quantum approaches. Using a semi-classical description of quantum noise that accounts for loss and stimulated and spontaneous Raman scattering, which...... are not currently described in existing quantum approaches, we quantify the impacts of these effects on the conversion efficiency and on the quantum noise properties of BS in terms of an induced noise figure (NF). We give an approximate closed-form expression for the BS conversion efficiency that includes loss...... and stimulated Raman scattering, and we derive explicit expressions for the Raman-induced NF from the semi-classical approach used here. We find that Raman scattering induces a NF in the BS process that is comparable to the 3-dB NF associated with linear amplifiers...

  6. Volume of the effect compartment in simulations of neuromuscular block

    NARCIS (Netherlands)

    Nigrovic, Vladimir; Proost, Johannes H.; Amann, Anton; Bhatt, Shashi B.

    2005-01-01

    Background: The study examines the role of the volume of the effect compartment in simulations of neuromuscular block (NMB) produced by nondepolarizing muscle relaxants. Methods: The molar amount of the postsynaptic receptors at the motor end plates in muscle was assumed constant; the apparent recep

  7. REVISITING THE SCATTERING GREENHOUSE EFFECT OF CO{sub 2} ICE CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kitzmann, D., E-mail: daniel.kitzmann@csh.unibe.ch [Center for Space and Habitability, University of Bern, Sidlerstr. 5, 3012 Bern (Switzerland)

    2016-02-01

    Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO{sub 2} dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone.

  8. Depth of Field Effects for Interactive Direct Volume Rendering

    KAUST Repository

    Schott, Mathias

    2011-06-01

    In this paper, a method for interactive direct volume rendering is proposed for computing depth of field effects, which previously were shown to aid observers in depth and size perception of synthetically generated images. The presented technique extends those benefits to volume rendering visualizations of 3D scalar fields from CT/MRI scanners or numerical simulations. It is based on incremental filtering and as such does not depend on any precomputation, thus allowing interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions. © 2011 The Author(s).

  9. Screening-induced surface polar optical phonon scattering in dual-gated graphene field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bo, E-mail: hubo2011@semi.ac.cn

    2015-03-15

    The effect of surface polar optical phonons (SOs) from the dielectric layers on electron mobility in dual-gated graphene field effect transistors (GFETs) is studied theoretically. By taking into account SO scattering of electron as a main scattering mechanism, the electron mobility is calculated by the iterative solution of Boltzmann transport equation. In treating scattering with the SO modes, the dynamic dielectric screening is included and compared to the static dielectric screening and the dielectric screening in the static limit. It is found that the dynamic dielectric screening effect plays an important role in the range of low net carrier density. More importantly, in-plane acoustic phonon scattering and charged impurity scattering are also included in the total mobility for SiO{sub 2}-supported GFETs with various high-κ top-gate dielectric layers considered. The calculated total mobility results suggest both Al{sub 2}O{sub 3} and AlN are the promising candidate dielectric layers for the enhancement in room temperature mobility of graphene in the future.

  10. Assessment and Implications of Scattered Microbeam and Broadbeam Synchrotron Radiation for Bystander Effect Studies.

    Science.gov (United States)

    Lobachevsky, Pavel; Ivashkevich, Alesia; Forrester, Helen B; Stevenson, Andrew W; Hall, Chris J; Sprung, Carl N; Martin, Olga A

    2015-12-01

    Synchrotron radiation is an excellent tool for investigating bystander effects in cell and animal models because of the well-defined and controllable configuration of the beam. Although synchrotron radiation has many advantages for such studies compared to conventional radiation, the contribution of dose exposure from scattered radiation nevertheless remains a source of concern. Therefore, the influence of scattered radiation on the detection of bystander effects induced by synchrotron radiation in biological in vitro models was evaluated. Radiochromic XRQA2 film-based dosimetry was employed to measure the absorbed dose of scattered radiation in cultured cells at various distances from a field exposed to microbeam radiotherapy and broadbeam X-ray radiation. The level of scattered radiation was dependent on the distance, dose in the target zone and beam mode. The number of γ-H2AX foci in cells positioned at the same target distances was measured and used as a biodosimeter to evaluate the absorbed dose. A correlation of absorbed dose values measured by the physical and biological methods was identified. The γ-H2AX assay successfully quantitated the scattered radiation in the range starting from 10 mGy and its contribution to the observed radiation-induced bystander effect.

  11. Low frequency sound scattering from spherical assemblages of bubbles using effective medium theory.

    Science.gov (United States)

    Hahn, Thomas R

    2007-12-01

    The determination of the acoustic field scattered by an underwater assembly of gas bubbles or similar resonant monopole scatterers is of considerable theoretical and practical interest. This problem is addressed from a theoretical point of view within the framework of the effective medium theory for the case of spherically shaped assemblages. Although being valid more generally, the effective medium theory is an ideal instrument to study multiple scattering effects such as low frequency collective resonances, acoustically coupled breathing modes of the entire assembly. Explicit expressions for the scattering amplitude and cross sections are derived, as well as closed form expressions for the resonance frequency and spectral shape of the fundamental collective mode utilizing analytical S-matrix methods. This approach allows, in principle, a simultaneous inversion for the assembly radius and void fraction directly from the scattering cross sections. To demonstrate the validity of the approach, the theory is applied to the example of idealized, spherically shaped schools of swim bladder bearing fish. The analytic results of the theory are compared to numerical first-principle benchmark computations and excellent agreement is found, even for densely packed schools and frequencies across the bladder resonance.

  12. PLASMA VOLUME EXPANSION 24-HOURS POST-EXERCISE: EFFECT OF DOUBLING THE VOLUME OF REPLACEMENT FLUID

    Directory of Open Access Journals (Sweden)

    Bartholomew Kay

    2005-06-01

    Full Text Available The effects of two volumes (1.5 L or 3.0 L of commercially available electrolyte beverage (1.44 mM·L-1 Na+ taken during a 24-hour recovery period post-exercise, on plasma volume (PV expansion 24-hours post-exercise were assessed. A simple random-order crossover research design was used. Subjects (n = 9 males: age 21 ± 4 years, body mass 80.0 ± 9.0 kg, peak incremental 60-second cycling power output 297 ± 45 W [means ± SD] completed an identical exercise protocol conducted in hot ambient conditions (35oC, 50% relative humidity on two occasions; separated by 7-days. On each occasion, subjects received a different volume of 24-hour fluid intake (commercial beverage in random order. In each case, the fluid was taken in five equal aliquots over 24-hours. PV expansions 24-hours post-exercise were estimated from changes in haemoglobin and haematocrit. Dependent t-testing revealed no significant differences in PV expansions between trials, however a significant expansion with respect to zero was identified in the 3.0 L trial only. Specifically, PV expansions (% were; 1.5 L trial: (mean ± SE 2.3 ± 2.0 (not significant with respect to zero, 3.0 L trial: 5.0 ± 2.0 (p < 0.05, with respect to zero. Under the conditions imposed in the current study, ingesting the greater volume of the beverage lead to larger mean PV expansion

  13. Effect of higher-order aberrations and intraocular scatter on contrast sensitivity measured with a single instrument

    Science.gov (United States)

    Zhao, Junlei; Xiao, Fei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong

    2017-01-01

    Higher-order aberrations (HOAs) and intraocular scatter lead to the degradation of image quality on the retina, and consequently deteriorate subjective visual performance. In this article, we modified an adaptive optics double-pass system to combine objective and subjective visual testing capabilities. Employing the modified DP system, we investigated the effects of HOAs and intraocular scatter on contrast sensitivity. Contrast sensitivity measurements were performed with HOAs either retained or corrected by adaptive optics, and with scatter either remaining at the natural eye-induced level or further enhanced by a set of three different scatter filters. Contrast sensitivity was found to be worse when HOAs were uncorrected or scatter increased. Quantitative analysis indicated that the joint effect of HOAs and scatter on contrast sensitivity was not a simple summation of each contributing factor, suggesting a potential compensatory mechanism between HOAs and intraocular scatter on contrast sensitivity. PMID:28736660

  14. Effects of charged sand on electromagnetic wave propagation and its scattering field

    Institute of Scientific and Technical Information of China (English)

    HE; Qinshu; ZHOU; Youhe; ZHENG; Xiaojing

    2006-01-01

    Based on the Rayleigh's scattering theory, the effects of sandstorms on the propagation of electromagnetic wave with different visibilities are presented by solving the scattering field of charged sand particles. Because of the electric charges on the sand surface, the theoretical attenuation will be large enough to match the measured value under certain conditions. And the results show that the effect of sand with electric charges all over its surface on electromagnetic wave attenuation is the same as that of sand without charge, which proves that electric charges distribute on partial surface of the sand in fact.

  15. The effects of substrate phonon mode scattering on transport in carbon nanotubes.

    Science.gov (United States)

    Perebeinos, Vasili; Rotkin, Slava V; Petrov, Alexey G; Avouris, Phaedon

    2009-01-01

    Carbon nanotubes (CNTs) have large intrinsic carrier mobility due to weak acoustic phonon scattering. However, unlike two-dimensional metal-oxide-semiconductor field effect transistors (MOSFETs), substrate surface polar phonon (SPP) scattering has a dramatic effect on the CNTFET mobility, due to the reduced vertical dimensions of the latter. We find that for the van der Waals distance between CNT and an SiO2 substrate, the low-field mobility at room temperature is reduced by almost an order of magnitude depending on the tube diameter. We predict additional experimental signatures of the SPP mechanism in dependence of the mobility on density, temperature, tube diameter, and CNT-substrate separation.

  16. Effect of boron doping on first-order Raman scattering in superconducting boron doped diamond films

    Science.gov (United States)

    Kumar, Dinesh; Chandran, Maneesh; Ramachandra Rao, M. S.

    2017-05-01

    Aggregation of impurity levels into an impurity band in heavily boron doped diamond results in a background continuum and discrete zone centre phonon interference during the inelastic light scattering process. In order to understand the Raman scattering effect in granular BDD films, systematically heavily doped samples in the semiconducting and superconducting regimes have been studied using the excitation wavelengths in the UV and visible regions. A comprehensive analysis of the Fano resonance effect as a function of the impurity concentrations and the excitation frequencies is presented. Various Raman modes available in BDD including signals from the grain boundaries are discussed.

  17. Interfacial scattering effect on anomalous Hall effect in Ni/Au multilayers

    KAUST Repository

    Zhang, Qiang

    2017-04-21

    The effect of interfacial scattering on anomalous Hall effect (AHE) was studied in the ${{\\\\left(\\\\text{N}{{\\\\text{i}}_{\\\\frac{36}{n}~\\\\text{nm}}}/\\\\text{A}{{\\\\text{u}}_{\\\\frac{12}{n}~\\\\text{nm}}}\\ ight)}_{n}}$ multilayers. Field-dependent Hall resistivity was measured in the temperature range of 5–300 K with the magnetic field up to 50 kOe. The anomalous Hall resistivity (${{\\ ho}_{\\\\text{AHE}}}$ ) was enhanced by more than six times at 5 K from n  =  1 to n  =  12 due to the increased interfacial scattering, whereas the longitudinal resistivity (${{\\ ho}_{xx}}$ ) was increased nearly three times. A scaling relation ${{\\ ho}_{\\\\text{AHE}}}\\\\sim \\ ho _{xx}^{\\\\gamma}$ with $\\\\gamma =1.85$ was obtained for ${{\\ ho}_{\\\\text{AHE}}}$ and ${{\\ ho}_{xx}}$ measured at 5 K, indicating that the dominant mechanism(s) of the AHE in these multilayers should be side-jump or/and intrinsic in nature. The new scaling relation ${{\\ ho}_{\\\\text{AHE}}}=\\\\alpha {{\\ ho}_{xx0}}+\\\\beta \\ ho _{xx0}^{2}+b\\ ho _{xx}^{2}$ (Tian et al 2009 Phys. Rev. Lett. 103 087206) has been applied to our data to identify the origin of the AHE in this type of multilayer.

  18. World-volume Effective Actions of Exotic Five-branes

    CERN Document Server

    Kimura, Tetsuji; Yata, Masaya

    2014-01-01

    We construct world-volume effective actions of exotic $5^2_2$-branes in type IIA and IIB string theories. The effective actions are given in fully space-time covariant forms with two Killing vectors associated with background isometries. The effective theories are governed by the six-dimensional $\\mathcal{N}=(2,0)$ tensor multiplet and $\\mathcal{N}=(1,1)$ vector multiplet, respectively. Performing the S-duality transformation to the $5^2_2$-brane effective action in type IIB string theory, we also work out the world-volume action of the $5^2_3$-brane. We discuss some additional issues relevant to the exotic five-branes in type I and heterotic string theories.

  19. The ν -cleus experiment: a gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering

    Science.gov (United States)

    Strauss, R.; Rothe, J.; Angloher, G.; Bento, A.; Gütlein, A.; Hauff, D.; Kluck, H.; Mancuso, M.; Oberauer, L.; Petricca, F.; Pröbst, F.; Schieck, J.; Schönert, S.; Seidel, W.; Stodolsky, L.

    2017-08-01

    We discuss a small-scale experiment, called ν -cleus, for the first detection of coherent neutrino-nucleus scattering by probing nuclear-recoil energies down to the 10 eV regime. The detector consists of low-threshold CaWO_4 and Al_2O_3 calorimeter arrays with a total mass of about 10 g and several cryogenic veto detectors operated at millikelvin temperatures. Realizing a fiducial volume and a multi-element target, the detector enables active discrimination of γ , neutron and surface backgrounds. A first prototype Al_2O_3 device, operated above ground in a setup without shielding, has achieved an energy threshold of {˜ }20 eV and further improvements are in reach. A sensitivity study for the detection of coherent neutrino scattering at nuclear power plants shows a unique discovery potential (5σ ) within a measuring time of {\\lesssim }2 weeks. Furthermore, a site at a thermal research reactor and the use of a radioactive neutrino source are investigated. With this technology, real-time monitoring of nuclear power plants is feasible.

  20. Scattering of dislocated wavefronts by vertical vorticity and the Aharonov-Bohm effect; 2, Dispersive waves

    CERN Document Server

    Coste, C; Coste, Christophe; Lund, Fernando

    1999-01-01

    Previous results on the scattering of surface waves by vertical vorticity on shallow water are generalized to the case of dispersive water waves. Dispersion effects are treated perturbatively around the shallow water limit, to first order in the ratio of depth to wavelength. The dislocation of the incident wavefront, analogous to the Aharonov-Bohm effect, is still observed. At short wavelengths the scattering is qualitatively similar to the nondispersive case. At moderate wavelengths, however, there are two markedly different scattering regimes according to wether the capillary length is smaller or larger than depends both on phase and group velocity. The validity range of the calculation is the same as in the shallow water case: wavelengths small compared to vortex radius, and low Mach number. The implications of these limitations are carefully considered.

  1. Ballistic Performance Study of Nanowire FET: Effect of Channel Materials and Phonon Scattering

    Science.gov (United States)

    Iztihad, Hossain Md.; Khan, Touhid; Sufian, Abu; Alam, Md. Nur Kutubul; Mollah, Md. Nurunnabi; Islam, Md. Rafiqul

    2016-02-01

    The ballistic performance of Si and Ge nanowire (NW) is compared in this study. Current-voltage characteristic is obtained by self-consistently solving the nonequilibrium Green’s function (NEGF) transport equation with Poisson’s equation. The result is obtained at ⟨001⟩ channel orientation. Simulation result shows Ge NW gives higher ON-state current than Si NW, when OFF-state current is made equal by gate metal work function engineering. However, at subthreshold region, performance of NW FET for both material is almost identical. The intravalley and intervalley electron-phonon scattering effect is also calculated using the deformation potential theory and the self-consistent Born approximation. It is found that electron-phonon scattering effect is more pronounced at ON-state of Si NW FET. The ballistic current decreases with the decrease in diameter of the Si NW FET due to electron-phonon scattering.

  2. Electron scattering and nonlinear trapping by oblique whistler waves: The critical wave intensity for nonlinear effects

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V., E-mail: ante0226@gmail.com; Vasiliev, A. A. [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS—University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)

    2014-10-15

    In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.

  3. Dirac sea effects in $K^+$ scattering from nuclei

    CERN Document Server

    Caillon, J C

    1993-01-01

    The ratio $R_T$ of $K^+-^{12}C$ to $K^+-d$ cross sections has been calculated microscopically using a boson-exchange $KN$ amplitude in which the $\\sigma$ and $\\omega$ mesons are dressed by the modifications of the Dirac sea in nuclear matter. In spite of the fact that this dressing leads to a scaling of the mesons effective mass in nuclear matter, the effect on the $R_T$ ratio is found to be weak.

  4. Theoretical Study of the Effect of Multi-Diameter Distribution on the Mie Scattering Characteristics of Milk Fat

    Institute of Scientific and Technical Information of China (English)

    Jinying Yin∗; Siqi Zhang; Hongyan Yang; Zhen Zhou

    2015-01-01

    To correct the light scattering property parameters of milk fat for improving the detection accuracy, the Mie⁃theory was used to establish a predictive model for light scattering properties of milk fat globule with multi⁃diameter distributions, by means of Monte Carlo approach to simulate actual multi⁃diameter size distribution of milk fat globule in milk fat solution. Scattering coefficient and absorption coefficient of multi⁃diameter distribution milk fat particles were calculated by simulating the particles size distribution in milk fat solution. And the light scattering properties of multi⁃diameter distribution was compared with that of volume mean diameter, Sauter mean diameter and numerical mean diameter in milk fat solution. Theoretical simulation results indicate that the scattering coefficient and absorption coefficient of milk fat particles are determined by the particle size distribution in milk fat solution. There is a distinct difference in scattering characteristics between the milk fat particles with multi⁃diameter distribution and that with mean diameters. Compared to that with multi⁃diameter distribution, the scattering coefficient of the milk fat particles with mean diameter has a maximum mean deviation of 9 042 m-1 . The particle size distribution is not completely determined by the mean diameters. The dependence of the light scattering properties on the particle size distribution should be considered into the model and simulation. Therefore, it is found that the particle size distribution in milk fat solution is an essential and critical factor to significantly improve the detection accuracy of milk fat content.

  5. Effect of Compton Scattering on the Electron Beam Dynamics at the ATF Damping Ring

    CERN Document Server

    Chaikovska, I; Delerue, N; Variola, A; Zomer, F; Kubo, K; Naito, T; Omori, T; Terunuma, N; Urakawa, J

    2011-01-01

    Compton scattering provides one of the most promising scheme to obtain polarized positrons for the next generation of $e^-$ -- $e^+$ colliders. Moreover it is an attractive method to produce monochromatic high energy polarized gammas for nuclear applications and X-rays for compact light sources. In this framework a four-mirror Fabry-P\\'erot cavity has been installed at the Accelerator Test Facility (ATF - KEK, Tsukuba, Japan) and is used to produce an intense flux of polarized gamma rays by Compton scattering \\cite{ipac-mightylaser}. For electrons at the ATF energy (1.28 GeV) Compton scattering may result in a shorter lifetime due to the limited bucket acceptance. We have implemented the effect of Compton scattering on a 2D tracking code with a Monte-Carlo method. This code has been used to study the longitudinal dynamics of the electron beam at the ATF damping ring, in particular the evolution of the energy spread and the bunch length under Compton scattering. The results obtained are presented and discussed...

  6. One phonon resonant Raman scattering in semiconductor quantum wires: Magnetic field effect

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Riera, Re., E-mail: rbriera@posgrado.cifus.uson.mx [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonor, (Mexico); Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico); Betancourt-Riera, Ri. [Instituto Tecnologico de Hermosillo, Avenida Tecnologico S/N, Colonia Sahuaro, C.P. 83170, Hermosillo, Sonora (Mexico); Nieto Jalil, J.M. [Tecnologico de Monterrey-Campus Sonora Norte, Bulevar Enrique Mazon Lopez No. 965, C.P. 83000, Hermosillo, Sonora (Mexico); Riera, R. [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, C.P. 83190, Hermosillo, Sonora (Mexico)

    2013-02-01

    We have developed a theory of one phonon resonant Raman scattering in a semiconductor quantum wire of cylindrical geometry in the presence of an external magnetic field distribution, parallel to the cylinder axis. The effect of the magnetic field in the electron and hole states, and in the Raman scattering efficiency, is determinate. We consider the electron-phonon interaction using a Froehlich-type Hamiltonian, deduced for the case of complete confinement phonon modes by Comas and his collaborators. We also assume T=0 K, a single parabolic conduction and valence bands. The spectra are discussed for different magnetic field values and the selection rules for the processes are also studied.

  7. Effective potential and off-shell two-body scattering amplitudes in the eikonal approximation

    Energy Technology Data Exchange (ETDEWEB)

    Bartnik, E.A.; Rek, Z.

    1973-12-31

    An effective potential is computed for 2-body elastic scattering with the experimental on-shell t-matrices as an input. Nonrelativistic elkonal approximation and locality together with spherical ial are assumed. The explicit form of potential for pp, pi /sup +/p, and pi /sup -/p in the energy range from 5 to 20 GeV is investigated. The half off-shell scattering amplitude is calculated in the potential model. In the position representation this amplitude is found to be asymmetric along the eikonal direction, and an interesting absorption interpretation of this fact is given. (auth)

  8. Temperature effects on multi-particle scattering in a gapped quantum magnet

    Energy Technology Data Exchange (ETDEWEB)

    Notbohm, S. [Hahn-Meitner-Institut, Glienicker Strasse 100, 14109 Berlin (Germany) and School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom)]. E-mail: susanne.notbohm@hmi.de; Tennant, D.A. [Hahn-Meitner-Institut, Glienicker Strasse 100, 14109 Berlin (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Lake, B. [Hahn-Meitner-Institut, Glienicker Strasse 100, 14109 Berlin (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Canfield, P.C. [Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Fielden, J. [Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Koegerler, P. [Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Mikeska, H.-J. [Institut fuer Theoretische Physik, Universitaet Hannover, Appelstr. 2, 30167 Hannover (Germany); Luckmann, C. [Institut fuer Theoretische Physik, Universitaet Hannover, Appelstr. 2, 30167 Hannover (Germany); Telling, M.T.F. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 OQX (United Kingdom)

    2007-03-15

    We report measurements of the temperature effects on the dimerized antiferromagnetic chain material, copper nitrate Cu(NO{sub 3}){sub 2}.2.5D{sub 2}O. Using inelastic neutron scattering we have measured the temperature dependence of the one- and two-magnon excitation spectra as well as the temperature induced one-magnon intra-band scattering in a single crystal. Comparison is made with numerical evaluations of thermal averages based on the calculation for a chain of 16 spins.

  9. Numerical Study of Coulomb Scattering Effects on Electron Beamfrom a Nano-Tip

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji; Corlett, John N.; Lidia, Steven M.; Padmore, HowardA.; Wan, Weishi; Zholent, Andrew A.; Zolotorev, Max

    2007-06-25

    Nano-tips with high acceleration gradient around the emission surface have been proposed to generate high brightness beams. However, due to the small size of the tip, the charge density near the tip is very high even for a small number of electrons. The stochastic Coulomb scattering near the tip can degrade the beam quality and cause extra emittance growth and energy spread. In the paper, we present a numerical study of these effects using a direct relativistic N-body model. We found that emittance growth and energy spread, due to Coulomb scattering, can be significantly enhanced with respect to mean-field space-charge calculations.

  10. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    Science.gov (United States)

    Antoniassi, M.; Conceição, A. L. C.; Poletti, M. E.

    2011-10-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90° ( x=0.99 Å -1). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number ( Zeff) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Zeff of breast tissues, which are mainly related to the elemental composition of carbon ( Z=6) and oxygen ( Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  11. Amplification effect on SBS and Rayleigh scattering in the backward pumped distributed fiber Raman amplifier

    Institute of Scientific and Technical Information of China (English)

    Zaixuan Zhang; Huaping Gong

    2009-01-01

    The amplification effect on stimulated Brillouin scattering(SBS)and Rayleigh scattering in the backward pumped G652 fiber Raman amplifier(FRA)is studied.The pump source is a 1427.2-nm fiber Raman laser whose power is tunable between 0-1200 mW,and the signal source is a tunable narrow spectral bandwidth(<10 MHz)external cavity laser(ECL).The Rayleigh scattering lines are amplified by the FRA and Stokes SBS lines are amplified by the FRA and the fiber Brillouin amplifier.The total gain of SBS lines is the production of the gain of Raman amplifier and that of Brillouin amplifier.In experiment,the SBS gain is about 42 dB and the saturation gain of 25-km G652 backward FRA is about 25 dB,so the gain of fiber Brillouin amplifier is about 17 dB.

  12. Study of effective atomic number of breast tissues determined using the elastic to inelastic scattering ratio

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil)

    2011-10-01

    In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90{sup o} (x=0.99 A{sup -1}). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Z{sub eff}) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Z{sub eff} of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.

  13. Medium effect in high density region probed by nucleus-nucleus elastic scattering

    CERN Document Server

    Furumoto, T; Yamamoto, Y

    2014-01-01

    We investigate the sensitivity of the medium effect in the high density region on the nucleus-nucleus elastic scattering in the framework of the double-folding (DF) model with the complex $G$-matrix interaction. First, the evaluating position of the local density, which is an ambiguity of the DF model, is investigated. However, the effect has a minor role to the nucleus-nucleus system. Next, the medium effect including three-body-force (TBF) effect is investigated with two methods. In the both methods, the medium effect is clearly seen on the potential and the elastic cross section, but not on the total reaction cross section. Finally, we make clear the crucial role of the TBF effect up to $k_F =$ 1.6 fm$^{-1}$ in the nucleus-nucleus elastic scattering.

  14. Concentrating or scattering management in agricultural landscapes : Examining the effectiveness and efficiency of conservation measures

    NARCIS (Netherlands)

    Hammers, Martijn; Muskens, Gerard; Van Kats, Ruud J. M.; Teunissen, Wolf A.; Kleijn, David

    2016-01-01

    A key issue in conservation is where and how much management should be implemented to obtain optimal biodiversity benefits. Cost-effective conservation requires knowledge on whether biodiversity benefits are higher when management is concentrated in a few core areas or scattered across the

  15. Effects of nonlinear phase modulation on Bragg scattering in the low-conversion regime

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Cargill, D. S.; McKinstrie, C. J.

    2012-01-01

    In this paper, we consider the effects of nonlinear phase modulation on frequency conversion by four-wave mixing (Bragg scattering) in the low-conversion regime. We derive the Green functions for this process using the time-domain collision method, for partial collisions, in which the four fields...

  16. Effects of nonlinear phase modulation on low-conversion four-wave mixing Bragg scattering

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten

    We consider the effects of nonlinear phase modulation (NPM) on frequency converseon by Bragg scattering. Previously we found that arbitrary mode reshaping without temporal entanglement (separability) was possible. When NPM is included, the modes are chirped and the separability is no longer compl...

  17. Transverse spin effects in proton-proton scattering and $Q \\bar Q$ production

    OpenAIRE

    Goloskokov, S. V.

    2002-01-01

    We discuss transverse spin effects caused by the spin-flip part of the Pomeron coupling with the proton. The predicted spin asymmetries in proton-proton scattering and QQ production in proton-proton and lepton-proton reactions are not small and can be studied in future polarized experiments.

  18. Preliminary study of rain effects on radar scattering from water surfaces

    Science.gov (United States)

    Moore, R. K.; Yu, Y. S.; Fung, A. K.; Dome, G. J.; Werp, R. E.; Kaneko, D.

    1979-01-01

    Preliminary wave-tank results indicate that radar scatter from water surfaces is severely affected by rain at low but not at high wind speeds. The effect is governed by both the rain rate and droplet size. A simple experiment to check this phenomenon is described.

  19. The effect of scattered light sensor orientation on roughness measurement of curved polished surfaces

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2014-01-01

    Light scattering is a method for surface roughness measurements well suitable for use in a production environment thanks to its fast measurement rate, insensitivity to vibrations and to small misalignments. The method is however affected by several other factors. In this paper, the effect of angu...

  20. Scattering and Bound States of Klein-Gordon Particle with Hylleraas Potential Within Effective Mass Formalism

    Science.gov (United States)

    Onyeaju, M. C.; Ikot, A. N.; Chukwuocha, E. O.; Obong, H. P.; Zare, S.; Hassanabadi, H.

    2016-09-01

    Scattering and bound states solution for the one-dimensional Klein-Gordon particle with Hylleraas potential is presented within the frame work of position dependent effective mass formalism. We calculate in detail the reflection and transmission coefficients using the properties of hypergeometric functions and the equation of continuity of the wave functions.

  1. QUANTUM CRYPTOGRAPHY SYSTEM WITH A SINGLE PHOTON SOURCE BASED ON THE SPONTANEOUS PARAMETRIC SCATTERING EFFECT

    Directory of Open Access Journals (Sweden)

    V. I. Egorov

    2012-01-01

    Full Text Available A scheme of a single photon source for quantum informatics applications based on the spontaneous parametric scattering effect is proposed and a quantum cryptography setup using it is presented. The system is compared to the alternative ones that operate with attenuated classic light.

  2. Stark effect in Lax-Phillips scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ari, Tamar [Department of Physics, Bar Ilan University, Ramat Gan 52900 (Israel); Horwitz, L.P. [Department of Physics, Bar Ilan University, Ramat Gan 52900 (Israel) and School of Physics, Tel Aviv University, Ramat Aviv 69978 (Israel)]. E-mail: larry@post.tau.ac.il

    2004-11-15

    We show that for a simple version of the Stark effect, the Lax-Phillips eigenstate associated with the resonance can be explicitly computed, and we exhibit the (necessarily) semigroup property of decay in time. The widths and location of the resonances are those given by the poles of the resolvent of the standard quantum mechanical form.

  3. Electron Gyro-Harmonic Effects on Ionospheric Stimulated Brillouin Scatter

    Science.gov (United States)

    2014-08-21

    HAARP) facility. Increasing the maximum transmitter power up to 3.6 MW (effective radiated power ( ERP )∼1 GW) has allowed studying parametric decay...calculations are valid for SBS lines excited at the UH level and for the transmitted wave near vertical incidence. 3. Discussion and Conclusions

  4. Effects of volume conductor and source configuration on simulated magnetogastrograms

    Energy Technology Data Exchange (ETDEWEB)

    Komuro, Rie; Qiao Wenlian; Pullan, Andrew J; Cheng, Leo K, E-mail: l.cheng@auckland.ac.n [Auckland Bioengineering Institute, University of Auckland, Auckland (New Zealand)

    2010-11-21

    Recordings of the magnetic fields (MFs) arising from gastric electrical activity (GEA) have been shown to be able to distinguish between normal and certain abnormal GEA. Mathematical models provide a powerful tool for revealing the relationship between the underlying GEA and the resultant magnetogastrograms (MGGs). However, it remains uncertain the relative contributions that different volume conductor and dipole source models have on the resultant MFs. In this study, four volume conductor models (free space, sphere, half space and an anatomically realistic torso) and two dipole source configurations (containing 320 moving dipole sources and a single equivalent moving dipole source) were used to simulate the external MFs. The effects of different volume conductor models and dipole source configurations on the MF simulations were examined. The half space model provided the best approximation of the MFs produced by the torso model in the direction normal to the coronal plane. This was despite the fact that the half space model does not produce secondary sources, which have been shown to contribute up to 50% of the total MFs when an anatomically realistic torso model was used. We conclude that a realistic representation of the volume conductor and a detailed dipole source model are likely to be necessary when using a model-based approach for interpreting MGGs.

  5. Diffusion of multiple species with excluded-volume effects

    CERN Document Server

    Bruna, Maria

    2012-01-01

    Stochastic models of diffusion with excluded-volume effects are used to model many biological and physical systems at a discrete level. The average properties of the population may be described by a continuum model based on partial differential equations. In this paper we consider multiple interacting subpopulations/species and study how the inter-species competition emerges at the population level. Each individual is described as a finite-size hard core interacting particle undergoing Brownian motion. The link between the discrete stochastic equations of motion and the continuum model is considered systematically using the method of matched asymptotic expansions. The system for two species leads to a nonlinear cross-diffusion system for each subpopulation, which captures the enhancement of the effective diffusion rate due to excluded-volume interactions between particles of the same species, and the diminishment due to particles of the other species. This model can explain two alternative notions of the diff...

  6. Brillouin Scattering Self-Cancellation

    CERN Document Server

    Florez, Omar; Espinel, Yovanny A V; Cordeiro, Cristiano M B; Alegre, Thiago P Mayer; Wiederhecker, Gustavo S; Dainese, Paulo

    2016-01-01

    The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result proper material and structure engineering allows one to control each contribution individually. In this paper, we experimentally demonstrate the perfect cancellation of Brillouin scattering by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancin...

  7. Two-nucleon scattering in multiple partial waves

    CERN Document Server

    Nicholson, Amy; Rinaldi, Enrico; Vranas, Pavlos; Kurth, Thorsten; Joo, Balint; Strother, Mark; Walker-Loud, Andre

    2015-01-01

    We determine scattering phase shifts for S,P,D, and F partial wave channels in two-nucleon systems using lattice QCD methods. We use a generalization of Luscher's finite volume method to determine infinite volume phase shifts from a set of finite volume ground- and excited-state energy levels on two volumes, V=(3.4 fm)^3 and V=(4.5 fm)^3. The calculations are performed in the SU(3)-flavor limit, corresponding to a pion mass of approximately 800 MeV. From the energy dependence of the phase shifts we are able to extract scattering parameters corresponding to an effective range expansion.

  8. Effect of electron-phonon scattering anisotropy on the Hall effect in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Cherepanov, V.I.; Startsev, V.E.; Volkenshtein, N.V.

    1979-10-01

    The Hall effect is studied in the temperature interval 2--150 K in monocrystalline molybdenum with resistance ratio rho/sub 273.2//rho/sub 4.2/ =32000. For T<80 /sup 0/K the Hall coefficient is anisotropic and has a nonmonotonic temperature dependence. An extremum in R/sub H/(T) is observed at hydrogen temperatures and is sensitive to the magnitude of the magnetic field. The observed behavior of R/sub H/(T) is explained by the Fermi surface geometry of molybdenum and by the influence of the electron-phonon scattering anisotropy. The interpretation of the experimental data is supported by a comparison of the temperature dependences of the Hall coefficient for molybdenum and tungsten.

  9. Polarization effects in the non-linear Compton scattering

    CERN Document Server

    Ivanov, D Y; Serbo, V G

    2005-01-01

    We consider emission of a photon by an electron in the field of a strong laser wave. A probability of this process for circularly or linearly polarized laser photons and for arbitrary polarization of all other particles is calculated. We obtain the complete set of functions which describe such a probability in a compact invariant form. Besides, we discuss in some detail the polarization effects in the kinematics relevant to the problem of electron to photon conversion at photon-photon and electron-photon colliders.

  10. Direct extraction of nuclear effects in quasielastic scattering on carbon

    CERN Document Server

    Wilkinson, Callum

    2016-01-01

    The differences between neutrino and antineutrino CCQE cross sections measured on hydrocarbon targets are due to fundamental differences in the cross section, different neutrino and antineutrino fluxes from the same beamline, and the additional interactions on hydrogen for antineutrinos that are absent for neutrinos. In this analysis we correct for the former two differences to extract a constraint on the ratio of the CCQE cross section for free and bound protons from MINERvA and MiniBooNE data. This measures nuclear effects in carbon, and we compare this measurement to models.

  11. Diquarks as effective particles in hard exclusive scattering

    CERN Document Server

    Berger, C F; Schweiger, W

    1999-01-01

    In the context of hard hadronic reactions diquarks are a useful phenomenological device to model non-perturbative effects still observable in the kinematic range accessible by present-day experiments. In the following we present diquark-model predictions for $\\gamma\\gamma \\to p \\bar{p}$ and $\\Lambda for exclusive reactions involving baryons can be reformulated in terms of quarks and diquarks. As an application of these considerations we analyze the magnetic proton form factor with regard to its quark-diquark content.

  12. Multiple scattering of polarized light: influence of absorption.

    Science.gov (United States)

    Hohmann, A; Voit, F; Schäfer, J; Kienle, A

    2014-06-07

    This work continues previous research about multiple scattering of polarized light propagation in turbid media, putting emphasis on the imaginary part of the scatterers' complex refractive index. The whole angle-dependent Müller matrix is evaluated by comparing results of a polarization sensitive radiative transfer solution to Maxwell theory. Turbid media of defined scatterer concentrations are modelled in three dimensions by sphere ensembles kept inside a cubic or spherical simulation volume. This study addresses the impact of absorption on polarization characteristics for selected media from low to high absorption. Besides that, effects caused by multiple and dependent scattering are shown for increasing volume concentration. In this context some unique properties associated with multiple scattering and absorption are pointed out. Further, scattering results in two dimensions are compared for examples of infinite parallel cylinders of high absorption and perpendicularly incident plane waves.

  13. Effective interaction of charged platelets in aqueous solution: investigations of colloid laponite suspensions by static light scattering and small-angle x-ray scattering.

    Science.gov (United States)

    Li, Li; Harnau, L; Rosenfeldt, S; Ballauff, M

    2005-11-01

    We study dilute aqueous solutions of charged disklike mineral particles (laponite) by a combination of static light scattering (SLS) and small-angle x-ray scattering (SAXS). Laponite solutions are known to form gels above a certain critical concentration that must be described as nonequilibrium states. Here we focus on the investigation by SLS and SAXS at concentrations below gelation (cLaponite platelets as well as the structure factor describing their interaction at finite concentration. A detailed analysis of the combined sets of data proves that the solutions are in a well-defined equilibrium state. Moreover, this analysis demonstrates the internal consistency and accuracy of the scattering functions obtained at finite concentrations. We find that laponite particles interact through an effective pair potential that is attractive on short range but repulsive on longer range. This finding demonstrates that Laponite solutions exhibit only a limited stability at the concentration of added salt used herein. Raising the ionic strength to 0.005M already leads to slow flocculation as is evidenced from the enhanced scattering intensity at smallest scattering angles. All data strongly suggest that the gelation occurring at higher concentration is related to aggregation.

  14. Multiple scattering effects with cyclical terms in active remote sensing of vegetated surface using vector radiative transfer theory

    Science.gov (United States)

    The energy transport in a vegetated (corn) surface layer is examined by solving the vector radiative transfer equation using a numerical iterative approach. This approach allows a higher order that includes the multiple scattering effects. Multiple scattering effects are important when the optical t...

  15. Volume Displacement Effects in Bubble-laden Flows

    Science.gov (United States)

    Cihonski, Andrew; Finn, Justin; Apte, Sourabh

    2012-11-01

    When a few bubbles are entrained in a traveling vortex ring, it has been shown that even at extremely low volume loadings, their presence can significantly affect the structure of the vortex core (Sridhar & Katz 1999). A typical Euler-Lagrange point-particle model with two-way coupling for this dilute system, wherein the bubbles are assumed subgrid and momentum point-sources are used to model their effect on the flow, is shown to be unable to accurately capture the experimental trends of bubble settling location and vortex distortion for a range of bubble parameters and vortex strengths. The bubbles experience a significant amount of drag, lift, added mass, pressure, and gravity forces. However, these forces are in balance of each other, as the bubbles reach a mean settling location away from the vortex core. Accounting for fluid volume displacement due to bubble motion, using a model termed as volumetric coupling, experimental trends on vortex distortion and bubble settling location are well captured. The fluid displacement effects are studied by introducing a notion of a volumetric coupling force, the net force on the fluid due to volumetric coupling, which is found to be dominant even at the low volume loadings investigated here.

  16. Determination of the effective atomic number of thick samples of unknown composition using scattering studies

    Science.gov (United States)

    Sankarshan, B. M.; Athrey, C. D.; Umesh, T. K.

    2017-06-01

    The effective atomic number ( Z_eff is a quantity which gives the fraction of the total number of electrons in a composite material participating in the photon-atom interaction. The effective atomic number has been determined for the materials of known composition by using different methods. However, no method has been reported so far to determine Z_eff for thick samples of unknown composition. In view of this, we have evolved a simple method to determine the effective atomic number, which uses the scattering intensity ratios measured at two scattering angles, in which a sample of known Z_eff or Z is taken as a reference sample. The values of Z_eff obtained by this method agree with those obtained from the Auto-Zeff software within the stated errors. This method could be helpful in determining the effective atomic number of samples of unknown composition.

  17. Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited).

    Science.gov (United States)

    Mirnov, V V; Brower, D L; Den Hartog, D J; Ding, W X; Duff, J; Parke, E

    2014-11-01

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = Te/mec(2) model may be insufficient; we present a more precise model with τ(2)-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of Te measurement relevant to ITER operational scenarios.

  18. Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Mirnov, V. V.; Hartog, D. J. Den; Duff, J.; Parke, E. [Physics Department, University of Wisconsin - Madison and the Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, Madison, Wisconsin 53706 (United States); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-11-15

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sub e} measurement relevant to ITER operational scenarios.

  19. Finite volume effects in SU(2) with two adjoint fermions

    CERN Document Server

    Patella, Agostino; Lucini, Biagio; Pica, Claudio; Rago, Antonio

    2011-01-01

    Many evidences from lattice simulations support the idea that SU(2) with two Dirac flavors in the adjoint representation (also called Minimal Walking Technicolor) is IR conformal. A possible way to see this is through the behavior of the spectrum of the mass-deformed theory. When fermions are massive, a mass-gap is generated and the theory is confined. IR-conformality is recovered in the chiral limit: masses of particles vanish in the chiral limit, while their ratios stay finite. In order to trust this analysis one has to relay on the infinite volume extrapolation. We will discuss the finite volume effects on the mesonic spectrum, investigated by varying the size of the lattice and by changing the boundary conditions for the fields.

  20. Muon's anomalous magnetic moment effects on laser assisted Coulomb scattering process

    CERN Document Server

    Taj, S; Idrissi, M El; Attaourti, Y; Oufni, L

    2012-01-01

    Laser assisted Coulomb scattering by relativistic electron and heavy electron (muon) is studied by using Salamin waves (Salamin 1993) in the Weak Field Approximation (WFA). Both electron and muon are described by the Dirac equation, with the anomalous magnetic moment effects fully included. The generalization of this paper to heavy electron (muon) gives interesting insights as to how the mass affects the magnitude of the differential cross sections. No significant difference in the muon's DCS with and without AMM effects was detected.

  1. A newly developed snack effective for enhancing bone volume

    Directory of Open Access Journals (Sweden)

    Hayashi Hidetaka

    2009-07-01

    Full Text Available Abstract Background The incidence of primary osteoporosis is higher in Japan than in USA and European countries. Recently, the importance of preventive medicine has been gradually recognized in the field of orthopaedic surgery with a concept that peak bone mass should be increased in childhood as much as possible for the prevention of osteoporosis. Under such background, we have developed a new bean snack with an aim to improve bone volume loss. In this study, we examined the effects of a newly developed snack on bone volume and density in osteoporosis model mice. Methods Orchiectomy (ORX and ovariectomy (OVX were performed for C57BL/6J mice of twelve-week-old (Jackson Laboratory, Bar Harbar, ME, USA were used in this experiment. We prepared and given three types of powder diet e.g.: normal calcium diet (NCD, Ca: 0.9%, Clea Japan Co., Tokyo, Japan, low calcium diet (LCD, Ca: 0.63%, Clea Japan Co., and special diet (SCD, Ca: 0.9%. Eighteen weeks after surgery, all the animals were sacrified and prepared for histomorphometric analysis to quantify bone density and bone mineral content. Results As a result of histomorphometric examination, SCD was revealed to enhance bone volume irrespective of age and sex. The bone density was increased significantly in osteoporosis model mice fed the newly developmental snack as compared with the control mice. The bone mineral content was also enhanced significantly. These phenomena were revealed in both sexes. Conclusion It is shown that the newly developed bean snack is highly effective for the improvement of bone volume loss irrespective of sex. We demonstrated that newly developmental snack supplements may be a useful preventive measure for Japanese whose bone mineral density values are less than the ideal condition.

  2. Skew Scattering from Correlated Systems: Impurities and Collective Excitations in the Spin Hall Effect

    Science.gov (United States)

    Ziman, Timothy; Gu, Bo; Maekawa, Sadamichi

    2017-01-01

    The spin Hall effect is affected by the Coulomb interaction as well as spin-spin correlations in metals. Here we examine the enhancement in the effect caused by resonant skew scattering induced by electron correlations. For single-impurity scattering, local Coulomb correlations may significantly change the observed spin Hall angle. There may be additional effects because of the special atomic environment close to a surface — extra degeneracies compared to the bulk, enhanced correlations that move the relative d- or f-levels, and interference effects coming from the lower local dimension. Our results may explain the very large spin Hall angle observed in CuBi alloys. We discuss the impact on the spin Hall effect from cooperative effects, firstly in an itinerant ferromagnet where there is an anomaly near the Curie temperature originating from high-order spin fluctuations. The second case considered is a metallic spin glass, where exchange via slowly fluctuating magnetic moments may lead to the precession of an injected spin current. This decreases the net spin-charge conversion from skew scattering at temperatures below a value three or four times the freezing temperature.

  3. Band filling and interband scattering effects in MgB2: carbon versus aluminum doping.

    Science.gov (United States)

    Kortus, Jens; Dolgov, Oleg V; Kremer, Reinhard K; Golubov, Alexander A

    2005-01-21

    We argue, based on band structure calculations and the Eliashberg theory, that the observed decrease of T(c) of Al and C doped MgB2 samples can be understood mainly in terms of a band filling effect due to the electron doping by Al and C. A simple scaling of the electron-phonon coupling constant lambda by the variation of the density of states as a function of electron doping is sufficient to capture the experimentally observed behavior. Further, we also explain the long standing open question of the experimental observation of a nearly constant pi gap as a function of doping by a compensation of the effect of band filling and interband scattering. Both effects together generate a nearly constant pi gap and shift the merging point of both gaps to higher doping concentrations, resolving the discrepancy between experiment and theoretical predictions based on interband scattering only.

  4. Elastic α-{sup 12}C scattering at low energies in cluster effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Shung-Ichi [Sunmoon University, School of Mechanical and ICT Convergence Engineering, Asan, Chungnam (Korea, Republic of)

    2016-05-15

    The elastic α-{sup 12}C scattering at low energies is studied employing an effective field theory in which the α and {sup 12}C states are treated as elementary-like fields. We discuss scales of the theory in the stellar energy region where the {sup 12}C(α, γ){sup 16}O process occurs, and then obtain an expression of the elastic scattering amplitudes in terms of effective-range parameters. Using experimental data of the phase shifts for l=0,1, 2 channels at low energies, for which the resonance regions are avoided, we fix values of the parameters and find that the phase shifts at the low energies are well reproduced by using three effective-range parameters for each channel. Furthermore, we discuss problems and uncertainties of the present approach when the amplitudes are extrapolated to the stellar energy region. (orig.)

  5. Observations of the forward scattering Hanle effect in the Ca i 4227 {\\AA} line

    CERN Document Server

    Bianda, M; Anusha, L S; Stenflo, J O; Nagendra, K N; Holzreuter, R; Sampoorna, M; Frisch, H; Smitha, H N

    2011-01-01

    Chromospheric magnetic fields are notoriously diffcult to measure. The chromospheric lines are broad, while the fields are producing a minuscule Zeeman-effect polarization. A promising diagnostic alternative is provided by the forward-scattering Hanle effect, which can be recorded in chromospheric lines such as the He i 10830 {\\AA} and the Ca i 4227 {\\AA} lines. We present a set of spectropolarimetric observations of the full Stokes vector obtained near the center of the solar disk in the Ca i 4227 {\\AA} line with the ZIMPOL polarimeter at the IRSOL observatory.We detect a number of interesting forward-scattering Hanle effect signatures, which we model successfully using polarized radiative transfer. Here we focus on the observational aspects, while a separate companion paper deals with the theoretical modeling.

  6. Multiple scattering of elastic waves: a numerical method for computing the effective wavenumbers

    CERN Document Server

    Chekroun, Mathieu; Lombard, Bruno; Piraux, Joël

    2012-01-01

    Elastic wave propagation is studied in a heterogeneous 2-D medium consisting of an elastic matrix containing randomly distributed circular elastic inclusions. The aim of this study is to determine the effective wavenumbers when the incident wavelength is similar to the radius of the inclusions. A purely numerical methodology is presented, with which the limitations usually associated with low scatterer concentrations can be avoided. The elastodynamic equations are integrated by a fourth-order time-domain numerical scheme. An immersed interface method is used to accurately discretize the interfaces on a Cartesian grid. The effective field is extracted from the simulated data, and signal-processing tools are used to obtain the complex effective wavenumbers. The numerical reference solution thus-obtained can be used to check the validity of multiple scattering analytical models. The method is applied to the case of concrete. A parametric study is performed on longitudinal and transverse incident plane waves at v...

  7. Elastic $\\alpha$-$^{12}$C scattering at low energies in cluster effective field theory

    CERN Document Server

    Ando, Shung-Ichi

    2016-01-01

    The elastic $\\alpha$-$^{12}$C scattering at low energies is studied employing an effective field theory in which the $\\alpha$ and $^{12}$C states are treated as elementary like fields. We discuss scales of the theory at stellar energy region that the ${}^{12}$C($\\alpha$, $\\gamma$)$^{16}$O process occurs, and then obtain an expression of the elastic scattering amplitudes in terms of effective range parameters. Using experimental data of the phase shifts for $l=0,1,2$ channels at low energies, for which the resonance regions are avoided, we fix values of the parameters and find that the phase shifts at the low energies are well reproduced by using three effective range parameters for each channel. Furthermore, we discuss problems and uncertainties of the present approach when the amplitudes are extrapolated to the stellar energy region.

  8. Effects of La Incorporation in Hf Based Dielectric on Leakage Conduction and Carrier Scattering Mechanisms.

    Science.gov (United States)

    You, Seung-Won; Lee, Dong Hwi; Nguyen, Manh Cuong; Jeon, Yoon Seok; Tong, Duc-Tai; Bang, Hyun Joon; Jeong, Jae Kyoung; Choi, Rino

    2015-10-01

    Metal-oxide-semiconductor field effect transistors (MOSFETs) with various doses of La-incorporated in Hafnium-based dielectrics were characterized to evaluate the effect of La on dielectric and device properties. It is found that the Poole-Frenkel emission model could explain our experimental leakage current conduction mechanism reasonably and barrier heights of localized Poole-Frenkel trap sites increase gradually with increasing La incorporation. Cryogenic measurement (from 100 K to 300 K) of MOSFETs reveals that, as the content of La incorporation in the dielectric increases, the more increase of maximum effective mobility has been found at low temperature. It is mainly attributed to the more reduction of phonon scattering due to higher content of La atoms at the interface of dielectric and channel. Though it is relatively small, the existence of La in dielectric reduces coulomb scattering rate as well.

  9. Polarization-dependent light extinction in ensembles of polydisperse, vertical semiconductor nanowires: A Mie scattering effective medium

    CERN Document Server

    Grzela, Grzegorz; Rivas, Jaime Gómez

    2013-01-01

    We present an experimental and theoretical study of the angle- and polarization-dependent light extinction in random arrays of polydisperse semiconductor nanowires epitaxially grown on substrates. The specular reflectance is described by averaging the scattering properties of individual nanowires obtained from Lorenz-Mie theory over the diameter distribution. The complex effective refractive index describing the propagation and attenuation of the coherent beam scattered in forward direction is determined in the independent scattering approximation and used to calculate the angle- and polarization-dependent reflectance. Our measurements demonstrate the highly anisotropic scattering in ensembles of aligned nanowires.

  10. Lepton mass effects in elastic lepton-proton scattering beyond the leading order of QED

    Science.gov (United States)

    Koshchii, Oleksandr; Afanasev, Andrei

    2017-01-01

    The future MUSE experiment is devised to solve the ``Proton Radius Puzzle'' by considering simultaneously elastic e+/- p and μ+/- p scattering. This experiment requires a per cent level accuracy in comparison of electron-proton and muon-proton scattering. Our goal is to provide all the relevant radiative corrections calculations for MUSE without using ultrarelativistic (ml -> 0) approximation. This approximation is not applicable for the scattering of muons in kinematics of MUSE. In this talk, we will present our up-to-date results on radiative corrections calculations obtained by using a Monte Carlo generator ELRADGEN modified to treat the lepton mass effects with no ultra-relativistic approximation. Next, we will discuss our estimations of the important helicity-flip contribution represented by a scalar σ meson exchange in the t-channel. This term vanishes in the ultra-relativistic and/or one-photon exchange approximation, and makes a difference in comparison of electron vs muon scattering in MUSE. This work was supported by the NSF under Grants Nos. PHY-1404342, PHY-1309130 and by The George Washington University through the Gus Weiss endowment.

  11. Effect of Cobalt Fillers on Polyurethane Segmentations Investigated by Synchrotron Small Angle X-Ray Scattering

    Directory of Open Access Journals (Sweden)

    Krit Koyvanich

    2013-01-01

    Full Text Available The segmentation between rigid and rubbery chains in polyurethanes (PUs influences polymeric properties and implementations. Several models have successfully been proposed to visualize the configuration between the hard segment (HS and soft segment (SS. For particulate PU composites, the arrangement of HS and SS is more complicated because the fillers tend to disrupt the chain formation and segmentation. In this work, the effect of ferromagnetic cobalt (Co powders (average diameter 2 μm on PU synthesized from a reaction between polyether polyol (soft segment and diphenylmethane-4,4′-diisocyanate (hard segment was studied with varying loadings (0, 20, 40, and 60 wt.%. The 300 μm thick PU/Co samples were tape-casted and then received heat treatment at 80°C for 180 min. From synchrotron small angle X-ray scattering (SAXS, the plot of the X-ray scattering intensity (I against the scattering vector (q exhibited a typical single peak of PU whose intensity was reduced by the increase in the Co loading. Characteristic SAXS peaks in the case of 0-20 wt.% Co agreed well with the scattering by globular hard segment domains according to Zernike-Prins and Percus-Yevick models. The higher Co loadings led to larger deviations from all theoretical models.

  12. Effect of spin-orbit scattering on transport properties of low-dimensional dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Heers, Swantje

    2011-09-21

    bulk in the first part of the thesis. In the third part, we investigate spin-orbit induced effects on thin (001) and (111) copper and gold films with focus on spin-relaxation mechanisms. We consider both symmetric and asymmetric systems, where the asymmetry of the latter ones is created by covering one side of the film with one layer of Zn. For the symmetric films, spin-mixing parameters and momentum- and spin-relaxation times due to scattering at self-adatoms are calculated. Whereas the largest spin-mixing in (111) films has been obtained for the surface states, on the Fermi surfaces of the (001) films spin hot spots occur, which are caused by anticrossings of bands and lead to locally very high spin mixing. In the asymmetric films, the situation is qualitatively different, as the spin-orbit coupling results in a splitting of all bands and the formation of local effective magnetic fields, the so-called spin-orbit fields. The precession of the electron spin around these axes together with momentum scattering, resulting in a change of the precession axis after each scattering event, is known to lead to spin dephasing. Spin-orbit fields for (001) and (111) copper and gold films are presented. Large fields have been obtained for both surface orientations especially for bulk-like states at the outer boundaries of the Brillouin zone. Furthermore, for the (111) surface states, we find a Rashba-splitting which agrees with experiment and previous calculations. (orig.)

  13. Effect of volume expansion on systemic hemodynamics and central and arterial blood volume in cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Bendtsen, F; Henriksen, Jens Henrik Sahl

    1995-01-01

    and in controls. METHODS: Thirty-nine patients with cirrhosis (12 patients with Child-Turcotte class A, 14 with class B, and 13 with class C) and 6 controls were studied. During hepatic vein catheterization, cardiac output, systemic vascular resistance, central and arterial blood volume, noncentral blood volume...

  14. Excluded volume effect enhances the homology pairing of model chromosomes

    CERN Document Server

    Takamiya, Kazunori; Isami, Shuhei; Nishimori, Hiraku; Awazu, Akinori

    2015-01-01

    To investigate the structural dynamics of the homology pairing of polymers, we mod- eled the scenario of homologous chromosome pairings during meiosis in Schizosaccharomyces pombe, one of the simplest model organisms of eukaryotes. We consider a simple model consist- ing of pairs of homologous polymers with the same structures that are confined in a cylindrical container, which represents the local parts of chromosomes contained in an elongated nucleus of S. pombe. Brownian dynamics simulations of this model showed that the excluded volume effects among non-homological chromosomes and the transitional dynamics of nuclear shape serve to enhance the pairing of homologous chromosomes.

  15. Excluded volume effect enhances the homology pairing of model chromosomes

    Science.gov (United States)

    Takamiya, Kazunori; Yamamoto, Keisuke; Isami, Shuhei; Nishimori, Hiraku; Awazu, Akinori

    To investigate the structural dynamics of the homology pairing of polymers, we mod- eled the scenario of homologous chromosome pairings during meiosis in Schizosaccharomyces pombe, one of the simplest model organisms of eukaryotes. We consider a simple model consist- ing of pairs of homologous polymers with the same structures that are confined in a cylindrical container, which represents the local parts of chromosomes contained in an elongated nucleus of S. pombe. Brownian dynamics simulations of this model showed that the excluded volume effects among non-homological chromosomes and the transitional dynamics of nuclear shape serve to enhance the pairing of homologous chromosomes.

  16. The effect of transducer characteristics on the estimation of Nakagami paramater as a function of scatterer concentration.

    Science.gov (United States)

    Tsui, Po-Hsiang; Wang, Shyh-Hau

    2004-10-01

    The effect of transducer characteristics on the sensitivity of the Nakagami parameter to detect the variation of scatterer concentrations was studied. The rationale for this study stems from our pilot results which showed that the Nakagami parameters, estimated using a nonfocused transducer were not as sensitive as those of measurements using a commercial ultrasonic scanner in previous reports. This discrepancy may be attributed to the effects of transducer characteristics relative to the size of the resolution cell as verified by measurements of phantoms and 2-D computer simulations. The Nakagami parameter as a function of scatterer concentration was calculated using backscattered signals acquired from the scattering medium of different scatterer concentrations ranging from 2 to 32 scatterers/mm(3) using both 5 MHz nonfocused and focused transducers. Experimental and simulation results obtained from the nonfocused transducer represent that their respective Nakagami parameters increased from 1.17 to 1.31 and from 0.82 to 1.01 corresponding to the increase of scatterer concentrations. For the results obtained from the focused transducer, their average Nakagami parameters increased from 0.27 to 0.72 and from 0.33 to 0.81. These consistent results demonstrated that Nakagami parameter estimated using a focused transducer tends to be more sensitive than that by a nonfocused transducer to detect the variation of low scatterer concentration. This difference is fully due to the effect of transducer characteristics associated with the effective number of scatterers in the resolution cell.

  17. Dynamics of speckles with a small number of scattering events: specific features of manifestation of the Doppler effect.

    Science.gov (United States)

    Ulyanov, Sergey S

    2014-04-01

    Spectra of intensity fluctuations of dynamic non-Gaussian speckles formed with a small number of scattering events have been studied theoretically and experimentally. A new type of manifestation of the Doppler effect has been observed. The dependence of frequency position of the Doppler peak and the shape of the Doppler spectrum on the number of scatterers has been analyzed.

  18. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering.

    Science.gov (United States)

    Kohagen, Miriam; Mason, Philip E; Jungwirth, Pavel

    2016-03-01

    Modeled ions, described by nonpolarizable force fields, can suffer from unphysical ion pairing and clustering in aqueous solutions well below their solubility limit. The electronic continuum correction takes electronic polarization effects of the solvent into account in an effective way by scaling the charges on the ions, resulting in a much better description of the ionic behavior. Here, we present parameters for the sodium ion consistent with this effective polarizability approach and in agreement with experimental data from neutron scattering, which could be used for simulations of complex aqueous systems where polarization effects are important.

  19. Simulating Photon Scattering Effects in Structurally Detailed Ventricular Models Using a Monte Carlo Approach

    Directory of Open Access Journals (Sweden)

    Martin J Bishop

    2014-09-01

    Full Text Available Light scattering during optical imaging of electrical activation within the heart is known to significantlydistort the optically-recorded action potential (AP upstroke, as well as affecting the magnitude of the measured response of ventricular tissue to strong electric shocks. Modelling approaches based on the photondiffusion equation have recently been instrumental in quantifying and helping to understand the origin of the resulting distortion. However, they are unable to faithfully represent regions of non-scattering media, such assmall cavities within the myocardium which are filled with perfusate during experiments. Stochastic Monte Carlo (MC approaches allow simulation and tracking of individual photon `packets' as they propagate through tissuewith differing scattering properties. Here, we present a novel application of the MC method of photon scattering simulation, applied for the first time to the simulation of cardiac optical mapping signals withinunstructured, tetrahedral, finite element computational ventricular models. The method faithfully allows simulation of optical signals over highly-detailed, anatomically-complex MR-based models, includingrepresentations of fine-scale anatomy and intramural cavities. We show that optical action potential upstroke is prolonged close to large subepicardial vessels than further away from vessels, at times having a distinct `humped' morphology.Furthermore, we uncover a novel mechanism by which photon scattering effects around vessels cavities interact with `virtual-electrode' regions of strong de-/hyper-polarised tissue surrounding cavitiesduring shocks, significantly reducing the apparent optically-measured epicardial polarisation. We therefore demonstrate the importance of this novel optical mapping simulation approach along with highly anatomically-detailed models to fully investigate electrophysiological phenomena driven by fine-scale structural heterogeneity.

  20. Workshop on ’Recent Progress in Surface and Volume Scattering’ Held in Madrid, Spain on 14-16 September 1988

    Science.gov (United States)

    1988-09-16

    Interes Publico, Av. Espinoza No. 843, Apdo. Postal 2732, Ensenada, Baja California, Mexico RIGOROUS SOLUTION OF PROBLEMS OF SCATTERING BY LARGE SIZE...CONDITIONS USED TO STUDY LIGHT SCATTERING FROM METALLIC ROUGH SURFACES Ricardo A. Depine. Universidad de Buenos Aires The scattering of a plane wave by

  1. Coherence effects in scattering order expansion of light by atomic clouds

    CERN Document Server

    Rouabah, Mohamed-Taha; Bachelard, Romain; Courteille, Philippe W; Kaiser, Robin; Piovella, Nicola

    2014-01-01

    We interpret cooperative scattering by a collection of cold atoms as a multiple scattering process. Starting from microscopic equations describing the response of $N$ atoms to a probe light beam, we represent the total scattered field as an infinite series of multiple scattering events. As an application of the method, we obtain analytical expressions of the coherent intensity in the double scattering approximation for Gaussian density profiles. In particular, we quantify the contributions of coherent backward and forward scattering.

  2. Coherence effects in scattering order expansion of light by atomic clouds.

    Science.gov (United States)

    Rouabah, Mohamed-Taha; Samoylova, Marina; Bachelard, Romain; Courteille, Philippe W; Kaiser, Robin; Piovella, Nicola

    2014-05-01

    We interpret cooperative scattering by a collection of cold atoms as a multiple-scattering process. Starting from microscopic equations describing the response of N atoms to a probe light beam, we represent the total scattered field as an infinite series of multiple-scattering events. As an application of the method, we obtain analytical expressions of the coherent intensity in the double-scattering approximation for Gaussian density profiles. In particular, we quantify the contributions of coherent backward and forward scattering.

  3. Raman-scattering probe of anharmonic effects in GaAs

    Science.gov (United States)

    Verma, Prabhat; Abbi, S. C.; Jain, K. P.

    1995-06-01

    A comparative study of anharmonic effects in various structural forms of GaAs, namely crystalline, disordered and ion-implanted, and pulse laser annealed (PLA), using temperature-dependent Raman scattering, is reported for various phonon modes over the temperature range 10-300 K. The disordered and PLA samples are found to have greater anharmonicity than crystalline GaAs. The localized vibrational mode in PLA GaAs shows shorter relaxation time than the LO-phonon mode.

  4. Recent developments in neutron-proton scattering with Lattice Effective Field Theory

    CERN Document Server

    Alarcón, Jose Manuel

    2015-01-01

    In this contribution, we show some recent progress in the study of neutron-proton scattering with Nuclear Lattice Effective Field Theory (NLEFT). We present preliminary studies of both, the uncertainties in the $np$ phase shifts extracted with NLEFT, and the lattice spacing dependence in the transfer matrix formalism. Such investigations have not been performed before in the literature, and will be relevant for Monte Carlo simulations of nuclear structure with NLEFT.

  5. Efficient and Effective Volume Visualization with Enhanced Isosurface Rendering

    CERN Document Server

    Yang, Fei; Tian, Jie

    2012-01-01

    Compared with full volume rendering, isosurface rendering has several well recognized advantages in efficiency and accuracy. However, standard isosurface rendering has some limitations in effectiveness. First, it uses a monotone colored approach and can only visualize the geometry features of an isosurface. The lack of the capability to illustrate the material property and the internal structures behind an isosurface has been a big limitation of this method in applications. Another limitation of isosurface rendering is the difficulty to reveal physically meaningful structures, which are hidden in one or multiple isosurfaces. As such, the application requirements of extract and recombine structures of interest can not be implemented effectively with isosurface rendering. In this work, we develop an enhanced isosurface rendering technique to improve the effectiveness while maintaining the performance efficiency of the standard isosurface rendering. First, an isosurface color enhancement method is proposed to il...

  6. The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Olga eVoevodskaya

    2014-10-01

    Full Text Available In neurodegeneration research, normalization of regional volumes by intracranial volume (ICV is important to estimate the extent of disease-driven atrophy. There is little agreement as to whether raw volumes, volume-to-ICV fractions or regional volumes from which the ICV factor has been regressed out should be used for volumetric brain imaging studies. Using multiple regional cortical and subcortical volumetric measures generated by Freesurfer (51 in total, the main aim of this study was to elucidate the implications of these adjustment approaches. Magnetic resonance imaging (MRI data were analyzed from two large cohorts, the population-based PIVUS cohort (N=406, all subjects age 75 and the Alzheimer disease Neuroimaging Initiative (ADNI cohort (N=724. Further, we studied whether the chosen ICV normalization approach influenced the relationship between hippocampus and cognition in the three diagnostic groups of the ADNI cohort (Alzheimer’s disease, mild cognitive impairment and healthy individuals. The ability of raw vs adjusted hippocampal volumes to predict diagnostic status was also assessed. In both cohorts raw volumes correlate positively with ICV, but do not scale directly proportionally with it. The correlation direction is reversed for all volume-to-ICV fractions, except the lateral and third ventricles. Most grey matter fractions are larger in females, while lateral ventricle fractions are greater in males. Residual correction effectively eliminated the correlation between the regional volumes and ICV and removed gender differences. The association between hippocampal volumes and cognition was not altered by ICV normalization. Comparing prediction of diagnostic status using the different approaches, small but significant differences were found. The choice of normalization approach should be carefully considered when designing a volumetric brain imaging study.

  7. Diffusion of multiple species with excluded-volume effects

    KAUST Repository

    Bruna, Maria

    2012-01-01

    Stochastic models of diffusion with excluded-volume effects are used to model many biological and physical systems at a discrete level. The average properties of the population may be described by a continuum model based on partial differential equations. In this paper we consider multiple interacting subpopulations/species and study how the inter-species competition emerges at the population level. Each individual is described as a finite-size hard core interacting particle undergoing Brownian motion. The link between the discrete stochastic equations of motion and the continuum model is considered systematically using the method of matched asymptotic expansions. The system for two species leads to a nonlinear cross-diffusion system for each subpopulation, which captures the enhancement of the effective diffusion rate due to excluded-volume interactions between particles of the same species, and the diminishment due to particles of the other species. This model can explain two alternative notions of the diffusion coefficient that are often confounded, namely collective diffusion and self-diffusion. Simulations of the discrete system show good agreement with the analytic results. © 2012 American Institute of Physics.

  8. Spin—Dependent Scattering Effects and Dimensional Crossover in a Quasi—Two—Dimensional Disordered Electron System

    Institute of Scientific and Technical Information of China (English)

    YANGYong-Hong; WANGYong-Gang; 等

    2002-01-01

    Two kinds of spin-dependent scattering effects (magnetic-impurity and spin-orbit scatterings) are investigated theoretically in a quasi-tow-dimensional (quasi-2D) disordered electron system.By making use of the diagrammatic techniques in perturbation theory,we have calculated the dc conductivity and magnetoresistance due to weak-localization effects,the analytical expressions of them are obtained as functions of the interlayer hopping energy and the characteristic times:elastic,inelastic,magnetic and spin-orbit scattering times.The relevant dimensional crossover behavior from 3D to 2D with decreasing the interlayer coupling is discussed,and the condition for the crossover is shown to be dependent on the aforementioned scattering times.At low temperature there exists a spin-dependent-scattering-induced dimensional crossover in this system.

  9. Parity-violating deep inelastic scattering and the flavor dependence of the EMC effect.

    Science.gov (United States)

    Cloët, I C; Bentz, W; Thomas, A W

    2012-11-02

    Isospin-dependent nuclear forces play a fundamental role in nuclear structure. In relativistic models of nuclear structure constructed at the quark level these isovector nuclear forces affect the u and d quarks differently, leading to nontrivial flavor-dependent modifications of the nuclear parton distributions. We explore the effect of isospin dependent forces for parity-violating deep inelastic scattering on nuclear targets and demonstrate that the cross sections for nuclei with N ≠ Z are sensitive to the flavor dependence of the EMC effect. Indeed, for nuclei like lead and gold we find that these flavor-dependent effects are large.

  10. Effects of nonlinear phase modulation on quantum frequency conversion using four-wave mixing Bragg scattering

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten

    2013-01-01

    Recently, we solved the coupled-mode equations for Bragg scattering (BS) in the low- and high-conversion regimes, but without the effects of nonlinear phase modulation (NPM). We now present solutions and Green functions in the low-conversion regime that include NPM. We find that NPM does not change...... are still possible, even when the effects of NPM are included. Finally, the effects of using different input signals are considered, and we conclude that using the natural input modes of the system drastically increases the efficiency. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers...

  11. Atomic bound state and scattering properties of effective momentum-dependent potentials

    Science.gov (United States)

    Dharuman, Gautham; Verboncoeur, John; Christlieb, Andrew; Murillo, Michael S.

    2016-10-01

    Effective classical dynamics provide a potentially powerful avenue for modeling large-scale dynamical quantum systems. We have examined the accuracy of a Hamiltonian-based approach that employs effective momentum-dependent potentials (MDPs) within a molecular-dynamics framework through studies of atomic ground states, excited states, ionization energies, and scattering properties of continuum states. Working exclusively with the Kirschbaum-Wilets (KW) formulation with empirical MDPs [C. L. Kirschbaum and L. Wilets, Phys. Rev. A 21, 834 (1980), 10.1103/PhysRevA.21.834], optimization leads to very accurate ground-state energies for several elements (e.g., N, F, Ne, Al, S, Ar, and Ca) relative to Hartree-Fock values. The KW MDP parameters obtained are found to be correlated, thereby revealing some degree of transferability in the empirically determined parameters. We have studied excited-state orbits of electron-ion pair to analyze the consequences of the MDP on the classical Coulomb catastrophe. From the optimized ground-state energies, we find that the experimental first- and second-ionization energies are fairly well predicted. Finally, electron-ion scattering was examined by comparing the predicted momentum transfer cross section to a semiclassical phase-shift calculation; optimizing the MDP parameters for the scattering process yielded rather poor results, suggesting a limitation of the use of the KW MDPs for plasmas.

  12. Oblique incidence properties of locally resonant sonic materials with resonance and Bragg scattering effects

    Institute of Scientific and Technical Information of China (English)

    Yuan Bo; Wen Ji-Hong; Wen Xi-Sen

    2013-01-01

    A locally resonant sonic material (LRSM) is an elastic matrix containing a periodic arrangement of identical local resonators (LRs),which can reflect strongly near their natural frequencies,where the wavelength in the matrix is still much larger than the structural periodicity.Due to the periodic arrangement,an LRSM can also display a Bragg scattering effect,which is a characteristic of phononic crystals.A specific LRSM which possesses both local resonance and Bragg scattering effects is presented.Via the layered-multiple-scattering theory,the complex band structure and the transmittance of such LRSM are discussed in detail.Through the analysis of the refraction behavior at the boundary of the composite,we find that the transmittance performance of an LRSM for oblique incidence depends on the refraction of its boundary and the transmission behaviors of different wave modes inside the composite.As a result,it is better to use some low-speed materials (compared with the speed of waves in surrounding medium) as the LRSM matrix for designing sound blocking materials in underwater applications,since their acoustic properties are more robust to the incident angle.Finally,a gapcoupled LRSM with a broad sub-wavelength transmission gap is studied,whose acoustic performance is insensitive to the angle of incidence.

  13. Transparency Effect of Electrolyte on Light Back-Scattering in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    N. Sharifi

    2015-12-01

    Full Text Available Conventionally, a film of TiO2 particles of ~300 nm size is employed in DSCs as the back reflector film to enhance the light harvesting. In this study, two electrolytes with different transparencies, iodide-based and cobalt-based electrolytes, were used to investigate the transparency effect of electrolytes on light back-scattering from back scattering layer and also to study its effect on the performance of DSCs. The use of cobalt-based electrolyte is recommended from the view point of optical properties as due to the light absorption in electrolytes, the current density losses are 2.9mA/cm2 and 4.2 mA/cm2 in cobalt- and iodide-based electrolytes, respectively, and the transmission of 100% is observed for cobalt-based electrolyte in 500-600 nm in spite of iodide-based electrolyte. Use of light back-scattering layer, unlike iodide-based cell, causes external quantum efficiency in cobalt-base cell to increase for the wavelengths lower than 350 nm since cobalt-base electrolyte has transparency in this region. In addition, optical calculations demonstrate that in the range 400-500 nm, in which dye has a noticeable absorption, absorption loss is 40% and 30% for iodide- and cobalt-based electrolytes, respectively.

  14. Thermal effects on neutrino-nucleus inelastic scattering in stellar environments

    Energy Technology Data Exchange (ETDEWEB)

    Dzhioev, A. A., E-mail: dzhioev@theor.jinr.ru; Vdovin, A. I., E-mail: vdovin@theor.jinr.ru [JINR, Bogoliubov Laboratory of Theoretical Physics (Russian Federation); Ponomarev, V. Yu., E-mail: ponomare@crunch.ikp.physik.tu-darmstadt.de; Wambach, J., E-mail: Jochen.Wambach@physik.tu-darmstadt.de [Institute for Nuclear Physics, TU Darmstadt (Germany)

    2011-08-15

    Thermal effects for inelastic neutrino-nucleus scattering off even-even nuclei in the iron region are studied. Allowed and first-forbidden contributions to the cross sections are calculated within the quasiparticle random-phase approximation, extended to finite temperatures within the Thermo-Field-Dynamics formalism. The GT{sub 0} strength distribution at finite temperatures is calculated for the sample nucleus {sup 54}Fe. The neutral-current neutrino-nucleus inelastic cross section is calculated for relevant temperatures during the supernova core collapse. The thermal population of the excited states significantly enhances the cross section at low neutrino energies. In agreement with studies using a large scale shell-model approach the enhancement is mainly due to neutrino up-scattering at finite temperatures.

  15. Thermal effects on neutrino-nucleus inelastic scattering in stellar environments

    CERN Document Server

    Dzhioev, Alan A; Ponomarev, V Yu; Wambach, J

    2010-01-01

    Thermal effects for inelastic neutrino-nucleus scattering off even-even nuclei in the iron region are studied. Allowed and first-forbidden contributions to the cross sections are calculated within the quasiparticle random phase approximation, extended to finite temperatures within the Thermo-Field-Dynamics formalism. The GT$_0$ strength distribution at finite temperatures is calculated for the sample nucleus $^{54}$Fe. The neutral-current neutrino-nucleus inelastic cross section is calculated for relevant temperatures during the supernova core collapse. The thermal population of the excited states significantly enhances the cross section at low neutrino energies. In agreement with studies using a large scale shell-model approach the enhancement is mainly due to neutrino up-scattering at finite temperatures.

  16. Limits on the effective quark radius from inclusive ep scattering at HERA

    Science.gov (United States)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Aushev, V.; Behnke, O.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Boos, E. G.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Dementiev, R. K.; Devenish, R. C. E.; Dusini, S.; Foster, B.; Gach, G.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Golubkov, Yu. A.; Grzelak, G.; Guzik, M.; Gwenlan, C.; Hain, W.; Hlushchenko, O.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Januschek, F.; Jomhari, N. Z.; Kadenko, I.; Kananov, S.; Karshon, U.; Kaur, P.; Kisielewska, D.; Klanner, R.; Klein, U.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Krupa, B.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Makarenko, I.; Malka, J.; Mastroberardino, A.; Mohamad Idris, F.; Mohammad Nasir, N.; Myronenko, V.; Nagano, K.; Nobe, T.; Nowak, R. J.; Onishchuk, Yu.; Paul, E.; Perlański, W.; Pokrovskiy, N. S.; Polini, A.; Przybycień, M.; Roloff, P.; Ruspa, M.; Saxon, D. H.; Schioppa, M.; Schneekloth, U.; Schörner-Sadenius, T.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Shyrma, Yu.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stopa, P.; Sukhonos, D.; Sztuk-Dambietz, J.; Tassi, E.; Tokushuku, K.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zotkin, D. S.

    2016-06-01

    The high-precision HERA data allows searches up to TeV scales for beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current ep scattering corresponding to a luminosity of around 1 fb-1 have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive ep data is presented; simultaneous fits of parton distribution functions together with contributions of "new physics" processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is 0.43 ṡ10-16 cm.

  17. Effects of injection beam parameters and foil scattering for CSNS/RCS

    Science.gov (United States)

    Huang, Ming-Yang; Wang, Sheng; Qiu, Jing; Wang, Na; Xu, Shou-Yan

    2013-06-01

    The China Spallation Neutron Source (CSNS) uses H- stripping and phase space painting method to fill a large ring acceptance with a small emittance linac beam. The dependence of the painting beam on the injection beam parameters was studied for the Rapid Cycling Synchrotron (RCS). The simulation study was done for injection with different momentum spreads, different rms emittances of the injection beam, and different matching conditions. Then, the beam loss, 99% and rms emittances were obtained, and the optimized injection beam parameters were given. The interaction between H- beam and stripping foil was studied, and the effect of foil scattering was simulated. The stripping efficiency was calculated and the suitable thickness of stripping foil was obtained. In addition, the energy deposition on the foil and the beam loss due to the foil scattering were also studied.

  18. Limits on the effective quark radius from inclusive ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Sciences; Collaboration: ZEUS Collaboration; and others

    2016-04-15

    The high-precision HERA data allows searches up to TeV scales for Beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current ep scattering corresponding to a luminosity of around 1 fb{sup -1} have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive ep data is presented; simultaneous fits of parton distribution functions together with contributions of ''new physics'' processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is 0.43.10{sup -16} cm.

  19. Limits on the effective quark radius from inclusive $ep$ scattering at HERA

    CERN Document Server

    Abramowicz, H; Adamczyk, L; Adamus, M; Antonelli, S; Aushev, V; Behnke, O; Behrens, U; Bertolin, A; Bloch, I; Boos, EG; Brock, I; Brook, NH; Brugnera, R; Bruni, A; Bussey, PJ; Caldwell, A; Capua, M; Catterall, CD; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cooper-Sarkar, AM; Corradi, M; Dementiev, RK; Devenish, RCE; Dusini, S; Foster, B; Gach, G; Gallo, E; Garfagnini, A; Geiser, A; Gizhko, A; Gladilin, LK; Golubkov, Yu A; Grzelak, G; Guzik, M; Hain, W; Hochman, D; Hori, R; Ibrahim, ZA; Iga, Y; Ishitsuka, M; Januschek, F; Jomhari, NZ; Kadenko, I; Kananov, S; Karshon, U; Kaur, P; Kisielewska, D; Klanner, R; Klein, U; Korzhavina, IA; Kotański, A; Kötz, U; Kovalchuk, N; Kowalski, H; Krupa, B; Kuprash, O; Kuze, M; Levchenko, BB; Levy, A; Limentani, S; Lisovyi, M; Lobodzinska, E; Löhr, B; Lohrmann, E; Longhin, A; Lontkovskyi, D; Lukina, OYu; Makarenko, I; Malka, J; Mohamad Idris, F; Mohammad Nasir, N; Myronenko, V; Nagano, K; Nobe, T; Nowak, RJ; Onishchuk, Yu; Paul, E; Perlański, W; Pokrovskiy, NS; Przybycien, M; Roloff, P; Ruspa, M; Saxon, DH; Schioppa, M; Schneekloth, U; Schörner-Sadenius, T; Shcheglova, LM; Shevchenko, R; Shkola, O; Shyrma, Yu; Singh, I; Skillicorn, IO; Słomiński, W; Solano, A; Stanco, L; Stefaniuk, N; Stern, A; Stopa, P; Sztuk-Dambietz, J; Tassi, E; Tokushuku, K; Tomaszewska, J; Tsurugai, T; Turcato, M; Turkot, O; Tymieniecka, T; Verbytskyi, A; Wan Abdullah, WAT; Wichmann, K; Wing, M; Yamada, S; Yamazaki, Y; Zakharchuk, N; Żarnecki, AF; Zawiejski, L; Zenaiev, O; Zhautykov, BO; Zotkin, DS; Bhadra, S; Gwenlan, C; Hlushchenko, O; Polini, A; Mastroberardino, A; Sukhonos, D

    2016-01-01

    The high-precision HERA data allows searches up to TeV scales for Beyond the Standard Model contributions to electron-quark scattering. Combined measurements of the inclusive deep inelastic cross sections in neutral and charged current $ep$ scattering corresponding to a luminosity of around 1 fb$^{-1}$ have been used in this analysis. A new approach to the beyond the Standard Model analysis of the inclusive $ep$ data is presented; simultaneous fits of parton distribution functions together with contributions of "new physics" processes were performed. Results are presented considering a finite radius of quarks within the quark form-factor model. The resulting 95% C.L. upper limit on the effective quark radius is $0.43\\cdot 10^{-16}$ cm.

  20. CARBON-FIBRE-REINFORCED POLYMER PARTS EFFECT ON SPACECRAFT OPTOELECTRONIC MODULE LENS SCATTERING

    Directory of Open Access Journals (Sweden)

    S. S. Kolasha

    2016-01-01

    Full Text Available Spacecraft optoelectronic modules traditionally have aluminum alloy or titanium alloy casing which substantial weight increases fuel consumption required to put them into orbit and, consequently, total cost of the project. Carbon fiber reinforced polymer based composite constructive materials is an efficient solution that allows reducing weight and dimensions of large optoelectronic modules 1,5–3 times and the coefficient of linear thermal expansion 15–20 times if compared with metals. Optical characteristic is a crucial feature of carbon-fibre-reinforced polymer that determines composite material interaction with electromagnetic emission within the optical range. This work was intended to develop a method to evaluate Carbon fiber reinforced polymer optoelectronic modules casing effect on lens scattering by computer simulation with Zemax application software package. Degrees of scattered, reflected and absorbed radiant flux effect on imaging quality are described here. The work included experimental study in order to determine bidirectional reflectance distribution function by goniometric method for LUP-0.1 carbon fabric check test pieces of EDT-69U epoxy binder with EPOFLEX-0.4 glue layer and 5056-3.5-23-A aluminium honeycomb filler. The scattered emission was registered within a hemisphere above the check test piece surface. Optical detection direction was determined with zenith (0º < θ < 90º and azimuth (0º < φ < 180º angles with 10° increment. The check test piece surface was proved to scatter emission within a narrow angle range (approximately 20° with clear directivity. Carbon fiber reinforced polymers was found to feature integrated reflectance coefficient 3 to 4 times greater than special coatings do. 

  1. Volumizing effects of a smooth, highly cohesive, viscous 20-mg/mL hyaluronic acid volumizing filler: prospective European study

    Directory of Open Access Journals (Sweden)

    Hoffmann Klaus

    2009-08-01

    Full Text Available Abstract Background Facial volume loss contributes significantly to facial aging. The 20-mg/mL hyaluronic acid (HA formulation used in this study is a smooth, highly cohesive, viscous, fully reversible, volumizing filler indicated to restore facial volume. This first prospective study evaluated use in current aesthetic clinical practice. Methods A pan-European evaluation conducted under guidelines of the World Association of Opinion and Marketing Research, the trial comprised a baseline visit (visit 1 and a follow-up (visit 2 at 14 ± 7 days posttreatment. Physicians photographed patients at each visit. Each patient was treated with the 20-mg/mL HA volumizing filler as supplied in standard packaging. Procedural details, aesthetic outcomes, safety, and physician and patient ratings of their experience were recorded. Results Fifteen physicians and 70 patients (91% female; mean age: 50 years participated. Mean volume loss at baseline was 3.7 (moderate on the Facial Volume Loss Scale. Local anesthesia was used in 64.3% of cases. Most injections (85% were administered with needles rather than cannulas. Of the 208 injections, 59% were in the malar region, primarily above the periosteum. Subcutaneous injections were most common for other sites. The mean total injection volume per patient was 4.6 mL. The mean volume loss score declined significantly (P Conclusion The 20-mg/mL smooth, highly cohesive, viscous, volumizing HA filler was effective, well tolerated, and easy to use in current clinical practice. Participants were very likely to recommend this product to colleagues and friends, and patients would be very or quite likely to request this product for future treatments.

  2. Scattering for mixtures of hard spheres: comparison of total scattering intensities with model.

    Science.gov (United States)

    Anderson, B J; Gopalakrishnan, V; Ramakrishnan, S; Zukoski, C F

    2006-03-01

    The angular dependence of the intensity of x-rays scattered from binary and ternary hard sphere mixtures is investigated and compared to the predictions of two scattering models. Mixture ratio and total volume fraction dependent effects are investigated for size ratios equal to 0.51 and 0.22. Comparisons of model predictions with experimental results indicate the significant impact of the role of particle size distributions in interpreting the angular dependence of the scattering at wave vectors probing density fluctuations intermediate between the sizes of the particles in the mixture.

  3. Effect of Airflows on Repetitive Nanosecond Volume Discharges

    Science.gov (United States)

    Tang, Jingfeng; Wei, Liqiu; Huo, Yuxin; Song, Jian; Yu, Daren; Zhang, Chaohai

    2016-03-01

    Atmospheric pressure discharges excited by repetitive nanosecond pulses have attracted significant attention for various applications. In this paper, a plate-plate discharge with airflows is excited by a repetitive nanosecond pulse generator. Under different experiment conditions, the applied voltages, discharge currents, and discharge images are recorded. The plasma images presented here indicate that the volume discharge modes vary with airflow speeds, and a diffuse and homogeneous volume discharge occurs at the speed of more than 35 m/s. The role of airflows provides different effects on the 2-stage pulse discharges. The 1st pulse currents nearly maintain consistency for different airflow speeds. However, the 2nd pulse current has a change trend of first decreasing and then rapidly increasing, and the value difference for 2nd pulse currents is about 20 A under different airflows. In addition, the experimental results are discussed according to the electrical parameters and discharge images. supported by National Natural Science Foundation of China (Nos. 51006027, 51437002, and 51477035)

  4. Charged Molecules Modulate the Volume Exclusion Effects Exerted by Crowders on FtsZ Polymerization.

    Science.gov (United States)

    Monterroso, Begoña; Reija, Belén; Jiménez, Mercedes; Zorrilla, Silvia; Rivas, Germán

    2016-01-01

    We have studied the influence of protein crowders, either combined or individually, on the GTP-induced FtsZ cooperative assembly, crucial for the formation of the dynamic septal ring and, hence, for bacterial division. It was earlier demonstrated that high concentrations of inert polymers like Ficoll 70, used to mimic the crowded cellular interior, favor the assembly of FtsZ into bundles with slow depolymerization. We have found, by fluorescence anisotropy together with light scattering measurements, that the presence of protein crowders increases the tendency of FtsZ to polymerize at micromolar magnesium concentration, being the effect larger with ovomucoid, a negatively charged protein. Neutral polymers and a positively charged protein also diminished the critical concentration of assembly, the extent of the effect being compatible with that expected according to pure volume exclusion models. FtsZ polymerization was also observed to be strongly promoted by a negatively charged polymer, DNA, and by some unrelated polymers like PEGs at concentrations below the crowding regime. The influence of mixed crowders mimicking the heterogeneity of the intracellular environment on the tendency of FtsZ to assemble was also studied and nonadditive effects were found to prevail. Far from exactly reproducing the bacterial cytoplasm environment, this approach serves as a simplified model illustrating how its intrinsically crowded and heterogeneous nature may modulate FtsZ assembly into a functional Z-ring.

  5. Charged Molecules Modulate the Volume Exclusion Effects Exerted by Crowders on FtsZ Polymerization.

    Directory of Open Access Journals (Sweden)

    Begoña Monterroso

    Full Text Available We have studied the influence of protein crowders, either combined or individually, on the GTP-induced FtsZ cooperative assembly, crucial for the formation of the dynamic septal ring and, hence, for bacterial division. It was earlier demonstrated that high concentrations of inert polymers like Ficoll 70, used to mimic the crowded cellular interior, favor the assembly of FtsZ into bundles with slow depolymerization. We have found, by fluorescence anisotropy together with light scattering measurements, that the presence of protein crowders increases the tendency of FtsZ to polymerize at micromolar magnesium concentration, being the effect larger with ovomucoid, a negatively charged protein. Neutral polymers and a positively charged protein also diminished the critical concentration of assembly, the extent of the effect being compatible with that expected according to pure volume exclusion models. FtsZ polymerization was also observed to be strongly promoted by a negatively charged polymer, DNA, and by some unrelated polymers like PEGs at concentrations below the crowding regime. The influence of mixed crowders mimicking the heterogeneity of the intracellular environment on the tendency of FtsZ to assemble was also studied and nonadditive effects were found to prevail. Far from exactly reproducing the bacterial cytoplasm environment, this approach serves as a simplified model illustrating how its intrinsically crowded and heterogeneous nature may modulate FtsZ assembly into a functional Z-ring.

  6. The effective cross section for double parton scattering within a holographic AdS/QCD approach

    Science.gov (United States)

    Traini, Marco; Rinaldi, Matteo; Scopetta, Sergio; Vento, Vicente

    2017-05-01

    A first attempt to apply the AdS/QCD framework for a bottom-up approach to the evaluation of the effective cross section for double parton scattering in proton-proton collisions is presented. The main goal is the analytic evaluation of the dependence of the effective cross section on the longitudinal momenta of the involved partons, obtained within the holographic Soft-Wall model. If measured in high-energy processes at hadron colliders, this momentum dependence could open a new window on 2-parton correlations in a proton.

  7. The effective cross section for double parton scattering within a holographic AdS/QCD approach

    CERN Document Server

    Traini, Marco; Rinaldi, Matteo; Vento, Vicente

    2016-01-01

    A first attempt to apply the AdS/QCD framework for a bottom-up approach to the evaluation of the effective cross section for double parton scattering in proton-proton collisions is presented. The main goal is the analytic evaluation of the dependence of the effective cross section on the longitudinal momenta of the involved partons, obtained within the holographic Soft-Wall model. If measured in high-energy processes at hadron colliders, this momentum dependence could open a new window on 2-parton correlations in a proton.

  8. Impact of saturation on spin effects in proton-proton scattering

    CERN Document Server

    Selyugin, O V

    2005-01-01

    For pomerons described by a sum of two simple-pole terms, a soft and a hard pomeron, the unitarity bounds from saturation in impact-parameter space are examined. We consider the effect of these bounds on observables linked with polarisation, such as the analyzing power in elastic proton-proton scattering, for LHC energies. We obtain the s and t dependence of the Coulomb-nuclear interference at small momentum transfer, and show that the effect of the hard pomeron may be observed at the LHC.

  9. Spin-Dependent Scattering Effects and Dimensional Crossover in a Quasi-Two-Dimensional Disordered Electron System

    Institute of Scientific and Technical Information of China (English)

    YANG YongHong; WANG YongGang; LIU Mei; WANG Jin

    2002-01-01

    Two kinds of spin-depcndcnt scattering effects (magnetic-iinpurity and spin-orbit scatterings) axe investi-gated theoretically in a quasi-two-dimensional (quasi-2D) disordered electron system. By making use of the diagrammatictechniques in perturbation theory, we have calculated the dc conductivity and magnetoresistance due to weak-localizationeffects, the analytical expressions of them are obtained as functions of the interlayer hopping energy and the charac-teristic times: elastic, inelastic, magnetic and spin-orbit scattering times. The relevant dimensional crossover behaviorfrom 3D to 2D with decreasing the interlayer coupling is discussed, and the condition for the crossover is shown to bedependent on the aforementioned scattering times. At low temperature there exists a spin-dcpendent-scattering-induccddimensional crossover in this system.

  10. Experimental examination of the effect of short ray trajectories in two-port wave-chaotic scattering systems.

    Science.gov (United States)

    Yeh, Jen-Hao; Hart, James A; Bradshaw, Elliott; Antonsen, Thomas M; Ott, Edward; Anlage, Steven M

    2010-10-01

    Predicting the statistics of realistic wave-chaotic scattering systems requires, in addition to random matrix theory, introduction of system-specific information. This paper investigates experimentally one aspect of system-specific behavior, namely, the effects of short ray trajectories in wave-chaotic systems open to outside scattering channels. In particular, we consider ray trajectories of limited length that enter a scattering region through a channel (port) and subsequently exit through a channel (port). We show that a suitably averaged value of the impedance can be computed from these trajectories and that this can improve the ability to describe the statistical properties of the scattering systems. We illustrate and test these points through experiments on a realistic two-port microwave scattering billiard.

  11. Normal processes of quasi particles scattering and kinetic effects in semiconductors with degenerated statistic of charge carriers

    CERN Document Server

    Kuliev, I G

    2002-01-01

    One studied the effect of normal processes of electron-electron and phonon-phonon scattering on relaxation of quasi-particle pulse in nonequilibrium electron-phonon systems of degenerate semiconductors. One solved a system of kinetic equations for electron and phonon functions of distribution and calculated kinetic coefficients degeneration parameter. One analyzed the effect of normal processes of quasi-particle scattering on electric conductivity, thermo-emf and heat conductivity of degenerate semiconductors. One took account of redistribution of phonon pulse in N-processes of phonon-phonon scattering both inside every oscillating particle and between phonon different oscillating branches

  12. The effect of Compton scattering on gamma-ray spectra of the 2005 January 20 flare

    Institute of Scientific and Technical Information of China (English)

    Wei Chen; Wei-Qun Gan

    2012-01-01

    Gamma-ray spectroscopy provides a wealth of information about accelerated particles in solar flares,as well as the ambient medium with which these energetic particles interact.The neutron capture line (2.223 MeV),the strongest in the solar gamma-ray spectrum,forms in the deep atmosphere.The energy of these photons can be reduced via Compton scattering.With the fully relativistic GEANT4 toolkit,we have carried out Monte Carlo simulations of the transport of a neutron capture line in solar flares,and applied them to the flare that occurred on 2005 January 20 (X7.1/2B),one of the most powerful gamma-ray flares observed by RHESSI during the 23rd solar cycle.By comparing the fitting results of different models with and without Compton scattering of the neutron capture line,we find that when including the Compton scattering for the neutron capture line,the observed gamma-ray spectrum can be reproduced by a population of accelerated particles with a very hard spectrum (s≤2.3).The Compton effect of a 2.223 MeV line on the spectra is therefore proven to be significant,which influences the time evolution of the neutron capture line flux as well.The study also suggests that the mean vertical depth for neutron capture in hydrogen for this event is about 8 g cm-2.

  13. Effect of Rebamipide Ophthalmic Suspension on Intraocular Light Scattering for Dry Eye After Corneal Refractive Surgery.

    Science.gov (United States)

    Igarashi, Akihito; Kamiya, Kazutaka; Kobashi, Hidenaga; Shimizu, Kimiya

    2015-08-01

    To assess the changes in intraocular scattering before and after instillation of rebamipide ophthalmic suspension in patients with dry eye after corneal refractive surgery. This study enrolled 60 eyes of 30 dry eye patients undergoing corneal refractive surgery. Patients were randomly assigned to start topical administration of rebamipide ophthalmic suspension (rebamipide group) or artificial tears (control group) 4 times daily for 4 weeks. Tear secretion, tear break-up time (TBUT), and the fluorescein score were measured before and after treatment. Intraocular light scattering was also measured as the objective scattering index (OSI) at 0.5-second intervals over 10 seconds. In the rebamipide group, the Schirmer I test, TBUT, and fluorescein score improved significantly, from 11.4 ± 9.0 mm, 2.2 ± 0.7 seconds, and 4.3 ± 1.3 to 14.9 ± 7.4 mm, 4.5 ± 1.7 seconds, and 1.9 ± 1.0, respectively (P = 0.006, P Rebamipide ophthalmic suspension was effective for improving both ocular surface parameters and optical quality in patients with dry eye undergoing corneal refractive surgery, suggesting that it may hold promise for the treatment of such patients.

  14. The effect of interface hopping on inelastic scattering of oppositely charged polarons in polymers

    Institute of Scientific and Technical Information of China (English)

    Di Bing; Wang Ya-Dong; Zhang Ya-Lin; An Zhong

    2013-01-01

    The inelastic scattering of oppositely charge polarons in polymer heterojunctions is believed to be of fundamental importance for the light-emitting and transport properties of conjugated polymers.Based on the tight-binding SSH model,and by using a nonadiabatic molecular dynamic method,we investigate the effects of interface hopping on inelastic scattering of oppositely charged polarons in a polymer heterojunction.It is found that the scattering processes of the charge and lattice defect depend sensitively on the hopping integrals at the polymer/polymer interface when the interface potential barrier and applied electric field strength are constant.In particular,at an intermediate electric field,when the interface hopping integral of the polymer/polymer heterojunction material is increased beyond a critical value,two polarons can combine to become a lattice deformation in one of the two polymer chains,with the electron and the hole bound together,i.e.,a self-trapped polaron-exciton.The yield of excitons then increases to a peak value.These results show that interface hopping is of fundamental importance and facilitates the formation of polaron-excitons.

  15. Combined effects of scattering and absorption on laser speckle contrast imaging

    Science.gov (United States)

    Khaksari, Kosar; Kirkpatrick, Sean J.

    2016-07-01

    Several variables may affect the local contrast values in laser speckle contrast imaging (LSCI), irrespective of relative motion. It has been suggested that the optical properties of the moving fluid and surrounding tissues can affect LSCI values. However, a detailed study of this has yet to be presented. In this work, we examined the combined effects of the reduced scattering and absorption coefficients on LSCI. This study employs fluid phantoms with different optical properties that were developed to mimic whole blood with varying hematocrit levels. These flow phantoms were imaged with an LSCI system developed for this study. The only variable parameter was the optical properties of the flowing fluid. A negative linear relationship was seen between the changes in contrast and changes in reduced scattering coefficient, absorption coefficient, and total attenuation coefficient. The change in contrast observed due to an increase in the scattering coefficient was greater than what was observed with an increase in the absorption coefficient. The results indicate that optical properties affect contrast values and that they should be considered in the interpretation of LSCI data.

  16. Separating the effects of intrinsic and scattering seismic attenuation in Southern Taiwan

    Science.gov (United States)

    Chi, Tsung-Chih; Ou, Gwo-Bin; Huang, Bor-Shouh

    2016-04-01

    During seismic waves propagate in the medium, the energy will disperse because of geological complexity. In general, the traveling energy can be involved in the conversion of elastic energy to anelastic processes (intrinsic absorption) and the scattering from heterogeneities (scattering attenuation) in the lithosphere. Shown in seismic waves at high frequencies degree of coda content will display the geological structure characteristics in the region. To estimate the energy redistribution in the propagation pool is an important problem in seismology and in engineering. In this study, we use the energy flux model developed by Frankel and Wennerberg (1987) to separate the effects of intrinsic and scattering attenuation. The analyzed seismic coda waves begin at least twice the direct S-wave travel time form the local events recorded by the Taiwan Strong Motion Network in southern Taiwan. The data are filted with center frequencies at 1.0 Hz, 3.0 Hz, 5.0 Hz and 10.0 Hz by using the Butterworth filter. We hope the result can help us better understand the physical mechanisms of seismic attenuation in the lithosphere and explain the high-frequency seismograms.

  17. Raman scattering study of glass crystallization kinetics

    Science.gov (United States)

    Balkanski, M.; Haro, E.; Espinosa, G. P.; Phillips, J. C.

    1984-08-01

    Laser induced glass-crystalline transition is studied by light scattering. Three significant effects are observed depending on the incident laser energy density: (i) Spectral band narrowing indicating cluster enlargement constitutes a precursor effect, (ii) an intensity increase effect indicates a rapid rise of the density of clusters attaining microcrystalline size and (iii) a dynamical reversal effect indicative of glass-crystalline instability. Cluster volume and crystallization appear as separate but related threshold phenomena.

  18. Seed removal by scatter-hoarding rodents: the effects of tannin and nutrient concentration.

    Science.gov (United States)

    Wang, Bo; Yang, Xiaolan

    2015-04-01

    The mutualistic interaction between scatter-hoarding rodents and seed plants have a long co-evolutionary history. Plants are believed to have evolved traits that influence the foraging behavior of rodents, thus increasing the probability of seed removal and caching, which benefits the establishment of seedlings. Tannin and nutrient content in seeds are considered among the most essential factors in this plant-animal interaction. However, most previous studies used different species of plant seeds, rendering it difficult to tease apart the relative effect of each single nutrient on rodent foraging behavior due to confounding combinations of nutrient contents across seed species. Hence, to further explore how tannin and different nutritional traits of seed affect scatter-hoarding rodent foraging preferences, we manipulated tannin, fat, protein and starch content levels, and also seed size levels by using an artificial seed system. Our results showed that both tannin and various nutrients significantly affected rodent foraging preferences, but were also strongly affected by seed size. In general, rodents preferred to remove seeds with less tannin. Fat addition could counteract the negative effect of tannin on seed removal by rodents, while the effect of protein addition was weaker. Starch by itself had no effect, but it interacted with tannin in a complex way. Our findings shed light on the effects of tannin and nutrient content on seed removal by scatter-hoarding rodents. We therefore, believe that these and perhaps other seed traits should interactively influence this important plant-rodent interaction. However, how selection operates on seed traits to counterbalance these competing interests/factors merits further study.

  19. Calculation of patient effective dose and scattered dose for dental mobile fluoroscopic equipment: application of the Monte Carlo simulation.

    Science.gov (United States)

    Lee, Boram; Lee, Jungseok; Kang, Sangwon; Cho, Hyelim; Shin, Gwisoon; Lee, Jeong-Woo; Choi, Jonghak

    2013-01-01

    The objective of this study was to evaluate the patient effective dose and scattered dose from recently developed dental mobile equipment in Korea. The MCNPX 2.6 (Los Alamos National Laboratory, USA) was used in a Monte Carlo simulation to calculate both the effective and scattered doses. The MCNPX code was constructed identically as in the general use of equipment and the effective dose and scattered dose were calculated using the KTMAN-2 digital phantom. The effective dose was calculated as 906 μSv. The equivalent doses per organ were calculated via the MCNPX code, and were 32 174 and 19 μSv in the salivary gland and oesophagus, respectively. The scattered dose of 22.5-32.6 μSv of the tube side at 25 cm from the centre in anterior and posterior planes was measured as 1.4-3 times higher than the detector side of 10.5-16.0 μSv.

  20. A Significant Look at the Effects of Persian Gulf Environmental Conditions on Sound Scattering Based on Small Perturbation Method

    Institute of Scientific and Technical Information of China (English)

    Parviz Ghadimi; Alireza Bolghasi; Mohammad A Feizi Chekab; Rahim Zamanian

    2015-01-01

    The main goal of this paper is to investigate sound scattering from the sea surface, by Kuo’s small perturbation method (SPM), in the Persian Gulf’s environmental conditions. Accordingly, the SPM method is reviewed, then it is demonstrated how it can accurately model sound scattering from the sea surface. Since in Kuo’s approach, the effects of surface roughness and sub-surface bubble plumes on incident sounds can be studied separately, it is possible to investigate the importance of each mechanism in various scattering regimes. To conduct this study, wind and wave information reported by Arzanah station as well as some numerical atmospheric models for the Persian Gulf are presented and applied to examine sound scattering from the sea surface in the Persian Gulf region. Plots of scattering strength by Kuo’s SPM method versus grazing angle for various frequencies, wave heights, and wind speeds are presented. The calculated scattering strength by the SPM method for various frequencies and wind speeds are compared against the results of critical sea tests 7 (CST-7). The favorable agreement achieved for sound scattering in the Persian Gulf region is indicative of the fact that the SPM method can quite accurately model and predict sound scattering from the sea surface.

  1. The effect of the Fermi resonance on the Raman scattering cross sections of the Fermi doublet ν1 and 2ν2 of liquid carbon disulfide in benzene.

    Science.gov (United States)

    Li, Dong-Fei; Gao, Shu-Qin; Sun, Cheng-Lin; Jiang, Xiu-Lan; Li, Zuo-Wei

    2012-04-01

    The effect of the Fermi resonance (FR) on the Raman scattering cross sections (RSCSs) of the Fermi doublet ν1, 2ν2 of liquid CS2 in C6H6 using the method of changing the volume concentration of the solution is investigated. We have calculated the RSCSs of the Fermi doublet ν1, 2ν2 using Onsager's theory with the 992 cm(-1) Raman line of C6H6 as the internal standard. The result shows that the RSCS of the ν1 line decreases with decreasing the volume concentration of CS2, while that of the 2ν2 line unexpectedly increases. With decreasing the volume concentration of CS2, two main effects of the solvent effect (SE) and the FR in binary solution that can make the ν1, 2ν2 RSCSs change: the SE, as calculated, reduces both the ν1 and 2ν2 RSCSs; the FR plays a significant role in reducing the ν1 RSCS and enhancing the 2ν2 RSCS. In comparison with our previous investigation [J. Raman Spectrosc. 41 (2010) 776-779], it was found that the stronger the FR is, the more the RSCS of the ν1 decreases and the 2ν2 increases. Thus, we proposed that the result can be best explained by taking into account the effect of the FR on the RSCSs of the Fermi doublet. In addition, this paper also gives an explanation to the experimental results deviating from the theoretical results of the scattering coefficients of CS2 in solvent C6H6 as mentioned in Fini's paper.

  2. Phase-shift effect of amplitude spread function on spectrum and image formation in coherent Raman scattering microspectroscopy.

    Science.gov (United States)

    Fukutake, Naoki

    2016-03-01

    Coherent Raman scattering microspectroscopy, which includes coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microspectroscopy, permits label-free hyperspectral imaging. We report the theoretical study of the phase-shift effect of the impulse response function on the spectral and image-forming properties of coherent Raman scattering microspectroscopy. We show that the spectrum and image are influenced by not only the NA of objective for excitation (NA(ex)) but also that for signal collection (NA(col)), in association with the phase-shift effect. We discuss that, under the condition NA(ex)≠NA(col), both the spectrum and the image become deformed by the phase-shift effect, which can be applied to the direct measurement of the imaginary part of the nonlinear susceptibility in CARS spectroscopy. We point out that, even in SRS microscopy, the nonresonant background can contribute to the image formation and cause the artifact in the image.

  3. Effects of biological molecules on calcium mineral formation associated with wastewater desalination as assessed using small-angle neutron scattering.

    Science.gov (United States)

    Pipich, Vitaliy; Dahdal, Yara; Rapaport, Hanna; Kasher, Roni; Oren, Yoram; Schwahn, Dietmar

    2013-06-25

    Calcium phosphate scale formation on reverse osmosis (RO) membranes is one of the main limitations on cost-effective desalination of domestic wastewater worldwide. It has been shown that organic agents affect mineralization. In this study, we explored mineralization in the presence of two biofilm-relevant organic compounds, the proteins bovine serum albumin (BSA) and lysozyme, in a simulated secondary effluent (SSE) solution using small-angle neutron scattering (SANS), and applied the results to analyses of mineral precipitation in RO desalination of secondary effluents of wastewater. The two proteins are prominent members of bacterial extracellular polymeric substances (EPSs), forming biofilms that are frequently associated with RO-membrane fouling during wastewater desalination. Laboratory experiments showed that both proteins in SSE solution are involved in complex mineralization processes. Only small portions of both protein fractions are involved in mineralization processes, whereas most of the protein fractions remain as monomers in solution. Contrast variation showed that composite particles of mineral and protein are formed instantaneously to a radius of gyration of about 300 Å, coexisting with particles of about μm size. After about one day, these large particles start to grow again at the expense of the 300 Å particles. The volume fraction of the 300 Å particles is of the order of 2 × 10(-4), which is too large to represent calcium phosphate such as hydroxyapatite as the only mineral present. Considering the data of mineral volume fraction obtained here as well as the solubility product of possible mineral polymorphs in the SSE solution, we suggest the formation of protein-mineral particles of hydroxyapatite and calcium carbonate during scale formation.

  4. Effects of smoking on cerebral and ventricular volumes in healthy males

    Institute of Scientific and Technical Information of China (English)

    Hyun-Jun Kim; Jae-Hoon Jun; Gye-Rae Tack; Soon-Cheol Chung; Mi-Hyun Choi; Beob-Yi Lee; Su-Jeong Lee; Jae-Woong Yang; Ji-Hye Kim; Jin-Seung Choi; Dong-Won Kang; Jang-Yeon Park

    2011-01-01

    Previous studies have reported decreased cerebral volume as a result of smoking.However,little is known about accompanying changes in ventricular volume for healthy subjects who smoke,although ventricular volume is increased in patients with multiple sclerosis who smoke.The present study analyzed whether cerebral volume decreased with smoking through the use of magnetic resonance imaging.In addition,accompanying changes in ventricular volume that resulted from decreased cerebral volume and smoking were analyzed in healthy subjects.When multivariate lysis of covariance was performed by integrating the 2 age groups,aged 20-28 years and 40-49 years,with statistical significance,results showed that cerebral volume of smokers was smaller and ventricular volume was greater compared with the non-smokers.These findings suggest that ventricular volume changes could be utilized to characterize the effects of smoking.

  5. Spleen volume on CT and the effect of abdominal trauma.

    Science.gov (United States)

    Cruz-Romero, Cinthia; Agarwal, Sheela; Abujudeh, Hani H; Thrall, James; Hahn, Peter F

    2016-08-01

    The aim of this study is to determine the magnitude of change in spleen volume on CT in subjects sustaining blunt abdominal trauma without hemorrhage relative to patients without disease and how the spleen volumes are distributed. Sixty-seven subjects with blunt abdominal trauma and 101 control subjects were included in this retrospective single-center, IRB-approved, and HIPAA-compliant study. Patients with an injured spleen were excluded. Using a semiautomatic segmentation program, two readers computed spleen volumes from CT. Spleen volume distribution in male and female trauma and control cohorts were compared nonparametrically. Spleen volume plotted against height, weight, and age were analyzed by linear regression. The number of females and males are, respectively, 35 and 32 in trauma subjects and 69 and 32 among controls. Female trauma patients (49.6 years) were older than males (39.8 years) (p = 0.02). Distributions of spleen volume were not normal, skewed above their means, requiring a nonparametric comparison. Spleen volumes in trauma patients were smaller than those in controls with medians of 230 vs 294 mL in males(p volume correlated positively with weight in females and with height in male controls, and negatively with age in male controls (p volume in controls was 245 mL, the largest ever reported. Spleen volume decreases in response to blunt abdominal trauma. Spleen volumes are not normally distributed. Our population has the largest spleen volume reported in the literature, perhaps a consequence of the obesity epidemic.

  6. Cylindrical Field Effect Transistor: A Full Volume Inversion Device

    KAUST Repository

    Fahad, Hossain M.

    2010-12-01

    The increasing demand for high performance as well as low standby power devices has been the main reason for the aggressive scaling of conventional CMOS transistors. Current devices are at the 32nm technology node. However, due to physical limitations as well as increase in short-channel effects, leakage, power dissipation, this scaling trend cannot continue and will eventually hit a barrier. In order to overcome this, alternate device topologies have to be considered altogether. Extensive research on ultra thin body double gate FETs and gate all around nanowire FETs has shown a lot of promise. Under strong inversion, these devices have demonstrated increased performance over their bulk counterparts. This is mainly attributed to full carrier inversion in the body. However, these devices are still limited by lithographic and processing challenges making them unsuitable for commercial production. This thesis explores a unique device structure called the CFET (Cylindrical Field Effect Transistors) which also like the above, relies on complete inversion of carriers in the body/bulk. Using dual gates; an outer and an inner gate, full-volume inversion is possible with benefits such as enhanced drive currents, high Ion/Ioff ratios and reduced short channel effects.

  7. Scattering layer thickness and position estimated by radar frequency domain interferometry: 2. Effects of tilts of the scattering layer or radar beam

    Science.gov (United States)

    Luce, H.; RöTtger, J.; Crochet, M.; Yamamoto, M.; Fukao, S.

    2000-09-01

    In the companion paper (part 1), theoretical studies on the dual frequency domain interferometry (FDI) technique have been presented. Two possible causes of biases in the layer thickness and position estimations by FDI have been considered: the limited extent of the scattering structure in the horizontal plane and the advection of this structure by the wind. In the present work, we study the effects of the tilts of the scattering layer from horizontal. It is shown that in case of large tilt angles, substantial biases on position and thickness can occur. The model, first developed by Liu and Pan [1993] but more extensively described in this paper, can also be used for a prediction of the variations of the FDI coherence with the zenith angle and their relation to the anisotropy of the scatterers. Some preliminary observations of the zenith angle dependence of the FDI coherence and echo power obtained with the middle and upper atmosphere (MU) radar from the vertical up to 28° off zenith with a step of 2° are shown and discussed. In principle, comparisons between the observed power and coherence variations with those given by the model could give more information on the structures that contribute around and far from the zenith.

  8. The Aharonov-Casher Scattering:. the Effect of the ∇ · E Term

    Science.gov (United States)

    Al-Qaq, E.; Shikakhwa, M. S.

    In the Aharonov-Casher (AC) scattering, a neutral particle interacts with an infinitesimally thin, long charge filament resulting in a phase shift. In the original AC treatment, a ∇ · E term proportional to the charge density at the filament's position is dropped from the Hamiltonian on the basis that the particle is banned from the filament, thus, the resulting Hamiltonian compares with the Aharonov-Bohm Hamiltonian of a scalar particle. Here, we consider AC scattering with this term included. Starting from the three-dimensional nonrelativistic Aharonov-Casher (AC) Schrödinger equation with the ∇ · E term included, we find the wave functions — in particular their singular component — the phase shifts and thus compute the scattering amplitudes and cross-sections. We show that singular solutions in the AC case appear only when the delta function interaction introduced is attractive regardless of the spin orientation of the particle. We find that the inclusion of this term does not introduce a structural difference in the general form of the cross-section even for polarized particles. Its mere effect, is in shifting the parameter N (the greatest integer in α) that appears in the cross-section, in the attractive case, by one. Interesting situation appears when N = 0, thus α=δ, in the case α≻0, and N = -1, so α = 1-δ in the case α≺0: At these values of the parameter N, where αis just any fraction, the cross-section for a particle polarized in the scattering plane to scatter in a state with the same polarization, is isotropic. It also vanishes, at these values of N, for transitions between same-helicity eigenstates. For these values of the parameter N and at the special values α = ±1/2, the cross-sections for both signs of α coincide. The main differences between this model and the "mathematically equivalent" spin-1/2 AB theory are outlined.

  9. Covariant spectator theory of $np$ scattering:\\\\ Effective range expansions and relativistic deuteron wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross, Alfred Stadler

    2010-09-01

    We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.

  10. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we

  11. Effect of Electron-Phonon Scattering on Shot Noise in Nanoscale Junctions

    Science.gov (United States)

    Chen, Yu-Chang; di Ventra, Massimiliano

    2005-10-01

    We investigate the effect of electron-phonon inelastic scattering on shot noise in nanoscale junctions in the regime of quasiballistic transport. We predict that when the local thermal energy of the junction is larger than its lowest vibrational mode energy eVc, the inelastic contribution to shot noise (conductance) increases (decreases) with bias as V (V). The corresponding Fano factor thus increases as V. We also show that the inelastic contribution to the Fano factor saturates with increasing thermal current exchanged between the junction and the bulk electrodes to a value which, for V≫Vc, is independent of bias. These predictions can be readily tested experimentally.

  12. Scattering by Black Holes

    CERN Document Server

    Andersson, N

    2000-01-01

    This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.

  13. Monte Carlo simulation and parameterized treatment on the effect of nuclear elastic scattering in high-energy proton radiography

    CERN Document Server

    Haibo, Xu

    2014-01-01

    A version of Geant4 has been developed to treat high-energy proton radiography. This article presents the results of calculations simulating the effects of nuclear elastic scattering for various test step wedges. Comparisons with experimental data are also presented. The traditional expressions of the transmission should be correct if the angle distribution of the scattering is Gaussian multiple Coulomb scattering. The mean free path which depends on the collimator angle and the radiation length are treated as empirical parameters, according to transmission as a function of thickness obtained by simulations. The results benefit for reconstructing density that depends on the transmission expressions.

  14. Small-volume effect enables the spine robust, sensitive and efficient information transfer

    CERN Document Server

    Fujii, Masashi; Karasawa, Yasuaki; Hikichi, Minori; Kuroda, Shinya

    2016-01-01

    Why is the spine of a neuron so small that only small numbers of molecules can exist and reactions inevitably become stochastic? Despite such noisy conditions, we previously showed that the spine exhibits robust, sensitive and efficient features of information transfer using probability of Ca$^{2+}$ increase; however, their mechanisms remains unknown. Here we show that the small-volume effect enables robust, sensitive and efficient information transfer in the spine volume, but not in the cell volume. In the spine volume, intrinsic noise in reactions becomes larger than extrinsic noise of input, making robust information transfer against input fluctuation. Stochastic facilitation of Ca$^{2+}$ increase occurs in the spine volume, making higher sensitivity to lower intensity of input. Volume-dependency of information transfer enables efficient information transfer per input in the spine volume. Thus, we propose that the small-volume effect is the functional reasons why the spine has to be so small.

  15. The effect of electron scattering from disordered grain boundaries on the resistivity of metallic nanostructures

    Science.gov (United States)

    Arenas, Claudio; Henriquez, Ricardo; Moraga, Luis; Muñoz, Enrique; Munoz, Raul C.

    2015-02-01

    We calculate the electrical resistivity of a metallic specimen, under the combined effects of electron scattering by impurities, grain boundaries, and rough surfaces limiting the film, using a quantum theory based upon the Kubo formalism. Grain boundaries are represented by a one-dimensional periodic array of Dirac delta functions separated by a distance "d" giving rise to a Kronig-Penney (KP) potential. We use the Green's function built from the wave functions that are solutions of this KP potential; disorder is included by incorporating into the theory the probability that an electron is transmitted through several successive grain boundaries. We apply this new theory to analyze the resistivity of samples S1, S2, S7 and S8 measured between 4 and 300 K reported in Appl. Surf. Science273, 315 (2013). Although both the classical and the quantum theories predict a resistivity that agrees with experimental data to within a few percent or better, the phenomena giving rise to the increase of resistivity over the bulk are remarkably different. Classically, each grain boundary contributes to the electrical resistance by reflecting a certain fraction of the incoming electrons. In the quantum description, there are states (in the allowed KP bands) that transmit electrons unhindered, without reflections, while the electrons in the forbidden KP bands are localized. A distinctive feature of the quantum theory is that it provides a description of the temperature dependence of the resistivity where the contribution to the resistivity originating on electron-grain boundary scattering can be identified by a certain unique grain boundary reflectivity R, and the resistivity arising from electron-impurity scattering can be identified by a certain unique ℓIMP mean free path attributable to impurity scattering. This is in contrast to the classical theory of Mayadas and Shatzkes (MS), that does not discriminate properly between a resistivity arising from electron-grain boundary

  16. Effect of Oblique Electromagnetic Ion Cyclotron Waves on Relativistic Electron Scattering: CRRES Based Calculation

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.

    2007-01-01

    We consider the effect of oblique EMIC waves on relativistic electron scattering in the outer radiation belt using simultaneous observations of plasma and wave parameters from CRRES. The main findings can be s ummarized as follows: 1. In 1comparison with field-aligned waves, int ermediate and highly oblique distributions decrease the range of pitc h-angles subject to diffusion, and reduce the local scattering rate b y an order of magnitude at pitch-angles where the principle absolute value of n = 1 resonances operate. Oblique waves allow the absolute va lue of n > 1 resonances to operate, extending the range of local pitc h-angle diffusion down to the loss cone, and increasing the diffusion at lower pitch angles by orders of magnitude; 2. The local diffusion coefficients derived from CRRES data are qualitatively similar to the local results obtained for prescribed plasma/wave parameters. Conseq uently, it is likely that the bounce-averaged diffusion coefficients, if estimated from concurrent data, will exhibit the dependencies similar to those we found for model calculations; 3. In comparison with f ield-aligned waves, intermediate and highly oblique waves decrease th e bounce-averaged scattering rate near the edge of the equatorial lo ss cone by orders of magnitude if the electron energy does not excee d a threshold (approximately equal to 2 - 5 MeV) depending on specified plasma and/or wave parameters; 4. For greater electron energies_ ob lique waves operating the absolute value of n > 1 resonances are more effective and provide the same bounce_averaged diffusion rate near the loss cone as fiel_aligned waves do.

  17. Accounting for the effect of horizontal gradients in limb measurements of scattered sunlight

    Directory of Open Access Journals (Sweden)

    J. Puķīte

    2007-11-01

    Full Text Available Limb measurements provided by the SCanning Imaging Absorption spectrometer for Atmospheric CHartographY (SCIAMACHY on the ENVISAT satellite allow retrieving stratospheric profiles of various trace gases on a global scale, among them BrO for the first time. For limb observations in the UV/VIS spectral region the instrument measures scattered light with a complex distribution of light paths: the light is measured at different elevation angles and can be scattered or absorbed in the atmosphere or reflected by the ground. By means of spectroscopy and radiative transfer modelling the measurements can be inverted to retrieve the vertical distribution of stratospheric trace gases.

    A full spherical 3-D Monte Carlo radiative transfer model "Tracy-II" is applied in this study. The Monte Carlo method benefits from conceptual simplicity and allows realizing the concept of full spherical geometry of the atmosphere and also its 3-D properties, which is important for a realistic description of the limb geometry. Furthermore it allows accounting for horizontal gradients in the distribution of trace gases.

    In this study the effect ofhorizontal inhomogeneous distributions of trace gases on the retrieval of profiles from limb measurements of scattered UV/VIS light is investigated. We introduce a method to correct for this effect by combining consecutive limb scanning sequences and utilizing the overlap in their measurement sensitivity regions. It is found that if horizontal inhomogenity is not properly accounted for, typical errors of 20% for NO2 and up to 50% for OClO around the altitude of the profile peak can arise for measurements close to the Arctic polar vortex boundary in boreal winter.

  18. Nuclear effects on ion heating within the small-angle charged-particle elastic-scattering regime

    Science.gov (United States)

    Andrade, A.; Hale, G. M.

    1984-10-01

    The effects of nuclear forces (in contrast to pure Coulomb interaction) on the ion heating rate which results from small-angle scattering processes between charged particles in plasmas are investigated within the framework of Fokker-Planck theory. These effects are included through the addition of analytic Coulomb-nuclear interference and nuclear elastic cross sections in the scattering integrals of the dynamical friction coefficient and dispersion tensor. It is found that corrections to traditional Fokker-Planck predictions of the ion-ion energy exchange rate can be calculated and that these corrections are sensitive to the choice of the maximum scattering angle defining the cutoff between small- and large-angle scattering.

  19. Rotation Effects on the Target-Volume Margin Determination

    CERN Document Server

    Zhang, Qinghui; Chan, M; Song, Y; Burman, C

    2014-01-01

    Rotational setup errors are usually neglected in most clinical centers. An analytical formula is developed to determine the extra margin between clinical target volume (CTV) and planning target volume (PTV) to account for setup errors. The proposed formula corrects for both translational and rotational setup errors and then incorporated into margin determination for PTV.

  20. Parallel electron streaming in the high-latitude E region and its effect on the incoherent scatter spectrum

    Science.gov (United States)

    Bahcivan, H.; Cosgrove, R. B.; Tsunoda, R. T.

    2006-07-01

    This article investigates the combined electron heating and streaming effects of low-frequency parallel electric fields on the incoherent scatter measurements of the high-latitude E region. The electric fields distort the electron distribution function, inducing changes on the amplitude and frequency of the ion-acoustic line in the measured incoherent scatter spectrum. If one assumes Maxwellian electrons, the measurements of electron and ion temperatures and electron density are subject to significant percentage errors during geomagnetically active conditions.

  1. The Effects of Scattered Light from Optical Components on Visual Function

    Science.gov (United States)

    2016-02-01

    measures light scatter in the human eye (intraocular scatter) over a region from ~5° - 10° from the optical axis, or at an average scatter angle of...contrast sensitivity were measured in twelve subjects without and with eight different optical materials (OM) positioned in front of their right eye ... measure light scatter with and without an optical component in front of the eye and then calculating the difference, may provide data to derive a measure

  2. A study of effective atomic number and electron density of gel dosimeters and human tissues for scattering of gamma rays: momentum transfer, energy and scattering angle dependence.

    Science.gov (United States)

    Kurudirek, Murat

    2016-11-01

    The objective of this work was to study water- and tissue-equivalent properties of some gel dosimeters, human tissues and water, for scattering of photons using the effective atomic number (Z eff). The Rayleigh to Compton scattering ratio (R/C) was used to obtain Z eff and electron density (N e ) of gel dosimeters, human tissues and water considering a 10(-2)-10(9) momentum transfer, q (Å(-1)). In the present work, a logarithmic interpolation procedure was used to estimate R/C as well as Z eff of the chosen materials in a wide scattering angle (1°-180°) and energy range (0.001-100 MeV). The Z eff of the chosen materials was found to increase as momentum transfer increases, for q > ~1 Å(-1). At fixed scattering angle and energy, Z eff of the material first increases and then becomes constant for high momentum transfers (q ≥ 3 Å(-1)), which indicates that Z eff is almost independent of energy and scattering angle for the chosen materials. Based on the Z eff data and the continuous momentum transfer range (10(-2)-10(9) Å(-1)), MAGIC, PAGAT and soft tissue were found to be water-equivalent materials, since their differences (%) relative to water are significantly low (≤3.2 % for MAGIC up to 10(3) Å(-1), ≤2.9 % for PAGAT up to 10(9) Å(-1), and ≤3.8 % for soft tissue up to 10(9) Å(-1)), while the Fricke gel was not found to be water equivalent. PAGAT was found to be a soft tissue-equivalent material in the entire momentum transfer range (<4.3 %), while MAGAT has shown to be tissue equivalent for brain (≤8.1 % up to 10 Å(-1)) and lung (<8.2 % up to 10 Å(-1)) tissues. The Fricke gel dosimeter has shown to be adipose tissue equivalent for most of the momentum range considered (<10 %).

  3. Effects of source correlation on the spectral shift of light waves on scattering.

    Science.gov (United States)

    Wang, Tao; Zhao, Daomu

    2013-05-01

    The far-zone scattered spectrum has been investigated for the scattering of two correlated sources from a deterministic medium. It is shown that red shift or blue shift can be produced in the far-zone scattered spectrum, and the spectral shift is influenced by the source correlation.

  4. Effects of high and low volume of strength training on muscle strength, muscle volume and lipid profile in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Cleiton Silva Correa

    2014-12-01

    Full Text Available Changes in lipid profile are considered a risk factor for cardiovascular disease (CVD, especially in postmenopausal woman who have been associated with age-related loss of muscle mass. The beneficial role of aerobic exercise in the prevention of CVD has been well documented. However, the effect of strength training has not been established. The purpose of this study was to determine the changes of lipoprotein levels after 12 weeks of different volumes of strength training and its correlation with strength and muscle volume in postmenopausal women. The participants were randomized into three groups: low volume (LVST; n = 12, 1 set and high volume of strength training (HVST; n = 11, 3 sets, or control group (n = 12. Training groups performed 12 weeks of supervised strength exercises, 15 maximum repetitions, five times a week, 20 minutes for LVST and 40 minutes for HVST for each training session. Measurements included body composition, strength and muscle volume, as well as blood analysis (glucose, total cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein pre- and post-training. The HVST and LVST improved the one-repetition maximum knee extension strength (p < 0.001, maximal dynamic strength (p < 0.001, and muscle volume (p = 0.048. Post-training triglyceride was lower in HVST when compared to LVST and the control group (p = 0.047. Even though they present the same neuromuscular and morphological adaptations in postmenopausal women, the HVST is more effective than LVST in improving the lipid profile of postmenopausal woman, and can be considered as an ideal program of intervention to reverse changes in lipid metabolism commonly found in this group.

  5. Non-Fermi liquid behavior from dynamical effects of impurity scattering in correlated Fermi liquids

    Science.gov (United States)

    Narsimha Murthy Sudhindra, Vidhyadhiraja; Kumar, Pramod

    2015-03-01

    The interplay of disorder and interactions is a subject of perennial interest. In this work, we have investigated the effect of disorder due to chemical substitution on the dynamics and transport properties of correlated Fermi liquids. A low frequency analysis in the concentrated and dilute limits shows that the dynamical local potentials arising through disorder averaging generate a linear (in frequency) term in the scattering rate. Such non-Fermi liquid behavior (nFL) is investigated in detail for Kondo hole substitution in heavy fermions within dynamical mean field theory. Analytical expressions in limiting cases and numerical solutions of the dynamical mean field theory equations reveal that the nFL term will show up significantly only in certain regimes, although it is present for any non-zero disorder concentration in principle. Remarkably, we find that the nFL behavior due to dynamical effects of impurity scattering has features that are distinct from those arising through Griffiths singularities or distribution of Kondo scales. Relevance of our findings to experiments on alloyed correlated systems is pointed out.

  6. Exploring halo effects in the scattering of $^{11}$Be on heavy targets at REX-ISOLDE

    CERN Multimedia

    2002-01-01

    We propose to measure the scattering of $^{11}$Be on heavy targets at energies around the Coulomb barrier with the aim to study the effect of the neutron halo on the reaction mechanisms. We expect to see deviations of the elastic cross sections with respect to Rutherford, even at energies below the barrier, due to the effect of dipole polarizability. We also expect to observe the inelastic excitation from the 1/2$^{+}$ ground state to the 1/2$^{-}$ excited state. One neutron transfer, as well as break-up cross sections will be obtained from the analysis of the $^{10}$Be fragments produced in the collision. We expect to obtain information on the B(E1) distribution in the low energy continuum of $^{11}$Be. \\\\ \\\\In a previous experiment, $^{11}$Be was produced and accelerated at REX-ISOLDE with an intensity of 10$^{5}$ pps. This beam intensity would allow us to measure the scattered fragments, at forward and backward angles, with a detector array based on silicon strip detectors. We ask for a total of 27 shift...

  7. Effective momentum-dependent potentials for atomic bound states and scattering in strongly coupled plasmas

    Science.gov (United States)

    Christlieb, A.; Dharuman, G.; Verboncoeur, J.; Murillo, M. S.

    2016-10-01

    Modeling high energy-density experiments requires simulations spanning large length and time scales. These non-equilibrium experiments have time evolving ionization and partial degeneracy, obviating the direct use of the time-dependent Schrodinger equation. Therefore, efficient approximate methods are greatly needed. We have examined the accuracy of one such method based on an effective classical-dynamics approach employing effective momentum dependent potentials (MDPs) within a Hamiltonian framework that enables large-scale simulations. We have found that a commonly used formulation, based on Kirschbaum-Wilets MDPs leads to very accurate ground state energies and good first/second-ionization energies. The continuum scattering properties of free electrons were examined by comparing the momentum-transfer cross section (MTCS) predicted by KW MDP to a semi-classical phase-shift calculation. Optimizing the KW MDP parameters for the scattering process yielded poor MTCSs, suggesting a limitation of the use of KW MDP for plasmas. However, our new MDP yields MTCS values in much better agreement than KW MDP.

  8. Connectivity and Excluded Volume Effects in Polymeric Complex Coacervates

    Science.gov (United States)

    Sing, Charles; Radhakrishna, Mithun

    Oppositely-charged polyelectrolytes in salt solutions can undergo phase separation to form complex coacervates. This charge-driven phase behavior is the basis for emerging motifs in self-assembly. Traditional uses for coacervates are in food and personal care products, while applications in technologies for drug delivery and sensory materials are being developed. One of the primary theories driving understanding of complex coacervates is the Voorn-Overbeek (V-O) theory, which is a precursor to more sophisticated field theories. We present both theory and simulation that provides an alternate picture of coacervates, specifically addressing the limitations of V-O. Our theoretical approach is based on PRISM, which is a liquid-state theory that specifically accounts for connectivity. This is compared with Monte Carlo-based simulations, which likewise provide a molecular picture of coacervation. We demonstrate that a combination of connectivity-based correlations and excluded volume has a profound effect on coacervation phase behavior, suggesting that favorable comparison of V-O to experiment benefits from a cancellation of errors. The influence of connectivity on coacervate phase behavior hints at new opportunities for molecular-based design in electrostatically-driven self-assembly.

  9. First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nucleus Deep Inelastic Scattering at MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, Joel A. [Univ. of Florida, Gainesville, FL (United States)

    2015-01-01

    Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets.

  10. The effect of nonuniform motion on the Doppler spectrum of scattered continuous-wave waveforms

    Science.gov (United States)

    Gray, John E.; Addison, Stephen R.

    2003-04-01

    The Doppler effect is a widely treated phenomena in both radar and sonar for objects undergoing uniform motion. There are many different models (Censor has written a history of the subject) one can use to derive the Doppler effect. The treatment of non-uniform motion is not widely discussed in the literature of radar and sonar. Some authors argue it is negligible, while others refer to work dating back to Kelly in the early sixties. The treatment by Kelly, based on waveform analysis in acoustics, is difficult to justify in electromagnetism. Using the language of waveform analysis it is difficult to determine when approximations are justified by the physics of the waveform interaction and when they aren't. By returning to electromagnetic considerations in the derivation and subsequent analysis, issues associated with the correct physics and proper approximations become transparent. We present a straight forward analysis of the non-uniform Doppler effect based on the relativistic mirror (moving boundary) that is undergoing arbitrary motion. The resultant structure of the scattered waveform provides a simple representation of the effect of non-uniform motion on the scattered waveform that can be more easily analyzed. This work is a continuation of earlier work done by Censor, De Smedt, and Cooper. This analysis is independent of narrow-band assumptions so it is completely general. Non-uniform motion can produce two types of effects associated with the Doppler spectrum, a baseband line that isn't straight and micro-Doppler off of the baseband that produces complicated sideband behavior. Complicated baseband and micro-Doppler are illustrated by using the example of a particular waveform, the continuous wave (CW) which is analyzed for a number of examples of interest to the radar community. Application of this information is then discussed.

  11. On the Effective Description of Large Volume Compactifications

    CERN Document Server

    Gallego, Diego

    2011-01-01

    We study the reliability of the Two-Step moduli stabilization in the type-IIB Large Volume Scenarios with matter and gauge interactions. The general analysis is based on a family of N=1 Supergravity models with a factorizable invariant Kaehler function, where the decoupling between two sets of fields without a mass hierarchy is easily understood. For the Large Volume Scenario particular analyses are performed for explicit models, one of such developed for the first time here, finding that the simplified version, where the Dilaton and Complex structure moduli are regarded as frozen by a previous stabilization, is a reliable supersymmetric description whenever the neglected fields stand at their leading F-flatness conditions and be neutral. The terms missed by the simplified approach are either suppressed by powers of the Calabi-Yau volume, or are higher order operators in the matter fields, and then irrelevant for the moduli stabilization rocedure. Although the power of the volume suppressing such corrections ...

  12. Effect of catecholamines and insulin on plasma volume and intravascular mass of albumin in man

    DEFF Research Database (Denmark)

    Hilsted, J; Christensen, N J; Larsen, S

    1989-01-01

    1. The effect of intravenous catecholamine infusions and of intravenous insulin on plasma volume and intravascular mass of albumin was investigated in healthy males. 2. Physiological doses of adrenaline (0.5 microgram/min and 3 microgram/min) increased peripheral venous packed cell volume...... significantly; intravenous noradrenaline at 0.5 microgram/min had no effect on packed cell volume, whereas packed cell volume increased significantly at 3 micrograms of noradrenaline/min. No significant change in packed cell volume was found during saline infusion. 3. During adrenaline infusion at 6 micrograms...... in packed cell volume, plasma volume, intravascular mass of albumin and transcapillary escape rate of albumin during hypoglycaemia may be explained by the combined actions of adrenaline and insulin....

  13. Effect of pulmonary hyperinflation on central blood volume

    DEFF Research Database (Denmark)

    Mijacika, Tanja; Kyhl, Kasper; Frestad, Daria

    2017-01-01

    (11±7%) above the total lung capacity. All cardiac chambers decreased in volume and despite a heart rate increase of 24±29 bpm (39±50%), pulmonary blood flow decreased by 2783±1820mL (43±20%). The pulmonary transit time remained unchanged at 7.5±2.2s and pulmonary blood volume decreased by 354±176m...

  14. Small-angle neutron scattering from polymer hydrogels with memory effect for medicine immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Kulvelis, Yu. V., E-mail: kulvelis@pnpi.spb.ru; Lebedev, V. T.; Trunov, V. A. [Russian Academy of Sciences, Orlova roshcha, Konstantinov Nuclear Physics Institute (Russian Federation); Pavlyuchenko, V. N. [Kirov Military Medical Academy (Russian Federation); Ivanchev, S. S.; Primachenko, O. N.; Khaikin, S. Ya. [Boreskov Institute of Catalysis, St. Petersburg Branch (Russian Federation)

    2011-12-15

    Hydrogels synthesized based on cross-linked copolymers of 2-hydroxyethyl methacrylate and functional monomers (acrylic acid or dimethylaminoethyl methacrylate), having a memory effect with respect to target medicine (cefazolin), have been investigated by small-angle neutron scattering. The hydrogels are found to have a two-level structural organization: large (up to 100 nm) aggregates filled with network cells (4-7 nm in size). The structural differences in the anionic, cationic, and amphiphilic hydrogels and the relationship between their structure and the ability of hydrogels to absorb moisture are shown. A relationship between the memory effect during cefazolin immobilization and the internal structure of hydrogels, depending on their composition and type of functional groups, is established.

  15. Surface-enhanced Raman scattering and Plasmon effect for enzymatic bionanocomplexes characterization

    Science.gov (United States)

    Wojnarowska-Nowak, Renata; Polit, Jacek; Broda, Daniel; Bobitski, Yaroslaw; Starowicz, Zbigniew; Gonchar, Mykhailo; Sheregii, E. M.

    2016-12-01

    Cholesterol oxidase (ChOX) enzyme is one of the most important analytical enzyme, used for cholesterol assay in clinical diagnostics as well as food production, and the developing of innovative solutions for improving the selectivity and accuracy of the analysis including bio-nanotechnological approaches is still ongoing. The Surface Plazmon Resonance (SPR) and the surface enhanced Raman scattering (SERS) as specific for nanocurriers effects were observed what enable us to research the oscillation spectra of the ChOX enzyme. The vibrational lines are attributed to chemical functional groups existing in enzyme, for example, amino acids, amide groups as well as for cofactor. For the improving the SERS effect the gold nanoparticles - ChOX bionanocomplexes were analyzed in combination with gold-coating gratings as a promising plazmonic material.

  16. Kerr Effect from Diffractive Skew Scattering in Chiral px±i py Superconductors

    Science.gov (United States)

    König, Elio J.; Levchenko, Alex

    2017-01-01

    We calculate the temperature dependent anomalous ac Hall conductance σH(Ω ,T ) for a two-dimensional chiral p -wave superconductor. This quantity determines the polar Kerr effect, as it was observed in Sr2RuO4 [J. Xia et al., Phys. Rev. Lett. 97, 167002 (2006)]. We concentrate on a single band model with an arbitrary isotropic dispersion relation subjected to rare, weak impurities treated in the Born approximation. As we explicitly show by detailed computation, previously omitted contributions to the extrinsic part of an anomalous Hall response, physically originating from diffractive skew scattering on quantum impurity complexes, appear to the leading order in the impurity concentration. By direct comparison with published results from the literature we demonstrate the relevance of our findings for the interpretation of the Kerr effect measurements in superconductors.

  17. Location of the effective diffusing-photon source in a strongly scattering medium.

    Science.gov (United States)

    Kostko, A F; Pavlov, V A

    1997-10-20

    When a narrow laser beam illuminates a strongly scattering medium, the effective pointlike source of diffusing photons appears inside the medium. By the method worked out, which is based on measurements of the diffusive intensity of light emerging from a turbid spherical sample, the depth of this source site (the penetration depth) is determined relatively to the sample diameter, which is known accurately. By using this method of locating the effective source, we have discovered that its position inside the medium is unexpectedly deep. We obtained the penetration depth D(0) = 4.6 l* +/- 0.7 l* instead of one transport mean free path, where l* is the value of D(0) in the standard diffusion theory. Information about this source dipping is useful in diffusing-photon correlation spectroscopy because of its influence on the geometric factor calculated from the diffusion equation.

  18. Surface-enhanced Raman scattering and Plasmon effect for enzymatic bionanocomplexes characterization

    Directory of Open Access Journals (Sweden)

    Wojnarowska-Nowak Renata

    2017-01-01

    Full Text Available Cholesterol oxidase (ChOX enzyme is one of the most important analytical enzyme, used for cholesterol assay in clinical diagnostics as well as food production, and the developing of innovative solutions for improving the selectivity and accuracy of the analysis including bio-nanotechnological approaches is still ongoing. The Surface Plazmon Resonance (SPR and the surface enhanced Raman scattering (SERS as specific for nanocurriers effects were observed what enable us to research the oscillation spectra of the ChOX enzyme. The vibrational lines are attributed to chemical functional groups existing in enzyme, for example, amino acids, amide groups as well as for cofactor. For the improving the SERS effect the gold nanoparticles – ChOX bionanocomplexes were analyzed in combination with gold-coating gratings as a promising plazmonic material.

  19. Limits on the effective quark radius from inclusive ep scattering & contact interactions at HERA

    CERN Document Server

    Zarnecki, Aleksander Filip

    2016-01-01

    The high-precision HERA data allow searches for up to TeV scales "Beyond the Standard Model" contributions to electron-quark scattering. Combined H1 and ZEUS measurements of inclusive deep inelastic cross sections in neutral and charged current ep scattering are considered, corresponding to a luminosity of around 1 fb$^{-1}$. A new approach to the beyond the Standard Model analysis of the inclusive $ep$ data is presented; simultaneous fits of parton distribution functions and contributions of "new physics" processes are performed. Considered are possible deviations from the Standard Model due to a finite radius of quarks, described within the quark form-factor model, and due to new electron-quark interactions in the framework of $eeqq$ contact interactions (CI). The resulting 95% C.L. upper limit on the effective quark radius is $0.43\\cdot 10^{-16}$ cm. The limits on the CI mass scale extend up to 10 TeV depending on the CI scenario.

  20. The effects of dust scattering on high-resolution X-ray absorption edge structure

    Science.gov (United States)

    Corrales, L.; García, J.; Wilms, J.; Baganoff, F.

    2016-06-01

    High energy studies of astrophysical dust complement observations of dusty interstellar gas at other wavelengths. With high resolution X-ray spectroscopy, dust scattering significantly enhances the total extinction optical depth and alters the shape of photoelectric absorption edges. This effect is modulated by the dust grain size distribution, spatial location along the line of sight, and the imaging resolution of the X-ray telescope. At soft energies, the spectrum of scattered light is likely to have significant features at the 0.3 keV (C-K), 0.5 keV (O-K), and 0.7 keV (Fe-L) photoelectric absorption edges. This direct probe of ISM dust grain elements will be important for (i) understanding the relative abundances of graphitic grains or PAHs versus silicates, and (ii) measuring the depletion of gas phase elements into solid form. We focus in particular on the Fe-L edge, fitting a template for the total extinction to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. We discuss ways in which spectroscopy with XMM can yield insight into dust obscured objects such as stars, binaries, AGN, and foreground quasar absorption line systems.

  1. Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters

    Energy Technology Data Exchange (ETDEWEB)

    Fasolato, C. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); Domenici, F., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it; De Angelis, L.; Luongo, F.; Postorino, P., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Sennato, S. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Mura, F. [Dip. Scienze di Base Applicate all' Ingegneria, Università Sapienza, Via A. Scarpa, 16, 00185 Rome (Italy); Costantini, F. [Dip. Ingegneria Astronautica Elettrica ed Energetica, Università Sapienza, Via Eudossiana, 18, 00184 Rome (Italy); Bordi, F. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy)

    2014-08-18

    A study of the Surface Enhanced Raman Scattering (SERS) from micrometric metallic nanoparticle aggregates is presented. The sample is obtained from the self-assembly on glass slides of micro-clusters of silver nanoparticles (60 and 100 nm diameter), functionalized with the organic molecule 4-aminothiophenol in water solution. For nanoparticle clusters at the micron scale, a maximum enhancement factor of 10{sup 9} is estimated from the SERS over the Raman intensity ratio normalized to the single molecule contribution. Atomic force microscopy, correlated to spatially resolved Raman measurements, allows highlighting the connection between morphology and efficiency of the plasmonic system. The correlation between geometric features and SERS response of the metallic structures reveals a linear trend of the cluster maximum scattered intensity as a function of the surface area of the aggregate. On given clusters, the intensity turns out to be also influenced by the number of stacking planes of the aggregate, thus suggesting a plasmonic waveguide effect. The linear dependence results weakened for the largest area clusters, suggesting 30 μm{sup 2} as the upper limit for exploiting the coherence over large scale of the plasmonic response.

  2. Semi-Empirical Effective Interactions for Inelastic Scattering Derived from the Reid Potential

    Science.gov (United States)

    Fiase, J. O.; Sharma, L. K.; Winkoun, D. P.; Hosaka, A.

    2001-09-01

    An effective local interaction suitable for inelastic scattering is constructed from the Reid soft - core potential. We proceed in two stages: We first calculated a set of relative two - body matrix elements in a variational approach using the Reid soft-core potential folded with two-body correlation functions. In the second stage we constructed a potential for inelastic scattering by fitting the matrix elements to a sum of Yukawa central, tensor and spin-orbit terms to the set of relative two - body matrix elements obtained in the first stage by a least squares fitting procedure. The ranges of the new potential were selected to ensure the OPEP tails in the relevant channels as well as the short - range part of the interaction. It is found that the results of our variational techniques are very similar to the G - matrix calculations of Bertsch and co - workers in the singlet - even, triplet - even, tensor - even and spin-orbit odd channels thus putting our calculations of two - body matrix elements of nuclear forces in these channels on a sound footing. However, there exist major differences in the singlet - odd, triplet - odd, tensor - odd and spin - orbit even channels which casts some doubt on our understanding of nuclear forces in these channels.

  3. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    Science.gov (United States)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.

  4. Eccentricity and thermoviscous effects on ultrasonic scattering from a liquid-coated fluid cylinder

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Calculation of the scattered field of the eccentric scatterers is an old problem with numerous applications. This study considers the interaction of a plane compressional sound wave with a liquid-encapsulated thermoviscous fluid cylinder submerged in an unbounded viscous thermally conducting medium. The translational addition theorem for cylindrical wave functions, the appropriate wave field expansions and the pertinent boundary conditions are employed to develop a closed-form solution in the form of infinite series. The analytical results are illustrated with a numerical example in which the compound cylinder is insonified by a plane sound wave at selected angles of incidence in a wide range of dimensionless frequencies. The backscattered far-field acoustic pressure amplitude and the spatial distribution of the total acoustic pressure in the vicinity of the cylinder are evaluated and discussed for representative values of the parameters characterizing the system. The effects of incident wave frequency, angle of incidence, fluid thermoviscosity, core eccentricity and size are thoroughly examined. Limiting case involving an ideal compressible liquid-coated cylinder is considered and fair agreement with a well-known solution is established.

  5. Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna-Reactor Plasmonic Photocatalysis.

    Science.gov (United States)

    Li, Kun; Hogan, Nathaniel J; Kale, Matthew J; Halas, Naomi J; Nordlander, Peter; Christopher, Phillip

    2017-06-14

    Efficient photocatalysis requires multifunctional materials that absorb photons and generate energetic charge carriers at catalytic active sites to facilitate a desired chemical reaction. Antenna-reactor complexes are an emerging multifunctional photocatalytic structure where the strong, localized near field of the plasmonic metal nanoparticle (e.g., Ag) is coupled to the catalytic properties of the nonplasmonic metal nanoparticle (e.g., Pt) to enable chemical transformations. With an eye toward sustainable solar driven photocatalysis, we investigate how the structure of antenna-reactor complexes governs their photocatalytic activity in the light-limited regime, where all photons need to be effectively utilized. By synthesizing core@shell/satellite (Ag@SiO2/Pt) antenna-reactor complexes with varying Ag nanoparticle diameters and performing photocatalytic CO oxidation, we observed plasmon-enhanced photocatalysis only for antenna-reactor complexes with antenna components of intermediate sizes (25 and 50 nm). Optimal photocatalytic performance was shown to be determined by a balance between maximized local field enhancements at the catalytically active Pt surface, minimized collective scattering of photons out of the catalyst bed by the complexes, and minimal light absorption in the Ag nanoparticle antenna. These results elucidate the critical aspects of local field enhancement, light scattering, and absorption in plasmonic photocatalyst design, especially under light-limited illumination conditions.

  6. Low energy scattering phase shifts for meson-baryon systems

    CERN Document Server

    Detmold, William

    2015-01-01

    In this work, we calculate meson-baryon scattering phase shifts in four channels using lattice QCD methods. From a set of calculations at four volumes, corresponding to spatial sizes of 2, 2.5, 3, and 4 fm, and a pion mass of m_pi ~ 390 MeV, we determine the scattering lengths and effective ranges for these systems at the corresponding quark masses. We also perform the calculation at a lighter quark mass, m_pi ~ 230 MeV, on the largest volume. Using these determinations, along with those in previous work, we perform a chiral extrapolation of the scattering lengths to the physical point after correcting for the effective range contributions using the multi-volume calculations performed at m_pi ~ 390 MeV.

  7. Acoustic Wave Dispersion and Scattering in Complex Marine Sediment Structures

    Science.gov (United States)

    2015-09-30

    Acoustic wave dispersion and scattering in complex marine sediment structures Charles W. Holland The Pennsylvania State University Applied...volume scattering and 2) the effects of shear waves in general layered media. These advances will provide the basis for measuring dispersion in in-situ...shear waves on dispersion in marine sediments. The first step will be development of the theory. WORK COMPLETED A brief summary of the work

  8. Effects of obesity on lung volume and capacity in children and adolescents: a systematic review

    Directory of Open Access Journals (Sweden)

    Aline Dill Winck

    Full Text Available Abstract Objective: To assess the effects of obesity on lung volume and capacity in children and adolescents. Data source: This is a systematic review, carried out in Pubmed, Lilacs, Scielo and PEDro databases, using the following Keywords: Plethysmography; Whole Body OR Lung Volume Measurements OR Total Lung Capacity OR Functional Residual Capacity OR Residual Volume AND Obesity. Observational studies or clinical trials that assessed the effects of obesity on lung volume and capacity in children and adolescents (0-18 years without any other associated disease; in English; Portuguese and Spanish languages were selected. Methodological quality was assessed by the Agency for Healthcare Research and Quality. Data synthesis: Of the 1,030 articles, only four were included in the review. The studies amounted to 548 participants, predominantly males, with sample size ranging from 45 to 327 individuals. 100% of the studies evaluated nutritional status through BMI (z-score and 50.0% reported the data on abdominal circumference. All demonstrated that obesity causes negative effects on lung volume and capacity, causing a reduction mainly in functional residual capacity in 75.0% of the studies; in the expiratory reserve volume in 50.0% and in the residual volume in 25.0%. The methodological quality ranged from moderate to high, with 75.0% of the studies classified as having high methodological quality. Conclusions: Obesity causes deleterious effects on lung volume and capacity in children and adolescents, mainly by reducing functional residual capacity, expiratory reserve volume and residual volume.

  9. Effects of obesity on lung volume and capacity in children and adolescents: a systematic review

    Science.gov (United States)

    Winck, Aline Dill; Heinzmann-Filho, João Paulo; Soares, Rafaela Borges; da Silva, Juliana Severo; Woszezenki, Cristhiele Taís; Zanatta, Letiane Bueno

    2016-01-01

    Abstract Objective: To assess the effects of obesity on lung volume and capacity in children and adolescents. Data source: This is a systematic review, carried out in Pubmed, Lilacs, Scielo and PEDro databases, using the following Keywords: Plethysmography; Whole Body OR Lung Volume Measurements OR Total Lung Capacity OR Functional Residual Capacity OR Residual Volume AND Obesity. Observational studies or clinical trials that assessed the effects of obesity on lung volume and capacity in children and adolescents (0-18 years) without any other associated disease; in English; Portuguese and Spanish languages were selected. Methodological quality was assessed by the Agency for Healthcare Research and Quality. Data synthesis: Of the 1,030 articles, only four were included in the review. The studies amounted to 548 participants, predominantly males, with sample size ranging from 45 to 327 individuals. 100% of the studies evaluated nutritional status through BMI (z-score) and 50.0% reported the data on abdominal circumference. All demonstrated that obesity causes negative effects on lung volume and capacity, causing a reduction mainly in functional residual capacity in 75.0% of the studies; in the expiratory reserve volume in 50.0% and in the residual volume in 25.0%. The methodological quality ranged from moderate to high, with 75.0% of the studies classified as having high methodological quality. Conclusions: Obesity causes deleterious effects on lung volume and capacity in children and adolescents, mainly by reducing functional residual capacity, expiratory reserve volume and residual volume. PMID:27130483

  10. The dust scattering component of X-ray extinction: Effects on continuum fitting and high-resolution absorption edge structure

    CERN Document Server

    Corrales, L; Wilms, J; Baganoff, F

    2016-01-01

    Small angle scattering by dust grains causes a significant contribution to the total interstellar extinction for any X-ray instrument with sub-arcminute resolution (Chandra, Swift, XMM-Newton). However, the dust scattering component is not included in the current absorption models: phabs, tbabs, and tbnew. We simulate a large number of Chandra spectra to explore the bias in the spectral fit and NH measurements obtained without including extinction from dust scattering. We find that without incorporating dust scattering, the measured NH will be too large by a baseline level of 25%. This effect is modulated by the imaging resolution of the telescope, because some amount of unresolved scattered light will be captured within the aperture used to extract point source information. In high resolution spectroscopy, dust scattering significantly enhances the total extinction optical depth and the shape of the photoelectric absorption edges. We focus in particular on the Fe-L edge at 0.7 keV, showing that the total ext...

  11. On the variability of the Ring effect in the near ultraviolet: understanding the role of aerosols and multiple scattering

    Directory of Open Access Journals (Sweden)

    A. O. Langford

    2007-01-01

    Full Text Available The "filling-in" (FI of Fraunhofer lines, often referred to as the Ring effect, was examined using measurements of near ultraviolet sunlight scattered from the zenith sky above Boulder, Colorado during July and August 2005. The FI of the 344.1 nm Fe I line was directly determined by comparing direct sun and cloud-free zenith sky spectra recorded on the same day. The results, obtained over solar zenith angles (SZA from 20° to 70°, are compared to the predictions of a simple rotational Raman Scattering (RRS spectral model. The measured FI was found to be up to 70% greater than that predicted by first-order molecular scattering with a much stronger SZA dependence. Simultaneously measured aerosol optical depths and Monte Carlo calculations show that the combination of aerosol scattering and second-order molecular scattering can account for these differences, and potentially explain the contradictory SZA dependences in previously published measurements of FI. These two scattering processes also introduce a wavelength dependence to FI that complicates the fitting of diffuse sunlight observations in differential optical absorption spectroscopy (DOAS. A simple correction to improve DOAS retrievals by removing this wavelength dependence is described.

  12. Effect of the Inverse Volume Modification in Loop Quantum Cosmology

    Institute of Scientific and Technical Information of China (English)

    XIONG Hua-Hui; ZHU Jian-Yang

    2011-01-01

    After incorporating the inverse volume modifications both in the gravitational and matter part in the improved framework of LQC, we find that the inverse volume modification can decrease the bouncing energy scale, and the presence of nonsingular bounce is generic. For the backward evolution in the expanding branch, in terms of different initial states, the evolution trajectories classify into two classes. One class with larger initial energy density leads to the occurrence of bounce in the region a>ach where ash marks the different inverse volume modification region. The other class with smaller initial energy density evolves back into the region a<ach. In this region, both the energy density for the scalar field and the bouncing energy scale decrease with the backward evolution. The bounce is present when the bouncing energy scale decreases to be equal to the energy density of the scalar field.

  13. Radiotherapy Dose-Volume Effects on Salivary Gland Function

    Science.gov (United States)

    Deasy, Joseph O.; Moiseenko, Vitali; Marks, Lawrence; Chao, K. S. Clifford; Nam, Jiho; Eilsbruch, Avraham

    2013-01-01

    Publications relating parotid dose-volume characteristics to radiotherapy-induced salivary toxicity were reviewed. Late salivary dysfunction has been correlated to the mean parotid gland dose, with recovery occurring with time. Severe xerostomia (defined as long-term salivary function of <25% of baseline) is usually avoided if at least one parotid gland is spared to a mean dose of less than ≈20 Gy or if both glands are spared to less than ≈25 Gy (mean dose). For complex, partial-volume RT patterns (e.g., intensity-modulated radiotherapy), each parotid mean dose should be kept as low as possible, consistent with the desired clinical target volume coverage. A lower parotid mean dose usually results in better function. Submandibular gland sparing also significantly decreases the risk of xerostomia. The currently available predictive models are imprecise, and additional study is required to identify more accurate models of xerostomia risk. PMID:20171519

  14. Radiation Dose–Volume Effects and the Penile Bulb

    Science.gov (United States)

    Roach, Mack; Nam, Jiho; Gagliardi, Giovanna; Naqa, Issam El; Deasy, Joseph O.; Marks, Lawrence B.

    2016-01-01

    The dose, volume, and clinical outcome data for penile bulb are reviewed for patients treated with external-beam radiotherapy. Most, but not all, studies find an association between impotence and dosimetric parameters (e.g., threshold doses) and clinical factors (e.g., age, comorbid diseases). According to the data available, it is prudent to keep the mean dose to 95% of the penile bulb volume to <50 Gy. It may also be prudent to limit the D70 and D90 to 70 Gy and 50 Gy, respectively, but coverage of the planning target volume should not be compromised. It is acknowledged that the penile bulb may not be the critical component of the erectile apparatus, but it seems to be a surrogate for yet to be determined structure(s) critical for erectile function for at least some techniques. PMID:20171507

  15. Surface Scattering Effect and the Stripe Order in Films of the Superfluid 3He B Phase

    Science.gov (United States)

    Aoyama, Kazushi

    2016-09-01

    Surface scattering effects in thin films of the superfluid 3He B phase have been theoretically investigated, with an emphasis on the stability of the stripe order with spontaneous broken translational symmetry in the film plane and quasiparticle excitations in this spatially inhomogeneous phase. Based on the Ginzburg-Landau theory in the weak coupling limit, we have shown that the stripe order, which was originally discussed for a film with two specular surfaces, can be stable in a film with one specular and one diffusive surfaces which should correspond to superfluid 3He on a substrate. It is also found by numerically solving the Eilenberger equation that due to the stripe structure, a midgap state distinct from the surface Andreev bound state emerges and its signature is reflected in the local density of states.

  16. Effective thermal conductivity of condensed polymeric nanofluids (nanosolids) controlled by diffusion and interfacial scattering

    Indian Academy of Sciences (India)

    M R Nisha; M S Jayalakshmy; J Philip

    2013-11-01

    Thermal properties of polymeric nanosolids, obtained by condensing the corresponding nanofluids, are investigated using photothermal techniques. The heat transport properties of two sets of polyvinyl alcohol (PVA) based nanosolids, TiO2/PVA and Cu/PVA, prepared by condensing the respective nanofluids, which are prepared by dispersing nanoparticles of TiO2 and metallic copper in liquid PVA, are reported. Two photothermal techniques, the photoacoustic and the photopyroelectric techniques, have been employed for measuring thermal diffusivity, thermal conductivity and specific heat capacity of these nanosolids. The experimental results indicate that thermal conduction in these polymer composites is controlled by heat diffusion through the embedded particles and interfacial scattering at matrix–particle boundaries. These two mechanisms are combined to arrive at an expression for their effective thermal conductivity. Analysis of the results reveals the possibility to tune the thermal conductivity of such nanosolids over a wide range using the right types of nanoparticles and right concentration.

  17. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media

    Science.gov (United States)

    Edrei, Eitan; Scarcelli, Giuliano

    2016-09-01

    High-resolution imaging through turbid media is a fundamental challenge of optical sciences that has attracted a lot of attention in recent years for its wide range of potential applications. Here, we demonstrate that the resolution of imaging systems looking behind a highly scattering medium can be improved below the diffraction-limit. To achieve this, we demonstrate a novel microscopy technique enabled by the optical memory effect that uses a deconvolution image processing and thus it does not require iterative focusing, scanning or phase retrieval procedures. We show that this newly established ability of direct imaging through turbid media provides fundamental and practical advantages such as three-dimensional refocusing and unambiguous object reconstruction.

  18. Formation Regularities of Plasmonic Silver Nanostructures on Porous Silicon for Effective Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Bandarenka, Hanna V; Girel, Kseniya V; Bondarenko, Vitaly P; Khodasevich, Inna A; Panarin, Andrei Yu; Terekhov, Sergei N

    2016-12-01

    Plasmonic nanostructures demonstrating an activity in the surface-enhanced Raman scattering (SERS) spectroscopy have been fabricated by an immersion deposition of silver nanoparticles from silver salt solution on mesoporous silicon (meso-PS). The SERS signal intensity has been found to follow the periodical repacking of the silver nanoparticles, which grow according to the Volmer-Weber mechanism. The ratio of silver salt concentration and immersion time substantially manages the SERS intensity. It has been established that optimal conditions of nanostructured silver layers formation for a maximal Raman enhancement can be chosen taking into account a special parameter called effective time: a product of the silver salt concentration on the immersion deposition time. The detection limit for porphyrin molecules CuTMPyP4 adsorbed on the silvered PS has been evaluated as 10(-11) M.

  19. Effect of Sound Source Scattering on Measurement of Near-Field Head-Related Transfer Functions

    Institute of Scientific and Technical Information of China (English)

    YU Guang-Zheng; XIE Bo-Sun; RAO Dan

    2008-01-01

    @@ A simple spherical head and pulsating spherical sound source model are proposed to investigate the effect of multiple scattering between the head and the sound source on near-field head-related transfer function (HRTF) measurement. Multipole expansion method is used to calculate HRTFs of the model, then the relationships among the magnitude error of HRTF with frequency, source direction, source size, and the distance between the head centre and the sound source are analysed. The results show that to ensure the magnitude error of HRTF within 1.0 dB up to 20 kHz, for source distance not less than 0.15m or 0.20 m, the radius of the sound source should not exceed 0.03 m or 0.05 m, respectively. The conclusion suggests an appropriate size of sound source in near-field HRTF measurement.

  20. Inverse-kinematics proton scattering on $^{50}$Ca: Determining effective charges using complementary probes

    CERN Document Server

    Riley, L A; Baugher, T R; Bazin, D; Bowry, M; Cottle, P D; DeVone, F G; Gade, A; Glowacki, M T; Kemper, K W; Lunderberg, E; McPherson, D M; Noji, S; Recchia, F; Sadler, B V; Scott, M; Weisshaar, D; Zegers, R G T

    2014-01-01

    We have performed measurements of the $0_\\mathrm{g.s.}^+ \\rightarrow 2_1^+$ excitations in the neutron-rich isotopes $^{48,50}$Ca via inelastic proton scattering on a liquid hydrogen target, using the GRETINA $\\gamma$-ray tracking array. A comparison of the present results with those from previous measurements of the lifetimes of the $2_1^+$ states provides us the ratio of the neutron and proton matrix elements for the $0_\\mathrm{g.s.}^+ \\rightarrow 2_1^+$ transitions. These results allow the determination of the ratio of the proton and neutron effective charges to be used in shell model calculations of neutron-rich isotopes in the vicinity of $^{48}$Ca.

  1. High speed data encryption and decryption using stimulated Brillouin scattering effect in optical fiber

    Science.gov (United States)

    Yi, Lilin; Zhang, Tao; Hu, Weisheng

    2011-11-01

    A novel all-optical encryption/decryption method based on stimulated Brillouin scattering (SBS) effect in optical fiber is proposed for the first time. The operation principle is explained in detail and the encryption and decryption performance is experimentally evaluated. The encryption keys could be the SBS gain amplitude, bandwidth, central wavelength and spectral shape, which are configurable and flexibly controlled by the users. We experimentally demonstrate the SBS encryption/decryption process of a 10.86-Gb/s non-return-to-zero (NRZ) data by using both phase-modulated and current-dithered Brillouin pumps for proof-of-concept. Unlike the traditional optical encryption methods of chaotic communications and optical code-division-multiplexing access (OCDMA), the SBS based encryption/decryption technique can directly upgrade the current optical communication system to a secure communication system without changing the terminal transceivers, which is completely compatible with the current optical communication systems.

  2. Transverse spin effects in hadron-pair production from semi-inclusive deep inelastic scattering

    CERN Document Server

    Adolph, C; Alexakhin, V Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Burtin, E; Chaberny, D; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Dhara, L; Donskov, S V; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; jr., M.Finger; Fischer, H; Franco, C; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Hoppner, Ch; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu.A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Konigsmann, K; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kramer, M; Kroumchtein, Z V; Kunne, F.; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Meyer, W; Michigami, T; Mikhailov, Yu.V; Moinester, M A; Morreale, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S.; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quaresma, M; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S.; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C.; Schluter, T; Schmidt, K; Schmitt, L; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O.Yu; Silva, L; Sinha, L; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Sznajder, P; Takekawa, S; Wolbeek, J.Ter; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Vossen, A; Wang, L; Windmolders, R; Wislicki, W; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A

    2012-01-01

    First measurements of azimuthal asymmetries in hadron-pair production in deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron) and NH_3 (proton) targets are presented. The data were taken in the years 2002-2004 and 2007 with the COMPASS spectrometer using a muon beam of 160 GeV/c at the CERN SPS. The asymmetries provide access to the transversity distribution functions, without involving the Collins effect as in single hadron production. The sizeable asymmetries measured on the NH_ target indicate non-vanishing u-quark transversity and two-hadron interference fragmentation functions. The small asymmetries measured on the ^6LiD target can be interpreted as indication for a cancellation of u- and d-quark transversities.

  3. Two-photon-exchange effects in the unpolarized $\\mu p$ scattering within the hadronic model

    CERN Document Server

    Zhou, Hai-Qing

    2016-01-01

    In this work, the two-photon-exchange (TPE) effects in the unpolarized $\\mu p$ scattering are discussed within the hadronic model where the intermediate states $N,\\Delta$ and $\\sigma$ are considered. The contribution from the $N$ intermediate is close to the results given by Ref. \\cite{Tomalak2014} at the small $Q$ and there is a sizeable difference when $Q>0.25$GeV (where $Q^2$ is the four momentum transfer). The contributions from the $\\Delta$ and the $\\sigma$ intermediate states are much smaller than that from the $N$ intermediate at the small $Q$. In the kinematic region with $k_i\\subseteq [0.01,0.3]$ GeV and $Q \\leq0.4$GeV (where $k_i$ is the three momentum of initial muon at Lab frame), a naive expression for the TPE contributions is given, which can be used directly for other analysis.

  4. Effect of the bound nucleon form factors on charged-current neutrino-nucleus scattering

    CERN Document Server

    Tsushima, K; Saitô, K; Kim, Hungchong

    2003-01-01

    We study the effect of bound nucleon form factors on charged-current neutrino-nucleus scattering. The bound nucleon form factors associated with the vector and axial-vector currents are calculated in the quark-meson coupling model. We compute the inclusive $^{12}$C($nu_mu,mu^-$)$X$ differential and total cross sections, which have been measured by the LSND collaboration at Los Alamos, using a relativistic Fermi gas model with the calculated bound nucleon form factors. It is shown that the bound nucleon form factors reduce the total cross section by about 8% relative to that calculated with the free nucleon form factors, where most of the conventional calculations overestimate the total cross section data by about 30% to 100%.

  5. The effect of electron scattering from disordered grain boundaries on the resistivity of metallic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, Claudio [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile); Synopsys Inc., Avenida Vitacura 5250, Oficina 708, Vitacura, Santiago (Chile); Henriquez, Ricardo [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Casilla 110-V, Valparaíso (Chile); Moraga, Luis [Universidad Central de Chile, Toesca 1783, Santiago (Chile); Muñoz, Enrique [Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 7820436 (Chile); Munoz, Raul C., E-mail: ramunoz@ing.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Casilla 487-3, Santiago 8370449 (Chile)

    2015-02-28

    Highlights: • Quantum theory of the resistivity arising from electron-grain boundary scattering in nanometric metallic structures. • The resistivity is controlled by the collective properties of the grain assembly, by the allowed Kronig-Penney (KP) bands and by the electron transmission probability across successive grains. • When the grain diameter d is larger than the electron mean free path l, the increase in resistivity arises mainly from a decrease of the number of states at the Fermi surface that are allowed KP bands. • When the grain diameter d is smaller than the electron mean free path l, the increase in resistivity arises primarily from Anderson localization caused by electron transmission across successive grains. - Abstract: We calculate the electrical resistivity of a metallic specimen, under the combined effects of electron scattering by impurities, grain boundaries, and rough surfaces limiting the film, using a quantum theory based upon the Kubo formalism. Grain boundaries are represented by a one-dimensional periodic array of Dirac delta functions separated by a distance “d” giving rise to a Kronig–Penney (KP) potential. We use the Green's function built from the wave functions that are solutions of this KP potential; disorder is included by incorporating into the theory the probability that an electron is transmitted through several successive grain boundaries. We apply this new theory to analyze the resistivity of samples S1, S2, S7 and S8 measured between 4 and 300 K reported in Appl. Surf. Science273, 315 (2013). Although both the classical and the quantum theories predict a resistivity that agrees with experimental data to within a few percent or better, the phenomena giving rise to the increase of resistivity over the bulk are remarkably different. Classically, each grain boundary contributes to the electrical resistance by reflecting a certain fraction of the incoming electrons. In the quantum description, there are states

  6. 76 FR 2447 - Gulf War and Health, Volume 6, Physiologic, Psychologic, and Psychosocial Effects of Deployment...

    Science.gov (United States)

    2011-01-13

    ... AFFAIRS Gulf War and Health, Volume 6, Physiologic, Psychologic, and Psychosocial Effects of Deployment... authority granted by the Persian Gulf War Veterans Act of 1998, Public Law 105-277, title XVI, 112 Stat..., ``Gulf War and Health, Volume 6, Physiologic, Psychologic, and Psychosocial Effects of Deployment-Related...

  7. The effects of different syringe volume, needle size and sample volume on blood gas analysis in syringes washed with heparin

    Science.gov (United States)

    Küme, Tuncay; Şişman, Ali Rıza; Solak, Ahmet; Tuğlu, Birsen; Çinkooğlu, Burcu; Çoker, Canan

    2012-01-01

    Introductıon: We evaluated the effect of different syringe volume, needle size and sample volume on blood gas analysis in syringes washed with heparin. Materials and methods: In this multi-step experimental study, percent dilution ratios (PDRs) and final heparin concentrations (FHCs) were calculated by gravimetric method for determining the effect of syringe volume (1, 2, 5 and 10 mL), needle size (20, 21, 22, 25 and 26 G) and sample volume (0.5, 1, 2, 5 and 10 mL). The effect of different PDRs and FHCs on blood gas and electrolyte parameters were determined. The erroneous results from nonstandardized sampling were evaluated according to RiliBAK’s TEa. Results: The increase of PDRs and FHCs was associated with the decrease of syringe volume, the increase of needle size and the decrease of sample volume: from 2.0% and 100 IU/mL in 10 mL-syringe to 7.0% and 351 IU/mL in 1 mL-syringe; from 4.9% and 245 IU/mL in 26G to 7.6% and 380 IU/mL in 20 G with combined 1 mL syringe; from 2.0% and 100 IU/mL in full-filled sample to 34% and 1675 IU/mL in 0.5 mL suctioned sample into 10 mL-syringe. There was no statistical difference in pH; but the percent decreasing in pCO2, K+, iCa2+, iMg2+; the percent increasing in pO2 and Na+ were statistical significance compared to samples full-filled in syringes. The all changes in pH and pO2 were acceptable; but the changes in pCO2, Na+, K+ and iCa2+ were unacceptable according to TEa limits except fullfilled-syringes. Conclusions: The changes in PDRs and FHCs due nonstandardized sampling in syringe washed with liquid heparin give rise to erroneous test results for pCO2 and electrolytes. PMID:22838185

  8. Accounting for the effect of horizontal gradients in limb measurements of scattered sunlight

    Directory of Open Access Journals (Sweden)

    J. Puķīte

    2008-06-01

    Full Text Available Limb measurements provided by the SCanning Imaging Absorption spectrometer for Atmospheric CHartographY (SCIAMACHY on the ENVISAT satellite allow retrieving stratospheric profiles of various trace gases on a global scale, among them BrO for the first time. For limb observations in the UV/VIS spectral region the instrument measures scattered light with a complex distribution of light paths: the light is measured at different tangent heights and can be scattered or absorbed in the atmosphere or reflected by the ground. By means of spectroscopy and radiative transfer modelling these measurements can be inverted to retrieve the vertical distribution of stratospheric trace gases.

    The fully spherical 3-D Monte Carlo radiative transfer model "Tracy-II" is applied in this study. The Monte Carlo method benefits from conceptual simplicity and allows realizing the concept of full spherical geometry of the atmosphere and also its 3-D properties, which is important for a realistic description of the limb geometry. Furthermore it allows accounting for horizontal gradients in the distribution of trace gases.

    In this study the effect of horizontally inhomogeneous distributions of trace gases along flight/viewing direction on the retrieval of profiles is investigated. We introduce a tomographic method to correct for this effect by combining consecutive limb scanning sequences and utilizing the overlap in their measurement sensitivity regions. It is found that if horizontal inhomogenity is not properly accounted for, typical errors of 20% for NO2 and up to 50% for OClO around the altitude of the profile peak can arise for measurements close to the Arctic polar vortex boundary in boreal winter.

  9. Partial Wave Analysis of Scattering with Nonlocal Aharonov-Bohm Effect and Anomalous Cross Section induced by Quantum Interference

    CERN Document Server

    Lin, D H

    2003-01-01

    Partial wave theory of a three dmensional scattering problem for an arbitray short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a ``hard shere'' like potential and the magnetic flux is examined. An anomalous total cross section is revealed at the specific quantized magnetic flux at low energy which helps explain the composite fermion and boson model in the fractional quantum Hall effect. Since the nonlocal quantum interference of magnetic flux on the charged particles is universal, the nonlocal effect is expected to appear in quite general potential system and will be useful in understanding some other phenomena in mesoscopic phyiscs.

  10. PROFOUND AND SEXUALLY DIMORPHIC EFFECTS OF CLINICALLY-RELEVANT LOW DOSE SCATTER IRRADIATION ON THE BRAIN AND BEHAVIOR

    Directory of Open Access Journals (Sweden)

    Anna eKovalchuk

    2016-06-01

    Full Text Available Irradiated cells can signal damage and distress to both close and distant neighbors that have not been directly exposed to the radiation (naïve bystanders. While studies have shown that such bystander effects occur in the shielded brain of animals upon body irradiation, their mechanism remains unexplored. Observed effects may be caused by some blood-borne factors; however they may also be explained, at least in part, by very small direct doses received by the brain that result from scatter or leakage. In order to establish the roles of low doses of scatter irradiation in the brain response, we developed a new model for scatter irradiation analysis whereby one rat was irradiated directly at the liver and the second rat was placed adjacent to the first and received a scatter dose to its body and brain. This work focuses specifically on the response of the latter rat brain to the low scatter irradiation dose. Here, we provide the first experimental evidence that very low, clinically relevant doses of scatter irradiation alter gene expression, induce changes in dendritic morphology, and lead to behavioral deficits in exposed animals. The results showed that exposure to radiation doses as low as 0.115 cGy caused changes in gene expression and reduced spine density, dendritic complexity, and dendritic length in the prefrontal cortex tissues of females, but not males. In the hippocampus, radiation altered neuroanatomical organization in males, but not in females. Moreover, low dose radiation caused behavioral deficits in the exposed animals. This is the first study to show that low dose scatter irradiation influences the brain and behavior in a sex-specific way.

  11. Radiation Dose-Volume Effects In the Esophagus

    Science.gov (United States)

    Werner-Wasik, Maria; Yorke, Ellen; Deasy, Joseph; Nam, Jiho; Marks, Lawrence B.

    2013-01-01

    Publications relating esophageal radiation toxicity to clinical variables and to quantitative dose and dose–volume measures derived from three-dimensional conformal radiotherapy for non–small-cell lung cancer are reviewed. A variety of clinical and dosimetric parameters have been associated with acute and late toxicity. Suggestions for future studies are presented. PMID:20171523

  12. Effective-Range Expansion of Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential

    Science.gov (United States)

    Fukukawa, K.; Fujiwara, Y.

    2011-05-01

    The S-wave effective-range parameters of the neutron-deuteron (nd) scattering are calculated in the Faddeev formalism using a nonlocal Gaussian potential based on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy eigenphase shift is sufficiently attractive to reproduce predictions by the AV18 plus Urbana three-body force, yielding almost correct values of the scattering length and the triton binding energy without the three-nucleon force. This feature is due to the strong distortion effect of the deuteron in this spin channel, which is very sensitive to the nonlocal description of the short-range repulsion in the quark-model nucleon-nucleon interaction. We incorporate the Coulomb force by extending the framework of the Coulomb externally corrected approximation and calculate the differential cross sections of the pd scattering.

  13. Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering

    CERN Document Server

    Diener, K P O; Hollik, W

    2005-01-01

    A previous calculation of electroweak O(alpha) corrections to deep-inelastic neutrino scattering, as e.g. measured by NuTeV and NOMAD, is supplemented by higher-order effects. In detail, we take into account universal two-loop effects from \\Delta\\alpha and \\Delta\\rho as well as higher-order final-state photon radiation off muons in the structure function approach. Moreover, we make use of the recently released O(alpha)-improved parton distributions MRST2004QED and identify the relevant QED factorization scheme, which is DIS like. As a technical byproduct, we describe slicing and subtraction techniques for an efficient calculation of a new type of real corrections that are induced by the generated photon distribution. A numerical discussion of the higher-order effects suggests that the remaining theoretical uncertainty from unknown electroweak corrections is dominated by non-universal two-loop effects and is of the order 0.0003 when translated into a shift in sin^2\\theta_W=1-MW^2/MZ^2. The O(alpha) corrections...

  14. Gravitational scattering, post-Minkowskian approximation and Effective One-Body theory

    CERN Document Server

    Damour, Thibault

    2016-01-01

    A novel approach to the Effective One-Body description of gravitationally interacting two-body systems is introduced. This approach is based on the post-Minkowskian approximation scheme (perturbation theory in G, without assuming small velocities), and employs a new dictionary focussing on the functional dependence of the scattering angle on the total energy and the total angular momentum of the system. Using this approach, we prove to all orders in v/c two results that were previously known to hold only to a limited post-Newtonian accuracy: (i) the relativistic gravitational dynamics of a two-body system is equivalent, at first post-Minkowskian order, to the relativistic dynamics of an effective test particle moving in a Schwarzschild metric; and (ii) this equivalence requires the existence of an exactly quadratic map between the real (relativistic) two-body energy and the (relativistic) energy of the effective particle. The same energy map is also shown to apply to the effective one-body description of two ...

  15. The effect of hospital volume on patient outcomes in severe acute pancreatitis

    Directory of Open Access Journals (Sweden)

    Shen Hsiu-Nien

    2012-08-01

    Full Text Available Abstract Background We investigated the relation between hospital volume and outcome in patients with severe acute pancreatitis (SAP. The determination is important because patient outcome may be improved through volume-based selective referral. Methods In this cohort study, we analyzed 22,551 SAP patients in 2,208 hospital-years (between 2000 and 2009 from Taiwan’s National Health Insurance Research Database. Primary outcome was hospital mortality. Secondary outcomes were hospital length of stay and charges. Hospital SAP volume was measured both as categorical and as continuous variables (per one case increase each hospital-year. The effect was assessed using multivariable logistic regression models with generalized estimating equations accounting for hospital clustering effect. Adjusted covariates included patient and hospital characteristics (model 1, and additional treatment variables (model 2. Results Irrespective of the measurements, increasing hospital volume was associated with reduced risk of hospital mortality after adjusting the patient and hospital characteristics (adjusted odds ratio [OR] 0.995, 95% confidence interval [CI] 0.993-0.998 for per one case increase. The patients treated in the highest volume quartile (≥14 cases per hospital-year had 42% lower risk of hospital mortality than those in the lowest volume quartile (1 case per hospital-year after adjusting the patient and hospital characteristics (adjusted OR 0.58, 95% CI 0.40-0.83. However, an inverse relation between volume and hospital stay or hospital charges was observed only when the volume was analyzed as a categorical variable. After adjusting the treatment covariates, the volume effect on hospital mortality disappeared regardless of the volume measures. Conclusions These findings support the use of volume-based selective referral for patients with SAP and suggest that differences in levels or processes of care among hospitals may have contributed to the volume

  16. Effects of passive heating on central blood volume and ventricular dimensions in humans

    DEFF Research Database (Denmark)

    Crandall, C.G.; Wilson, T.E.; Marving, J.;

    2008-01-01

    Mixed findings regarding the effects of whole-body heat stress on central blood volume have been reported. This study evaluated the hypothesis that heat stress reduces central blood volume and alters blood volume distribution. Ten healthy experimental and seven healthy time control (i.e. non-heat...... plus central vasculature (17 +/- 2%), thorax (14 +/- 2%), inferior vena cava (23 +/- 2%) and liver (23 +/- 2%) (all P Udgivelsesdato: 2008/1/1...

  17. Combining ordinary and topological finite volume effects for fixed topology simulations

    CERN Document Server

    Dromard, Arthur; Gerber, Urs; Mejía-Díaz, Héctor; Wagner, Marc

    2015-01-01

    In lattice quantum field theories with topological sectors, simulations at fine lattice spacings --- with typical algorithms --- tend to freeze topologically. In such cases, specific topological finite size effects have to be taken into account to obtain physical results, which correspond to infinite volume or unfixed topology. Moreover, when a theory like QCD is simulated in a moderate volume, one also has to overcome ordinary finite volume effects (not related to topology freezing). To extract physical results from simulations affected by both types of finite volume effects, we extend a known relation between hadron masses at fixed and unfixed topology by additionally incorporating ordinary finite volume effects. We present numerical results for SU(2) Yang-Mills theory.

  18. Effects of Raman scattering in quantum state-preserving frequency conversion

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Andersen, Lasse Mejling; Castaneda, Mario A. Usuga;

    2014-01-01

    We analyse frequency conversion by Bragg scattering numerically including Raman scattering. The frequency configuration that performs the best under influence of Raman noise results in 95% conversion over a 3.25 THz bandwidth with a 2.5-dB noise figure....

  19. Effects of multiple scattering on light pulses reflected by turbid atmospheres

    Science.gov (United States)

    Weinman, J. A.

    1976-01-01

    Multiple scattering contributions to lidar returns from turbid atmospheres are derived by means of an analytical theory. It is assumed that scattering takes place mainly at small angles except for one event that scatters the light backward. The phase functions are approximated by the sum of Gaussian functions of the scattering angle in both the forward and backward directions. The three-dimensional radiative transfer equation is transformed to a one-dimensional problem by means of Fourier transforms. Neumann solutions to the transformed equation of radiative transfer are then found. A number of examples are presented for cloud, fog and haze models. The results are found to be in satisfactory agreement with results obtained from the Monte Carlo analysis of Kunkel (1974) and the theory of light pulses doubly scattered by turbid atmospheres which was developed by Eloranta (1972).

  20. Effect of hydration status on atrial and ventricular volumes and function in healthy adult volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Schantz, Daryl I. [The Hospital for Sick Children, The Labatt Family Heart Centre in the Department of Paediatrics, Toronto, ON (Canada); University of Manitoba, Variety Children' s Heart Centre, Winnipeg, MB (Canada); Dragulescu, Andreea [The Hospital for Sick Children, The Labatt Family Heart Centre in the Department of Paediatrics, Toronto, ON (Canada); Memauri, Brett [University of Manitoba, Department of Radiology, St. Boniface General Hospital, Winnipeg, MB (Canada); Grotenhuis, Heynric B. [The Hospital for Sick Children, The Labatt Family Heart Centre in the Department of Paediatrics, Toronto, ON (Canada); Wilhelmina Children' s Hospital, Utrecht (Netherlands); Seed, Mike; Grosse-Wortmann, Lars [The Hospital for Sick Children, The Labatt Family Heart Centre in the Department of Paediatrics, Toronto, ON (Canada); The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada)

    2016-10-15

    Assessment of cardiac chamber volumes is a fundamental part of cardiac magnetic resonance (CMR) imaging. While the effects of inter- and intraobserver variability have been studied and have a recognized effect on the comparability of serial cardiac MR imaging studies, the effect of differences in hydration status has not been evaluated. To evaluate the effects of volume administration on cardiac chamber volumes. Thirteen healthy adults underwent a baseline cardiac MR to evaluate cardiac chamber volumes after an overnight fast. They were then given two saline boluses of 10 ml/kg of body weight and the cardiac MR was repeated immediately after each bolus. From the baseline scan to the final scan there was a significant increase in all four cardiac chamber end-diastolic volumes. Right atrial volumes increased 8.0%, from 61.1 to 66.0 ml/m2 (P<0.001), and left atrial volumes increased 10.0%, from 50.0 to 55.0 ml/m2 (P<0.001). Right ventricular volumes increased 6.0%, from 91.1 to 96.5 ml/m2 (P<0.001), and left ventricular volumes increased 3.2%, from 87.0 to 89.8 ml/m2 (P<0.001). Hydration status has a significant effect on the end-diastolic volumes of all cardiac chambers assessed by cardiac MR. Thus, hydration represents a ''variable'' that should be taken into account when assessing cardiac chamber volumes, especially when performing serial imaging studies in a patient. (orig.)

  1. Transport properties of chemically synthesized MoS2 - Dielectric effects and defects scattering

    Science.gov (United States)

    Mongillo, Massimo; Chiappe, Daniele; Arutchelvan, Goutham; Asselberghs, Inge; Perucchini, Marta; Manfrini, Mauricio; Lin, Dennis; Huyghebaert, Cedric; Radu, Iuliana

    2016-12-01

    We report on the electrical characterization of synthetic, large-area MoS2 layers obtained by the sulfurization technique. The effects of dielectric encapsulation and localized defect states on the intrinsic transport properties are explored with the aid of temperature-dependent measurements. We study the effect of dielectric environment by transferring as-grown MoS2 films into different dielectrics such as SiO2, Al2O3, HfO2, and ZrO2 with increasing dielectric permittivity. Electrical data are collected on a statistically-relevant device ensemble and allow to assess device performances on a large scale assembly. Our devices show relative in-sensitiveness of mobility with respect to dielectric encapsulation. We conclude that the device behavior is strongly affected by several scattering mechanisms of different origin that can completely mask any effect related to dielectric mismatch. At low temperatures, conductivity of the devices is thermally activated, a clear footprint of the existence of a mobility edge separating extended states in the conduction band from impurity states in the band-gap.

  2. Magnetic field effects on the electron Raman scattering in coaxial cylindrical quantum well wires

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, G., E-mail: grezaei2001@gmail.com [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Karimi, M.J.; Pakarzadeh, H. [Department of Physics, College of Sciences, Shiraz University of Technology, Shiraz 71555-313 (Iran, Islamic Republic of)

    2013-11-15

    Based on the effective mass and parabolic one band approximations, the influence of an external magnetic field on the differential cross-section for the intersubband electron Raman scattering process in coaxial cylindrical quantum well wires is investigated. The dependence of differential cross-section on magnetic field strength and structural parameters of the coaxial cylindrical quantum well wire is studied. It is found that the magnetic field strength and the geometrical size of the system have a great influence on the position of the singularities in the emission spectra. Moreover, one can control the frequency shift in the Raman spectrum by varying the magnetic field strength and the size of the coaxial cylindrical quantum well wire. -- Highlights: • Magnetic field effects on ERS in CCQWWs are investigated. • Light polarization vectors and geometrical size effects on the ERS are also studied. • Number, position and magnitude of the peaks depend on the magnetic field strength. • The light polarization vectors have a great influence on the magnitude of the peaks. • An increase in the size leads to the considerable changes in the emission spectra.

  3. On the Coulomb effect in laser-assisted proton scattering by a stationary atomic nucleus

    Science.gov (United States)

    Hrour, E.; Taj, S.; Chahboune, A.; El Idrissi, M.; Manaut, B.

    2017-06-01

    In the framework of the first Born approximation, we investigate the scenario where in addition to a laser field, a nuclear Coulomb field is also present to affect a proton. We work in the approximation in which the proton is considered to be a structureless spin 1/2 Dirac particle with a mass m p . Furthermore, in the laboratory system, the fixed nucleus is treated as a point-like Coulomb potential. In the presence of a laser field, and taking into account the Coulomb effect, the proton will be described by distorted Dirac-Volkov wave functions. The introduction of the Coulomb effect to both the incident and scattered proton will enhance the relativistic differential cross sections (RDCSs). Regarding the physical picture, it is found that for the various kinetic energies of the incident proton, the Coulomb effect can be neglected at high kinetic energies in this particular geometry. Therefore, Dirac-Volkov states are largely sufficient to describe the laser-dressed protons. The behavior of the various RDCSs versus the atomic number Z is also presented.

  4. Scattering from elastic sea beds: first-order theory.

    Science.gov (United States)

    Jackson, D R; Ivakin, A N

    1998-01-01

    A perturbation model for high-frequency sound scattering from an irregular elastic sea bed is considered. The sea bed is assumed homogeneous on the average and two kinds of irregularities are assumed to cause scattering: roughness of the water-sea bed interface and volume inhomogeneities of the sediment mass density and the speeds of compressional and shear waves. The first-order small perturbation approximation is used to obtain expressions for the scattering amplitude and bistatic scattering strength. The angular dependence of the scattering strength is calculated for sedimentary rock and the influence of shear elasticity is examined by comparison with the case of a fluid bottom. Shear effects are shown to be strong and complicated.

  5. Millimeter Wave Scattering from Neutral and Charged Water Droplets

    CERN Document Server

    Heifetz, Alexander; Liao, Shaolin; Gopalsami, N Sami; Raptis, A C Paul

    2010-01-01

    We investigated 94GHz millimeter wave (MMW) scattering from neutral and charged water mist produced in the laboratory with an ultrasonic atomizer. Diffusion charging of the mist was accomplished with a negative ion generator (NIG). We observed increased forward and backscattering of MMW from charged mist, as compared to MMW scattering from an uncharged mist. In order to interpret the experimental results, we developed a model based on classical electrodynamics theory of scattering from a dielectric sphere with diffusion-deposited mobile surface charge. In this approach, scattering and extinction cross-sections are calculated for a charged Rayleigh particle with effective dielectric constant consisting of the volume dielectric function of the neutral sphere and surface dielectric function due to the oscillation of the surface charge in the presence of applied electric field. For small droplets with (radius smaller than 100nm), this model predicts increased MMW scattering from charged mist, which is qualitative...

  6. Measurements of Relativistic Effects in Collective Thomson Scattering at Electron Temperatures less than 1 keV

    Energy Technology Data Exchange (ETDEWEB)

    Ross, James Steven [Univ. of California, San Diego, CA (United States)

    2010-01-01

    Simultaneous scattering from electron-plasma waves and ion-acoustic waves is used to measure local laser-produced plasma parameters with high spatiotemporal resolution including electron temperature and density, average charge state, plasma flow velocity, and ion temperature. In addition, the first measurements of relativistic modifications in the collective Thomson scattering spectrum from thermal electron-plasma fluctuations are presented [1]. Due to the high phase velocity of electron-plasma fluctuations, relativistic effects are important even at low electron temperatures (Te < 1 keV). These effects have been observed experimentally and agree well with a relativistic treatment of the Thomson scattering form factor [2]. The results are important for the interpretation of scattering measurements from laser produced plasmas. Thomson scattering measurements are used to characterize the hydrodynamics of a gas jet plasma which is the foundation for a broad series of laser-plasma interaction studies [3, 4, 5, 6]. The temporal evolution of the electron temperature, density and ion temperature are measured. The measured electron density evolution shows excellent agreement with a simple adiabatic expansion model. The effects of high temperatures on coupling to hohlraum targets is discussed [7]. A peak electron temperature of 12 keV at a density of 4.7 × 1020cm-3 are measured 200 μm outside the laser entrance hole using a two-color Thomson scattering method we developed in gas jet plasmas [8]. These measurements are used to assess laser-plasma interactions that reduce laser hohlraum coupling and can significantly reduce the hohlraum radiation temperature.

  7. Absence of gender effect on amygdala volume in temporal lobe epilepsy.

    Science.gov (United States)

    Silva, Ivaldo; Lin, Katia; Jackowski, Andrea P; Centeno, Ricardo da Silva; Pinto, Magali L; Carrete, Henrique; Yacubian, Elza M; Amado, Débora

    2010-11-01

    Sexual dimorphism has already been described in temporal lobe epilepsy with mesial temporal sclerosis (TLE-MTS). This study evaluated the effect of gender on amygdala volume in patients with TLE-MTS. One hundred twenty-four patients with refractory unilateral or bilateral TLE-MTS who were being considered for epilepsy surgery underwent a comprehensive presurgical evaluation and MRI. Amygdalas of 67 women (27 with right; 32 with left, and 8 with bilateral TLE) and 57 men (22 with right, 30 with left, and 5 with bilateral TLE) were manually segmented. Significant ipsilateral amygdala volume reduction was observed for patients with right and left TLE. No gender effect on amygdala volume was observed. Contralateral amygdalar asymmetry was observed for patients with right and left TLE. Although no gender effect was observed on amygdala volume, ipsilateral amygdala volume reductions in patients with TLE might be related to differential rates of cerebral maturation between hemispheres.

  8. Inhibition of Regulatory Volume Decrease Enhances the Cytocidal Effect of Hypotonic Shock in Hepatocellular Carcinoma.

    Science.gov (United States)

    Kudou, Michihiro; Shiozaki, Atsushi; Kosuga, Toshiyuki; Ichikawa, Daisuke; Konishi, Hirotaka; Morimura, Ryo; Komatsu, Shuhei; Ikoma, Hisashi; Fujiwara, Hitoshi; Okamoto, Kazuma; Hosogi, Shigekuni; Nakahari, Takashi; Marunaka, Yoshinori; Otsuji, Eigo

    2016-01-01

    Background : Hypotonic shock induces cytocidal effects through cell rupture, and cancer therapy based on this mechanism has been clinically administered to hepatocellular carcinoma patients. We herein investigated the effectiveness of hypotonic shock combined with the inhibition of regulatory volume decrease as cancer therapy for hepatocellular carcinoma. Methods : Morphological changes in human hepatocellular carcinoma cell lines were observed under a differential interference contrast microscope connected to a high-speed digital video camera. Cell volume changes under hypotonic shock with or without chloride, potassium, or water channel blockers were observed using a high-resolution flow cytometer. In order to investigate cytocidal effects, the number of surviving cells was compared after exposure to hypotonic solution with and without each channel blocker (re-incubation experiment). Results : Video recordings showed that cells exposed to distilled water rapidly swelled and then ruptured. Cell volume measurements revealed regulatory volume decrease under mild hypotonic shock, whereas severe hypotonic shock increased the number of broken fragments as a result of cell rupture. Moreover, regulatory volume decrease was inhibited in cells treated with each channel blocker. Re-incubation experiments showed the cytocidal effects of hypotonic shock in cells exposed to hypotonic solution, and additional treatments with each channel blocker enhanced these effects. Conclusion : The inhibition of regulatory volume decrease with chloride, potassium, or water channel blockers may enhance the cytocidal effects of hypotonic shock in hepatocellular carcinoma. Hypotonic shock combined with the inhibition of regulatory volume decrease was a more effective therapy than hypotonic shock alone.

  9. Electron Raman scattering in single and multilayered spherical quantum dots: Effects of hydrogenic impurity and geometrical size

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, M.J. [Department of Physics, College of Sciences, Shiraz University of Technology, Shiraz 71555-313 (Iran, Islamic Republic of); Rezaei, G., E-mail: grezaei@yu.ac.ir [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Pakarzadeh, H. [Department of Physics, College of Sciences, Shiraz University of Technology, Shiraz 71555-313 (Iran, Islamic Republic of)

    2013-11-01

    Based on the effective mass and parabolic one-band approximations, the differential cross-section for the intersubband electron Raman scattering process in a single and multilayered spherical quantum dots is investigated. The influence of an on-center hydrogenic impurity and geometrical parameters such as the well and barrier widths on the differential cross-section is studied. Results show that the number, the position and the magnitude of the peaks of emission spectra, considerably depend on the presence of the hydrogenic impurity as well as geometrical parameters. Results also reveal that the magnitude of the peaks significantly depend on the polarization vectors of incident and scattered lights.

  10. Effect of Time-Dependent Atomic Scattering Length on Solitons in Bose-Einstein Condensates with a Complex Potential

    Institute of Scientific and Technical Information of China (English)

    WANG Tian-Yuan

    2009-01-01

    We consider the one-dimensional nonlinear SchrSdinger equations that describe the dynamics of a Bose-Einstein Condensates with time-dependent scattering length in a complex potential.Our results show that as long as the integrable relation is satisfied, exact solutions of the one-dimensional nonlinear SchrSdinger equation can be found in a general closed form, and interactions between two solitons are modulated in a complex potential.We find that the changes of the scattering length and trapping potential can be effectively used to control the interaction between two bright soliton.

  11. Effective-Range Expansion of the Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential

    CERN Document Server

    Fukukawa, Kenji

    2010-01-01

    The S-wave effective range parameters of the neutron-deuteron (nd) scattering are derived in the Faddeev formalism, using a nonlocal Gaussian potential based on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy eigenphase shift is sufficiently attractive to reproduce predictions by the AV18 plus Urbana three-nucleon force, yielding the observed value of the doublet scattering length and the correct differential cross sections below the deuteron breakup threshold. This conclusion is consistent with the previous result for the triton binding energy, which is nearly reproduced by fss2 without reinforcing it with the three-nucleon force.

  12. The effect of caffeine on diaphragmatic activity and tival volume in preterm infants

    NARCIS (Netherlands)

    Kraaijenga, Juliette V.; Hutten, Gerard J.; Jongh, de Frans H.; Kaam, van Anton H.

    2015-01-01

    Objective To determine the effect of caffeine on diaphragmatic activity, tidal volume (Vt), and end-expiratory lung volume (EELV) in preterm infants. Study design Using transcutaneous electromyography of the diaphragm (dEMG), we measured diaphragmatic activity from 30 minutes before (baseline) to 3

  13. The Effect of a Finite Measurement Volume on Power Spectra from a Burst Type LDA

    DEFF Research Database (Denmark)

    Buchhave, Preben; Velte, Clara Marika; K. George, William

    2014-01-01

    We analyze the effects of a finite size measurement volume on the power spectrum computed fromdata acquired with a burst-type laser Doppler anemometer. The finite measurement volume causes temporal distortions in acquisition of the data resulting in phenomena such as finite processing time and de...

  14. Effect of muon-nuclear inelastic scattering on high-energy atmospheric muon spectrum at large depth underwater

    CERN Document Server

    Sinegovsky, S I; Lokhtin, K S; Takahashi, N

    2007-01-01

    The energy spectra of hadron cascade showers produced by the cosmic ray muons travelling through water as well as the muon energy spectra underwater at the depth up to 4 km are calculated with two models of muon inelastic scattering on nuclei, the recent hybrid model (two-component, 2C) and the well-known generalized ector-meson-dominance model for the comparison. The 2C model involves photonuclear interactions at low and moderate virtualities as well as the hard scattering including the weak neutral current processes. For the muon scattering off nuclei substantial uclear effects, shadowing, nuclear binding and Fermi motion of nucleons are taken into account. It is shown that deep nderwater muon energy spectrum calculated with the 2C model are noticeably distorted at energies above 100 TeV as compared to that obtained with the GVMD model.

  15. Diffuse Surface Scattering and Quantum Size Effects in the Surface Plasmon Resonances of Low Carrier Density Nanocrystals

    CERN Document Server

    Monreal, R Carmina; Apell, S Peter

    2016-01-01

    The detailed understanding of the physical parameters that determine Localized Surface Plasmon Resonances (LSPRs) is essential to develop new applications for plasmonics. A relatively new area of research has been opened by the identification of LSPRs in low carrier density systems obtained by doping semiconductor quantum dots. We investigate theoretically how diffuse surface scattering of electrons in combination with the effect of quantization due to size (QSE) impact the evolution of the LSPRs with the size of these nanosystems. Two key parameters are the length $R_0$ giving the strength of the QSE and the velocity $\\beta_T$ of the electronic excitations entering in the length scale for diffuse surface scattering. While the QSE itself only produces a blueshift in energy of the LSPRs, the diffuse surface scattering mechanism gives to both energy and linewidth an oscillatory-damped behavior as a function of size, with characteristic lengths that depend on material parameters. Thus, the evolution of the LSPRs...

  16. Light Scattering Reviews, Vol 6 Light Scattering and Remote Sensing of Atmosphere and Surface

    CERN Document Server

    Kokhanovsky, Alexander A

    2012-01-01

    This is the next volume in series of Light Scattering Reviews. Volumes 1-5 have already been printed by Springer. The volume is composed of several papers ( usually, 10) of leading researchers in the respective field. The main focus of this book is light scattering, radiative transfer and optics of snow.

  17. The simulation of multiple scattering and its effect on the detection limit of HIBS

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.M.; O`Connor, D.J. [Newcastle University, Newcastle, NSW (Australia). Dept. of Physics

    1998-06-01

    With the development of heavy ion backscattering spectrometry (HIBS) for the detection of trace impurities, it is necessary to quantify the multiple scattering contributions to the spectral background. In the present work, the Monte Carlo computer simulation program TRIM has been used to study the backscattering spectrum and the multiple scattering features for heavy ions C, Ne, Si, Ar and Kr impinging on four types of targets: a very thin layer Au with thickness of 10 Angstroms, a 10 Angstroms Au thin layer covering a 50 Angstroms Si thick layer, a 10 Angstroms Au thin layer covering on Si substrate (10000 Angstroms), and a thick target of pure Si with thickness of 10000 Angstroms. By fitting the simulation results we have derived the ratio of signal from the thin Au layer to the background due to multiple scattering. From the simulation results, we found that the Si substrate plays a role in generating the low energy background tail due to ion`s multiple scattering in the substrate. Such a background is generated neither by the thin Au layer nor by the pure Si substrate independently. The corresponding mechanism of multiple scattering in the target can be explained as one large-angle scattering event in Au layer and subsequently several small angle scattering events in the substrate. (authors). 4 refs., 1 tab., 3 figs.

  18. Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions

    Science.gov (United States)

    Siegel, R.; Spuckler, C. M.

    1993-01-01

    A simple set of equations is derived for predicting the temperature distribution and radiative energy flow in a semitransparent layer consisting of an arbitrary number of laminated sublayers that absorb, emit, and scatter radiation. Each sublayer can have a different refractive index and optical thickness. The plane composite region is heated on each exterior side by a different amount of incident radiation. The results are for the limiting case where heat conduction within the layers is very small relative to radiative transfer, and is neglected. The interfaces are assumed diffuse, and all interface reflections are included in the analysis. The thermal behavior is readily calculated from the analytical expressions that are obtained. By using many sublayers, the analytical expressions provide the temperature distribution and heat flow for a diffusing medium with a continuously varying refractive index, including internal reflection effects caused by refractive index gradients. Temperature and heat flux results are given to show the effect of variations in refractive index and optical thickness through the multilayer laminate.

  19. On the Effectiveness of the Dynamic Force Adjustment for Reducing the Scatter of Instrumented Charpy Results

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.

    2008-09-15

    One of the key factors for obtaining reliable instrumented Charpy results is the calibration of the instrumented striker. An interesting alternative to the conventional static calibration recommended by the standards is the Dynamic Force Adjustment (DFA), in which forces and displacements are iteratively adjusted until equality is achieved between absorbed energies calculated under the test record (Wt) and measured by the machine encoder (KV). In this study, this procedure has been applied to the instrumented data obtained by 10 international laboratories using notched and precracked Charpy specimens, in the framework of a Coordinated Research Project (CRP8) of IAEA. DFA is extremely effective in reducing the between-laboratory scatter for both general yield and maximum forces. The effect is less significant for dynamic reference temperatures measured from precracked Charpy specimens using the Master Curve procedure, but a moderate reduction of the standard deviation is anyway observed. It is shown that striker calibration is a prominent contribution to the interlaboratory variability of instrumented impact forces, particularly in the case of maximum forces.

  20. Optical limiting effect based on stimulated Brillouin scattering in CCl4

    Institute of Scientific and Technical Information of China (English)

    LueZhi-Wei; LueYue-Lan; YangJun

    2003-01-01

    The optical limiting effect based on stimulated Brillouin scattering(SBS) in a nonlinear medium was investigated. We numerically treated the nonlinear propagation process with a theoretical model, which includes the spontansous nature of the initiation of SBS, and obtained optical limiting effect in the process. Energy limiting,pulse reshaping and stabilization have been demonstrated on SBS mechanism with the nonlinear medium CCl4. The input optical signals were Nd:YAG nanosecond laser pulses with width varying from 16ns to 7ns then to 2ns, the relationship between the transmitted signal and launched pump signal was shown. In the experimental regime, the most stable pulse the transmitted signal and launched pump signal was shown. In the experimental regime, the most stable pulse and a superior energy stabilization of the transmitted pulse were obtained when the laser pulse-width became as short as 2ns. For the energy variation of laser pulses in a wide range of 14-88mJ, the output energy was limited in a quite narrow range 4.5-5.5mJ.

  1. Scaling violation and relativistic effective mass from quasielastic electron scattering: implications for neutrino reactions

    CERN Document Server

    Amaro, J E; Simo, I Ruiz

    2015-01-01

    The experimental data from quasielastic electron scattering from $^{12}$C are reanalyzed in terms of a new scaling variable suggested by the interacting relativistic Fermi gas with scalar and vector interactions, which is known to generate a relativistic effective mass for the interacting nucleons. By choosing a mean value of this relativistic effective mass $m_N^* =0.8 m_N$, we observe that most of the data fall inside a region around the inverse parabola-shaped universal scaling function of the relativistic Fermi gas. This suggests a method to select the subset of data that highlight the quasielastic region, about two thirds of the total 2,500 data. Regardless of the momentum and energy transfer, this method automatically excludes the data that are not dominated by the quasielastic process. The resulting band of data reflects deviations from the perfect universality, and can be used to characterize experimentally the quasielastic peak, despite the manifest scaling violation. Moreover we show that the spread...

  2. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  3. Effects of methylprednisolone on concanavalin A-induced human lymphocyte blastogenesis: a comparative analysis by flow cytometry, volume determination and /sup 3/H-thymidine incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Marder, P.; Schmidtke, J.R.

    1983-08-01

    The inhibition of concanavalin A-induced human peripheral blood lymphocyte blastogenesis by methylprednisolone (MP) was studied by using flow cytometry and tritiated thymidine (/sup 3/H-TdR) incorporation. Flow cytometric determinations of volume, low angle forward light scatter, and nucleic acid showed MP to be a potent inhibitor of blastogenesis. The effects were concentration-dependent and correlated with /sup 3/H-TdR uptake. By using the single cell analytic capability of flow cytometry, the target stages of the cell cycle where MP affects lymphocyte activation were determined. Evidence is presented that steroids can block both early and late phases of this process.

  4. Radiation Reaction Effects in Cascade Scattering of Intense, Tightly Focused Laser Pulses by Relativistic Electrons

    CERN Document Server

    Zhidkov, A; Bulanov, S S; Hosokai, T; Koga, J; Kodama, R

    2013-01-01

    Non-linear cascade scattering of intense, tightly focused laser pulses by relativistic electrons is studied numerically in the classical approximation including the radiation damping for the quantum parameter hwx-ray/E<1 and an arbitrary radiation parameter Kai. The electron energy loss, along with its side scattering by the ponderomotive force, makes the scattering in the vicinity of high laser field nearly impossible at high electron energies. The use of a second, co-propagating laser pulse as a booster is shown to solve this problem.

  5. Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers.

    Science.gov (United States)

    Etxebarria, J; Ortega, J; Folcia, C L; Sanz-Enguita, G; Aramburu, I

    2015-04-01

    We have studied the degradation process of the laser emission in a cholesteric liquid crystal laser. We have found that there exists a negative correlation between the laser efficiency and the amount of light scattered by the liquid-crystal sample in the illuminated area. The growth of scattering is attributed to the appearance of small imperfections generated in the sample as a result of certain thermal processes that involve the dye molecules. The scattering implies an increase of the coefficient of distributed losses, which is the main response of the rise of the laser threshold.

  6. ICO Topical Meeting on Atmospheric, Volume and Surface Scattering and Propagation Held in Florence, Italy on 27-30 August 1991

    Science.gov (United States)

    1991-01-01

    Research Office * Banca Toscana Under the Auspices of - Italian Commission of Optics-ClO - European Optical Society - EOS - European Physical Society...invoke the central -limit theorem and claim that the sum of the scattered fields is a circular-Gaussian random variable. This implies that the received...factors from all of the eddies along the path. Therefore, if we assume that many such eddies exist, we can invoke the central -limit theorem to claim

  7. Effect of volume fraction on granular avalanche dynamics.

    Science.gov (United States)

    Gravish, Nick; Goldman, Daniel I

    2014-09-01

    We study the evolution and failure of a granular slope as a function of prepared volume fraction, ϕ(0). We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45° angle while we monitor the motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the tilt process depended sensitively on ϕ(0)∈[0.58-0.63] and differed above or below the granular critical state, ϕ(c), defined as the onset of dilation as a function of increasing volume fraction. For ϕ(0)-ϕ(c)avalanche. Precursor compaction events began at an initial angle θ(0)=7.7±1.4° and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θ(m)=28.5±1.0°. Granular material at ϕ(0)-ϕ(c)>0 did not experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ(0)=32.1±1.5° prior to the onset of an avalanche at θ(m)=35.9±0.7°. Both θ(0) and θ(m) increased with ϕ(0) and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest, θ(R)=22±2°, was independent of ϕ(0). From side-view high-speed video, we measured the velocity field of intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by ϕ(0), with ϕ(0)-ϕ(c)0. Our study elucidates how initial conditions-including volume fraction-are important determinants of granular slope stability and the onset of avalanches.

  8. Dyson equation for electromagnetic scattering of heterogeneous media with spatially disordered particles: properties of the effective medium

    Science.gov (United States)

    Berginc, G.

    2016-08-01

    In this paper, we consider the coherent component of the electromagnetic wave field inside random media. The subject of our interest concerns a random medium, consisting of a statistical ensemble of different scattering species and artificial material structures developed on base of dielectric or metallic resonant or non-resonant particles. The starting point of our theory is the multiple scattering theory, the averaged electric field satisfies a Dyson equation with a mass operator related to the effective dielectric permittivity of the homogenized structure. Quantum multiple scattering theory has been transposed into this electromagnetic case. We give a formal solution for the mass operator by introducing the T-matrix formalism. We show that the T-matrix satisfies a Lippman-Schwinger equation. Then, we introduce the Quasi-Crystalline Coherent Potential Approximation (QC-CPA), which takes into account the correlation between the particles with a pair-distribution function. The mass operator includes geometric effects, caused by resonant behavior due to the shape and size of particles, cluster effects because of correlations between particles. Significant modifications of particle scattering properties can be observed.

  9. Scattering anomaly in optics

    CERN Document Server

    Silveirinha, Mario G

    2016-01-01

    In time-reversal invariant electronic systems the scattering matrix is anti-symmetric. This property enables an effect, designated here as "scattering anomaly", such that the electron transport does not suffer from back reflections, independent of the specific geometry of the propagation path or the presence of time-reversal invariant defects. In contrast, for a generic time-reversal invariant photonic system the scattering matrix is symmetric and there is no similar anomaly. Here, it is theoretically proven that despite these fundamental differences there is a wide class of photonic platforms - in some cases formed only by time-reversal invariant media - in which the scattering anomaly can occur. It is shown that an optical system invariant under the action of the composition of the time-reversal, parity and duality operators is characterized by an anti-symmetric scattering matrix. Specific examples of photonic platforms wherein the scattering anomaly occurs are given, and it is demonstrated with full wave n...

  10. Conductivity of disordered 2d binodal Dirac electron gas: Effect of the internode scattering

    CERN Document Server

    Sinner, Andreas

    2016-01-01

    We study the dc conductivity of a weakly disordered 2d Dirac electron gas with two bands and two spectral nodes, employing a field theoretical version of the Kubo--Greenwood conductivity formula. In this paper we are concerned with the question how the internode scattering affects the conductivity. We use and compare two established techniques for treating the disorder scattering: The perturbation theory, there ladder and maximally crossed diagrams are summed up, and the functional integral approach. Both turn out to be entirely equivalent. For a large number of random potential configurations we have found only two different conductivity scenarios. Both scenarios appear independently of whether the disorder does or does not create the internode scattering. In particular we do not confirm the conjecture that the internode scattering tends to Anderson localization.

  11. Investigations of scattering and field enhancement effects in retardation-based plasmonic nanoantennas

    DEFF Research Database (Denmark)

    Nielsen, M. G.; Pors, A.; Nielsen, Rasmus Bundgaard;

    2010-01-01

    Modifications in scattering strength of and local field enhancement by retardation-based plasmonic nanoantennas when being transformed from straight nanorods to split-rings are investigated. The scattering properties are monitored by linear reflection and extinction spectroscopy whereas local field......, a feature that we attribute to the decrease in the nanoantenna electric-dipole response in tact with its bending. The experimental observations are corroborated with numerical simulations using the finite-element method....

  12. Analysis on the Light-Scattering Effect in Dye-Sensitized Solar Cell according to the TiO2 Structural Differences

    Directory of Open Access Journals (Sweden)

    Min-Kyu Son

    2012-01-01

    Full Text Available A light-scattering layer is widely used in highly efficient dye-sensitized solar cells (DSCs because it improves the light-harvesting ability of a DSC by reflecting the light passing through the transparent TiO2 layer. Among many parameters affecting this light-scattering effect, the thickness of the TiO2 photoelectrode is also a significant parameter. However, most studies regarding the influence of the TiO2 photoelectrode thickness on the light-scattering effect have only focused on the thickness of the transparent TiO2 layer and have ignored the light-scattering layer thickness itself. Therefore, in this study, we analyzed the light scattering effect according to the thickness of the light-scattering layer and the resulting photovoltaic performance of the DSC. Finally, it was confirmed that the light-scattering effect is enhanced to some degree with the increase of the light-scattering layer thickness, while it is weakened when the light-scattering layer thickness is further increased.

  13. Nuclear effects and neutron structure in deeply virtual Compton scattering off 3He

    CERN Document Server

    Rinaldi, Matteo

    2014-01-01

    The study of nuclear generalized parton distributions (GPDs) could be a crucial achievement of hadronic physics since they open new ways to obtain new information on the structure of bound nucleons, in particular, to access the neutron GPDs. Here, the results of calculations of 3He GPDs in Impulse Approximation are presented. The calculation of the sum of GPDs H + E, and "tilde H", with the correct limits, will be shown. These quantities, at low momentum transfer, are largely dominated by the neutron contribution so that 3He is an ideal target for these kind of studies. Nevertheless the extraction of neutron information from future 3He data could be non trivial. A procedure, which takes into account nuclear effects encoded in IA, is presented. The calculation of H,E and "tilde H" allows also to evaluate the cross section asymmetries for deeply virtual compton scattering at Jefferson Lab kinematics. Thanks to these observations, DVCS off 3He could be an ideal process to access the neutron information in the ne...

  14. The effect of planet-planet scattering on the survival of exomoons

    CERN Document Server

    Gong, Yan-Xiang; Xie, Ji-Wei; Wu, Xiao-Mei; 10.1088/2041-8205/769/1/L14

    2013-01-01

    Compared to the giant planets in the solar system, exoplanets have many remarkable properties such as the prevalence of giant planets on eccentric orbits and the presence of hot Jupiters. Planet-planet scattering (PPS) between giant planets is a possible mechanism in interpreting above and other observed properties. If the observed giant planet architectures are indeed the outcomes of PPS, such drastic dynamical process must affect their primordial moon systems. In this Letter, we discuss the effect of the PPS on the survival of their regular moons. From the viewpoint of observations, some preliminary conclusions are drawn from the simulations. 1. PPS is a destructive process to the moon systems, single planets on eccentric orbits are not the ideal moon-search targets. 2. If hot Jupiters formed through PPS, their original moons have little chance to survive. 3. Planets in multiple systems with small eccentricities are more likely holding their primordial moons. 4. Compared to the lower-mass planets, the massi...

  15. Two-photon-exchange effects in the unpolarized μ p scattering within a hadronic model

    Science.gov (United States)

    Zhou, Hai-Qing

    2017-02-01

    In this work, the two-photon-exchange (TPE) effects in the unpolarized μ p scattering are discussed within the hadronic model where the intermediate states N ,Δ , and σ are considered. The contribution from the N intermediate is close to the results given by Tomalak and Vanderhaeghen [Phys. Rev. D 90, 013006 (2014)], 10.1103/PhysRevD.90.013006 at small Q , and there is a sizable difference when Q >0.25 GeV (where Q2 is the four-momentum transfer). The contributions from the Δ and the σ intermediate states are much smaller than that from the N intermediate at small Q . In the kinematic region with ki⊆[0.01 ,0.3 ] GeV and Q ≤0.4 GeV (where ki is the three-momentum of initial muon in the laboratory frame), a naive expression for the TPE contributions is given, which can be used directly for other analysis.

  16. Compton scattering from the proton in an effective field theory with explicit Delta degrees of freedom

    CERN Document Server

    McGovern, Judith A; Grießhammer, Harald W

    2012-01-01

    We analyse the proton Compton-scattering differential cross section for photon energies up to 325 MeV using Chiral Effective Field Theory and extract new values for the electric and magnetic polarisabilities of the proton. Our EFT treatment builds in the key physics in two different regimes: photon energies around the pion mass ("low energy") and the higher energies where the Delta(1232) resonance plays a key role. The Compton amplitude is complete at N4L0, O(e^2 delta^4), in the low-energy region, and at NLO, O(e^2 delta^0), in the resonance region. Throughout, the Delta-pole graphs are dressed with pi-N loops and gamma-N-Delta vertex corrections. A statistically consistent database of proton Compton experiments is used to constrain the free parameters in our amplitude: the M1 gamma-N-Delta transition strength b_1 (which is fixed in the resonance region) and the polarisabilities alpha and beta (which are fixed from data below 170 MeV). In order to obtain a reasonable fit we find it necessary to add the spin ...

  17. Scattering effect in radiative heat transfer during selective laser sintering of polymers

    Science.gov (United States)

    Liu, Xin; Boutaous, M'hamed; Xin, Shihe

    2016-10-01

    The aim of this work is to develop an accurate model to simulate the selective laser sintering (SLS) process, in order to understand the multiple phenomena occurring in the material and to study the influence of each parameter on the quality of the sintered parts. A numerical model, coupling radiative and conductive heat transfers in a polymer powder bed providing a local temperature field, is proposed. To simulate the polymer sintering by laser heating as in additive manufacturing, a double-lines scanning of a laser beam over a thin layer of polymer powder is studied. An effective volumetric heat source, using a modified Monte Carlo method, is estimated from laser radiation scattering and absorption in a semi-transparent polymer powder bed. In order to quantify the laser-polymer interaction, the heating and cooling of the material is modeled and simulated with different types heat sources by both finite elements method (FEM) and discrete elements method (DEM). To highlight the importance of introducing a semi-transparent behavior of such materials and in order to validate our model, the results are compared with works taken from the literature.

  18. Total-dose radiation effects data for semiconductor devices, volume 3

    Science.gov (United States)

    Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.

    1982-09-01

    Volume 3 of this three-volume set provides a detailed analysis of the data in Volumes 1 and 2, most of which was generated for the Galileo Orbiter Program in support of NASA space programs. Volume 1 includes total ionizing dose radiation test data on diodes, bipolar transistors, field effect transistors, and miscellaneous discrete solid-state devices. Volume 2 includes similar data on integrated circuits and a few large-scale integrated circuits. The data of Volumes 1 and 2 are combined in graphic format in Volume 3 to provide a comparison of radiation sensitivities of devices of a given type and different manufacturer, a comparison of multiple tests for a single data code, a comparison of multiple tests for a single lot, and a comparison of radiation sensitivities vs time (date codes). All data were generated using a steady-state 2.5-MeV electron source (Dynamitron) or a Cobalt-60 gamma ray source. The data that compose Volume 3 represent 26 different device types, 224 tests, and a total of 1040 devices. A comparison of the effects of steady-state electrons and Cobat-60 gamma rays is also presented.

  19. Surface-enhanced Raman scattering: effective optical constants for electric field modelling of nanostructured Ag films

    Science.gov (United States)

    Perera, M. Nilusha M. N.; Schmidt, Daniel; Gibbs, W. E. Keith; Juodkazis, Saulius; Stoddart, Paul R.

    2016-09-01

    Surface-enhanced Raman scattering (SERS) is drawing increasing interest in fields such as chemical and biomolecular sensing, nanoscale plasmonic engineering and surface science. In addition to the electromagnetic and chemical enhancements in SERS, several studies have reported a "back-side" enhancement when nanostructures are excited through a transparent base rather than directly through air. This additional enhancement has been attributed to a local increase in the electric field for propagation from high to low refractive index media. In this study, Mueller matrix ellipsometry was used to derive the effective optical constants of Ag nanostructures fabricated by thermal evaporation at oblique angles. The results confirm that the effective optical constants of the nanostructured Ag film depart substantially from the bulk properties. Detailed analysis suggests that the optical constants of the nano-island Ag structures exhibit uniaxial optical properties with the optical axis inclined from the substrate normal towards the deposition direction of the vapour flux. The substrates were functionalized with thiophenol and used to measure the wavelength dependence of the additional SERS signal. Further, a model based on the Fresnel equations was developed, using the Ag film optical constants and thickness as determined by ellipsometry. Both experimental data and the model show a significant additional enhancement in the back-side SERS, blue shifted from the plasmon resonance of the nanostructures. This information will be useful for a range of applications where it is necessary to understand the effective optical behaviour of thin films and in designing miniaturized optical fibre sensors for remote sensing applications.

  20. Effect of raised thoracic pressure and volume on 99mTc-DTPA clearance in humans

    Energy Technology Data Exchange (ETDEWEB)

    Nolop, K.B.; Maxwell, D.L.; Royston, D.; Hughes, J.M.

    1986-05-01

    Although positive airway pressure is often used to treat acute pulmonary edema, the effects on epithelial solute flux are not well known. We measured independently the effect of 1) positive pressure and 2) voluntary hyperinflation on the clearance of inhaled technetium-99m-labeled diethylenetriaminepentaacetic acid (/sup 99m/Tc-DTPA) in six nonsmokers and six smokers. Lung volumes were monitored by inductance plethysmography. Each subject was studied in four situations: 1) low end-expiratory volume (LO-), 2) low volume plus 9 cmH2O continuous positive airway pressure (LO+), 3) high end-expiratory volume (HI-), and 4) high volume plus continuous positive airway pressure (HI+). The clearance half time of 99mTc-DTPA for the nonsmokers decreased from 64.8 +/- 7.0 min (mean +/- SE) at LO- to 23.2 +/- 5.3 min at HI- (P less than 0.05). Positive pressure had no synergistic effect. The mean clearance half time for the smokers was faster than nonsmokers at base line but unaffected by similar changes in thoracic volume and pressure. We conclude that, in nonsmokers, positive airway pressure increases /sup 99m/Tc-DTPA clearance primarily through an increase in lung volume and that smokers are immune to these effects.

  1. Effect of increases in lung volume on clearance of aerosolized solute from human lungs

    Energy Technology Data Exchange (ETDEWEB)

    Marks, J.D.; Luce, J.M.; Lazar, N.M.; Wu, J.N.; Lipavsky, A.; Murray, J.F.

    1985-10-01

    To study the effect of increases in lung volume on solute uptake, we measured clearance of /sup 99m/Tc-diethylenetriaminepentaacetic acid (Tc-DTPA) at different lung volumes in 19 healthy humans. Seven subjects inhaled aerosols (1 micron activity median aerodynamic diam) at ambient pressure; clearance and functional residual capacity (FRC) were measured at ambient pressure (control) and at increased lung volume produced by positive pressure (12 cmH2O continuous positive airway pressure (CPAP)) or negative pressure (voluntary breathing). Six different subjects inhaled aerosol at ambient pressure; clearance and FRC were measured at ambient pressure and CPAP of 6, 12, and 18 cmH2O pressure. Six additional subjects inhaled aerosol at ambient pressure or at CPAP of 12 cmH2O; clearance and FRC were determined at CPAP of 12 cmH2O. According to the results, Tc-DTPA clearance from human lungs is accelerated exponentially by increases in lung volume, this effect occurs whether lung volume is increased by positive or negative pressure breathing, and the effect is the same whether lung volume is increased during or after aerosol administration. The effect of lung volume must be recognized when interpreting the results of this method.

  2. An examination of errors in computed water-leaving radiances due to a simplified treatment of water Raman scattering effects

    Science.gov (United States)

    Bismarck, Jonas von; Fischer, Jürgen

    2013-05-01

    Studies in the past have shown that solar shortwave radiation that has been Raman scattered in the ocean, and therefore undergone a wavelength shift, can contribute significantly to the signals observed by remote sensing satellites. While radiative transfer models that qualitatively approximate the effect of water Raman scattering on the water leaving irradiance have been available for a while, we have developed a new version of the radiative transfer code MOMO, which enables the accurate and fully angle resolved inclusion of inelastic scattering sources, and therefore allows detailed quantitative analyses of the effect on the light field in the ocean-atmosphere system. This article focuses on a study performed with this new model on the impact of azimuthally averaging the Raman scattering phase function, which is done in some RT models and significantly decreases computation time, on the water-leaving radiance. At the request of the authors and Proceedings Editors the above article has been updated to include a number of post-publication amendments. Changes made to the previously published article are detailed in the pages attached to the end of the updated article PDF file. The updated article was re-published on 15 August 2013.

  3. Shear thickening in non-Brownian suspensions: an excluded volume effect

    CERN Document Server

    Picano, Francesco; Mitra, Dhrubaditya; Brandt, Luca

    2013-01-01

    Shear-thickening appears as an increase of the viscosity of a dense suspension with the shear rate, sometimes sudden and violent at high volume fraction. Its origin for non-colloidal suspension with non negligible inertial effects is still debated. Here we consider a simple shear flow and demonstrate that fluid inertia causes a strong microstructure anisotropy that results in the formation of a wake region with no relative flux of particles. We show that shear-thickening at finite inertia can be explained as an increase of the effective volume fraction when considering the dynamically excluded volume due to these wake regions.

  4. Magneto-volume effects in Fe-Cu solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gorria, P. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain)]. E-mail: pgorria@uniovi.es; Martinez-Blanco, D. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Iglesias, R. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Palacios, S.L. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Perez, M.J. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Fernandez Barquin, L. [Departamento CITIMAC, F. Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Hernando, A. [Instituto de Magnetismo Aplicado, UCM-RENFE, 28230 Las Rozas, Madrid (Spain); Gonzalez, M.A. [Instituto de Ciencia de Materiales de Aragon, CSIC, 50009 Zaragoza (Spain); Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France)

    2006-05-15

    The magnetic properties of Fe-Cu metastable solid solutions have been investigated by means of neutron diffraction and magnetisation measurements. These compounds exhibit ferromagnetic order with Curie temperatures above room temperature for concentrations beyond 40 at% in Fe. The magnetic moment at 5 K can reach values over 2 {mu} {sub B}, while the high field susceptibility is similar to that found in FCC-FeNi Invar alloys. These features together with the low values for the linear coefficient for thermal expansion in the ferromagnetic region suggest that magneto-volume anomalies, including Invar behaviour, play a major role in the magnetic properties of this system when the crystal structure is face centred cubic. Such behaviour could be explained using theoretical total-band energy calculations.

  5. Three-dimensional simulation of the Ring effect in observations of scattered sun light using Monte Carlo radiative transfer models

    Directory of Open Access Journals (Sweden)

    T. Deutschmann

    2009-04-01

    Full Text Available We present a new technique for the quantitative simulation of the "Ring effect" for scattered light observations from various platforms and under different atmospheric situations. The method is based on radiative transfer calculations at only one wavelength λ0 in the wavelength range under consideration, and is thus computationally fast. The strength of the Ring effect is calculated from statistical properties of the photon paths for a given situation, which makes Monte Carlo radiative transfer models in particular appropriate. We quantify the Ring effect by the so called rotational Raman scattering probability, the probability that an observed photon has undergone a rotational Raman scattering event. The Raman scattering probability is independent from the spectral resolution of the instrument and can easily be converted into various definitions used to characterise the strength of the Ring effect. We compare the results of our method to the results of previous studies and in general good quantitative agreement is found. In addition to the simulation of the Ring effect, we developed a detailed retrieval strategy for the analysis of the Ring effect based on DOAS retrievals, which allows the precise determination of the strength of the Ring effect for a specific wavelength while using the spectral information within a larger spectral interval around the selected wavelength. Using our technique, we simulated synthetic satellite observation of an atmospheric scenario with a finite cloud illuminated from different sun positions. The strength of the Ring effect depends systematically on the measurement geometry, and is strongest if the satellite points to the side of the cloud which lies in the shadow of the sun.

  6. Scattering of a spherical pulse from a small inhomogeneity: Dilation and rotation

    Indian Academy of Sciences (India)

    M D Sharma

    2001-09-01

    Perturbations in elastic constants and density distinguish a volume inhomogeneity from its homogeneous surroundings. The equation of motion for the first order scattering is studied in the perturbed medium. The scattered waves are generated by the interaction between the primary waves and the inhomogeneity. First order scattering theory is modified to include the source term generating the primary waves. The body force equivalent to the scattering source is presented in a convenient form involving the perturbations in wave velocities and gradient of density perturbation. A procedure is presented to study the scattering of a spherical pulse from a small inhomogeneity, in time domain. The size of inhomogeneity is assumed small as compared to its distance from source and receiver. No restrictions are placed on the positions of source, receiver and inhomogeneity. The dilatation and rotations are calculated for a pulse scattered from an arbitrary point in a spherical volume. The aggregate of the scattered phases from all the points of the inhomogeneity, reaching at a fixed receiver, gives the amount of scattering from the inhomogeneity. The interaction of both P and S waves with inhomogeneity are considered. Dilatation and rotations for scattering are obtained as integral expressions over the solid angle of inhomogeneity. These expressions are computed numerically, for hypothetical models. The effects of source (unit force) orientations, velocity and density perturbations, and size of inhomogeneity, on the scattered phases, are discussed.

  7. Large Eddy Simulations of Volume Restriction Effects on Canopy-Induced Increased-Uplift Regions

    Science.gov (United States)

    Chatziefstratiou, E.; Bohrer, G.; Velissariou, V.

    2012-12-01

    ABSTRACT Previous modeling and empirical work have shown the development of important areas of increased uplift past forward-facing steps, and recirculation zones past backward-facing steps. Forests edges represent a special kind of step - a semi-porous one. Current models of the effects of forest edges on the flow represent the forest with a prescribed drag term and does not account for the effects of the solid volume in the forest that restrict the airflow. The RAMS-based Forest Large Eddy Simulation (RAFLES) resolves flows inside and above forested canopies. RAFLES is spatially explicit, and uses the finite volume method to solve a descretized set of Navier-Stokes equations. It accounts for vegetation drag effects on the flow and on the flux exchange between the canopy and the canopy air, proportional to the local leaf density. For a better representation of the vegetation structure in the numerical grid within the canopy sub-domain, the model uses a modified version of the cut cell coordinate system. The hard volume of vegetation elements, in forests, or buildings, in urban environments, within each numerical grid cell is represented via a sub-grid-scale process that shrinks the open apertures between grid cells and reduces the open cell volume. We used RAFLES to simulate the effects of a canopy of varying foliage and stem densities on flow over virtual qube-shaped barriers under neutrally buoyant conditions. We explicitly tested the effects of the numerical representation of volume restriction, independent of the effects of the leaf drag by comparing drag-only simulations, where we prescribed no volume or aperture restriction to the flow, restriction-only simulations, where we prescribed no drag, and control simulations, where both drag and volume plus aperture restriction were included. Our simulations show that representation of the effects of the volume and aperture restriction due to obstacles to flow is important (figure 1) and leads to differences in the

  8. Multiple and dependent scattering by densely packed discrete spheres: Comparison of radiative transfer and Maxwell theory

    Science.gov (United States)

    Ma, L. X.; Tan, J. Y.; Zhao, J. M.; Wang, F. Q.; Wang, C. A.

    2017-01-01

    The radiative transfer equation (RTE) has been widely used to deal with multiple scattering of light by sparsely and randomly distributed discrete particles. However, for densely packed particles, the RTE becomes questionable due to strong dependent scattering effects. This paper examines the accuracy of RTE by comparing with the exact electromagnetic theory. For an imaginary spherical volume filled with randomly distributed, densely packed spheres, the RTE is solved by the Monte Carlo method combined with the Percus-Yevick hard model to consider the dependent scattering effect, while the electromagnetic calculation is based on the multi-sphere superposition T-matrix method. The Mueller matrix elements of the system with different size parameters and volume fractions of spheres are obtained using both methods. The results verify that the RTE fails to deal with the systems with a high-volume fraction due to the dependent scattering effects. Apart from the effects of forward interference scattering and coherent backscattering, the Percus-Yevick hard sphere model shows good accuracy in accounting for the far-field interference effects for medium or smaller size parameters (up to 6.964 in this study). For densely packed discrete spheres with large size parameters (equals 13.928 in this study), the improvement of dependent scattering correction tends to deteriorate. The observations indicate that caution must be taken when using RTE in dealing with the radiative transfer in dense discrete random media even though the dependent scattering correction is applied.

  9. Inversion assuming weak scattering

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus

    2013-01-01

    The study of weak scattering from inhomogeneous media or interface roughness has long been of interest in sonar applications. In an acoustic backscattering model of a stationary field of volume inhomogeneities, a stochastic description of the field is more useful than a deterministic description...... due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...

  10. Hadron scattering and resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef J. [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study pi pi elastic scattering, including the rho resonance, as well as coupled-channel pi K, eta K scattering. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  11. The effect of hospital volume on mortality in patients admitted with severe sepsis.

    Directory of Open Access Journals (Sweden)

    Sajid Shahul

    Full Text Available IMPORTANCE: The association between hospital volume and inpatient mortality for severe sepsis is unclear. OBJECTIVE: To assess the effect of severe sepsis case volume and inpatient mortality. DESIGN SETTING AND PARTICIPANTS: Retrospective cohort study from 646,988 patient discharges with severe sepsis from 3,487 hospitals in the Nationwide Inpatient Sample from 2002 to 2011. EXPOSURES: The exposure of interest was the mean yearly sepsis case volume per hospital divided into tertiles. MAIN OUTCOMES AND MEASURES: Inpatient mortality. RESULTS: Compared with the highest tertile of severe sepsis volume (>60 cases per year, the odds ratio for inpatient mortality among persons admitted to hospitals in the lowest tertile (≤10 severe sepsis cases per year was 1.188 (95% CI: 1.074-1.315, while the odds ratio was 1.090 (95% CI: 1.031-1.152 for patients admitted to hospitals in the middle tertile. Similarly, improved survival was seen across the tertiles with an adjusted inpatient mortality incidence of 35.81 (95% CI: 33.64-38.03 for hospitals with the lowest volume of severe sepsis cases and a drop to 32.07 (95% CI: 31.51-32.64 for hospitals with the highest volume. CONCLUSIONS AND RELEVANCE: We demonstrate an association between a higher severe sepsis case volume and decreased mortality. The need for a systems-based approach for improved outcomes may require a high volume of severely septic patients.

  12. Small angle X-ray scattering study of poly(N-isopropyl acrylamide) based cryogels near the volume-phase transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chalal, Mohand [Laboratoire d' Electronique Quantique, Faculte de Physique, USTHB Alger, 16111 Alger (Algeria); Ehrburger-Dolle, Francoise; Morfin, Isabelle [Laboratoire de Spectrometrie Physique, UMR 5588 CNRS/UJF, 38402 Saint Martin d' Heres (France); Armas, Maria-Rosa Aguilar de; Lopez, Maria-Luisa [Instituto de Ciencia y TecnologIa de PolImeros, CSIC and CIBER-BBN, 28006 Madrid (Spain); Bley, Francoise, E-mail: francoise.ehrburger-dolle@ujf-grenoble.f [Science et Ingenierie des Materiaux et Procedes, UMR 5266 CNRS/INPG/UJF, 38402 Saint Martin d' Heres (France)

    2010-10-01

    The structural modifications induced by changes in temperature are investigated by Small-Angle X-ray Scattering (SAXS) over a broad range of q-values (3.5x10{sup -2} - 12 nm{sup -1}) in cryogels based on N-isopropylacrylamide (NIPA) and/or 2-Hydroxyethyl methacrylate-L-Lactide-Dextran (HEMA-LLA-D) macromer. Various copolymeric cryogels of these two monomers are prepared by cryopolymerization yielding macroporous gels (cryogels). For the plain pNIPA cryogel, the SAXS curves obtained at each temperature are well fitted by a sum of four equations describing respectively the scattering resulting from the gel surface (power law), from the solid-like (Guinier equation) and liquid-like (Ornstein-Zernike equation) heterogeneities and from the chain-chain correlation yielding a broad peak (pseudo-Voigt equation) in the high-q domain. The temperature dependence of the parameters obtained from the fit is analyzed and discussed. It is shown that the existence of an isoscattering (or isosbestic) point observed in pNIPA gels and in some copolymers is related to features observed by Differential Scanning Calorimetry and swelling ratio measurements.

  13. Positron and electron scattering by glycine and alanine: Shape resonances and methylation effect

    Science.gov (United States)

    Nunes, Fernanda B.; Bettega, Márcio H. F.; Sanchez, Sergio d'Almeida

    2016-12-01

    We report integral cross sections (ICSs) for both positron and electron scattering by glycine and alanine amino acids. These molecules differ only by a methyl group. We computed the scattering cross sections using the Schwinger multichannel method for both glycine and alanine in different levels of approximation for both projectiles. The alanine ICSs are greater in magnitude than the glycine ICSs for both positron and electron scattering, probably due to the larger size of the molecule. In electron scattering calculations, we found two resonances for each molecule. Glycine presents one at 1.8 eV, and another centered at around 8.5 eV, in the static-exchange plus polarization (SEP) approximation. The ICS for alanine shows one resonance at 2.5 eV and another at around 9.5 eV, also in SEP approximation. The results are in good agreement with most of the data present in the literature. The comparison of the electron scattering ICSs for both molecules indicates that the methylation of glycine destabilizes the resonances, shifting them to higher energies.

  14. Resonance and non-resonance effect of continuum states of 6Li on elastic scattering angular distributions

    Science.gov (United States)

    Gómez Camacho, A.

    2016-07-01

    CDCC calculations of elastic scattering angular distributions for reactions of the weakly bound projectile 6Li with targets 28Si and 58Ni at energies around the Coulomb barrier are presented. Special emphasis is given to account for the effect of couplings from 6Li resonance states l = 2, J π = 3+, 2+, 1+. Similarly, the effect produced by non-resonant state couplings is studied. The convergent calculations are carried out with global α-target and d-target interactions. The calculated elastic scattering angular distributions are in general in good agreement with the measurements for the systems considered in this work. It is found that the calculations with only resonance states are very similar to that with all couplings (resonance+non-resonance). So, the absence of these states have a strong effect on elastic scattering (non-resonance states calculation). It is shown that the effects increase as the collision energy increases. An interpretation of the strength of the different effects is given in terms of the polarization potentials that emerge from the different couplings.

  15. Effects of scattering and dust grain size on the temperature structure of protoplanetary discs: A three-layer approach

    CERN Document Server

    Inoue, Akio K; Nakamoto, Taishi

    2008-01-01

    The temperature in the optically thick interior of protoplanetary discs is essential for the interpretation of millimeter observations of the discs, for the vertical structure of the discs, for models of the disc evolution and the planet formation, and for the chemistry in the discs. Since large icy grains have a large albedo even in the infrared, the effect of scattering of the diffuse radiation in the discs on the interior temperature should be examined. We have performed a series of numerical radiation transfer simulations including isotropic scattering by grains with various typical sizes for the diffuse radiation as well as for the incident stellar radiation. We also have developed an analytic model including isotropic scattering to understand the physics concealed in the numerical results. With the analytic model, we have shown that the standard two-layer approach is valid only for grey opacity (i.e. grain size $\\ga10$ \\micron) even without scattering. A three-layer interpretation is required for grain ...

  16. Effect of polarization roughness scattering (PRS) on two-dimensional electron transport of MgZnO/ZnO heterostructures

    Science.gov (United States)

    Wang, Ping; Guo, Lixin; Song, Zhenjie; Yang, Yintang; Shang, Tao; Li, Jing; Huang, Feng; Zheng, Qinghong

    2013-12-01

    Quantum transport properties of two-dimensional electron gas (2DEG) in undoped MgZnO/ZnO heterostructures with polarization charge effect have been investigated theoretically. Polarization roughness scattering (PRS) combining polarization charge and interface roughness scattering was proposed as a new scattering mechanism. It was found that the carriers confined in the heterostructures (HSs) would be scattered from polarization charges when they were moving along the in-plane and PRS played a very important role for the low-temperature electron mobility when the electron density Ns exceeded 1.0e11 cm-2, especially in a higher electron density region. With PRS, the experimental data on the density dependence of 2DEG mobility in the MgZnO/ZnO HSs under study can be well reproduced. The study indicates that the improved processing techniques providing a smooth interface and a good separation between the 2DEG electrons and the polarization charges should be significant for the quantum device’s performance.

  17. Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells.

    Science.gov (United States)

    Baek, Se-Woong; Park, Garam; Noh, Jonghyeon; Cho, Changsoon; Lee, Chun-Ho; Seo, Min-Kyo; Song, Hyunjoon; Lee, Jung-Yong

    2014-04-22

    In this report, we propose a metal-metal core-shell nanocube (NC) as an advanced plasmonic material for highly efficient organic solar cells (OSCs). We covered an Au core with a thin Ag shell as a scattering enhancer to build Au@Ag NCs, which showed stronger scattering efficiency than Au nanoparticles (AuNPs) throughout the visible range. Highly efficient plasmonic organic solar cells were fabricated by embedding Au@Ag NCs into an anodic buffer layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and the power conversion efficiency was enhanced to 6.3% from 5.3% in poly[N-9-hepta-decanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2,1,3-benzothiadiazole)] (PCDTBT):[6,6]-phenyl C71-butyric acid methyl ester (PC70BM) based OSCs and 9.2% from 7.9% in polythieno[3,4-b]thiophene/benzodithiophene (PTB7):PC70BM based OSCs. The Au@Ag NC plasmonic PCDTBT:PC70BM-based organic solar cells showed 2.2-fold higher external quantum efficiency enhancement compared to AuNPs devices at a wavelength of 450-700 nm due to the amplified plasmonic scattering effect. Finally, we proved the strongly enhanced plasmonic scattering efficiency of Au@Ag NCs embedded in organic solar cells via theoretical calculations and detailed optical measurements.

  18. Developmentally Sensitive Interaction Effects of Genes and the Social Environment on Total and Subcortical Brain Volumes.

    Directory of Open Access Journals (Sweden)

    Jennifer S Richards

    Full Text Available Smaller total brain and subcortical volumes have been linked to psychopathology including attention-deficit/hyperactivity disorder (ADHD. Identifying mechanisms underlying these alterations, therefore, is of great importance. We investigated the role of gene-environment interactions (GxE in interindividual variability of total gray matter (GM, caudate, and putamen volumes. Brain volumes were derived from structural magnetic resonance imaging scans in participants with (N = 312 and without ADHD (N = 437 from N = 402 families (age M = 17.00, SD = 3.60. GxE effects between DAT1, 5-HTT, and DRD4 and social environments (maternal expressed warmth and criticism; positive and deviant peer affiliation as well as the possible moderating effect of age were examined using linear mixed modeling. We also tested whether findings depended on ADHD severity. Deviant peer affiliation was associated with lower caudate volume. Participants with low deviant peer affiliations had larger total GM volumes with increasing age. Likewise, developmentally sensitive GxE effects were found on total GM and putamen volume. For total GM, differential age effects were found for DAT1 9-repeat and HTTLPR L/L genotypes, depending on the amount of positive peer affiliation. For putamen volume, DRD4 7-repeat carriers and DAT1 10/10 homozygotes showed opposite age relations depending on positive peer affiliation and maternal criticism, respectively. All results were independent of ADHD severity. The presence of differential age-dependent GxE effects might explain the diverse and sometimes opposing results of environmental and genetic effects on brain volumes observed so far.

  19. Infrared limit in external field scattering

    CERN Document Server

    Herdegen, Andrzej

    2012-01-01

    Scattering of electrons/positrons by external classical electromagnetic wave packet is considered in infrared limit. In this limit the scattering operator exists and produces physical effects, although the scattering cross-section is trivial.

  20. Effects of cesarean section on mean platelet volume.

    Science.gov (United States)

    Usluoğullari, Betül; Kaygusuz, Ikbal; Simavli, Serap; Eser, Ayla; Inegol Gumus, İknur

    2015-01-01

    Mean platelet volume (MPV) is a risk factor for cardiovascular complications, cerebrovascular disorders, and low-grade inflammatory conditions prone to arterial and venous thromboses. Cesarean delivery is the most important risk factor for pulmonary embolism, stroke, and intracranial venous thrombosis. The hypothesis is that increase in the prevalence of cesarean section and high MPV may be associated with cardiovascular complications such as stroke along with intracranial complications in addition to known systemic and surgical complications. In this study, platelet counts and MPV for postpartum women who delivered by cesarean section and normal vaginal parturition are compared. The subjects were divided in two groups, one was study group consisting of 118 patients giving birth by cesarean section and the other was the control group consisting 94 patients giving birth by normal vaginal parturition. Peripheral venous blood samples in EDTA tubes were collected from all the subjects 1 week before and after the delivery for their prenatal and postpartum periods, respectively. The values were compared between the groups and also before and after the delivery. In the cesarean group, while the MPV level was 8.60 (1.64) fl in the prenatal period, it increased to 9.10 (2.00) fl in the postnatal period (p cesarean section.