WorldWideScience

Sample records for volume rendering based

  1. Perception-based transparency optimization for direct volume rendering.

    Science.gov (United States)

    Chan, Ming-Yuen; Wu, Yingcai; Mak, Wai-Ho; Chen, Wei; Qu, Huamin

    2009-01-01

    The semi-transparent nature of direct volume rendered images is useful to depict layered structures in a volume. However, obtaining a semi-transparent result with the layers clearly revealed is difficult and may involve tedious adjustment on opacity and other rendering parameters. Furthermore, the visual quality of layers also depends on various perceptual factors. In this paper, we propose an auto-correction method for enhancing the perceived quality of the semi-transparent layers in direct volume rendered images. We introduce a suite of new measures based on psychological principles to evaluate the perceptual quality of transparent structures in the rendered images. By optimizing rendering parameters within an adaptive and intuitive user interaction process, the quality of the images is enhanced such that specific user requirements can be met. Experimental results on various datasets demonstrate the effectiveness and robustness of our method.

  2. High Performance GPU-Based Fourier Volume Rendering.

    Science.gov (United States)

    Abdellah, Marwan; Eldeib, Ayman; Sharawi, Amr

    2015-01-01

    Fourier volume rendering (FVR) is a significant visualization technique that has been used widely in digital radiography. As a result of its (N (2)log⁡N) time complexity, it provides a faster alternative to spatial domain volume rendering algorithms that are (N (3)) computationally complex. Relying on the Fourier projection-slice theorem, this technique operates on the spectral representation of a 3D volume instead of processing its spatial representation to generate attenuation-only projections that look like X-ray radiographs. Due to the rapid evolution of its underlying architecture, the graphics processing unit (GPU) became an attractive competent platform that can deliver giant computational raw power compared to the central processing unit (CPU) on a per-dollar-basis. The introduction of the compute unified device architecture (CUDA) technology enables embarrassingly-parallel algorithms to run efficiently on CUDA-capable GPU architectures. In this work, a high performance GPU-accelerated implementation of the FVR pipeline on CUDA-enabled GPUs is presented. This proposed implementation can achieve a speed-up of 117x compared to a single-threaded hybrid implementation that uses the CPU and GPU together by taking advantage of executing the rendering pipeline entirely on recent GPU architectures.

  3. High Performance GPU-Based Fourier Volume Rendering

    Directory of Open Access Journals (Sweden)

    Marwan Abdellah

    2015-01-01

    Full Text Available Fourier volume rendering (FVR is a significant visualization technique that has been used widely in digital radiography. As a result of its O(N2log⁡N time complexity, it provides a faster alternative to spatial domain volume rendering algorithms that are O(N3 computationally complex. Relying on the Fourier projection-slice theorem, this technique operates on the spectral representation of a 3D volume instead of processing its spatial representation to generate attenuation-only projections that look like X-ray radiographs. Due to the rapid evolution of its underlying architecture, the graphics processing unit (GPU became an attractive competent platform that can deliver giant computational raw power compared to the central processing unit (CPU on a per-dollar-basis. The introduction of the compute unified device architecture (CUDA technology enables embarrassingly-parallel algorithms to run efficiently on CUDA-capable GPU architectures. In this work, a high performance GPU-accelerated implementation of the FVR pipeline on CUDA-enabled GPUs is presented. This proposed implementation can achieve a speed-up of 117x compared to a single-threaded hybrid implementation that uses the CPU and GPU together by taking advantage of executing the rendering pipeline entirely on recent GPU architectures.

  4. Accelerating Time-Varying Hardware Volume Rendering Using TSP Trees and Color-Based Error Metrics

    Science.gov (United States)

    Ellsworth, David; Chiang, Ling-Jen; Shen, Han-Wei; Kwak, Dochan (Technical Monitor)

    2000-01-01

    This paper describes a new hardware volume rendering algorithm for time-varying data. The algorithm uses the Time-Space Partitioning (TSP) tree data structure to identify regions within the data that have spatial or temporal coherence. By using this coherence, the rendering algorithm can improve performance when the volume data is larger than the texture memory capacity by decreasing the amount of textures required. This coherence can also allow improved speed by appropriately rendering flat-shaded polygons instead of textured polygons, and by not rendering transparent regions. To reduce the polygonization overhead caused by the use of the hierarchical data structure, we introduce an optimization method using polygon templates. The paper also introduces new color-based error metrics, which more accurately identify coherent regions compared to the earlier scalar-based metrics. By showing experimental results from runs using different data sets and error metrics, we demonstrate that the new methods give substantial improvements in volume rendering performance.

  5. Exposure render: an interactive photo-realistic volume rendering framework.

    Directory of Open Access Journals (Sweden)

    Thomas Kroes

    Full Text Available The field of volume visualization has undergone rapid development during the past years, both due to advances in suitable computing hardware and due to the increasing availability of large volume datasets. Recent work has focused on increasing the visual realism in Direct Volume Rendering (DVR by integrating a number of visually plausible but often effect-specific rendering techniques, for instance modeling of light occlusion and depth of field. Besides yielding more attractive renderings, especially the more realistic lighting has a positive effect on perceptual tasks. Although these new rendering techniques yield impressive results, they exhibit limitations in terms of their exibility and their performance. Monte Carlo ray tracing (MCRT, coupled with physically based light transport, is the de-facto standard for synthesizing highly realistic images in the graphics domain, although usually not from volumetric data. Due to the stochastic sampling of MCRT algorithms, numerous effects can be achieved in a relatively straight-forward fashion. For this reason, we have developed a practical framework that applies MCRT techniques also to direct volume rendering (DVR. With this work, we demonstrate that a host of realistic effects, including physically based lighting, can be simulated in a generic and flexible fashion, leading to interactive DVR with improved realism. In the hope that this improved approach to DVR will see more use in practice, we have made available our framework under a permissive open source license.

  6. Composed Scattering Model for Direct Volume Rendering

    Institute of Scientific and Technical Information of China (English)

    蔡文立; 石教英

    1996-01-01

    Based on the equation of transfer in transport theory of optical physics,a new volume rendering model,called composed scattering model(CSM),is presented.In calculating the scattering term of the equation,it is decomposed into volume scattering intensity and surface scattering intensity,and they are composed with the boundary detection operator as the weight function.This proposed model differs from the most current volume rendering models in the aspect that in CSM segmentation and illumination intensity calculation are taken as two coherent parts while in existing models they are regarded as two separate ones.This model has been applied to the direct volume rendering of 3D data sets obtained by CT and MRI.The resultant images show not only rich details but also clear boundary surfaces.CSM is demonstrated to be an accurate volume rendering model suitable for CT and MRI data sets.

  7. GPU-Based Volume Rendering of Noisy Multi-Spectral Astronomical Data

    CERN Document Server

    Hassan, Amr H; Barnes, David G

    2010-01-01

    Traditional analysis techniques may not be sufficient for astronomers to make the best use of the data sets that current and future instruments, such as the Square Kilometre Array and its Pathfinders, will produce. By utilizing the incredible pattern-recognition ability of the human mind, scientific visualization provides an excellent opportunity for astronomers to gain valuable new insight and understanding of their data, particularly when used interactively in 3D. The goal of our work is to establish the feasibility of a real-time 3D monitoring system for data going into the Australian SKA Pathfinder archive. Based on CUDA, an increasingly popular development tool, our work utilizes the massively parallel architecture of modern graphics processing units (GPUs) to provide astronomers with an interactive 3D volume rendering for multi-spectral data sets. Unlike other approaches, we are targeting real time interactive visualization of datasets larger than GPU memory while giving special attention to data with l...

  8. Exposure Render: An Interactive Photo-Realistic Volume Rendering Framework

    NARCIS (Netherlands)

    Kroes, T.; Post, F.H.; Botha, C.P.

    2012-01-01

    The field of volume visualization has undergone rapid development during the past years, both due to advances in suitable computing hardware and due to the increasing availability of large volume datasets. Recent work has focused on increasing the visual realism in Direct Volume Rendering (DVR) by i

  9. Video-based rendering

    CERN Document Server

    Magnor, Marcus A

    2005-01-01

    Driven by consumer-market applications that enjoy steadily increasing economic importance, graphics hardware and rendering algorithms are a central focus of computer graphics research. Video-based rendering is an approach that aims to overcome the current bottleneck in the time-consuming modeling process and has applications in areas such as computer games, special effects, and interactive TV. This book offers an in-depth introduction to video-based rendering, a rapidly developing new interdisciplinary topic employing techniques from computer graphics, computer vision, and telecommunication en

  10. Visibility-Aware Direct Volume Rendering

    Institute of Scientific and Technical Information of China (English)

    Wai-Ho Mak; Yingcai Wu; Ming-Yuen Chan; Huamin Qu

    2011-01-01

    Direct volume rendering (DVR) is a powerful visualization technique which allows users to effectively explore and study volumetric datasets. Different transparency settings can be flexibly assigned to different structures such that some valuable information can be revealed in direct volume rendered images (DVRIs). However, end-users often feel that some risks are always associated with DVR because they do not know whether any important information is missing from the transparent regions of DVRIs. In this paper, we investigate how to semi-automatically generate a set of DVRIs and also an animation which can reveal information missed in the original DVRIs and meanwhile satisfy some image quality criteria such as coherence. A complete framework is developed to tackle various problems related to the generation and quality evaluation of visibility-aware DVRIs and animations. Our technique can reduce the risk of using direct volume rendering and thus boost the confidence of users in volume rendering systems.

  11. Immersive volume rendering of blood vessels

    Science.gov (United States)

    Long, Gregory; Kim, Han Suk; Marsden, Alison; Bazilevs, Yuri; Schulze, Jürgen P.

    2012-03-01

    In this paper, we present a novel method of visualizing flow in blood vessels. Our approach reads unstructured tetrahedral data, resamples it, and uses slice based 3D texture volume rendering. Due to the sparse structure of blood vessels, we utilize an octree to efficiently store the resampled data by discarding empty regions of the volume. We use animation to convey time series data, wireframe surface to give structure, and utilize the StarCAVE, a 3D virtual reality environment, to add a fully immersive element to the visualization. Our tool has great value in interdisciplinary work, helping scientists collaborate with clinicians, by improving the understanding of blood flow simulations. Full immersion in the flow field allows for a more intuitive understanding of the flow phenomena, and can be a great help to medical experts for treatment planning.

  12. Fast combinative volume rendering by indexed data structure

    Institute of Scientific and Technical Information of China (English)

    孙文武; 王文成; 吴恩华

    2001-01-01

    It is beneficial to study the interesting contents in a data set by combining and rendering variouscontents of the data. In this regard, an indexed data structure is proposed to facilitate the reorganization of data so that the contents of the data can be combined conveniently and only the selected contents in the data are processed for rendering. Based on the structure, the cells of different contents can be queued up easily so that the volume rendering can be conducted more accurately and quickly. Experimental results show that the indexed data structure is very efficient in improving combinative volume rendering.

  13. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    KAUST Repository

    Sicat, Ronell Barrera

    2014-12-31

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  14. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering.

    Science.gov (United States)

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2014-12-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  15. Comparison of Morphological Pyramids for Multiresolution MIP Volume Rendering

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.

    2002-01-01

    We recently proposed a multiresolution representation for maximum intensity projection (MIP) volume rendering based on morphological adjunction pyramids which allow progressive refinement and have the property of perfect reconstruction. In this algorithm the pyramidal analysis and synthesis

  16. Volume Rendering for Curvilinear and Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Max, N; Williams, P; Silva, C; Cook, R

    2003-03-05

    We discuss two volume rendering methods developed at Lawrence Livermore National Laboratory. The first, cell projection, renders the polygons in the projection of each cell. It requires a global visibility sort in order to composite the cells in back to front order, and we discuss several different algorithms for this sort. The second method uses regularly spaced slice planes perpendicular to the X, Y, or Z axes, which slice the cells into polygons. Both methods are supplemented with anti-aliasing techniques to deal with small cells that might fall between pixel samples or slice planes, and both have been parallelized.

  17. High-quality multi-resolution volume rendering in medicine

    Institute of Scientific and Technical Information of China (English)

    XIE Kai; YANG Jie; LI Xiao-liang

    2007-01-01

    In order to perform a high-quality interactive rendering of large medical data sets on a single off-theshelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, which uses an adaptive scheme that renders the volume in a region-of-interest at a high resolution and the volume away from this region at lower resolutions. The algorithm is based on several important criteria, and rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells away from this area. In addition, our hierarchical level-of-detail representation guarantees consistent interpolation between different resolution levels. Experiments have been applied to a number of large medical data and have produced high quality images at interactive frame rates using standard PC hardware.

  18. [A hybrid volume rendering method using general hardware].

    Science.gov (United States)

    Li, Bin; Tian, Lianfang; Chen, Ping; Mao, Zongyuan

    2008-06-01

    In order to improve the effect and efficiency of the reconstructed image after hybrid volume rendering of different kinds of volume data from medical sequential slices or polygonal models, we propose a hybrid volume rendering method based on Shear-Warp with economical hardware. First, the hybrid volume data are pre-processed by Z-Buffer method and RLE (Run-Length Encoded) data structure. Then, during the process of compositing intermediate image, a resampling method based on the dual-interpolation and the intermediate slice interpolation methods is used to improve the efficiency and the effect. Finally, the reconstructed image is rendered by the texture-mapping technology of OpenGL. Experiments demonstrate the good performance of the proposed method.

  19. Remote volume rendering pipeline for mHealth applications

    Science.gov (United States)

    Gutenko, Ievgeniia; Petkov, Kaloian; Papadopoulos, Charilaos; Zhao, Xin; Park, Ji Hwan; Kaufman, Arie; Cha, Ronald

    2014-03-01

    We introduce a novel remote volume rendering pipeline for medical visualization targeted for mHealth (mobile health) applications. The necessity of such a pipeline stems from the large size of the medical imaging data produced by current CT and MRI scanners with respect to the complexity of the volumetric rendering algorithms. For example, the resolution of typical CT Angiography (CTA) data easily reaches 512^3 voxels and can exceed 6 gigabytes in size by spanning over the time domain while capturing a beating heart. This explosion in data size makes data transfers to mobile devices challenging, and even when the transfer problem is resolved the rendering performance of the device still remains a bottleneck. To deal with this issue, we propose a thin-client architecture, where the entirety of the data resides on a remote server where the image is rendered and then streamed to the client mobile device. We utilize the display and interaction capabilities of the mobile device, while performing interactive volume rendering on a server capable of handling large datasets. Specifically, upon user interaction the volume is rendered on the server and encoded into an H.264 video stream. H.264 is ubiquitously hardware accelerated, resulting in faster compression and lower power requirements. The choice of low-latency CPU- and GPU-based encoders is particularly important in enabling the interactive nature of our system. We demonstrate a prototype of our framework using various medical datasets on commodity tablet devices.

  20. Depth of Field Effects for Interactive Direct Volume Rendering

    KAUST Repository

    Schott, Mathias

    2011-06-01

    In this paper, a method for interactive direct volume rendering is proposed for computing depth of field effects, which previously were shown to aid observers in depth and size perception of synthetically generated images. The presented technique extends those benefits to volume rendering visualizations of 3D scalar fields from CT/MRI scanners or numerical simulations. It is based on incremental filtering and as such does not depend on any precomputation, thus allowing interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions. © 2011 The Author(s).

  1. A Multiresolution Image Cache for Volume Rendering

    Energy Technology Data Exchange (ETDEWEB)

    LaMar, E; Pascucci, V

    2003-02-27

    The authors discuss the techniques and implementation details of the shared-memory image caching system for volume visualization and iso-surface rendering. One of the goals of the system is to decouple image generation from image display. This is done by maintaining a set of impostors for interactive display while the production of the impostor imagery is performed by a set of parallel, background processes. The system introduces a caching basis that is free of the gap/overlap artifacts of earlier caching techniques. instead of placing impostors at fixed, pre-defined positions in world space, the technique is to adaptively place impostors relative to the camera viewpoint. The positions translate with the camera but stay aligned to the data; i.e., the positions translate, but do not rotate, with the camera. The viewing transformation is factored into a translation transformation and a rotation transformation. The impostor imagery is generated using just the translation transformation and visible impostors are displayed using just the rotation transformation. Displayed image quality is improved by increasing the number of impostors and the frequency that impostors are re-rendering is improved by decreasing the number of impostors.

  2. View compensated compression of volume rendered images for remote visualization.

    Science.gov (United States)

    Lalgudi, Hariharan G; Marcellin, Michael W; Bilgin, Ali; Oh, Han; Nadar, Mariappan S

    2009-07-01

    Remote visualization of volumetric images has gained importance over the past few years in medical and industrial applications. Volume visualization is a computationally intensive process, often requiring hardware acceleration to achieve a real time viewing experience. One remote visualization model that can accomplish this would transmit rendered images from a server, based on viewpoint requests from a client. For constrained server-client bandwidth, an efficient compression scheme is vital for transmitting high quality rendered images. In this paper, we present a new view compensation scheme that utilizes the geometric relationship between viewpoints to exploit the correlation between successive rendered images. The proposed method obviates motion estimation between rendered images, enabling significant reduction to the complexity of a compressor. Additionally, the view compensation scheme, in conjunction with JPEG2000 performs better than AVC, the state of the art video compression standard.

  3. Direct volume rendering methods for cell structures.

    Science.gov (United States)

    Martišek, Dalibor; Martišek, Karel

    2012-01-01

    The study of the complicated architecture of cell space structures is an important problem in biology and medical research. Optical cuts of cells produced by confocal microscopes enable two-dimensional (2D) and three-dimensional (3D) reconstructions of observed cells. This paper discuses new possibilities for direct volume rendering of these data. We often encounter 16 or more bit images in confocal microscopy of cells. Most of the information contained in these images is unsubstantial for the human vision. Therefore, it is necessary to use mathematical algorithms for visualization of such images. Present software tools as OpenGL or DirectX run quickly in graphic station with special graphic cards, run very unsatisfactory on PC without these cards and outputs are usually poor for real data. These tools are black boxes for a common user and make it impossible to correct and improve them. With the method proposed, more parameters of the environment can be set, making it possible to apply 3D filters to set the output image sharpness in relation to the noise. The quality of the output is incomparable to the earlier described methods and is worth increasing the computing time. We would like to offer mathematical methods of 3D scalar data visualization describing new algorithms that run on standard PCs very well.

  4. Local and Global Illumination in the Volume Rendering Integral

    Energy Technology Data Exchange (ETDEWEB)

    Max, N; Chen, M

    2005-10-21

    This article is intended as an update of the major survey by Max [1] on optical models for direct volume rendering. It provides a brief overview of the subject scope covered by [1], and brings recent developments, such as new shadow algorithms and refraction rendering, into the perspective. In particular, we examine three fundamentals aspects of direct volume rendering, namely the volume rendering integral, local illumination models and global illumination models, in a wavelength-independent manner. We review the developments on spectral volume rendering, in which visible light are considered as a form of electromagnetic radiation, optical models are implemented in conjunction with representations of spectral power distribution. This survey can provide a basis for, and encourage, new efforts for developing and using complex illumination models to achieve better realism and perception through optical correctness.

  5. Efficient and Effective Volume Visualization with Enhanced Isosurface Rendering

    CERN Document Server

    Yang, Fei; Tian, Jie

    2012-01-01

    Compared with full volume rendering, isosurface rendering has several well recognized advantages in efficiency and accuracy. However, standard isosurface rendering has some limitations in effectiveness. First, it uses a monotone colored approach and can only visualize the geometry features of an isosurface. The lack of the capability to illustrate the material property and the internal structures behind an isosurface has been a big limitation of this method in applications. Another limitation of isosurface rendering is the difficulty to reveal physically meaningful structures, which are hidden in one or multiple isosurfaces. As such, the application requirements of extract and recombine structures of interest can not be implemented effectively with isosurface rendering. In this work, we develop an enhanced isosurface rendering technique to improve the effectiveness while maintaining the performance efficiency of the standard isosurface rendering. First, an isosurface color enhancement method is proposed to il...

  6. Multiresolution maximum intensity volume rendering by morphological adjunction pyramids

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.

    We describe a multiresolution extension to maximum intensity projection (MIP) volume rendering, allowing progressive refinement and perfect reconstruction. The method makes use of morphological adjunction pyramids. The pyramidal analysis and synthesis operators are composed of morphological 3-D

  7. Multiresolution Maximum Intensity Volume Rendering by Morphological Adjunction Pyramids

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.

    2001-01-01

    We describe a multiresolution extension to maximum intensity projection (MIP) volume rendering, allowing progressive refinement and perfect reconstruction. The method makes use of morphological adjunction pyramids. The pyramidal analysis and synthesis operators are composed of morphological 3-D

  8. Cluster parallel rendering based on encoded mesh

    Institute of Scientific and Technical Information of China (English)

    QIN Ai-hong; XIONG Hua; PENG Hao-yu; LIU Zhen; SHI Jiao-ying

    2006-01-01

    Use of compressed mesh in parallel rendering architecture is still an unexplored area, the main challenge of which is to partition and sort the encoded mesh in compression-domain. This paper presents a mesh compression scheme PRMC (Parallel Rendering based Mesh Compression) supplying encoded meshes that can be partitioned and sorted in parallel rendering system even in encoded-domain. First, we segment the mesh into submeshes and clip the submeshes' boundary into Runs, and then piecewise compress the submeshes and Runs respectively. With the help of several auxiliary index tables, compressed submeshes and Runs can serve as rendering primitives in parallel rendering system. Based on PRMC, we design and implement a parallel rendering architecture. Compared with uncompressed representation, experimental results showed that PRMC meshes applied in cluster parallel rendering system can dramatically reduce the communication requirement.

  9. A Volume Rendering Algorithm for Sequential 2D Medical Images

    Institute of Scientific and Technical Information of China (English)

    吕忆松; 陈亚珠

    2002-01-01

    Volume rendering of 3D data sets composed of sequential 2D medical images has become an important branch in image processing and computer graphics.To help physicians fully understand deep-seated human organs and focuses(e.g.a tumour)as 3D structures.in this paper,we present a modified volume rendering algorithm to render volumetric data,Using this method.the projection images of structures of interest from different viewing directions can be obtained satisfactorily.By rotating the light source and the observer eyepoint,this method avoids rotates the whole volumetric data in main memory and thus reduces computational complexity and rendering time.Experiments on CT images suggest that the proposed method is useful and efficient for rendering 3D data sets.

  10. Volume rendering acceleration method based on optimal bricking for large volume data%基于最优化分块的大规模数据体绘制加速方法

    Institute of Scientific and Technical Information of China (English)

    彭伟; 李建新; 闫镔; 童莉; 陈健; 管士勇

    2011-01-01

    GPU-based volume rendering has become an active research area in the domain of volume visualization.Large volume data cannot be uploaded directly due to the limitation of GPU memory, which has been a bottleneck of the application of GPU.Bricking method could not only solve this problem, but also maintain the quality of original volume-rendered image.However, the data exchange via the graphics bus is really time consuming and will definitely degrade the render performance.As for these difficulties, the optimal bricking for large volume data was calculated by establishing the model for optimal bricking, and also a 3D texture named node code texture was constructed and distance template was improved to accelerate the octree-based bricking volume rendering.The experimental results illustrate that the proposed method can significantly accelerate the bricking-based volume rendering for large volume data.%GPU加速体绘制已成为体可视化领域的研究热点,然而超出显存的大规模数据无法直接载入,成为GPU应用的瓶颈.分块技术能够在保证图像质量的条件下解决该问题,但分块数据的频繁加载和访问明显降低了绘制速度.针对上述问题,通过建立最优化分块模型得到了大规模数据的最优分块,并通过构造节点编号纹理和改进距离模板设计的方法进一步提高了基于八叉树的分块体绘制算法的绘制速度.实验结果表明,该方法加速效果明显.

  11. Image Based Rendering under Varying Illumination

    Institute of Scientific and Technical Information of China (English)

    Wang Chengfeng (王城峰); Hu Zhanyi

    2003-01-01

    A new approach for photorealistic rendering of a class of objects at arbitrary illumination is presented. The approach of the authors relies entirely on image based rendering techniques. A scheme is utilized for re-illumination of objects based on linear combination of low dimensional image representations. The minimum rendering condition of technique of the authors is three sample images under varying illumination of a reference object and a single input image of an interested object. Important properties of this approach are its simplicity, robustness and speediness. Experimental results validate the proposed rendering approach.

  12. Image Based Rendering and Virtual Reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  13. Image Based Rendering and Virtual Reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  14. Morphological study of transpterional-insula approach using volume rendering.

    Science.gov (United States)

    Jia, Linpei; Su, Lue; Sun, Wei; Wang, Lina; Yao, Jihang; Li, Youqiong; Luo, Qi

    2012-11-01

    This study describes the measurements of inferior circular insular sulcus (ICIS) and the shortest distance from ICIS to the temporal horn and determines the position of the incision, which does less harm to the temporal stem in the transpterional-insula approach using volume-rendering technique. Results of the research showed that one-third point over the anterior side of ICIS may be the ideal penetration point during operation. And there is no difference between 2 hemispheres (P ICIS from other Chinese researches demonstrated that volume rendering is a reliable method in insular research that enables mass measurements.

  15. Real-time volume rendering of digital medical images on an iOS device

    Science.gov (United States)

    Noon, Christian; Holub, Joseph; Winer, Eliot

    2013-03-01

    Performing high quality 3D visualizations on mobile devices, while tantalizingly close in many areas, is still a quite difficult task. This is especially true for 3D volume rendering of digital medical images. Allowing this would empower medical personnel a powerful tool to diagnose and treat patients and train the next generation of physicians. This research focuses on performing real time volume rendering of digital medical images on iOS devices using custom developed GPU shaders for orthogonal texture slicing. An interactive volume renderer was designed and developed with several new features including dynamic modification of render resolutions, an incremental render loop, a shader-based clipping algorithm to support OpenGL ES 2.0, and an internal backface culling algorithm for properly sorting rendered geometry with alpha blending. The application was developed using several application programming interfaces (APIs) such as OpenSceneGraph (OSG) as the primary graphics renderer coupled with iOS Cocoa Touch for user interaction, and DCMTK for DICOM I/O. The developed application rendered volume datasets over 450 slices up to 50-60 frames per second, depending on the specific model of the iOS device. All rendering is done locally on the device so no Internet connection is required.

  16. Frequency domain volume rendering by the wavelet X-ray transform

    NARCIS (Netherlands)

    Westenberg, Michel A.; Roerdink, Jos B.T.M.

    2000-01-01

    We describe a wavelet-based X-ray rendering method in the frequency domain with a smaller time complexity than wavelet splatting. Standard Fourier volume rendering is summarized and interpolation and accuracy issues are briefly discussed. We review the implementation of the fast wavelet transform in

  17. Physically based rendering from theory to implementation

    CERN Document Server

    Pharr, Matt

    2010-01-01

    "Physically Based Rendering, 2nd Edition" describes both the mathematical theory behind a modern photorealistic rendering system as well as its practical implementation. A method - known as 'literate programming'- combines human-readable documentation and source code into a single reference that is specifically designed to aid comprehension. The result is a stunning achievement in graphics education. Through the ideas and software in this book, you will learn to design and employ a full-featured rendering system for creating stunning imagery. This book features new sections on subsurface scattering, Metropolis light transport, precomputed light transport, multispectral rendering, and much more. It includes a companion site complete with source code for the rendering system described in the book, with support for Windows, OS X, and Linux. Code and text are tightly woven together through a unique indexing feature that lists each function, variable, and method on the page that they are first described.

  18. Optimization-Based Wearable Tactile Rendering.

    Science.gov (United States)

    Perez, Alvaro G; Lobo, Daniel; Chinello, Francesco; Cirio, Gabriel; Malvezzi, Monica; San Martin, Jose; Prattichizzo, Domenico; Otaduy, Miguel A

    2016-10-20

    Novel wearable tactile interfaces offer the possibility to simulate tactile interactions with virtual environments directly on our skin. But, unlike kinesthetic interfaces, for which haptic rendering is a well explored problem, they pose new questions about the formulation of the rendering problem. In this work, we propose a formulation of tactile rendering as an optimization problem, which is general for a large family of tactile interfaces. Based on an accurate simulation of contact between a finger model and the virtual environment, we pose tactile rendering as the optimization of the device configuration, such that the contact surface between the device and the actual finger matches as close as possible the contact surface in the virtual environment. We describe the optimization formulation in general terms, and we also demonstrate its implementation on a thimble-like wearable device. We validate the tactile rendering formulation by analyzing its force error, and we show that it outperforms other approaches.

  19. Volume rendering accelerating method based on image recognition%建立在图像识别基础上的体绘制加速方法

    Institute of Scientific and Technical Information of China (English)

    何元烈; 陈萍; 战荫伟; 陈仰纯

    2009-01-01

    提出了一种新算法--IRVR(Image Recognition Volume Rendering),该算法能大幅降低冗余数据,从而提升体绘制速度.IRVR算法首先利用交叉熵阈值分割法从三维数据集中将物体像素和背景像素识别出来,然后将迭代光线追踪方法和物体检测采样策略结合起来对原始三维数据集进行采样.接着运用快速迭代法对分类数据集进行采样,从而定位视线与原始数据集的交点.IRVR算法还应用了准确正规采样方法(例如,三线性插值、样条插值等)在体绘制过程中对原始数据集进行插值.经过实验得出的结论证明IRVR算法既能提高体绘制的速度,又可以保证体绘制图像的质量.%A new algorithm (Image Recognition Volume Rendering,IRVR) is developed in this paper,which can remarkably decrease the redundant data during volume rendering.The IRVR algorithm uses the minimun cross-entropy threshold selection method to detecte the object and background voxels from a three dimensional dataset.An iterating ray tracing method combined with the objects detection sampling strategy is developed to sample the original dataset.The fast iterative method is implemented to sampling the classification dataset for locating the intersection position of the viewing ray and the original dataset.And the precise normal sampling method (for example,trilinear interpelation,spline interpolation,etc.) is applied to extract the gray value from the original dataset for volume rendering.The experiment result is given in this paper.It proves that the IRVR algorithm can improve the volume rendering speed and guarantee the quality of the volume rendering results.

  20. Layered Textures for Image-Based Rendering

    Institute of Scientific and Technical Information of China (English)

    en-Cheng Wang; ui-Yu Li; in Zheng; n-Hua Wu

    2004-01-01

    An extension to texture mapping is given in this paper for improving the efficiency of image-based rendering. For a depth image with an orthogonal displacement at each pixel, it is decomposed by the displacement into a series of layered textures (LTs) with each one having the same displacement for all its texels. Meanwhile,some texels of the layered textures are interpolated for obtaining a continuous 3D approximation of the model represented in the depth image. Thus, the plane-to-plane texture mapping can be used to map these layered textures to produce novel views and the advantages can be obtained as follows: accelerating the rendering speed,supporting the 3D surface details and view motion parallax, and avoiding the expensive task of hole-filling in the rendering stage. Experimental results show the new method can produce high-quality images and run faster than many famous image-based rendering techniques.

  1. Anisotropic 3D texture synthesis with application to volume rendering

    DEFF Research Database (Denmark)

    Laursen, Lasse Farnung; Ersbøll, Bjarne Kjær; Bærentzen, Jakob Andreas

    2011-01-01

    We present a novel approach to improving volume rendering by using synthesized textures in combination with a custom transfer function. First, we use existing knowledge to synthesize anisotropic solid textures to fit our volumetric data. As input to the synthesis method, we acquire high quality....... This method is applied to a high quality visualization of a pig carcass, where samples of meat, bone, and fat have been used to produce the anisotropic 3D textures....

  2. RenderToolbox3: MATLAB tools that facilitate physically based stimulus rendering for vision research.

    Science.gov (United States)

    Heasly, Benjamin S; Cottaris, Nicolas P; Lichtman, Daniel P; Xiao, Bei; Brainard, David H

    2014-02-07

    RenderToolbox3 provides MATLAB utilities and prescribes a workflow that should be useful to researchers who want to employ graphics in the study of vision and perhaps in other endeavors as well. In particular, RenderToolbox3 facilitates rendering scene families in which various scene attributes and renderer behaviors are manipulated parametrically, enables spectral specification of object reflectance and illuminant spectra, enables the use of physically based material specifications, helps validate renderer output, and converts renderer output to physical units of radiance. This paper describes the design and functionality of the toolbox and discusses several examples that demonstrate its use. We have designed RenderToolbox3 to be portable across computer hardware and operating systems and to be free and open source (except for MATLAB itself). RenderToolbox3 is available at https://github.com/DavidBrainard/RenderToolbox3.

  3. Adaptive Rendering Based on Visual Acuity Equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new method of adaptable rendering for interaction in Virtual Environment(VE) through different visual acuity equations is proposed. An acuity factor equation of luminance vision is first given. Secondly, five equations which calculate the visual acuity through visual acuity factors are presented, and adaptive rendering strategy based on different visual acuity equations is given. The VE system may select one of them on the basis of the host's load, hereby select LOD for each model which would be rendered. A coarser LOD is selected where the visual acuity is lower, and a better LOD is used where it is higher. This method is tested through experiments and the experimental results show that it is effective.

  4. Three-dimensional volume rendering of the ankle based on magnetic resonance images enables the generation of images comparable to real anatomy

    Science.gov (United States)

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio

    2009-01-01

    We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon–bone–muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18–30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data. PMID:19678857

  5. Clustered deep shadow maps for integrated polyhedral and volume rendering

    KAUST Repository

    Bornik, Alexander

    2012-01-01

    This paper presents a hardware-accelerated approach for shadow computation in scenes containing both complex volumetric objects and polyhedral models. Our system is the first hardware accelerated complete implementation of deep shadow maps, which unifies the computation of volumetric and geometric shadows. Up to now such unified computation was limited to software-only rendering . Previous hardware accelerated techniques can handle only geometric or only volumetric scenes - both resulting in the loss of important properties of the original concept. Our approach supports interactive rendering of polyhedrally bounded volumetric objects on the GPU based on ray casting. The ray casting can be conveniently used for both the shadow map computation and the rendering. We show how anti-aliased high-quality shadows are feasible in scenes composed of multiple overlapping translucent objects, and how sparse scenes can be handled efficiently using clustered deep shadow maps. © 2012 Springer-Verlag.

  6. Horse-shoe lung-rediscovered via volume rendered images

    Directory of Open Access Journals (Sweden)

    Alpa Bharati

    2013-01-01

    Full Text Available Horseshoe lung, usually associated with pulmonary venolobar syndrome, is a rare congenital anomaly involving the fusion of the postero-basal segments of the right and left lungs across the midline. The fused segment or the isthmus lies posterior to the pericardium and anterior to the aorta.The associated pulmonary venolobar syndrome involves anomalous systemic arterial supply and anomlaous systemic venous drainage of the right lung. With the advent of MDCT imaging, we can diagnose this rare condition as well all its associated anomalies non-invasively. Volume-rendered techniques greatly simplify the complex anatomy and provide easy understanding of the same.

  7. Automatic Image-Based Pencil Sketch Rendering

    Institute of Scientific and Technical Information of China (English)

    王进; 鲍虎军; 周伟华; 彭群生; 徐迎庆

    2002-01-01

    This paper presents an automatic image-based approach for converting greyscale images to pencil sketches, in which strokes follow the image features. The algorithm first extracts a dense direction field automatically using Logical/Linear operators which embody the drawing mechanism. Next, a reconstruction approach based on a sampling-and-interpolation scheme is introduced to generate stroke paths from the direction field. Finally, pencil strokes are rendered along the specified paths with consideration of image tone and artificial illumination.As an important application, the technique is applied to render portraits from images with little user interaction. The experimental results demonstrate that the approach can automatically achieve compelling pencil sketches from reference images.

  8. 3-D volume rendering visualization for calculated distributions of diesel spray; Diesel funmu kyodo suchi keisan kekka no sanjigen volume rendering hyoji

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizaki, T.; Imanishi, H.; Nishida, K.; Yamashita, H.; Hiroyasu, H.; Kaneda, K. [Hiroshima University, Hiroshima (Japan)

    1997-10-01

    Three dimensional visualization technique based on volume rendering method has been developed in order to translate calculated results of diesel combustion simulation into realistically spray and flame images. This paper presents an overview of diesel combustion model which has been developed at Hiroshima University, a description of the three dimensional visualization technique, and some examples of spray and flame image generated by this visualization technique. 8 refs., 8 figs., 1 tab.

  9. Frequency domain volume rendering by the wavelet X-ray transform.

    Science.gov (United States)

    Westenberg, M A; Roerdink, J M

    2000-01-01

    We describe a wavelet based X-ray rendering method in the frequency domain with a smaller time complexity than wavelet splatting. Standard Fourier volume rendering is summarized and interpolation and accuracy issues are briefly discussed. We review the implementation of the fast wavelet transform in the frequency domain. The wavelet X-ray transform is derived, and the corresponding Fourier-wavelet volume rendering algorithm (FWVR) is introduced, FWVR uses Haar or B-spline wavelets and linear or cubic spline interpolation. Various combinations are tested and compared with wavelet splatting (WS). We use medical MR and CT scan data, as well as a 3-D analytical phantom to assess the accuracy, time complexity, and memory cost of both FWVR and WS. The differences between both methods are enumerated.

  10. Direct Visuo-Haptic 4D Volume Rendering Using Respiratory Motion Models.

    Science.gov (United States)

    Fortmeier, Dirk; Wilms, Matthias; Mastmeyer, Andre; Handels, Heinz

    2015-01-01

    This article presents methods for direct visuo-haptic 4D volume rendering of virtual patient models under respiratory motion. Breathing models are computed based on patient-specific 4D CT image data sequences. Virtual patient models are visualized in real-time by ray casting based rendering of a reference CT image warped by a time-variant displacement field, which is computed using the motion models at run-time. Furthermore, haptic interaction with the animated virtual patient models is provided by using the displacements computed at high rendering rates to translate the position of the haptic device into the space of the reference CT image. This concept is applied to virtual palpation and the haptic simulation of insertion of a virtual bendable needle. To this aim, different motion models that are applicable in real-time are presented and the methods are integrated into a needle puncture training simulation framework, which can be used for simulated biopsy or vessel puncture in the liver. To confirm real-time applicability, a performance analysis of the resulting framework is given. It is shown that the presented methods achieve mean update rates around 2,000 Hz for haptic simulation and interactive frame rates for volume rendering and thus are well suited for visuo-haptic rendering of virtual patients under respiratory motion.

  11. Dynamic Resolution in GPU-Accelerated Volume Rendering to Autostereoscopic Multiview Lenticular Displays

    Directory of Open Access Journals (Sweden)

    Daniel Ruijters

    2008-09-01

    Full Text Available The generation of multiview stereoscopic images of large volume rendered data demands an enormous amount of calculations. We propose a method for hardware accelerated volume rendering of medical data sets to multiview lenticular displays, offering interactive manipulation throughout. The method is based on buffering GPU-accelerated direct volume rendered visualizations of the individual views from their respective focal spot positions, and composing the output signal for the multiview lenticular screen in a second pass. This compositing phase is facilitated by the fact that the view assignment per subpixel is static, and therefore can be precomputed. We decoupled the resolution of the individual views from the resolution of the composited signal, and adjust the resolution on-the-fly, depending on the available processing resources, in order to maintain interactive refresh rates. The optimal resolution for the volume rendered views is determined by means of an analysis of the lattice of the output signal for the lenticular screen in the Fourier domain.

  12. 一种以GPU编程实现快速体绘制的三维超声可视化方法%A 3D Ultrasound Visualization Method to Realize Fast Volume Rendering based on GPU Programming

    Institute of Scientific and Technical Information of China (English)

    郭境峰; 廖晓燕; 李德来

    2014-01-01

    3D ultrasound features advantages such as intuitive images, precise measurement, accurate spatial positioning, multi-angle view and efficient data collection. 3D ultrasound visualization, mainly achieved through surface rendering and volume rendering, is the fundamental technology of 3D ultrasonic imaging. In recent years, many graphic hardware manufacturers have released graphic processing units (GPU) containing a large number of programmable lfow processors, as a result achieving fast 3D volume rendering based on GPU’s powerful paralel capability becomes possible.%三维超声具有图像形象直观、测量精确、空间定位准确、多角度观察、数据采集效率高等优点。超声三维可视化是三维超声成像中的关键核心技术。超声三维可视化目前主要通过面绘制和体绘制这两大类方法。近几年来,许多图形硬件厂商都推出了包含大量可编程流处理器的图形处理器(G P U),使得借助G P U强大的并行能力实现快速的三维体绘制成为可能。

  13. Physically based rendering: from theory to implementation

    National Research Council Canada - National Science Library

    Pharr, Matt; Humphreys, Greg, Ph. D

    2010-01-01

    ... rendering algorithm variations. This book is not only a textbook for students, but also a useful reference book for practitioners in the field. The second edition has been extended with sections on Metropolis light transport, subsurface scattering, precomputed light transport, and more. Per Christensen Senior Software Developer, RenderMan Products,...

  14. Showing their true colors: a practical approach to volume rendering from serial sections

    Directory of Open Access Journals (Sweden)

    Metscher Brian D

    2010-04-01

    Full Text Available Abstract Background In comparison to more modern imaging methods, conventional light microscopy still offers a range of substantial advantages with regard to contrast options, accessible specimen size, and resolution. Currently, tomographic image data in particular is most commonly visualized in three dimensions using volume rendering. To date, this method has only very rarely been applied to image stacks taken from serial sections, whereas surface rendering is still the most prevalent method for presenting such data sets three-dimensionally. The aim of this study was to develop standard protocols for volume rendering of image stacks of serial sections, while retaining the benefits of light microscopy such as resolution and color information. Results Here we provide a set of protocols for acquiring high-resolution 3D images of diverse microscopic samples through volume rendering based on serial light microscopical sections using the 3D reconstruction software Amira (Visage Imaging Inc.. We overcome several technical obstacles and show that these renderings are comparable in quality and resolution to 3D visualizations using other methods. This practical approach for visualizing 3D micro-morphology in full color takes advantage of both the sub-micron resolution of light microscopy and the specificity of histological stains, by combining conventional histological sectioning techniques, digital image acquisition, three-dimensional image filtering, and 3D image manipulation and visualization technologies. Conclusions We show that this method can yield "true"-colored high-resolution 3D views of tissues as well as cellular and sub-cellular structures and thus represents a powerful tool for morphological, developmental, and comparative investigations. We conclude that the presented approach fills an important gap in the field of micro-anatomical 3D imaging and visualization methods by combining histological resolution and differentiation of details with

  15. Showing their true colors: a practical approach to volume rendering from serial sections.

    Science.gov (United States)

    Handschuh, Stephan; Schwaha, Thomas; Metscher, Brian D

    2010-04-21

    In comparison to more modern imaging methods, conventional light microscopy still offers a range of substantial advantages with regard to contrast options, accessible specimen size, and resolution. Currently, tomographic image data in particular is most commonly visualized in three dimensions using volume rendering. To date, this method has only very rarely been applied to image stacks taken from serial sections, whereas surface rendering is still the most prevalent method for presenting such data sets three-dimensionally. The aim of this study was to develop standard protocols for volume rendering of image stacks of serial sections, while retaining the benefits of light microscopy such as resolution and color information. Here we provide a set of protocols for acquiring high-resolution 3D images of diverse microscopic samples through volume rendering based on serial light microscopical sections using the 3D reconstruction software Amira (Visage Imaging Inc.). We overcome several technical obstacles and show that these renderings are comparable in quality and resolution to 3D visualizations using other methods. This practical approach for visualizing 3D micro-morphology in full color takes advantage of both the sub-micron resolution of light microscopy and the specificity of histological stains, by combining conventional histological sectioning techniques, digital image acquisition, three-dimensional image filtering, and 3D image manipulation and visualization technologies. We show that this method can yield "true"-colored high-resolution 3D views of tissues as well as cellular and sub-cellular structures and thus represents a powerful tool for morphological, developmental, and comparative investigations. We conclude that the presented approach fills an important gap in the field of micro-anatomical 3D imaging and visualization methods by combining histological resolution and differentiation of details with 3D rendering of whole tissue samples. We demonstrate the

  16. Design and Implementation of an Application. Programming Interface for Volume Rendering

    OpenAIRE

    Selldin, Håkan

    2002-01-01

    To efficiently examine volumetric data sets from CT or MRI scans good volume rendering applications are needed. This thesis describes the design and implementation of an application programming interface (API) to be used when developing volume-rendering applications. A complete application programming interface has been designed. The interface is designed so that it makes writing application programs containing volume rendering fast and easy. The interface also makes created application progr...

  17. Viewpoint Selection Using Hybrid Simplex Search and Particle Swarm Optimization for Volume Rendering

    Directory of Open Access Journals (Sweden)

    Zhang You-sai,,,

    2012-09-01

    Full Text Available In this paper we proposed a novel method of viewpoint selection using the hybrid Nelder-Mead (NM simplex search and particle swarm optimization (PSO to improve the efficiency and the intelligent level of volume rendering. This method constructed the viewpoint quality evaluation function in the form of entropy by utilizing the luminance and structure features of the two-dimensional projective image of volume data. During the process of volume rendering, the hybrid NM-PSO algorithm intended to locate the globally optimal viewpoint or a set of the optimized viewpoints automatically and intelligently. Experimental results have shown that this method avoids redundant interactions and evidently improves the efficiency of volume rendering. The optimized viewpoints can focus on the important structural features or the region of interest in volume data and exhibit definite correlation with the perception character of human visual system. Compared with the methods based on PSO or NM simplex search, our method has the better performance of convergence rate, convergence accuracy and robustness.

  18. Dynamic real-time 4D cardiac MDCT image display using GPU-accelerated volume rendering.

    Science.gov (United States)

    Zhang, Qi; Eagleson, Roy; Peters, Terry M

    2009-09-01

    Intraoperative cardiac monitoring, accurate preoperative diagnosis, and surgical planning are important components of minimally-invasive cardiac therapy. Retrospective, electrocardiographically (ECG) gated, multidetector computed tomographical (MDCT), four-dimensional (3D + time), real-time, cardiac image visualization is an important tool for the surgeon in such procedure, particularly if the dynamic volumetric image can be registered to, and fused with the actual patient anatomy. The addition of stereoscopic imaging provides a more intuitive environment by adding binocular vision and depth cues to structures within the beating heart. In this paper, we describe the design and implementation of a comprehensive stereoscopic 4D cardiac image visualization and manipulation platform, based on the opacity density radiation model, which exploits the power of modern graphics processing units (GPUs) in the rendering pipeline. In addition, we present a new algorithm to synchronize the phases of the dynamic heart to clinical ECG signals, and to calculate and compensate for latencies in the visualization pipeline. A dynamic multiresolution display is implemented to enable the interactive selection and emphasis of volume of interest (VOI) within the entire contextual cardiac volume and to enhance performance, and a novel color and opacity adjustment algorithm is designed to increase the uniformity of the rendered multiresolution image of heart. Our system provides a visualization environment superior to noninteractive software-based implementations, but with a rendering speed that is comparable to traditional, but inferior quality, volume rendering approaches based on texture mapping. This retrospective ECG-gated dynamic cardiac display system can provide real-time feedback regarding the suspected pathology, function, and structural defects, as well as anatomical information such as chamber volume and morphology.

  19. Functionality and Performance Visualization of the Distributed High Quality Volume Renderer (HVR)

    KAUST Repository

    Shaheen, Sara

    2012-07-01

    Volume rendering systems are designed to provide means to enable scientists and a variety of experts to interactively explore volume data through 3D views of the volume. However, volume rendering techniques are computationally intensive tasks. Moreover, parallel distributed volume rendering systems and multi-threading architectures were suggested as natural solutions to provide an acceptable volume rendering performance for very large volume data sizes, such as Electron Microscopy data (EM). This in turn adds another level of complexity when developing and manipulating volume rendering systems. Given that distributed parallel volume rendering systems are among the most complex systems to develop, trace and debug, it is obvious that traditional debugging tools do not provide enough support. As a consequence, there is a great demand to provide tools that are able to facilitate the manipulation of such systems. This can be achieved by utilizing the power of compute graphics in designing visual representations that reflect how the system works and that visualize the current performance state of the system.The work presented is categorized within the field of software Visualization, where Visualization is used to serve visualizing and understanding various software. In this thesis, a number of visual representations that reflect a number of functionality and performance aspects of the distributed HVR, a high quality volume renderer system that uses various techniques to visualize large volume sizes interactively. This work is provided to visualize different stages of the parallel volume rendering pipeline of HVR. This is along with means of performance analysis through a number of flexible and dynamic visualizations that reflect the current state of the system and enables manipulation of them at runtime. Those visualization are aimed to facilitate debugging, understanding and analyzing the distributed HVR.

  20. Three-dimensional CT angiography with volume rendering for the dignosis of multiple intracranial aneurysms

    Institute of Scientific and Technical Information of China (English)

    FANG Bing; LI Tie-lin; ZHANG Jian-min; DUAN Chuan-zhi; WANG Qiu-jing; ZAO Qing-ping

    2004-01-01

    Objective:To evaluate the importance of 3D-CTA with volume rendering for the diagnosis of multiple intracranial aneurysms. Methods: Axial source images were obtained by helical CT scanning and reconstruction of 3D-CTA images was done by volume rendering technique in conjunction with multiplanar reformation. Results: In the past one year,there were 10 patients diagnosed as having multiple intracranial aneurysms by 3D-CTA and altogether 24 aneurysms were visualized,including 10 small aneurysms(≤5mm.Three dimensional CT angiography with volume rendering demonstrated aneurysms very well and provided useful information concerning the site,shape,size and spatial relationship with the surrounding vessels and bone anatomy. Conclusion: Three-dimensional CT angiography with volume rendering is a quick,reliable,and relatively noninvasive method for diagnosing multiple intracranial aneurysms.It delineates detailed aneurysmal morphology,and provides useful information for planning microsurgical approaches.

  1. Foggy Scene Rendering Based on Transmission Map Estimation

    Directory of Open Access Journals (Sweden)

    Fan Guo

    2014-01-01

    Full Text Available Realistic rendering of foggy scene is important in game development and virtual reality. Traditional methods have many parameters to control or require a long time to compute, and they are usually limited to depicting a homogeneous fog without considering the foggy scene with heterogeneous fog. In this paper, a new rendering method based on transmission map estimation is proposed. We first generate perlin noise image as the density distribution texture of heterogeneous fog. Then we estimate the transmission map using the Markov random field (MRF model and the bilateral filter. Finally, virtual foggy scene is realistically rendered with the generated perlin noise image and the transmission map according to the atmospheric scattering model. Experimental results show that the rendered results of our approach are quite satisfactory.

  2. Topological Galleries: A High Level User Interface for Topology Controlled Volume Rendering

    Energy Technology Data Exchange (ETDEWEB)

    MacCarthy, Brian; Carr, Hamish; Weber, Gunther H.

    2011-06-30

    Existing topological interfaces to volume rendering are limited by their reliance on sophisticated knowledge of topology by the user. We extend previous work by describing topological galleries, an interface for novice users that is based on the design galleries approach. We report three contributions: an interface based on hierarchical thumbnail galleries to display the containment relationships between topologically identifiable features, the use of the pruning hierarchy instead of branch decomposition for contour tree simplification, and drag-and-drop transfer function assignment for individual components. Initial results suggest that this approach suffers from limitations due to rapid drop-off of feature size in the pruning hierarchy. We explore these limitations by providing statistics of feature size as function of depth in the pruning hierarchy of the contour tree.

  3. Adaptive image contrast enhancement algorithm for point-based rendering

    Science.gov (United States)

    Xu, Shaoping; Liu, Xiaoping P.

    2015-03-01

    Surgical simulation is a major application in computer graphics and virtual reality, and most of the existing work indicates that interactive real-time cutting simulation of soft tissue is a fundamental but challenging research problem in virtual surgery simulation systems. More specifically, it is difficult to achieve a fast enough graphic update rate (at least 30 Hz) on commodity PC hardware by utilizing traditional triangle-based rendering algorithms. In recent years, point-based rendering (PBR) has been shown to offer the potential to outperform the traditional triangle-based rendering in speed when it is applied to highly complex soft tissue cutting models. Nevertheless, the PBR algorithms are still limited in visual quality due to inherent contrast distortion. We propose an adaptive image contrast enhancement algorithm as a postprocessing module for PBR, providing high visual rendering quality as well as acceptable rendering efficiency. Our approach is based on a perceptible image quality technique with automatic parameter selection, resulting in a visual quality comparable to existing conventional PBR algorithms. Experimental results show that our adaptive image contrast enhancement algorithm produces encouraging results both visually and numerically compared to representative algorithms, and experiments conducted on the latest hardware demonstrate that the proposed PBR framework with the postprocessing module is superior to the conventional PBR algorithm and that the proposed contrast enhancement algorithm can be utilized in (or compatible with) various variants of the conventional PBR algorithm.

  4. Virtual try-on through image-based rendering.

    Science.gov (United States)

    Hauswiesner, Stefan; Straka, Matthias; Reitmayr, Gerhard

    2013-09-01

    Virtual try-on applications have become popular because they allow users to watch themselves wearing different clothes without the effort of changing them physically. This helps users to make quick buying decisions and, thus, improves the sales efficiency of retailers. Previous solutions usually involve motion capture, 3D reconstruction or modeling, which are time consuming and not robust for all body poses. Our method avoids these steps by combining image-based renderings of the user and previously recorded garments. It transfers the appearance of a garment recorded from one user to another by matching input and recorded frames, image-based visual hull rendering, and online registration methods. Using images of real garments allows for a realistic rendering quality with high performance. It is suitable for a wide range of clothes and complex appearances, allows arbitrary viewing angles, and requires only little manual input. Our system is particularly useful for virtual try-on applications as well as interactive games.

  5. Congenital inner ear malformation: three dimensional volume rendering image using MR CISS sequence

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Woon; Lee, In Sook; Kim, Hak Jin; Goh, Eui Kyung; Kim, Lee Suk [College of Medicine, Pusan National Univ., Pusan (Korea, Republic of)

    2003-10-01

    To evaluate three-dimensional volume-rendering of congenital inner-ear malformations using the MR CISS(Constructive Interference in Steady State) sequence. MR CISS images of 30 inner ears of 15 patients (M:F=10.5; mean age, 6.5years) in whom inner-ear malformation was suspected were obtained using a superconducting Magnetom Vision System (Simens, Erlangen, Germany), with TR/TE/FA parameters of 12.25 ms/5.9 ms/70.deg.. The images obtained were processed by means of the volume rendering technique at an advanced workstation (Voxtol 3.0.0; GE Systems, advanced workstation, volume analysis). The cochlea and three semicircular canals were morphologically evaluated. Volume-rendered images of 25 inner ears of 13 patients demonstrated cochlear anomalies in the form of incomplete partition (n=18), hypoplasia (n=2), and severe hypoplasia (n=5). For the superior semicircular canal, findings were normal in 15 ears, though common crus aplasia (n=6), hypoplasia (n=4), aplasia (n=3), and a short and broad shape (n=2) were also observed. The posterior semicircular canal of 13 ears was normal, but common crus aplasia (n=6), a short and broad shape (n=5), aplasia (n=4), hypoplasia (n=3) were also identified. Twelve lateral semicircular canals, were normal, but other images depicted a short and broad shape (n=7), a dilated crus (n=5), a broad shape (n=4), and aplasia (n=2). In 14 patients the anomalies were bilateral, and in seven, the same anomalies affected both ears. Three-dimensional volume rendering images of the inner ear depicted various morphological abnormalities of the cochlea and semicircular canals. At that locations, anomalies were more complicated and varied than in the cochlea. Three-dimensional volume rendering imaging using the MR CISS technique provides anatomical information regarding the membranous labyrinth, and we consider this useful in the evaluation of congenital inner ear malformations.

  6. Interacting with Stroke-Based Rendering on a Wall Display

    NARCIS (Netherlands)

    Grubert, Jens; Hanckock, Mark; Carpendale, Sheelagh; Tse, Edward; Isenberg, Tobias

    2007-01-01

    We introduce two new interaction techniques for creating and interacting with non-photorealistic images using stroke-based rendering. We provide bimanual control of a large interactive canvas through both remote pointing and direct touch. Remote pointing allows people to sit and interact at a distan

  7. Interacting with Stroke-Based Rendering on a Wall Display

    NARCIS (Netherlands)

    Grubert, Jens; Hanckock, Mark; Carpendale, Sheelagh; Tse, Edward; Isenberg, Tobias

    2007-01-01

    We introduce two new interaction techniques for creating and interacting with non-photorealistic images using stroke-based rendering. We provide bimanual control of a large interactive canvas through both remote pointing and direct touch. Remote pointing allows people to sit and interact at a

  8. Random forest classification of large volume structures for visuo-haptic rendering in CT images

    Science.gov (United States)

    Mastmeyer, Andre; Fortmeier, Dirk; Handels, Heinz

    2016-03-01

    For patient-specific voxel-based visuo-haptic rendering of CT scans of the liver area, the fully automatic segmentation of large volume structures such as skin, soft tissue, lungs and intestine (risk structures) is important. Using a machine learning based approach, several existing segmentations from 10 segmented gold-standard patients are learned by random decision forests individually and collectively. The core of this paper is feature selection and the application of the learned classifiers to a new patient data set. In a leave-some-out cross-validation, the obtained full volume segmentations are compared to the gold-standard segmentations of the untrained patients. The proposed classifiers use a multi-dimensional feature space to estimate the hidden truth, instead of relying on clinical standard threshold and connectivity based methods. The result of our efficient whole-body section classification are multi-label maps with the considered tissues. For visuo-haptic simulation, other small volume structures would have to be segmented additionally. We also take a look into these structures (liver vessels). For an experimental leave-some-out study consisting of 10 patients, the proposed method performs much more efficiently compared to state of the art methods. In two variants of leave-some-out experiments we obtain best mean DICE ratios of 0.79, 0.97, 0.63 and 0.83 for skin, soft tissue, hard bone and risk structures. Liver structures are segmented with DICE 0.93 for the liver, 0.43 for blood vessels and 0.39 for bile vessels.

  9. Rendering Optical Effects Based on Spectra Representation in Complex Scenes

    OpenAIRE

    Dong, Weiming

    2006-01-01

    http://www.springerlink.com/; Rendering the structural color of natural objects or modern industrial products in the 3D environment is not possible with RGB-based graphics platforms and software and very time consuming, even with the most efficient spectra representation based methods previously proposed. Our framework allows computing full spectra light object interactions only when it is needed, i.e. for the part of the scene that requires simulating special spectra sensitive phenomena. Ach...

  10. New light field camera based on physical based rendering tracing

    Science.gov (United States)

    Chung, Ming-Han; Chang, Shan-Ching; Lee, Chih-Kung

    2014-03-01

    Even though light field technology was first invented more than 50 years ago, it did not gain popularity due to the limitation imposed by the computation technology. With the rapid advancement of computer technology over the last decade, the limitation has been uplifted and the light field technology quickly returns to the spotlight of the research stage. In this paper, PBRT (Physical Based Rendering Tracing) was introduced to overcome the limitation of using traditional optical simulation approach to study the light field camera technology. More specifically, traditional optical simulation approach can only present light energy distribution but typically lack the capability to present the pictures in realistic scenes. By using PBRT, which was developed to create virtual scenes, 4D light field information was obtained to conduct initial data analysis and calculation. This PBRT approach was also used to explore the light field data calculation potential in creating realistic photos. Furthermore, we integrated the optical experimental measurement results with PBRT in order to place the real measurement results into the virtually created scenes. In other words, our approach provided us with a way to establish a link of virtual scene with the real measurement results. Several images developed based on the above-mentioned approaches were analyzed and discussed to verify the pros and cons of the newly developed PBRT based light field camera technology. It will be shown that this newly developed light field camera approach can circumvent the loss of spatial resolution associated with adopting a micro-lens array in front of the image sensors. Detailed operational constraint, performance metrics, computation resources needed, etc. associated with this newly developed light field camera technique were presented in detail.

  11. 3D colour visualization of label images using volume rendering techniques.

    Science.gov (United States)

    Vandenhouten, R; Kottenhoff, R; Grebe, R

    1995-01-01

    Volume rendering methods for the visualization of 3D image data sets have been developed and collected in a C library. The core algorithm consists of a perspective ray casting technique for a natural and realistic view of the 3D scene. New edge operator shading methods are employed for a fast and information preserving representation of surfaces. Control parameters of the algorithm can be tuned to have either smoothed surfaces or a very detailed rendering of the geometrical structure. Different objects can be distinguished by different colours. Shadow ray tracing has been implemented to improve the realistic impression of the 3D image. For a simultaneous representation of objects in different depths, hiding each other, two types of transparency mode are used (wireframe and glass transparency). Single objects or groups of objects can be excluded from the rendering (peeling). Three orthogonal cutting planes or one arbitrarily placed cutting plane can be applied to the rendered objects in order to get additional information about inner structures, contours, and relative positions.

  12. Simulation and training of lumbar punctures using haptic volume rendering and a 6DOF haptic device

    Science.gov (United States)

    Färber, Matthias; Heller, Julika; Handels, Heinz

    2007-03-01

    The lumbar puncture is performed by inserting a needle into the spinal chord of the patient to inject medicaments or to extract liquor. The training of this procedure is usually done on the patient guided by experienced supervisors. A virtual reality lumbar puncture simulator has been developed in order to minimize the training costs and the patient's risk. We use a haptic device with six degrees of freedom (6DOF) to feedback forces that resist needle insertion and rotation. An improved haptic volume rendering approach is used to calculate the forces. This approach makes use of label data of relevant structures like skin, bone, muscles or fat and original CT data that contributes information about image structures that can not be segmented. A real-time 3D visualization with optional stereo view shows the punctured region. 2D visualizations of orthogonal slices enable a detailed impression of the anatomical context. The input data consisting of CT and label data and surface models of relevant structures is defined in an XML file together with haptic rendering and visualization parameters. In a first evaluation the visible human male data has been used to generate a virtual training body. Several users with different medical experience tested the lumbar puncture trainer. The simulator gives a good haptic and visual impression of the needle insertion and the haptic volume rendering technique enables the feeling of unsegmented structures. Especially, the restriction of transversal needle movement together with rotation constraints enabled by the 6DOF device facilitate a realistic puncture simulation.

  13. Advantages and disadvantages of 3D ultrasound of thyroid nodules including thin slice volume rendering

    Directory of Open Access Journals (Sweden)

    Slapa Rafal

    2011-01-01

    Full Text Available Abstract Background The purpose of this study was to assess the advantages and disadvantages of 3D gray-scale and power Doppler ultrasound, including thin slice volume rendering (TSVR, applied for evaluation of thyroid nodules. Methods The retrospective evaluation by two observers of volumes of 71 thyroid nodules (55 benign, 16 cancers was performed using a new TSVR technique. Dedicated 4D ultrasound scanner with an automatic 6-12 MHz 4D probe was used. Statistical analysis was performed with Stata v. 8.2. Results Multiple logistic regression analysis demonstrated that independent risk factors of thyroid cancers identified by 3D ultrasound include: (a ill-defined borders of the nodule on MPR presentation, (b a lobulated shape of the nodule in the c-plane and (c a density of central vessels in the nodule within the minimal or maximal ranges. Combination of features provided sensitivity 100% and specificity 60-69% for thyroid cancer. Calcification/microcalcification-like echogenic foci on 3D ultrasound proved not to be a risk factor of thyroid cancer. Storage of the 3D data of the whole nodules enabled subsequent evaluation of new parameters and with new rendering algorithms. Conclusions Our results indicate that 3D ultrasound is a practical and reproducible method for the evaluation of thyroid nodules. 3D ultrasound stores volumes comprising the whole lesion or organ. Future detailed evaluations of the data are possible, looking for features that were not fully appreciated at the time of collection or applying new algorithms for volume rendering in order to gain important information. Three-dimensional ultrasound data could be included in thyroid cancer databases. Further multicenter large scale studies are warranted.

  14. Use of multidetector row CT with volume renderings in right lobe living liver transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Ishifuro, Minoru; Akiyama, Yuji; Kushima, Toshio [Department of Radiology, Hiroshima University Medical Hospital, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan); Horiguchi, Jun; Nakashige, Aya; Tamura, Akihisa; Marukawa, Kazushi; Fukuda, Hiroshi; Ono, Chiaki; Ito, Katsuhide [Department of Radiology, Division of Medical Intelligence and Informatics, Programs for Applied Biomedicine, Graduate School of Biomedical Science, Hiroshima University, 1-2-3, Kasumi-cho, Minami-ku, Hiroshima 734-8551 (Japan)

    2002-10-01

    Multidetector row CT is a feasible diagnostic tool in pre- and postoperative liver partial transplantation. We can assess vascular anatomy and liver parenchyma as well as volumetry, which provide useful information for both donor selection and surgical planning. Disorders of the vascular and biliary systems are carefully observed in recipients. In addition, we evaluate liver regeneration of both the donor and the recipient by serial volumetry. We present how multidetector row CT with state-of-the-art three-dimensional volume renderings may be used in right lobe liver transplantation. (orig.)

  15. Fast Time-Varying Volume Rendering Using Time-Space Partition (TSP) Tree

    Science.gov (United States)

    Shen, Han-Wei; Chiang, Ling-Jen; Ma, Kwan-Liu

    1999-01-01

    We present a new, algorithm for rapid rendering of time-varying volumes. A new hierarchical data structure that is capable of capturing both the temporal and the spatial coherence is proposed. Conventional hierarchical data structures such as octrees are effective in characterizing the homogeneity of the field values existing in the spatial domain. However, when treating time merely as another dimension for a time-varying field, difficulties frequently arise due to the discrepancy between the field's spatial and temporal resolutions. In addition, treating spatial and temporal dimensions equally often prevents the possibility of detecting the coherence that is unique in the temporal domain. Using the proposed data structure, our algorithm can meet the following goals. First, both spatial and temporal coherence are identified and exploited for accelerating the rendering process. Second, our algorithm allows the user to supply the desired error tolerances at run time for the purpose of image-quality/rendering-speed trade-off. Third, the amount of data that are required to be loaded into main memory is reduced, and thus the I/O overhead is minimized. This low I/O overhead makes our algorithm suitable for out-of-core applications.

  16. MaterialVis: material visualization tool using direct volume and surface rendering techniques.

    Science.gov (United States)

    Okuyan, Erhan; Güdükbay, Uğur; Bulutay, Ceyhun; Heinig, Karl-Heinz

    2014-05-01

    Visualization of the materials is an indispensable part of their structural analysis. We developed a visualization tool for amorphous as well as crystalline structures, called MaterialVis. Unlike the existing tools, MaterialVis represents material structures as a volume and a surface manifold, in addition to plain atomic coordinates. Both amorphous and crystalline structures exhibit topological features as well as various defects. MaterialVis provides a wide range of functionality to visualize such topological structures and crystal defects interactively. Direct volume rendering techniques are used to visualize the volumetric features of materials, such as crystal defects, which are responsible for the distinct fingerprints of a specific sample. In addition, the tool provides surface visualization to extract hidden topological features within the material. Together with the rich set of parameters and options to control the visualization, MaterialVis allows users to visualize various aspects of materials very efficiently as generated by modern analytical techniques such as the Atom Probe Tomography.

  17. Real-Time Ray Casting Rendering of Volume Clipping in Medical Visualization

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei (陈为); HUA Wei (华炜); BAO HuJun (鲍虎军); PENG QunSheng (彭群生)

    2003-01-01

    This paper presents a real-time ray casting rendering algorithm for “volume clip ping plane” as an extension of the conventional ray casting technique. For each viewing direction a (moderate) pre-processing step is performed: the ray traverses the entire volume data (no early ray termination). Its intensity and opacity contributions are divided into several segments which are then sorted and stored by depth. At each sampling position along a segment, accumulated trans parency and color are stored at a moderate memory overhead. For visualizing real-time volume clipping, only relevant segment contributions (maximum two) at the location of the clipping plane are considered, thus reducing the calculation to meet real-time requirements. Compared with the previous work that involves time-consuming re-clipping, re-traversing and re-shading, the proposed method achieves quality identical to ray casting at real-time speed. The performance is indepen dent of the volume resolution and/or the number of clipping planes along a given viewing direction. Therefore it is suitable for real-time “internal volume inspections”, involving one or several cutting planes, typically applied e.g., in medical visualization and material testing applications.

  18. Simultaneous visualization of anatomical and functional 3D data by combining volume rendering and flow visualization

    Science.gov (United States)

    Schafhitzel, Tobias; Rößler, Friedemann; Weiskopf, Daniel; Ertl, Thomas

    2007-03-01

    Modern medical imaging provides a variety of techniques for the acquisition of multi-modality data. A typical example is the combination of functional and anatomical data from functional Magnetic Resonance Imaging (fMRI) and anatomical MRI measurements. Usually, the data resulting from each of these two methods is transformed to 3D scalar-field representations to facilitate visualization. A common method for the visualization of anatomical/functional multi-modalities combines semi-transparent isosurfaces (SSD, surface shaded display) with other scalar visualization techniques like direct volume rendering (DVR). However, partial occlusion and visual clutter that typically result from the overlay of these traditional 3D scalar-field visualization techniques make it difficult for the user to perceive and recognize visual structures. This paper addresses these perceptual issues by a new visualization approach for anatomical/functional multi-modalities. The idea is to reduce the occlusion effects of an isosurface by replacing its surface representation by a sparser line representation. Those lines are chosen along the principal curvature directions of the isosurface and rendered by a flow visualization method called line integral convolution (LIC). Applying the LIC algorithm results in fine line structures that improve the perception of the isosurface's shape in a way that it is possible to render it with small opacity values. An interactive visualization is achieved by executing the algorithm completely on the graphics processing unit (GPU) of modern graphics hardware. Furthermore, several illumination techniques and image compositing strategies are discussed for emphasizing the isosurface structure. We demonstrate our method for the example of fMRI/MRI measurements, visualizing the spatial relationship between brain activation and brain tissue.

  19. SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume Rendering

    KAUST Repository

    Hadwiger, Markus

    2017-08-28

    Recent advances in data acquisition produce volume data of very high resolution and large size, such as terabyte-sized microscopy volumes. These data often contain many fine and intricate structures, which pose huge challenges for volume rendering, and make it particularly important to efficiently skip empty space. This paper addresses two major challenges: (1) The complexity of large volumes containing fine structures often leads to highly fragmented space subdivisions that make empty regions hard to skip efficiently. (2) The classification of space into empty and non-empty regions changes frequently, because the user or the evaluation of an interactive query activate a different set of objects, which makes it unfeasible to pre-compute a well-adapted space subdivision. We describe the novel SparseLeap method for efficient empty space skipping in very large volumes, even around fine structures. The main performance characteristic of SparseLeap is that it moves the major cost of empty space skipping out of the ray-casting stage. We achieve this via a hybrid strategy that balances the computational load between determining empty ray segments in a rasterization (object-order) stage, and sampling non-empty volume data in the ray-casting (image-order) stage. Before ray-casting, we exploit the fast hardware rasterization of GPUs to create a ray segment list for each pixel, which identifies non-empty regions along the ray. The ray-casting stage then leaps over empty space without hierarchy traversal. Ray segment lists are created by rasterizing a set of fine-grained, view-independent bounding boxes. Frame coherence is exploited by re-using the same bounding boxes unless the set of active objects changes. We show that SparseLeap scales better to large, sparse data than standard octree empty space skipping.

  20. State of the Art in Transfer Functions for Direct Volume Rendering

    KAUST Repository

    Ljung, Patric

    2016-07-04

    A central topic in scientific visualization is the transfer function (TF) for volume rendering. The TF serves a fundamental role in translating scalar and multivariate data into color and opacity to express and reveal the relevant features present in the data studied. Beyond this core functionality, TFs also serve as a tool for encoding and utilizing domain knowledge and as an expression for visual design of material appearances. TFs also enable interactive volumetric exploration of complex data. The purpose of this state-of-the-art report (STAR) is to provide an overview of research into the various aspects of TFs, which lead to interpretation of the underlying data through the use of meaningful visual representations. The STAR classifies TF research into the following aspects: dimensionality, derived attributes, aggregated attributes, rendering aspects, automation, and user interfaces. The STAR concludes with some interesting research challenges that form the basis of an agenda for the development of next generation TF tools and methodologies. © 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  1. Hybrid Parallelism for Volume Rendering on Large, Multi- and Many-core Systems

    Energy Technology Data Exchange (ETDEWEB)

    Howison, Mark; Bethel, E. Wes; Childs, Hank

    2011-01-01

    With the computing industry trending towards multi- and many-core processors, we study how a standard visualization algorithm, ray-casting volume rendering, can benefit from a hybrid parallelism approach. Hybrid parallelism provides the best of both worlds: using distributed-memory parallelism across a large numbers of nodes increases available FLOPs and memory, while exploiting shared-memory parallelism among the cores within each node ensures that each node performs its portion of the larger calculation as efficiently as possible. We demonstrate results from weak and strong scaling studies, at levels of concurrency ranging up to 216,000, and with datasets as large as 12.2 trillion cells. The greatest benefit from hybrid parallelism lies in the communication portion of the algorithm, the dominant cost at higher levels of concurrency. We show that reducing the number of participants with a hybrid approach significantly improves performance.

  2. MPI-hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

    Energy Technology Data Exchange (ETDEWEB)

    Howison, Mark; Bethel, E. Wes; Childs, Hank

    2010-03-20

    This work studies the performance and scalability characteristics of"hybrid'" parallel programming and execution as applied to raycasting volume rendering -- a staple visualization algorithm -- on a large, multi-core platform. Historically, the Message Passing Interface (MPI) has become the de-facto standard for parallel programming and execution on modern parallel systems. As the computing industry trends towards multi-core processors, with four- and six-core chips common today and 128-core chips coming soon, we wish to better understand how algorithmic and parallel programming choices impact performance and scalability on large, distributed-memory multi-core systems. Our findings indicate that the hybrid-parallel implementation, at levels of concurrency ranging from 1,728 to 216,000, performs better, uses a smaller absolute memory footprint, and consumes less communication bandwidth than the traditional, MPI-only implementation.

  3. Hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

    Science.gov (United States)

    Howison, M.; Bethel, E. W.; Childs, H.

    2011-10-01

    This work studies the performance and scalability characteristics of "hybrid" parallel programming and execution as applied to raycasting volume rendering - a staple visualization algorithm - on a large, multi-core platform. Historically, the Message Passing Interface (MPI) has become the de-facto standard for parallel programming and execution on modern parallel systems. As the computing industry trends towards multi-core processors, with four- and six-core chips common today, as well as processors capable of running hundreds of concurrent threads (GPUs), we wish to better understand how algorithmic and parallel programming choices impact performance and scalability on large, distributed-memory multi-core systems. Our findings indicate that the hybrid-parallel implementation, at levels of concurrency ranging from 1,728 to 216,000, performs better, uses a smaller absolute memory footprint, and consumes less communication bandwidth than the traditional, MPI-only implementation.

  4. Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why.

    Science.gov (United States)

    Fishman, Elliot K; Ney, Derek R; Heath, David G; Corl, Frank M; Horton, Karen M; Johnson, Pamela T

    2006-01-01

    The introduction and widespread availability of 16-section multi-detector row computed tomographic (CT) technology and, more recently, 64-section scanners, has greatly advanced the role of CT angiography in clinical practice. CT angiography has become a key component of state-of-the-art imaging, with applications ranging from oncology (eg, staging of pancreatic or renal cancer) to classic vascular imaging (eg, evaluation of aortic aneurysms and renal artery stenoses) as well as newer techniques such as coronary artery imaging and peripheral runoff studies. With an average of 400-1000 images in each volume data set, three-dimensional postprocessing is crucial to volume visualization. Radiologists now have workstations that provide capabilities for evaluation of these data sets by using a range of software programs and processing tools. Although different systems have unique capabilities and functionality, all provide the options of volume rendering and maximum intensity projection for image display and analysis. These two postprocessing techniques have different advantages and disadvantages when used in clinical practice, and it is important that radiologists understand when and how each technique should be used. Copyright RSNA, 2006.

  5. Digital forensic osteology: morphological sexing of skeletal remains using volume-rendered cranial CT scans.

    Science.gov (United States)

    Ramsthaler, Frank; Kettner, Mattias; Gehl, Axel; Verhoff, M A

    2010-02-25

    Because of the increasing lack of recent bone collections, ethical issues concerning maceration procedures, and progress in radiological imaging techniques, computed tomography (CT) scans offer an alternative to traditional anthropological bone collection. The present study examined volume-rendered cranial CT (CCT) scans from 50 crania to morphologically evaluate sex characteristics. CCT scans were performed and scored by two teams (Teams A and B) of two examiners each (2x50=100 examinations) to evaluate the occurrence and/or absence of morphological traits. Altogether, 60 of 100 crania (31 Team A+29 Team B) crania were determined to be male, and 40 (19 Team A+21 Team B) were determined to be female when using the scoring system adapted from Knussmann. These results imply a sex determination accuracy rate of 96%. Only in one case was recalculation of weighting factors necessary to determine one additional correct classification. As a single parameter, arcus superciliaris evaluation permitted the most accurate sex determination (female, 84.2%; male, 85.5%). No significant difference in accuracy rates was observed between the two sexes (p<0.65, chi(2)=0.39, Fisher's exact test). Interobserver bias rates for both teams were very low (kappa=0.83). The present study shows that volume-rendered CCT images are suitable for the collection of data concerning morphologic sex determination of skulls. Thus, this method may be helpful in both actual forensic casework and the systematic reevaluation and improvement of classical anthropological methods and their adaptation to changing populations.

  6. 3D Reconstruction from X-ray Fluoroscopy for Clinical Veterinary Medicine using Differential Volume Rendering

    Science.gov (United States)

    Khongsomboon, Khamphong; Hamamoto, Kazuhiko; Kondo, Shozo

    3D reconstruction from ordinary X-ray equipment which is not CT or MRI is required in clinical veterinary medicine. Authors have already proposed a 3D reconstruction technique from X-ray photograph to present bone structure. Although the reconstruction is useful for veterinary medicine, the thechnique has two problems. One is about exposure of X-ray and the other is about data acquisition process. An x-ray equipment which is not special one but can solve the problems is X-ray fluoroscopy. Therefore, in this paper, we propose a method for 3D-reconstruction from X-ray fluoroscopy for clinical veterinary medicine. Fluoroscopy is usually used to observe a movement of organ or to identify a position of organ for surgery by weak X-ray intensity. Since fluoroscopy can output a observed result as movie, the previous two problems which are caused by use of X-ray photograph can be solved. However, a new problem arises due to weak X-ray intensity. Although fluoroscopy can present information of not only bone structure but soft tissues, the contrast is very low and it is very difficult to recognize some soft tissues. It is very useful to be able to observe not only bone structure but soft tissues clearly by ordinary X-ray equipment in the field of clinical veterinary medicine. To solve this problem, this paper proposes a new method to determine opacity in volume rendering process. The opacity is determined according to 3D differential coefficient of 3D reconstruction. This differential volume rendering can present a 3D structure image of multiple organs volumetrically and clearly for clinical veterinary medicine. This paper shows results of simulation and experimental investigation of small dog and evaluation by veterinarians.

  7. Low dose four-dimensional computerized tomography with volume rendering reconstruction for primary hyperparathyroidism: How I do it?

    Institute of Scientific and Technical Information of China (English)

    Timothy; A; Platz; Moshim; Kukar; Rania; Elmarzouky; William; Cance; Ahmed; Abdelhalim

    2014-01-01

    Abstract Modification of 4-dimensional computed tomography(4D-CT)technique with volume rendering reconstruc-tions and significant dose reduction is a safe and ac-curate method of pre-operative localization for primary hyperparathyroidism.Modified low dose 4D-CT with volume rendering reconstructions provides precise preoperative localization and is associated with a sig-nificant reduction in radiation exposure compared to classic preoperative localizing techniques.It should be considered the preoperative localization study of choice for primary hyperparathyroidism.

  8. Three-dimensional MRA study of the normal canine thorax: MIP sections and volume rendering.

    Science.gov (United States)

    Contreras, S; Vázquez, J M; Morales, M; Rivero, M A; Gil, F; Latorre, R; Arencibia, A

    2011-02-01

    The purpose of this study was to investigate the feasibility of three-dimensional contrast-enhanced magnetic resonance angiography (3D-CE-MRA) for the non-invasive anatomical evaluation of the thoracic vasculature in five normal Beagles. After intravenous gadolinium administration and a cardio-respiratory gating protocol, fast 3D gradient echo pulse sequence MRA was performed employing a 1.5 Tesla magnet and a human thorax coil. Three-dimensional vascular software was applied. Sagittal, transverse and dorsal maximum intensity projection (MIP) sections and volume rendering (VR) images were obtained and labelled. Anatomical literature, dissections and gross sections were employed to assist the identification of the vascular structures. With improvements in scanner technology, MIP sections and VR images are a promising, non-invasive and accurate method of evaluating the canine thoracic vasculature. Images provide a reference material for clinical studies of the canine thorax for radiologist-surgeon teamwork assessment and also encourage the development of this technique in veterinary medicine.

  9. 3D skewing and de-skewing scheme for conflict-free access to rays in volume rendering

    Energy Technology Data Exchange (ETDEWEB)

    Cohen-or, D.; Kaufman, A. [Tel-Aviv Univ., Ramat Aviv (Israel)

    1995-05-01

    We extend a 2D linear skewed memory organization to 3D and introduce the associated de-skewing scheme designed to provide conflict-free access to projection rays of voxels for use in a volume rendering architecture. This is an application of a 3D linear skewing scheme which supports real-time axonometric projection from 26 primary orientations. 17 refs.

  10. Comparison of Volume Rendering CT cholangiography and Minimum intensity projection CT cholangiography in patients with obstructive biliary disease

    OpenAIRE

    牛見, 尚史; 佃, 俊二; 平敷, 淳子

    2002-01-01

     We compared the detectability and conspicuity of minimum intensity projection CT cholangiography (Min-IP CTC)with volume rendering CT cholangiography (VRCTC).The subjects were ten patients (6 men, 4 women, mean age 64.7) who clinically suspected obstructive biliary truct disease. They underwent enhanced helical CT. Volume data of delayed phase that reconstructed by 2 or 1 mm thickness was transferred to work station (Advantage Windows) and data processing by Minimum Intensity Projection (Min...

  11. Standardized Volume Rendering for Magnetic Resonance Angiography Measurements in the Abdominal Aorta

    Energy Technology Data Exchange (ETDEWEB)

    Persson, A.; Brismar, T.B.; Lundstroem, C.; Dahlstroem, N.; Othberg, F.; Smedby, Oe. [Linkoeping Univ. Hospital (Sweden). Center for Medical Image Science and Visualization (CMIV)

    2006-03-15

    Purpose: To compare three methods for standardizing volume rendering technique (VRT) protocols by studying aortic diameter measurements in magnetic resonance angiography (MRA) datasets. Material and Methods: Datasets from 20 patients previously examined with gadolinium-enhanced MRA and with digital subtraction angiography (DSA) for abdominal aortic aneurysm were retrospectively evaluated by three independent readers. The MRA datasets were viewed using VRT with three different standardized transfer functions: the percentile method (Pc-VRT), the maximum-likelihood method (ML-VRT), and the partial range histogram method (PRH-VRT). The aortic diameters obtained with these three methods were compared with freely chosen VRT parameters (F-VRT) and with maximum intensity projection (MIP) concerning inter-reader variability and agreement with the reference method DSA. Results: F-VRT parameters and PRH-VRT gave significantly higher diameter values than DSA, whereas Pc-VRT gave significantly lower values than DSA. The highest interobserver variability was found for F-VRT parameters and MIP, and the lowest for Pc-VRT and PRH-VRT. All standardized VRT methods were significantly superior to both MIP and F-VRT in this respect. The agreement with DSA was best for PRH-VRT, which was the only method with a mean error below 1 mm and which also had the narrowest limits of agreement (95% of cases between 2.1 mm below and 3.1 mm above DSA). Conclusion: All the standardized VRT methods compare favorably with MIP and VRT with freely selected parameters as regards interobserver variability. The partial range histogram method, although systematically overestimating vessel diameters, gives results closest to those of DSA.

  12. Automated volume of interest delineation and rendering of cone beam CT images in interventional cardiology

    Science.gov (United States)

    Lorenz, Cristian; Schäfer, Dirk; Eshuis, Peter; Carroll, John; Grass, Michael

    2012-02-01

    Interventional C-arm systems allow the efficient acquisition of 3D cone beam CT images. They can be used for intervention planning, navigation, and outcome assessment. We present a fast and completely automated volume of interest (VOI) delineation for cardiac interventions, covering the whole visceral cavity including mediastinum and lungs but leaving out rib-cage and spine. The problem is addressed in a model based approach. The procedure has been evaluated on 22 patient cases and achieves an average surface error below 2mm. The method is able to cope with varying image intensities, varying truncations due to the limited reconstruction volume, and partially with heavy metal and motion artifacts.

  13. Mapping high-fidelity volume rendering for medical imaging to CPU, GPU and many-core architectures.

    Science.gov (United States)

    Smelyanskiy, Mikhail; Holmes, David; Chhugani, Jatin; Larson, Alan; Carmean, Douglas M; Hanson, Dennis; Dubey, Pradeep; Augustine, Kurt; Kim, Daehyun; Kyker, Alan; Lee, Victor W; Nguyen, Anthony D; Seiler, Larry; Robb, Richard

    2009-01-01

    Medical volumetric imaging requires high fidelity, high performance rendering algorithms. We motivate and analyze new volumetric rendering algorithms that are suited to modern parallel processing architectures. First, we describe the three major categories of volume rendering algorithms and confirm through an imaging scientist-guided evaluation that ray-casting is the most acceptable. We describe a thread- and data-parallel implementation of ray-casting that makes it amenable to key architectural trends of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel architecture code-named Larrabee. We achieve more than an order of magnitude performance improvement on a number of large 3D medical datasets. We further describe a data compression scheme that significantly reduces data-transfer overhead. This allows our approach to scale well to large numbers of Larrabee cores.

  14. Distributed Dimensonality-Based Rendering of LIDAR Point Clouds

    Science.gov (United States)

    Brédif, M.; Vallet, B.; Ferrand, B.

    2015-08-01

    Mobile Mapping Systems (MMS) are now commonly acquiring lidar scans of urban environments for an increasing number of applications such as 3D reconstruction and mapping, urban planning, urban furniture monitoring, practicability assessment for persons with reduced mobility (PRM)... MMS acquisitions are usually huge enough to incur a usability bottleneck for the increasing number of non-expert user that are not trained to process and visualize these huge datasets through specific softwares. A vast majority of their current need is for a simple 2D visualization that is both legible on screen and printable on a static 2D medium, while still conveying the understanding of the 3D scene and minimizing the disturbance of the lidar acquisition geometry (such as lidar shadows). The users that motivated this research are, by law, bound to precisely georeference underground networks for which they currently have schematics with no or poor absolute georeferencing. A solution that may fit their needs is thus a 2D visualization of the MMS dataset that they could easily interpret and on which they could accurately match features with their user datasets they would like to georeference. Our main contribution is two-fold. First, we propose a 3D point cloud stylization for 2D static visualization that leverages a Principal Component Analysis (PCA)-like local geometry analysis. By skipping the usual and error-prone estimation of a ground elevation, this rendering is thus robust to non-flat areas and has no hard-to-tune parameters such as height thresholds. Second, we implemented the corresponding rendering pipeline so that it can scale up to arbitrary large datasets by leveraging the Spark framework and its Resilient Distributed Dataset (RDD) and Dataframe abstractions.

  15. The effect of CT scanner parameters and 3D volume rendering techniques on the accuracy of linear, angular, and volumetric measurements of the mandible

    Science.gov (United States)

    Whyms, B.J.; Vorperian, H.K.; Gentry, L.R.; Schimek, E.M.; Bersu, E.T.; Chung, M.K.

    2013-01-01

    Objectives This study investigates the effect of scanning parameters on the accuracy of measurements from three-dimensional multi-detector computed tomography (3D-CT) mandible renderings. A broader range of acceptable parameters can increase the availability of CT studies for retrospective analysis. Study Design Three human mandibles and a phantom object were scanned using 18 combinations of slice thickness, field of view, and reconstruction algorithm and three different threshold-based segmentations. Measurements of 3D-CT models and specimens were compared. Results Linear and angular measurements were accurate, irrespective of scanner parameters or rendering technique. Volume measurements were accurate with a slice thickness of 1.25 mm, but not 2.5 mm. Surface area measurements were consistently inflated. Conclusions Linear, angular and volumetric measurements of mandible 3D-CT models can be confidently obtained from a range of parameters and rendering techniques. Slice thickness is the primary factor affecting volume measurements. These findings should also apply to 3D rendering using cone-beam-CT. PMID:23601224

  16. Role of volume rendered 3-D computed tomography in conservative management of trauma-related thoracic injuries.

    LENUS (Irish Health Repository)

    OʼLeary, Donal Peter

    2012-09-01

    Pneumatic nail guns are a tool used commonly in the construction industry and are widely available. Accidental injuries from nail guns are common, and several cases of suicide using a nail gun have been reported. Computed tomographic (CT) imaging, together with echocardiography, has been shown to be the gold standard for investigation of these cases. We present a case of a 55-year-old man who presented to the accident and emergency unit of a community hospital following an accidental pneumatic nail gun injury to his thorax. Volume-rendered CT of the thorax allowed an accurate assessment of the thoracic injuries sustained by this patient. As there was no evidence of any acute life-threatening injury, a sternotomy was avoided and the patient was observed closely until discharge. In conclusion, volume-rendered 3-dimensional CT can greatly help in the decision to avoid an unnecessary sternotomy in patients with a thoracic nail gun injury.

  17. A study on variation types in celiac axis and superior mesenteric artery using 3D volume rendering of MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Keun; Jang, Seong Joo [Dept. of Radiological physics Graduate School of Dongshin University, Naju (Korea, Republic of); Jang, Young Ill [Dept. of Radiological Technology of Kwangyang Health College, Kwangyang (Korea, Republic of)

    2013-06-15

    The aim of this study was to evaluate the variation which based on Celiac axis and SMA using by CT volume rendering images. 613 patients underwent abdominal CTA, there were 552 patients (99.05%, TypeⅠ, Ⅱ ) with normal anatomical form and 61 (9.95%, Type Ⅲ-Ⅻ) with variation. TypeⅠ was 339(55.31%), Type Ⅱ was 213 (34.74%), Type Ⅲ was 18 (2.93%), Type Ⅳ was 12 patients (1.95%), Type Ⅴ was 11 patient (1.79%), Type Ⅵ was 9 patients (1.46%), Type Ⅶ was 6 patients (0.97%), Type Ⅷ was 1 patient (0.16%), Type Ⅸ was 1 patient (0.16%), Type Ⅹ was 1 patient (0.16%), Type Ⅺ was 1 patient (0.16%), and Type Ⅻ was 1 patient (0.16%) into totally new types of variation. In conclusion, we could found 9 new types of variation by classifying based on celiac axis and superior mesenteric artery. These results were considered to be an important opportunity for a new vessel map.

  18. APEX (Air Pollution Exercise) Volume 9: Industrialist's Manual No. 5, Caesar's Rendering Plant.

    Science.gov (United States)

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Industrialist's Manual No. 5, Caesar's Rendering Plant is part of a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The first two sections,…

  19. A point-based rendering approach for real-time interaction on mobile devices

    Institute of Scientific and Technical Information of China (English)

    LIANG XiaoHui; ZHAO QinPing; HE ZhiYing; XIE Ke; LIU YuBo

    2009-01-01

    Mobile device is an Important interactive platform. Due to the limitation of computation, memory, display area and energy, how to realize the efficient and real-time interaction of 3D models based on mobile devices is an important research topic. Considering features of mobile devices, this paper adopts remote rendering mode and point models, and then, proposes a transmission and rendering approach that could interact in real time. First, improved simplification algorithm based on MLS and display resolution of mobile devices is proposed. Then, a hierarchy selection of point models and a QoS transmission control strategy are given based on interest area of operator, interest degree of object in the virtual environment and rendering error. They can save the energy consumption. Finally, the rendering and interaction of point models are completed on mobile devices. The experiments show that our method is efficient.

  20. Direct volumetric rendering based on point primitives in OpenGL.

    Science.gov (United States)

    da Rosa, André Luiz Miranda; de Almeida Souza, Ilana; Yuuji Hira, Adilson; Zuffo, Marcelo Knörich

    2006-01-01

    The aim of this project is to present a renderization by software algorithm of acquired volumetric data. The algorithm was implemented in Java language and the LWJGL graphical library was used, allowing the volume renderization by software and thus preventing the necessity to acquire specific graphical boards for the 3D reconstruction. The considered algorithm creates a model in OpenGL, through point primitives, where each voxel becomes a point with the color values related to this pixel position in the corresponding images.

  1. Methods for Quantifying and Characterizing Errors in Pixel-Based 3D Rendering.

    Science.gov (United States)

    Hagedorn, John G; Terrill, Judith E; Peskin, Adele P; Filliben, James J

    2008-01-01

    We present methods for measuring errors in the rendering of three-dimensional points, line segments, and polygons in pixel-based computer graphics systems. We present error metrics for each of these three cases. These methods are applied to rendering with OpenGL on two common hardware platforms under several rendering conditions. Results are presented and differences in measured errors are analyzed and characterized. We discuss possible extensions of this error analysis approach to other aspects of the process of generating visual representations of synthetic scenes.

  2. Hardware Accelerated Point Rendering of Isosurfaces

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Christensen, Niels Jørgen

    2003-01-01

    an approximate technique for point scaling using distance attenuation which makes it possible to render points stored in display lists or vertex arrays. This enables us to render points quickly using OpenGL. Our comparisons show that point generation is significantly faster than triangle generation...... and that the advantage of rendering points as opposed to triangles increases with the size and complexity of the volumes. To gauge the visual quality of future hardware accelerated point rendering schemes, we have implemented a software based point rendering method and compare the quality to both MC and our OpenGL based...

  3. Hardware Algorithms For Tile-Based Real-Time Rendering

    NARCIS (Netherlands)

    Crisu, D.

    2012-01-01

    In this dissertation, we present the GRAphics AcceLerator (GRAAL) framework for developing embedded tile-based rasterization hardware for mobile devices, meant to accelerate real-time 3-D graphics (OpenGL compliant) applications. The goal of the framework is a low-cost, low-power, high-performance

  4. Hardware Algorithms For Tile-Based Real-Time Rendering

    NARCIS (Netherlands)

    Crisu, D.

    2012-01-01

    In this dissertation, we present the GRAphics AcceLerator (GRAAL) framework for developing embedded tile-based rasterization hardware for mobile devices, meant to accelerate real-time 3-D graphics (OpenGL compliant) applications. The goal of the framework is a low-cost, low-power, high-performance d

  5. Particle Based Participating Media Rendering Using Density Octrees

    Science.gov (United States)

    Monette, Richard Elliot

    In order for computer generated imagery to recreate the characteristic visual appearance of phenomena such as smoke and fog it is necessary to compute the way in which light interacts with participating media. In this thesis we present a novel technique for computing volumetric single scattering lighting solutions for particle based inhomogeneous participating media data sets. We seek to calculate volumetric lighting solutions for particle based data sets as such data sets have the advantage of being spatially unbounded and relatively unrestricted with regard to memory as compared to uniform grids. In order to perform the calculations which are required for computing such a lighting solution, we introduce a novel octree based data structure. We refer to this new data structure as a density octree. The design of the density octree allows for efficiently computing light attenuation throughout the spatial extent. Using our new algorithm and data structure, we are able to produce high quality output imagery of arbitrary particle data sets in the presence of arbitrary numbers of lights.

  6. A learning-based approach for automated quality assessment of computer-rendered images

    Science.gov (United States)

    Zhang, Xi; Agam, Gady

    2012-01-01

    Computer generated images are common in numerous computer graphics applications such as games, modeling, and simulation. There is normally a tradeoff between the time allocated to the generation of each image frame and and the quality of the image, where better quality images require more processing time. Specifically, in the rendering of 3D objects, the surfaces of objects may be manipulated by subdividing them into smaller triangular patches and/or smoothing them so as to produce better looking renderings. Since unnecessary subdivision results in increased rendering time and unnecessary smoothing results in reduced details, there is a need to automatically determine the amount of necessary processing for producing good quality rendered images. In this paper we propose a novel supervised learning based methodology for automatically predicting the quality of rendered images of 3D objects. To perform the prediction we train on a data set which is labeled by human observers for quality. We are then able to predict the quality of renderings (not used in the training) with an average prediction error of roughly 20%. The proposed approach is compared to known techniques and is shown to produce better results.

  7. The LLNL High Accuracy Volume Renderer for Unstructured Data: Capabilities, Current Limits, and Potential for ASCI/VIEWS Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P L; Max, N L

    2001-06-04

    This report describes a volume rendering system for unstructured data, especially finite element data, that creates images with very high accuracy. The system will currently handle meshes whose cells are either linear or quadratic tetrahedra, or meshes with mixed cell types: tetrahedra, bricks, prisms, and pyramids. The cells may have nonplanar facets. Whenever possible, exact mathematical solutions for the radiance integrals and for interpolation are used. Accurate semitransparent shaded isosurfaces may be embedded in the volume rendering. For very small cells, subpixel accumulation by splatting is used to avoid sampling error. A new exact and efficient visibility ordering algorithm is described. The most accurate images are generated in software, however, more efficient algorithms utilizing graphics hardware may also be selected. The report describes the parallelization of the system for a distributed-shared memory multiprocessor machine, and concludes by discussing the system's limits, desirable future work, and ways to extend the system so as to be compatible with projected ASCI/VIEWS architectures.

  8. A Volume Rendering Algorithm for Sequential 2D Medical Images%序列二维医学图象的体绘制法

    Institute of Scientific and Technical Information of China (English)

    吕忆松; 陈亚珠

    2002-01-01

    Volume rendering of 3D data sets composed of sequential 2D medical images has become an important branch in image processing and computer graphics. To help physicians fully understand deep-seated human organs and focuses (e. g. a tumnout) as 3D structures, in this paper, we present a modified volume rendering algorithm to render volumetric data. Using this method, the projection images of structures of interest from different viewing directions can be obtained satisfactorily. By rotating the light source and the observer eyepoint, this method avoids rotates the whole volumetric data in main memory and thus reduces computational complexity and rendering time. Experiments on CT images suggest that the proposed method is useful and efficient for rendering 3D data sets.

  9. Water transfer properties and shrinkage in lime-based rendering mortars

    Science.gov (United States)

    Arizzi, A.; Cultrone, G.

    2012-04-01

    Rendering is the practice of covering a wall or a building façade with one or more layers of mortar, with the main aim to protect the masonry structure against weathering. The render applied must show high flexibility, good adhesion and compatibility with the support (i.e. stone, brick) and, overall, it should be characterised by low water absorption and high water vapour permeability. Water (in the solid, liquid and vapour state) is one of the main factors that drive construction materials to deterioration. Therefore, to evaluate the quality and durability of a rendering mortar, thus ensuring its protective function in the masonry structure, it is fundamental to assess the behaviour of this mortar towards water. Mortars were elaborated with a calcitic dry hydrated lime, a calcareous aggregate, a pozzolan, a lightweight aggregate, a water-retaining agent and a plasticiser. Four types of lime mortars were prepared, in which the binder-to-aggregate ratios were 1:3, 1:4, 1:6 and 1:9 by weight, whilst the pozzolan was kept at 10% of the lime (by mass) and the total admixtures proportion was less than 2% of the total mass. The influence of the characteristics of mortars pore system on the amount of water absorbed and the kinetics of absorption was investigated by means of: free water absorption and drying; capillary uptake; water permeability; water vapour permeability. Interesting deductions can be made from the values of water and water vapour permeability found for mortars: the former increases exponentially with the sand volume of the mortar, whilst the latter increases almost exponentially with the initial water content added to the mortar mixes during their elaboration. However, the relationship obtained between porosity of mortars and permeability values is not really clear. This finding suggests that the permeability of a material cannot be estimated on the basis of its porosity as it can be made for the capillary uptake and free water absorption. Another

  10. 面向体绘制图像的直接体对象抠取%Direct Volume Object Cutout on Volume Rendering Images

    Institute of Scientific and Technical Information of China (English)

    宋巍; 杨涛; 陈莉; 张慧

    2011-01-01

    Although various segmentation or cutout schemes have been well-developed for both 2D and 3D images, it remains a challenging problem to cutout an object from a volume dataset in an intuitive and convenient fashion. Most of existing volume cutout algorithms operate on 2D slice images, and extend the extracted information to the 3D counter. In this paper, we propose a novel volume object cutout algorithm which allows users to select 3D points by drawing strokes onto the volume rendering images. A set of 3D points is collected by casting through the drawn strokes, followed by a refinement process based on the k-mean clustering method to obtain high confidential result. Taking these refined points as seed points, the graph cut algorithm is employed to accurately and quickly extract the intended object. Experimental results demonstrate the effectiveness of our algorithm.%针对三维体对象抠取的相关工作中存在的尚多不足,提出一种体对象抠取算法.首先计算出与用户勾画结果相关的三维数据点,然后基于K-means聚类方法标记出高置信度的属于目标对象和无关对象的三维数据点,并以此作为种子点,借助基于能量优化的图割算法最终得到正确的体对象抠取结果.用户只需直接在体绘制的二维颜色叠加结果上通过简单的勾画指定目标对象和无关对象,即可抠取出感兴趣的体结构.最后通过实验说明了该算法的有效性.

  11. Non-photorealistic rendering of virtual implant models for computer-assisted fluoroscopy-based surgical procedures

    Science.gov (United States)

    Zheng, Guoyan

    2007-03-01

    Surgical navigation systems visualize the positions and orientations of surgical instruments and implants as graphical overlays onto a medical image of the operated anatomy on a computer monitor. The orthopaedic surgical navigation systems could be categorized according to the image modalities that are used for the visualization of surgical action. In the so-called CT-based systems or 'surgeon-defined anatomy' based systems, where a 3D volume or surface representation of the operated anatomy could be constructed from the preoperatively acquired tomographic data or through intraoperatively digitized anatomy landmarks, a photorealistic rendering of the surgical action has been identified to greatly improve usability of these navigation systems. However, this may not hold true when the virtual representation of surgical instruments and implants is superimposed onto 2D projection images in a fluoroscopy-based navigation system due to the so-called image occlusion problem. Image occlusion occurs when the field of view of the fluoroscopic image is occupied by the virtual representation of surgical implants or instruments. In these situations, the surgeon may miss part of the image details, even if transparency and/or wire-frame rendering is used. In this paper, we propose to use non-photorealistic rendering to overcome this difficulty. Laboratory testing results on foamed plastic bones during various computer-assisted fluoroscopybased surgical procedures including total hip arthroplasty and long bone fracture reduction and osteosynthesis are shown.

  12. Image-based haptic roughness estimation and rendering for haptic palpation from in vivo skin image.

    Science.gov (United States)

    Kim, Kwangtaek

    2017-08-08

    Despite the advancement of measuring technologies, there was a need for palpation by hands to be able to better diagnose skin diseases and to learn about the tactile properties of in vivo skin surface. However, directly touching in vivo skin surface can cause secondary infections or damages. Therefore, a technology providing infection- and damage-free skin palpations and precise haptic skin roughness rendering is needed. A multidimensional (2D and 3D) rendering system was developed for multimodal (visual and haptic) rendering that can run with any given in vivo input skin images. For haptic rendering, a commercial haptic device with 3 degrees of freedom (3DOF), Geomagic Touch X, was used. To improve haptic roughness rendering, a force shading algorithm that reduces force discontinuity on rough surface patches but preserves the original roughness values was implemented and applied. In addition, a new image-based roughness estimation method was introduced and the results were compared with haptic roughness results to verify roughness rendering in the system. The developed haptic roughness rendering system will help to diagnose abnormalities on in vivo skin surfaces by virtual haptic palpation with no concern about secondary infections or damages (caused by touch interactions) especially in case of psoriasis, atopic dermatitis, or aging, which results in significant changes of skin roughness. Besides, the system can also be a good tool to examine skin condition changes before and after the use of skin care products (cosmetics). In addition, the proposed 2D skin roughness estimation method can be applied for mobile applications to provide an online roughness estimation tool with a simple phone camera.

  13. Physics Based Modeling and Rendering of Vegetation in the Thermal Infrared

    Science.gov (United States)

    Smith, J. A.; Ballard, J. R., Jr.

    1999-01-01

    We outline a procedure for rendering physically-based thermal infrared images of simple vegetation scenes. Our approach incorporates the biophysical processes that affect the temperature distribution of the elements within a scene. Computer graphics plays a key role in two respects. First, in computing the distribution of scene shaded and sunlit facets and, second, in the final image rendering once the temperatures of all the elements in the scene have been computed. We illustrate our approach for a simple corn scene where the three-dimensional geometry is constructed based on measured morphological attributes of the row crop. Statistical methods are used to construct a representation of the scene in agreement with the measured characteristics. Our results are quite good. The rendered images exhibit realistic behavior in directional properties as a function of view and sun angle. The root-mean-square error in measured versus predicted brightness temperatures for the scene was 2.1 deg C.

  14. Technical analysis of volume-rendering algorithms: application in low-contrast structures using liver vascularisation as a model; Analisi tecnica degli algoritmi di volume rendering: applicazione alle strutture a basso contrsto usando come modello la vascolarizzazione epatica

    Energy Technology Data Exchange (ETDEWEB)

    Cademartiri, Filippo [Erasmus Medical Center, Rotterdam (Netherlands); Luccichenti, Giacomo [Fondazione Biomedica Europea ONLUS, Roma (Italy); Runza, Giuseppe; Bartolotta, Tommaso Vincenzo; Midiri, Massimo [Palermo Univ., Palermo (Italy). Sezione di scienze radiologiche; Gualerzi, Massimo; Brambilla, Lorenzo; Coruzzi, Paolo [Parma Univ., Parma (Italy). UO di prevenzione e riabilitazione vascolare, Fondazione Don C. Gnocchi ONLUS; Soliani, Paolo; Sianesi, Mario [Parma Univ., Parma (Italy). Dipartimento di chirurgia

    2005-04-01

    Purpose: To assess the influence of pre-set volume rendering opacity curves (OC) on image quality and to identify which absolute parameters (density of aorta, hepatic parenchyma and portal vein) affect visualization of portal vascular structures (low-contrast structures). Materials and methods: Twenty-two patients underwent a dual-phase spiral CT with the following parameters: collimation 3 mm, pitch 2, increment 1 mm. Three scans were performed: one without contrast medium and the latter two after the injection of contrast material (conventionally identified as 'arterial' and 'portal'). The images were sent to a workstation running on an NT platform equipped with post-processing software allowing three-dimensional (3D) reconstructions to generate volume-rendered images of the vascular supply to the liver. Correlation between the absolute values of aorta, liver and portal vein density, OC parameters, and image quality were assessed. Results: 3D images generated using pre-set OC obtained a much mower overall quality score than those produced with OC set by the operator. High contrast between the liver and the portal vein, for example during the portal vascular phase, allows wider windows, thus improving image quality. Conversely, the OC in the parenchymal phase scans must have a high gradient in order to better differentiate between the vascular structures and the surrounding hepatic parenchyma. Conclusions: Image features considered to be of interest by the operator cannot be simplified by the mean of pre-set OC. Due to their strong individual variability automatic 3D algorithms cannot be universally applied: they should be adapted to both image and patient characteristics. [Italian] Scopo: Valutare l'influenza delle curve di opacit� (CO) preimpostate del volume-rendering sulla qualit� delle immagini, ed identificare quali parametri assoluti (attenzione dell'aorta, del parenchima epatico e della vena porta) influenzano la

  15. Rendering-oriented multiview video coding based on chrominance information reconstruction

    Science.gov (United States)

    Shao, Feng; Yu, Mei; Jiang, Gangyi; Zhang, Zhaoyang

    2010-05-01

    Three-dimensional (3-D) video systems are expected to be a next-generation visual application. Since multiview video for 3-D video systems is composed of color and associated depth information, its huge requirement for data storage and transmission is an important problem. We propose a rendering-oriented multiview video coding (MVC) method based on chrominance information reconstruction that incorporates the rendering technique into the MVC process. The proposed method discards certain chrominance information to reduce bitrates, and performs reasonable bitrate allocation between color and depth videos. At the decoder, a chrominance reconstruction algorithm is presented to achieve accurate reconstruction by warping the neighboring views and colorizing the luminance-only pixels. Experimental results show that the proposed method can save nearly 20% on bitrates against the results without discarding the chrominance information. Moreover, under a fixed bitrate budget, the proposed method can greatly improve the rendering quality.

  16. Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array

    Science.gov (United States)

    Xie, Yangbo; Shen, Chen; Wang, Wenqi; Li, Junfei; Suo, Dingjie; Popa, Bogdan-Ioan; Jing, Yun; Cummer, Steven A.

    2016-01-01

    Acoustic holographic rendering in complete analogy with optical holography are useful for various applications, ranging from multi-focal lensing, multiplexed sensing and synthesizing three-dimensional complex sound fields. Conventional approaches rely on a large number of active transducers and phase shifting circuits. In this paper we show that by using passive metamaterials as subwavelength pixels, holographic rendering can be achieved without cumbersome circuitry and with only a single transducer, thus significantly reducing system complexity. Such metamaterial-based holograms can serve as versatile platforms for various advanced acoustic wave manipulation and signal modulation, leading to new possibilities in acoustic sensing, energy deposition and medical diagnostic imaging. PMID:27739472

  17. High-performance GPU-based rendering for real-time, rigid 2D/3D-image registration and motion prediction in radiation oncology

    Science.gov (United States)

    Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Furtado, Hugo; Fabri, Daniella; Bloch, Christoph; Bergmann, Helmar; Gröller, Eduard; Birkfellner, Wolfgang

    2012-01-01

    A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512 × 512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches – namely so-called wobbled splatting – to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. PMID:21782399

  18. Psychophysical evaluations of various color rendering from LED-based architectural lighting

    Science.gov (United States)

    Thompson, Maria; O'Reilly, Una-May; Levin, Robert

    2007-09-01

    This paper reports a study on visual evaluation of colors under LED lighting operated by an energy-saving control strategy. Digitally controlled LED systems can produce various qualities of light, adjustable to users' requirements. In this context, a novel control concept inspired this research: strategic control of Red, Yellow, Green & Blue LEDs forming white light can further increase energy efficiency. The resulting (more efficient) light, however, would have decreased "color rendering" (ability of accurately reproduce colors). The notable point is that while reducing color rendering, color temperature and light levels can stay constant and hence the appearance of the modified light could stay the same, and only the colors of illuminated objects would change. But how spaces would be perceived under such light with changing color rendering is a key question. This research investigated the hypothesis that a significant range of color distortions would be unnoticeable under such dynamically controlled illumination, especially outside of users' main field of view. If successful, such control technique could be implemented for unoccupied spaces that would not tolerated dimming, and minimize peak hours energy waste, potentially enabling significant power reductions. Three incremental series of experiments were performed based on subjective assessment of colors under changing color rendering. Tests were carried out for central and peripheral vision, using laboratory booths (phase 1) and full scale architectural mockups (phase 2). Results confirmed the fundamental hypothesis, showing that the majority of subjects did not detect the color changes in their periphery while the same color changes were noticeable with direct observation.

  19. Joint Projection Filling method for occlusion handling in Depth-Image-Based Rendering

    OpenAIRE

    Jantet, Vincent; Guillemot, Christine; Morin, Luce

    2011-01-01

    International audience; This paper addresses the disocclusion problem which may occur when using Depth-Image-Based Rendering (DIBR) techniques in 3DTV and Free-Viewpoint TV applications. A new DIBR technique is proposed, which combines three methods: a Joint Projection Filling (JPF) method to handle disocclusions in synthesized depth maps; a backward projection to synthesize virtual views; and a full-Z depth-aided inpainting to fill in disoccluded areas in textures. The JPF method performs th...

  20. Three-dimensional volume rendering of tibiofibular joint space and quantitative analysis of change in volume due to tibiofibular syndesmosis diastases

    Energy Technology Data Exchange (ETDEWEB)

    Taser, F.; Shafiq, Q.; Ebraheim, N.A. [Medical University of Ohio, Orthopaedic Surgery Department, Toledo, OH (United States)

    2006-12-15

    The diagnosis of ankle syndesmosis injuries is made by various imaging techniques. The present study was undertaken to examine whether the three-dimensional reconstruction of axial CT images and calculation of the volume of tibiofibular joint space enhances the sensitivity of diastases diagnoses or not. Six adult cadaveric ankle specimens were used for spiral CT-scan assessment of tibiofibular syndesmosis. After the specimens were dissected, external fixation was performed and diastases of 1, 2, and 3 mm was simulated by a precalibrated device. Helical CT scans were obtained with 1.0-mm slice thickness. The data was transferred to the computer software AcquariusNET. Then the contours of the tibiofibular syndesmosis joint space were outlined on each axial CT slice and the collection of these slices were stacked using the computer software AutoCAD 2005, according to the spatial arrangement and geometrical coordinates between each slice, to produce a three-dimensional reconstruction of the joint space. The area of each slice and the volume of the entire tibiofibular joint space were calculated. The tibiofibular joint space at the 10th-mm slice level was also measured on axial CT scan images at normal, 1, 2 and 3-mm joint space diastases. The three-dimensional volume-rendering of the tibiofibular syndesmosis joint space from the spiral CT data demonstrated the shape of the joint space and has been found to be a sensitive method for calculating joint space volume. We found that, from normal to 1 mm, a 1-mm diastasis increases approximately 43% of the joint space volume, while from 1 to 3 mm, there is about a 20% increase for each 1-mm increase. Volume calculation using this method can be performed in cases of syndesmotic instability after ankle injuries and for preoperative and postoperative evaluation of the integrity of the tibiofibular syndesmosis. (orig.)

  1. An innovative calibration based integral photography rendering algorithm for medical application and its evaluation.

    Science.gov (United States)

    Chen, Guowen; Zhang, Xinran; Fan, Zhencheng; Liao, Hongen

    2015-01-01

    Autostereoscopic has long been proposed to fulfill medical display in image-guided surgery and clinical education to provide more intuitive position information of clinical interest zone thus improving surgery safety and accuracy. As one category of flexible autostereoscopic 3D display, computer generated integral photography (CGIP) has been studied in medical application by many researches for its convenience and cost-efficiency. However, IP still suffers from inaccurate light field reconstruction, which limits its practicality in surgery. In this paper, we propose and apply a flexible fish-eye model based micro lens array (MLA) distortion calibration method and pre-distorted retracing rendering algorithm to render elemental image array (EIA) of CGIP. Furthermore, we also evaluate light field of the proposed algorithm in depth cue, and signal noise ratio of IP images by phantom experiment.

  2. Morphological study of surgical approach by superior temporal sulcus-temporal horn of lateral ventricle approach using volume rendering.

    Science.gov (United States)

    Sun, Wei; Jia, Linpei; Dong, Yidian; Zhao, Hang; Liu, Haoyuan; Yang, Kerong; Li, Youqiong

    2014-03-01

    In this research, we acquired the length of the superior temporal sulcus, the shortest distance from the superior temporal sulcus to the temporal horn of the lateral ventricle, and the approach angle between the median sagittal plane and the shortest segment from the superior temporal sulcus to the temporal horn of the lateral ventricle measuring 98 specimens by magnetic resonance imaging volume rendering. At the same time, we preliminarily oriented the point of the superior temporal sulcus, which is closest to the temporal horn of the lateral ventricle, aimed at finding out the best entrance point of surgical approach through the superior temporal sulcus to the temporal horn of the lateral ventricle and reducing the damage to optic radiation as well as other nerve fibers during the operation. The results indicate that the point at the front side 3/5 of the superior temporal sulcus may be the ideal surgical approach entrance point, and there is no difference between 2 cerebral hemispheres (P < 0.05).

  3. Multi-core and Many-core Shared-memory Parallel Raycasting Volume Rendering Optimization and Tuning

    Energy Technology Data Exchange (ETDEWEB)

    Howison, Mark

    2012-01-31

    Given the computing industry trend of increasing processing capacity by adding more cores to a chip, the focus of this work is tuning the performance of a staple visualization algorithm, raycasting volume rendering, for shared-memory parallelism on multi-core CPUs and many-core GPUs. Our approach is to vary tunable algorithmic settings, along with known algorithmic optimizations and two different memory layouts, and measure performance in terms of absolute runtime and L2 memory cache misses. Our results indicate there is a wide variation in runtime performance on all platforms, as much as 254% for the tunable parameters we test on multi-core CPUs and 265% on many-core GPUs, and the optimal configurations vary across platforms, often in a non-obvious way. For example, our results indicate the optimal configurations on the GPU occur at a crossover point between those that maintain good cache utilization and those that saturate computational throughput. This result is likely to be extremely difficult to predict with an empirical performance model for this particular algorithm because it has an unstructured memory access pattern that varies locally for individual rays and globally for the selected viewpoint. Our results also show that optimal parameters on modern architectures are markedly different from those in previous studies run on older architectures. And, given the dramatic performance variation across platforms for both optimal algorithm settings and performance results, there is a clear benefit for production visualization and analysis codes to adopt a strategy for performance optimization through auto-tuning. These benefits will likely become more pronounced in the future as the number of cores per chip and the cost of moving data through the memory hierarchy both increase.

  4. Adaptive sampling for real-time rendering of large terrain based on B-spline wavelet

    Science.gov (United States)

    Kalem, Sid Ali; Kourgli, Assia

    2017-05-01

    This paper describes a central processing unit (CPU)-based technique for terrain geometry rendering that could relieve graphics processing unit (GPU) from processing the appropriate level of detail (LOD) of the geometric surface. The proposed approach alleviates the computational load on the CPU and approaches GPU-based efficiency. As the datasets of realistic terrains are usually huge for real-time rendering, we suggest using a training stage to handle large tiled QuadTree terrain representation. The training stage is based on multiresolution wavelet decomposition and is used to limit the region of error control inside the tile. Maximum approximation errors are then calculated for each tile at different resolutions. Maximum world-space errors of the tile at different resolutions permit selection of the appropriate resolution of downsampling that will represent the tile at the run time. Tests and experiments demonstrate that B-spline 0 and B-spline 1 wavelets, well known for their properties of localization and their compact support, are suitable for fast and accurate localization of the maximum approximation error. The experimental results demonstrate that the proposed approach drastically reduces computation time in the CPU. Such a technique should also be used on low/medium end PCs, and embedded systems that are not equipped with the latest models of graphic hardware.

  5. 3D-TV System with Depth-Image-Based Rendering Architectures, Techniques and Challenges

    CERN Document Server

    Zhao, Yin; Yu, Lu; Tanimoto, Masayuki

    2013-01-01

    Riding on the success of 3D cinema blockbusters and advances in stereoscopic display technology, 3D video applications have gathered momentum in recent years. 3D-TV System with Depth-Image-Based Rendering: Architectures, Techniques and Challenges surveys depth-image-based 3D-TV systems, which are expected to be put into applications in the near future. Depth-image-based rendering (DIBR) significantly enhances the 3D visual experience compared to stereoscopic systems currently in use. DIBR techniques make it possible to generate additional viewpoints using 3D warping techniques to adjust the perceived depth of stereoscopic videos and provide for auto-stereoscopic displays that do not require glasses for viewing the 3D image.   The material includes a technical review and literature survey of components and complete systems, solutions for technical issues, and implementation of prototypes. The book is organized into four sections: System Overview, Content Generation, Data Compression and Transmission, and 3D V...

  6. Quantum rendering

    Science.gov (United States)

    Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.

    2003-08-01

    In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.

  7. Evaluation of voxel-based rendering of high resolution surface descriptions

    DEFF Research Database (Denmark)

    Hammershøi, Dorte; Olesen, Søren Krarup; Markovic, Milos

    2014-01-01

    responses by having more “distinct” representations of the individual reflections. When rendered audible, such descriptions will lead to a sound quality that can best be described as “canned”. For the rendering of real rooms, as e.g. in "teletransporting", this problem may be addressed by using high...

  8. Accelerated Algorithm of Ray Castingin Medical Volume Rendering%医学体绘制的一种快速光线投射算法

    Institute of Scientific and Technical Information of China (English)

    牛翠霞; 范辉; 杜慧秋

    2006-01-01

    The accelerated direct volume rendering algorithm in medical data sets was discussed. Based on several accelerated techniques of DVR, an efficient ray-casting algorithm was proposed which improved the traditional ray-casting algorithm. The algorithm mainly applies methods of polygon scan conversion and voxelization of casting rays. The algorithm uses the method of determining the convex hull of a set and the intersecting algorithm related directly to x,y, z family planes to clip data sets and rays.%针对医学体数据场的直接体绘制(DVR)的加速算法进行了讨论.基于体绘制的多种加速技术,利用格雷厄姆求凸壳算法和与平面簇求交算法对体数据场和投射光线进行裁剪,结合多边形的扫描线转换和投射光线的离散化、体素化,改进了光线投射算法.

  9. Visualization of inner ear dysplasias in patients with sensorineural hearing loss. High-resolution MR imaging and volume-rendered reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Klingebiel, R.; Bockmuehl, U. [Charite CM, Humboldt Univ., Berlin (Germany). Dept. of Radiology; Werbs, M. [Charite CM, Humboldt Univ., Berlin (Germany). ENT Dept.; Freigang, B. [O. von Guericke Univ., Magdeburg (Germany). ENT Dept.; Vorwerk, W. [St. Salvator Krankenhaus, Halberstadt (Germany). ENT Dept.; Thieme, N.; Lehmann, R. [Charite CM, Humboldt Univ., Berlin (Germany). Dept. of Radiology

    2001-11-01

    Purpose: We evaluated a data acquisition and post-processing protocol for inner ear (IE) assessment by MR imaging in patients, suffering from various labyrinth malformations. Material and Methods: MR IE studies of 158 consecutive patients (316 IEs) suffering from sensorineural hearing loss without evidence of an acoustic neurinoma were reviewed for pathologies of the IE and internal acoustic meatus. High-resolution MR data of all abnormal IE studies (n=45) were post-processed to previously standardized 3D volume rendered (VR) reconstructions. Results: In 9 patients (5.7%) the following IE dysplasias were detected: malformation of the cochlea (6 IEs), vestibulum (4 IEs), semicircular canals (12 IEs) and vestibular aqueduct/endolymphatic sac (10 IEs). One patient showed evidence of an aplasia of the vestibulocochlear nerve. In 4 patients multiple IE dysplasias were encountered. Comprehensive 3D visualization of all labyrinthine dysplasias was achieved by the use of two VR reconstructions. The overall time for bilateral IE assessment amounted to 30-35 min. Conclusion: The imaging protocol allows for rapid and comprehensive visualization of various IE dysplasias, based on a limited number of VR reconstructions.

  10. 3D Web-based HMI with WebGL Rendering Performance

    Directory of Open Access Journals (Sweden)

    Muennoi Atitayaporn

    2016-01-01

    Full Text Available An HMI, or Human-Machine Interface, is a software allowing users to communicate with a machine or automation system. It usually serves as a display section in SCADA (Supervisory Control and Data Acquisition system for device monitoring and control. In this papper, a 3D Web-based HMI with WebGL (Web-based Graphics Library rendering performance is presented. The main purpose of this work is to attempt to reduce the limitations of traditional 3D web HMI using the advantage of WebGL. To evaluate the performance, frame rate and frame time metrics were used. The results showed 3D Web-based HMI can maintain the frame rate 60FPS for #cube=0.5K/0.8K, 30FPS for #cube=1.1K/1.6K when it was run on Internet Explorer and Chrome respectively. Moreover, the study found that 3D Web-based HMI using WebGL contains similar frame time in each frame even though the numbers of cubes are up to 5K. This indicated stuttering incurred less in the proposed 3D Web-based HMI compared to the chosen commercial HMI product.

  11. Biographer: web-based editing and rendering of SBGN compliant biochemical networks.

    Science.gov (United States)

    Krause, Falko; Schulz, Marvin; Ripkens, Ben; Flöttmann, Max; Krantz, Marcus; Klipp, Edda; Handorf, Thomas

    2013-06-01

    The rapid accumulation of knowledge in the field of Systems Biology during the past years requires advanced, but simple-to-use, methods for the visualization of information in a structured and easily comprehensible manner. We have developed biographer, a web-based renderer and editor for reaction networks, which can be integrated as a library into tools dealing with network-related information. Our software enables visualizations based on the emerging standard Systems Biology Graphical Notation. It is able to import networks encoded in various formats such as SBML, SBGN-ML and jSBGN, a custom lightweight exchange format. The core package is implemented in HTML5, CSS and JavaScript and can be used within any kind of web-based project. It features interactive graph-editing tools and automatic graph layout algorithms. In addition, we provide a standalone graph editor and a web server, which contains enhanced features like web services for the import and export of models and visualizations in different formats. The biographer tool can be used at and downloaded from the web page http://biographer.biologie.hu-berlin.de/. The different software packages, including a server-independent version as well as a web server for Windows and Linux based systems, are available at http://code.google.com/p/biographer/ under the open-source license LGPL

  12. Biographer: web-based editing and rendering of SBGN compliant biochemical networks

    Science.gov (United States)

    Krause, Falko; Schulz, Marvin; Ripkens, Ben; Flöttmann, Max; Krantz, Marcus; Klipp, Edda; Handorf, Thomas

    2013-01-01

    Motivation: The rapid accumulation of knowledge in the field of Systems Biology during the past years requires advanced, but simple-to-use, methods for the visualization of information in a structured and easily comprehensible manner. Results: We have developed biographer, a web-based renderer and editor for reaction networks, which can be integrated as a library into tools dealing with network-related information. Our software enables visualizations based on the emerging standard Systems Biology Graphical Notation. It is able to import networks encoded in various formats such as SBML, SBGN-ML and jSBGN, a custom lightweight exchange format. The core package is implemented in HTML5, CSS and JavaScript and can be used within any kind of web-based project. It features interactive graph-editing tools and automatic graph layout algorithms. In addition, we provide a standalone graph editor and a web server, which contains enhanced features like web services for the import and export of models and visualizations in different formats. Availability: The biographer tool can be used at and downloaded from the web page http://biographer.biologie.hu-berlin.de/. The different software packages, including a server-indepenent version as well as a web server for Windows and Linux based systems, are available at http://code.google.com/p/biographer/ under the open-source license LGPL. Contact: edda.klipp@biologie.hu-berlin.de or handorf@physik.hu-berlin.de PMID:23574737

  13. Cloud-based Monte Carlo modelling of BSSRDF for the rendering of human skin appearance (Conference Presentation)

    Science.gov (United States)

    Doronin, Alexander; Rushmeier, Holly E.; Meglinski, Igor; Bykov, Alexander V.

    2016-03-01

    We present a new Monte Carlo based approach for the modelling of Bidirectional Scattering-Surface Reflectance Distribution Function (BSSRDF) for accurate rendering of human skin appearance. The variations of both skin tissues structure and the major chromophores are taken into account correspondingly to the different ethnic and age groups. The computational solution utilizes HTML5, accelerated by the graphics processing units (GPUs), and therefore is convenient for the practical use at the most of modern computer-based devices and operating systems. The results of imitation of human skin reflectance spectra, corresponding skin colours and examples of 3D faces rendering are presented and compared with the results of phantom studies.

  14. Optimized watermarking for light field rendering based free-view TV

    Science.gov (United States)

    Apostolidis, Evlampios; Kounalakis, Tsampikos; Manifavas, Charalampos; Triantafyllidis, Georgios A.

    2013-03-01

    In Free-View Television the viewers select freely the viewing position and angle of the transmitted multiview video. It is apparent that copyright and copy protection problems exist, since a video of this arbitrarily selected view can be recorded and then misused. In this context, the watermark in FTV should not only be resistant to common video processing and multi-view video processing operations (as in 2D case), but it should also be extracted from a generated video of an arbitrary view. Based on this remark, this paper focuses on this problem by evaluating the functionality and the efficiency of the watermarks and their corresponding Mathematical Distributions, in terms of "robustness" and "successful detection" from new constructed views of FTV, using Light Field Rendering (LFR) techniques. We studied the values which characterize the watermark's performance and the parameters introduced by the watermark's insertion-extraction scheme. Therefore, we ended up to the best five Mathematical Distributions, and we concluded that the watermark's robustness in FTV case does not depend only on the FTV image's characteristics, but it also relies on the characteristics of the Mathematical Distribution that is used as watermark generator. [Figure not available: see fulltext.

  15. Using Opaque Image Blur for Real-Time Depth-of-Field Rendering and Image-Based Motion Blur

    DEFF Research Database (Denmark)

    Kraus, Martin

    2013-01-01

    While depth of field is an important cinematographic means, its use in real-time computer graphics is still limited by the computational costs that are necessary to achieve a sufficient image quality. Specifically, color bleeding artifacts between objects at different depths are most effectively...... avoided by a decomposition into sub-images and the independent blurring of each sub-image. This decomposition, however, can result in rendering artifacts at silhouettes of objects. We propose a new blur filter that increases the opacity of all pixels to avoid these artifacts at the cost of physically less...... accurate but still plausible rendering results. The proposed filter is named "opaque image blur" and is based on a glowfilter that is applied to the alpha channel. We present a highly efficient GPU-based pyramid algorithm that implements this filter for depth-of-field rendering. Moreover, we demonstrate...

  16. [GaN-based white-light-emitting diodes with low color temperature and high color rendering index].

    Science.gov (United States)

    Wang, Feng; Huang, Xiao-Hui; Wang, Huai-Bing; Liu, Jian-Ping; Fan, Ya-Ming; Zhu, Yun-Zhi; Jin, Zheng

    2011-06-01

    The luminescence properties of high color rendering white LED depending on the proportions of mixed phosphor powders were investigated by adopting green and red phosphors stimulated by a 440 nm InGaN/GaN based blue LED. The results show that when the proportion of A/B type silica gels and green/red phosphor powders is 0.5 : 0.5 : 0.2 : 0.03, two luminance bands are stimulated and their wavelength peaks are 535 and 643 nm, respectively. The minimum color temperature can reach 3 251 K, while the color rendering is as high as 88. 8. Compared with the traditional white LED fabricated by yellow YAG-phosphors-coated high efficiency 460 nm blue LED, the color temperature is lower and the color rendering index can be increased by almost 26%.

  17. Three-dimensional volume-rendered multidetector CT imaging of the posterior inferior pancreaticoduodenal artery: its anatomy and role in diagnosing extrapancreatic perineural invasion

    Science.gov (United States)

    Giacomini, Craig; Brooke Jeffrey, R.; Willmann, Juergen K.; Olcott, Eric

    2013-01-01

    Abstract Extrapancreatic perineural spread in pancreatic adenocarcinoma contributes to poor outcomes, as it is known to be a major contributor to positive surgical margins and disease recurrence. However, current staging classifications have not yet taken extrapancreatic perineural spread into account. Four pathways of extrapancreatic perineural spread have been described that conveniently follow small defined arterial pathways. Small field of view three-dimensional (3D) volume-rendered multidetector computed tomography (MDCT) images allow visualization of small peripancreatic vessels and thus perineural invasion that may be associated with them. One such vessel, the posterior inferior pancreaticoduodenal artery (PIPDA), serves as a surrogate for extrapancreatic perineural spread by pancreatic adenocarcinoma arising in the uncinate process. This pictorial review presents the normal and variant anatomy of the PIPDA with 3D volume-rendered MDCT imaging, and emphasizes its role as a vascular landmark for the diagnosis of extrapancreatic perineural invasion from uncinate adenocarcinomas. Familiarity with the anatomy of PIPDA will allow accurate detection of extrapancreatic perineural spread by pancreatic adenocarcinoma involving the uncinate process, and may potentially have important staging implications as neoadjuvant therapy improves. PMID:24434918

  18. Advanced Audiovisual Rendering, Gesture-Based Interaction and Distributed Delivery for Immersive and Interactive Media Services

    NARCIS (Netherlands)

    Niamut, O.A.; Kochale, A.; Ruiz Hidalgo, J.; Macq, J-F.; Kienast, G.

    2011-01-01

    The media industry is currently being pulled in the often-opposing directions of increased realism (high resolution, stereoscopic, large screen) and personalisation (selection and control of content, availability on many devices). A capture, production, delivery and rendering system capable of

  19. Elliptical Splats Based Isosurface Visualization for Volume Data

    Institute of Scientific and Technical Information of China (English)

    QIN Hong-xing; SHI Feng; GUO Lü; YANG Jie

    2008-01-01

    Elliptical splats are used to represent and render the isosurface of volume data. The method consists of two steps. The first step is to extract points on the isosurface by looking up the case table. In the second step, properties of splats are computed based on local geometry. Rendering is achieved using surface splatting algorithm. The obtained results show that the extraction time of isosurfaces can be reduced by a factor of three. So our approach is more appropriate for interactive visualization of large medical data than the classical marching cubes (MC) technique.

  20. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.

    Science.gov (United States)

    Kim, K; Lee, S

    2015-05-01

    Diagnosis of skin conditions is dependent on the assessment of skin surface properties that are represented by more tactile properties such as stiffness, roughness, and friction than visual information. Due to this reason, adding tactile feedback to existing vision based diagnosis systems can help dermatologists diagnose skin diseases or disorders more accurately. The goal of our research was therefore to develop a tactile rendering system for skin examinations by dynamic touch. Our development consists of two stages: converting a single image to a 3D haptic surface and rendering the generated haptic surface in real-time. Converting to 3D surfaces from 2D single images was implemented with concerning human perception data collected by a psychophysical experiment that measured human visual and haptic sensibility to 3D skin surface changes. For the second stage, we utilized real skin biomechanical properties found by prior studies. Our tactile rendering system is a standalone system that can be used with any single cameras and haptic feedback devices. We evaluated the performance of our system by conducting an identification experiment with three different skin images with five subjects. The participants had to identify one of the three skin surfaces by using a haptic device (Falcon) only. No visual cue was provided for the experiment. The results indicate that our system provides sufficient performance to render discernable tactile rendering with different skin surfaces. Our system uses only a single skin image and automatically generates a 3D haptic surface based on human haptic perception. Realistic skin interactions can be provided in real-time for the purpose of skin diagnosis, simulations, or training. Our system can also be used for other applications like virtual reality and cosmetic applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Diagnostic Value of Multidetector CT and Its Multiplanar Reformation, Volume Rendering and Virtual Bronchoscopy Postprocessing Techniques for Primary Trachea and Main Bronchus Tumors.

    Directory of Open Access Journals (Sweden)

    Mingyue Luo

    Full Text Available To evaluate the diagnostic value of multidetector CT (MDCT and its multiplanar reformation (MPR, volume rendering (VR and virtual bronchoscopy (VB postprocessing techniques for primary trachea and main bronchus tumors.Detection results of 31 primary trachea and main bronchus tumors with MDCT and its MPR, VR and VB postprocessing techniques, were analyzed retrospectively with regard to tumor locations, tumor morphologies, extramural invasions of tumors, longitudinal involvements of tumors, morphologies and extents of luminal stenoses, distances between main bronchus tumors and trachea carinae, and internal features of tumors. The detection results were compared with that of surgery and pathology.Detection results with MDCT and its MPR, VR and VB were consistent with that of surgery and pathology, included tumor locations (tracheae, n = 19; right main bronchi, n = 6; left main bronchi, n = 6, tumor morphologies (endoluminal nodes with narrow bases, n = 2; endoluminal nodes with wide bases, n = 13; both intraluminal and extraluminal masses, n = 16, extramural invasions of tumors (brokethrough only serous membrane, n = 1; 4.0 mm-56.0 mm, n = 14; no clear border with right atelectasis, n = 1, longitudinal involvements of tumors (3.0 mm, n = 1; 5.0 mm-68.0 mm, n = 29; whole right main bronchus wall and trachea carina, n = 1, morphologies of luminal stenoses (irregular, n = 26; circular, n = 3; eccentric, n = 1; conical, n = 1 and extents (mild, n = 5; moderate, n = 7; severe, n = 19, distances between main bronchus tumors and trachea carinae (16.0 mm, n = 1; invaded trachea carina, n = 1; >20.0 mm, n = 10, and internal features of tumors (fairly homogeneous densities with rather obvious enhancements, n = 26; homogeneous density with obvious enhancement, n = 1; homogeneous density without obvious enhancement, n = 1; not enough homogeneous density with obvious enhancement, n = 1; punctate calcification with obvious enhancement, n = 1; low density

  2. 直接体绘制中增强深度感知的网格投影算法%Enhanced Depth Perception Grid-projection Algorithm for Direct Volume Rendering

    Institute of Scientific and Technical Information of China (English)

    冯晓萌; 吴玲达; 于荣欢; 杨超

    2015-01-01

    The depth information in volume data is lost in the image rendered by volume rendering technique. The existing methods of depth perception enhancement only enhance some structures in the volume data at the cost of other structures details, and they directly edit the volume rendering algorithm. For ray-casting algorithm, a method of depth perception enhancement is presented, and it does not directly edit the algorithm. Specifically, an inerratic grid is projected to the surface of volume data, and then the grid changing along surface is rendered in the final image. Users can apperceive the depth information of surface from the changed grid. Meanwhil, two methods are used to enhance the depth information of the grid projection lines, one is coloring the grid lines based on the depth, and the other one is adding accessorial lines to join the grid lines on two surfaces with different depths. When implemented using compute unified device architecture, the image is rendered in real-time under user interaction. The effect of depth perception enhancement in the final image is obvious especially when the volume data contains some disjunct or intersectant objects.%体绘制技术生成的图像中丢失了深度信息,已有的增强深度感知方法通常只针对某些结构区域,牺牲其它结构信息的同时又直接修改体绘制算法。面向光线投射体绘制算法,该文提出一种增强深度感知的方法,不直接修改光线投射算法。投影均匀网格到体数据表面,网格跟随表面变形后经光线投射绘制在结果图像中,用户根据变形网格能够感知图像中的深度信息。同时,为突显变形网格所反映的深度信息,对投影后的网格线进行深度相关的着色,并添加投影辅助线以连接不同深度表面上的投影网格。算法在统一计算设备架构下并行执行后,不仅能够实时生成图像支持用户的交互控制,且图像中增强深度感知的效果明显

  3. Optimized Watermarking for Light Field Rendering based Free-View TV

    DEFF Research Database (Denmark)

    Apostolidis, Evlampios; Kounalakis, Tsampikos; Manifavas, Charalampos

    2013-01-01

    In Free-View Television the viewers select freely the viewing position and angle of the transmitted multiview video. It is apparent that copyright and copy protection problems exist, since a video of this arbitrarily selected view can be recorded and then misused. In this context, the watermark...... and the efficiency of the watermarks and their corresponding Mathematical Distributions, in terms of “robustness” and “successful detection” from new constructed views of FTV, using Light Field Rendering (LFR) techniques. We studied the values which characterize the watermark’s performance and the parameters...... introduced by the watermark’s insertion-extraction scheme. Therefore, we ended up to the best five Mathematical Distributions, and we concluded that the watermark’s robustness in FTV case does not depend only on the FTV image’s characteristics, but it also relies on the characteristics of the Mathematical...

  4. Refractive Volume Rendering of Iso-surfaces Using Iterative Gaussian Filter%采用高斯迭代滤波的等值面折射体绘制

    Institute of Scientific and Technical Information of China (English)

    朱懿敏; 张文利

    2011-01-01

    体绘制增加折射光学效果,能够明显地增强三维空间层次关系,但折射体绘制对原始数据的噪声非常敏感。在本文中我们提出了一种基于高斯迭代滤波的折射体绘制方法。首先在数据预处理阶段对CT数据进行高斯迭代滤波,然后采用阈值法把CT数据分割为不同区域,通过折射率传递函数映射为不同的折射率,最后根据Shell定理对体数据进行折射体绘制。结果显示绘制质量得到了显著提高。%The addition of volume rendering for refraction can improve the representation of 3D-space hierarchical relationships.But the quality of resultant images is highly sensitive to noises of the original dataset.In this paper,we present a refractive volume rendering method for iso-surface base on iterative Gaussian filter.Firstly,a CT dataset is filtered by iterative Gaussian filter in data preprocessing.Then the CT dataset is segmented into several parts by threshold method and it is mapped to different index of refraction by index of refraction transfer function.At last,ray casting is performed at volume data according to snell's law.Experiments show that the quality of resultant images is enhanced.

  5. GenExp: an interactive web-based genomic DAS client with client-side data rendering.

    Directory of Open Access Journals (Sweden)

    Bernat Gel Moreno

    Full Text Available BACKGROUND: The Distributed Annotation System (DAS offers a standard protocol for sharing and integrating annotations on biological sequences. There are more than 1000 DAS sources available and the number is steadily increasing. Clients are an essential part of the DAS system and integrate data from several independent sources in order to create a useful representation to the user. While web-based DAS clients exist, most of them do not have direct interaction capabilities such as dragging and zooming with the mouse. RESULTS: Here we present GenExp, a web based and fully interactive visual DAS client. GenExp is a genome oriented DAS client capable of creating informative representations of genomic data zooming out from base level to complete chromosomes. It proposes a novel approach to genomic data rendering and uses the latest HTML5 web technologies to create the data representation inside the client browser. Thanks to client-side rendering most position changes do not need a network request to the server and so responses to zooming and panning are almost immediate. In GenExp it is possible to explore the genome intuitively moving it with the mouse just like geographical map applications. Additionally, in GenExp it is possible to have more than one data viewer at the same time and to save the current state of the application to revisit it later on. CONCLUSIONS: GenExp is a new interactive web-based client for DAS and addresses some of the short-comings of the existing clients. It uses client-side data rendering techniques resulting in easier genome browsing and exploration. GenExp is open source under the GPL license and it is freely available at http://gralggen.lsi.upc.edu/recerca/genexp.

  6. Accurate Localization of Aneurysm Neck Margins in Clipping of a Carotid Cave Aneurysm Using Intraoperative Dual-Volume 3-Dimensional Volume-Rendering Rotational Angiography.

    Science.gov (United States)

    Huang, Chih-Ta; Hsu, Szu-Kai; Su, I-Chang

    2017-05-01

    Full visualization of the aneurysm neck is usually impossible in a classical pterional craniotomy when a paraclinoid aneurysm is located on the opposite side of the internal carotid artery. Optic nerve (ON) retraction is required for better aneurysmal exposure, but ON injuries may occur. In a case of a 70-year-old female harboring a carotid cave aneurysm, we introduced a new method to delineate better the margins of the aneurysm neck by using intraoperative 3-dimensional (3D) rotational angiography (RA) with dual-volume reconstruction. After complete exposure of the aneurysm, we placed a straight clip adjacent to the aneurysm for localization purposes and performed 3D-RA to locate the distal end of the aneurysm neck relative to the localization clip. With a better anatomic understanding of the neck position, we were able to reduce ON retraction and position the clip across the aneurysm neck more precisely. With the advantage of a hybrid operating room, we introduced a novel technique to define the margins of the obscured aneurysm neck more clearly by obtaining a 3D-RA dual-volume reconstruction image to locate the aneurysm neck relative to a localization clip. This technique facilitates the clipping procedure and also reduces the risk related to ON retraction during surgical exposure of a paraclinoid aneurysm. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Morphologic Study of Superior Temporal Sulcus-Amygdaloid Body and Lateral Fissure-Amygdaloid Body Surgical Approach by Using Magnetic Resonance Imaging Volume Rendering.

    Science.gov (United States)

    Qu, Yuan; Ren, Bichen; Chang, Xiaoyu; Zhang, Jinnan; Li, Youqiong; Duan, Haobo; Cheng, Kailiang; Wang, Jincheng

    2016-01-01

    In this research, 83 patients were measured by magnetic resonance imaging volume rendering technique. The authors acquired the curve length of the superior temporal sulcus and the lateral fissure on the cerebral hemisphere, the shortest distance from the superior temporal sulcus and the lateral fissure to the center of amygdaloid body separately, the vertical diameter, the transversal diameter, and the anteroposterior diameter of the amygdaloid body and the 2 approach angles between the median sagittal plane and the shortest segment from the superior temporal sulcus to the center of amygdaloid body and the shortest segment from lateral fissure to the center of the amygdaloid body. At the same time, we preliminarily oriented the 2 points of the superior temporal sulcus and the lateral fissure, which are closest to the center of amygdaloid body, aimed at finding out the best entrance points of surgical approach through the superior temporal sulcus and the lateral fissure to the amygdaloid body and reducing the damage to the nerve fibers or blood vessels during the operation. The results indicate that the point at the front side 1/4 of the superior temporal sulcus may be the ideal surgical approach entrance point and the point at the front side 1/3 of the lateral fissure. There is no difference between 2 cerebral hemispheres (P < 0.05).

  8. Single minimum incision endoscopic radical nephrectomy for renal tumors with preoperative virtual navigation using 3D-CT volume-rendering

    Directory of Open Access Journals (Sweden)

    Shioyama Yasukazu

    2010-04-01

    Full Text Available Abstract Background Single minimum incision endoscopic surgery (MIES involves the use of a flexible high-definition laparoscope to facilitate open surgery. We reviewed our method of radical nephrectomy for renal tumors, which is single MIES combined with preoperative virtual surgery employing three-dimensional CT images reconstructed by the volume rendering method (3D-CT images in order to safely and appropriately approach the renal hilar vessels. We also assessed the usefulness of 3D-CT images. Methods Radical nephrectomy was done by single MIES via the translumbar approach in 80 consecutive patients. We performed the initial 20 MIES nephrectomies without preoperative 3D-CT images and the subsequent 60 MIES nephrectomies with preoperative 3D-CT images for evaluation of the renal hilar vessels and the relation of each tumor to the surrounding structures. On the basis of the 3D information, preoperative virtual surgery was performed with a computer. Results Single MIES nephrectomy was successful in all patients. In the 60 patients who underwent 3D-CT, the number of renal arteries and veins corresponded exactly with the preoperative 3D-CT data (100% sensitivity and 100% specificity. These 60 nephrectomies were completed with a shorter operating time and smaller blood loss than the initial 20 nephrectomies. Conclusions Single MIES radical nephrectomy combined with 3D-CT and virtual surgery achieved a shorter operating time and less blood loss, possibly due to safer and easier handling of the renal hilar vessels.

  9. Contrast-enhanced computed tomography angiography and volume-rendered imaging for evaluation of cellophane banding in a dog with extrahepatic portosystemic shunt

    Directory of Open Access Journals (Sweden)

    H. Yoon

    2011-04-01

    Full Text Available A 4-year-old, 1.8 kg, male, castrated Maltese was presented for evaluation of urolithiasis. Urinary calculi were composed of ammonium biurate. Preprandial and postprandial bile acids were 44.2 and 187.3 μmol/ , respectively (reference ranges 0–10 and 0–20 μmol/ , respectively. Single-phase contrast-enhanced computed tomography angiography (CTA with volume-rendered imaging (VRI was obtained. VRI revealed a portocaval shunt originating just cranial to a tributary of the gastroduodenal vein and draining into the caudal vena cava at the level of the epiploic foramen. CTA revealed a 3.66 mm-diameter shunt measured at the level of the termination of the shunt and a 3.79 mm-diameter portal vein measured at the level between the origin of the shunt and the porta of the liver. Surgery was performed using cellophane banding without attenuation. Follow-up single-phase CTA with VRI was obtained 10 weeks after surgery. VRI revealed no evidence of portosystemic communication on the level of a cellophane band and caudal to the cellophane band. CTA demonstrated an increased portal vein diameter (3.79–5.27 mm measured at the level between the origin of the shunt and the porta of the liver. Preprandial and postprandial bile acids were 25 and 12.5 μmol/ , respectively (aforementioned respective reference ranges, 3 months post-surgery. No problems were evident at 6 months.

  10. Volume-rendered hemorrhage-responsible arteriogram created by 64 multidetector-row CT during aortography: utility for catheterization in transcatheter arterial embolization for acute arterial bleeding.

    Science.gov (United States)

    Minamiguchi, Hiroki; Kawai, Nobuyuki; Sato, Morio; Ikoma, Akira; Sanda, Hiroki; Nakata, Kouhei; Tanaka, Fumihiro; Nakai, Motoki; Sonomura, Tetsuo; Murotani, Kazuhiro; Hosokawa, Seiki; Nishioku, Tadayoshi

    2014-01-01

    Aortography for detecting hemorrhage is limited when determining the catheter treatment strategy because the artery responsible for hemorrhage commonly overlaps organs and non-responsible arteries. Selective catheterization of untargeted arteries would result in repeated arteriography, large volumes of contrast medium, and extended time. A volume-rendered hemorrhage-responsible arteriogram created with 64 multidetector-row CT (64MDCT) during aortography (MDCTAo) can be used both for hemorrhage mapping and catheter navigation. The MDCTAo depicted hemorrhage in 61 of 71 cases of suspected acute arterial bleeding treated at our institute in the last 3 years. Complete hemostasis by embolization was achieved in all cases. The hemorrhage-responsible arteriogram was used for navigation during catheterization, thus assisting successful embolization. Hemorrhage was not visualized in the remaining 10 patients, of whom 6 had a pseudoaneurysm in a visceral artery; 1 with urinary bladder bleeding and 1 with chest wall hemorrhage had gaze tamponade; and 1 with urinary bladder hemorrhage and 1 with uterine hemorrhage had spastic arteries. Six patients with pseudoaneurysm underwent preventive embolization and the other 4 patients were managed by watchful observation. MDCTAo has the advantage of depicting the arteries responsible for hemoptysis, whether from the bronchial arteries or other systemic arteries, in a single scan. MDCTAo is particularly useful for identifying the source of acute arterial bleeding in the pancreatic arcade area, which is supplied by both the celiac and superior mesenteric arteries. In a case of pelvic hemorrhage, MDCTAo identified the responsible artery from among numerous overlapping visceral arteries that branched from the internal iliac arteries. In conclusion, a hemorrhage-responsible arteriogram created by 64MDCT immediately before catheterization is useful for deciding the catheter treatment strategy for acute arterial bleeding.

  11. Practical Parallel Rendering

    CERN Document Server

    Chalmers, Alan

    2002-01-01

    Meeting the growing demands for speed and quality in rendering computer graphics images requires new techniques. Practical parallel rendering provides one of the most practical solutions. This book addresses the basic issues of rendering within a parallel or distributed computing environment, and considers the strengths and weaknesses of multiprocessor machines and networked render farms for graphics rendering. Case studies of working applications demonstrate, in detail, practical ways of dealing with complex issues involved in parallel processing.

  12. Dictionary Based Segmentation in Volumes

    DEFF Research Database (Denmark)

    Emerson, Monica Jane; Jespersen, Kristine Munk; Jørgensen, Peter Stanley

    2015-01-01

    We present a method for supervised volumetric segmentation based on a dictionary of small cubes composed of pairs of intensity and label cubes. Intensity cubes are small image volumes where each voxel contains an image intensity. Label cubes are volumes with voxelwise probabilities for a given...... label. The segmentation process is done by matching a cube from the volume, of the same size as the dictionary intensity cubes, to the most similar intensity dictionary cube, and from the associated label cube we get voxel-wise label probabilities. Probabilities from overlapping cubes are averaged...... and hereby we obtain a robust label probability encoding. The dictionary is computed from labeled volumetric image data based on weighted clustering. We experimentally demonstrate our method using two data sets from material science – a phantom data set of a solid oxide fuel cell simulation for detecting...

  13. A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model

    Science.gov (United States)

    Ma, Chunyong; Xu, Shu; Wang, Hongsong; Tian, Fenglin; Chen, Ge

    2016-12-01

    A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We establish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the reflection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.

  14. A Real-Time Photo-Realistic Rendering Algorithm of Ocean Color Based on Bio-Optical Model

    Institute of Scientific and Technical Information of China (English)

    MA Chunyong; XU Shu; WANG Hongsong; TIAN Fenglin; CHEN Ge

    2016-01-01

    A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle,etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We estab-lish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model’s outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the re-flection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.

  15. Characterization of a smartphone size haptic rendering system based on thin-film AlN actuators on glass substrates

    Science.gov (United States)

    Bernard, F.; Casset, F.; Danel, J. S.; Chappaz, C.; Basrour, S.

    2016-08-01

    This paper presents for the first time the characterization of a smartphone-size haptic rendering system based on the friction modulation effect. According to previous work and finite element modeling, the homogeneous flexural modes are needed to get the haptic feedback effect. The device studied consists of a thin film AlN transducers deposited on an 110  ×  65 mm2 glass substrate. The transducer’s localization on the glass plate allows a transparent central area of 90  ×  49 mm2. Electrical and mechanical parameters of the system are extracted from measurement. From this extraction, the electrical impedance matching reduced the applied voltage to 17.5 V AC and the power consumption to 1.53 W at the resonance frequency of the vibrating system to reach the haptic rendering specification. Transient characterizations of the actuation highlight a delay under the dynamic tactile detection. The characterization of the AlN transducers used as sensors, including the noise rejection, the delay or the output charge amplitude allows detections with high accuracy of any variation due to external influences. Those specifications are the first step to a low-power-consumption feedback-looped system.

  16. Radiative Transport Based Flame Volume Reconstruction from Videos.

    Science.gov (United States)

    Shen, Liang; Zhu, Dengming; Nadeem, Saad; Wang, Zhaoqi; Kaufman, Arie E

    2017-06-06

    We introduce a novel approach for flame volume reconstruction from videos using inexpensive charge-coupled device (CCD) consumer cameras. The approach includes an economical data capture technique using inexpensive CCD cameras. Leveraging the smear feature of the CCD chip, we present a technique for synchronizing CCD cameras while capturing flame videos from different views. Our reconstruction is based on the radiative transport equation which enables complex phenomena such as emission, extinction, and scattering to be used in the rendering process. Both the color intensity and temperature reconstructions are implemented using the CUDA parallel computing framework, which provides real-time performance and allows visualization of reconstruction results after every iteration. We present the results of our approach using real captured data and physically-based simulated data. Finally, we also compare our approach against the other state-of-the-art flame volume reconstruction methods and demonstrate the efficacy and efficiency of our approach in four different applications: (1) rendering of reconstructed flames in virtual environments, (2) rendering of reconstructed flames in augmented reality, (3) flame stylization, and (4) reconstruction of other semitransparent phenomena.

  17. Rendering-based video-CT registration with physical constraints for image-guided endoscopic sinus surgery

    Science.gov (United States)

    Otake, Y.; Leonard, S.; Reiter, A.; Rajan, P.; Siewerdsen, J. H.; Ishii, M.; Taylor, R. H.; Hager, G. D.

    2015-03-01

    We present a system for registering the coordinate frame of an endoscope to pre- or intra- operatively acquired CT data based on optimizing the similarity metric between an endoscopic image and an image predicted via rendering of CT. Our method is robust and semi-automatic because it takes account of physical constraints, specifically, collisions between the endoscope and the anatomy, to initialize and constrain the search. The proposed optimization method is based on a stochastic optimization algorithm that evaluates a large number of similarity metric functions in parallel on a graphics processing unit. Images from a cadaver and a patient were used for evaluation. The registration error was 0.83 mm and 1.97 mm for cadaver and patient images respectively. The average registration time for 60 trials was 4.4 seconds. The patient study demonstrated robustness of the proposed algorithm against a moderate anatomical deformation.

  18. Octree-based Volume Sculpting

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas

    1998-01-01

    A volume sculpting system is presented. The system provides tools for interactive editing of a voxel raster that is stored in an octree data structure. Two different modes of sculpting are supported: Sculpting by adding and subtracting solids, and sculpting with tools that are based on a spray ca...... metaphor. The possibility of extending the method to support multiresolution sculpting is discussed....

  19. Accuracy of CT angiography in the assessment of the circle of Willis: comparison of volume-rendered images and digital subtraction angiography

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ari; Yoon, Dae Young; Chang, Suk Ki (Dept. of Radiology, Kangdong Seong-Sim Hospital, Hallym Univ. College of Medicine, Seoul (Korea, Republic of)), email: evee0914@chollian.net; Lim, Kyoung Ja (Dept. of Radiology, Kangdong Seong-Sim Hospital, Hallym Univ. College of Medicine, Seoul (Korea, Republic of); Dept. of Radiology, Kangwon National Univ. College of Medicine, Chuncheon, Kangwon-do (Korea, Republic of)); Cho, Byung-Moon (Dept. of Neurosurgery, Kangdong Seong-Sim Hospital, Hallym Univ. College of Medicine, Seoul (Korea, Republic of)); Shin, Yoon Cheol (Dept. of Thoracic Surgery, Kangdong Seong-Sim Hospital, Hallym Univ. College of Medicine, Seoul (Korea, Republic of)); Kim, Sam Soo (Dept. of Radiology, Kangwon National Univ. College of Medicine, Chuncheon, Kangwon-do (Korea, Republic of)); Kim, Keon Ha (Dept. of Radiology, Samsung Medical Center, Sungkyunkwan Univ. College of Medicine, Seoul (Korea, Republic of))

    2011-10-15

    Background Computed tomography angiography (CTA) is increasingly used for non-invasive imaging of the cerebrovascular diseases. Purpose To evaluate the accuracy of CTA in the assessment of the variation of the segment calibers of the circle of Willis. Material and Methods One hundred and 17 patients with acute SAH (51 men and 66 women, mean age 50.9 years) who underwent CTA using a 16 detector-row CT scanner and DSA were evaluated retrospectively. The CTA and DSA studies were performed within 24 h after the onset of symptoms and within 24 h of each other. A total of 819 arterial segments (A-comA, right and left A1 segment, right and left P-com A, and right and left P1 segment) of the circle of Willis were determined to be aplastic (grade 1), hypoplastic (grade 2), or normal-sized (grade 3) by blinded observers evaluating CTA volume-rendered images. The CTA results were then compared with findings on the corresponding DSA images (reference standard). Results The overall agreement between CTA and DSA was 92.4%. We had 62 (7.6%) cases of disagreement (58 cases of under-estimation and four cases of over-estimation by CTA) between tow modalities. The sensitivity and specificity of CTA in the detection of aplastic and normal-sized segments were more than 90%. In contrast, subgroup analysis of the hypoplastic segments showed a sensitivity of 52.6% and a specificity of 98.2%. Conclusion CTA is highly accurate in the assessment of anatomical variations of the circle of Willis; however, its sensitivity is limited in depicting hypoplastic segments

  20. Evaluation of voxel-based rendering of high resolution surface descriptions

    DEFF Research Database (Denmark)

    Hammershøi, Dorte; Olesen, Søren Krarup; Markovic, Milos

    2014-01-01

    resolution scans of the room surfaces as basis for the room models. In the present work this approach is evaluated with a voxel-based method (described in earlier publications), and compared to measured impulse responses. The results are compared objectively by visual inspection of the impulse responses...

  1. SEE-THROUGH IMAGING OF LASER-SCANNED 3D CULTURAL HERITAGE OBJECTS BASED ON STOCHASTIC RENDERING OF LARGE-SCALE POINT CLOUDS

    OpenAIRE

    Tanaka, S.; Hasegawa, K.; Okamoto, N.; R. Umegaki; Wang, S; M. Uemura(Hiroshima Astrophysical Science Center, Hiroshima University); Okamoto, A; Koyamada, K.

    2016-01-01

    We propose a method for the precise 3D see-through imaging, or transparent visualization, of the large-scale and complex point clouds acquired via the laser scanning of 3D cultural heritage objects. Our method is based on a stochastic algorithm and directly uses the 3D points, which are acquired using a laser scanner, as the rendering primitives. This method achieves the correct depth feel without requiring depth sorting of the rendering primitives along the line of sight. Eliminatin...

  2. Fast DRR splat rendering using common consumer graphics hardware.

    Science.gov (United States)

    Spoerk, Jakob; Bergmann, Helmar; Wanschitz, Felix; Dong, Shuo; Birkfellner, Wolfgang

    2007-11-01

    Digitally rendered radiographs (DRR) are a vital part of various medical image processing applications such as 2D/3D registration for patient pose determination in image-guided radiotherapy procedures. This paper presents a technique to accelerate DRR creation by using conventional graphics hardware for the rendering process. DRR computation itself is done by an efficient volume rendering method named wobbled splatting. For programming the graphics hardware, NVIDIAs C for Graphics (Cg) is used. The description of an algorithm used for rendering DRRs on the graphics hardware is presented, together with a benchmark comparing this technique to a CPU-based wobbled splatting program. Results show a reduction of rendering time by about 70%-90% depending on the amount of data. For instance, rendering a volume of 2 x 10(6) voxels is feasible at an update rate of 38 Hz compared to 6 Hz on a common Intel-based PC using the graphics processing unit (GPU) of a conventional graphics adapter. In addition, wobbled splatting using graphics hardware for DRR computation provides higher resolution DRRs with comparable image quality due to special processing characteristics of the GPU. We conclude that DRR generation on common graphics hardware using the freely available Cg environment is a major step toward 2D/3D registration in clinical routine.

  3. Spatially Varying Image Based Lighting by Light Probe Sequences, Capture, Processing and Rendering

    OpenAIRE

    Unger, Jonas; Gustavson, Stefan; Ynnerman, Anders

    2007-01-01

    We present a novel technique for capturing spatially or temporally resolved light probe sequences, and using them for image based lighting. For this purpose we have designed and built a real-time light probe, a catadioptric imaging system that can capture the full dynamic range of the lighting incident at each point in space at video frame rates, while being moved through a scene. The real-time light probe uses a digital imaging system which we have programmed to capture high quality, photome...

  4. FOREST-BASED MEDICINAL PLANTS RENDERING THEIR SERVICES TO THE RURAL COMMUNITY OF ASSAM, INDIA

    Directory of Open Access Journals (Sweden)

    Ratul Arya Baishya

    2013-12-01

    Full Text Available Forests are the main biological resource areas from where reportedly 80% of the medicinal plants are collected by the rural communities of the state. Traditional folk medicines, mainly based on plants, occupy a significant position today, especially in the developing countries, where modern health care service is limited. Medicinal plants are gaining global importance owing to the fact that herbal drugs are cost-effective, easily available and most reportedly, with negligible side effects. Safe, effective and inexpensive indigenous remedies had been practiced by the people of both tribal and rural society of Assam from time immemorial. Therefore, the need of the hour is to harness this natural resource sustainably for the socio-economic development of the indigenous communities. Hence, a strategy for sustainable harvesting practice needs to be developed that would ensure preservation of the valuable medicinal plants in situ while addressing the needs of the rural communities. The present study is, thus, an attempt to highlight the common medicinal plants of forested region as used by the rural poor community for different kinds of treatment as the rural local healers usually practice for treatment of diseases in their locality.

  5. True Yellow Light-Emitting Diodes as Phosphor for Tunable Color-Rendering Index Laser-Based White Light

    KAUST Repository

    Janjua, Bilal

    2016-10-11

    An urgent challenge for the lighting research community is the lack of efficient optical devices emitting in between 500 and 600 nm, resulting in the “green-yellow gap”. In particular, true green (∼555 nm) and true yellow (∼590 nm), along with blue and red, constitute four technologically important colors. The III-nitride material system, being the most promising choice of platform to bridge this gap, still suffers from high dislocation density and poor crystal quality in realizing high-power, efficient devices. Particularly, the high polarization fields in the active region of such 2D quantum confined structures prevent efficient recombination of carriers. Here we demonstrate a true yellow nanowire (NW) light emitting diode (LED) with peak emission of 588 nm at 29.5 A/cm2 (75 mA in a 0.5 × 0.5 mm2 device) and a low turn-on voltage of ∼2.5 V, while having an internal quantum efficiency of 39%, and without “efficiency droop” up to an injection current density of 29.5 A/cm2. By mixing yellow light from a NW LED in reflective configuration with that of a red, green, and blue laser diode (LD), white light with a correlated color temperature of ∼6000 K and color-rendering index of 87.7 was achieved. The nitride-NW-based device offers a robust, long-term stability for realizing yellow light emitters for tunable color-rendering index solid-state lighting, on a scalable, low-cost, foundry-compatible titanium/silicon substrate, suitable for industry uptake.

  6. Virtual reality system for treatment of the fear of public speaking using image-based rendering and moving pictures.

    Science.gov (United States)

    Lee, Jae M; Ku, Jeong H; Jang, Dong P; Kim, Dong H; Choi, Young H; Kim, In Y; Kim, Sun I

    2002-06-01

    The fear of speaking is often cited as the world's most common social phobia. The rapid growth of computer technology enabled us to use virtual reality (VR) for the treatment of the fear of public speaking. There have been two techniques used to construct a virtual environment for the treatment of the fear of public speaking: model-based and movie-based. Virtual audiences and virtual environments made by model-based technique are unrealistic and unnatural. The movie-based technique has a disadvantage in that each virtual audience cannot be controlled respectively, because all virtual audiences are included in one moving picture file. To address this disadvantage, this paper presents a virtual environment made by using image-based rendering (IBR) and chroma keying simultaneously. IBR enables us to make the virtual environment realistic because the images are stitched panoramically with the photos taken from a digital camera. And the use of chroma keying allows a virtual audience to be controlled individually. In addition, a real-time capture technique was applied in constructing the virtual environment to give the subjects more interaction, in that they can talk with a therapist or another subject.

  7. Three-Dimensional Volume-Rendered Series Complements 2D Orthogonal Multidetector Computed Tomography in the Evaluation of Abnormal Spinal Curvature in Patients at a Major Cancer Center: A Retrospective Review

    OpenAIRE

    2012-01-01

    Background. Abnormal spinal curvature is routinely assessed with plain radiographs, MDCT, and MRI. MDCT can provide two-dimensional (2-D) orthogonal as well as reconstructed three-dimensional volume-rendered (3-D VR) images of the spine, including the translucent display: a computer-generated image set that enables the visualization of surgical instrumentation through bony structures. We hypothesized that the 3-D VR series provides additional information beyond that of 2-D orthogonal MDCT in ...

  8. A Feasibility Study with Image-Based Rendered Virtual Reality in Patients with Mild Cognitive Impairment and Dementia.

    Science.gov (United States)

    Manera, Valeria; Chapoulie, Emmanuelle; Bourgeois, Jérémy; Guerchouche, Rachid; David, Renaud; Ondrej, Jan; Drettakis, George; Robert, Philippe

    2016-01-01

    Virtual Reality (VR) has emerged as a promising tool in many domains of therapy and rehabilitation, and has recently attracted the attention of researchers and clinicians working with elderly people with MCI, Alzheimer's disease and related disorders. Here we present a study testing the feasibility of using highly realistic image-based rendered VR with patients with MCI and dementia. We designed an attentional task to train selective and sustained attention, and we tested a VR and a paper version of this task in a single-session within-subjects design. Results showed that participants with MCI and dementia reported to be highly satisfied and interested in the task, and they reported high feelings of security, low discomfort, anxiety and fatigue. In addition, participants reported a preference for the VR condition compared to the paper condition, even if the task was more difficult. Interestingly, apathetic participants showed a preference for the VR condition stronger than that of non-apathetic participants. These findings suggest that VR-based training can be considered as an interesting tool to improve adherence to cognitive training in elderly people with cognitive impairment.

  9. A Feasibility Study with Image-Based Rendered Virtual Reality in Patients with Mild Cognitive Impairment and Dementia.

    Directory of Open Access Journals (Sweden)

    Valeria Manera

    Full Text Available Virtual Reality (VR has emerged as a promising tool in many domains of therapy and rehabilitation, and has recently attracted the attention of researchers and clinicians working with elderly people with MCI, Alzheimer's disease and related disorders. Here we present a study testing the feasibility of using highly realistic image-based rendered VR with patients with MCI and dementia. We designed an attentional task to train selective and sustained attention, and we tested a VR and a paper version of this task in a single-session within-subjects design. Results showed that participants with MCI and dementia reported to be highly satisfied and interested in the task, and they reported high feelings of security, low discomfort, anxiety and fatigue. In addition, participants reported a preference for the VR condition compared to the paper condition, even if the task was more difficult. Interestingly, apathetic participants showed a preference for the VR condition stronger than that of non-apathetic participants. These findings suggest that VR-based training can be considered as an interesting tool to improve adherence to cognitive training in elderly people with cognitive impairment.

  10. Is it possible to use highly realistic virtual reality in the elderly? A feasibility study with image-based rendering

    Directory of Open Access Journals (Sweden)

    Benoit M

    2015-03-01

    Full Text Available Michel Benoit,1,2 Rachid Guerchouche,3 Pierre-David Petit,1 Emmanuelle Chapoulie,3 Valeria Manera,1 Gaurav Chaurasia,3 George Drettakis,3 Philippe Robert1,4 1EA CoBTeK/IA, University of Nice Sophia Antipolis, 2Clinique de Psychiatrie, Pole des Neurosciences Cliniques, CHU de Nice, 3Institut National de Recherche en Informatique et en Automatique, Sophia-Antipolis, 4Centre Mémoire de Ressources et de Recherche, CHU de Nice, Nice, France Background: Virtual reality (VR opens up a vast number of possibilities in many domains of therapy. The primary objective of the present study was to evaluate the acceptability for elderly subjects of a VR experience using the image-based rendering virtual environment (IBVE approach and secondly to test the hypothesis that visual cues using VR may enhance the generation of autobiographical memories.Methods: Eighteen healthy volunteers (mean age 68.2 years presenting memory complaints with a Mini-Mental State Examination score higher than 27 and no history of neuropsychiatric disease were included. Participants were asked to perform an autobiographical fluency task in four conditions. The first condition was a baseline grey screen, the second was a photograph of a well-known location in the participant’s home city (FamPhoto, and the last two conditions displayed VR, ie, a familiar image-based virtual environment (FamIBVE consisting of an image-based representation of a known landmark square in the center of the city of experimentation (Nice and an unknown image-based virtual environment (UnknoIBVE, which was captured in a public housing neighborhood containing unrecognizable building fronts. After each of the four experimental conditions, participants filled in self-report questionnaires to assess the task acceptability (levels of emotion, motivation, security, fatigue, and familiarity. CyberSickness and Presence questionnaires were also assessed after the two VR conditions. Autobiographical memory was assessed

  11. Novel application of confocal laser scanning microscopy and 3D volume rendering toward improving the resolution of the fossil record of charcoal.

    Directory of Open Access Journals (Sweden)

    Claire M Belcher

    Full Text Available Variations in the abundance of fossil charcoals between rocks and sediments are assumed to reflect changes in fire activity in Earth's past. These variations in fire activity are often considered to be in response to environmental, ecological or climatic changes. The role that fire plays in feedbacks to such changes is becoming increasingly important to understand and highlights the need to create robust estimates of variations in fossil charcoal abundance. The majority of charcoal based fire reconstructions quantify the abundance of charcoal particles and do not consider the changes in the morphology of the individual particles that may have occurred due to fragmentation as part of their transport history. We have developed a novel application of confocal laser scanning microscopy coupled to image processing that enables the 3-dimensional reconstruction of individual charcoal particles. This method is able to measure the volume of both microfossil and mesofossil charcoal particles and allows the abundance of charcoal in a sample to be expressed as total volume of charcoal. The method further measures particle surface area and shape allowing both relationships between different size and shape metrics to be analysed and full consideration of variations in particle size and size sorting between different samples to be studied. We believe application of this new imaging approach could allow significant improvement in our ability to estimate variations in past fire activity using fossil charcoals.

  12. Real-time graphics rendering engine

    CERN Document Server

    Bao, Hujun

    2011-01-01

    ""Real-Time Graphics Rendering Engine"" reveals the software architecture of the modern real-time 3D graphics rendering engine and the relevant technologies based on the authors' experience developing this high-performance, real-time system. The relevant knowledge about real-time graphics rendering such as the rendering pipeline, the visual appearance and shading and lighting models are also introduced. This book is intended to offer well-founded guidance for researchers and developers who are interested in building their own rendering engines. Hujun Bao is a professor at the State Key Lab of

  13. CdSe white quantum dots-based white light-emitting diodes with high color rendering index

    Science.gov (United States)

    Su, Yu-Sheng; Hsiao, Chih-Chun; Chung, Shu-Ru

    2016-09-01

    A white light emission CdSe quantum dots (QDs) can be prepared by chemical route under 180°C. An organic oleic acid (OA) is used to react with CdO to form Cd-OA complex. Hexadecylamine (HDA) and 1-Octadecene (ODE) were used as co-surfactants. By controlling the reaction time, a white light emission CdSe QDs can be obtained after reacts for 3 to 10 min. The luminescence spectra compose two obvious emission peaks and entire visible light ranges from 400 to 650 nm. Based on TEM measurement result, spherical morphologies with particle size 2.39+/-0.27 nm can be obtained. The quantum yields (QYs) of white CdSe QD are between 20 and 60 %, which depends on reaction time. A white CdSe QDs were mixed with UV cured gel (OPAS-226) with weight ratios 50.0 wt. %, and putted the mixture into reflective cup (3020, 13 mil) as convert type. The white LEDs have controllable CIE coordinates and correlated color temperature (CCT). The luminous efficacy of the device is less than 3 lm/W, but the color rendering index (CRI) for all devices are higher than 80. Since the luminous efficacy of hybrid devices has a direct dependence on the external QY of the UV-LED as well, the luminous efficacy can be improved by well dispersion of CdSe QDs in UV gel matrix and using optimized LED chips. Therefore, in this study, we provide a new and simple method to prepare high QY of white CdSe QDs and its have a potential to applicate in solid-state lighting.

  14. Value of three-dimensional volume-rendering CT pulmonary contusion volume measurement in prediction of ARDS development%三维CT容积再现技术行肺挫伤容积测定预测ARDS的价值

    Institute of Scientific and Technical Information of China (English)

    王邵华; 周文勇; 赵明川; 张辉; 陈晓峰

    2014-01-01

    Objective To investigate the value of three-dimensional CT volume rendering in predicting ARDS following pulmonary contusion and identifying high-risk patients.Methods Seventy-one cases of pulmonary contusion (AIS > 2 points) confirmed by chest CT during an emergency admission between July 2010 and June 2011 were enrolled.Using computer-generated three-dimensional reconstruction,contusion volume was measured and expressed as a percentage of total lung volume.The admission data,such as blood gas analysis results,systolic arterial pressure,hematocrit,AIS,ISS,and injury distribution,were prospectively collected.Independent predictive factors of ARDS following pulmonary contusion was identified using logistic regression analysis and further estimation on accuracy and value of the predictors were performed.Influence of contusion volume percentage on clinical outcomes was detected.Results Of all,mean contusion volume percentage was (22.07 ± 14.50)% (range,5.60%-61.00%),which was not strongly correlated to the admission PaO2/FiO2 ratio (R2 =0.059).ARDS and infection were diagnosed in 31 cases and 25 cases respectively.PaO2/FiO2 ratio and contusion volume percentage were independent predictive factors of ARDS after pulmonary contusion.The best cut-off of contusion percentage in predicting ARDS development was 21.5% with a specificity of 80.0%,sensitivity of 71.0%,positive predictive value of 73.3%,and negative predictive value of 78.1%.Conclusion Three-dimensional CT volume rendering technique allows quantification of pulmonary contusion and identification of patients at high risk of ARDS,to whom further treatment may be directed.%目的 探讨三维CT容积再现技术行肺挫伤容积测定对预测肺挫伤后ARDS发生和识别高危患者的价值. 方法 选取2010年7月-2011年6月急诊胸部CT检查确诊肺挫伤中胸部AIS>2分的71例患者,通过计算机软件重建肺挫伤病变范围并三维容积再现技术测定肺挫伤病变

  15. ARE: Ada Rendering Engine

    Directory of Open Access Journals (Sweden)

    Stefano Penge

    2009-10-01

    Full Text Available E' ormai pratica diffusa, nello sviluppo di applicazioni web, l'utilizzo di template e di potenti template engine per automatizzare la generazione dei contenuti da presentare all'utente. Tuttavia a volte la potenza di tali engine è€ ottenuta mescolando logica e interfaccia, introducendo linguaggi diversi da quelli di descrizione della pagina, o addirittura inventando nuovi linguaggi dedicati.ARE (ADA Rendering Engine è€ pensato per gestire l'intero flusso di creazione del contenuto HTML/XHTML dinamico, la selezione del corretto template, CSS, JavaScript e la produzione dell'output separando completamente logica e interfaccia. I templates utilizzati sono puro HTML senza parti in altri linguaggi, e possono quindi essere gestiti e visualizzati autonomamente. Il codice HTML generato è€ uniforme e parametrizzato.E' composto da due moduli, CORE (Common Output Rendering Engine e ALE (ADA Layout Engine.Il primo (CORE viene utilizzato per la generazione OO degli elementi del DOM ed è pensato per aiutare lo sviluppatore nella produzione di codice valido rispetto al DTD utilizzato. CORE genera automaticamente gli elementi del DOM in base al DTD impostato nella configurazioneIl secondo (ALE viene utilizzato come template engine per selezionare automaticamente in base ad alcuni parametri (modulo, profilo utente, tipologia del nodo, del corso, preferenze di installazione il template HTML, i CSS e i file JavaScript appropriati. ALE permette di usare templates di default e microtemplates ricorsivi per semplificare il lavoro del grafico.I due moduli possono in ogni caso essere utilizzati indipendentemente l'uno dall'altro. E' possibile generare e renderizzare una pagina HTML utilizzando solo CORE oppure inviare gli oggetti CORE al template engine ALE che provvede a renderizzare la pagina HTML. Viceversa è possibile generare HTML senza utilizzare CORE ed inviarlo al template engine ALECORE è alla prima release ed è€ già utilizzato all

  16. Sea modeling and rendering

    Science.gov (United States)

    Cathala, Thierry; Latger, Jean

    2010-10-01

    More and more defence and civil applications require simulation of marine synthetic environment. Currently, the "Future Anti-Surface-Guided-Weapon" (FASGW) or "anti-navire léger" (ANL) missile needs this kind of modelling. This paper presents a set of technical enhancement of the SE-Workbench that aim at better representing the sea profile and the interaction with targets. The operational scenario variability is a key criterion: the generic geographical area (e.g. Persian Gulf, coast of Somalia,...), the type of situation (e.g. peace keeping, peace enforcement, anti-piracy, drug interdiction,...)., the objectives (political, strategic, or military objectives), the description of the mission(s) (e.g. antipiracy) and operation(s) (e.g. surveillance and reconnaissance, escort, convoying) to achieve the objectives, the type of environment (Weather, Time of day, Geography [coastlines, islands, hills/mountains]). The paper insists on several points such as the dual rendering using either ray tracing [and the GP GPU optimization] or rasterization [and GPU shaders optimization], the modelling of sea-surface based on hypertextures and shaders, the wakes modelling, the buoyancy models for targets, the interaction of coast and littoral, the dielectric infrared modelling of water material.

  17. GPU Pro advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2010-01-01

    This book covers essential tools and techniques for programming the graphics processing unit. Brought to you by Wolfgang Engel and the same team of editors who made the ShaderX series a success, this volume covers advanced rendering techniques, engine design, GPGPU techniques, related mathematical techniques, and game postmortems. A special emphasis is placed on handheld programming to account for the increased importance of graphics on mobile devices, especially the iPhone and iPod touch.Example programs and source code can be downloaded from the book's CRC Press web page. 

  18. Rendering Caustics on Non-Lambertian Surfaces

    DEFF Research Database (Denmark)

    Jensen, Henrik Wann

    1997-01-01

    This paper presents a new technique for rendering caustics on non-Lambertian surfaces. The method is based on an extension of the photon map which removes previous restrictions limiting the usage to Lambertian surfaces. We add information about the incoming direction to the photons and this allow...... reduces the rendering time. We have used the method to render caustics on surfaces with reflectance functions varying from Lambertian to glossy specular....

  19. Control volume based hydrocephalus research

    Science.gov (United States)

    Cohen, Benjamin; Voorhees, Abram; Wei, Timothy

    2008-11-01

    Hydrocephalus is a disease involving excess amounts of cerebral spinal fluid (CSF) in the brain. Recent research has shown correlations to pulsatility of blood flow through the brain. However, the problem to date has presented as too complex for much more than statistical analysis and understanding. This talk will highlight progress on developing a fundamental control volume approach to studying hydrocephalus. The specific goals are to select physiologically control volume(s), develop conservation equations along with the experimental capabilities to accurately quantify terms in those equations. To this end, an in vitro phantom is used as a simplified model of the human brain. The phantom's design consists of a rigid container filled with a compressible gel. The gel has a hollow spherical cavity representing a ventricle and a cylindrical passage representing the aquaducts. A computer controlled piston pump supplies pulsatile volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity, and volume change as functions of time. Independent pressure measurements and flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients.

  20. Dictionary Based Segmentation in Volumes

    DEFF Research Database (Denmark)

    Emerson, Monica Jane; Jespersen, Kristine Munk; Jørgensen, Peter Stanley

    Method for supervised segmentation of volumetric data. The method is trained from manual annotations, and these annotations make the method very flexible, which we demonstrate in our experiments. Our method infers label information locally by matching the pattern in a neighborhood around a voxel ...... to a dictionary, and hereby accounts for the volume texture....

  1. Spectral optimization based simultaneously on color-rendering index and color quality scale for white LED illumination

    Science.gov (United States)

    Zhang, J. J.; Hu, R.; Yu, X. J.; Xie, B.; Luo, X. B.

    2017-02-01

    Color performance is an important parameter for high-quality light-emitting diode (LED) lighting. Color-rendering index (CRI) and color quality scale (CQS) are two independent parameters to assess the color performance, but high CRI does not correspond to high CQS, and vice versa. Therefore, it's urgent to find a comprehensive and effective metric for assessing the color performance of LEDs that can simultaneously exhibit high color-rendering index (CRI) and high color quality scale (CQS) values. In this study, a genetic algorithm with a penalty function was proposed for realizing spectral optimization by boosting the maximum attainable luminous efficacy of radiation (LER) of spectra while constraining both high CRI and CQS. By simulations, white spectra from LEDs with CRI≥95 and CQS≥95 were achieved at different correlated color temperatures (CCTs) from 2020 K to 7929 K. Further, a real spectra-tunable LED module consisting of four LEDs is fabricated, and high LER (344 lm/W) and color performance (CRI≥90, CQS=90) was realized by tuning driving currents.

  2. 基于摩擦力控制的触觉再现系统研究%Research on Tactile Rendering System Based on Friction Control

    Institute of Scientific and Technical Information of China (English)

    马露; 陆熊

    2015-01-01

    作为新兴的人机交互技术,触觉再现技术能够再现虚拟物体的表面特性,提高虚拟现实系统的真实性。在目前现有的触觉再现技术中,基于摩擦力控制的触觉再现技术能够实现连续的、精细的纹理触觉再现,已成为触觉再现领域的一个研究热点。因此,设计一套基于摩擦力控制的触觉再现系统就显得尤为重要。基于此,文中利用空气压膜效应原理,设计了一套基于摩擦力控制的触觉再现系统,该系统能够实现虚拟纹理的触觉输出。文中首先描述了空气压膜效应的产生机理,然后详细讲述了该触觉再现系统的整体构成,最后,通过一系列的触觉感知实验验证了该系统的有效性。%As a novel human-computer interaction technology,tactile rendering can express the surface characteristics of virtual objects, and enhance the realism of virtual reality systems. Among several tactile rendering technologies,friction control based technology can real-ize continuous and fine tactile perception,and has become a hot research in tactile rendering filed. Therefore,designing a tactile rendering system,which based on the friction control,is particularly important. Based on this,present a tactile rendering device in this paper based on friction control,by using the principle of squeeze film effect. Firstly,describe the mechanism of squeeze film effect. Then,demonstrate the whole structure of this system and several experiments are made to validate the effectiveness of this system at last.

  3. See-Through Imaging of Laser-Scanned 3d Cultural Heritage Objects Based on Stochastic Rendering of Large-Scale Point Clouds

    Science.gov (United States)

    Tanaka, S.; Hasegawa, K.; Okamoto, N.; Umegaki, R.; Wang, S.; Uemura, M.; Okamoto, A.; Koyamada, K.

    2016-06-01

    We propose a method for the precise 3D see-through imaging, or transparent visualization, of the large-scale and complex point clouds acquired via the laser scanning of 3D cultural heritage objects. Our method is based on a stochastic algorithm and directly uses the 3D points, which are acquired using a laser scanner, as the rendering primitives. This method achieves the correct depth feel without requiring depth sorting of the rendering primitives along the line of sight. Eliminating this need allows us to avoid long computation times when creating natural and precise 3D see-through views of laser-scanned cultural heritage objects. The opacity of each laser-scanned object is also flexibly controllable. For a laser-scanned point cloud consisting of more than 107 or 108 3D points, the pre-processing requires only a few minutes, and the rendering can be executed at interactive frame rates. Our method enables the creation of cumulative 3D see-through images of time-series laser-scanned data. It also offers the possibility of fused visualization for observing a laser-scanned object behind a transparent high-quality photographic image placed in the 3D scene. We demonstrate the effectiveness of our method by applying it to festival floats of high cultural value. These festival floats have complex outer and inner 3D structures and are suitable for see-through imaging.

  4. Efficient Error Calculation for Multiresolution Texture-Based Volume Visualization

    Energy Technology Data Exchange (ETDEWEB)

    LaMar, E; Hamann, B; Joy, K I

    2001-10-16

    Multiresolution texture-based volume visualization is an excellent technique to enable interactive rendering of massive data sets. Interactive manipulation of a transfer function is necessary for proper exploration of a data set. However, multiresolution techniques require assessing the accuracy of the resulting images, and re-computing the error after each change in a transfer function is very expensive. They extend their existing multiresolution volume visualization method by introducing a method for accelerating error calculations for multiresolution volume approximations. Computing the error for an approximation requires adding individual error terms. One error value must be computed once for each original voxel and its corresponding approximating voxel. For byte data, i.e., data sets where integer function values between 0 and 255 are given, they observe that the set of error pairs can be quite large, yet the set of unique error pairs is small. instead of evaluating the error function for each original voxel, they construct a table of the unique combinations and the number of their occurrences. To evaluate the error, they add the products of the error function for each unique error pair and the frequency of each error pair. This approach dramatically reduces the amount of computation time involved and allows them to re-compute the error associated with a new transfer function quickly.

  5. Rendering the Topological Spines

    Energy Technology Data Exchange (ETDEWEB)

    Nieves-Rivera, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-05

    Many tools to analyze and represent high dimensional data already exits yet most of them are not flexible, informative and intuitive enough to help the scientists make the corresponding analysis and predictions, understand the structure and complexity of scientific data, get a complete picture of it and explore a greater number of hypotheses. With this in mind, N-Dimensional Data Analysis and Visualization (ND²AV) is being developed to serve as an interactive visual analysis platform with the purpose of coupling together a number of these existing tools that range from statistics, machine learning, and data mining, with new techniques, in particular with new visualization approaches. My task is to create the rendering and implementation of a new concept called topological spines in order to extend ND²AV's scope. Other existing visualization tools create a representation preserving either the topological properties or the structural (geometric) ones because it is challenging to preserve them both simultaneously. Overcoming such challenge by creating a balance in between them, the topological spines are introduced as a new approach that aims to preserve them both. Its render using OpenGL and C++ and is currently being tested to further on be implemented on ND²AV. In this paper I will present what are the Topological Spines and how they are rendered.

  6. High Fidelity Haptic Rendering

    CERN Document Server

    Otaduy, Miguel A

    2006-01-01

    The human haptic system, among all senses, provides unique and bidirectional communication between humans and their physical environment. Yet, to date, most human-computer interactive systems have focused primarily on the graphical rendering of visual information and, to a lesser extent, on the display of auditory information. Extending the frontier of visual computing, haptic interfaces, or force feedback devices, have the potential to increase the quality of human-computer interaction by accommodating the sense of touch. They provide an attractive augmentation to visual display and enhance t

  7. ARC Code TI: SLAB Spatial Audio Renderer

    Data.gov (United States)

    National Aeronautics and Space Administration — SLAB is a software-based, real-time virtual acoustic environment rendering system being developed as a tool for the study of spatial hearing. SLAB is designed to...

  8. Assessment of sex from endocranial cavity using volume-rendered CT scans in a sample from Medellín, Colombia.

    Science.gov (United States)

    Isaza, Juliana; Díaz, Carlos Alberto; Bedoya, John Fernando; Monsalve, Timisay; Botella, Miguel C

    2014-01-01

    Sex estimation is a primary component of the identification of skeletonized individuals in forensic anthropology. The goal of this research was to develop a new method for estimating sex based on measurements of the endocranial cavity by means of volumetric 3D reconstruction of computed tomography (CT) without contrast. The sample consisted of 249 healthy individuals of both sexes whose tomographies were taken by the imaging unit at the San Vicente de Paul University Hospital in Medellin, Colombia. Sixteen measurements (twelve were designed for this study) of each individual's endocranial base were taken and then used to create formulae via logistic regression, thereby yielding a 89.7% overall sex classification accuracy for the general equation. The measurements showing the greatest degree of sexual dimorphism were the maximum width of the basal occipital portion, the maximum width of the foramen magnum, and the maximum distance between foramina ovalia. This study represents the first physical anthropology study of this population.

  9. 3D SPECT/CT fusion using image data projection of bone SPECT onto 3D volume-rendered CT images: feasibility and clinical impact in the diagnosis of bone metastasis.

    Science.gov (United States)

    Ogata, Yuji; Nakahara, Tadaki; Ode, Kenichi; Matsusaka, Yohji; Katagiri, Mari; Iwabuchi, Yu; Itoh, Kazunari; Ichimura, Akira; Jinzaki, Masahiro

    2017-05-01

    We developed a method of image data projection of bone SPECT into 3D volume-rendered CT images for 3D SPECT/CT fusion. The aims of our study were to evaluate its feasibility and clinical usefulness. Whole-body bone scintigraphy (WB) and SPECT/CT scans were performed in 318 cancer patients using a dedicated SPECT/CT systems. Volume data of bone SPECT and CT were fused to obtain 2D SPECT/CT images. To generate our 3D SPECT/CT images, colored voxel data of bone SPECT were projected onto the corresponding location of the volume-rendered CT data after a semi-automatic bone extraction. Then, the resultant 3D images were blended with conventional volume-rendered CT images, allowing to grasp the three-dimensional relationship between bone metabolism and anatomy. WB and SPECT (WB + SPECT), 2D SPECT/CT fusion, and 3D SPECT/CT fusion were evaluated by two independent reviewers in the diagnosis of bone metastasis. The inter-observer variability and diagnostic accuracy in these three image sets were investigated using a four-point diagnostic scale. Increased bone metabolism was found in 744 metastatic sites and 1002 benign changes. On a per-lesion basis, inter-observer agreements in the diagnosis of bone metastasis were 0.72 for WB + SPECT, 0.90 for 2D SPECT/CT, and 0.89 for 3D SPECT/CT. Receiver operating characteristic analyses for the diagnostic accuracy of bone metastasis showed that WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT had an area under the curve of 0.800, 0.983, and 0.983 for reader 1, 0.865, 0.992, and 0.993 for reader 2, respectively (WB + SPECT vs. 2D or 3D SPECT/CT, p < 0.001; 2D vs. 3D SPECT/CT, n.s.). The durations of interpretation of WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT images were 241 ± 75, 225 ± 73, and 182 ± 71 s for reader 1 and 207 ± 72, 190 ± 73, and 179 ± 73 s for reader 2, respectively. As a result, it took shorter time to read 3D SPECT/CT images than 2D SPECT/CT (p < 0.0001) or WB

  10. High color rendering index WLED based on YAG:Ce phosphor and CdS/ZnS core/shell quantum dots

    Science.gov (United States)

    Shen, Changyu; Li, Ke

    2009-08-01

    White LED combining of blue chip and YAG:Ce phosphor suffers from a red spectral deficiency, resulting in a relatively low value of color rendering index (CRI). In our study, for an effort to improve color rendering properties of YAG:Ce phosphor-based white LEDs, highly luminescent red-orange emitting CdS/ZnS QDs were blended with YAG:Ce phosphors. Core/shell CdS/ZnS quantum dots with the emission wavelength of 618nm, was synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. YAG:Ce phosphor was synthesized by high-temperature solid state reaction at 900-1200°C in a slightly reducing atmosphere for 4 hours. Blends of phosphors and QDs exhibited the prominent spectral evolution with an increasing content of QDs. A hybrid white LED, which combines a blue LED with the blend of YAG phosphor and QDs with a weight ratio of 1.5:1,was demonstrated with an improved CRI value of 86.

  11. Interactive View-Dependent Rendering of Large Isosurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gregorski, B; Duchaineau, M; Lindstrom, P; Pascucci, V; Joy, K I

    2002-11-19

    We present an algorithm for interactively extracting and rendering isosurfaces of large volume datasets in a view-dependent fashion. A recursive tetrahedral mesh refinement scheme, based on longest edge bisection, is used to hierarchically decompose the data into a multiresolution structure. This data structure allows fast extraction of arbitrary isosurfaces to within user specified view-dependent error bounds. A data layout scheme based on hierarchical space filling curves provides access to the data in a cache coherent manner that follows the data access pattern indicated by the mesh refinement.

  12. 基于LOD的自适应无裂缝地形渲染%Adaptive terrain rendering with no T-adjacent based on LOD

    Institute of Scientific and Technical Information of China (English)

    郭虎奇; 费向东; 刘小玲

    2013-01-01

    提出了一种新型三角形簇作为GPU的图元绘制单元,结合LOD技术实现了自适应的无裂缝地形渲染.该三角形簇,称为N-簇,分为8种基本类型,不同尺寸和位置的地形网格块都可以通过这8种基本类型进行缩放和平移得到.采用二叉树数据结构组织N-簇,每个二叉树节点对应一种N-簇,同时存储了N-簇的缩放及平移.结合八边形误差算法进行场景LOD的构建,避免了不同LOD层次间过滤产生的T-连接.由于大规模地形的高程数据量及纹理数据量非常庞大,不能一次性载入内存,采用四叉树数据结构分块组织高程数据和纹理数据,在程序运行时进行数据块的动态加载.实验结果表明,N-簇提高了地形三角形网格的绘制效率,同时,整个算法能自适应地进行无裂缝地形渲染,并能满足大规模地形场景实时绘制的要求.%A new kind of triangle cluster, as the render unit of GPU is proposed, combined the LOD technology, which realizes the adaptive terrain rendering with no crack. The new kind of triangle cluster, called N-cluster, has eight base types and the terrain mesh with different size and location can translated from the base types with scaling and translating. Binary tree is used to organize N-cluster, each node contains the information of N-cluster, including type, scale and translation. Octagon metric is utilized to construct LOD of terrain, which can avoid the T-adjacent between different LOD. Because of the massive data of DEM and texture data, which cannot be loaded into memory once, the quad tree is used to organize them and the data mesh is loaded into memory dynamically when running. The experimental result shows that, N-cluster improves the efficiency of terrain rendering, and the total algorithm can adaptively rendering terrain without crack, which can also meet the requirement of real-time rendering of large-scale terrain.

  13. Interactive Volume Rendering of Diffusion Tensor Data

    Energy Technology Data Exchange (ETDEWEB)

    Hlawitschka, Mario; Weber, Gunther; Anwander, Alfred; Carmichael, Owen; Hamann, Bernd; Scheuermann, Gerik

    2007-03-30

    As 3D volumetric images of the human body become an increasingly crucial source of information for the diagnosis and treatment of a broad variety of medical conditions, advanced techniques that allow clinicians to efficiently and clearly visualize volumetric images become increasingly important. Interaction has proven to be a key concept in analysis of medical images because static images of 3D data are prone to artifacts and misunderstanding of depth. Furthermore, fading out clinically irrelevant aspects of the image while preserving contextual anatomical landmarks helps medical doctors to focus on important parts of the images without becoming disoriented. Our goal was to develop a tool that unifies interactive manipulation and context preserving visualization of medical images with a special focus on diffusion tensor imaging (DTI) data. At each image voxel, DTI provides a 3 x 3 tensor whose entries represent the 3D statistical properties of water diffusion locally. Water motion that is preferential to specific spatial directions suggests structural organization of the underlying biological tissue; in particular, in the human brain, the naturally occuring diffusion of water in the axon portion of neurons is predominantly anisotropic along the longitudinal direction of the elongated, fiber-like axons [MMM+02]. This property has made DTI an emerging source of information about the structural integrity of axons and axonal connectivity between brain regions, both of which are thought to be disrupted in a broad range of medical disorders including multiple sclerosis, cerebrovascular disease, and autism [Mos02, FCI+01, JLH+99, BGKM+04, BJB+03].

  14. A Brief Introduction of the Achievements of Key Project Image-based Modeling and Rendering for Virtual Reality Applications

    Institute of Scientific and Technical Information of China (English)

    Jiaoying Shi; Zhanyi Hu; Enhua Wu; Qunsheng Peng

    2006-01-01

    @@ 1.Background The virtual reality (VR) technology is now at the frontier of modern information science.VR is based on computer graphics,computer vision,and other fresh air topics in today's computer technology.

  15. Three-Dimensional Volume-Rendered Series Complements 2D Orthogonal Multidetector Computed Tomography in the Evaluation of Abnormal Spinal Curvature in Patients at a Major Cancer Center: A Retrospective Review.

    Science.gov (United States)

    Debnam, J Matthew; Ketonen, Leena; Guha-Thakurta, Nandita

    2012-01-01

    Background. Abnormal spinal curvature is routinely assessed with plain radiographs, MDCT, and MRI. MDCT can provide two-dimensional (2-D) orthogonal as well as reconstructed three-dimensional volume-rendered (3-D VR) images of the spine, including the translucent display: a computer-generated image set that enables the visualization of surgical instrumentation through bony structures. We hypothesized that the 3-D VR series provides additional information beyond that of 2-D orthogonal MDCT in the evaluation of abnormal spinal curvature in patients evaluated at a major cancer center. Methods. The 3-D VR series, including the translucent display, was compared to 2-D orthogonal MDCT studies in patients with an abnormal spinal curvature greater than 25 degrees and scored as being not helpful (0) or helpful (1) in 3 categories: spinal curvature; bony definition; additional findings (mass lesions, fractures, and instrumentation). Results. In 38 of 48 (79.2%) patients assessed, the 3-D VR series were scored as helpful in 63 of 144 (43.8%) total possible categories (32 spinal curvature; 14 bony definition; 17 additional findings). Conclusion. Three-dimensional MDCT images, including the translucent display, are complementary to multiplanar 2-D orthogonal MCDT in the evaluation of abnormal spinal curvature in patients treated at a major cancer center.

  16. Multidetector-row computed tomography in the preoperative diagnosis of intestinal complications caused by clinically unsuspected ingested dietary foreign bodies: a case series emphasizing the use of volume rendering techniques

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Augusto Cesar Vieira; Torres, Ulysses dos Santos; Oliveira, Eduardo Portela de; Gual, Fabiana; Bauab Junior, Tufik, E-mail: usantor@yahoo.com.br [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Hospital de Base. Serv. de Radiologia e Diagnostico por Imagem; Westin, Carlos Eduardo Garcia [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Hospital de Base. Cirurgia Geral; Cardoso, Luciana Vargas [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Hospital de Base. Setor de Tomografia Computadorizada

    2013-11-15

    Objective: the present study was aimed at describing a case series where a preoperative diagnosis of intestinal complications secondary to accidentally ingested dietary foreign bodies was made by multidetector-row computed tomography (MDCT), with emphasis on complementary findings yielded by volume rendering techniques (VRT) and curved multiplanar reconstructions (MPR). Materials and Methods: The authors retrospectively assessed five patients with surgically confirmed intestinal complications (perforation and/or obstruction) secondary to unsuspected ingested dietary foreign bodies, consecutively assisted in their institution between 2010 and 2012. Demographic, clinical, laboratory and radiological data were analyzed. VRT and curved MPR were subsequently performed. Results: preoperative diagnosis of intestinal complications was originally performed in all cases. In one case the presence of a foreign body was not initially identified as the causal factor, and the use of complementary techniques facilitated its retrospective identification. In all cases these tools allowed a better depiction of the entire foreign bodies on a single image section, contributing to the assessment of their morphology. Conclusion: although the use of complementary techniques has not had a direct impact on diagnostic performance in most cases of this series, they may provide a better depiction of foreign bodies' morphology on a single image section. (author)

  17. CT two-dimensional reformation versus three-dimensional volume rendering with regard to surgical findings in the preoperative assessment of the ossicular chain in chronic suppurative otitis media

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yong, E-mail: guoyong27@hotmail.com [Department of Radiology, Navy General Hospital, 6# Fucheng Road, Beijing 100048 (China); Liu, Yang, E-mail: liuyangdoc@sina.com [Department of Otorhinolaryngology, Navy General Hospital, 6# Fucheng Road, Beijing 100048 (China); Lu, Qiao-hui, E-mail: Luqiaohui465@126.com [Department of Radiology, Navy General Hospital, 6# Fucheng Road, Beijing 100048 (China); Zheng, Kui-hong, E-mail: zhengkuihong1971@sina.com [Department of Radiology, Navy General Hospital, 6# Fucheng Road, Beijing 100048 (China); Shi, Li-jing, E-mail: Shilijing2003@yahoo.com.cn [Department of Radiology, Navy General Hospital, 6# Fucheng Road, Beijing 100048 (China); Wang, Qing-jun, E-mail: wangqingjun77@163.com [Department of Radiology, Navy General Hospital, 6# Fucheng Road, Beijing 100048 (China)

    2013-09-15

    Purpose: To assess the role of three-dimensional volume rendering (3DVR) in the preoperative assessment of the ossicular chain in chronic suppurative otitis media (CSOM). Materials and methods: Sixty-six patients with CSOM were included in this prospective study. Temporal bone was scanned with a 128-channel multidetector row CT and the axial data was transferred to the workstation for multiplanar reformation (MPR) and 3DVR reconstructions. Evaluation of the ossicular chain according to a three-point scoring system on two-dimensional reformation (2D) and 3DVR was performed independently by two radiologists. The evaluation results were compared with surgical findings. Results: 2D showed over 89% accuracy in the assessment of segmental absence of the ossicular chain in CSOM, no matter how small the segmental size was. 3DVR was as accurate as 2D for the assessment of segmental absence. However, 3DVR was found to be more accurate than 2D in the evaluation of partial erosion of segments. Conclusion: Both 3DVR and 2D are accurate and reliable for the assessment of the ossicular chain in CSOM. The inclusion of 3DVR images in the imaging protocol improves the accuracy of 2D in detecting ossicular erosion from CSOM.

  18. Preoperative assessment of vascular anatomy of inferior mesenteric artery by volume-rendered 3D-CT for laparoscopic lymph node dissection with left colic artery preservation in lower sigmoid and rectal cancer

    Institute of Scientific and Technical Information of China (English)

    Michiya Kobayashi; Satoshi Morishita; Takehiro Okabayashi; Kana Miyatake; Ken Okamoto; Tsutomu Namikawa; Yasuhiro Ogawa; Keijiro Araki

    2006-01-01

    AIM: To determine the distance between the branching point of the left colic artery (LCA) and the inferior mesenteric artery (IMA) by computed tomography (CT) scanning, for preoperative evaluation before laparoscopic colorectal operation.METHODS: From February 2004 to May 2005, 100patients (63 men, 37 women) underwent angiography performed with a 16-scanner multi-detector row CT unit (Toshiba, Aquilion 16). All images were analyzed on a workstation (AZE Ltd, Virtual Place Advance 300). The distance from the root of the IMA to the bifurcation of the LCA was measured by curved multi-planar reconstruction on a workstation.RESULTS: The IMA could be visualized in all the cases,but the LCA was missing in two patients. The mean distance from the root of the IMA to the root of the LCA was 42.0 mm (range, 23.2-75.0 mm). There were no differences in gender, arterial branching types, body weight, height, and body mass index.CONCLUSION: Volume-rendered 3D-CT is helpful to assess the vascular branching anatomy for laparoscopic surgery.

  19. Parallel hierarchical radiosity rendering

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.

    1993-07-01

    In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity renderer is documented. First, a new look is taken at the traditional radiosity equation, and a new form is presented in which the matrix of linear system coefficients is transformed into a symmetric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to parallel implementation, and scalability. Significant enhancements are also discovered which both improve their theoretical foundations and improve the images they generate. The resultant hierarchical radiosity algorithm is then examined for sources of parallelism, and for an architectural mapping. Several architectural mappings are discussed. A few key algorithmic changes are suggested during the process of making the algorithm parallel. Next, the performance, efficiency, and scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas which have the potential to further enhance the hierarchical radiosity method, or provide an entirely new forum for the application of hierarchical methods.

  20. Image Volume Rendering based on GPU Computing%基于GPU通用计算的图像体绘制

    Institute of Scientific and Technical Information of China (English)

    吴井胜; 鲍旭东

    2008-01-01

    基于GPU(graphic processing unit)的体绘制是体视化技术研究的重要分支.应用GPU通用计算改进基于GPU的图像体绘制,在体积图像处理、代理几何面生成、代理几何面渲染等体绘制过程中使用GPU通用计算技术,以提高绘制效率,改善图像质量.实验证明,基于GPU通用计算的体绘制在交互性能和绘制效果方面均表现良好.

  1. Streaming Model Based Volume Ray Casting Implementation for Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Jusub Kim

    2009-01-01

    Full Text Available Interactive high quality volume rendering is becoming increasingly more important as the amount of more complex volumetric data steadily grows. While a number of volumetric rendering techniques have been widely used, ray casting has been recognized as an effective approach for generating high quality visualization. However, for most users, the use of ray casting has been limited to datasets that are very small because of its high demands on computational power and memory bandwidth. However the recent introduction of the Cell Broadband Engine (Cell B.E. processor, which consists of 9 heterogeneous cores designed to handle extremely demanding computations with large streams of data, provides an opportunity to put the ray casting into practical use. In this paper, we introduce an efficient parallel implementation of volume ray casting on the Cell B.E. The implementation is designed to take full advantage of the computational power and memory bandwidth of the Cell B.E. using an intricate orchestration of the ray casting computation on the available heterogeneous resources. Specifically, we introduce streaming model based schemes and techniques to efficiently implement acceleration techniques for ray casting on Cell B.E. In addition to ensuring effective SIMD utilization, our method provides two key benefits: there is no cost for empty space skipping and there is no memory bottleneck on moving volumetric data for processing. Our experimental results show that we can interactively render practical datasets on a single Cell B.E. processor.

  2. Transfer function design based on user selected samples for intuitive multivariate volume exploration

    KAUST Repository

    Zhou, Liang

    2013-02-01

    Multivariate volumetric datasets are important to both science and medicine. We propose a transfer function (TF) design approach based on user selected samples in the spatial domain to make multivariate volumetric data visualization more accessible for domain users. Specifically, the user starts the visualization by probing features of interest on slices and the data values are instantly queried by user selection. The queried sample values are then used to automatically and robustly generate high dimensional transfer functions (HDTFs) via kernel density estimation (KDE). Alternatively, 2D Gaussian TFs can be automatically generated in the dimensionality reduced space using these samples. With the extracted features rendered in the volume rendering view, the user can further refine these features using segmentation brushes. Interactivity is achieved in our system and different views are tightly linked. Use cases show that our system has been successfully applied for simulation and complicated seismic data sets. © 2013 IEEE.

  3. Fast Rendering for Great Width Stereo Image Pair Based on Distributed Rendering%基于分布式绘制的大幅面立体像对快速浏览技术

    Institute of Scientific and Technical Information of China (English)

    刘涛; 谢剑薇; 龚雪晶; 赵兴国

    2012-01-01

    针对当前影像数据存储格式不能适应海量影像数据快速访问的情况,研究设计了大幅面立体像对的逻辑四叉树存储格式,并通过立体像对的逻辑四叉树剖分算法把普通格式的立体像对格式快速转换成逻辑四叉树存储格式。由于单机显示无法满足大幅面立体像对的高分辨率、高沉浸感的显示,因此系统研究了大幅面立体像对快速浏览的分布式结构,包括硬件选择、分布式策略和通信方式等方面。由于当前分布式网络不足以支持大规模数据的实时传输,根据帧相关性原理,研究提出了大幅面立体像对的分布式缓冲机制。最后通过实验证明该方法能够实现大幅面立体像对的实时浏览。%The current image data format cannot fit the fast access of the massive image data, so the logistic quad-tree structure has been designed for the large scale stereo image pair, and the ordinary form of stereo image pair can be fast changed into logistic quad-tree structure ones through the split method of the logistic quad-tree structure. The single machine display cannot meet the high resolution and high immersion display of the large scale stereo image pair, so the distributed structure has been studied to the fast browsing of the large scale stereo image pair, including hardware choice, distributed strategy, communications method, and so on. Because the current distributed network is insufficient to support the real-time transmission of the large-scale data, the data management mechanism has been proposed for the large scale stereo image pair according to the flame relevant principle, including distributed cache mechanism and fast access algorithm. The experiment proves that the application above technology to the fast rendering for the great width stereo image pair has realized real-time roams in the large screen stereo display.

  4. Three-dimensional volume rendering digital subtraction angiography in comparison with two-dimensional digital subtraction angiography and rotational angiography for detecting aneurysms and their morphological properties in patients with subarachnoid hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Kucukay, Fahrettin, E-mail: fkucukay@hotmail.com [Turkiye Yuksek Ihtisas Hospital, Department of Radiology, Ankara (Turkey); Okten, R. Sarper [Turkiye Yuksek Ihtisas Hospital, Department of Radiology, Ankara (Turkey); Tekiner, Ayhan [Ankara Education and Teaching Hospital, Department of Neurosurgery, Ankara (Turkey); Dagli, Mustafa [Turkiye Yuksek Ihtisas Hospital, Department of Radiology, Ankara (Turkey); Gocek, Cevdet; Bayar, Mehmet Akif [Ankara Education and Teaching Hospital, Department of Neurosurgery, Ankara (Turkey); Cumhur, Turhan [Turkiye Yuksek Ihtisas Hospital, Department of Radiology, Ankara (Turkey)

    2012-10-15

    Objective: Subarachnoid hemorrhage (SAH), which can cause mortality and severe morbidity, is a serious condition whose underlying cause must be determined. We aimed to compare 2D digital subtraction angiography (2DDSA), rotational angiography (RA) and 3D volume rendering digital subtraction angiography (3DVRDSA) for detecting aneurysms and their morphological properties in patients with subarachnoid hemorrhage. Materials and methods: After an initial diagnosis of SAH with computed tomography, 122 patients (52 males and 70 females with a mean age of 47.77 ± 12.81 ranging between 20 and 83 years) underwent 2DDSA imaging, RA and 3DVRDSA imaging for detection of aneurysms. The location of the aneurysm, the best working angles, the dome/neck ratios, the largest diameter of the aneurysm, the shape of the aneurysm, the presence of spasms or pseudostenoses, and the relationship to the neighboring arteries were recorded. Results: 2DDSA missed 15.6% of the aneurysms that had a mean size of 2.79 ± 0.74 mm. RA was superior to 2DDSA for detecting aneurysm neck, and 3DVRDSA was superior to RA for detecting aneurysm neck. 3DVRDSA conclusively depicted the shape of the aneurysms in all patients. 3DVRDSA imaging was superior to 2DDSA and RA in the detection of the aneurysm relationship to neighboring arteries. The sensitivity and specificity of 3DVRDSA imaging for the detection of vasospasms were 100 and 84%, respectively. Conclusions: 3DVRDSA imaging is superior to 2DDSA and RA for detecting intracranial aneurysms and their morphological properties, especially those of small, ruptured aneurysms. However, 2DDSA should not be neglected in cases of vasospasm.

  5. Equalizer: a scalable parallel rendering framework.

    Science.gov (United States)

    Eilemann, Stefan; Makhinya, Maxim; Pajarola, Renato

    2009-01-01

    Continuing improvements in CPU and GPU performances as well as increasing multi-core processor and cluster-based parallelism demand for flexible and scalable parallel rendering solutions that can exploit multipipe hardware accelerated graphics. In fact, to achieve interactive visualization, scalable rendering systems are essential to cope with the rapid growth of data sets. However, parallel rendering systems are non-trivial to develop and often only application specific implementations have been proposed. The task of developing a scalable parallel rendering framework is even more difficult if it should be generic to support various types of data and visualization applications, and at the same time work efficiently on a cluster with distributed graphics cards. In this paper we introduce a novel system called Equalizer, a toolkit for scalable parallel rendering based on OpenGL which provides an application programming interface (API) to develop scalable graphics applications for a wide range of systems ranging from large distributed visualization clusters and multi-processor multipipe graphics systems to single-processor single-pipe desktop machines. We describe the system architecture, the basic API, discuss its advantages over previous approaches, present example configurations and usage scenarios as well as scalability results.

  6. Clinical application analysis of 64-slice CT coronary CTA dynamic volume rendering diagnosis of myocardial bridge & nbsp;of the anterior descending branch%64层螺旋CT冠状动脉CTA动态容积再现辅助诊断前降支心肌桥的临床应用分析

    Institute of Scientific and Technical Information of China (English)

    郝晓光

    2013-01-01

      Objective To explore the clinical value of 64-slice CT coronary CTA dynamic volume rendering images auxiliary diagnosis of myocardial bridge. Methods 96 patients underwent coronary CTA from January 2009 to the end of December 2012, with confirm of coronary angiography, were chosen. CT images are routinely reconstructed in the best phase period and in 0-90% phase period, an interval of 10%. Reconstruction data was sent to the workstation to get the MPR, the CPR, as well as dynamic volume rendering images. Images were analyzed by the two groups of doctors of medical imaging department to determine whether the presence of myocardial bridge of the left anterior descending artery based on static images, both static and dynamic volume images, respectively. Results 96 cases with myocardial bridge of the left anterior descending artery confirmed by coronary angiography, 83 cases were diagnosed by the static CTA image, 93 cases were diagnosed by both static and dynamic volume images. The sensitivity of two groups was 93.75% and 82.29%, specificity 99.68% and 99.57%, respectively. Conclusion The comprehensive analysis of the 64-slice spiral CT coronary CTA static and dynamic volume rendering images can improve the accuracy of the diagnosis of left anterior descending artery myocardial bridge.%  目的探索64层螺旋CT冠状动脉CTA动态容积再现图像辅助诊断心肌桥的临床应用价值。方法选择我院2009年1月-2012年12月行冠状动脉CTA检查并经冠脉造影证实的心肌桥96例,所有CT图像均进行常规best phase期相重建及0-90%、间隔10%的多期相重建,重建后的数据传送至工作站进行MPR、CPR重建以及动态容积再现处理。图像由两组医师分别根据静态图像、静态加动态容积再现图像判断是否存在前降支心肌桥,诊断结果分别统计,并进行统计学分析。结果经冠脉造影证实的前降支心肌桥患者96例中,静态CTA图像诊断肌桥83例,静

  7. Entropy, color, and color rendering.

    Science.gov (United States)

    Price, Luke L A

    2012-12-01

    The Shannon entropy [Bell Syst. Tech J.27, 379 (1948)] of spectral distributions is applied to the problem of color rendering. With this novel approach, calculations for visual white entropy, spectral entropy, and color rendering are proposed, indices that are unreliant on the subjectivity inherent in reference spectra and color samples. The indices are tested against real lamp spectra, showing a simple and robust system for color rendering assessment. The discussion considers potential roles for white entropy in several areas of color theory and psychophysics and nonextensive entropy generalizations of the entropy indices in mathematical color spaces.

  8. Haptic rendering for dental training system

    Institute of Scientific and Technical Information of China (English)

    WANG DangXiao; ZHANG YuRu; WANG Yong; L(U) PeiJun; ZHOU RenGe; ZHOU WanLin

    2009-01-01

    Immersion and Interaction are two key features of virtual reality systems,which are especially important for medical applications.Based on the requirement of motor skill training in dental surgery,haptic rendering method based on triangle model is investigated in this paper.Multi-rate haptic rendering architecture is proposed to solve the contradiction between fidelity and efficiency requirements.Realtime collision detection algorithm based on spatial partition and time coherence is utilized to enable fast contact determination.Proxy-based collision response algorithm is proposed to compute surface contact point.Cutting force model based on piecewise contact transition model is proposed for dental drilling simulation during tooth preparation.Velocity-driven levels of detail hapUc rendering algorithm is proposed to maintain high update rate for complex scenes with a large number of triangles.Hapticvisual collocated dental training prototype is established using half-mirror solution.Typical dental operations have been realized Including dental caries exploration,detection of boundary within dental crose-section plane,and dental drilling during tooth preparation.The haptic rendering method is a fundamental technology to improve Immersion and interaction of virtual reality training systems,which is useful not only in dental training,but also in other surgical training systems.

  9. GPU Pro 5 advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2014-01-01

    In GPU Pro5: Advanced Rendering Techniques, section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Marius Bjorge have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book covers rendering, lighting, effects in image space, mobile devices, 3D engine design, and compute. It explores rasterization of liquids, ray tracing of art assets that would otherwise be used in a rasterized engine, physically based area lights, volumetric light

  10. Haptic rendering for simulation of fine manipulation

    CERN Document Server

    Wang, Dangxiao; Zhang, Yuru

    2014-01-01

    This book introduces the latest progress in six degrees of freedom (6-DoF) haptic rendering with the focus on a new approach for simulating force/torque feedback in performing tasks that require dexterous manipulation skills. One of the major challenges in 6-DoF haptic rendering is to resolve the conflict between high speed and high fidelity requirements, especially in simulating a tool interacting with both rigid and deformable objects in a narrow space and with fine features. The book presents a configuration-based optimization approach to tackle this challenge. Addressing a key issue in man

  11. State-of-the-Art in GPU-Based Large-Scale Volume Visualization

    KAUST Repository

    Beyer, Johanna

    2015-05-01

    This survey gives an overview of the current state of the art in GPU techniques for interactive large-scale volume visualization. Modern techniques in this field have brought about a sea change in how interactive visualization and analysis of giga-, tera- and petabytes of volume data can be enabled on GPUs. In addition to combining the parallel processing power of GPUs with out-of-core methods and data streaming, a major enabler for interactivity is making both the computational and the visualization effort proportional to the amount and resolution of data that is actually visible on screen, i.e. \\'output-sensitive\\' algorithms and system designs. This leads to recent output-sensitive approaches that are \\'ray-guided\\', \\'visualization-driven\\' or \\'display-aware\\'. In this survey, we focus on these characteristics and propose a new categorization of GPU-based large-scale volume visualization techniques based on the notions of actual output-resolution visibility and the current working set of volume bricks-the current subset of data that is minimally required to produce an output image of the desired display resolution. Furthermore, we discuss the differences and similarities of different rendering and data traversal strategies in volume rendering by putting them into a common context-the notion of address translation. For our purposes here, we view parallel (distributed) visualization using clusters as an orthogonal set of techniques that we do not discuss in detail but that can be used in conjunction with what we present in this survey. © 2015 The Eurographics Association and John Wiley & Sons Ltd.

  12. On Enterprise On-line Rendering an Account Based on WEB%基于WEB的企业网上报账系统的研究

    Institute of Scientific and Technical Information of China (English)

    游辉映

    2012-01-01

      当前企业“报账难”问题日显突显。如何创新财务报账方式,提高服务效率,提升财务管理水平,不断满足企业员工对财务报账的需求,提升企业财务服务价值,成为企业亟须解决的问题。文章通过调研企业财务报账模式,对企业网上报账体系的构建进行了研究和探讨,并提出应注意的问题。%  At present, enterprises have the difficulty in rendering an account. How to innovate in means of rendering an account, to improve service efficiency, to financial management, to satisfy staff's demand for rendering an account and to promote financial service value have become issues need to be solved. Through the study of rendering an account in enter-prises, the paper discusses the building of enterprise on-line rendering an account system and points out problems deserv-ing attention.

  13. Binaural Rendering in MPEG Surround

    Directory of Open Access Journals (Sweden)

    Kristofer Kjörling

    2008-04-01

    Full Text Available This paper describes novel methods for evoking a multichannel audio experience over stereo headphones. In contrast to the conventional convolution-based approach where, for example, five input channels are filtered using ten head-related transfer functions, the current approach is based on a parametric representation of the multichannel signal, along with either a parametric representation of the head-related transfer functions or a reduced set of head-related transfer functions. An audio scene with multiple virtual sound sources is represented by a mono or a stereo downmix signal of all sound source signals, accompanied by certain statistical (spatial properties. These statistical properties of the sound sources are either combined with statistical properties of head-related transfer functions to estimate “binaural parameters” that represent the perceptually relevant aspects of the auditory scene or used to create a limited set of combined head-related transfer functions that can be applied directly on the downmix signal. Subsequently, a binaural rendering stage reinstates the statistical properties of the sound sources by applying the estimated binaural parameters or the reduced set of combined head-related transfer functions directly on the downmix. If combined with parametric multichannel audio coders such as MPEG Surround, the proposed methods are advantageous over conventional methods in terms of perceived quality and computational complexity.

  14. Binaural Rendering in MPEG Surround

    Science.gov (United States)

    Breebaart, Jeroen; Villemoes, Lars; Kjörling, Kristofer

    2008-12-01

    This paper describes novel methods for evoking a multichannel audio experience over stereo headphones. In contrast to the conventional convolution-based approach where, for example, five input channels are filtered using ten head-related transfer functions, the current approach is based on a parametric representation of the multichannel signal, along with either a parametric representation of the head-related transfer functions or a reduced set of head-related transfer functions. An audio scene with multiple virtual sound sources is represented by a mono or a stereo downmix signal of all sound source signals, accompanied by certain statistical (spatial) properties. These statistical properties of the sound sources are either combined with statistical properties of head-related transfer functions to estimate "binaural parameters" that represent the perceptually relevant aspects of the auditory scene or used to create a limited set of combined head-related transfer functions that can be applied directly on the downmix signal. Subsequently, a binaural rendering stage reinstates the statistical properties of the sound sources by applying the estimated binaural parameters or the reduced set of combined head-related transfer functions directly on the downmix. If combined with parametric multichannel audio coders such as MPEG Surround, the proposed methods are advantageous over conventional methods in terms of perceived quality and computational complexity.

  15. 基于Maya脚本语言的双面渲染方法%The Method of Double Rendering Based on Maya Embedding Language

    Institute of Scientific and Technical Information of China (English)

    马红旭

    2014-01-01

    渲染是三维动画M aya软件最终色彩和光影效果的整体表现形式。介绍了使用M aya软件中的脚本语言对已经建立的一个三维碗状模型进行色彩双面渲染的方法。%Rendering is the Maya software in 3D’s overall form with final color and lighting .The article mainly introduces the method of double rendering of 3D models which have been established on Maya embedding language in computer .

  16. Volume of Home and Community Based Services and...

    Data.gov (United States)

    U.S. Department of Health & Human Services — Volume of Home- and Community-Based Services and Time to Nursing-Home Placement The purpose of this study was to determine whether the volume of Home and Community...

  17. The Study of Three-dimensional Product Rendering Based on the Photography Studio Model%基于摄影棚模式的计算机三维产品渲染研究

    Institute of Scientific and Technical Information of China (English)

    雷鸿源

    2014-01-01

    通过对产品摄影的评价因素和对摄影棚拍摄特点的分析,分别以白色和黑色为渲染背景,建立了基于摄影棚模式的三维产品渲染流程。在虚拟摄影棚左侧、右侧和顶部建立三盏不同的矩形灯光,并结合材质设置和渲染参数设置,就能够渲染出白色背景的精美产品效果图;黑色背景的渲染是以一盏背景灯将产品从黑色背景中烘托出来,并利用模糊倒影来增强产品的立体感;还分析了产品渲染中实景匹配的两种方式,并提出透明材质物体渲染的注意事项。以渲染器Vray为实验平台,渲染结果真实度高。%Through the analysis of the evaluation factors of the products ’ photographs and the characteristics of the photography studio ,this pa-per has established three-dimensional product rendering process based on the photography studio model with white and black background re-spectively .With three different rectangular lights on the left ,the right and the top of the virtual photography studio and combined with material settings and rendering parameters settings ,beautiful product renderings with white background can be rendered .Black background rendering is to heighten products of black background with the background light and to enhance the three -dimensional effects of the products using fuzzy inverted image .This paper has analyzed 2 methods of virtual match of rendering and proposed some precautions of the renderings of objects with transparent materials .The experiments are based on Vray with vivid and real rendering effect .

  18. GPU PRO 3 Advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2012-01-01

    GPU Pro3, the third volume in the GPU Pro book series, offers practical tips and techniques for creating real-time graphics that are useful to beginners and seasoned game and graphics programmers alike. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Wessam Bahnassi, and Sebastien St-Laurent have once again brought together a high-quality collection of cutting-edge techniques for advanced GPU programming. With contributions by more than 50 experts, GPU Pro3: Advanced Rendering Techniques covers battle-tested tips and tricks for creating interesting geometry, realistic sha

  19. 基于云计算的动漫渲染实验平台研究与实现%Research and Implement on Cloud Computing-based Animation Rendering Experimental Platform

    Institute of Scientific and Technical Information of China (English)

    廖宏建; 杨玉宝; 唐连章; 卫建安

    2012-01-01

    Hardware resource constraint of animation rendering is a bottleneck of animation teaching and research in universities. Cloud computing has such features such as high performance computing, mass storage, intelligent deployment etc. And the cloud renders based on cloud computing platform provides the solution to the bottleneck. The rendering nodes made by virtualization technology, cloud storage, service interface, and rendering task management form a core of the cloud rendering experimental platform. The user could complete the rendering process of submitting task, reserving resource, setting parameter, detecting scene, and viewing effect with the remote desktop or web self-service system. It has been proved that the platform is the advanced, economic and easy to management.%动漫渲染的硬件资源限制是目前高校动漫专业教学和科研的一个瓶颈,云计算具有高性能计算、海量存储、智能化部署等特征,架构于云计算平台的云渲染为这一问题提供了解决方案.虚拟化的渲染节点、渲染任务管理、云存储、服务接口是构成云渲染实验平台的核心,用户通过远程Web自助系统或桌面云端完成任务提交、资源预约、参数设置、场景检测、效果查看等渲染过程.实践证明,该平台具有先进性、经济性和易管理等优势.

  20. FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis.

    Science.gov (United States)

    Wan, Yong; Otsuna, Hideo; Holman, Holly A; Bagley, Brig; Ito, Masayoshi; Lewis, A Kelsey; Colasanto, Mary; Kardon, Gabrielle; Ito, Kei; Hansen, Charles

    2017-05-26

    Image segmentation and registration techniques have enabled biologists to place large amounts of volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have incorporated support of multichannel data using various strategies, the lack of a flexible design has made true many-channel visualization and analysis unavailable. The most common practice for many-channel volume data presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and quantitative evaluations. Here, we present an alternative design strategy that accommodates the visualization and analysis of about 100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools. Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique. Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We have implemented the design strategies as a thorough restructuring of our original tool, FluoRender. The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly extended number of volume channels, but also enables new analysis functions for many-channel data from emerging biomedical-imaging techniques.

  1. Visualization of Medpor implants using surface rendering

    Institute of Scientific and Technical Information of China (English)

    WANG Meng; GUI Lai; LIU Xiao-jing

    2011-01-01

    Background The Medpor surgical implant is one of the easiest implants in clinical practice, especially in craniomaxillofacial surgery. It is often used as a bone substitute material for the repair of skull defects and facial deformities. The Medpor implant has several advantages but its use is limited because it is radiolucent in both direct radiography and conventional computed tomography, causing serious problems with visualization.Methods In this study, a new technique for visualizing Medpor implants was evaluated in 10 patients who had undergone facial reconstruction using the material. Continuous volume scans were made using a 16-channel tomographic scanner and 3D reconstruction software was used to create surface renderings. The threshold values for surface renderings of the implant ranged from -70 HU to -20 HU, with bone as the default.Results The shape of the implants and the spatial relationship between bone and implant could both be displayed.Conclusion Surface rendering can allow successful visualization of Medpor implants in the body.

  2. RenderMan design principles

    Science.gov (United States)

    Apodaca, Tony; Porter, Tom

    1989-01-01

    The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.

  3. 基于时空一致性的非结构化网格时变流场高效体绘制方法%High-Efficiency Volume Rendering of Unstructured-Grid Time-Varying Flows Using Temporal and Spatial Coherence

    Institute of Scientific and Technical Information of China (English)

    马千里; 刘涛; 王攀; 刘瑜; 李思昆

    2011-01-01

    The temporal and spatial coherence which is an important characteristic of unsteady flows plays an essential role in visualizing time-varying fields. This paper presents an approach for high- efficiency volume rendering of unstructured time-varying flows using the temporal and spatial coherence on the framework of the hardware-based ray casting algorithm (HRC). Firstly, a method is provided to analyze the temporal coherence of both the cell and the vertex data on unstructured grids. Then the cell and the vertex data temporal tables are built to achieve a lower time cost during rendering. Secondly, a novel texture structure is designed to separate the vertex data from the cell data, and a smart gradient matrix is used to reduce the pressure of GPU memory. The scheme of data management can effectively avoid rendering stalls and lead to a compact and efficient storage. The experiments demonstrate that our approach not only gains a much higher efficiency than the existing method, but also achieves a lower space cost, allowing rendering time-varying data on a larger mesh scale.%时空一致性是时变流场的重要性质,也是加速时变数据可视化算法的关键.以硬件加速的光线投射算法(HRC)为框架,设计并实现了一种基于时空一致性的非结构化网格时变流场高效体绘制方法.首先提出一种分析非结构化网格单元和顶点数据时间一致性的方法,分别建立单元和顶点数据时间表,以降低绘制过程中的计算开销;然后设计一种单元和顶点数据相分离的GPU纹理结构,并采用一种小巧的单元梯度矩阵来降低显存开销;同时,设计了一种合理的数据调度策略,既能有效地避免绘制停顿,又使显存纹理结构更为紧致、高效.实验结果表明,该方法不仅明显地提高了绘制效率,而且具有更优显存空间利用率,能实现更大网格规模的非结构化网格时变流场数据体绘制.

  4. 基于虚拟化硬件3D图形加速的渲染云框架%A Rendering Cloud Frame Based on 3D-Graphics-Accelerating Technique for Virtualization

    Institute of Scientific and Technical Information of China (English)

    王总辉; 史梳酥; 陈文智

    2012-01-01

    Rendering cloud is one specific part of cloud computing. At the same time, as a typical example of the trend which extends compute-intensive applications to cloud, it has a bright future. The main works that are directly related to it now are classical rendering clusters and Nvidia' s reality server platform. However, the former could not support virtualization, which is one of the bases of cloud computing, and the latter puts limitation on the hardware that a rendering cloud could use, plus it could not support different GPU to work together. This paper has an analysis on 3D graphics accelerating technique for virtualization, such as VMGL, VMware, Xen and VirtualBox. Then it compares the practicability of expanding 3D graphics accelerating solutions to rendering cloud. After that, the paper proposes a rendering cluster which is based on VMGL. At last, it has a further step on the rendering cluster and finally comes up with a flexible rendering cloud frame which is based on virtualization and can support different GPU to work together.%渲染云作为云计算的一个特定细分,同时作为把对计算能力敏感的应用程序扩展到云计算这一趋势的典型代表,具有广阔的发展前景.当前与渲染云直接相关的工作主要有传统的各种渲染集群以及Nvidia的RealityServer平台.但是前者不支持作为云计算基础的虚拟化技术,后者限制了渲染云平台的硬件,并且不能整合各种不同的图形加速设备使其协同工作.本文首先分析了VMGL、VMware、Xen以及VirtualBox等虚拟机3D图形加速技术,并对用这些技术实现渲染云的可行性进行比较,提出了基于VMGL的渲染集群方案.接着在渲染集群的基础上对渲染云相关技术进行了研究,提出了一个灵活、能够支持不同3D图形加速设备协同工作的、基于虚拟化的渲染云框架.

  5. 多层螺旋CT血管成像容积重建技术在Moyamoya病中的诊断价值%The diagnostic value of multi-slice computed tomographic angiography with volume rendering for Moyamoya disease

    Institute of Scientific and Technical Information of China (English)

    林伯法; 奚玉平; 曹国全

    2008-01-01

    Objective To evaluate the diagnostic value of multi-slice thrce-dimensional computed tomographic angiography(MS-CTA) with volume rendering(VR) for Moyamoya disease.Methods MS-CTA of 25 patients with Moyamoya disease verified by DSA were restrospectively analyzed.Source images were got by GE Lightspeed pro scanner.VR was adopted to reconstruct 3D images in all cases.Results Of 25 CT precontrast,13,12 cases showed infarction and hemorrhage respectively,while 11 cases had dialated vessels in thalamus-basal ganglia region on CT.Accuracy of stenosis or occlusion of the bifurcation of ICA, proximal portion of the ACA or MCA was 88.0% (22/25) by MS-CTA.MS-CTA overestimated the degree of stenosis,MS-CTA misdiagnosed 3 cases(12.0%)with stenosis to occlusion.MS-CTA showed fewer small Moyamoya vessels than DSA.MS-CTA only demonstrated 6 cases(25.0%)with collateral vessels.Conclusion CT is still the conventional method for detecting secondary lesions to Moyamoya disease.CT and MS-CTA can accurately diagnose Moyamoya disease.%目的 探讨多层螺旋CT血管造影(MS-CTA)容积重建(VR)技术在Moyamoya病中的诊断价值.方法 对经DSA证实的25例Moyamoya患者的MS-CTA影像资料进行回顾性分析,使用GE Lightspeed pro 16层螺旋CT扫描仪获得原始图像,所有病例均采用VR技术对图像进行三维重建.结果 25例CT平扫患者中,脑梗死13例,脑出血12例,其中11例可见丘脑一基底节区有扩张的血管;MS-CTA VR重建显示Moyamoya病颈内动脉(ICA)末端、大脑中动脉(MCA)或大脑前动脉(ACA)近端闭塞或狭窄的准确率为88.0%(22/25).与DSA相比,MS-CTA VR重建高估动脉狭窄程度,将ICA狭窄误诊为闭塞3例(12.0%);在显示Moyamoya血管数目及分支方面,MS-CTA VR重建显示细小分支数目较少;在显示侧支循环方面,MS-CTA VR重建仅显示6例(25.0%).结论 CT平扫仍是发现Moyamoya病继发病变的常规方法,与MS-CTA VR重建相结合可正确诊断Moyamoya病.

  6. Fast polyhedral cell sorting for interactive rendering of unstructured grids

    Energy Technology Data Exchange (ETDEWEB)

    Combra, J; Klosowski, J T; Max, N; Silva, C T; Williams, P L

    1998-10-30

    Direct volume rendering based on projective methods works by projecting, in visibility order, the polyhedral cells of a mesh onto the image plane, and incrementally compositing the cell's color and opacity into the final image. Crucial to this method is the computation of a visibility ordering of the cells. If the mesh is ''well-behaved'' (acyclic and convex), then the MPVO method of Williams provides a very fast sorting algorithm; however, this method only computes an approximate ordering in general datasets, resulting in visual artifacts when rendered. A recent method of Silva et al. removed the assumption that the mesh is convex, by means of a sweep algorithm used in conjunction with the MPVO method; their algorithm is substantially faster than previous exact methods for general meshes. In this paper we propose a new technique, which we call BSP-XMPVO, which is based on a fast and simple way of using binary space partitions on the boundary elements of the mesh to augment the ordering produced by MPVO. Our results are shown to be orders of magnitude better than previous exact methods of sorting cells.

  7. 基于 GPU 的集群渲染管理系统设计与实现%Design and Implementation of Rendering Management System Based on GPU

    Institute of Scientific and Technical Information of China (English)

    刘红健

    2013-01-01

      分析了计算机图形处理器(Graphics Processing Unit)GPU原理及特性,渲染的关键技术、流程,以及当前渲染软件存在的问题,设计了一个基于GUP的集群渲染管理系统框架,并探讨了CU-DA环境下主要模块的实现方法,对于开发新型的集群渲染系统具有一定的指导意义。%This paper designs a framework of a rendering management system based on GPU after analyzing the characteristics of GPU, the key technologies of rendering and the main problems of current rendering software;and discusses the methods of implementing the main modules on CUDA , which will have some guiding significance for developing a new type of cluster rendering system .

  8. 引入相似性度量的GPU实时图形跟踪渲染技术%GPU Real-time Tracking Graphics Rendering Technology Based on Similar Measurement

    Institute of Scientific and Technical Information of China (English)

    钱春花

    2015-01-01

    提出一种基于目标分布场相似性度量的实时图形跟踪渲染算法.使用OpenFlight的建模环境提供GPU实时图形渲染三维图形观察器,得到一个有二维层次的结构图,进行目标分布场设计,结合静态视点图像的运动方程,通过对图像自然分层,保留原始图像的基本信息,为了在跟踪中使分布场能适应各种复杂场景,需要对原始的分布场进行高斯平滑,通过目标分布场相似性度量,实现GPU实时图形跟踪渲染.仿真结果表明,采用该算法进行实时图形渲染,可以提高渲染跟踪效率,搜索时间短,误差率较低,提高了图形的渲染真实感.%This paper proposed a similar target field real-time graphics rendering algorithm based on the tracking measure-ment. Modeling environment using OpenFlight GPU real-time rendering of 3D graphics viewer, a two-dimensional layered structure, the target distribution design, combined with the equations of motion of a static view images, the image of natural stratification, retains the basic information of the original image, in order to make the field can adapt to a variety of complex scene in the trace, Gauss needs to smooth the original distribution field, the distribution of target similarity measurement, real-time graphics rendering GPU tracking. The simulation results show that, by using the algorithm of real-time graphics rendering, can improve the efficiency of rendering tracking, search time is short, low error rate, improve the graphics render-ing.

  9. Partition of biocides between water and inorganic phases of renders with organic binder

    DEFF Research Database (Denmark)

    Urbanczyk, Michal M; Bollmann, Ulla E; Bester, Kai

    2016-01-01

    , the partition of biocides between water and inorganic phases of render with organic binder was investigated. The partition constants of carbendazim, diuron, iodocarb, isoproturon, cybutryn (irgarol), octylisothiazolinone, terbutryn, and tebuconazole towards minerals typically used in renders, e.g. barite...... with render-water distribution constants of two artificially made renders showed that the distribution constants can be estimated based on partition constants of compounds for individual components of the render....

  10. Control volume based hydrocephalus research; analysis of human data

    Science.gov (United States)

    Cohen, Benjamin; Wei, Timothy; Voorhees, Abram; Madsen, Joseph; Anor, Tomer

    2010-11-01

    Hydrocephalus is a neuropathophysiological disorder primarily diagnosed by increased cerebrospinal fluid volume and pressure within the brain. To date, utilization of clinical measurements have been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Pressure volume models and electric circuit analogs enforce volume conservation principles in terms of pressure. Control volume analysis, through the integral mass and momentum conservation equations, ensures that pressure and volume are accounted for using first principles fluid physics. This approach is able to directly incorporate the diverse measurements obtained by clinicians into a simple, direct and robust mechanics based framework. Clinical data obtained for analysis are discussed along with data processing techniques used to extract terms in the conservation equation. Control volume analysis provides a non-invasive, physics-based approach to extracting pressure information from magnetic resonance velocity data that cannot be measured directly by pressure instrumentation.

  11. 基于GPU的实时素描风格渲染算法%Real-time sketch style rendering algorithm based on GPU

    Institute of Scientific and Technical Information of China (English)

    高山晓; 吴献

    2015-01-01

    To simulate lines and shades in sketch style better, this paper presented an improved technique for rendering 3D meshes in the pencil drawing style. The algorithm divided the rendering process into three processes - contour drawing, texture drawing and tone adjustment. For contour drawing, this paper used multi-sampling to detect object contours and proposed chi-square distribution and trigonometric function to imitate the pencil line drawing. For texture drawing, this paper used the tangent and binormal of the model to generate integration directions. Then a pencil drawing texture was generated by using Liner Integral Convolution ( LIC) technology. As the result of the blend of multiple rendering may lead the tone to gray, this paper added the tone drawing before the final output. Through the Newton interpolation method to calculate the output curve, the final color distribution results were more like pencil drawing style. Experiments show that the work is more efficient and has a better performance. This algorithm can better simulate the hand-painted style lines and be applied to video game rendering.%为了更好地模拟素描画中线条的轻重变化和明暗变化,提出了一种改进的素描风格渲染算法。将渲染过程分为轮廓线绘制、纹理绘制和色调调整三个部分;在轮廓线染绘制过程中采用多重采样来辨识轮廓线,利用卡方分布和紊乱场来模拟生成素描化线条绘制;在纹理渲染绘制中,利用模型的切线和副法线生成多个方向场,通过对白噪声纹理的线性卷积( LIC)生成素描化纹理;通过牛顿插值法重新计算了输出曲线解决多重渲染混合后绘制效果偏灰问题。实验结果显示改进后素描风格渲染算法具有更高的渲染效率和更好的渲染效果。算法能够较好地实现素描风格的渲染效果,并可广泛适用于影视游戏开发中。

  12. 基于CUDA的体数据可视化工具%CUDA-Based Volume Data Visualization Tool

    Institute of Scientific and Technical Information of China (English)

    叶良; 单桂华; 刘俊; 迟学斌

    2011-01-01

    The fast development of the Graphics Processing Unit's programmability and parallel computing power provides new solutions for visualization technology. Using ray-casting, a CUDA based interactive volume rendering tool is realized. Several rendering effects have been implemented, including alpha blending, iso-surface rendering, maximum intensity projection and X-ray projection. In order to improve alpha blending and iso-surface rendering effect, a per-pixel based Phong Lighting Model is added in. The experimental results show that the tool can make use of GPU's parallel computing capability and render high quality image. It's interactive and extensible.%GPU的可编程性和并行计算能力的飞速发展为可视化提供了新的解决途径.基于支持CUDA的GPU,利用光线投射,实现了一个可以对体数据进行交互式可视化的工具,包括阻光度融合、等值面绘制、MIP绘制以及X光线投影等多种绘制效果,并加入了Phong光照模型以提高阻光度融合和等值面绘制的图像质最.实验表明,该工具较好的利用了GPU的并行计算能力,能够绘制出较高质量的图像,并具有良好的可交互性和可扩展性.

  13. Anti-Aliased Rendering of Water Surface

    Institute of Scientific and Technical Information of China (English)

    Xue-Ying Qin; Eihachiro Nakamae; Wei Hua; Yasuo Nagai; Qun-Sheng Peng

    2004-01-01

    Water surface is one of the most important components of landscape scenes. When rendering spacious far from the viewpoint. This is because water surface consists of stochastic water waves which are usually modeled by periodic bump mapping. The incident rays on the water surface are actually scattered by the bumped waves,pattern, we estimate this solid angle of reflected rays and trace these rays. An image-based accelerating method is adopted so that the contribution of each reflected ray can be quickly obtained without elaborate intersection calculation. We also demonstrate anti-aliased shadows of sunlight and skylight on the water surface. Both the rendered images and animations show excellent effects on the water surface of a reservoir.

  14. 基于BRDF和GPU并行计算的全局光照实时渲染%Global Illumination Real-Time Rendering Based on BRDF and GPU Parallel Computing

    Institute of Scientific and Technical Information of China (English)

    王芳; 秦磊华

    2016-01-01

    While raytracing, the screen image pixel is decomposed into the combination of radiance and texture of the patches, created as scene objects intersect with the casting ray. The radiance of each patch is calculated at the linear combination of the bases of bi-directional reflectance distribution function (BRDF), and able to be accelerated by graphics processing unit (GPU) parallel rendering. This paper presents a global illumination rendering algorithm based on BRDF and GPU parallel computation. With GPU parallel acceleration, through improving the efficiency of rendering, the algorithm achieves global illumination real-time rendering of the scene including dynamic interactive material. The key research: object surface’s multiple reflection characteristic is represented by linear combination of the basis of BRDF, so transforming the nonlinear problem to a linear one, thus improve the rendering efficiency. With GPU parallel acceleration, the algorithm calculates the object surface’s radiation energy and texture mapping and their linear combination, further improving the efficiency of rendering to meet the requirement of real-time.%基于光线追踪,将屏幕图像像素分解为投射光线与场景对象交点面片辐射亮度和纹理贴图的合成,每个面片的辐射亮度计算基于双向反射分布函数(BRDF)基的线性组合,并通过图形处理器(GPU)处理核心并行绘制进行加速,最后与并行计算的纹理映射结果进行合成。提出了一种基于BRDF和GPU 并行计算的全局光照实时渲染算法,利用GPU并行加速,在提高绘制效率的前提下,实现动态交互材质的全局光照实时渲染。重点研究:对象表面对光线的多次反射用BRDF基的线性组合来表示,将非线性问题转换为线性问题,从而提高绘制效率;利用GPU并行加速,分别计算对象表面光辐射能量和纹理映射及其线性组合,进一步提高计算效率满足实时绘制需求。

  15. A Sort-Last Rendering System over an Optical Backplane

    Directory of Open Access Journals (Sweden)

    Yasuhiro Kirihata

    2005-06-01

    Full Text Available Sort-Last is a computer graphics technique for rendering extremely large data sets on clusters of computers. Sort-Last works by dividing the data set into even-sized chunks for parallel rendering and then composing the images to form the final result. Since sort-last rendering requires the movement of large amounts of image data among cluster nodes, the network interconnecting the nodes becomes a major bottleneck. In this paper, we describe a sort-last rendering system implemented on a cluster of computers whose nodes are connected by an all-optical switch. The rendering system introduces the notion of the Photonic Computing Engine, a computing system built dynamically by using the optical switch to create dedicated network connections among cluster nodes. The sort-last volume rendering algorithm was implemented on the Photonic Computing Engine, and its performance is evaluated. Prelimi- nary experiments show that performance is affected by the image composition time and average payload size. In an attempt to stabilize the performance of the system, we have designed a flow control mechanism that uses feedback messages to dynamically adjust the data flow rate within the computing engine.

  16. Web based brain volume calculation for magnetic resonance images.

    Science.gov (United States)

    Karsch, Kevin; Grinstead, Brian; He, Qing; Duan, Ye

    2008-01-01

    Brain volume calculations are crucial in modern medical research, especially in the study of neurodevelopmental disorders. In this paper, we present an algorithm for calculating two classifications of brain volume, total brain volume (TBV) and intracranial volume (ICV). Our algorithm takes MRI data as input, performs several preprocessing and intermediate steps, and then returns each of the two calculated volumes. To simplify this process and make our algorithm publicly accessible to anyone, we have created a web-based interface that allows users to upload their own MRI data and calculate the TBV and ICV for the given data. This interface provides a simple and efficient method for calculating these two classifications of brain volume, and it also removes the need for the user to download or install any applications.

  17. Hybrid fur rendering: combining volumetric fur with explicit hair strands

    DEFF Research Database (Denmark)

    Andersen, Tobias Grønbeck; Falster, Viggo; Frisvad, Jeppe Revall

    2016-01-01

    Hair is typically modeled and rendered using either explicitly defined hair strand geometry or a volume texture of hair densities. Taken each on their own, these two hair representations have difficulties in the case of animal fur as it consists of very dense and thin undercoat hairs in combination...... with coarse guard hairs. Explicit hair strand geometry is not well-suited for the undercoat hairs, while volume textures are not well-suited for the guard hairs. To efficiently model and render both guard hairs and undercoat hairs, we present a hybrid technique that combines rasterization of explicitly...... defined guard hairs with ray marching of a prismatic shell volume with dynamic resolution. The latter is the key to practical combination of the two techniques, and it also enables a high degree of detail in the undercoat. We demonstrate that our hybrid technique creates a more detailed and soft fur...

  18. Hybrid fur rendering: combining volumetric fur with explicit hair strands

    DEFF Research Database (Denmark)

    Andersen, Tobias Grønbeck; Falster, Viggo; Frisvad, Jeppe Revall

    2016-01-01

    Hair is typically modeled and rendered using either explicitly defined hair strand geometry or a volume texture of hair densities. Taken each on their own, these two hair representations have difficulties in the case of animal fur as it consists of very dense and thin undercoat hairs in combination...... with coarse guard hairs. Explicit hair strand geometry is not well-suited for the undercoat hairs, while volume textures are not well-suited for the guard hairs. To efficiently model and render both guard hairs and undercoat hairs, we present a hybrid technique that combines rasterization of explicitly...... defined guard hairs with ray marching of a prismatic shell volume with dynamic resolution. The latter is the key to practical combination of the two techniques, and it also enables a high degree of detail in the undercoat. We demonstrate that our hybrid technique creates a more detailed and soft fur...

  19. Efficient rendering of digitally reconstructed radiographs on heterogeneous computing architectures using central slice theorem.

    Science.gov (United States)

    Abdellah, Marwan; Abdallah, Mohamed; Alzanati, Mohamed; Eldeib, Ayman

    2016-08-01

    Digitally reconstructed radiographs (DRRs) play a significant role in modern clinical radiation therapy. They are used to verify patient alignments during image guided therapies with 2D-3D image registration. The generation of DRRs can be implemented intuitively in O(N3) relying on direct volume rendering (DVR) methods, such as ray marching. This complexity imposes certain limitations on the rendering performance if high quality DRR images are needed. Those DRRs can be alternatively generated in the k-space using the central slice theorem in O(N2logN). Several rendering pipelines have been designed to create the DRRs in the k-space, but they were either limited to specific vendor or entail particular software requirements. We present a high performance implementation of a k-space-based DRR generation pipeline that is executable on various heterogeneous computing architectures using OpenCL. Our implementation generates a DRR for a 5123 CT volume in 6, 2.7 and 0.68 milli-seconds on a commodity CPU, mid-range and high-end GPUs respectively.

  20. Wavelet subdivision methods gems for rendering curves and surfaces

    CERN Document Server

    Chui, Charles

    2010-01-01

    OVERVIEW Curve representation and drawing Free-form parametric curves From subdivision to basis functions Wavelet subdivision and editing Surface subdivision BASIS FUNCTIONS FOR CURVE REPRESENTATION Refinability and scaling functions Generation of smooth basis functions Cardinal B-splines Stable bases for integer-shift spaces Splines and polynomial reproduction CURVE SUBDIVISION SCHEMES Subdivision matrices and stencils B-spline subdivision schemes Closed curve rendering Open curve rendering BASIS FUNCTIONS GENERATED BY SUBDIVISION MATRICES Subdivision operators The up-sampling convolution ope

  1. Research on Canal System Operation Based on Controlled Volume Method

    Directory of Open Access Journals (Sweden)

    Zhiliang Ding

    2009-10-01

    Full Text Available An operating simulation mode based on storage volume control method for multireach canal system in series was established. In allusion to the deficiency of existing controlled volume algorithm, the improved algorithm was proposed, that is the controlled volume algorithm of whole canal pools, the simulation results indicate that the storage volume and water level of each canal pool can be accurately controlled after the improved algorithm was adopted. However, for some typical discharge demand change operating conditions of canal, if the controlled volume algorithm of whole canal pool is still adopted, then it certainly will cause some unnecessary regulation, and consequently increases the disturbed canal reaches. Therefor, the idea of controlled volume operation method of continuous canal pools was proposed, and its algorithm was designed. Through simulation to practical project, the results indicate that the new controlled volume algorithm proposed for typical operating condition can comparatively obviously reduce the number of regulated check gates and disturbed canal pools for some typical discharge demand change operating conditions of canal, thus the control efficiency of canal system was improved. The controlled volume method of operation is specially suitable for large-scale water delivery canal system which possesses complex operation requirements.

  2. CFD非结构化网格格心格式数据高质量体绘制方法%High-Quality Volume Rendering of Unstructured-Grid Cell-Centered Data in CFD

    Institute of Scientific and Technical Information of China (English)

    马千里; 李思昆; 白晓征; 程志全; 徐华勋

    2011-01-01

    3D unstructured-grid cell-centered data are commonly produced by the recent numerical simulations. For visualization, existing approaches usually pre-extrapolate cell-centered data into cell-vertexed data, which depress the rendering accuracy and the image quality. This paper proposes to do direct sampling for these cell-centered data avoiding extrapolation on the framework of multi-pass raycasting. During sampling, the whole computing work is done using the original data leading to a high rendering accuracy. The field at a sample is reconstructed by the cell-centered data and the cell-gradient. A cell-gradient is well estimated by the Green-Gauss theorem with the aid of face-flux construction. Considering the relationship among the flow variables, this paper constructs the face-flux by the Roe-average method using the two cell-centered data values of the face-adjacencies. The analysis and experiments demonstrate that the approach gains high-accuracy sampling and a high-quality image leading to powerful insight into the characteristic of the flow fields.%3D非结构化网格格心格式数据是近年流场数值模拟结果的常见形式,目前的可视化方法无法直接绘制此类数据,通常采用外推技术将其转换为格点格式数据后再进行绘制.导致数据精度损失,严重影响绘制质量.在多遍光线投射算法框架下,设计一种非结构化网格格心格式数据直接采样计算方法(避免外推),使采样过程中的所有计算任务基于原始数据完成,以提高采样计算精度.具体为:设计了基于胞心值和单元梯度的采样点流场数据重构方法:采用基于面通量的格林公式计算单元梯度;考虑流场中物理量的相互关联,首次在流场可视化中引入Roe平均方法,用相邻单元胞心值构造面通量.分析和实验表明,该方法能明显提高采样计算精度,产生高质量的体绘制图像,使用户更准确地洞察和分析流场特性.

  3. Collision and containment detection between biomechanically based eye muscle volumes.

    Science.gov (United States)

    Santana Sosa, Graciela; Kaltofen, Thomas

    2011-01-01

    Collision and containment detection between three-dimensional objects is a common requirement in simulation systems. However, few solutions exist when exclusively working with deformable bodies. In our ophthalmologic diagnostic software system, the extraocular eye muscles are represented by surface models, which have been reconstructed from magnetic resonance images. Those models are projected onto the muscle paths calculated by the system's biomechanical model. Due to this projection collisions occur. For their detection, three approaches have been implemented, which we present in this paper: one based on image-space techniques using OpenGL, one based on the Bullet physics library and one using an optimized space-array data structure together with software rendering. Finally, an outlook on a possible response to the detected collisions is given.

  4. Technology transfer package on seismic base isolation - Volume III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

  5. Accelerating Monte Carlo Renderers by Ray Histogram Fusion

    Directory of Open Access Journals (Sweden)

    Mauricio Delbracio

    2015-03-01

    Full Text Available This paper details the recently introduced Ray Histogram Fusion (RHF filter for accelerating Monte Carlo renderers [M. Delbracio et al., Boosting Monte Carlo Rendering by Ray Histogram Fusion, ACM Transactions on Graphics, 33 (2014]. In this filter, each pixel in the image is characterized by the colors of the rays that reach its surface. Pixels are compared using a statistical distance on the associated ray color distributions. Based on this distance, it decides whether two pixels can share their rays or not. The RHF filter is consistent: as the number of samples increases, more evidence is required to average two pixels. The algorithm provides a significant gain in PSNR, or equivalently accelerates the rendering process by using many fewer Monte Carlo samples without observable bias. Since the RHF filter depends only on the Monte Carlo samples color values, it can be naturally combined with all rendering effects.

  6. 基于球面调和函数的柔性体力触觉建模研究%Research of soft tissue haptic rendering based on spherical harmonic representation

    Institute of Scientific and Technical Information of China (English)

    方艳红; 吴斌; 杨正宜

    2011-01-01

    为了提高虚拟柔性体力触觉交互中物体形变与力的准确描述及计算效率,提出一种基于球面调和函数表达的柔性体力触觉建模方法.利用球面调和函数的多尺度性进行物体碰撞检测实现,在变形体的密度、杨氏模量、泊松比等参数已知的情况下,根据在力作用下的物体形变使用简化后的波动方程计算变形量和反馈力生成.实验结果表明,采用该方法可以准确描述柔性体的形变过程,其所需的计算成本在可接受的范围之内,可被应用到各种力交互辅助的医学应用中.%To improve the accuracy of flexible deformation and computational efficiency in haptic rendering, a novel method of soft tissue haptic rendering based on spherical harmonics (SH) representation is proposed. Collision detection is completed with the level of detail of SH. Flexible deformation and force feedback are calculated by simplified deformation wave equation under the condition of changes in the form of density, young modulus and poisson' s ratio known. Experimental results demonstrate that the computational cost required in computing the updates and the force feedback is significantly less than that encountered in, and accurate flexible deformation is represented. More generally, haptic rendering provides a platform for users to touch virtual objects in simulated environments for the purpose of medical training, virtual diagnosis, treatment planning, surgery and protocol simulation.

  7. Compression and Multi-Resolution Rendering of Sparse Voxels Based on Wavelet%基于小波的稀疏体素数据压缩与多分辨实时绘制

    Institute of Scientific and Technical Information of China (English)

    薛俊杰; 赵罡; 肖文磊

    2016-01-01

    为减少多分辨稀疏体素的存储空间并提高其绘制效率,提出一种基于小波的稀疏体素数据压缩与实时绘制算法。在稀疏体素生成阶段,基于小波的多分辨和稀疏体素的稀疏特性,利用多级三维 Haar 小波变换将高分辨率的稀疏体素转换为低分辨稀疏体素和多级细节信息,并采用紧凑的编码方式对小波系数进行编码,实现对多层级稀疏体素的数据压缩;在交互绘制阶段,结合稀疏体素八叉树光线投射算法,以低分辨体素节点为交互过程中的着色计算图元,交互过程终止后通过三维 Harr 小波逆变换逐级添加细节信息还原得到高分辨体素,进而实现多分辨绘制;最后充分利用多核 CPU 并行加速多分辨光线投射算法。对不同复杂度的面片模型进行压缩与绘制,实例计算表明,该算法高效且易于实现。%To reduce the storage size and improve the rendering efficiency of multi-resolution sparse voxels, a wavelet based compression and rendering algorithm is proposed. At the building stage of sparse voxels, according to the multi-resolution characteristic of wavelet and the sparsity of voxel structure, high-resolution sparse voxels were transformed into low-resolution sparse voxels and multi-level detail information by employing 3D Haar wavelet transform, and the wavelet coefficients were encoded with a compact encoding method. At the interactive rendering phase, in order to implement multi-resolution rendering, the low-resolution voxels were selected as shading primitives during the interaction. After the interaction process, the details were added to the coarse-grained voxels level by level through the inverse transform of 3D Haar wavelet to restore high-resolution voxels. Lastly, the rendering algorithm was accelerated in parallel by utilizing multi-core CPU. The experimental results show that the proposed algorithm provides an efficient and achievable way to

  8. 基于视点预测的大规模地形的实时渲染%Real Time Rendering of Large Scale Terrain Based on Viewport Prediction

    Institute of Scientific and Technical Information of China (English)

    王响; 雷小永; 戴树岭

    2013-01-01

    实时渲染中帧速率往往与地形规模呈反比,尤其是大规模地形的渲染,在单PC下很难达到实时.对此提出了一种基于视点的可见她形预测算法,动态加载地形数据,降低了图形硬件需要处理的数据量,有效提高了大规模地形的渲染速率.同时,针对大范围地形集中加载引起的画面停滞现象,采用外推算法对视点的运动进行预测,对即将进入视锥内的地形数据进行提前加载,实验结果表明,随着地形规模的增大,该方法的渲染速率变化小,实时性能良好,场景画面平滑流畅,可用于虚拟现实或仿真中的地形构建、实时生成等相关领域.%Frame rates are inversely proportional to the scale of terrain in real-time rendering.So large scale terrain rendering usually has very low frame rates and not steady when viewport moves.In order to improve the performance of very large scale terrain rendering,a viewport based prediction method was proposed.The total terrain data was partitioned into many small blocks and only visible parts were loaded.In addition,extrapolation algorithm was used to solve stuttering by loading blocks which would be visible in advance.The experimental results show that frame rates keep high when terrain scale increases and the rendering is steady.It can be used in virtual reality and other simulation systems.

  9. 虚拟装配中基于导纳控制的力觉渲染技术%Haptic Rendering Technology Based on Admittance Control in Virtual Assembly

    Institute of Scientific and Technical Information of China (English)

    史建成; 刘检华; 宁汝新; 侯伟伟

    2012-01-01

    In conventional haptic feedback technologies, impedance control is used as the main control mode, which can hardly meet the requirements in virtual assembly. Admittance control mode is more suitable for haptic rendering. The framework and algorithms of the haptic rendering based on admittance control mode are presented. First, dynamics model used for admittance control is given, and haptic rendering under the states of collision and constraint are discussed. Second, to solve the problem of small clearance assembly, a method of haptic rendering combining physical constraints with geometric constraint is presented. Third, the method of quadratic Lagrangian interpolation is adopted, aiming at solving the problem of asynchrony between haptic feedback loop and physical computing loop to maintain the stability of the haptic device. The algorithms are implemented and the haptic device is connected and utilized in the virtual assembly process planning system (VAPP). The results show that the algorithms can meet the need of haptic interaction in the virtual assembly system.%传统的力触觉渲染多采用阻抗控制,不能很好地满足虚拟装配的应用要求,相比之下导纳控制模式更适用这一领域.为此提出一种基于导纳控制的双线程力觉渲染构架,并给出相应的力觉渲染算法.首先建立用于导纳控制的动力学模型,并讨论了碰撞和约束这2个状态下的力觉渲染;为了使用力觉交互接口进行虚拟装配中的小间隙装配,提出物理约束与几何约束结合的力觉渲染方法;最后针对物理计算和力反馈循环2个线程刷新频率不匹配的问题,利用二次拉格朗日多项式进行数值插值,实现了力觉交互接口的平稳输出.通过力反馈设备与自主开发的虚拟装配原型系统VAPP的连接与应用,验证了所提出的算法满足虚拟装配系统中力觉交互的应用要求.

  10. Optimization-based mesh correction with volume and convexity constraints

    Science.gov (United States)

    D'Elia, Marta; Ridzal, Denis; Peterson, Kara J.; Bochev, Pavel; Shashkov, Mikhail

    2016-05-01

    We consider the problem of finding a mesh such that 1) it is the closest, with respect to a suitable metric, to a given source mesh having the same connectivity, and 2) the volumes of its cells match a set of prescribed positive values that are not necessarily equal to the cell volumes in the source mesh. This volume correction problem arises in important simulation contexts, such as satisfying a discrete geometric conservation law and solving transport equations by incremental remapping or similar semi-Lagrangian transport schemes. In this paper we formulate volume correction as a constrained optimization problem in which the distance to the source mesh defines an optimization objective, while the prescribed cell volumes, mesh validity and/or cell convexity specify the constraints. We solve this problem numerically using a sequential quadratic programming (SQP) method whose performance scales with the mesh size. To achieve scalable performance we develop a specialized multigrid-based preconditioner for optimality systems that arise in the application of the SQP method to the volume correction problem. Numerical examples illustrate the importance of volume correction, and showcase the accuracy, robustness and scalability of our approach.

  11. An HTML5-Based Pure Website Solution for Rapidly Viewing and Processing Large-Scale 3D Medical Volume Reconstruction on Mobile Internet.

    Science.gov (United States)

    Qiao, Liang; Chen, Xin; Zhang, Ye; Zhang, Jingna; Wu, Yi; Li, Ying; Mo, Xuemei; Chen, Wei; Xie, Bing; Qiu, Mingguo

    2017-01-01

    This study aimed to propose a pure web-based solution to serve users to access large-scale 3D medical volume anywhere with good user experience and complete details. A novel solution of the Master-Slave interaction mode was proposed, which absorbed advantages of remote volume rendering and surface rendering. On server side, we designed a message-responding mechanism to listen to interactive requests from clients (Slave model) and to guide Master volume rendering. On client side, we used HTML5 to normalize user-interactive behaviors on Slave model and enhance the accuracy of behavior request and user-friendly experience. The results showed that more than four independent tasks (each with a data size of 249.4 MB) could be simultaneously carried out with a 100-KBps client bandwidth (extreme test); the first loading time was <12 s, and the response time of each behavior request for final high quality image remained at approximately 1 s, while the peak value of bandwidth was <50-KBps. Meanwhile, the FPS value for each client was ≥40. This solution could serve the users by rapidly accessing the application via one URL hyperlink without special software and hardware requirement in a diversified network environment and could be easily integrated into other telemedical systems seamlessly.

  12. An HTML5-Based Pure Website Solution for Rapidly Viewing and Processing Large-Scale 3D Medical Volume Reconstruction on Mobile Internet

    Directory of Open Access Journals (Sweden)

    Liang Qiao

    2017-01-01

    Full Text Available This study aimed to propose a pure web-based solution to serve users to access large-scale 3D medical volume anywhere with good user experience and complete details. A novel solution of the Master-Slave interaction mode was proposed, which absorbed advantages of remote volume rendering and surface rendering. On server side, we designed a message-responding mechanism to listen to interactive requests from clients (Slave model and to guide Master volume rendering. On client side, we used HTML5 to normalize user-interactive behaviors on Slave model and enhance the accuracy of behavior request and user-friendly experience. The results showed that more than four independent tasks (each with a data size of 249.4 MB could be simultaneously carried out with a 100-KBps client bandwidth (extreme test; the first loading time was <12 s, and the response time of each behavior request for final high quality image remained at approximately 1 s, while the peak value of bandwidth was <50-KBps. Meanwhile, the FPS value for each client was ≥40. This solution could serve the users by rapidly accessing the application via one URL hyperlink without special software and hardware requirement in a diversified network environment and could be easily integrated into other telemedical systems seamlessly.

  13. SET OPERATOR-BASED METHOD OF DENOISING MEDICAL VOLUME DATA

    Institute of Scientific and Technical Information of China (English)

    程兵; 郑南宁; 袁泽剑

    2002-01-01

    Objective To investigate impulsive noise suppression of medical volume data. Methods The volume data is represented as level sets and a special set operator is defined and applied to filtering it. The small connected components, which are likely to be produced by impulsive noise, are eliminated after the filtering process. A fast algorithm that uses a heap data structure is also designed. Results Compared with traditional linear filters such as a Gaussian filter, this method preserves the fine structure features of the medical volume data while removing noise, and the fast algorithm developed by us reduces memory consumption and improves computing efficiency. The experimental results given illustrate the efficiency of the method and the fast algorithm. Conclusion The set operator-based method shows outstanding denoising properties in our experiment, especially for impulsive noise. The method has a wide variety of applications in the areas of volume visualization and high dimensional data processing.

  14. Building Interstellar's black hole: the gravitational renderer

    OpenAIRE

    James, Oliver; Dieckmann, Sylvan; Pabst, Simon; Roberts, Paul-George H.; Thorne, Kip S.

    2015-01-01

    Interstellar is the first feature film to attempt depicting a black hole as it would actually be seen by somebody nearby. A close collaboration between the production's Scientific Advisor and the Visual Effects team led to the development of a new renderer, DNGR (Double Negative Gravitational Renderer) which uses novel techniques for rendering in curved space-time. Following the completion of the movie, the code was adapted for scientific research, leading to new insights into gravitational l...

  15. On Issues of Precision for Hardware-based Volume Visualization

    Energy Technology Data Exchange (ETDEWEB)

    LaMar, E C

    2003-04-11

    This paper discusses issues with the limited precision of hardware-based volume visualization. We will describe the compositing OVER operator and how fixed-point arithmetic affects it. We propose two techniques to improve the precision of fixed-point compositing and the accuracy of hardware-based volume visualization. The first technique is to perform dithering of color and alpha values. The second technique we call exponent-factoring, and captures significantly more numeric resolution than dithering, but can only produce monochromatic images.

  16. Photon Differential Splatting for Rendering Caustics

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Schjøth, Lars; Erleben, Kenny;

    2014-01-01

    We present a photon splatting technique which reduces noise and blur in the rendering of caustics. Blurring of illumination edges is an inherent problem in photon splatting, as each photon is unaware of its neighbours when being splatted. This means that the splat size is usually based...... on heuristics rather than knowledge of the local flux density. We use photon differentials to determine the size and shape of the splats such that we achieve adaptive anisotropic flux density estimation in photon splatting. As compared to previous work that uses photon differentials, we present the first method...... where no photons or beams or differentials need to be stored in a map. We also present improvements in the theory of photon differentials, which give more accurate results and a faster implementation. Our technique has good potential for GPU acceleration, and we limit the number of parameters requiring...

  17. Method of Plane Landscape Optimization Reconstruction Based on 3D Texture Rendering%基于3D纹理渲染的平面景观优化重构方法

    Institute of Scientific and Technical Information of China (English)

    季岚

    2016-01-01

    Traditional graphic monochrome or pseudo color landscape reconstruction method is often adopted to rendering, the flat landscape design is not very realistic, visual effect is unsatisfactory. Therefore, based on 3 d texture rendering method of plane landscape optimization reconstruction. To show the position of the coordinate relationship between different spatial domain, define the coordinate matrix, based on the characteristics of the 3 d texture establishing principle of collage, accordingly in 3 d texture design and landscape design, build the mapping relationship between 3 d texture mapping patterns on the flat landscape plan, realize the flat landscape rendering 3 d texture. The experimental results show that the improved algorithm for optimization of planar landscape reconstruction, can strengthen the surface of the fitting surface detail characteristics of landscape, improve the flat landscape sense of reality and texture, effect is satisfactory.%传统的平面景观重构方法往往采用单色或者伪彩色进行渲染,得到的平面景观设计图的真实感不强,视觉效果不尽人意。为此,提出基于3D纹理渲染的平面景观优化重构方法。为表达不同空间域之间的位置坐标关系,定义坐标矩阵,依据3D纹理的特点建立拼贴原理,据此在3D纹理图案和平面景观设计图的顶点之间构建映射关系,将3D纹理图案映射到平面景观设计图上,实现平面景观的3D纹理渲染。实验结果表明,采用改进算法进行平面景观的优化重构,可以拟合增强平面景观的表面细节特征,提高平面景观的真实感与质感,效果令人满意。

  18. Moisture movements in render on brick wall

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Munch, Thomas Astrup; Thorsen, Peter Schjørmann

    2003-01-01

    A three-layer render on brick wall used for building facades is studied in the laboratory. The vertical render surface is held in contact with water for 24 hours simulating driving rain while it is measured with non-destructive X-ray equipment every hour in order to follow the moisture front...... through the render and into the brick. The test specimen is placed between the source and the detector. The test specimens are all scanned before they are exposed to water. In that way the loss of counts from the dry scan to the wet scan qualitatively shows the presence of water. The results show nearly...... no penetration of water through the render and into the brick, and the results are independent of the start condition of the test specimens. Also drying experiments are performed. The results show a small difference in the rate of drying, in favour of the bricks without render....

  19. Improving color rendering of Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} white light-emitting diodes based on dual-blue-emitting active layers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xian-Wen; Zhang, Yong; Li, Shu-Ti; Yan, Qi-Rong; Zheng, Shu-Wen; He, Miao; Fan, Guang-Han [Institute of Optoelectronic Materials and Technology, South China Normal University, Tianhe District, Guangzhou 510631 (China)

    2011-08-15

    An InGaN/GaN blue-violet light-emitting diode (LED) structure and an InGaN/GaN blue LED structure were grown sequentially on the same sapphire substrate by metal-organic chemical vapor deposition (MOCVD). At the low injection current, the intensity ratio of blue-violet light to blue light was almost constant, while the blue light intensity increased gradually with increasing injection current when the latter was more than 40 mA. High color rendering has been realized for a Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} phosphor-converted white LED based on dual-blue-emitting active layers relative to a single blue-emitting active layer at the same injection current. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. VITRAIL: Acquisition, Modeling, and Rendering of Stained Glass.

    Science.gov (United States)

    Thanikachalam, Niranjan; Baboulaz, Loic; Prandoni, Paolo; Trumpler, Stefan; Wolf, Sophie; Vetterli, Martin

    2016-10-01

    Stained glass windows are designed to reveal their powerful artistry under diverse and time-varying lighting conditions; virtual relighting of stained glass, therefore, represents an exceptional tool for the appreciation of this age old art form. However, as opposed to most other artifacts, stained glass windows are extremely difficult if not impossible to analyze using controlled illumination because of their size and position. In this paper, we present novel methods built upon image based priors to perform virtual relighting of stained glass artwork by acquiring the actual light transport properties of a given artifact. In a preprocessing step, we build a material-dependent dictionary for light transport by studying the scattering properties of glass samples in a laboratory setup. We can now use the dictionary to recover a light transport matrix in two ways: under controlled illuminations the dictionary constitutes a sparsifying basis for a compressive sensing acquisition, while in the case of uncontrolled illuminations the dictionary is used to perform sparse regularization. The proposed basis preserves volume impurities and we show that the retrieved light transport matrix is heterogeneous, as in the case of real world objects. We present the rendering results of several stained glass artifacts, including the Rose Window of the Cathedral of Lausanne, digitized using the presented methods.

  1. Geometric Deformations Based on 3D Volume Morphing

    Institute of Scientific and Technical Information of China (English)

    JIN Xiaogang; WAN Huagen; PENG Qunsheng

    2001-01-01

    This paper presents a new geometric deformation method based on 3D volume morphing by using a new concept called directional polar coordinate. The user specifies the source control object and the destination control object which act as the embedded spaces.The source and the destination control objects determine a 3D volume morphing which maps the space enclosed in the source control object to that of the destination control object. By embedding the object to be deformed into the source control object, the 3D volume morphing determines the deformed object automatically without the tiring moving of control points.Experiments show that this deformation model is efficient and intuitive, and it can achieve some deformation effects which are difficult to achieve for traditional methods.

  2. A consensus-based dynamics for market volumes

    Science.gov (United States)

    Sabatelli, Lorenzo; Richmond, Peter

    2004-12-01

    We develop a model of trading orders based on opinion dynamics. The agents may be thought as the share holders of a major mutual fund rather than as direct traders. The balance between their buy and sell orders determines the size of the fund order (volume) and has an impact on prices and indexes. We assume agents interact simultaneously to each other through a Sznajd-like interaction. Their degree of connection is determined by the probability of changing opinion independently of what their neighbours are doing. We assume that such a probability may change randomly, after each transaction, of an amount proportional to the relative difference between the volatility then measured and a benchmark that we assume to be an exponential moving average of the past volume values. We show how this simple model is compatible with some of the main statistical features observed for the asset volumes in financial markets.

  3. Real-Time Rendering of Teeth with No Preprocessing

    DEFF Research Database (Denmark)

    Larsen, Christian Thode; Frisvad, Jeppe Revall; Jensen, Peter Dahl Ejby

    2012-01-01

    We present a technique for real-time rendering of teeth with no need for computational or artistic preprocessing. Teeth constitute a translucent material consisting of several layers; a highly scattering material (dentine) beneath a semitransparent layer (enamel) with a transparent coating (saliva......). In this study we examine how light interacts with this multilayered structure. In the past, rendering of teeth has mostly been done using image-based texturing or volumetric scans. We work with surface scans and have therefore developed a simple way of estimating layer thicknesses. We use scattering properties...... based on measurements reported in the optics literature, and we compare rendered results qualitatively to images of ceramic teeth created by denturists....

  4. GaN-Based White-Light-Emitting Diodes with Low Color Temperature and High Color Rendering Index%GaN基低色温高显色白光LED

    Institute of Scientific and Technical Information of China (English)

    王峰; 黄小辉; 王怀兵; 刘建平; 范亚明; 祝运芝; 金铮

    2011-01-01

    采用440nm短波长InGaN/GaN基蓝光LED芯片激发高效红、绿荧光粉制得高显色性白光LFD,研究了不同胶粉配比对LED发光性能的影响,结果表明,A胶、B胶、绿粉、红粉比重在0.5∶0.5∶0.2∶0.03时,在440 m蓝光激发下呈现了有两个谱带组成的发光光谱,分别是峰值为535 nm的特征光谱和643nm的特征光谱,胶粉通过均匀调配后能够有效的进行混光产生低色温白光,实验中最低色温可达3 251K,显色指数高达88.8,这比传统蓝光激发YAG荧光粉制得的白光LED色温更低,显色指数提高了26%.%The luminescence properties of high color rendering white LED depending on the proportions of mixed phosphor powders were investigated by adopting green and red phosphors stimulated by a 440 nm InGaN/GaN based blue LED. The results show that when the proportion of A/B type silica gels and green/red phosphor powders is 0.5: 0.5: 0.2: 0.03, two luminance bands are stimulated and their wavelength peaks are 535 and 643 nm, respectively. The minimum color temperature can reach 3 251 K, while the color rendering is as high as 88.8. Compared with the traditional white LED fabricated by yellow YAG-phosphors-coated high efficiency 460 nm blue LED, the color temperature is lower and the color rendering index can be increased by almost 26%.

  5. 基于动态局部更新体素模型的虚拟加工仿真算法研究%Research on Virtual Machining Simulation Algorithm Based on Dynamic Partial Rendering for Voxel Model

    Institute of Scientific and Technical Information of China (English)

    李妞; 陈成军; 陈韩燕

    2011-01-01

    为提高虚拟加工仿真算法的仿真速度和精度,提出一种新的基于动态局部更新体素模型的虚拟加工仿真算法.该算法利用体素节点间的邻接关系,实现虚拟加工仿真的动态局部更新.算法在初始化阶段建立虚拟毛坯的八叉树结构体素模型,并建立任意体素6-邻接关系遍历算法.在虚拟加工几何仿真阶段,利用刀具和毛坯相对运动的时空一致性,从毛坯上一帧已碰撞体素集向周围扩散依次检测其邻接体素是否与刀具发生碰撞,并根据碰撞情况动态修改已碰撞体素的参数,直到所有邻接体素均未与刀具发生碰撞,从而实现虚拟加工仿真的动态局部更新,提高了算法的速度与精度.最后通过铣削虚拟加工仿真验证本文所提出算法的可行性和有效性.%To improve the speed and accuracy of virtual machining simulation, a new algorithm of dynamic partial rendering for voxel model-based virtual machining simulation is proposed. It uses voxel adjacency relationship between nodes to achieve dynamic partial rendering. In initialization stage, both octree structure voxel model for virtual rough and adjacency traversal algorithm of any voxel are modeled. In stage of virtual machine simulation, the collision detection is conducted from voxels that collided with virtual tool in last frame, and spreads to their adjacent voxels calculated using adjacency traversal algorithm. If some tested voxel is collided with virtual tool, its parameter will be modified dynamically. So dynamic partial rendering in virtual machine simulation is realized. Finally, a simple five-axis milling virtual machining experiments is setted, which shows that the presented algorithm is feasible and effective.

  6. 基于可编程GPU的快速体绘制技术%Fast Volume Rendering Technology Based on Programmable GPU

    Institute of Scientific and Technical Information of China (English)

    张建勋; 刘全利; 陈庄

    2005-01-01

    新一代的图形显示硬件集成了以图形处理器(Graphics Processing Unit,GPU)为核心的可编程顶点着色器和可编程像素着色器,为实现实时体绘制技术提供了硬件加速支持.该文首先分析了可编程GPU的绘制流水线、硬件体系结构和快速绘制原理.最后基于可编程GPU实现了医学体数据的快速最大密度投射体绘制方法.实验表明,采用GPU的可编程像素着色器进行体绘制所需要的时间明显地少与不用GPU的可编程像素着色器进行体绘制所需要的时间.

  7. Lesions of the dorsomedial striatum delay spatial learning and render cue-based navigation inflexible in a water maze task in mice.

    Science.gov (United States)

    Lee, Anni S; André, Jessica M; Pittenger, Christopher

    2014-01-01

    The dorsal striatum is involved in cue-based navigation strategies and in the development of habits. It has been proposed that striatum-dependent cued navigation competes with hippocampus-dependent spatial navigation in some circumstances. We have previously shown that large lesions of the dorsal striatum, as well as impairment of corticostriatal synaptic plasticity in transgenic mice, can enhance spatial learning in a water maze task, presumably by the disruption of competitive interference. However, the dorsal striatum is not a homogeneous structure; both anatomical considerations and experimental studies in various paradigms show that dorsomedial and dorsolateral striatum are functionally distinct, although there is no precise anatomical or neurochemical boundary between them. Here we investigated the effect of restricted excitotoxic lesions of dorsomedial striatum (DMS) on cued and spatial water maze learning. We find that dorsomedial striatal lesions delay spatial learning but permit cued learning. After cued learning, lesioned animals showed inflexible search, resulting in repeated visits to the escape platform-associated cue. These results support a role for the DMS in behavioral flexibility rather than in cue-based navigation.

  8. Summary of Image-Based Pencil Simulation Rendering Technique%基于图像的铅笔画模拟绘制技术综述

    Institute of Scientific and Technical Information of China (English)

    王凌云; 潘齐欣

    2014-01-01

    铅笔画运用画笔在平面上表现出万物的形态、结构、色调、空间、位置、明暗,是造型艺术的基础,是科学、哲学、美学的世界。近年,随着计算机技术及软件技术的进步,铅笔画逐步走上了数字领域。从非真实感铅笔画绘制技术的研究现状出发,根据不同的分类方法分析目前铅笔画模拟绘制技术的优缺点,并对未来的研究方向进行展望。%Pencil drawing uses the brush to show the shape , structure, color , space , location , light and shade on the flat for ev-erything which is the basis of visual arts and the whole of science , philosophy and aesthetics in the world. In recent years, with the development of computer and software technology, Pencil drawing gradually grows into the digital realm. The paper analyzes the advantages and disadvantages from the different classification way and the research status of the NPR which are based on pen-cil drawing, then make a prediction about the future research.

  9. Research on Accelerated Rendering Technique of Global Terrain Based on GPU%基于GPU的全球地形数据加速绘制技术研究

    Institute of Scientific and Technical Information of China (English)

    李浩; 相恒茂; 孙久虎

    2015-01-01

    Through studying the method for making large scale terrain datas in real-time based on graphic processing units,pointing to the characteristics of the batch of rendering of GPU,an improvement method of geometry instancing has been put forward.It can be used to render global grid quickly.The terrain datas are recoded and stored in height maps.Combing with the vertex texture fetch capability in Shader Model 3. 0,and decoded in GPU,the primitive DEM datas can be gained.It will avoid carrying out vertex buffer on CPU.This algorithm can not only reduce the CPU load,but also reach a higher frame rate.%在对基于 GPU大规模地形数据快速绘制方法的研究基础上,针对 GPU的批量绘制的特点,提出了改进的几何体实例化方法,把它用在全球格网的快速绘制上。把地形数据通过重新编码存储在高度图中,再结合 Shader Model 3.0引入的顶点纹理拾取技术,在 GPU中进行解码,得到原始的DEM数据,避免了在CPU上执行顶点缓存的更新。实验证明该算法充分利用了新一代 GPU的特性,降低了CPU的负担,能达到实时绘制的要求。

  10. 3D Rendering - Techniques and Challenges

    Directory of Open Access Journals (Sweden)

    Ekta Walia

    2010-04-01

    Full Text Available Computer generated images and animations are getting more and more common. They are used in many different contexts such as movies,mobiles, medical visualization, architectural visualization and CAD. Advanced ways of describing surface and light source properties are important to ensure that artists are able to create realistic and stylish looking images. Even when using advanced rendering algorithms such as ray tracing, time required for shading may contribute towards a large part of the image creation time. Therefore both performance and flexibility is important in a rendering system. This paper gives a comparative study of various 3D Rendering techniques and their challenges in a complete and systematic manner.

  11. Parallel Implementation of Graphics Rendering and Image Processing Algorithm Based on PAAG%基于PAAG的图形图像算法的并行实现

    Institute of Scientific and Technical Information of China (English)

    孙建; 李涛; 李雪丹

    2015-01-01

    为了解决当前的CMOS技术遇到"功耗墙"和"散热墙"等问题导致的很难通过提高主频来提升芯片性能的问题,文中提出了一种新型多态同构阵列处理器—PAAG(Polymorphic Array Architecture for Graphics).该阵列机在一个芯片上集成了多个处理器,能够通过将各种高性能复杂的算法合理分解映射到该平台上实现并行计算.通过结合使用数据并行、操作并行的计算方法,对固定渲染管线的图形算法以及由国际标准组织Khronos提出的计算视觉标准OpenVX1.0中的Kernel函数图像算法进行了深入分析,并给出了基于这些算法在PAAG上的并行化设计.通过在PAAG硬件平台对应的仿真环境上进行各个算法的并行实现,得到了算法在多个处理单元上的运行时钟,由此计算出算法在多个处理单元上运行的加速比.实验结果表明,文中的并行化设计方法在PAAG上能够实现对图形图像算法的线性加速,与串行相比,效率更高.%In order to solve the problem that current CMOS technology has already met the"wall" of power and cooling which may cause the issue of improving the performance by improving the frequency of the chips,present a new polymorphic isomorphic array processor, called PAAG (Polymorphic Array Architecture for Graphics and image processing) . This array integrates multiple processing elements on a chip,it can realize parallel computing of the high-performance and complex algorithms by dividing and mapping them to the platform. By combining the data-level and the operation-level parallel calculation methods,the algorithms of the fixed rending pipeline and these of OpenVX1. 0,a standard of computer vision,proposed by the international standard organization Khronos,are in-depth analyzed in this paper. And the parallel design of these algorithms are proposed based on PAAG. The soft simulation platform of PAAG can give the result number of the running clock of the parallel

  12. Efficient rendering of breaking waves using MPS method

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; ZHENG Yao; CHEN Chun; FUJIMOTO Tadahiro; CHIBA Norishige

    2006-01-01

    This paper proposes an approach for rendering breaking waves out of large-scale ofparticle-based simulation. Moving particle semi-implicit (MPS) is used to solve the governing equation, and 2D simulation is expanded to 3D representation by giving motion variation using fractional Brownian motion (fBm). The waterbody surface is reconstructed from the outlines of 2D simulation. The splashing effect is computed according to the properties of the particles. Realistic features of the wave are rendered on GPU, including the reflective and refractive effect and the effect of splash. Experiments showed that the proposed method can simulate large scale breaking waves efficiently.

  13. Technology transfer package on seismic base isolation - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.

  14. Technology transfer package on seismic base isolation - Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-14

    This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume I contains the proceedings of the Workshop on Seismic Base Isolation for Department of Energy Facilities held in Marina Del Rey, California, May 13-15, 1992.

  15. FAST CROWD RENDERING IN COMPUTER GAMES

    Directory of Open Access Journals (Sweden)

    Kaya OĞUZ

    2010-06-01

    Full Text Available Computer games, with the speed advancements of graphical processors, are coming closer to the quality of cinema industry. Contrary to offline rendering of the scenes in a motion picture, computer games should be able to render at 30 frames per second. Therefore, CPU and memory performance are sought by using various techniques. This paper is about using instancing feature of contemporary graphical processors along with level of detail techniques which has been in use for a very long time. Using instancing, 15,000 instances were successfully rendered at 30 frames per second using a very low %10 CPU usage. The application can render 40,000 instances at 13 frames per second.

  16. Image plane sweep volume illumination.

    Science.gov (United States)

    Sundén, Erik; Ynnerman, Anders; Ropinski, Timo

    2011-12-01

    In recent years, many volumetric illumination models have been proposed, which have the potential to simulate advanced lighting effects and thus support improved image comprehension. Although volume ray-casting is widely accepted as the volume rendering technique which achieves the highest image quality, so far no volumetric illumination algorithm has been designed to be directly incorporated into the ray-casting process. In this paper we propose image plane sweep volume illumination (IPSVI), which allows the integration of advanced illumination effects into a GPU-based volume ray-caster by exploiting the plane sweep paradigm. Thus, we are able to reduce the problem complexity and achieve interactive frame rates, while supporting scattering as well as shadowing. Since all illumination computations are performed directly within a single rendering pass, IPSVI does not require any preprocessing nor does it need to store intermediate results within an illumination volume. It therefore has a significantly lower memory footprint than other techniques. This makes IPSVI directly applicable to large data sets. Furthermore, the integration into a GPU-based ray-caster allows for high image quality as well as improved rendering performance by exploiting early ray termination. This paper discusses the theory behind IPSVI, describes its implementation, demonstrates its visual results and provides performance measurements.

  17. Selection of plasters and renders for salt laden masonry substrates

    NARCIS (Netherlands)

    Groot, C.; Hees, R.P.J. van; Wijffels, T.J.

    2009-01-01

    The choice of a repair plaster or render by architects often appears to be the result of fortuitous circumstances, such as prior experience with a plaster or a recommendation by a producer. Seldom is the choice based on a sound assessment of the state of the building and the wall that is to be repai

  18. Flow Visualization Techniques for CDF using Volume Rendering

    Energy Technology Data Exchange (ETDEWEB)

    Crawfis, R.A.; Shen, H-W.; Max, N.

    2000-07-10

    As simulations have migrated towards three-dimensions, new tools for examining the resulting complex datasets have been required. Much progress has been achieved in the area of scientific visualization towards this goal. However, most of the research has focused on the representation and understanding of a single scalar field. Some nice results have been achieved for vector or flow fields. This paper reviews several of these techniques, organizes them by their approach and complexity and presents some observations on their benefits and limitations. Several example images are used to highlight the character of these techniques.

  19. Incremental Volume Rendering Algorithm for Interactive 3D Ultrasound Imaging

    Science.gov (United States)

    1991-02-01

    hidden surface removal, such effects as cutaway viewing of the 17 Rat -cache (16 samples organized as 4-ary tree) embedded in an array,1,f -f I I I I I I...70. [Stick84] Stickels, K. R., and Wann, L.S. (1984). "An Analysis of Three- Dimensional Reconstructive Echocardiography ." Ultrasound in Med. & Biol

  20. 基于 CUDA 的细分曲面阴影体算法%CUDA based shadow volume algorithm for subdivision surfaces

    Institute of Scientific and Technical Information of China (English)

    赵杰伊; 唐敏; 童若锋

    2012-01-01

    为了在虚拟现实、电脑游戏等图形应用中更快速生成和实时绘制细分曲面的阴影,提出采用CUDA架构的GPU阴影体生成算法.该算法采用基于CUDA的曲面细分算法,通过CUDA共享内存结构使表面细分过程更加高效.采用基于CUDA的阴影体算法产生阴影轮廓线以及拉伸出阴影体.通过基于CUDA的流式缩减算法对阴影体数组进行压缩.通过优化CUDA和OpenGL的互操作,将绘制过程从以往算法的3步减少为2步.该算法在具有CUDA硬件的标准PC上进行测试.实验结果表明,与之前的GPU的算法相比,该算法可以生成更复杂细分曲面的阴影体,阴影体数组占用显存空间降低到2%以下,并可获得高达4倍的绘制速度提升.%A new GPU based shadow volume generation algorithm based on CUDA structure was proposed for fast generation and real-time rendering of shadow of subdivision surfaces in computer games and virtual reality applications. The algorithm introduces CUDA-based surface subdivision algorithm. Generation of surface subdivisions can run faster by using shared memory structure. CUDA-based shadow volume algorithm was introduced to generate the shadow silhouette line and extrude the shadow volume. CUDA-based stream reduction algorithm was introduced to reduce the shadow volume array. An optimized interopera-tion between CUDA and OPENGL was introduced to simplify the rendering step of the algorithm from three steps to two steps. Implemented on a standard PC with CUDA hardware, experiments show that the algorithm can generate the shadow volume of more complex subdivision surfaces compared with former GPU-based ones. The algorithm needs smaller video memory for the shadow volume array to less than 2%, and the rendering performance can gain acceleration up to more than four times.

  1. [Development of ultrasound-based monitor of relative blood volume].

    Science.gov (United States)

    Jiang, Shunzhong; Hu, Xiao; Liang, Zhongwei; Fan, Jianghong; Xia, Wubing; Zhou, Hongbo; Yi, Wei

    2013-12-01

    Assessing dry weight accurately is crucial in providing effective and safe haemodialysis. Biases towards dry weight assessment may bring a series of dialysis complications. This study introduces an online detection technique of relative blood volume (RBV) based on ultrasound, which analyzes the correlation between changes in blood density and sound speed. By measuring the attenuation in sound velocity, this method was employed to calculate RBV, and then to evaluate the dry weight of patients on dialysis. TDC-GP2 time measurement chip and MSP430 Single-chip Microcontroller (SCM) were used in the system to measure the ultrasonic travel time. In the clinical trials, RBV values range between 71.3% and 108.1%, showing consistent result with Fresenius 4008S blood volume monitor (BVM). This detection method possesses several advantages, such as real time, convenient, reproducible, non-invasive, and etc.

  2. 基于提升小波的地形数据混合熵编码压缩与实时渲染%Terrain Data Hybrid Entropy Coding Compression Based on Lifting Wavelet and Real-time Rendering

    Institute of Scientific and Technical Information of China (English)

    郭浩然; 庞建民

    2012-01-01

    High resolution terrain Digital Elevation Model (DEM) and orthophoto bring severely load including data storage, schedule and real-time rendering, etc.. A high performance terrain data compression method is proposed based on lifting wavelet transform and parallel hybrid entropy codec, and combined with Graphics Process Unit (GPU) Ray-casting to achieve large-scale 3D terrain visualization. First, the multi-resolution wavelet transform model of terrain tile is constructed to map the refinement and simplification operation. Then the multi-resolution quadtree of DEM and terrain texture is built separately based on lifting wavelet transform, the sparse wavelet coefficient generated from quantization is compressed by a hybrid entropy codec which combined with parallel run-length coding and variable-length Huffman coding. The compressed data are organized into progressive stream to do real-time decoding and rendering. The present lifting wavelet transform and hybrid entropy codec is implemented by Compute Unified Device Architecture (CUDA) in GPU. Experiment results show that the data compression ratio is effective with this method, PSNR and code-decode data throughput. High Frames Per Second (FPS) in real-time rendering satisfied the demand of interactive visualization.%高分辨率地形高程和影像数据给交互式3维地形可视化应用带来沉重压力,主要体现在数据存储、调度传输及实时渲染等方面.该文设计一种基于提升小波变换与并行混合熵编码的地形数据高性能压缩方法,并结合图形处理器(Graphics Process Unit,GPU)Ray-casting实现大规模3维地形可视化.首先建立多分辨率地形块的小波变换模型来映射其求精和化简操作;其次,基于提升小波变换分别构建格网数字高程模型(Digital Elevation Model,DEM)和地表纹理的多分辨率四叉树,对量化后的稀疏小波系数引入并行游程编码与并行变长霍夫曼编码相结合的混合熵编码进行压

  3. The diagnostic contribution of CT volumetric rendering techniques in routine practice

    OpenAIRE

    Perandini Simone; Faccioli N; Zaccarella A; Re T; Mucelli R

    2010-01-01

    Computed tomography (CT) volumetric rendering techniques such as maximum intensity projection (MIP), minimum intensity projection (MinIP), shaded surface display (SSD), volume rendering (VR), and virtual endoscopy (VE) provide added diagnostic capabilities. The diagnostic value of such reconstruction techniques is well documented in literature. These techniques permit the exploration of fine anatomical detail that would be difficult to evaluate using axial reconstructions alone. Although thes...

  4. Rendering and Compositing Infrastructure Improvements to VisIt for Insitu Rendering

    Energy Technology Data Exchange (ETDEWEB)

    Loring, Burlen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ruebel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-28

    Compared to posthoc rendering, insitu rendering often generates larger numbers of images, as a result rendering performance and scalability are critical in the insitu setting. In this work we present improvements to VisIt's rendering and compositing infrastructure that deliver increased performance and scalability in both posthoc and insitu settings. We added the capability for alpha blend compositing and use it with ordered compositing when datasets have disjoint block domain decomposition to optimize the rendering of transparent geometry. We also made improvements that increase overall efficiency by reducing communication and data movement and have addressed a number of performance issues. We structured our code to take advantage of SIMD parallelization and use threads to overlap communication and compositing. We tested our improvements on a 20 core workstation using 8 cores to render geometry generated from a $256^3$ cosmology dataset and on a Cray XC31 using 512 cores to render geometry generated from a $2000^2 \\times 800$ plasma dataset. Our results show that ordered compositing provides a speed up of up to $4 \\times$ over the current sort first strategy. The other improvements resulted in modest speed up with one notable exception where we achieve up to $40 \\times$ speed up of rendering and compositing of opaque geometry when both opaque and transparent geometry are rendered together. We also investigated the use of depth peeling, but found that the implementation provided by VTK is substantially slower,both with and without GPU acceleration, than a local camera order sort.

  5. 基于GIS的静态图式表达方法与制图表达方法的对比分析%Comparative analysis of the static graphic render and cartographic representations based on GIS

    Institute of Scientific and Technical Information of China (English)

    梁磊; 余跃平

    2016-01-01

    At present ,it is known that the map products exported by GIS system depart from GIS spatial data and break the integrity of geographical elements and map object ,which lead to the difficulties for map product updating .To solve the problem above ,with GIS cartographic template and GIS symbol library this paper studies the GIS static graphic render and GIS cartographic representations .Then using C # and ArcEngine programming technology ,the paper realizes the GIS static graphic render function and GIS cartographic representations ,applies it to thematic mapping project in some city and analyzes the results of the different modes of thematic mapping .It has been found that GIS cartographic representations based on the geographic data rule can satisfy the different requirements for data and mapping and can complete the map production quickly ,which partly solves the traditional artificial editing by taking a lot work to complete drawing task and improves the work efficiency .%针对G IS生成的地图产品脱离G IS地理空间数据,割裂地理要素与地图对象完整性,导致输出地图产品更新困难。结合制图单位实际生成需求,研究GIS静态图式表达和GIS制图表达;基于GIS制图模板和GIS符号库,采用C#+ ArcEngine编程技术,实现GIS专题制图系统。系统具有GIS静态图式渲染功能和GIS制图表达功能,并以某区域专题制图项目为例,对比分析不同方式专题制图效果。结果表明基于地理空间数据规则的地图制图表达技术能够兼顾G IS和地图制图对数据的不同要求,可快速完成地图制作,部分解决传统上必须通过大量人工编辑才能够完成的制图任务,一定程度提高工作效率。

  6. Brain Image Representation and Rendering: A Survey

    Directory of Open Access Journals (Sweden)

    Mudassar Raza

    2012-09-01

    Full Text Available Brain image representation and rendering processes are basically used for evaluation, development and investigation consent experimental examination and formation of brain images of a variety of modalities that includes the major brain types like MEG, EEG, PET, MRI, CT or microscopy. So, there is a need to conduct a study to review the existing work in this area. This paper provides a review of different existing techniques and methods regarding the brain image representation and rendering. Image Rendering is the method of generating an image by means of a model, through computer programs. The basic purpose of brain image representation and rendering processes is to analyze the brain images precisely in order to effectively diagnose and examine the diseases and problems. The basic objective of this study is to evaluate and discuss different techniques and approaches proposed in order to handle different brain imaging types. The paper provides a short overview of different methods, in the form of advantages and limitations, presented in the prospect of brain image representation and rendering along with their sub categories proposed by different authors.

  7. Standardized rendering from IR surveillance motion imagery

    Science.gov (United States)

    Prokoski, F. J.

    2014-06-01

    Government agencies, including defense and law enforcement, increasingly make use of video from surveillance systems and camera phones owned by non-government entities.Making advanced and standardized motion imaging technology available to private and commercial users at cost-effective prices would benefit all parties. In particular, incorporating thermal infrared into commercial surveillance systems offers substantial benefits beyond night vision capability. Face rendering is a process to facilitate exploitation of thermal infrared surveillance imagery from the general area of a crime scene, to assist investigations with and without cooperating eyewitnesses. Face rendering automatically generates greyscale representations similar to police artist sketches for faces in surveillance imagery collected from proximate locations and times to a crime under investigation. Near-realtime generation of face renderings can provide law enforcement with an investigation tool to assess witness memory and credibility, and integrate reports from multiple eyewitnesses, Renderings can be quickly disseminated through social media to warn of a person who may pose an immediate threat, and to solicit the public's help in identifying possible suspects and witnesses. Renderings are pose-standardized so as to not divulge the presence and location of eyewitnesses and surveillance cameras. Incorporation of thermal infrared imaging into commercial surveillance systems will significantly improve system performance, and reduce manual review times, at an incremental cost that will continue to decrease. Benefits to criminal justice would include improved reliability of eyewitness testimony and improved accuracy of distinguishing among minority groups in eyewitness and surveillance identifications.

  8. Artificial Neural Network-Based System for PET Volume Segmentation

    Directory of Open Access Journals (Sweden)

    Mhd Saeed Sharif

    2010-01-01

    Full Text Available Tumour detection, classification, and quantification in positron emission tomography (PET imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs, as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.

  9. Artificial Neural Network-Based System for PET Volume Segmentation.

    Science.gov (United States)

    Sharif, Mhd Saeed; Abbod, Maysam; Amira, Abbes; Zaidi, Habib

    2010-01-01

    Tumour detection, classification, and quantification in positron emission tomography (PET) imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI) approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs), as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.

  10. A Virtual Reality System for PTCD Simulation Using Direct Visuo-Haptic Rendering of Partially Segmented Image Data.

    Science.gov (United States)

    Fortmeier, Dirk; Mastmeyer, Andre; Schröder, Julian; Handels, Heinz

    2016-01-01

    This study presents a new visuo-haptic virtual reality (VR) training and planning system for percutaneous transhepatic cholangio-drainage (PTCD) based on partially segmented virtual patient models. We only use partially segmented image data instead of a full segmentation and circumvent the necessity of surface or volume mesh models. Haptic interaction with the virtual patient during virtual palpation, ultrasound probing and needle insertion is provided. Furthermore, the VR simulator includes X-ray and ultrasound simulation for image-guided training. The visualization techniques are GPU-accelerated by implementation in Cuda and include real-time volume deformations computed on the grid of the image data. Computation on the image grid enables straightforward integration of the deformed image data into the visualization components. To provide shorter rendering times, the performance of the volume deformation algorithm is improved by a multigrid approach. To evaluate the VR training system, a user evaluation has been performed and deformation algorithms are analyzed in terms of convergence speed with respect to a fully converged solution. The user evaluation shows positive results with increased user confidence after a training session. It is shown that using partially segmented patient data and direct volume rendering is suitable for the simulation of needle insertion procedures such as PTCD.

  11. Ethernet-based Mass Volume Train Security Detection Network

    Directory of Open Access Journals (Sweden)

    D. Q. He

    2013-07-01

    Full Text Available As the existing train communication network transmission rate is low, large capacity status and fault diagnosis data, the event log data, passenger information which are stored in different vehicles equipments, it is difficult to realize fault diagnosis and intelligent maintenance efficiently and timely. Based on the train level and vehicle level Ethernet network, this paper will focus on network construction technology and real-time performance of mass volume onboard security detection network. The research results will improve control and network function of train.

  12. Rendering Falling Leaves on Graphics Hardware

    Directory of Open Access Journals (Sweden)

    Marcos Balsa

    2008-04-01

    Full Text Available There is a growing interest in simulating natural phenomena in computer graphics applications. Animating natural scenes in real time is one of the most challenging problems due to the inherent complexity of their structure, formed by millions of geometric entities, and the interactions that happen within. An example of natural scenario that is needed for games or simulation programs are forests. Forests are difficult to render because the huge amount of geometric entities and the large amount of detail to be represented. Moreover, the interactions between the objects (grass, leaves and external forces such as wind are complex to model. In this paper we concentrate in the rendering of falling leaves at low cost. We present a technique that exploits graphics hardware in order to render thousands of leaves with different falling paths in real time and low memory requirements.

  13. An experiment on the color rendering of different light sources

    Science.gov (United States)

    Fumagalli, Simonetta; Bonanomi, Cristian; Rizzi, Alessandro

    2013-02-01

    The color rendering index (CRI) of a light source attempts to measure how much the color appearance of objects is preserved when they are illuminated by the given light source. This problem is of great importance for various industrial and scientific fields, such as lighting architecture, design, ergonomics, etc. Usually a light source is specified through the Correlated Color Temperature or CCT. However two (or more) light sources with the same CCT but different spectral power distribution can exist. Therefore color samples viewed under two light sources with equal CCTs can appear different. Hence, the need for a method to assess the quality of a given illuminant in relation to color. Recently CRI has had a renewed interest because of the new LED-based lighting systems. They usually have a color rendering index rather low, but good preservation of color appearance and a pleasant visual appearance (visual appeal). Various attempts to develop a new color rendering index have been done so far, but still research is working for a better one. This article describes an experiment performed by human observers concerning the appearance preservation of color under some light sources, comparing it with a range of available color rendering indices.

  14. Democratizing rendering for multiple viewers in surround VR systems

    KAUST Repository

    Schulze, Jürgen P.

    2012-03-01

    We present a new approach for how multiple users\\' views can be rendered in a surround virtual environment without using special multi-view hardware. It is based on the idea that different parts of the screen are often viewed by different users, so that they can be rendered from their own view point, or at least from a point closer to their view point than traditionally expected. The vast majority of 3D virtual reality systems are designed for one head-tracked user, and a number of passive viewers. Only the head tracked user gets to see the correct view of the scene, everybody else sees a distorted image. We reduce this problem by algorithmically democratizing the rendering view point among all tracked users. Researchers have proposed solutions for multiple tracked users, but most of them require major changes to the display hardware of the VR system, such as additional projectors or custom VR glasses. Our approach does not require additional hardware, except the ability to track each participating user. We propose three versions of our multi-viewer algorithm. Each of them balances image distortion and frame rate in different ways, making them more or less suitable for certain application scenarios. Our most sophisticated algorithm renders each pixel from its own, optimized camera perspective, which depends on all tracked users\\' head positions and orientations. © 2012 IEEE.

  15. Hesse Rendering for Computer Aided Visualization and Analysis (CAVA) of Anomalies in Chest CT and Breast MRI

    NARCIS (Netherlands)

    Wiemker, R.; Dharaiya, E.D.; Buelow, T.

    2011-01-01

    As a complement to maximum intensity projection (MIP) and direct volume rendering of the Hounsfield densities, a Hesse rendering can show the local curvature of structures rather than the densities. Color coding of the local curvatures, or simply of the eigenvalues of the local second derivatives,

  16. Blender cycles lighting and rendering cookbook

    CERN Document Server

    Iraci, Bernardo

    2013-01-01

    An in-depth guide full of step-by-step recipes to explore the concepts behind the usage of Cycles. Packed with illustrations, and lots of tips and tricks; the easy-to-understand nature of the book will help the reader understand even the most complex concepts with ease.If you are a digital artist who already knows your way around Blender, and you want to learn about the new Cycles' rendering engine, this is the book for you. Even experts will be able to pick up new tips and tricks to make the most of the rendering capabilities of Cycles.

  17. Digital color acquisition, perception, coding and rendering

    CERN Document Server

    Fernandez-Maloigne, Christine; Macaire, Ludovic

    2013-01-01

    In this book the authors identify the basic concepts and recent advances in the acquisition, perception, coding and rendering of color. The fundamental aspects related to the science of colorimetry in relation to physiology (the human visual system) are addressed, as are constancy and color appearance. It also addresses the more technical aspects related to sensors and the color management screen. Particular attention is paid to the notion of color rendering in computer graphics. Beyond color, the authors also look at coding, compression, protection and quality of color images and videos.

  18. Rendering Visible: Painting and Sexuate Subjectivity

    Science.gov (United States)

    Daley, Linda

    2015-01-01

    In this essay, I examine Luce Irigaray's aesthetic of sexual difference, which she develops by extrapolating from Paul Klee's idea that the role of painting is to render the non-visible rather than represent the visible. This idea is the premise of her analyses of phenomenology and psychoanalysis and their respective contributions to understanding…

  19. ProteinShader: illustrative rendering of macromolecules

    Directory of Open Access Journals (Sweden)

    Weber Joseph R

    2009-03-01

    Full Text Available Abstract Background Cartoon-style illustrative renderings of proteins can help clarify structural features that are obscured by space filling or balls and sticks style models, and recent advances in programmable graphics cards offer many new opportunities for improving illustrative renderings. Results The ProteinShader program, a new tool for macromolecular visualization, uses information from Protein Data Bank files to produce illustrative renderings of proteins that approximate what an artist might create by hand using pen and ink. A combination of Hermite and spherical linear interpolation is used to draw smooth, gradually rotating three-dimensional tubes and ribbons with a repeating pattern of texture coordinates, which allows the application of texture mapping, real-time halftoning, and smooth edge lines. This free platform-independent open-source program is written primarily in Java, but also makes extensive use of the OpenGL Shading Language to modify the graphics pipeline. Conclusion By programming to the graphics processor unit, ProteinShader is able to produce high quality images and illustrative rendering effects in real-time. The main feature that distinguishes ProteinShader from other free molecular visualization tools is its use of texture mapping techniques that allow two-dimensional images to be mapped onto the curved three-dimensional surfaces of ribbons and tubes with minimum distortion of the images.

  20. Rendering Visible: Painting and Sexuate Subjectivity

    Science.gov (United States)

    Daley, Linda

    2015-01-01

    In this essay, I examine Luce Irigaray's aesthetic of sexual difference, which she develops by extrapolating from Paul Klee's idea that the role of painting is to render the non-visible rather than represent the visible. This idea is the premise of her analyses of phenomenology and psychoanalysis and their respective contributions to understanding…

  1. Influence of rendering methods on yield and quality of chicken fat recovered from broiler skin

    Directory of Open Access Journals (Sweden)

    Liang-Kun Lin

    2017-06-01

    Full Text Available Objective In order to utilize fat from broiler byproducts efficiently, it is necessary to develop an appropriate rendering procedure and establish quality information for the rendered fat. A study was therefore undertaken to evaluate the influence of rendering methods on the amounts and general properties of the fat recovered from broiler skin. Methods The yield and quality of the broiler skin fat rendered through high and lower energy microwave rendering (3.6 W/g for 10 min and 2.4 W/g for 10 min for high power microwave rendering (HPMR and high power microwave rendering (LPMR, respectively, oven baking (OB, at 180°C for 40 min, and water cooking (WC, boiling for 40 min were compared. Results Microwave-rendered skin exhibited the highest yields and fat recovery rates, followed by OB, and WC fats (p<0.05. HPMR fat had the highest L*, a*, and b* values, whereas WC fat had the highest moisture content, acid values, and thiobarbituric acid (TBA values (p<0.05. There was no significant difference in the acid value, peroxide value, and TBA values between HPMR and LPMR fats. Conclusion Microwave rendering at a power level of 3.6 W/g for 10 min is suggested base on the yield and quality of chicken fat.

  2. Dual-source CT with multiplanar reconstruction and volume rendering three-dimensional reconstruction in the evaluation of rib fractures%双源CT结合多平面重建与容积再现三维重建技术评价肋骨骨折

    Institute of Scientific and Technical Information of China (English)

    钱斌; 邹新农; 姚选军; 陶广宇; 王凯; 陈宏伟

    2011-01-01

    背景:依靠胸部摄片诊断肋骨骨折常导致误诊和漏诊.目的:分析双源CT 结合三维重建技术在肋骨骨折中的应用价值.方法:使用双源CT 对65 例肋骨骨折患者进行薄层扫描,将数据发送至工作站行多平面重建、容积再现技术,得到肋骨骨折高清晰度的三维图像后,从不同角度观察骨折线走行、骨折移位及成角情况.结果与结论:双源CT 结合三维重建图像清晰显示65 例患者286 根骨折,其中52 例保守治疗,其余13 例行切开复位、内固定治疗.制定手术方案时均参考了三维重建图像,所显示的骨折部位、移位、成角等情况与术中所见一致.提示双源CT 能明确诊断肋骨骨折,多平面重建和容积再现技术互相补充对诊断肋骨骨折及指导治疗方案有明显的优势.%BACKGROUND: Diagnosis of rib fractures relying on the chest radiograph diagnosis often leads to misdiagnos is. OBJECTIVE: To investigate the application of dual-source CT with three-dimensional reconstruction in rib fractures. METHODS: Sixty-five patients with rib fractures were scanned with dual-source CT. The data were sent to the workstation line of multi-planar reconstruction using volume rendering technique, to obtain high-resolution three-dimersion al images of rib fractures, and to observe the fracture line courses, fracture displacement and angulation of the situation from different angles. RESULTS AND CONCLUSION: The combination of dual-source CT and three-dimensional reconstruction images clearly showed 286 fractures in 65 patients, including 52 cases of consenrvative treatment, and the remaining 13 cases of surgery. The surgery programs in all patients were developed with reference to three- dimensional reoonstruction images showing the fracture position, displacement, angulation. Etc., consistent with the intraoperative findings. Dual-source CT can confirm the diagnose of rib fractures, and multi-planar reconstruction and volume

  3. FY02 Engineering Technology Reports Volume 1: Technology Base

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; Meeker, D

    2003-01-28

    Engineering has touched on every challenge, every accomplishment, and every endeavor of Lawrence Livermore National Laboratory during its fifty-year history. In this time of transition to new leadership, Engineering continues to be central to the mission of the Laboratory, returning to the tradition and core values of E. O. Lawrence: science-based engineering--turning scientific concepts into reality. This volume of Engineering Technical Reports summarizes progress on the projects funded for technology-base efforts. Technology-base projects effect the natural transition to reduction-to-practice of scientific or engineering methods that are well understood and established. They represent discipline-oriented, core competency activities that are multi-programmatic in application, nature, and scope. Objectives of technology-base funding include: (1) the development and enhancement of tools and processes to provide Engineering support capability, such as code maintenance and improved fabrication methods; (2) the support of Engineering science and technology infrastructure, such as the installation or integration of a new capability; (3) support for technical and administrative leadership through our technology Centers; and (4) the initial scoping and exploration of selected technology areas with high strategic potential, such as assessment of university, laboratory, and industrial partnerships. Five Centers focus and guide longer-term investments within Engineering. The Centers attract and retain top staff, develop and maintain critical core technologies, and enable programs. Through their technology-base projects, they oversee the application of known engineering approaches and techniques to scientific and technical problems.

  4. High dynamic range (HDR) virtual bronchoscopy rendering for video tracking

    Science.gov (United States)

    Popa, Teo; Choi, Jae

    2007-03-01

    In this paper, we present the design and implementation of a new rendering method based on high dynamic range (HDR) lighting and exposure control. This rendering method is applied to create video images for a 3D virtual bronchoscopy system. One of the main optical parameters of a bronchoscope's camera is the sensor exposure. The exposure adjustment is needed since the dynamic range of most digital video cameras is narrower than the high dynamic range of real scenes. The dynamic range of a camera is defined as the ratio of the brightest point of an image to the darkest point of the same image where details are present. In a video camera exposure is controlled by shutter speed and the lens aperture. To create the virtual bronchoscopic images, we first rendered a raw image in absolute units (luminance); then, we simulated exposure by mapping the computed values to the values appropriate for video-acquired images using a tone mapping operator. We generated several images with HDR and others with low dynamic range (LDR), and then compared their quality by applying them to a 2D/3D video-based tracking system. We conclude that images with HDR are closer to real bronchoscopy images than those with LDR, and thus, that HDR lighting can improve the accuracy of image-based tracking.

  5. Engineering Technology Reports, Volume 2: Technology Base FY01

    Energy Technology Data Exchange (ETDEWEB)

    Minichino, C; Meeker, D

    2002-07-01

    Engineering has touched on every challenge, every accomplishment, and every endeavor of Lawrence Livermore National Laboratory during its fifty-year history. In this time of transition to new leadership, Engineering continues to be central to the mission of the Laboratory, returning to the tradition and core values of E.O. Lawrence: science-based engineering--turning scientific concepts into reality. This volume of Engineering Technical Reports summarizes progress on the projects funded for technology-base efforts. Technology-base projects effect the natural transition to reduction-to-practice of scientific or engineering methods that are well understood and established. They represent discipline-oriented, core competency activities that are multi-programmatic in application, nature, and scope. Objectives of technology-base funding include: (1) the development and enhancement of tools and processes to provide Engineering support capability, such as code maintenance and improved fabrication methods; (2) the support of Engineering science and technology infrastructure, such as the installation or integration of a new capability; (3) support for technical and administrative leadership through our technology Centers; (4) the initial scoping and exploration of selected technology areas with high strategic potential, such as assessment of university, laboratory, and industrial partnerships.

  6. RAY TRACING RENDER MENGGUNAKAN FRAGMENT ANTI ALIASING

    Directory of Open Access Journals (Sweden)

    Febriliyan Samopa

    2008-07-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Rendering is generating surface and three-dimensional effects on an object displayed on a monitor screen. Ray tracing as a rendering method that traces ray for each image pixel has a drawback, that is, aliasing (jaggies effect. There are some methods for executing anti aliasing. One of those methods is OGSS (Ordered Grid Super Sampling. OGSS is able to perform aliasing well. However, this method requires more computation time since sampling of all pixels in the image will be increased. Fragment Anti Aliasing (FAA is a new alternative method that can cope with the drawback. FAA will check the image when performing rendering to a scene. Jaggies effect is only happened at curve and gradient object. Therefore, only this part of object that will experience sampling magnification. After this sampling magnification and the pixel values are computed, then downsample is performed to retrieve the original pixel values. Experimental results show that the software can implement ray tracing well in order to form images, and it can implement FAA and OGSS technique to perform anti aliasing. In general, rendering using FAA is faster than using OGSS

  7. Measuring glioma volumes: A comparison of linear measurement based formulae with the manual image segmentation technique

    Directory of Open Access Journals (Sweden)

    Sanjeev A Sreenivasan

    2016-01-01

    Conclusions: Manual region of interest-based image segmentation is the standard technique for measuring glioma volumes. For routine clinical use, the simple formula v = abc/2 (or the formula for volume of an ellipsoid could be used as alternatives.

  8. Animation framework using volume visualization

    Science.gov (United States)

    Fang, Wenxuan; Wang, Hongli

    2004-03-01

    As the development of computer graphics, scientific visualization and advanced imaging scanner and sensor technology, high quality animation making of volume data set has been a challenging in industries. A simple animation framework by using current volume visualization techniques is proposed in this paper. The framework consists of two pipelines: one is surface based method by using marching cubes algorithm, the other is volume rendering method by using shear-warp method. The volume visualization results can not only be used as key frame sources in the animation making, but also can be directly used as animation when the volume visualization is in stereoscopic mode. The proposed framework can be applied into fields such as medical education, film-making and archaeology.

  9. Informatics in radiology: Hesse rendering for computer-aided visualization and analysis of anomalies at chest CT and breast MR imaging.

    Science.gov (United States)

    Wiemker, Rafael; Dharaiya, Ekta D; Bülow, Thomas

    2012-01-01

    A volume-rendering (VR) technique known as Hesse rendering applies image-enhancement filters to three-dimensional imaging volumes and depicts the filter responses in a color-coded fashion. Unlike direct VR, which makes use of intensities, Hesse rendering operates on the basis of shape properties, such that nodular structures in the resulting renderings have different colors than do tubular structures and thus are easily visualized. The renderings are mouse-click sensitive and can be used to navigate to locations of possible anomalies in the original images. Hesse rendering is meant to complement rather than replace conventional section-by-section viewing or VR. Although it is a pure visualization technique that involves no internal segmentation or explicit object detection, Hesse rendering, like computer-aided detection, may be effective for quickly calling attention to points of interest in large stacks of images and for helping radiologists to avoid oversights.

  10. Optimization techniques for computationally expensive rendering algorithms

    OpenAIRE

    Navarro Gil, Fernando; Gutiérrez Pérez, Diego; Serón Arbeloa, Francisco José

    2012-01-01

    Realistic rendering in computer graphics simulates the interactions of light and surfaces. While many accurate models for surface reflection and lighting, including solid surfaces and participating media have been described; most of them rely on intensive computation. Common practices such as adding constraints and assumptions can increase performance. However, they may compromise the quality of the resulting images or the variety of phenomena that can be accurately represented. In this thesi...

  11. Quantitative prediction of respiratory tidal volume based on the external torso volume change: a potential volumetric surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Li Guang; Arora, Naveen C; Xie Huchen; Ning, Holly; Citrin, Deborah; Kaushal, Aradhana; Zach, Leor; Camphausen, Kevin; Miller, Robert W [Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Lu Wei; Low, Daniel [Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO 63110 (United States)], E-mail: ligeorge@mail.nih.gov

    2009-04-07

    An external respiratory surrogate that not only highly correlates with but also quantitatively predicts internal tidal volume should be useful in guiding four-dimensional computed tomography (4DCT), as well as 4D radiation therapy (4DRT). A volumetric surrogate should have advantages over external fiducial point(s) for monitoring respiration-induced motion of the torso, which deforms in synchronization with a patient-specific breathing pattern. This study establishes a linear relationship between the external torso volume change (TVC) and lung air volume change (AVC) by validating a proposed volume conservation hypothesis (TVC = AVC) throughout the respiratory cycle using 4DCT and spirometry. Fourteen patients' torso 4DCT images and corresponding spirometric tidal volumes were acquired to examine this hypothesis. The 4DCT images were acquired using dual surrogates in cine mode and amplitude-based binning in 12 respiratory stages, minimizing residual motion artifacts. Torso and lung volumes were calculated using threshold-based segmentation algorithms and volume changes were calculated relative to the full-exhalation stage. The TVC and AVC, as functions of respiratory stages, were compared, showing a high correlation (r = 0.992 {+-} 0.005, p < 0.0001) as well as a linear relationship (slope = 1.027 {+-} 0.061, R{sup 2} = 0.980) without phase shift. The AVC was also compared to the spirometric tidal volumes, showing a similar linearity (slope = 1.030 {+-} 0.092, R{sup 2} = 0.947). In contrast, the thoracic and abdominal heights measured from 4DCT showed relatively low correlation (0.28 {+-} 0.44 and 0.82 {+-} 0.30, respectively) and location-dependent phase shifts. This novel approach establishes the foundation for developing an external volumetric respiratory surrogate.

  12. Sampling-based motion planning with reachable volumes: Theoretical foundations

    KAUST Repository

    McMahon, Troy

    2014-05-01

    © 2014 IEEE. We introduce a new concept, reachable volumes, that denotes the set of points that the end effector of a chain or linkage can reach. We show that the reachable volume of a chain is equivalent to the Minkowski sum of the reachable volumes of its links, and give an efficient method for computing reachable volumes. We present a method for generating configurations using reachable volumes that is applicable to various types of robots including open and closed chain robots, tree-like robots, and complex robots including both loops and branches. We also describe how to apply constraints (both on end effectors and internal joints) using reachable volumes. Unlike previous methods, reachable volumes work for spherical and prismatic joints as well as planar joints. Visualizations of reachable volumes can allow an operator to see what positions the robot can reach and can guide robot design. We present visualizations of reachable volumes for representative robots including closed chains and graspers as well as for examples with joint and end effector constraints.

  13. Dynamic Garment Simulation based on Hybrid Bounding Volume Hierarchy

    Directory of Open Access Journals (Sweden)

    Zhu Dongyong

    2016-12-01

    Full Text Available In order to solve the computing speed and efficiency problem of existing dynamic clothing simulation, this paper presents a dynamic garment simulation based on a hybrid bounding volume hierarchy. It firstly uses MCASG graph theory to do the primary segmentation for a given three-dimensional human body model. And then it applies K-means cluster to do the secondary segmentation to collect the human body’s upper arms, lower arms, upper legs, lower legs, trunk, hip and woman’s chest as the elementary units of dynamic clothing simulation. According to different shapes of these elementary units, it chooses the closest and most efficient hybrid bounding box to specify these units, such as cylinder bounding box and elliptic cylinder bounding box. During the process of constructing these bounding boxes, it uses the least squares method and slices of the human body to get the related parameters. This approach makes it possible to use the least amount of bounding boxes to create close collision detection regions for the appearance of the human body. A spring-mass model based on a triangular mesh of the clothing model is finally constructed for dynamic simulation. The simulation result shows the feasibility and superiority of the method described.

  14. 基于Monte-Carlo辐射模型的水下光场绘制技术研究%Research on Render method of Underwater Light Fields Based on Monte Carlo Radiative Transfer Model

    Institute of Scientific and Technical Information of China (English)

    张森; 康凤举; 曾艳阳

    2012-01-01

    In the past few decades, people had studied many light render and shadow methods, but the conventional methods mostly aimed at generating realistic 3 dimensions animation in air, and seldom focused on the modeling of traditional underwater light field and dynamic smooth shadow. A computer model of automatically generated underwater light field and dynamic lighting effects was proposed. First, the physical properties of light transmission were introduced into ocean water. And then, according to the characteristics of Monte Carlo-given model, the light interference and diffuse reflection under the wind sea were researched, and 2 and 3 dimensions visualization model underwater light field were built. In addition, the real-time calculation of the shadow flow effect based on an improved global illumination and radiation model were given. The result shows the 3 dimensions underwater light field and dynamic shadow methods and corresponding game animation.%过去的几十年中人们提出许多处理光照及阴影的方法,但这些常规方法大都致力于生成空气介质中真实感的三维动画,而对传统的水下光场及光影的动态效果建模问题研究较少。给出一个水下光场及流动光影效果的计算机模型。该模型从海洋水体的光传输物理特性,然后根据该特性给出Monte-Carlo模型,通过研究风海波下光的干涉现象及漫射现象,建立水下光场的二三维可视化模型,基于改进的全局光照及辐射度模型实时计算出阴影的流动效果。此外,还给出了生成三维水下光场及动态光影的方法及相应的游戏动画图例。

  15. REAL TIME RENDERING OF ELEVATION FITTING BATTLEFIELD TERRAIN BASED ON NESTED QUADTREE%基于嵌套四叉树的高程拟合战场地形实时渲染

    Institute of Scientific and Technical Information of China (English)

    李英

    2013-01-01

    地形场景是整个虚拟战场推演系统的重要组成元素.由于现代战争中融合陆海空各军种庞大的武器元素和环境元素,地形渲染可获取的资源十分有限,而涉及的数据量却非常巨大,是影响整个系统性能的瓶颈.针对该问题,设计静态和动态结合的嵌套四叉树结构组织大地形数据,以实现大数据的动态平衡调度;提出基于环形索引模式的高程拟合算法来避免不同分辨率模块间的裂缝.实验表明,该方法不仅有效提高了推演系统的实时性和沉浸感,还极大地降低了系统的资源负载率.%Terrain scene is an important element in entire virtual battlefield deductive system.Since modern battle contains huge amount of weapon elements of different military services including army,navy and air force and environment elements,whereas the acquirable resource for terrain rendering is very limited,and the data amount involved is bulky,it becomes the bottleneck of the whole system.To solve this problem,we design a nested quadtree structure with static and dynamic combination to organise the large terrain data so as to realise the dynamic balance scheduling; we also propose the elevation fitting algorithm which is based on annulus index mode to avoid the cracks between different resolutions modules.Experiments show that this method improves the real-time property and immersion of the deductive system,and also greatly reduces the resource loading rate of the system.

  16. Real-time rendering of optical effects using spatial convolution

    Science.gov (United States)

    Rokita, Przemyslaw

    1998-03-01

    Simulation of special effects such as: defocus effect, depth-of-field effect, raindrops or water film falling on the windshield, may be very useful in visual simulators and in all computer graphics applications that need realistic images of outdoor scenery. Those effects are especially important in rendering poor visibility conditions in flight and driving simulators, but can also be applied, for example, in composing computer graphics and video sequences- -i.e. in Augmented Reality systems. This paper proposes a new approach to the rendering of those optical effects by iterative adaptive filtering using spatial convolution. The advantage of this solution is that the adaptive convolution can be done in real-time by existing hardware. Optical effects mentioned above can be introduced into the image computed using conventional camera model by applying to the intensity of each pixel the convolution filter having an appropriate point spread function. The algorithms described in this paper can be easily implemented int the visualization pipeline--the final effect may be obtained by iterative filtering using a single hardware convolution filter or with the pipeline composed of identical 3 X 3 filters placed as the stages of this pipeline. Another advantage of the proposed solution is that the extension based on proposed algorithm can be added to the existing rendering systems as a final stage of the visualization pipeline.

  17. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    Wong, S.T.C. [Univ. of California, San Francisco, CA (United States)

    1997-02-01

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound, electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.

  18. 基于矩形分割的局部渲染技术在无线图像通信中的应用%Application of Rectangle Incision Based on Part Render Technology in Wireless Picture Communication

    Institute of Scientific and Technical Information of China (English)

    刘德胜

    2012-01-01

    为了提升无线图像通信中的图像渲染性能和减小数据的传输量,提出了一种优化算法,将基于矩形分割的局部渲染技术引入到无线图像通信中,以此减小每一帧的渲染区域和传输数据,以达到在节约CPU计算资源的同时,降低电量消耗和带宽依赖的目的.通过实验发现,该算法在图像相对变化较小的时候,最多能将渲染性能提升一倍,同时传输数据量和需要重新渲染的单个对象数量基本呈正比.实验结果证明,该算法有其适用范围,当图像较稳定的时候,平均能够提升30%以上计算性能,并减少50%以上的数据传输.%For optimizing the performance of picture render and reduce the size of transfer data, this paper proposed an algorithm which can cut down the render area and the size of data to be transferred by part rendering. It is expected that this algoritms can save computational resources and reduce consumption of electricity and bandwidth at the same time. According to the experiment, this algorithm can optimize the render performance up to 100 percent when picture is not changing too much and the size of transferred data is directly proportional to the number of objects need to be re-rendered. This result proved that when the picture is relatively stable this algorithm can speed up the renderi performance by at least 30% and reduce 50% transferred data in the common cases.

  19. Coarsening in high volume fraction nickel-base alloys

    Science.gov (United States)

    Mackay, R. A.; Nathal, M. V.

    1990-01-01

    The coarsening behavior of the gamma-prime precipitate has been examined in high volume fraction nickel-base alloys aged at elevated temperatures for times of up to 5000 h. Although the cube rate law was observed during coarsening, none of the presently available coarsening theories showed complete agreement with the experimental particle size distributions (PSDs). These discrepancies were thought to be due to elastic coherency strains which were not considered by the available models. Increasing the Mo content significantly influenced the PSDs and decreased the coarsening rate of the gamma-prime cubes, as a result of increasing the magnitude of the lattice mismatch. After extended aging times, the gamma-prime cubes underwent massive coalescence into plates at a rate which was much faster than the cuboidal coarsening rate. Once the gamma-prime plates were formed, further coarsening was not observed, and this stabilization of the microstructure was attributed to the development of dislocation networks at the gamma-gamma-prime interfaces.

  20. GPU Pro 4 advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2013-01-01

    GPU Pro4: Advanced Rendering Techniques presents ready-to-use ideas and procedures that can help solve many of your day-to-day graphics programming challenges. Focusing on interactive media and games, the book covers up-to-date methods producing real-time graphics. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Sebastien St-Laurent have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book begins with discussions on the abi

  1. Haptic rendering foundations, algorithms, and applications

    CERN Document Server

    Lin, Ming C

    2008-01-01

    For a long time, human beings have dreamed of a virtual world where it is possible to interact with synthetic entities as if they were real. It has been shown that the ability to touch virtual objects increases the sense of presence in virtual environments. This book provides an authoritative overview of state-of-theart haptic rendering algorithms and their applications. The authors examine various approaches and techniques for designing touch-enabled interfaces for a number of applications, including medical training, model design, and maintainability analysis for virtual prototyping, scienti

  2. Defects of organization in rendering medical aid

    Directory of Open Access Journals (Sweden)

    Shavkat Islamov

    2010-09-01

    Full Text Available The defects of organization at the medical institution mean disturbance of rules, norms and order of rendering of medical aid. The number of organization defects in Uzbekistan increased from 20.42%, in 1999 to 25.46% in 2001 with gradual decrease to 19.9% in 2003 and 16.66%, in 2006 and gradual increase to 21.95% and 28.28% (P<0.05 in 2005 and 2008. Among the groups of essential defects of organization there were following: disturbance of transportation rules, lack of dispensary care, shortcomings in keeping medical documentation.

  3. Gross tumor volume (GTV) and clinical target volume (CTV) for radiation therapy of benign skull base tumours; Volume tumoral macroscopique (GTV) et volume-cible anatomoclinique (CTV) dans la radiotherapie des tumeurs benignes de la base du crane

    Energy Technology Data Exchange (ETDEWEB)

    Maire, J.P. [Centre Hospitalier Universitaire de Bordeaux, Hopital Saint Andre, Service d' Oncologie Radiotherapie, 33 - Bordeaux (France); Liguoro, D.; San Galli, F. [Centre Hospitalier Universitaire de Bordeaux, Hopital Saint Andre, Service de Neurochirurgie A, 33 - Bordeaux (France)

    2001-10-01

    Skull base tumours represent a out 35 to 40% of all intracranial tumours. There are now many reports in the literature confirming the fact that about 80 to 90% of such tumours are controlled with fractionated radiotherapy. Stereotactic and 3-dimensional treatment planning techniques increase local control and central nervous system tolerance. Definition of the gross tumor volume (GTV) is generally easy with currently available medical imaging systems and computers for 3-dimensional dosimetry. The definition of the clinical target volume (CTV) is more difficult to appreciate: it is defined from the CTV plus a margin, which depends on the histology and anterior therapeutic history of the tumour. It is important to take into account the visible tumour and its possible extension pathways (adjacent bone, holes at the base of skull) and/or an anatomic region (sella turcica + adjacent cavernous sinus). It is necessary to evaluate these volumes with CT Scan and MRI to appreciate tumor extension in a 3-dimensional approach, in order to reduce the risk of marginal recurrences. The aim of this paper is to discuss volume definition as a function of tumour site and tumour type to be irradiated. (authors)

  4. Rendering of 3D Dynamic Virtual Environments

    CERN Document Server

    Catanese, Salvatore; Fiumara, Giacomo; Pagano, Francesco

    2011-01-01

    In this paper we present a framework for the rendering of dynamic 3D virtual environments which can be integrated in the development of videogames. It includes methods to manage sounds and particle effects, paged static geometries, the support of a physics engine and various input systems. It has been designed with a modular structure to allow future expansions. We exploited some open-source state-of-the-art components such as OGRE, PhysX, ParticleUniverse, etc.; all of them have been properly integrated to obtain peculiar physical and environmental effects. The stand-alone version of the application is fully compatible with Direct3D and OpenGL APIs and adopts OpenAL APIs to manage audio cards. Concluding, we devised a showcase demo which reproduces a dynamic 3D environment, including some particular effects: the alternation of day and night infuencing the lighting of the scene, the rendering of terrain, water and vegetation, the reproduction of sounds and atmospheric agents.

  5. Arc Length Based Grid Distribution For Surface and Volume Grids

    Science.gov (United States)

    Mastin, C. Wayne

    1996-01-01

    Techniques are presented for distributing grid points on parametric surfaces and in volumes according to a specified distribution of arc length. Interpolation techniques are introduced which permit a given distribution of grid points on the edges of a three-dimensional grid block to be propagated through the surface and volume grids. Examples demonstrate how these methods can be used to improve the quality of grids generated by transfinite interpolation.

  6. Arc length based grid distribution for surface and volume grids

    Energy Technology Data Exchange (ETDEWEB)

    Mastin, C.W. [NASA Langley Research Center, Hampton, VA (United States)

    1996-12-31

    Techniques are presented for distributing grid points on parametric surfaces and in volumes according to a specified distribution of arc length. Interpolation techniques are introduced which permit a given distribution of grid points on the edges of a three-dimensional grid block to be propagated through the surface and volume grids. Examples demonstrate how these methods can be used to improve the quality of grids generated by transfinite interpolation.

  7. Liquid volume monitoring based on ultrasonic sensor and Arduino microcontroller

    Science.gov (United States)

    Husni, M.; Siahaan, D. O.; Ciptaningtyas, H. T.; Studiawan, H.; Aliarham, Y. P.

    2016-04-01

    Incident of oil leakage and theft in oil tank often happens. To prevent it, the liquid volume insides the tank needs to be monitored continuously. Aim of the study is to calculate the liquid volume inside oil tank on any road condition and send the volume data and location data to the user. This research use some ultrasonic sensors (to monitor the fluid height), Bluetooth modules (to sent data from the sensors to the Arduino microcontroller), Arduino Microcontroller (to calculate the liquid volume), and also GPS/GPRS/GSM Shield module (to get location of vehicle and sent the data to the Server). The experimental results show that the accuracy rate of monitoring liquid volume inside tanker while the vehicle is in the flat road is 99.33% and the one while the vehicle is in the road with elevation angle is 84%. Thus, this system can be used to monitor the tanker position and the liquid volume in any road position continuously via web application to prevent illegal theft.

  8. Study of Automatic Fiber Placement Manipulator’s Robotic Kinematics Manipulability Based on Volume Element

    Directory of Open Access Journals (Sweden)

    Ge Xinfeng

    2013-02-01

    Full Text Available The method is proposed based on volume element in order to measure the manipulator’s robotic kinematics manipulability. Then studied the series redundant automatic fiber placement robotic manipulator’s operation space, draw the conclusion that the greater of the robotic manipulator’s operation space volume, the better of the robotic manipulator’s manipulability, volume element based on redundant robotic manipulator’s kinematics is proposed as an operational performance index. n-DOF serial robotic manipulator’s operation space is n-dimensional Riemannian manifold, the n-dimensional Riemannian manifold volume is calculated using the moving coordinate system and the exterior product definition in differential geometry and get the robotic manipulator’s operation space volume then compared the obtained results with the operation space volume using inner product determinant in the literature, it shows that the volume element as a kinematics operational performance index is feasible.

  9. DIRECT VOXEL-PROJECTION FOR VOLUMETRIC DATA RENDERING IN MEDICAL IMAGERY

    Institute of Scientific and Technical Information of China (English)

    吕忆松; 陈亚珠; 郭玉红

    2002-01-01

    The volumetric rendering of 3-D medical image data is very effective method for communication about radiological studies to clinicians. Algorithms that produce images with artifacts and inaccuracies are not clinically useful. This paper proposed a direct voxel-projection algorithm to implement volumetric data rendering. Using this algorithm, arbitrary volume rotation, transparent and cutaway views are generated satisfactorily. Compared with the existing raytracing methods, it improves the projection image quality greatly. Some experimental results about real medical CT image data demonstrate the advantages and fidelity of the proposed algorithm.

  10. A dynamical system of deposit and loan volumes based on the Lotka-Volterra model

    Science.gov (United States)

    Sumarti, N.; Nurfitriyana, R.; Nurwenda, W.

    2014-02-01

    In this research, we proposed a dynamical system of deposit and loan volumes of a bank using a predator-prey paradigm, where the predator is loan volumes, and the prey is deposit volumes. The existence of loan depends on the existence of deposit because the bank will allocate the loan volume from a portion of the deposit volume. The dynamical systems have been constructed are a simple model, a model with Michaelis-Menten Response and a model with the Reserve Requirement. Equilibria of the systems are analysed whether they are stable or unstable based on their linearised system.

  11. HAPTIC RENDERING OF THIN AND SOFT OBJECTS

    Directory of Open Access Journals (Sweden)

    Anish Garg

    2013-02-01

    Full Text Available In this work, we take up the problem of modeling deformations, both local and global, along with stable translations for radially-thin virtual objects especially like that of a wire or a spaghetti noodle, during haptic manipulation. To achieve this we recommend the use of mass-spring systems rather than geometric models like vertex based and free form deformation as they do not model the physics behind the interactions. Finite Equation Methods (FEMs are also not chosen as they are computationally expensive for fast haptic interactions and force feedback. We have explored different types of distribution of masses within the volume of the object, in order to come up with a suitable distribution of masses and network of springs and dampers so that the simulations mimic the behavior of a real object. We also model the constraint forces like normal and frictional forces between the object and the plane on which it is kept. Further, we simulate the effect of a varying temperature distribution of the object and discuss how anisotropic deformation of an object may be effected. We demonstrate through experimentations that it is indeed possible to haptically interact with virtual soft objects.

  12. Estimating carbon stocks based on forest volume-age relationship

    Science.gov (United States)

    Hangnan, Y.; Lee, W.; Son, Y.; Kwak, D.; Nam, K.; Moonil, K.; Taesung, K.

    2012-12-01

    This research attempted to estimate potential change of forest carbon stocks between 2010 and 2110 in South Korea, using the forest cover map and National Forest Inventory (NFI) data. Allometric functions (logistic regression models) of volume-age relationships were developed to estimate carbon stock change during upcoming 100 years for Pinus densiflora, Pinus koraiensis, Pinus rigida, Larix kaempferi,and Quercus spp. The current forest volume was estimated with the developed regression model and 4th forest cover map. The future volume was predicted by developed volume-age models with adding n years to current age. As a result, we found that the total forest volume would increase from 126.89 m^3/ha to 246.61 m^3/ha and the carbon stocks would increase from 90.55 Mg C ha^(-1) to 174.62 Mg C ha^(-1) during 100 years when current forest remains unchanged. The carbon stocks would increase by approximately 0.84 Mg C ha^(-1) yr^(-1), which has high value if considering other northern countries' (Canada, Russia, China) -0.10 ~ 0.28 Mg C ha^(-1) yr^(-1) in pervious study. This can be attributed to the fact that mixed forest and bamboo forest in this study did not considered. Moreover, it must be influenced by that the change of carbon stocks was estimated without the consideration of mortality, thinning, and tree species' change in this study. ;

  13. Control volume based hydrocephalus research; a phantom study

    Science.gov (United States)

    Cohen, Benjamin; Voorhees, Abram; Madsen, Joseph; Wei, Timothy

    2009-11-01

    Hydrocephalus is a complex spectrum of neurophysiological disorders involving perturbation of the intracranial contents; primarily increased intraventricular cerebrospinal fluid (CSF) volume and intracranial pressure are observed. CSF dynamics are highly coupled to the cerebral blood flows and pressures as well as the mechanical properties of the brain. Hydrocephalus, as such, is a very complex biological problem. We propose integral control volume analysis as a method of tracking these important interactions using mass and momentum conservation principles. As a first step in applying this methodology in humans, an in vitro phantom is used as a simplified model of the intracranial space. The phantom's design consists of a rigid container filled with a compressible gel. Within the gel a hollow spherical cavity represents the ventricular system and a cylindrical passage represents the spinal canal. A computer controlled piston pump supplies sinusoidal volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity and volume change as functions of time. Independent pressure measurements and momentum flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients and normal individuals. Flow and pressure measurements on the flow phantom will be presented through the control volume framework.

  14. Constructing And Rendering Vectorised Photographic Images

    Directory of Open Access Journals (Sweden)

    P. J. Willis

    2013-06-01

    Full Text Available We address the problem of representing captured images in the continuous mathematical space more usually associated with certain forms of drawn ('vector' images. Such an image is resolution-independent so can be used as a master for varying resolution-specific formats. We briefly describe the main features of a vectorising codec for photographic images, whose significance is that drawing programs can access images and image components as first-class vector objects. This paper focuses on the problem of rendering from the isochromic contour form of a vectorised image and demonstrates a new fill algorithm which could also be used in drawing generally. The fill method is described in terms of level set diffusion equations for clarity. Finally we show that image warping is both simplified and enhanced in the vector form and that we can demonstrate real histogram equalisation with genuinely rectangular histograms straightforwardly.

  15. Efficient volume preserving approach for skeleton-based implicit surfaces

    Institute of Scientific and Technical Information of China (English)

    史红兵; 童若锋; 董金祥

    2003-01-01

    This paper presents an efficient way to preserve the volume of implicit surfaces generated by skeletons. Recursive subdivision is used to efficiently calculate the volume. The criterion for subdivision is obtained by using the property of density functions and treating different types of skeletons respectively to get accurate minimum and maximum distances from a cube to a skeleton. Compared with the criterion generated by other ways such as using traditional Interval Analysis, Affine Arithmetic, or Lipschitz condition, our approach is much better both in speed and accuracy.

  16. Control volume based modelling of compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2004-01-01

    conservation laws for mass, energy, and momentum applied to a staggered mesh consisting of two overlapping strings of control volumes. Loss mechanisms can be included directly in the governing equations of models by including them as terms in the conservation laws. Heat transfer, flow friction......, and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures...

  17. Processing-in-Memory Enabled Graphics Processors for 3D Rendering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chenhao; Song, Shuaiwen; Wang, Jing; Zhang, Weigong; Fu, Xin

    2017-02-06

    The performance of 3D rendering of Graphics Processing Unit that convents 3D vector stream into 2D frame with 3D image effects significantly impact users’ gaming experience on modern computer systems. Due to the high texture throughput in 3D rendering, main memory bandwidth becomes a critical obstacle for improving the overall rendering performance. 3D stacked memory systems such as Hybrid Memory Cube (HMC) provide opportunities to significantly overcome the memory wall by directly connecting logic controllers to DRAM dies. Based on the observation that texel fetches significantly impact off-chip memory traffic, we propose two architectural designs to enable Processing-In-Memory based GPU for efficient 3D rendering.

  18. Real-time volume graphics

    CERN Document Server

    Engel, Klaus; Kniss, Joe; Rezk-Salama, Christof; Weiskopf, Daniel

    2006-01-01

    Based on course notes of SIGGRAPH course teaching techniques for real-time rendering of volumetric data and effects; covers both applications in scientific visualization and real-time rendering. Starts with the basics (texture-based ray casting) and then improves and expands the algorithms incrementally. Book includes source code, algorithms, diagrams, and rendered graphics.

  19. Control volume based modelling of compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2004-01-01

    , and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures...

  20. Collision Distance Detection Based on Swept Volume Strategy for Optimal Motion Plan

    Science.gov (United States)

    Huang, Tsai-Jeon

    A swept volume strategy to detect the collision distances between obstacles is presented in this paper for robot motion planning based on optimization technique. The strategy utilizes the recursive quadratic programming optimization method to perform the motion planning problem. This paper is based on segmental swept volume for convenient distance-to-contact calculation. Hermite interpolation is presented to approach the envelope bounding the swept volume. The new method is capable of handling a modestly non-convex swept volume and it has yielded accurate answers in distance calculations. Also, examples would be presented to illustrate and demonstrate this approach in the paper.

  1. VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas Exploration

    OpenAIRE

    2005-01-01

    http://ieeexplore.ieee.org/; In this paper, we present a volume roaming system dedicated to oil and gas exploration. Our system combines probe-based volume rendering with data processing and computing. The daily oil production and the estimation of the world proven-reserves directly affect the barrel price and have a strong impact on the economy. Among others, production and correct estimation are linked to the accuracy of the subsurface model used for predicting oil reservoirs shape and size...

  2. Resolution-independent surface rendering using programmable graphics hardware

    Science.gov (United States)

    Loop, Charles T.; Blinn, James Frederick

    2008-12-16

    Surfaces defined by a Bezier tetrahedron, and in particular quadric surfaces, are rendered on programmable graphics hardware. Pixels are rendered through triangular sides of the tetrahedra and locations on the shapes, as well as surface normals for lighting evaluations, are computed using pixel shader computations. Additionally, vertex shaders are used to aid interpolation over a small number of values as input to the pixel shaders. Through this, rendering of the surfaces is performed independently of viewing resolution, allowing for advanced level-of-detail management. By individually rendering tetrahedrally-defined surfaces which together form complex shapes, the complex shapes can be rendered in their entirety.

  3. Temporally rendered automatic cloud extraction (TRACE) system

    Science.gov (United States)

    Bodrero, Dennis M.; Yale, James G.; Davis, Roger E.; Rollins, John M.

    1999-10-01

    Smoke/obscurant testing requires that 2D cloud extent be extracted from visible and thermal imagery. These data are used alone or in combination with 2D data from other aspects to make 3D calculations of cloud properties, including dimensions, volume, centroid, travel, and uniformity. Determining cloud extent from imagery has historically been a time-consuming manual process. To reduce time and cost associated with smoke/obscurant data processing, automated methods to extract cloud extent from imagery were investigated. The TRACE system described in this paper was developed and implemented at U.S. Army Dugway Proving Ground, UT by the Science and Technology Corporation--Acuity Imaging Incorporated team with Small Business Innovation Research funding. TRACE uses dynamic background subtraction and 3D fast Fourier transform as primary methods to discriminate the smoke/obscurant cloud from the background. TRACE has been designed to run on a PC-based platform using Windows. The PC-Windows environment was chosen for portability, to give TRACE the maximum flexibility in terms of its interaction with peripheral hardware devices such as video capture boards, removable media drives, network cards, and digital video interfaces. Video for Windows provides all of the necessary tools for the development of the video capture utility in TRACE and allows for interchangeability of video capture boards without any software changes. TRACE is designed to take advantage of future upgrades in all aspects of its component hardware. A comparison of cloud extent determined by TRACE with manual method is included in this paper.

  4. Application of MRI volume rendering in surgical approach by superior temporal sulcus-temporal horn of lateral ventricle%MRI容量重建技术在颞上沟-侧脑室颞角手术入路选择中的应用

    Institute of Scientific and Technical Information of China (English)

    白芃; 刘彩霞; 贾林沛; 刘浩源; 苏略; 孙维; 李幼琼

    2014-01-01

    目的:通过测量经颞上沟-侧脑室颞角手术入路的相关数据,初步定位大脑背外侧面颞上沟进入侧脑室最短距离的点,寻找经颞上沟进入侧脑室颞角的最佳手术入路点。方法:选取120例成年人脑部 MRI扫描标本,利用容量重建技术构建大脑三维立体模型,测得颞上沟的长度 S1。沿垂直于颞叶长轴的方向以1.0 mm间距切割得到多个冠状切面,依次测量颞上沟到侧脑室颞角的距离并确定最短距离S2,同时测量颞上沟的深度S3,测量大脑颞上沟表面相对应的最短距离点到颞上沟前端起始部的距离 S4,计算 S4与 S1的比值 M,同时测量最短距离与正中矢状位方向之间的夹角α。所有样本进行双侧测量,对比两侧的测量结果。结果:120例国人的 S1左侧为(159.56±17.55)mm,右侧为(164.35±15.07)mm,左右两侧比较差异无统计学意义(P>0.05);S2左侧为(8.18±0.96)mm,右侧为(7.81±0.90)mm,左右两侧比较差异无统计学意义(P>0.05);S3左侧为(12.19±1.43)mm,右侧为(11.57±1.33)mm,左右两侧比较差异无统计学意义(P>0.05);S4左侧为(100.88±16.09)mm,右侧为(104.15±14.49)mm,左右两侧比较差异无统计学意义(P>0.05);M左侧为(0.63±0.07),右侧为(0.63±0.06),左右两侧比较差异无统计学意义(P>0.05);α左侧为(55.80±3.64)°,右侧为(56.46±4.17)°,左右两侧比较差异无统计学意义(P>0.05)。结论:颞上沟前端3/5处可能为理想的手术入路点,由该点进入侧脑室颞角距离最短,提示实施颞上沟-侧脑室颞角手术时该入路可减少对脑组织损伤。%Objective To acquire some related data of surgical approach through brain superior temporal sulcus to temporal horn of lateral ventricle by MRI volume rendering, and to orientate the point of superior temporal sulcus on the lateral

  5. 3DIVE:An Immersive Environment for Interactive Volume Data Exploration

    Institute of Scientific and Technical Information of China (English)

    Michael Boyles; FANG ShiaoFen(方晓芬)

    2003-01-01

    This paper describes an immersive system, called 3DIVE, for interactive volume data visualization and exploration inside the CAVE virtual environment. Combining interactive volume rendering and virtual reality provides a natural immersive environment for volumetric data visualization. More advanced data exploration operations, such as object level data manipulation,simulation and analysis, are supported in 3DIVE by several new techniques. In particular, volume primitives and texture regions are used for the rendering, manipulation, and collision detection of volumetric objects; and the region-based rendering pipeline is integrated with 3D image filters to provide an image-based mechanism for interactive transfer function design. The system has been recently released as public domain software for CAVE/ImmersaDesk users, and is currently being actively used by various scientific and biomedical visualization projects.

  6. Finite volume schemes for multi-dimensional hyperbolic systems based on the use of bicharacteristics

    OpenAIRE

    Lukácová-Medvid'ová, Maria; Saibertova, Jitka

    2004-01-01

    In this paper we present recent results for the bicharacteristic based finite volume schemes, the so-called finite volume evolution Galerkin (FVEG) schemes. These methods were proposed to solve multi-dimensional hyperbolic conservation laws. They combine the usually conflicting design objectives of using the conservation form and following the characteristics, or bicharacteristics. This is realized by combining the finite volume formulation with approximate evolution operators, which use bich...

  7. Finite volume schemes for multidimensional hyperbolic systems based on the use of bicharacteristics

    OpenAIRE

    Lukácová-Medvid'ová, Maria

    2003-01-01

    In this survey paper we present an overview on recent results for the bicharacteristics based finite volume schemes, the so-called finite volume evolution Galerkin (FVEG) schemes. These methods were proposed to solve multidimensional hyperbolic conservation laws. They combine the usually conflicting design objectives of using the conservation form and following the characteritics, or bicharacteritics. This is realized by combining the finite volume formulation with approximate evolution opera...

  8. Multi-Grained Level of Detail for Rendering Complex Meshes Using a Hierarchical Seamless Texture Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Niski, K; Purnomo, B; Cohen, J

    2006-11-06

    Previous algorithms for view-dependent level of detail provide local mesh refinements either at the finest granularity or at a fixed, coarse granularity. The former provides triangle-level adaptation, often at the expense of heavy CPU usage and low triangle rendering throughput; the latter improves CPU usage and rendering throughput by operating on groups of triangles. We present a new multiresolution hierarchy and associated algorithms that provide adaptive granularity. This multi-grained hierarchy allows independent control of the number of hierarchy nodes processed on the CPU and the number of triangles to be rendered on the GPU. We employ a seamless texture atlas style of geometry image as a GPU-friendly data organization, enabling efficient rendering and GPU-based stitching of patch borders. We demonstrate our approach on both large triangle meshes and terrains with up to billions of vertices.

  9. Scan-based volume animation driven by locally adaptive articulated registrations.

    Science.gov (United States)

    Rhee, Taehyun; Lewis, J P; Neumann, Ulrich; Nayak, Krishna S

    2011-03-01

    This paper describes a complete system to create anatomically accurate example-based volume deformation and animation of articulated body regions, starting from multiple in vivo volume scans of a specific individual. In order to solve the correspondence problem across volume scans, a template volume is registered to each sample. The wide range of pose variations is first approximated by volume blend deformation (VBD), providing proper initialization of the articulated subject in different poses. A novel registration method is presented to efficiently reduce the computation cost while avoiding strong local minima inherent in complex articulated body volume registration. The algorithm highly constrains the degrees of freedom and search space involved in the nonlinear optimization, using hierarchical volume structures and locally constrained deformation based on the biharmonic clamped spline. Our registration step establishes a correspondence across scans, allowing a data-driven deformation approach in the volume domain. The results provide an occlusion-free person-specific 3D human body model, asymptotically accurate inner tissue deformations, and realistic volume animation of articulated movements driven by standard joint control estimated from the actual skeleton. Our approach also addresses the practical issues arising in using scans from living subjects. The robustness of our algorithms is tested by their applications on the hand, probably the most complex articulated region in the body, and the knee, a frequent subject area for medical imaging due to injuries.

  10. 基于GP U的实时水面场景并行渲染算法%Gpu-Based Real-Time Parallel Algorithm for Rendering Water-Surface Scene

    Institute of Scientific and Technical Information of China (English)

    孙君; 秦勃

    2014-01-01

    The simulation of water surface has always been a problem.In recent years,with the rapid development of graphic processing unit (GPU),its function is no longer confined to graphic processing, but enters into the field of general-purpose computing,so we can take advantage of GPU parallel com-puting to accelerate the process of water surface simulation.The main content of this paper is the real-time simulation of sea surface.The sea surface rendering algorithm uses the proj ected grid technology. The calculation of vertex coordinates of proj ected grid using the CUDA parallel computing technology were accelerated,compared the speed of calculating a large amount of data using CPU to calculating a large amount of data using GPU.Finally,the program improved rendering speed significantly,so that the program can generate a more realistic picture,while maintaining a satisfactory frame rate.%水面的模拟历来都是一个难题。近几年,随着图形处理器(GPU)的迅速发展,它的功能不再局限于图形处理,而是进入到了通用计算领域,所以可以利用 GPU 的并行计算优势来加速水面的模拟过程。本文研究的主要内容是海浪的实时模拟绘制。海浪渲染算法使用了投影网格技术,使用 CUDA并行计算方法对投影网格顶点坐标的计算进行加速,比较使用 CPU 进行大数据量计算和使用 GPU 进行大数据量计算的速度差异。最终,改进后的程序渲染速度大幅提高,使得程序可以在生成更逼真画面的同时保持令人满意的帧率。

  11. Efficient Unbiased Rendering using Enlightened Local Path Sampling

    DEFF Research Database (Denmark)

    Kristensen, Anders Wang

    . The downside to using these algorithms is that they can be slow to converge. Due to the nature of Monte Carlo methods, the results are random variables subject to variance. This manifests itself as noise in the images, which can only be reduced by generating more samples. The reason these methods are slow...... is because of a lack of eeffective methods of importance sampling. Most global illumination algorithms are based on local path sampling, which is essentially a recipe for constructing random walks. Using this procedure paths are built based on information given explicitly as part of scene description......, such as the location of the light sources or cameras, or the re flection models at each point. In this work we explore new methods of importance sampling paths. Our idea is to analyze the scene before rendering and compute various statistics that we use to improve importance sampling. The first of these are adjoint...

  12. Real-time Flame Rendering with GPU and CUDA

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2011-02-01

    Full Text Available This paper proposes a method of flame simulation based on Lagrange process and chemical composition, which was non-grid and the problems associated with there grids were overcome. The turbulence movement of flame was described by Lagrange process and chemical composition was added into flame simulation which increased the authenticity of flame. For real-time applications, this paper simplified the EMST model. GPU-based particle system combined with OpenGL VBO and PBO unique technology was used to accelerate finally, the speed of vertex and pixel data interaction between CPU and GPU increased two orders of magnitude, frame rate of rendering increased by 30%, which achieved fast dynamic flame real-time simulation. For further real-time applications, this paper presented a strategy to implement flame simulation with CUDA on GPU, which achieved a speed up to 2.5 times the previous implementation.

  13. Enhancement of the Color Rendering Index of White Organic Light-Emitting Devices Based on a Blue and Red Emitting Layer with a Y3Al5O12:Ce3+ Green Phosphor Color-Conversion Layer.

    Science.gov (United States)

    Jang, J S; Lee, K S; Lee, E J; Kwon, M S; Kim, T W

    2015-01-01

    White organic light-emitting devices (WOLEDs) were fabricated utilizing blue and red emitting organic light-emitting devices and a color conversion layer (CCL) made of yttrium aluminum garnet (YAG:Ce3+) phosphors embedded into polymethylmethacrylate. The good color balance for the color conversion of the WOLEDs was achieved utilizing 20-nm blue and 10-nm red OLEDs. The electroluminescence spectrum for the fabricated device showed a white color consisting of the blue color from the 4,4-bis(2,2-diphenylethen-1-yl)bipheny layer, the red color from the tris-(8-hydroxyquinolinato) aluminum: 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran layer, and the green color from the YAG:Ce3+ phosphor. The Commission Internationale de l'Eclairage coordinates of the WOLEDs slightly shifted from (0.25, 0.23) of the blue and red emission OLEDs without phosphors to (0.34, 0.35) of the OLEDs with green phosphors, indicative of the pure white color. WOLEDs with a CCL exhibited three wavelength white emissions with a color rendering index of 86.

  14. Time Prediction for Reyes Rendering Architecture Based on AdaBoost.MH Algorithm%基于AdaBoost.MH的Reyes渲染架构时间预估算法

    Institute of Scientific and Technical Information of China (English)

    孟庆利; 吕琳; 靳颖; 孟祥旭; 孟雷

    2014-01-01

    在大规模真实感渲染系统中,需要对渲染任务进行分解和调度,将其优化后分配给不同的可用计算资源,实现快速集群渲染.为了实现渲染任务的有效分解和调度,提高并行效率,高精度的时间预估算法是不可欠缺的.通过深入研究使用RenderMan规范的渲染器常用的Reyes渲染架构中对渲染时间产生影响的各种因素,分析提取出影响渲染时间的7大要素特征,提出了基于AdaBoost.MH的渲染时间预估算法.通过在基于Reyes渲染架构的渲染引擎中的实验与测试表明,训练集和测试集的准确率分别达到79%和78%,为渲染任务的并行调度奠定了基础,同时也为渲染费用预估提供了依据.

  15. New conformity indices based on the calculation of distances between the target volume and the volume of reference isodose

    Science.gov (United States)

    Park, J M; Park, S-Y; Ye, S-J; Kim, J H; Carlson, J

    2014-01-01

    Objective: To present conformity indices (CIs) based on the distance differences between the target volume (TV) and the volume of reference isodose (VRI). Methods: The points on the three-dimensional surfaces of the TV and the VRI were generated. Then, the averaged distances between the points on the TV and the VRI were calculated (CIdistance). The performance of the presented CIs were evaluated by analysing six situations, which were a perfect match, an expansion and a reduction of the distance from the centroid to the VRI compared with the distance from the centroid to the TV by 10%, a lateral shift of the VRI by 3 cm, a rotation of the VRI by 45° and a spherical-shaped VRI having the same volume as the TV. The presented CIs were applied to the clinical prostate and head and neck (H&N) plans. Results: For the perfect match, CIdistance was 0 with 0 as the standard deviation (SD). When expanding and reducing, CIdistance was 10 and −10 with SDs 11. The average value of the CIdistance in the prostate and H&N plans was 0.13 ± 7.44 and 6.04 ± 23.27, respectively. Conclusion: The performance of the CIdistance was equal or better than those of the conventional CIs. Advances in knowledge: The evaluation of target conformity by the distances between the surface of the TV and the VRI could be more accurate than evaluation with volume information. PMID:25225915

  16. HDlive rendering images of the fetal stomach: a preliminary report.

    Science.gov (United States)

    Inubashiri, Eisuke; Abe, Kiyotaka; Watanabe, Yukio; Akutagawa, Noriyuki; Kuroki, Katumaru; Sugawara, Masaki; Maeda, Nobuhiko; Minami, Kunihiro; Nomura, Yasuhiro

    2015-01-01

    This study aimed to show reconstruction of the fetal stomach using the HDlive rendering mode in ultrasound. Seventeen healthy singleton fetuses at 18-34 weeks' gestational age were observed using the HDlive rendering mode of ultrasound in utero. In all of the fetuses, we identified specific spatial structures, including macroscopic anatomical features (e.g., the pyrous, cardia, fundus, and great curvature) of the fetal stomach, using the HDlive rendering mode. In particular, HDlive rendering images showed remarkably fine details that appeared as if they were being viewed under an endoscope, with visible rugal folds after 27 weeks' gestational age. Our study suggests that the HDlive rendering mode can be used as an additional method for evaluating the fetal stomach. The HDlive rendering mode shows detailed 3D structural images and anatomically realistic images of the fetal stomach. This technique may be effective in prenatal diagnosis for examining detailed information of fetal organs.

  17. Web-based volume slicer for 3D electron-microscopy data from EMDB.

    Science.gov (United States)

    Salavert-Torres, José; Iudin, Andrii; Lagerstedt, Ingvar; Sanz-García, Eduardo; Kleywegt, Gerard J; Patwardhan, Ardan

    2016-05-01

    We describe the functionality and design of the Volume slicer - a web-based slice viewer for EMDB entries. This tool uniquely provides the facility to view slices from 3D EM reconstructions along the three orthogonal axes and to rapidly switch between them and navigate through the volume. We have employed multiple rounds of user-experience testing with members of the EM community to ensure that the interface is easy and intuitive to use and the information provided is relevant. The impetus to develop the Volume slicer has been calls from the EM community to provide web-based interactive visualisation of 2D slice data. This would be useful for quick initial checks of the quality of a reconstruction. Again in response to calls from the community, we plan to further develop the Volume slicer into a fully-fledged Volume browser that provides integrated visualisation of EMDB and PDB entries from the molecular to the cellular scale.

  18. On-the-fly generation and rendering of infinite cities on the GPU

    KAUST Repository

    Steinberger, Markus

    2014-05-01

    In this paper, we present a new approach for shape-grammar-based generation and rendering of huge cities in real-time on the graphics processing unit (GPU). Traditional approaches rely on evaluating a shape grammar and storing the geometry produced as a preprocessing step. During rendering, the pregenerated data is then streamed to the GPU. By interweaving generation and rendering, we overcome the problems and limitations of streaming pregenerated data. Using our methods of visibility pruning and adaptive level of detail, we are able to dynamically generate only the geometry needed to render the current view in real-time directly on the GPU. We also present a robust and efficient way to dynamically update a scene\\'s derivation tree and geometry, enabling us to exploit frame-to-frame coherence. Our combined generation and rendering is significantly faster than all previous work. For detailed scenes, we are capable of generating geometry more rapidly than even just copying pregenerated data from main memory, enabling us to render cities with thousands of buildings at up to 100 frames per second, even with the camera moving at supersonic speed. © 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  19. ROOT OO model to render multi-level 3-D geometrical objects via an OpenGL

    Science.gov (United States)

    Brun, Rene; Fine, Valeri; Rademakers, Fons

    2001-08-01

    This paper presents a set of C++ low-level classes to render 3D objects within ROOT-based frameworks. This allows developing a set of viewers with different properties the user can choose from to render one and the same 3D objects.

  20. A volume-based method for denoising on curved surfaces

    KAUST Repository

    Biddle, Harry

    2013-09-01

    We demonstrate a method for removing noise from images or other data on curved surfaces. Our approach relies on in-surface diffusion: we formulate both the Gaussian diffusion and Perona-Malik edge-preserving diffusion equations in a surface-intrinsic way. Using the Closest Point Method, a recent technique for solving partial differential equations (PDEs) on general surfaces, we obtain a very simple algorithm where we merely alternate a time step of the usual Gaussian diffusion (and similarly Perona-Malik) in a small 3D volume containing the surface with an interpolation step. The method uses a closest point function to represent the underlying surface and can treat very general surfaces. Experimental results include image filtering on smooth surfaces, open surfaces, and general triangulated surfaces. © 2013 IEEE.

  1. Dynamic Gain Equalizer Based on the H-PDLC Volume Phase Grating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The structure and Bragg diffraction characteristics of volume phase gratings based on H-PDLC technology are presented, and the principles and simulation aided design of dynamic gain equalizers with the gratings are discussed.

  2. Volume-outcome relation for acute appendicitis: evidence from a nationwide population-based study.

    Directory of Open Access Journals (Sweden)

    Po-Li Wei

    Full Text Available BACKGROUND: Although procedures like appendectomy have been studied extensively, the relative importance of each surgeon's surgical volume-to-ruptured appendicitis has not been explored. The purpose of this study was to investigate the rate of ruptured appendicitis by surgeon-volume groups as a measure of quality of care for appendicitis by using a nationwide population-based dataset. METHODS: We identified 65,339 first-time hospitalizations with a discharge diagnosis of acute appendicitis (International Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM codes 540, 540.0, 540.1 and 540.9 between January 2007 and December 2009. We used "whether or not a patient had a perforated appendicitis" as the outcome measure. A conditional (fixed-effect logistic regression model was performed to explore the odds of perforated appendicitis among surgeon case volume groups. RESULTS: Patients treated by low-volume surgeons had significantly higher morbidity rates than those treated by high-volume (28.1% vs. 26.15, p<0.001 and very-high-volume surgeons (28.1% vs. 21.4%, p<0.001. After adjusting for surgeon practice location, and teaching status of practice hospital, and patient age, gender, and Charlson Comorbidity Index, and hospital acute appendicitis volume, patients treated by low-volume surgeons had significantly higher rates of perforated appendicitis than those treated by medium-volume surgeons (OR = 1.09, p<0.001, high-volume surgeons (OR = 1.16, p<0.001, or very-high-volume surgeons (OR = 1.54, p<0.001. CONCLUSION: Our study suggested that surgeon volume is an important factor with regard to the rate of ruptured appendicitis.

  3. A Well-Clear Volume Based on Time to Entry Point

    Science.gov (United States)

    Narkawicz, Anthony J.; Munoz, Cesar A.; Upchurch, Jason M.; Chamberlain, James P.; Consiglio, Maria C.

    2014-01-01

    A well-clear volume is a key component of NASA's Separation Assurance concept for the integration of UAS in the NAS. This paper proposes a mathematical definition of the well-clear volume that uses, in addition to distance thresholds, a time threshold based on time to entry point (TEP). The mathematical model that results from this definition is more conservative than other candidate definitions of the wellclear volume that are based on range over closure rate and time to closest point of approach.

  4. Transaction-Based Building Controls Framework, Volume 1: Reference Guide

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pratt, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Akyol, Bora A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Foster, Nikolas AF [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Somani, Abhishek [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steckley, Andrew C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    This document proposes a framework concept to achieve the objectives of raising buildings’ efficiency and energy savings potential benefitting building owners and operators. We call it a transaction-based framework, wherein mutually-beneficial and cost-effective market-based transactions can be enabled between multiple players across different domains. Transaction-based building controls are one part of the transactional energy framework. While these controls realize benefits by enabling automatic, market-based intra-building efficiency optimizations, the transactional energy framework provides similar benefits using the same market -based structure, yet on a larger scale and beyond just buildings, to the society at large.

  5. Transaction-Based Building Controls Framework, Volume 1: Reference Guide

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Sriram; Pratt, Robert G.; Akyol, Bora A.; Fernandez, Nicholas; Foster, Nikolas AF; Katipamula, Srinivas; Mayhorn, Ebony T.; Somani, Abhishek; Steckley, Andrew C.; Taylor, Zachary T.

    2014-04-28

    This document proposes a framework concept to achieve the objectives of raising buildings’ efficiency and energy savings potential benefitting building owners and operators. We call it a transaction-based framework, wherein mutually-beneficial and cost-effective market-based transactions can be enabled between multiple players across different domains. Transaction-based building controls are one part of the transactional energy framework. While these controls realize benefits by enabling automatic, market-based intra-building efficiency optimizations, the transactional energy framework provides similar benefits using the same market -based structure, yet on a larger scale and beyond just buildings, to the society at large.

  6. Volume Based DTM Generation from Very High Resolution Photogrammetric Dsms

    Science.gov (United States)

    Piltz, B.; Bayer, S.; Poznanska, A. M.

    2016-06-01

    In this paper we propose a new algorithm for digital terrain (DTM) model reconstruction from very high spatial resolution digital surface models (DSMs). It represents a combination of multi-directional filtering with a new metric which we call normalized volume above ground to create an above-ground mask containing buildings and elevated vegetation. This mask can be used to interpolate a ground-only DTM. The presented algorithm works fully automatically, requiring only the processing parameters minimum height and maximum width in metric units. Since slope and breaklines are not decisive criteria, low and smooth and even very extensive flat objects are recognized and masked. The algorithm was developed with the goal to generate the normalized DSM for automatic 3D building reconstruction and works reliably also in environments with distinct hillsides or terrace-shaped terrain where conventional methods would fail. A quantitative comparison with the ISPRS data sets Potsdam and Vaihingen show that 98-99% of all building data points are identified and can be removed, while enough ground data points (~66%) are kept to be able to reconstruct the ground surface. Additionally, we discuss the concept of size dependent height thresholds and present an efficient scheme for pyramidal processing of data sets reducing time complexity to linear to the number of pixels, O(WH).

  7. Emergency department spirometric volume and base deficit delineate risk for torso injury in stable patients

    Directory of Open Access Journals (Sweden)

    Sipe Eilynn K

    2004-01-01

    Full Text Available Abstract Background We sought to determine torso injury rates and sensitivities associated with fluid-positive abdominal ultrasound, metabolic acidosis (increased base deficit and lactate, and impaired pulmonary physiology (decreased spirometric volume and PaO2/FiO2. Methods Level I trauma center prospective pilot and post-pilot study (2000–2001 of stable patients. Increased base deficit was 2.5 mmol/L in ethanol-negative and ≥ 3.0 mmol/L in ethanol-positive patients. Decreased PaO2/FiO2 was Results Of 215 patients, 66 (30.7% had a torso injury (abdominal/pelvic injury n = 35 and/or thoracic injury n = 43. Glasgow Coma Scale score was 14.8 ± 0.5 (13–15. Torso injury rates and sensitivities were: abdominal ultrasound negative and normal base deficit, lactate, PaO2/FiO2, and spirometric volume – 0.0% & 0.0%; normal base deficit and normal spirometric volume – 4.2% & 4.5%; chest/abdominal soft tissue injury – 37.8% & 47.0%; increased lactate – 39.7% & 47.0%; increased base deficit – 41.3% & 75.8%; increased base deficit and/or decreased spirometric volume – 43.8% & 95.5%; decreased PaO2/FiO2 – 48.9% & 33.3%; positive abdominal ultrasound – 62.5% & 7.6%; decreased spirometric volume – 73.4% & 71.2%; increased base deficit and decreased spirometric volume – 82.9% & 51.5%. Conclusions Trauma patients with normal base deficit and spirometric volume are unlikely to have a torso injury. Patients with increased base deficit or lactate, decreased spirometric volume, decreased PaO2/FiO2, or positive FAST have substantial risk for torso injury. Increased base deficit and/or decreased spirometric volume are highly sensitive for torso injury. Base deficit and spirometric volume values are readily available and increase or decrease the suspicion for torso injury.

  8. Effect of hospital volume on processes of breast cancer care: A National Cancer Data Base study.

    Science.gov (United States)

    Yen, Tina W F; Pezzin, Liliana E; Li, Jianing; Sparapani, Rodney; Laud, Purushuttom W; Nattinger, Ann B

    2017-05-15

    The purpose of this study was to examine variations in delivery of several breast cancer processes of care that are correlated with lower mortality and disease recurrence, and to determine the extent to which hospital volume explains this variation. Women who were diagnosed with stage I-III unilateral breast cancer between 2007 and 2011 were identified within the National Cancer Data Base. Multiple logistic regression models were developed to determine whether hospital volume was independently associated with each of 10 individual process of care measures addressing diagnosis and treatment, and 2 composite measures assessing appropriateness of systemic treatment (chemotherapy and hormonal therapy) and locoregional treatment (margin status and radiation therapy). Among 573,571 women treated at 1755 different hospitals, 38%, 51%, and 10% were treated at high-, medium-, and low-volume hospitals, respectively. On multivariate analysis controlling for patient sociodemographic characteristics, treatment year and geographic location, hospital volume was a significant predictor for cancer diagnosis by initial biopsy (medium volume: odds ratio [OR] = 1.15, 95% confidence interval [CI] = 1.05-1.25; high volume: OR = 1.30, 95% CI = 1.14-1.49), negative surgical margins (medium volume: OR = 1.15, 95% CI = 1.06-1.24; high volume: OR = 1.28, 95% CI = 1.13-1.44), and appropriate locoregional treatment (medium volume: OR = 1.12, 95% CI = 1.07-1.17; high volume: OR = 1.16, 95% CI = 1.09-1.24). Diagnosis of breast cancer before initial surgery, negative surgical margins and appropriate use of radiation therapy may partially explain the volume-survival relationship. Dissemination of these processes of care to a broader group of hospitals could potentially improve the overall quality of care and outcomes of breast cancer survivors. Cancer 2017;123:957-66. © 2016 American Cancer Society. © 2016 American Cancer Society.

  9. Excellent color rendering indexes of multi-package white LEDs.

    Science.gov (United States)

    Oh, Ji Hye; Yang, Su Ji; Sung, Yeon-Goog; Do, Y R

    2012-08-27

    This study introduces multi-package white light-emitting diodes (LEDs) system with the ability to realize high luminous efficacy and an excellent color rendering index (CRI, R a) using the R B,M A B,M G B,M C B (R B,M A B,M G B,M denoted as a long-pass dichroic filter (LPDF)-capped, monochromatic red, amber and green phosphor converted-LED (pc-LED) pumped by a blue LED chip, and C B denoted as a cyan and blue mixed pc-LED pumped by a blue LED) system. The luminous efficacy and color rendering index (CRI) of multi-package white LED systems are compared while changing the concentration of the cyan phosphor used in the paste of a cyan-blue LED package and the driving current of individual LEDs in multi-package white LEDs at correlated color temperatures (CCTs) ranging from 6,500 K (cold white) to 2,700 K (warm white) using a set of eight CCTs as specified by the American National Standards Institute (ANSI) standard number C78.377-2008. A R B,M A B,M G B,M C B white LED system provides high luminous efficacy (≥ 96 lm/W) and a color rendering index (≥ 91) encompassing the complete CCT range. We also compare the optical properties of the R B,M A B,M G B,M C B system with those of the R B,M A B,M G B,M B and RAGB (red, amber, green, and blue semiconductor-type narrow-spectrum-band LEDs) systems. It can be expected that the cyan color added to a blue LED in multi-package white LEDs based on LPDF-capped, phosphor-converted monochromatic LEDs will meet the needs of the high-quality, highly efficient, full-color white LED lighting market in the near future.

  10. Projections for the Production of Bulk Volume Bio-Based Polymers in Europe and Environmental Implications

    NARCIS (Netherlands)

    Patel, M.K.; Crank, M.

    2007-01-01

    In this paper we provide an overview of the most important emerging groups of bio-based polymers for bulk volume applications and we discuss market projections for these types of bio-based polymers in the EU, thereby distinguishing between three scenarios. Bio-based polymers are projected to reach a

  11. Realistic Real-Time Outdoor Rendering in Augmented Reality

    Science.gov (United States)

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems. PMID:25268480

  12. Realistic real-time outdoor rendering in augmented reality.

    Science.gov (United States)

    Kolivand, Hoshang; Sunar, Mohd Shahrizal

    2014-01-01

    Realistic rendering techniques of outdoor Augmented Reality (AR) has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps). Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.

  13. Method of producing hydrogen, and rendering a contaminated biomass inert

    Science.gov (United States)

    Bingham, Dennis N [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID

    2010-02-23

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  14. Realistic real-time outdoor rendering in augmented reality.

    Directory of Open Access Journals (Sweden)

    Hoshang Kolivand

    Full Text Available Realistic rendering techniques of outdoor Augmented Reality (AR has been an attractive topic since the last two decades considering the sizeable amount of publications in computer graphics. Realistic virtual objects in outdoor rendering AR systems require sophisticated effects such as: shadows, daylight and interactions between sky colours and virtual as well as real objects. A few realistic rendering techniques have been designed to overcome this obstacle, most of which are related to non real-time rendering. However, the problem still remains, especially in outdoor rendering. This paper proposed a much newer, unique technique to achieve realistic real-time outdoor rendering, while taking into account the interaction between sky colours and objects in AR systems with respect to shadows in any specific location, date and time. This approach involves three main phases, which cover different outdoor AR rendering requirements. Firstly, sky colour was generated with respect to the position of the sun. Second step involves the shadow generation algorithm, Z-Partitioning: Gaussian and Fog Shadow Maps (Z-GaF Shadow Maps. Lastly, a technique to integrate sky colours and shadows through its effects on virtual objects in the AR system, is introduced. The experimental results reveal that the proposed technique has significantly improved the realism of real-time outdoor AR rendering, thus solving the problem of realistic AR systems.

  15. 7 CFR 54.15 - Advance information concerning service rendered.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 54.15... Service § 54.15 Advance information concerning service rendered. Upon request of any applicant, all or any... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED)...

  16. Volume-Outcome Relation for Acute Appendicitis: Evidence from a Nationwide Population-Based Study

    Science.gov (United States)

    Wei, Po-Li; Liu, Shih-Ping; Keller, Joseph J.; Lin, Herng-Ching

    2012-01-01

    Background Although procedures like appendectomy have been studied extensively, the relative importance of each surgeon's surgical volume-to-ruptured appendicitis has not been explored. The purpose of this study was to investigate the rate of ruptured appendicitis by surgeon-volume groups as a measure of quality of care for appendicitis by using a nationwide population-based dataset. Methods We identified 65,339 first-time hospitalizations with a discharge diagnosis of acute appendicitis (International Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM) codes 540, 540.0, 540.1 and 540.9) between January 2007 and December 2009. We used “whether or not a patient had a perforated appendicitis” as the outcome measure. A conditional (fixed-effect) logistic regression model was performed to explore the odds of perforated appendicitis among surgeon case volume groups. Results Patients treated by low-volume surgeons had significantly higher morbidity rates than those treated by high-volume (28.1% vs. 26.15, pappendicitis volume, patients treated by low-volume surgeons had significantly higher rates of perforated appendicitis than those treated by medium-volume surgeons (OR = 1.09, pappendicitis. PMID:23300703

  17. Gamut Volume Index: a color preference metric based on meta-analysis and optimized colour samples.

    Science.gov (United States)

    Liu, Qiang; Huang, Zheng; Xiao, Kaida; Pointer, Michael R; Westland, Stephen; Luo, M Ronnier

    2017-07-10

    A novel metric named Gamut Volume Index (GVI) is proposed for evaluating the colour preference of lighting. This metric is based on the absolute gamut volume of optimized colour samples. The optimal colour set of the proposed metric was obtained by optimizing the weighted average correlation between the metric predictions and the subjective ratings for 8 psychophysical studies. The performance of 20 typical colour metrics was also investigated, which included colour difference based metrics, gamut based metrics, memory based metrics as well as combined metrics. It was found that the proposed GVI outperformed the existing counterparts, especially for the conditions where correlated colour temperatures differed.

  18. Research of global illumination algorithms rendering in glossy scene

    Institute of Scientific and Technical Information of China (English)

    BAI Shuangxue; ZHANG Qiang; ZHOU Dongsheng

    2012-01-01

    In computer graphic (CG), illumination rendering generated realistic effect at virtual scene is amazing. Not only plausible lighting effect is to show the relative position between of the objects, but also to reflect the material of visual appearance of the vir- tual objects. The diffuse-scene rendering reflectance credibility has gradually matured. Global illumination rendering method for the glossy material is still a challenge for the CG research. Because of the shiny materials is highly energy reflection between the com- plex light paths. Whether we trace glossy reflection paths, or use of one-reflection or multi-reflection approximate above complex il- lumination transmission is a difficult working. This paper we gather some commonly used global illumination algorithms recently year and its extension glossy scene improvements. And we introduce the limitation of classical algorithms rendering glossy scene and some extended solution. Finally, we will summarize the illumination rendering for specular scene, there are still some open prob- lems.

  19. On-the-Fly Decompression and Rendering of Multiresolution Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, P; Cohen, J D

    2009-04-02

    We present a streaming geometry compression codec for multiresolution, uniformly-gridded, triangular terrain patches that supports very fast decompression. Our method is based on linear prediction and residual coding for lossless compression of the full-resolution data. As simplified patches on coarser levels in the hierarchy already incur some data loss, we optionally allow further quantization for more lossy compression. The quantization levels are adaptive on a per-patch basis, while still permitting seamless, adaptive tessellations of the terrain. Our geometry compression on such a hierarchy achieves compression ratios of 3:1 to 12:1. Our scheme is not only suitable for fast decompression on the CPU, but also for parallel decoding on the GPU with peak throughput over 2 billion triangles per second. Each terrain patch is independently decompressed on the fly from a variable-rate bitstream by a GPU geometry program with no branches or conditionals. Thus we can store the geometry compressed on the GPU, reducing storage and bandwidth requirements throughout the system. In our rendering approach, only compressed bitstreams and the decoded height values in the view-dependent 'cut' are explicitly stored on the GPU. Normal vectors are computed in a streaming fashion, and remaining geometry and texture coordinates, as well as mesh connectivity, are shared and re-used for all patches. We demonstrate and evaluate our algorithms on a small prototype system in which all compressed geometry fits in the GPU memory and decompression occurs on the fly every rendering frame without any cache maintenance.

  20. An ancient relation between units of length and volume based on a sphere.

    Directory of Open Access Journals (Sweden)

    Elena Zapassky

    Full Text Available The modern metric system defines units of volume based on the cube. We propose that the ancient Egyptian system of measuring capacity employed a similar concept, but used the sphere instead. When considered in ancient Egyptian units, the volume of a sphere, whose circumference is one royal cubit, equals half a hekat. Using the measurements of large sets of ancient containers as a database, the article demonstrates that this formula was characteristic of Egyptian and Egyptian-related pottery vessels but not of the ceramics of Mesopotamia, which had a different system of measuring length and volume units.

  1. Ambient Occlusion Effects for Combined Volumes and Tubular Geometry

    KAUST Repository

    Schott, M.

    2013-06-01

    This paper details a method for interactive direct volume rendering that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube-shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The algorithm extends the recently presented the directional occlusion shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry. Stream tube geometries are computed using an effective spline-based interpolation and approximation scheme that avoids self-intersection and maintains coherent orientation of the stream tube segments to avoid surface deforming twists. Furthermore, strategies to reduce the geometric and specular aliasing of the stream tubes are discussed.

  2. [Modeling and analysis of volume conduction based on field-circuit coupling].

    Science.gov (United States)

    Tang, Zhide; Liu, Hailong; Xie, Xiaohui; Chen, Xiufa; Hou, Deming

    2012-08-01

    Numerical simulations of volume conduction can be used to analyze the process of energy transfer and explore the effects of some physical factors on energy transfer efficiency. We analyzed the 3D quasi-static electric field by the finite element method, and developed A 3D coupled field-circuit model of volume conduction basing on the coupling between the circuit and the electric field. The model includes a circuit simulation of the volume conduction to provide direct theoretical guidance for energy transfer optimization design. A field-circuit coupling model with circular cylinder electrodes was established on the platform of the software FEM3.5. Based on this, the effects of electrode cross section area, electrode distance and circuit parameters on the performance of volume conduction system were obtained, which provided a basis for optimized design of energy transfer efficiency.

  3. Using Opaque Image Blur for Real-Time Depth-of-Field Rendering

    DEFF Research Database (Denmark)

    Kraus, Martin

    2011-01-01

    the opacity of all pixels to avoid artifacts at the cost of physically less accurate but still plausible rendering results. The proposed filter is named “opaque image blur” and is based on a glow filter that is applied to the alpha channel. We present a highly efficient GPU-based pyramid algorithm...

  4. On-line Free-viewpoint Video: From Single to Multiple View Rendering

    Institute of Scientific and Technical Information of China (English)

    Vincent Nozick; Hideo Saito

    2008-01-01

    In recent years, many image-based rendering techniques have advanced from static to dynamic scenes and thus become video-based rendering (VBR) methods. But actually, only a few of them can render new views on-line. We present a new VBR system that creates new views of a live dynamic scene. This system provides high quality images and does not require any background subtraction. Our method follows a plane-sweep approach and reaches real-time rendering using consumer graphic hardware, graphics processing unit (GPU). Only one computer is used for both acquisition and rendering. The video stream acquisition is performed by at least 3 webcams. We propose an additional video stream management that extends the number of webcams to 10 or more. These considerations make our system low-cost and hence accessible for everyone. We also present an adaptation of our plane-sweep method to create simultaneously multiple views of the scene in real-time. Our system is especially designed for stereovision using autostereoscopic displays. The new views are computed from 4 webcams connected to a computer and are compressed in order to be transfered to a mobile phone. Using CPU programming, our method provides up to 16 images of the scene in real-time. The use of both GPU and CPU makes this method work on only one consumer grade computer.

  5. Anatomical-based Partial Volume Correction for Low-dose Dedicated Cardiac SPECT/CT

    OpenAIRE

    Liu, Hui; Chan, Chung; Grobshtein, Yariv; Ma, Tianyu; Liu, Yaqiang; Wang, Shi; Stacy, Mitchel R.; Sinusas, Albert J.; Liu, Chi

    2015-01-01

    Due to the limited spatial resolution, partial volume effect (PVE) has been a major degrading factor on quantitative accuracy in emission tomography systems. This study aims to investigate the performance of several anatomical-based partial volume correction (PVC) methods for a dedicated cardiac SPECT/CT system (GE Discovery NM/CT 570c) with focused field-of-view (FOV) over a clinically relevant range of high and low count levels for two different radiotracer distributions. These PVC methods ...

  6. WaVPeak: Picking NMR peaks through wavelet-based smoothing and volume-based filtering

    KAUST Repository

    Liu, Zhi

    2012-02-10

    Motivation: Nuclear magnetic resonance (NMR) has been widely used as a powerful tool to determine the 3D structures of proteins in vivo. However, the post-spectra processing stage of NMR structure determination usually involves a tremendous amount of time and expert knowledge, which includes peak picking, chemical shift assignment and structure calculation steps. Detecting accurate peaks from the NMR spectra is a prerequisite for all following steps, and thus remains a key problem in automatic NMR structure determination. Results: We introduce WaVPeak, a fully automatic peak detection method. WaVPeak first smoothes the given NMR spectrum by wavelets. The peaks are then identified as the local maxima. The false positive peaks are filtered out efficiently by considering the volume of the peaks. WaVPeak has two major advantages over the state-of-the-art peak-picking methods. First, through wavelet-based smoothing, WaVPeak does not eliminate any data point in the spectra. Therefore, WaVPeak is able to detect weak peaks that are embedded in the noise level. NMR spectroscopists need the most help isolating these weak peaks. Second, WaVPeak estimates the volume of the peaks to filter the false positives. This is more reliable than intensity-based filters that are widely used in existing methods. We evaluate the performance of WaVPeak on the benchmark set proposed by PICKY (Alipanahi et al., 2009), one of the most accurate methods in the literature. The dataset comprises 32 2D and 3D spectra from eight different proteins. Experimental results demonstrate that WaVPeak achieves an average of 96%, 91%, 88%, 76% and 85% recall on 15N-HSQC, HNCO, HNCA, HNCACB and CBCA(CO)NH, respectively. When the same number of peaks are considered, WaVPeak significantly outperforms PICKY. The Author(s) 2012. Published by Oxford University Press.

  7. Does mode mixing matter in EMD-based highlight volume methods for hydrocarbon detection? Experimental evidence

    Science.gov (United States)

    Xue, Ya-juan; Cao, Jun-xing; Du, Hao-kun; Zhang, Gu-lan; Yao, Yao

    2016-09-01

    Empirical mode decomposition (EMD)-based spectral decomposition methods have been successfully used for hydrocarbon detection. However, mode mixing that occurs during the sifting process of EMD causes the 'true' intrinsic mode function (IMF) to be extracted incorrectly and blurs the physical meaning of the IMF. We address the issue of how the mode mixing influences the EMD-based methods for hydrocarbon detection by introducing mode-mixing elimination methods, specifically ensemble EMD (EEMD) and complete ensemble EMD (CEEMD)-based highlight volumes, as feasible tools that can identify the peak amplitude above average volume and the peak frequency volume. Three schemes, that is, using all IMFs, selected IMFs or weighted IMFs, are employed in the EMD-, EEMD- and CEEMD-based highlight volume methods. When these methods were applied to seismic data from a tight sandstone gas field in Central Sichuan, China, the results demonstrated that the amplitude anomaly in the peak amplitude above average volume captured by EMD, EEMD and CEEMD combined with Hilbert transforms, whether using all IMFs, selected IMFs or weighted IMFs, are almost identical to each other. However, clear distinctions can be found in the peak frequency volume when comparing results generated using all IMFs, selected IMFs, or weighted IMFs. If all IMFs are used, the influence of mode mixing on the peak frequency volume is not readily discernable. However, using selected IMFs or a weighted IMFs' scheme affects the peak frequency in relation to the reservoir thickness in the EMD-based method. Significant improvement in the peak frequency volume can be achieved in EEMD-based highlight volumes using selected IMFs. However, if the weighted IMFs' scheme is adopted (i.e., if the undesired IMFs are included with reduced weights rather than excluded from the analysis entirely), the CEEMD-based peak frequency volume provides a more accurate reservoir thickness estimate compared with the other two methods. This

  8. [Research on living tree volume forecast based on PSO embedding SVM].

    Science.gov (United States)

    Jiao, You-Quan; Feng, Zhong-Ke; Zhao, Li-Xi; Xu, Wei-Heng; Cao, Zhong

    2014-01-01

    In order to establish volume model,living trees have to be fallen and be divided into many sections, which is a kind of destructive experiment. So hundreds of thousands of trees have been fallen down each year in China. To solve this problem, a new method called living tree volume accurate measurement without falling tree was proposed in the present paper. In the method, new measuring methods and calculation ways are used by using photoelectric theodolite and auxiliary artificial measurement. The diameter at breast height and diameter at ground was measured manually, and diameters at other heights were obtained by photoelectric theodolite. Tree volume and height of each tree was calculated by a special software that was programmed by the authors. Zhonglin aspens No. 107 were selected as experiment object, and 400 data records were obtained. Based on these data, a nonlinear intelligent living tree volume prediction model with Particle Swarm Optimization algorithm based on support vector machines (PSO-SVM) was established. Three hundred data records including tree height and diameter at breast height were randomly selected form a total of 400 data records as input data, tree volume as output data, using PSO-SVM tool box of Matlab7.11, thus a tree volume model was obtained. One hundred data records were used to test the volume model. The results show that the complex correlation coefficient (R2) between predicted and measured values is 0. 91, which is 2% higher than the value calculated by classic Spurr binary volume model, and the mean absolute error rates were reduced by 0.44%. Compared with Spurr binary volume model, PSO-SVM model has self-learning and self-adaption ability,moreover, with the characteristics of high prediction accuracy, fast learning speed,and a small sample size requirement, PSO-SVM model with well prospect is worth popularization and application.

  9. Three-dimensional measurement of bubble volume based on dual perspective imaging

    Science.gov (United States)

    Xue, Ting; Zhang, Shao-jie; Wu, Bin

    2017-01-01

    This paper presents a new three-dimensional (3D) volume measurement approach of bubble in gas-liquid two-phase flow. According to the dual perspective imaging principle, bubble feature images can be captured from two different view angles. The least square ellipse fitting algorithm is used to figure out the feature parameters from the captured images. Then the 3D volume of bubble can be quantitatively measured. Compaerd with the traditional volume estimation methods based on single perspective imaging, it can effectively reduce the loss of bubble feature information. In the experiment, the 3D volume reconstruction of bubbles from dual perspective images is conducted, and the variation of bubble volume in the bubble rising process is studied. The results show that the measurement accuracy based on the proposed 3D method is higher than those based on traditional methods. The volume of rising bubble is periodically changed, which indicates that bubble achieves periodic rotation and deformation in the rising process.

  10. 2005 Defense Base Closure and Realignment Commission Report. Volume 2

    Science.gov (United States)

    2005-01-01

    Taxation, Tourism and Procurement. He was also a member of the Foreign Affairs, Armed Services, and Intelligence Committees. He joined the firm ot Kummer...the Transportation Management training to Fort Lee, VA. 1 6/ 123. JOINT CENTER OF EXCELLENCE FOR CULINARY TRAINING (E&T 8) a. Realign...Lackland Air Force Base, TX, by relocating Culinary Training to Fort Lee, VA, establishing it as a Joint Center of Excellence for Culinary Training. 124

  11. The Microgravity Research Experiments (MICREX) Data Base. Volume 1

    Science.gov (United States)

    Winter, C. A.; Jones, J.C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators, (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  12. The Microgravity Research Experiments (MICREX) Data Base, Volume 4

    Science.gov (United States)

    Winter, C. A.; Jones, J. C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical Memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  13. The Microgravity Research Experiments (MICREX) Data Base. Volume 2

    Science.gov (United States)

    Winter, C. A.; Jones, J. C.

    1996-01-01

    An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.

  14. SOME ASPECTS OF ORGANIZATION OF HIGH TECHNOLOGY MEDICAL AID RENDERING AT SARATOV SCIENTIFIC RESEARCH INSTITUTE OF TRAUMATOLOGY AND ORTHOPEDICS

    Directory of Open Access Journals (Sweden)

    T.A. Shulgina

    2009-03-01

    Full Text Available The article is devoted to the peculiarities of organization of high technology medical aid rendering at Saratov Scientific Research Institute of Traumatology and Orthopedics. Profiles and volumes of high technology medical aid and its order during 2006-2007 are presented.

  15. Online Monitoring Volume Deformation of Cement-based Materials in Multiple Enviroments

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Comparing and analyzing some volume deformation measuring means for cement-based materials at home and abroad, a continuous online monitor of cement-based material volume deformation in multiple environments is developed. The device is designed based on the environmental simulation technology, micro-distance measuring technology of laser and eddy current, and transmission agent online monitoring the deformation of multi-group samples. This device can be used widely, such as glass, ceramics, walling material, and so on, with high precision, low testing cost, and intellectualization.

  16. A prediction model of radiation-induced necrosis for intracranial radiosurgery based on target volume.

    Science.gov (United States)

    Zhao, Bo; Wen, Ning; Chetty, Indrin J; Huang, Yimei; Brown, Stephen L; Snyder, Karen C; Siddiqui, Farzan; Movsas, Benjamin; Siddiqui, M Salim

    2017-08-01

    This study aims to extend the observation that the 12 Gy-radiosurgical-volume (V12Gy) correlates with the incidence of radiation necrosis in patients with intracranial tumors treated with radiosurgery by using target volume to predict V12Gy. V12Gy based on the target volume was used to predict the radiation necrosis probability (P) directly. Also investigated was the reduction in radiation necrosis rates (ΔP) as a result of optimizing the prescription isodose lines for linac-based SRS. Twenty concentric spherical targets and 22 patients with brain tumors were retrospectively studied. For each case, a standard clinical plan and an optimized plan with prescription isodose lines based on gradient index were created. V12Gy were extracted from both plans to analyze the correlation between V12Gy and target volume. The necrosis probability P as a function of V12Gy was evaluated. To account for variation in prescription, the relation between V12Gy and prescription was also investigated. A prediction model for radiation-induced necrosis was presented based on the retrospective study. The model directly relates the typical prescribed dose and the target volume to the radionecrosis probability; V12Gy increased linearly with the target volume (R(2)  > 0.99). The linear correlation was then integrated into a logistic model to predict P directly from the target volume. The change in V12Gy as a function of prescription was modeled using a single parameter, s (=-1.15). Relatively large ΔP was observed for target volumes between 7 and 28 cm(3) with the maximum reduction (8-9%) occurring at approximately 18 cm(3) . Based on the model results, optimizing the prescription isodose line for target volumes between 7 and 28 cm(3) results in a significant reduction in necrosis probability. V12Gy based on the target volume could provide clinicians a predictor of radiation necrosis at the contouring stage thus facilitating treatment decisions. © 2017 American Association of

  17. Prediction of sonic boom from experimental near-field overpressure data. Volume 2: Data base construction

    Science.gov (United States)

    Glatt, C. R.; Reiners, S. J.; Hague, D. S.

    1975-01-01

    A computerized method for storing, updating and augmenting experimentally determined overpressure signatures has been developed. A data base of pressure signatures for a shuttle type vehicle has been stored. The data base has been used for the prediction of sonic boom with the program described in Volume I.

  18. A control volume based finite difference method for solving the equilibrium equations in terms of displacements

    DEFF Research Database (Denmark)

    Hattel, Jesper; Hansen, Preben

    1995-01-01

    This paper presents a novel control volume based FD method for solving the equilibrium equations in terms of displacements, i.e. the generalized Navier equations. The method is based on the widely used cv-FDM solution of heat conduction and fluid flow problems involving a staggered grid formulati...

  19. A control volume based finite difference method for solving the equilibrium equations in terms of displacements

    DEFF Research Database (Denmark)

    Hattel, Jesper; Hansen, Preben

    1995-01-01

    This paper presents a novel control volume based FD method for solving the equilibrium equations in terms of displacements, i.e. the generalized Navier equations. The method is based on the widely used cv-FDM solution of heat conduction and fluid flow problems involving a staggered grid formulation...

  20. A Hybrid 3D Learning-and-Interaction-based Segmentation Approach Applied on CT Liver Volumes

    Directory of Open Access Journals (Sweden)

    M. Danciu

    2013-04-01

    Full Text Available Medical volume segmentation in various imaging modalities using real 3D approaches (in contrast to slice-by-slice segmentation represents an actual trend. The increase in the acquisition resolution leads to large amount of data, requiring solutions to reduce the dimensionality of the segmentation problem. In this context, the real-time interaction with the large medical data volume represents another milestone. This paper addresses the twofold problem of the 3D segmentation applied to large data sets and also describes an intuitive neuro-fuzzy trained interaction method. We present a new hybrid semi-supervised 3D segmentation, for liver volumes obtained from computer tomography scans. This is a challenging medical volume segmentation task, due to the acquisition and inter-patient variability of the liver parenchyma. The proposed solution combines a learning-based segmentation stage (employing 3D discrete cosine transform and a probabilistic support vector machine classifier with a post-processing stage (automatic and manual segmentation refinement. Optionally, an optimization of the segmentation can be achieved by level sets, using as initialization the segmentation provided by the learning-based solution. The supervised segmentation is applied on elementary cubes in which the CT volume is decomposed by tilling, thus ensuring a significant reduction of the data to be classified by the support vector machine into liver/not liver. On real volumes, the proposed approach provides good segmentation accuracy, with a significant reduction in the computational complexity.

  1. A Hybrid Fresh Apple Export Volume Forecasting Model Based on Time Series and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Lihua Yang

    2015-04-01

    Full Text Available Export volume forecasting of fresh fruits is a complex task due to the large number of factors affecting the demand. In order to guide the fruit growers’ sales, decreasing the cultivating cost and increasing their incomes, a hybrid fresh apple export volume forecasting model is proposed. Using the actual data of fresh apple export volume, the Seasonal Decomposition (SD model of time series and Radial Basis Function (RBF model of artificial neural network are built. The predictive results are compared among the three forecasting model based on the criterion of Mean Absolute Percentage Error (MAPE. The result indicates that the proposed combined forecasting model is effective because it can improve the prediction accuracy of fresh apple export volumes.

  2. 3D virtual rendering in thoracoscopic treatment of congenital malformation of the lung

    Directory of Open Access Journals (Sweden)

    Destro F.

    2013-10-01

    Full Text Available Introduction: Congenital malformations of the lung (CML are rare but potentially dangerous congenital malformations. Their identification is important in order to define the most appropriate management. Materials and methods: We retrospectively reviewed data from 37 patients affected by CML treated in our Pediatric Surgery Unit in the last four years with minimally invasive surgery (MIS. Results: Prenatal diagnosis was possible in 26/37 patients. Surgery was performed in the first month of life in 3 symptomatic patients and between 6 and 12 months in the others. All patients underwent radiological evaluation prior to thoracoscopic surgery. Images collected were reconstructed using the VR render software. Discussion and conclusions: Volume rendering gives high anatomical resolution and it can be useful to guide the surgical procedure. Thoracoscopy should be the technique of choice because it is safe, effective and feasible. Furthermore it has the benefit of a minimal access technique and it can be easily performed in children.

  3. Evaluation and Improvement of the CIE Metameric and Colour Rendering Index

    Directory of Open Access Journals (Sweden)

    Radovan Slavuj

    2015-12-01

    Full Text Available All artificial light sources are intended to simulate daylight and its properties of color rendering or ability of colour discrimination. Two indices, defined by the CIE, are used to quantify quality of the artificial light sources. First is Color Rendering Index which quantifies ability of light sources to render colours and other is the Metemerism Index which describes metamerism potential of given light source. Calculation of both indices are defined by CIE and has been a subject of discussion and change in past. In this work particularly, the problem of sample number and type used in calculation is addressed here and evaluated. It is noticed that both indices depends on the choice and sample number and that they should be determined based on application.

  4. Dose-volume relationships between enteritis and irradiated bowel volumes during 5-fluorouracil and oxaliplatin based chemoradiotherapy in locally advanced rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gunnlaugsson, Adalsteinn; Kjellen, Elisabeth; Bendahl, Paer-Ola; Johnsson, A nders [Dept. of Oncology, Lund Univ. Hospital, Lund (Sweden); Nilsson, Per [Dept. o f Radiation Physics, Lund Univ. Hospital, Lund (Sweden); Willner, Julian [Dept. of Radiology, Lund Univ. Hospital, Lund (Sweden)

    2007-10-15

    Purpose. Radiation enteritis is the main acute side-effect during pelvic irradiation. The aim of this study was to quantify the dose-volume relationship between irradiated bowel volumes and acute enteritis during combined chemoradiotherapy for rectal cancer. Material and methods. Twenty-eight patients with locally advanced rectal cancer received chemoradiotherapy. The radiation therapy was given with a traditional multi-field technique to a total dose of 50 Gy, with concurrent 5-Fluorouracil (5-FU) and oxaliplatin (OXA) based chemotherapy. All patients underwent three-dimensional CT-based treatment planning. Individual loops of small and large bowel as well as a volume defined as 'whole abdomen' were systematically contoured on each CT slice, and dose-volume histograms were generated. Diarrhea during treatment was scored retrospectively according to the NCI Common Toxicity Criteria scale. Results. There was a strong correlation between the occurrence of grade 2+diarrhea and irradiated small bowel volume, most notably at doses >15 Gy. Neither irradiated large bowel volume, nor irradiated 'whole abdomen' volume correlated significantly with diarrhea. Clinical or treatment related factors such as age, gender, hypertension, previous surgery, enterostomy, or dose fractionation (1.8 vs. 2.0 Gy/fraction) did not correlate with grade 2+diarrhea. Discussion. This study indicates a strong dose-volume relationship between small bowel volume and radiation enteritis during 5-FU-OXA-based chemoradiotherapy. These findings support the application of maneuvers to minimize small bowel irradiation, such as using a 'belly board' or the use of IMRT technique aiming at keeping the small bowel volume receiving more than 15 Gy under 150 cc.

  5. User evaluation of eight led light sources with different special colour rendering indices R9

    DEFF Research Database (Denmark)

    Markvart, Jakob; Iversen, Anne; Logadottir, Asta

    2013-01-01

    In this study we evaluated the influence of the special colour rendering index R9 on subjective red colour perception and Caucasian skin appearance among untrained test subjects. The light sources tested are commercially available LED based light sources with similar correlated colour temperature...... and general colour rendering index, but with varying R9. It was found that the test subjects in general are more positive towards light sources with higher R9. The shift from a majority of negative responses to a majority of positive responses is found to occur at R9 values of ~20....

  6. USER EVALUATION OF EIGHT LED LIGHT SOURCES WITH DIFFERENTSPECIAL COLOUR RENDERING INDICES R9

    DEFF Research Database (Denmark)

    Markvart, Jakob; Iversen, Anne; Logadóttir, Ásta;

    2013-01-01

    In this study we evaluated the influence of the special colour rendering index R9 on subjective red colour perception and Caucasian skin appearance among untrained test subjects. The light sources tested are commercially available LED based light sources with similar correlated colour temperature...... and general colour rendering index, but with varying R9. It was found that the test subjects in general are more positive towards light sources with higher R9. The shift from a majority of negative responses to a majority of positive responses is found to occur at R9 values of ~20....

  7. Towards the Availability of the Distributed Cluster Rendering System: Automatic Modeling and Verification

    DEFF Research Database (Denmark)

    Wang, Kemin; Jiang, Zhengtao; Wang, Yongbin;

    2012-01-01

    , whenever the number of node-n and related parameters vary, we can create the PRISM model file rapidly and then we can use PRISM model checker to verify ralated system properties. At the end of this study, we analyzed and verified the availability distributions of the Distributed Cluster Rendering System......In this study, we proposed a Continuous Time Markov Chain Model towards the availability of n-node clusters of Distributed Rendering System. It's an infinite one, we formalized it, based on the model, we implemented a software, which can automatically model with PRISM language. With the tool...

  8. Quantitative radiology: automated measurement of polyp volume in computed tomography colonography using Hessian matrix-based shape extraction and volume growing

    Science.gov (United States)

    Epstein, Mark L.; Obara, Piotr R.; Chen, Yisong; Liu, Junchi; Zarshenas, Amin; Makkinejad, Nazanin; Dachman, Abraham H.

    2015-01-01

    Background Current measurement of the single longest dimension of a polyp is subjective and has variations among radiologists. Our purpose was to develop a computerized measurement of polyp volume in computed tomography colonography (CTC). Methods We developed a 3D automated scheme for measuring polyp volume at CTC. Our scheme consisted of segmentation of colon wall to confine polyp segmentation to the colon wall, extraction of a highly polyp-like seed region based on the Hessian matrix, a 3D volume growing technique under the minimum surface expansion criterion for segmentation of polyps, and sub-voxel refinement and surface smoothing for obtaining a smooth polyp surface. Our database consisted of 30 polyp views (15 polyps) in CTC scans from 13 patients. Each patient was scanned in the supine and prone positions. Polyp sizes measured in optical colonoscopy (OC) ranged from 6-18 mm with a mean of 10 mm. A radiologist outlined polyps in each slice and calculated volumes by summation of volumes in each slice. The measurement study was repeated 3 times at least 1 week apart for minimizing a memory effect bias. We used the mean volume of the three studies as “gold standard”. Results Our measurement scheme yielded a mean polyp volume of 0.38 cc (range, 0.15-1.24 cc), whereas a mean “gold standard” manual volume was 0.40 cc (range, 0.15-1.08 cc). The “gold-standard” manual and computer volumetric reached excellent agreement (intra-class correlation coefficient =0.80), with no statistically significant difference [P (F≤f) =0.42]. Conclusions We developed an automated scheme for measuring polyp volume at CTC based on Hessian matrix-based shape extraction and volume growing. Polyp volumes obtained by our automated scheme agreed excellently with “gold standard” manual volumes. Our fully automated scheme can efficiently provide accurate polyp volumes for radiologists; thus, it would help radiologists improve the accuracy and efficiency of polyp volume

  9. Detection of Prion Proteins and TSE Infectivity in the Rendering and Biodiesel Manufacture Processes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.; Keller, B.; Oleschuk, R. [Queen' s University, Kingston, Ontario (Canada)

    2007-03-15

    This paper addresses emerging issues related to monitoring prion proteins and TSE infectivity in the products and waste streams of rendering and biodiesel manufacture processes. Monitoring is critical to addressing the knowledge gaps identified in 'Biodiesel from Specified Risk Material Tallow: An Appraisal of TSE Risks and their Reduction' (IEA's AMF Annex XXX, 2006) that prevent comprehensive risk assessment of TSE infectivity in products and waste. The most important challenge for monitoring TSE risk is the wide variety of sample types, which are generated at different points in the rendering/biodiesel production continuum. Conventional transmissible spongiform encephalopathy (TSE) assays were developed for specified risk material (SRM) and other biological tissues. These, however, are insufficient to address the diverse sample matrices produced in rendering and biodiesel manufacture. This paper examines the sample types expected in rendering and biodiesel manufacture and the implications of applying TSE assay methods to them. The authors then discuss a sample preparation filtration, which has not yet been applied to these sample types, but which has the potential to provide or significantly improve TSE monitoring. The main improvement will come from transfer of the prion proteins from the sample matrix to a matrix compatible with conventional and emerging bioassays. A second improvement will come from preconcentrating the prion proteins, which means transferring proteins from a larger sample volume into a smaller volume for analysis to provide greater detection sensitivity. This filtration method may also be useful for monitoring other samples, including wash waters and other waste streams, which may contain SRM, including those from abattoirs and on-farm operations. Finally, there is a discussion of emerging mass spectrometric methods, which Prusiner and others have shown to be suitable for detection and characterisation of prion proteins (Stahl

  10. Experiencing "Macbeth": From Text Rendering to Multicultural Performance.

    Science.gov (United States)

    Reisin, Gail

    1993-01-01

    Shows how one teacher used innovative methods in teaching William Shakespeare's "Macbeth." Outlines student assignments including text renderings, rewriting a scene from the play, and creating a multicultural scrapbook for the play. (HB)

  11. Factors affecting extension workers in their rendering of effective ...

    African Journals Online (AJOL)

    Factors affecting extension workers in their rendering of effective service to pre ... the objective of achieving sustainable livelihoods for the poor and commonages. ... marketing and management to adequately service the land reform programs.

  12. does knowledge influence their attitude and comfort in rendering care?

    African Journals Online (AJOL)

    kemrilib

    Physicians and AIDS care: does knowledge influence their attitude and comfort in rendering ... experience, age and being a consultant or a senior resident influenced attitude, while male ..... having or not having children, prior instructions on ...

  13. Iterative volume morphing and learning for mobile tumor based on 4DCT

    Science.gov (United States)

    Mao, Songan; Wu, Huanmei; Sandison, George; Fang, Shiaofen

    2017-02-01

    During image-guided cancer radiation treatment, three-dimensional (3D) tumor volumetric information is important for treatment success. However, it is typically not feasible to image a patient’s 3D tumor continuously in real time during treatment due to concern over excessive patient radiation dose. We present a new iterative morphing algorithm to predict the real-time 3D tumor volume based on time-resolved computed tomography (4DCT) acquired before treatment. An offline iterative learning process has been designed to derive a target volumetric deformation function from one breathing phase to another. Real-time volumetric prediction is performed to derive the target 3D volume during treatment delivery. The proposed iterative deformable approach for tumor volume morphing and prediction based on 4DCT is innovative because it makes three major contributions: (1) a novel approach to landmark selection on 3D tumor surfaces using a minimum bounding box; (2) an iterative morphing algorithm to generate the 3D tumor volume using mapped landmarks; and (3) an online tumor volume prediction strategy based on previously trained deformation functions utilizing 4DCT. The experimental performance showed that the maximum morphing deviations are 0.27% and 1.25% for original patient data and artificially generated data, which is promising. This newly developed algorithm and implementation will have important applications for treatment planning, dose calculation and treatment validation in cancer radiation treatment.

  14. A parallel architecture for interactively rendering scattering and refraction effects.

    Science.gov (United States)

    Bernabei, Daniele; Hakke-Patil, Ajit; Banterle, Francesco; Di Benedetto, Marco; Ganovelli, Fabio; Pattanaik, Sumanta; Scopigno, Roberto

    2012-01-01

    A new method for interactive rendering of complex lighting effects combines two algorithms. The first performs accurate ray tracing in heterogeneous refractive media to compute high-frequency phenomena. The second applies lattice-Boltzmann lighting to account for low-frequency multiple-scattering effects. The two algorithms execute in parallel on modern graphics hardware. This article includes a video animation of the authors' real-time algorithm rendering a variety of scenes.

  15. Effect of cataract surgery volume constraints on recently graduated ophthalmologists: a population-based cohort study

    Science.gov (United States)

    Campbell, Robert J.; El-Defrawy, Sherif R.; Bell, Chaim M.; Gill, Sudeep S.; Hooper, Philip L.; Whitehead, Marlo; Campbell, Erica de L.P.; Nesdole, Robert; Warder, Daniel; ten Hove, Martin

    2017-01-01

    BACKGROUND: Across Canada, graduates from several medical and surgical specialties have recently had difficulty securing practice opportunities, especially in specialties dependent on limited resources such as ophthalmology. We aimed to investigate whether resource constraints in the health care system have a greater impact on the volume of cataract surgery performed by recent graduates than on established physicians. METHODS: We used population-based administrative data from Ontario for the period Jan. 1, 1994, to June 30, 2013, to compare health services provided by recent graduates and established ophthalmologists. The primary outcome was volume of cataract surgery, a resource-intensive service for which volume is controlled by the province. RESULTS: When cataract surgery volume in Ontario entered a period of government-mandated zero growth in 2007, the mean number of cataract operations performed by recent graduates dropped significantly (−46.37 operations/quarter, 95% confidence interval [CI] −62.73 to −30.00 operations/quarter), whereas the mean rate for established ophthalmologists remained stable (+5.89 operations/quarter, 95% CI 95% CI −1.47 to +13.24 operations/quarter). Decreases in service provision among recent graduates did not occur for services without volume control. The proportion of recent graduates providing exclusively cataract surgery increased over the study period, and recent graduates in this group were 5.24 times (95% CI 2.15 to 12.76 times) more likely to fall within the lowest quartile for cataract surgical volume during the period of zero growth in provincial cataract volume (2007–2013) than in the preceding period (1996–2006). INTERPRETATION: Recent ophthalmology graduates performed many fewer cataract surgery procedures after volume controls were implemented in Ontario. Integrated initiatives involving multiple stakeholders are needed to address the issues facing recently graduated physicians in Canada. PMID:27920012

  16. Source-based morphometry reveals distinct patterns of aberrant brain volume in delusional infestation.

    Science.gov (United States)

    Wolf, Robert Ch; Huber, Markus; Lepping, Peter; Sambataro, Fabio; Depping, Malte S; Karner, Martin; Freudenmann, Roland W

    2014-01-03

    Little is known about the neural correlates of delusional infestation (DI), the delusional belief to be infested with pathogens. So far, evidence comes mainly from case reports and case series. We investigated brain morphology in 16 DI patients and 16 healthy controls using structural magnetic resonance imaging and a multivariate data analysis technique, i.e. source-based morphometry (SBM). In addition, we explored differences in brain structure in patient subgroups based on disease aetiology. SBM revealed two patterns exhibiting significantly (pdisorder) and "organic" DI (DI due to a medical condition). In contrast, aberrant white matter volume was only confirmed for the "organic" DI patient subgroup. These results suggest prefrontal, temporal, parietal, insular, thalamic and striatal dysfunction underlying DI. Moreover, the data suggest that aetiologically distinct presentations of DI share similar patterns of abnormal grey matter volume, whereas aberrant white matter volume appears to be restricted to organic cases. © 2013.

  17. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Daniel Schmitter

    2015-01-01

    Full Text Available Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease.

  18. Brain-volume changes in young and middle-aged smokers: a DARTEL-based voxel-based morphometry study.

    Science.gov (United States)

    Peng, Peng; Wang, Zhenchang; Jiang, Tao; Chu, Shuilian; Wang, Shuangkun; Xiao, Dan

    2015-09-25

    Many studies have reported brain volume changes in smokers. However, the volume differences of grey matter (GM) and white matter (WM) in young and middle-aged male smokers with different lifetime tobacco consumption (pack-years) remain uncertain. To examine the brain volume change, especially whether more pack-years smoking would be associated with smaller gray matter and white matter volume in young and middle-aged male smokers. We used a 3T MR scanner and performed Diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL)-based voxel-based morphometry on 53 long-term male smokers (30.72 ± 4.19 years) and 53 male healthy non-smokers (30.83 ± 5.18 years). We separated smokers to light and heavy smokers by pack-years and compared brain volume between different smoker groups and non-smokers. And then we did analysis of covariance (ANCOVA) between smokers and non-smokers by setting pack-years as covariates. Light and heavy smokers all displayed smaller GM and WM volume than non-smokers and more obviously in heavy smokers. The main smaller areas in light and heavy smokers were superior temporal gyrus, insula, middle occipital gyrus, posterior cingulate, precuneus in GM and posterior cingulate, thalamus and midbrain in WM, in addition, we also observed more pack-years smoking was associated with some certain smaller GM and WM volumes by ANCOVA. Young and middle-aged male smokers had many smaller brain areas than non-smokers. Some of these areas' volume had negative correlation with pack-years, while some had not. These may due to different pathophysiological role of smokings. © 2015 John Wiley & Sons Ltd.

  19. Construction and Evaluation of an Ultra Low Latency Frameless Renderer for VR.

    Science.gov (United States)

    Friston, Sebastian; Steed, Anthony; Tilbury, Simon; Gaydadjiev, Georgi

    2016-04-01

    Latency - the delay between a user's action and the response to this action - is known to be detrimental to virtual reality. Latency is typically considered to be a discrete value characterising a delay, constant in time and space - but this characterisation is incomplete. Latency changes across the display during scan-out, and how it does so is dependent on the rendering approach used. In this study, we present an ultra-low latency real-time ray-casting renderer for virtual reality, implemented on an FPGA. Our renderer has a latency of ~1 ms from 'tracker to pixel'. Its frameless nature means that the region of the display with the lowest latency immediately follows the scan-beam. This is in contrast to frame-based systems such as those using typical GPUs, for which the latency increases as scan-out proceeds. Using a series of high and low speed videos of our system in use, we confirm its latency of ~1 ms. We examine how the renderer performs when driving a traditional sequential scan-out display on a readily available HMO, the Oculus Rift OK2. We contrast this with an equivalent apparatus built using a GPU. Using captured human head motion and a set of image quality measures, we assess the ability of these systems to faithfully recreate the stimuli of an ideal virtual reality system - one with a zero latency tracker, renderer and display running at 1 kHz. Finally, we examine the results of these quality measures, and how each rendering approach is affected by velocity of movement and display persistence. We find that our system, with a lower average latency, can more faithfully draw what the ideal virtual reality system would. Further, we find that with low display persistence, the sensitivity to velocity of both systems is lowered, but that it is much lower for ours.

  20. Design of a micro-irrigation system based on the control volume method

    Directory of Open Access Journals (Sweden)

    Chasseriaux G.

    2006-01-01

    Full Text Available A micro-irrigation system design based on control volume method using the back step procedure is presented in this study. The proposed numerical method is simple and consists of delimiting an elementary volume of the lateral equipped with an emitter, called « control volume » on which the conservation equations of the fl uid hydrodynamicʼs are applied. Control volume method is an iterative method to calculate velocity and pressure step by step throughout the micro-irrigation network based on an assumed pressure at the end of the line. A simple microcomputer program was used for the calculation and the convergence was very fast. When the average water requirement of plants was estimated, it is easy to choose the sum of the average emitter discharge as the total average fl ow rate of the network. The design consists of exploring an economical and effi cient network to deliver uniformly the input fl ow rate for all emitters. This program permitted the design of a large complex network of thousands of emitters very quickly. Three subroutine programs calculate velocity and pressure at a lateral pipe and submain pipe. The control volume method has already been tested for lateral design, the results from which were validated by other methods as fi nite element method, so it permits to determine the optimal design for such micro-irrigation network

  1. Central Issues in the Use of Computer-Based Materials for High Volume Entrepreneurship Education

    Science.gov (United States)

    Cooper, Billy

    2007-01-01

    This article discusses issues relating to the use of computer-based learning (CBL) materials for entrepreneurship education at university level. It considers CBL as a means of addressing the increased volume and range of provision required in the current context. The issues raised in this article have importance for all forms of computer-based…

  2. Volumetry of human molars with flat panel-based volume CT in vitro

    NARCIS (Netherlands)

    Hannig, C.; Krieger, E.; Dullin, C.; Merten, H.A.; Attin, T.; Grabbe, E.; Heidrich, G.

    2006-01-01

    The flat panel-based volume computed tomography (fpVCT) is a new CT device applicable for experimental, three-dimensional evaluation of teeth at a resolution of about 150 microm in the high contrast region. The aim of this study was to investigate whether fpVCT was suitable for quantification of the

  3. SOLVENT-BASED TO WATERBASED ADHESIVE-COATED SUBSTRATE RETROFIT - VOLUME II: PROCESS OVERVIEW

    Science.gov (United States)

    This volume presents initial results of a study to identify the issues and barriers associated with retrofitting existing solvent-based equipment to accept waterbased adhesives as part of an EPA effort to improve equipment cleaning in the coated and laminated substrate manufactur...

  4. Moisture Transfer through Facades Covered with Organic Binder Renders

    Directory of Open Access Journals (Sweden)

    Carmen DICO

    2013-07-01

    Full Text Available Year after year we witness the negative effect of water over buildings, caused by direct or indirect actions. This situation is obvious in case of old, historical building, subjected to this aggression for a long period of time, but new buildings are also affected. Moisture in building materials causes not only structural damage, but also reduces the thermal insulation capacity of building components.Materials like plasters or paints have been used historically for a long period of time, fulfilling two basics functions: Decoration and Protection. The most acute demands are made on exterior plasters, as they, besides being an important decorative element for the facade, must perform two different functions simultaneously: protect the substrate against weathering and moisture without sealing, providing it a certain ability to “breathe” (Heilen, 2005. In order to accomplish this aim, the first step is to understand the hygrothermal behavior of coating and substrate and define the fundamental principles of moisture transfer; According to Künzel’s Facade Protection Theory, two material properties play the most important role: Water absorption and Vapor permeability.In the context of recently adoption (2009 of the “harmonized” European standard EN 15824 – „Specifications for external renders and internal plasters based on organic binders”, this paper deals extensively with the interaction of the two mentioned above properties for the coating materials, covered by EN 15824.

  5. Light field rendering with omni-directional camera

    Science.gov (United States)

    Todoroki, Hiroshi; Saito, Hideo

    2003-06-01

    This paper presents an approach to capture visual appearance of a real environment such as an interior of a room. We propose the method for generating arbitrary viewpoint images by building light field with the omni-directional camera, which can capture the wide circumferences. Omni-directional camera used in this technique is a special camera with the hyperbolic mirror in the upper part of a camera, so that we can capture luminosity in the environment in the range of 360 degree of circumferences in one image. We apply the light field method, which is one technique of Image-Based-Rendering(IBR), for generating the arbitrary viewpoint images. The light field is a kind of the database that records the luminosity information in the object space. We employ the omni-directional camera for constructing the light field, so that we can collect many view direction images in the light field. Thus our method allows the user to explore the wide scene, that can acheive realistic representation of virtual enviroment. For demonstating the proposed method, we capture image sequence in our lab's interior environment with an omni-directional camera, and succesfully generate arbitray viewpoint images for virual tour of the environment.

  6. Misrepresentation of surface rendering of pediatric brain malformations performed following spatial normalization.

    Science.gov (United States)

    Wallis, L I; Widjaja, E; Wignall, E L; Wilkinson, I D; Griffiths, P D

    2006-12-01

    To evaluate the effects of spatial normalization on volume rendering in cases of pediatric brain malformation. Three-dimensional (3D) T1-weighted volume datasets were acquired in three children, one with pachygyria, one with a Dandy-Walker malformation associated with polymicrogyria, and one with dysgenesis of the corpus callosum. On the non-normalized datasets, the skull margins were cropped and the remainder stripped with the brain extraction technique (BET). The data were also normalized into standard anatomic reference space using pediatric templates prior to the BET script. The surface constructions obtained by both techniques were then compared for geometric distortions. Normalization of 3D datasets resulted in significant distortions in the shape of the brain, with increased anterior-posterior dimensions and narrower transverse diameter in all three cases. In two cases, there were alterations in the appearance of the gyri and sulci, leading to a potential misinterpretation of the volume-rendered surface when the gyri and sulci were in fact normal. In pediatric brain, particularly those with congenital brain anomalies, normalization as a post-processing step should be avoided as this may lead to misrepresentation of brain morphometry.

  7. Comprehensive data base of high-level nuclear waste glasses: September 1987 status report: Volume 2, Additional appendices

    Energy Technology Data Exchange (ETDEWEB)

    Kindle, C.H.; Kreiter, M.R.

    1987-12-01

    The Materials Characterization Center (MCC) is assembling a comprehensive data base (CDB) of experimental data collected for high-level nuclear waste package components. The status of the CDB is summarized in Volume I of this report. Volume II contains appendices that present data from the data base and an evaluation of glass durability models applied to the data base.

  8. A novel correction factor based on extended volume to complement the conformity index.

    Science.gov (United States)

    Jin, F; Wang, Y; Wu, Y-Z

    2012-08-01

    We propose a modified conformity index (MCI), based on extended volume, that improves on existing indices by correcting for the insensitivity of previous conformity indices to reference dose shape to assess the quality of high-precision radiation therapy and present an evaluation of its application. In this paper, the MCI is similar to the conformity index suggested by Paddick (CI(Paddick)), but with a different correction factor. It is shown for three cases: with an extended target volume, with an extended reference dose volume and without an extended volume. Extended volume is generated by expanding the original volume by 0.1-1.1 cm isotropically. Focusing on the simulation model, measurements of MCI employ a sphere target and three types of reference doses: a sphere, an ellipsoid and a cube. We can constrain the potential advantage of the new index by comparing MCI with CI(Paddick). The measurements of MCI in head-neck cancers treated with intensity-modulated radiation therapy and volumetric-modulated arc therapy provide a window on its clinical practice. The results of MCI for a simulation model and clinical practice are presented and the measurements are corrected for limited spatial resolution. The three types of MCI agree with each other, and comparisons between the MCI and CI(Paddick) are also provided. The results from our analysis show that the proposed MCI can provide more objective and accurate conformity measurement for high-precision radiation therapy. In combination with a dose-volume histogram, it will be a more useful conformity index.

  9. North American Rendering: processing high quality protein and fats for feed North American Rendering: processamento de proteínas e gorduras de alta qualidade para alimentos para animais

    Directory of Open Access Journals (Sweden)

    David L. Meeker

    2009-07-01

    Full Text Available One third to one half of each animal produced for meat, milk, eggs, and fiber is not consumed by humans. These raw materials are subjected to rendering processes resulting in many useful products. Meat and bone meal, meat meal, poultry meal, hydrolyzed feather meal, blood meal, fish meal, and animal fats are the primary products resulting from the rendering process. The most important and valuable use for these animal by-products is as feed ingredients for livestock, poultry, aquaculture, and companion animals. There are volumes of scientific references validating the nutritional qualities of these products, and there are no scientific reasons for altering the practice of feeding rendered products to animals. Government agencies regulate the processing of food and feed, and the rendering industry is scrutinized often. In addition, industry programs include good manufacturing practices, HACCP, Codes of Practice, and third-party certification. The rendering industry clearly understands its role in the safe and nutritious production of animal feed ingredients and has done it very effectively for over 100 years. The availability of rendered products for animal feeds in the future depends on regulation and the market. Regulatory agencies will determine whether certain raw materials can be used for animal feed. The National Renderers Association (NRA supports the use of science as the basis for regulation while aesthetics, product specifications, and quality differences should be left to the market place. Without the rendering industry, the accumulation of unprocessed animal by-products would impede the meat industries and pose a serious potential hazard to animal and human health.De um terço a metade da produção animal para carne, leite, ovos e fibra, não são consumidos pelos seres humanos. Estes materiais não consumidos são sujeitos a processamento em graxarias e indústrias de alimentos de origem animal, resultando em uma série de produtos

  10. Measurement of renal function in a kidney donor: a comparison of creatinine-based and volume-based GFRs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Don Kyoung; Choi, See Min; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Lee, Hyun Moo; Choi, Han-Yong; Jeon, Hwang Gyun [Sungkyunkwan University School of Medicine, Department of Urology, Samsung Medical Center, Seoul (Korea, Republic of); Park, Bong Hee [The Catholic University of Korea College of Medicine, Department of Urology, Incheon St. Mary' s Hospital, Seoul (Korea, Republic of)

    2015-11-15

    We aimed to evaluate the performance of various GFR estimates compared with direct measurement of GFR (dGFR). We also sought to create a new formula for volume-based GFR (new-vGFR) using kidney volume determined by CT. GFR was measured using creatinine-based methods (MDRD, the Cockcroft-Gault equation, CKD-EPI formula, and the Mayo clinic formula) and the Herts method, which is volume-based (vGFR). We compared performance between GFR estimates and created a new vGFR model by multiple linear regression analysis. Among the creatinine-based GFR estimates, the MDRD and C-G equations were similarly associated with dGFR (correlation and concordance coefficients of 0.359 and 0.369 and 0.354 and 0.318, respectively). We developed the following new kidney volume-based GFR formula: 217.48-0.39XA + 0.25XW-0.46XH-54.01XsCr + 0.02XV-19.89 (if female) (A = age, W = weight, H = height, sCr = serum creatinine level, V = total kidney volume). The MDRD and CKD-EPI had relatively better accuracy than the other creatinine-based methods (30.7 % vs. 32.3 % within 10 % and 78.0 % vs. 73.0 % within 30 %, respectively). However, the new-vGFR formula had the most accurate results among all of the analyzed methods (37.4 % within 10 % and 84.6 % within 30 %). The new-vGFR can replace dGFR or creatinine-based GFR for assessing kidney function in donors and healthy individuals. (orig.)

  11. Haptic Modeling and Rendering Based on Neurofuzzy Rules for Surgical Cutting Simulation%手术切割模拟中基于模糊规则的触觉建模及绘制

    Institute of Scientific and Technical Information of China (English)

    宋卫国; 原魁; 付玉锦

    2006-01-01

    This paper combines image processing with 3D magnetic tracking method to develop a scalpel for haptic simulation in surgical cutting. First, a cutting parameter acquisition setup is presented and the performance is validated from soft tissue cutting. Then, based on the acquired input-output data pairs, a method for fuzzy system modeling is presented, that is, after partitioning each input space equally and giving the premises and the total number of fuzzy rules, the consequent parameters and the fuzzy membership functions (MF) of the input variables are learned and optimized via a neurofuzzy modeling technique. Finally, a haptic scalpel implemented with the established cutting model is described. Preliminary results show the feasibility of the haptic display system for real-time interaction.

  12. A finite volume method for cylindrical heat conduction problems based on local analytical solution

    KAUST Repository

    Li, Wang

    2012-10-01

    A new finite volume method for cylindrical heat conduction problems based on local analytical solution is proposed in this paper with detailed derivation. The calculation results of this new method are compared with the traditional second-order finite volume method. The newly proposed method is more accurate than conventional ones, even though the discretized expression of this proposed method is slightly more complex than the second-order central finite volume method, making it cost more calculation time on the same grids. Numerical result shows that the total CPU time of the new method is significantly less than conventional methods for achieving the same level of accuracy. © 2012 Elsevier Ltd. All rights reserved.

  13. Three-Component Power Decomposition for Polarimetric SAR Data Based on Adaptive Volume Scatter Modeling

    Directory of Open Access Journals (Sweden)

    Sang-Eun Park

    2012-05-01

    Full Text Available In this paper, the three-component power decomposition for polarimetric SAR (PolSAR data with an adaptive volume scattering model is proposed. The volume scattering model is assumed to be reflection-symmetric but parameterized. For each image pixel, the decomposition first starts with determining the adaptive parameter based on matrix similarity metric. Then, a respective scattering power component is retrieved with the established procedure. It has been shown that the proposed method leads to complete elimination of negative powers as the result of the adaptive volume scattering model. Experiments with the PolSAR data from both the NASA/JPL (National Aeronautics and Space Administration/Jet Propulsion Laboratory Airborne SAR (AIRSAR and the JAXA (Japan Aerospace Exploration Agency ALOS-PALSAR also demonstrate that the proposed method not only obtains similar/better results in vegetated areas as compared to the existing Freeman-Durden decomposition but helps to improve discrimination of the urban regions.

  14. CT portography by multidetector helical CT. Comparison of three rendering models

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Yoshiharu; Imuta, Masanori; Funama, Yoshinori; Kadota, Masataka; Utsunomiya, Daisuke; Shiraishi, Shinya; Hayashida, Yoshiko; Yamashita, Yasuyuki [Kumamoto Univ. (Japan). School of Medicine

    2002-12-01

    The purpose of this study was to assess the value of multidetector CT portography in visualizing varices and portosystemic collaterals in comparison with conventional portography, and to compare the visualizations obtained by three rendering models (volume rendering, VR; minimum intensity projection, MIP; and shaded surface display, SSD). A total of 46 patients with portal hypertension were examined by CT and conventional portography for evaluation of portosystemic collaterals. CT portography was performed by multidetector CT (MD-CT) scanner with a slice thickness of 2.5 mm and table feed of 7.5 mm. Three types of CT portographic models were generated and compared with transarterial portography. Among 46 patients, 48 collaterals were identified on CT transverse images, while 38 collaterals were detected on transarterial portography. Forty-four of 48 collaterals identified on CT transverse images were visualized with the MIP model, while 34 and 29 collaterals were visualized by the VR and SSD methods, respectively. The average CT value for the portal vein and varices was 198 HU with data acquisition of 50 sec after contrast material injection. CT portography by multidetector CT provides excellent images in the visualization of portosystemic collaterals. The images of collaterals produced by MD-CT are superior to those of transarterial portography. Among the three rendering techniques, MIP provides the best visualization of portosystemic collaterals. (author)

  15. Slope excavation quality assessment and excavated volume calculation in hydraulic projects based on laser scanning technology

    Directory of Open Access Journals (Sweden)

    Chao Hu

    2015-04-01

    Full Text Available Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak, cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laser-scanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation project quality assessment with the laser scanning technology can be reduced by 70%−90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.

  16. Rotating-Disk-Based Hybridized Electromagnetic-Triboelectric Nanogenerator for Sustainably Powering Wireless Traffic Volume Sensors.

    Science.gov (United States)

    Zhang, Binbin; Chen, Jun; Jin, Long; Deng, Weili; Zhang, Lei; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin

    2016-06-28

    Wireless traffic volume detectors play a critical role for measuring the traffic-flow in a real-time for current Intelligent Traffic System. However, as a battery-operated electronic device, regularly replacing battery remains a great challenge, especially in the remote area and wide distribution. Here, we report a self-powered active wireless traffic volume sensor by using a rotating-disk-based hybridized nanogenerator of triboelectric nanogenerator and electromagnetic generator as the sustainable power source. Operated at a rotating rate of 1000 rpm, the device delivered an output power of 17.5 mW, corresponding to a volume power density of 55.7 W/m(3) (Pd = P/V, see Supporting Information for detailed calculation) at a loading resistance of 700 Ω. The hybridized nanogenerator was demonstrated to effectively harvest energy from wind generated by a moving vehicle through the tunnel. And the delivered power is capable of triggering a counter via a wireless transmitter for real-time monitoring the traffic volume in the tunnel. This study further expands the applications of triboelectric nanogenerators for high-performance ambient mechanical energy harvesting and as sustainable power sources for driving wireless traffic volume sensors.

  17. Validity and repeatability of a depth camera-based surface imaging system for thigh volume measurement.

    Science.gov (United States)

    Bullas, Alice M; Choppin, Simon; Heller, Ben; Wheat, Jon

    2016-10-01

    Complex anthropometrics such as area and volume, can identify changes in body size and shape that are not detectable with traditional anthropometrics of lengths, breadths, skinfolds and girths. However, taking these complex with manual techniques (tape measurement and water displacement) is often unsuitable. Three-dimensional (3D) surface imaging systems are quick and accurate alternatives to manual techniques but their use is restricted by cost, complexity and limited access. We have developed a novel low-cost, accessible and portable 3D surface imaging system based on consumer depth cameras. The aim of this study was to determine the validity and repeatability of the system in the measurement of thigh volume. The thigh volumes of 36 participants were measured with the depth camera system and a high precision commercially available 3D surface imaging system (3dMD). The depth camera system used within this study is highly repeatable (technical error of measurement (TEM) of <1.0% intra-calibration and ~2.0% inter-calibration) but systematically overestimates (~6%) thigh volume when compared to the 3dMD system. This suggests poor agreement yet a close relationship, which once corrected can yield a usable thigh volume measurement.

  18. 基于颜色还原的显色性评价方法的实验验证%Experiment Validation of Color Rendering Index Based on Color Fidelity

    Institute of Scientific and Technical Information of China (English)

    肖醒; 邱婧婧; 徐蔚; 魏敏晨; 孙耀杰; 林燕丹

    2016-01-01

    One of the parallel experiments within CIE TC 1-90 was conducted , which aims at the evaluation of color fidelity .This experiment was designed to verify whether those color rendition indices based on color fidelity, including CRI2012, CRI-Ra , CQS-Qf , CRI-CAM02 and IES-Rf , are well correlated to visual evaluations .Eleven test light sources were included in this experiment and 10 subjects participated in the experiment.Subjects were required to observe the same color samples in two booths , and then to evaluate the perceived color difference .The results show that CQS-Qf correlates best with the visual evaluations , the following one is CRI-CAM02, then is CRI-Ra and IES-Rf , and the last one is CRI2012.%针对国际热点颜色还原性的实验评价, 开展了CIE TC1-90技术委员会的一个国际平行实验. 该实验旨在通过视觉实验获取数据, 以验证包括CRI2012, CRI-Ra , CQS-Qf , CRI-CAM02和IES-Rf在内的基于颜色还原的显色性评价指标. 实验采用了11个测试光源, 有10个被试参与. 被试观察两个观察箱中相同的颜色色块后, 对感知到的色差大小进行评分. 该实验结果显示, 与视觉实验结果相关度最高的是CQS-Qf , 紧接着是CRI-CAM02, 之后分别是CRI-Ra、 IES-Rf 和CRI2012.

  19. High dimensional transfer function design based on K-Means ++ for volume visualization%基于K-Means++聚类的体绘制高维传递函数设计方法

    Institute of Scientific and Technical Information of China (English)

    岑梓源; 李彬; 田联房

    2012-01-01

    如何将体数据中重要的信息高质量地绘制出来是医学可视化急需解决的问题.基于高维直方图的高维传递函数交互设计法是目前流行的方法,但是该方法设计复杂且效果不理想.针对高维特征的传递函数设计问题,提出一个基于改进的K均值(K-Means++)聚类的高维传递函数自动设计与交互式的体绘制方法:首先,对三维数据场进行特征提取;然后,采用基于K-Means++聚类的传递函数自动生成方法;最后,提供便捷的交互式界面给用户进行调整.还利用基于图形处理器(GPU)的体绘制方法,充分利用图形卡的强大并行计算能力,达到实时绘制的效果.实验结果表明,该方法能消除高维传递函数设计的复杂性,并且能有效地融合多种人体组织结构特征,提高渲染效果.%The problem how to render the important information of the volume data qualitatively in medical visualization needs to be resolved urgently. The method of designing high dimensional transfer function interactively according to the high dimension histogram was used widely, but this method is complex and is of low quality. To solve the design problems of the characteristic high dimensional transfer function, a volume rendering method of automatic and interactive design of high dimensional transfer function based on X-Means ++ clustering algorithm was presented in this paper. Firstly, feature extraction was done on the volume data, then to cluster the feature space, X-Means ++ clustering algorithm was used, and the group of label transfer function was generated automatically. Finally, a convenient interactive user interface was provided to users to adjust. The GPU (Graphic Processing Unit) based volume rendering was used to perform the strong parallel computing ability for real-time rendering. The experimental results show that this method can eliminate the complexity of the design of high dimensional transfer function, and many kinds of human

  20. 一种基于空间索引技术的全局光照快速绘制算法%A FAST GLOBAL ILLUMINATION RENDERING ALGORITHM BASED ON SPACE INDEXING TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    熊德华; 秦开怀

    2011-01-01

    在研究分析各种光照模型算法的基础上,提出一个基于对场景空间规则划分索引及建立光粒子空间分布,并以此进行全局光照计算的模型,其中包括提出一种从光源自适应地发射光粒子的模式和基于空间分割索引传播存储光粒子的技术,以及从视点出发的空间索引定位光粒子的收集显示方案.在算法实现的过程中,由于采用了场景空间规则划分的有序索引、对光照过程的有效模拟计算以及光粒子的自适应发射等技术,大大提高了算法的效率,使得在同等的光照效果下,该算法花费的时间更少,速度更快.%In this paper, we present a model of global illumination calculation which is conducted on the basis of partitioning and indexing the scene space rules and building the spatial distribution of light particles, according to the studies and analyses on various illumination model algorithms. The model includes a pattern to emit light particles adaptively from light sources and the technique of spreading and storing the light particles based on space segmentation index, as well as the collection and display scheme for light particles located by space index in terms of viewpoint. In the implementation process of the algorithm, because of the use of technologies such as the sorted index of scenes space rules segmentation, the effective simulated calculation of the illumination process and the adaptive emitting technique of light particles, etc. ,the efficiency of the algorithm is improved significantly. This makes our algorithm cost much less time and have higher speed in the condition of equal illumination effect.

  1. Volume Averaging Theory (VAT) based modeling and closure evaluation for fin-and-tube heat exchangers

    Science.gov (United States)

    Zhou, Feng; Catton, Ivan

    2012-10-01

    A fin-and-tube heat exchanger was modeled based on Volume Averaging Theory (VAT) in such a way that the details of the original structure was replaced by their averaged counterparts, so that the VAT based governing equations can be efficiently solved for a wide range of parameters. To complete the VAT based model, proper closure is needed, which is related to a local friction factor and a heat transfer coefficient of a Representative Elementary Volume (REV). The terms in the closure expressions are complex and sometimes relating experimental data to the closure terms is difficult. In this work we use CFD to evaluate the rigorously derived closure terms over one of the selected REVs. The objective is to show how heat exchangers can be modeled as a porous media and how CFD can be used in place of a detailed, often formidable, experimental effort to obtain closure for the model.

  2. Universal Rendering Mechanism Supporting Dual-Mode Presentation

    Institute of Scientific and Technical Information of China (English)

    徐鹏; 杨文军; 王克宏

    2003-01-01

    XML is a standard for the exchange of business data that is completely platform and vendor neutral. Because XML data comes in many forms, one of the most important technologies needed for XML applications is the ability to convert the data into visible renderings. This paper focuses on the rendering of XML/XSL documents into a readable and printable format by means of a platform-independent process that enables high-quality printing of the product. This paper introduces the core components in the data rendering engine, the X2P server and different levels of object abstraction. The design pattern and the complete formatting and representation of the XSL stylesheet into different types of output formats in the X2P server are also given. The results show that the X2P sever simultaneously constructs the formatting object tree and the area tree in a very efficient design that saves execution time and memory.

  3. SHTEREOM I SIMPLE WINDOWS® BASED SOFTWARE FOR STEREOLOGY. VOLUME AND NUMBER ESTIMATIONS

    Directory of Open Access Journals (Sweden)

    Emin Oğuzhan Oğuz

    2011-05-01

    Full Text Available Stereology has been earlier defined by Wiebel (1970 to be: "a body of mathematical methods relating to three dimensional parameters defining the structure from two dimensional measurements obtainable on sections of the structure." SHTEREOM I is a simple windows-based software for stereological estimation. In this first part, we describe the implementation of the number and volume estimation tools for unbiased design-based stereology. This software is produced in Visual Basic and can be used on personal computers operated by Microsoft Windows® operating systems that are connected to a conventional camera attached to a microscope and a microcator or a simple dial gauge. Microsoft NET Framework version 1.1 also needs to be downloaded for full use. The features of the SHTEREOM I software are illustrated through examples of stereological estimations in terms of volume and particle numbers for different magnifications (4X–100X. Point-counting grids are available for area estimations and for use with the most efficient volume estimation tool, the Cavalieri technique and are applied to Lizard testicle volume. An unbiased counting frame system is available for number estimations of the objects under investigation, and an on-screen manual stepping module for number estimations through the optical fractionator method is also available for the measurement of increments along the X and Y axes of the microscope stage for the estimation of rat brain hippocampal pyramidal neurons.

  4. Field lens multiplexing in holographic 3D displays by using Bragg diffraction based volume gratings

    Science.gov (United States)

    Fütterer, G.

    2016-11-01

    Applications, which can profit from holographic 3D displays, are the visualization of 3D data, computer-integrated manufacturing, 3D teleconferencing and mobile infotainment. However, one problem of holographic 3D displays, which are e.g. based on space bandwidth limited reconstruction of wave segments, is to realize a small form factor. Another problem is to provide a reasonable large volume for the user placement, which means to provide an acceptable freedom of movement. Both problems should be solved without decreasing the image quality of virtual and real object points, which are generated within the 3D display volume. A diffractive optical design using thick hologram gratings, which can be referred to as Bragg diffraction based volume gratings, can provide a small form factor and high definition natural viewing experience of 3D objects. A large collimated wave can be provided by an anamorphic backlight unit. The complex valued spatial light modulator add local curvatures to the wave field he is illuminated with. The modulated wave field is focused onto to the user plane by using a volume grating based field lens. Active type liquid crystal gratings provide 1D fine tracking of approximately +/- 8° deg. Diffractive multiplex has to be implemented for each color and for a set of focus functions providing coarse tracking. Boundary conditions of the diffractive multiplexing are explained. This is done in regards to the display layout and by using the coupled wave theory (CWT). Aspects of diffractive cross talk and its suppression will be discussed including longitudinal apodized volume gratings.

  5. LiDAR-based volume assessment of the origin of the Wadena drumlin field, Minnesota, USA

    Science.gov (United States)

    Sookhan, Shane; Eyles, Nick; Putkinen, Niko

    2016-06-01

    The Wadena drumlin field (WDF; ~ 7500 km2) in west-central Minnesota, USA, is bordered along its outer extremity by the till-cored Alexandria moraine marking the furthest extent of the southwesterly-flowing Wadena ice lobe at c. 15,000 kyr BP. Newly available high-resolution Light Detection and Ranging (LiDAR) data reveal new information regarding the number, morphology and extent of streamlined bedforms in the WDF. In addition, a newly-developed quantitative methodology based on relief curvature analysis of LiDAR elevation-based raster data is used to evaluate sediment volumes represented by the WDF and its bounding end moraine. These data are used to evaluate models for the origin of drumlins. High-resolution LiDAR-based mapping doubles the streamlined footprint of the Wadena Lobe to ~ 16,500 km2 increases the number of bedforms from ~ 2000 to ~ 6000, and most significantly, reclassifies large numbers of bedforms mapped previously as 'drumlins' as 'mega-scale glacial lineations' (MSGLs), indicating that the Wadena ice lobe experienced fast ice flow. The total volume of sediment in the Alexandria moraine is ~ 71-110 km3, that in the drumlins and MSGLs is ~ 2.83 km3, and the volume of swales between these bedforms is ~ 74.51 km3. The moraine volume is equivalent to a till layer 6.8 m thick across the entire bed of the Wadena lobe, suggesting drumlinization and moraine formation were accompanied by widespread lowering of the bed. This supports the hypothesis that drumlins and MSGLs are residual erosional features carved from a pre-existing till; swales represent 'missing sediment' that was eroded subglacially and advected downglacier to build the Alexandria Moraine during fast ice flow. Alternatively, the relatively small volume of sediment represented by subglacial bedforms indicates they could have formed rapidly by depositional processes.

  6. Considerations about the use of lime-cement mortars for render conservation purposes

    OpenAIRE

    Torgal, Fernando Pacheco; Faria, Joana; Shasavandi, Arman; Jalali, Said

    2011-01-01

    Some investigations about conservation renders points out that Portland cement based mortars should be avoided and should be replaced by lime-pozzolan mortars. However, this type of mortar is still under investigation and the majority of Portuguese construction enterprises operating in the field of building conservation do not possess enough know-how about them. Besides the absolute rejection of the use of Portland cement based mortars even with just a minimum amount appears to be a dogmat...

  7. Beaming teaching application: recording techniques for spatial xylophone sound rendering

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Olesen, Søren Krarup;

    2012-01-01

    BEAMING is a telepresence research project aiming at providing a multimodal interaction between two or more participants located at distant locations. One of the BEAMING applications allows a distant teacher to give a xylophone playing lecture to the students. Therefore, rendering of the xylophone...... played at student's location is required at teacher's site. This paper presents a comparison of different recording techniques for a spatial xylophone sound rendering. Directivity pattern of the xylophone was measured and spatial properties of the sound field created by a xylophone as a distributed sound...

  8. Chromium Renderserver: Scalable and Open Source Remote RenderingInfrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Brian; Ahern, Sean; Bethel, E. Wes; Brugger, Eric; Cook,Rich; Daniel, Jamison; Lewis, Ken; Owen, Jens; Southard, Dale

    2007-12-01

    Chromium Renderserver (CRRS) is software infrastructure thatprovides the ability for one or more users to run and view image outputfrom unmodified, interactive OpenGL and X11 applications on a remote,parallel computational platform equipped with graphics hardwareaccelerators via industry-standard Layer 7 network protocolsand clientviewers. The new contributions of this work include a solution to theproblem of synchronizing X11 and OpenGL command streams, remote deliveryof parallel hardware-accelerated rendering, and a performance analysis ofseveral different optimizations that are generally applicable to avariety of rendering architectures. CRRSis fully operational, Open Sourcesoftware.

  9. FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research

    KAUST Repository

    Wan, Yong

    2012-02-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists\\' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.

  10. Rendering Information Literacy Relevant: A Case-Based Pedagogy

    Science.gov (United States)

    Spackman, Andy; Camacho, Leticia

    2009-01-01

    The authors describe the use of case studies in a program of extracurricular library instruction and explain the benefits of case teaching in developing information literacy. The paper presents details of example cases and analyzes surveys to evaluate the impact of case teaching on student satisfaction. (Contains 3 tables.)

  11. Interactive Rendering For Projection-Based Augmented Reality Displays

    OpenAIRE

    Bimber, Oliver

    2002-01-01

    The rapid advances in computing and communications are dramatically changing all aspects of our lives. In particular, sophisticated 3D visualization, display, and interaction technologies are being used to complement our familiar physical world with computer-generated augmentations. These new interaction and display techniques are expected to make our work, learning, and leisure environments vastly more efficient and appealing. Within different application areas, variants of these technologie...

  12. FLUID-BASED SIMULATION APPROACH FOR HIGH VOLUME CONVEYOR TRANSPORTATION SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Ying WANG; Chen ZHOU

    2004-01-01

    High volume conveyor systems in distribution centers have very large footprint and can handle large volumes and hold thousands of items. Traditional discrete-event cell-based approach to simulate such networks becomes computationally challenging. An alternative approach, in which the traffic is represented by segments of fluid flow of different density instead of individual packages, is presented in this paper to address this challenge. The proposed fluid-based simulation approach is developed using a Hybrid Petri Nets framework. The underlying model is a combination of an extension of a Batches Petri Nets (BPN) and a Stochastic Petri Nets (SPN). The extensions are in the inclusion of random elements and relaxation of certain structural constraints. Some adaptations are also made to fit the target system modeling. The approach is presented with an example.

  13. 3-D Numerical Simulation and Analysis of Complex Fiber Geometry RaFC Materials with High Volume Fraction and High Aspect Ratio based on ABAQUS PYTHON

    Science.gov (United States)

    Jin, BoCheng

    2011-12-01

    Organic and inorganic fiber reinforced composites with innumerable fiber orientation distributions and fiber geometries are abundantly available in several natural and synthetic structures. Inorganic glass fiber composites have been introduced to numerous applications due to their economical fabrication and tailored structural properties. Numerical characterization of such composite material systems is necessitated due to their intrinsic statistical nature, which renders extensive experimentation prohibitively time consuming and costly. To predict various mechanical behavior and characterizations of Uni-Directional Fiber Composites (UDFC) and Random Fiber Composites (RaFC), we numerically developed Representative Volume Elements (RVE) with high accuracy and efficiency and with complex fiber geometric representations encountered in uni-directional and random fiber networks. In this thesis, the numerical simulations of unidirectional RaFC fiber strand RVE models (VF>70%) are first presented by programming in ABAQUS PYTHON. Secondly, when the cross sectional aspect ratios (AR) of the second phase fiber inclusions are not necessarily one, various types of RVE models with different cross sectional shape fibers are simulated and discussed. A modified random sequential absorption algorithm is applied to enhance the volume fraction number (VF) of the RVE, which the mechanical properties represents the composite material. Thirdly, based on a Spatial Segment Shortest Distance (SSSD) algorithm, a 3-Dimentional RaFC material RVE model is simulated in ABAQUS PYTHON with randomly oriented and distributed straight fibers of high fiber aspect ratio (AR=100:1) and volume fraction (VF=31.8%). Fourthly, the piecewise multi-segments fiber geometry is obtained in MATLAB environment by a modified SSSD algorithm. Finally, numerical methods including the polynomial curve fitting and piecewise quadratic and cubic B-spline interpolation are applied to optimize the RaFC fiber geometries

  14. 'Orbital volume restoration rate after orbital fracture'; a CT-based orbital volume measurement for evaluation of orbital wall reconstructive effect.

    Science.gov (United States)

    Wi, J M; Sung, K H; Chi, M

    2017-01-13

    PurposeTo evaluate the effect of orbital reconstruction and factors related to the effect of orbital reconstruction by assessing of orbital volume using orbital computed tomography (CT) in cases of orbital wall fracture.MethodsIn this retrospective study, 68 patients with isolated blowout fractures were evaluated. The volumes of orbits and herniated orbital tissues were determined by CT scans using a three-dimensional reconstruction technique (the Eclipse Treatment Planning System). Orbital CT was performed preoperatively, immediately after surgery, and at final follow ups (minimum of 6 months). We evaluated the reconstructive effect of surgery making a new formula, 'orbital volume reconstruction rate' from orbital volume differences between fractured and contralateral orbits before surgery, immediately after surgery, and at final follow up.ResultsMean volume of fractured orbits before surgery was 23.01±2.60 cm(3) and that of contralateral orbits was 21.31±2.50 cm(3) (P=0.005). Mean volume of the fractured orbits immediately after surgery was 21.29±2.42 cm(3), and that of the contralateral orbits was 21.33±2.52 cm(3) (P=0.921). Mean volume of fractured orbits at final follow up was 21.50±2.44 cm(3), and that of contralateral orbits was 21.32±2.50 cm(3) (P=0.668). The mean orbital volume reconstruction rate was 100.47% immediately after surgery and 99.17% at final follow up. No significant difference in orbital volume reconstruction rate was observed with respect to fracture site or orbital implant type. Patients that underwent operation within 14 days of trauma had a better reconstruction rate at final follow up than patients who underwent operation over 14 days after trauma (P=0.039).ConclusionComputer-based measurements of orbital fracture volume can be used to evaluate the reconstructive effect of orbital implants and provide useful quantitative information. Significant reduction of orbital volume is observed immediately after orbital wall

  15. Local digital estimators of intrinsic volumes for Boolean models and in the design based setting

    DEFF Research Database (Denmark)

    Svane, Anne Marie

    In order to estimate the specific intrinsic volumes of a planar Boolean model from a binary image, we consider local digital algorithms based on weigted sums of 2×2 configuration counts. For Boolean models with balls as grains, explicit formulas for the bias of such algorithms are derived...... for the bias obtained for Boolean models are applied to existing algorithms in order to compare their accuracy....

  16. Dose–Volume Relationships Associated With Temporal Lobe Radiation Necrosis After Skull Base Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Mark W., E-mail: markmcdonaldmd@gmail.com [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana (United States); Indiana University Health Proton Therapy Center, Bloomington, Indiana (United States); Linton, Okechukwu R. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana (United States); Calley, Cynthia S.J. [Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana (United States)

    2015-02-01

    Purpose: We evaluated patient and treatment parameters correlated with development of temporal lobe radiation necrosis. Methods and Materials: This was a retrospective analysis of a cohort of 66 patients treated for skull base chordoma, chondrosarcoma, adenoid cystic carcinoma, or sinonasal malignancies between 2005 and 2012, who had at least 6 months of clinical and radiographic follow-up. The median radiation dose was 75.6 Gy (relative biological effectiveness [RBE]). Analyzed factors included gender, age, hypertension, diabetes, smoking status, use of chemotherapy, and the absolute dose:volume data for both the right and left temporal lobes, considered separately. A generalized estimating equation (GEE) regression analysis evaluated potential predictors of radiation necrosis, and the median effective concentration (EC50) model estimated dose–volume parameters associated with radiation necrosis. Results: Median follow-up time was 31 months (range 6-96 months) and was 34 months in patients who were alive. The Kaplan-Meier estimate of overall survival at 3 years was 84.9%. The 3-year estimate of any grade temporal lobe radiation necrosis was 12.4%, and for grade 2 or higher radiation necrosis was 5.7%. On multivariate GEE, only dose–volume relationships were associated with the risk of radiation necrosis. In the EC50 model, all dose levels from 10 to 70 Gy (RBE) were highly correlated with radiation necrosis, with a 15% 3-year risk of any-grade temporal lobe radiation necrosis when the absolute volume of a temporal lobe receiving 60 Gy (RBE) (aV60) exceeded 5.5 cm{sup 3}, or aV70 > 1.7 cm{sup 3}. Conclusions: Dose–volume parameters are highly correlated with the risk of developing temporal lobe radiation necrosis. In this study the risk of radiation necrosis increased sharply when the temporal lobe aV60 exceeded 5.5 cm{sup 3} or aV70 > 1.7 cm{sup 3}. Treatment planning goals should include constraints on the volume of temporal lobes receiving

  17. Highly color rendering YAG:Ce phosphor-converted white light-emitting diode based on dual -blue emitting active regions%基于双蓝光有源区激发YAG:Ce荧光粉的高显色性白光LED

    Institute of Scientific and Technical Information of China (English)

    石培培; 严启荣; 李述体; 章勇

    2012-01-01

    Dual - blue wavelength light - emitting diode (LED) based on mixed InGaN/GaN quantum wells was grown sequentially on the (0001) sapphire substrate by metal - organic chemical vapor deposition ( MOCVD) with p - AlGaN and asymmetry n - AlGaN, respectively. It was found that the asymmetry n - AlGaN layer can improve the distribution uniform of electrons and holes and deduce electron overflow relative to the conventional p - AlGaN, and further reduce the dependence of dual - blue wavelength e-mission spectrum on driving current. In addition, highly color rendering white light emission has been realized from YAG; Ce phosphor - converted white LED based on dual - blue wavelength chip, the color rendering index (CRI) of the corresponding white LED reached 91 at a forward current of 20 mA while that of white LED based on single - blue wavelength chip was only 75.%在(0001)蓝宝石衬底上利用金属有机化学气相沉积系统,分别生长含有p- AlGaN电子阻挡层和反对称n - AlGaN层的双蓝光波长发射的InGaN/GaN混合多量子阱发光二极管(LED).结果发现,与传统的具有p-AlGaN电子阻挡层的双蓝光波长LED相比,这种n- AlGaN层能有效改善电子和空穴在混合多量子阱活性层中的分布均匀性和减少电子溢出,并减弱双蓝光发射光谱对电流的依赖性.此外,基于这种双蓝光波长发射的芯片与YAG:Ce荧光粉封装成白光LED能实现高显色性的白光发射,在20 mA电流驱动下,6500 K色温时显色指数达到91,而基于单蓝光芯片的白光LED显色指数只有75.

  18. The element-based finite volume method applied to petroleum reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cordazzo, Jonas; Maliska, Clovis R.; Silva, Antonio F.C. da; Hurtado, Fernando S.V. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica

    2004-07-01

    In this work a numerical model for simulating petroleum reservoirs using the Element-based Finite Volume Method (EbFVM) is presented. The method employs unstructured grids using triangular and/or quadrilateral elements, such that complex reservoir geometries can be easily represented. Due to the control-volume approach, local mass conservation is enforced, permitting a direct physical interpretation of the resulting discrete equations. It is demonstrated that this method can deal with the permeability maps without averaging procedures, since this scheme assumes uniform properties inside elements, instead inside of control volumes, avoiding the need of weighting the permeability values at the control volumes interfaces. Moreover, it is easy to include the full permeability tensor in this method, which is an important issue in simulating heterogeneous and anisotropic reservoirs. Finally, a comparison among the results obtained using the scheme proposed in this work in the EbFVM framework with those obtained employing the scheme commonly used in petroleum reservoir simulation is presented. It is also shown that the scheme proposed is less susceptible to the grid orientation effect with the increasing of the mobility ratio. (author)

  19. Precise segmentation of multiple organs in CT volumes using learning-based approach and information theory.

    Science.gov (United States)

    Lu, Chao; Zheng, Yefeng; Birkbeck, Neil; Zhang, Jingdan; Kohlberger, Timo; Tietjen, Christian; Boettger, Thomas; Duncan, James S; Zhou, S Kevin

    2012-01-01

    In this paper, we present a novel method by incorporating information theory into the learning-based approach for automatic and accurate pelvic organ segmentation (including the prostate, bladder and rectum). We target 3D CT volumes that are generated using different scanning protocols (e.g., contrast and non-contrast, with and without implant in the prostate, various resolution and position), and the volumes come from largely diverse sources (e.g., diseased in different organs). Three key ingredients are combined to solve this challenging segmentation problem. First, marginal space learning (MSL) is applied to efficiently and effectively localize the multiple organs in the largely diverse CT volumes. Second, learning techniques, steerable features, are applied for robust boundary detection. This enables handling of highly heterogeneous texture pattern. Third, a novel information theoretic scheme is incorporated into the boundary inference process. The incorporation of the Jensen-Shannon divergence further drives the mesh to the best fit of the image, thus improves the segmentation performance. The proposed approach is tested on a challenging dataset containing 188 volumes from diverse sources. Our approach not only produces excellent segmentation accuracy, but also runs about eighty times faster than previous state-of-the-art solutions. The proposed method can be applied to CT images to provide visual guidance to physicians during the computer-aided diagnosis, treatment planning and image-guided radiotherapy to treat cancers in pelvic region.

  20. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel

    2014-11-01

    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  1. Light Field Rendering for Head Mounted Displays using Pixel Reprojection

    DEFF Research Database (Denmark)

    Hansen, Anne Juhler; Kraus, Martin; Klein, Jákup

    2017-01-01

    of the information of the different images is redundant, we use pixel reprojection from the corner cameras to compute the remaining images in the light field. We compare the reprojected images with directly rendered images in a user test. In most cases, the users were unable to distinguish the images. In extreme...

  2. Depth-Dependent Halos : Illustrative Rendering of Dense Line Data

    NARCIS (Netherlands)

    Everts, Maarten H.; Bekker, Henk; Roerdink, Jos B.T.M.; Isenberg, Tobias

    2009-01-01

    We present a technique for the illustrative rendering of 3D line data at interactive frame rates. We create depth-dependent halos around lines to emphasize tight line bundles while less structured lines are de-emphasized. Moreover, the depth-dependent halos combined with depth cueing via line width

  3. Virtual Environment of Real Sport Hall and Analyzing Rendering Quality

    Directory of Open Access Journals (Sweden)

    Filip Popovski

    2015-02-01

    Full Text Available Here is presented virtual environment of a real sport hall created in Quest3D VR Edition. All analyzes of the rendering quality, techniques of interaction and performance of the system in real time are presented. We made critical analysis on all of these techniques on different machines and have excellent results.

  4. 7 CFR 54.1016 - Advance information concerning service rendered.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 54..., Processing, and Packaging of Livestock and Poultry Products § 54.1016 Advance information concerning service... MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE...

  5. 7 CFR 53.17 - Advance information concerning service rendered.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 53.17... (CONTINUED) LIVESTOCK (GRADING, CERTIFICATION, AND STANDARDS) Regulations Service § 53.17 Advance information... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED)...

  6. Fast Rendering of Realistic Virtual Character in Game Scene

    Directory of Open Access Journals (Sweden)

    Mengzhao Yang

    2013-07-01

    Full Text Available Human skin is made up of multiple translucent layers and rendering of skin appearance usually acquire complex modeling and massive calculation. In some practical applications such as 3D game development, we not only approximate the realistic looking skin but also develop efficient method to implement easily for meeting needs of real-time rendering. In this study, we solve the problem of wrap lighting and introduce a surface details approximation method to give realistic rendering of virtual character. Our method considers that different thicknesses of geometry on the skin surface can result in different scattering degree of incident light and so pre-calculate the diffuse falloff into a look-up texture. Also, we notice that scattering is strongly color dependent and small bumps are common on the skin surface and so pre-soften the finer details on the skin surface according to the R/G/B channel. At last, we linearly interpolate the diffuse lighting with different scattering degree from the look-up texture sampled with the curvature and NdotL. Experiment results show that the proposed approach yields realistic virtual character and obtains high frames per second in real-time rendering.

  7. FORMALIZING PRODUCT COST DISTORTION: The Impact of Volume-Related Allocation Bases on Cost Information

    Directory of Open Access Journals (Sweden)

    Johnny Jermias

    2003-09-01

    Full Text Available The purpose o f this study is to formally analyze product cost distortions resulting from the process of allocating costs to products based on Activity-Based Costing (ABC and the conventional product costing systems. The model developed in this paper rigorously shows the impact of treating costs that are not volume related as if they are. The model demonstrates that the source of product cost distortion is the difference between the proportion of driver used by each product in ABC and the proportion of the base used by the same product in the conventional costing systems. The difference arises because the conventional costing systems ignore the existence of batch-related and product-related costs. The model predicts a positive association between volume and size diversity with product cost distortions. When interaction between volume and size diversity exists, the distortion is either mitigated or exacerbated. The magnitude of the distortion is jointly determined by the size of the differences and the size of the total indirect costs.

  8. Volume Measurement Algorithm for Food Product with Irregular Shape using Computer Vision based on Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Joko Siswantoro

    2014-11-01

    Full Text Available Volume is one of important issues in the production and processing of food product. Traditionally, volume measurement can be performed using water displacement method based on Archimedes’ principle. Water displacement method is inaccurate and considered as destructive method. Computer vision offers an accurate and nondestructive method in measuring volume of food product. This paper proposes algorithm for volume measurement of irregular shape food product using computer vision based on Monte Carlo method. Five images of object were acquired from five different views and then processed to obtain the silhouettes of object. From the silhouettes of object, Monte Carlo method was performed to approximate the volume of object. The simulation result shows that the algorithm produced high accuracy and precision for volume measurement.

  9. Unsteady flow volumes

    Energy Technology Data Exchange (ETDEWEB)

    Becker, B.G.; Lane, D.A.; Max, N.L.

    1995-03-01

    Flow volumes are extended for use in unsteady (time-dependent) flows. The resulting unsteady flow volumes are the 3 dimensional analog of streamlines. There are few examples where methods other than particle tracing have been used to visualize time varying flows. Since particle paths can become convoluted in time there are additional considerations to be made when extending any visualization technique to unsteady flows. We will present some solutions to the problems which occur in subdivision, rendering, and system design. We will apply the unsteady flow volumes to a variety of field types including moving multi-zoned curvilinear grids.

  10. A predictive bone drilling force model for haptic rendering with experimental validation using fresh cadaveric bone.

    Science.gov (United States)

    Lin, Yanping; Chen, Huajiang; Yu, Dedong; Zhang, Ying; Yuan, Wen

    2017-01-01

    Bone drilling simulators with virtual and haptic feedback provide a safe, cost-effective and repeatable alternative to traditional surgical training methods. To develop such a simulator, accurate haptic rendering based on a force model is required to feedback bone drilling forces based on user input. Current predictive bone drilling force models based on bovine bones with various drilling conditions and parameters are not representative of the bone drilling process in bone surgery. The objective of this study was to provide a bone drilling force model for haptic rendering based on calibration and validation experiments in fresh cadaveric bones with different bone densities. Using a commonly used drill bit geometry (2 mm diameter), feed rates (20-60 mm/min) and spindle speeds (4000-6000 rpm) in orthognathic surgeries, the bone drilling forces of specimens from two groups were measured and the calibration coefficients of the specific normal and frictional pressures were determined. The comparison of the predicted forces and the measured forces from validation experiments with a large range of feed rates and spindle speeds demonstrates that the proposed bone drilling forces can predict the trends and average forces well. The presented bone drilling force model can be used for haptic rendering in surgical simulators.

  11. A simplified CT-based definition of the supraclavicular and infraclavicular nodal volumes in breast cancer.

    Science.gov (United States)

    Atean, I; Pointreau, Y; Ouldamer, L; Monghal, C; Bougnoux, A; Bera, G; Barillot, I

    2013-02-01

    The available contouring guidelines for the supraclavicular and infraclavicular lymph nodes appeared to be inadequate for their delineation on non-enhanced computed tomography (CT) scans. For this purpose, we developed delineation guidelines for the clinical target volumes (CTV) of these lymph nodes on non-enhanced CT-slices performed in the treatment position of breast cancer. A fresh female cadaver study as well as delineation and an anatomical descriptions review were performed to propose a simplified definition of the supra- and infraclavicular lymph nodes using readily identifiable anatomical structures. This definition was developed jointly by breast radiologists, breast surgeons, and radiation oncologists. To validate these guidelines, the primary investigator and seven radiation oncologists (observers) independently delineated 10 different nodal CTVs. The primary investigator contours were considered to be the gold standard contours. Contour accuracy and concordance were evaluated. Written guidelines for the delineation of supra- and infraclavicular lymph nodes CTVs were developed. Consistent contours with minimal variability existed between the delineated volumes; the mean kappa index was 0.83. The mean common contoured and additional contoured volumes were 84.6% and 18.5%, respectively. The mean overlap volume ratio was 0.71. Simplified CT-based atlas for delineation of the supra- and infraclavicular lymph nodes for locoregional irradiation of the breast on non-enhanced CT-scan, have been developed in this study. This atlas provides a consistent set of guidelines for delineating these volumes. Copyright © 2012 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  12. Effect of Fixed-Volume and Weight-Based Dosing Regimens on the Cost and Volume of Administered Iodinated Contrast Material at Abdominal CT.

    Science.gov (United States)

    Davenport, Matthew S; Parikh, Kushal R; Mayo-Smith, William W; Israel, Gary M; Brown, Richard K J; Ellis, James H

    2017-03-01

    To determine the magnitude of subject-level and population-level cost savings that could be realized by moving from fixed-volume low-osmolality iodinated contrast material administration to an effective weight-based dosing regimen for contrast-enhanced abdominopelvic CT. HIPAA-compliant, institutional review board-exempt retrospective cohort study of 6,737 subjects undergoing contrast-enhanced abdominopelvic CT from 2014 to 2015. Subject height, weight, lean body weight (LBW), and body surface area (BSA) were determined. Twenty-six volume- and weight-based dosing strategies with literature support were compared with a fixed-volume strategy used at the study institution: 125 mL 300 mgI/mL for routine CT, 125 mL 370 mgI/mL for multiphasic CT (single-energy, 120 kVp). The predicted population- and subject-level effects on cost and contrast material utilization were calculated for each strategy and sensitivity analyses were performed. Most subjects underwent routine CT (91% [6,127/6,737]). Converting to lesser-volume higher-concentration contrast material had the greatest effect on cost; a fixed-volume 100 mL 370 mgI/mL strategy resulted in $132,577 in population-level savings with preserved iodine dose at routine CT (37,500 versus 37,000 mgI). All weight-based iodine-content dosing strategies (mgI/kg) with the same maximum contrast material volume (125 mL) were predicted to contribute mean savings compared with the existing fixed-volume algorithm ($4,053-$116,076/strategy in the overall study population, $1-$17/strategy per patient). Similar trends were observed in all sensitivity analyses. Large cost and material savings can be realized at abdominopelvic CT by adopting a weight-based dosing strategy and lowering the maximum volume of administered contrast material. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  13. Effects of VR system fidelity on analyzing isosurface visualization of volume datasets.

    Science.gov (United States)

    Laha, Bireswar; Bowman, Doug A; Socha, John J

    2014-04-01

    Volume visualization is an important technique for analyzing datasets from a variety of different scientific domains. Volume data analysis is inherently difficult because volumes are three-dimensional, dense, and unfamiliar, requiring scientists to precisely control the viewpoint and to make precise spatial judgments. Researchers have proposed that more immersive (higher fidelity) VR systems might improve task performance with volume datasets, and significant results tied to different components of display fidelity have been reported. However, more information is needed to generalize these results to different task types, domains, and rendering styles. We visualized isosurfaces extracted from synchrotron microscopic computed tomography (SR-μCT) scans of beetles, in a CAVE-like display. We ran a controlled experiment evaluating the effects of three components of system fidelity (field of regard, stereoscopy, and head tracking) on a variety of abstract task categories that are applicable to various scientific domains, and also compared our results with those from our prior experiment using 3D texture-based rendering. We report many significant findings. For example, for search and spatial judgment tasks with isosurface visualization, a stereoscopic display provides better performance, but for tasks with 3D texture-based rendering, displays with higher field of regard were more effective, independent of the levels of the other display components. We also found that systems with high field of regard and head tracking improve performance in spatial judgment tasks. Our results extend existing knowledge and produce new guidelines for designing VR systems to improve the effectiveness of volume data analysis.

  14. Hardware Implementation of an Automatic Rendering Tone Mapping Algorithm for a Wide Dynamic Range Display

    OpenAIRE

    2013-01-01

    Tone mapping algorithms are used to adapt captured wide dynamic range (WDR) scenes to the limited dynamic range of available display devices. Although there are several tone mapping algorithms available, most of them require manual tuning of their rendering parameters. In addition, the high complexities of some of these algorithms make it difficult to implement efficient real-time hardware systems. In this work, a real-time hardware implementation of an exponent-based tone mapping algorithm i...

  15. Energy Economic Data Base (EEDB) Program: Phase I, Volume I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Energy Economic Data Base Program, which deals with the development of cost data for nuclear and comparison electric power generating stations, provides periodic updates of technical and cost (capital, fuel, and operating and maintenance) information of significance to DOE. The information allows for evaluation and monitoring of US civilian nuclear power programs and provides a consistent means of evaluation the nuclear option against alternatives. Currently, the EEDB contains 6 nuclear electrical generating plant technical models and 5 comparison coal-fired electrical generating plant technical models. Each of these technical plant models is a complete conceptual design for a single unit, steam electric power generating station located on a standard, hypothetical Middletown site. A description of the site is provided in Appendix A-1 (Volume 2) for nuclear plants, and Appendix A-2 (Volume 2) for coal-fired plants. The EEDB also includes a conceptual design of a coal liquefaction plant for comparison purposes. Volume 1 provides a description of the current Data Base, as of September 30, 1978: gives assumptions and ground rules for the initial-cost update; summarizes the initial cost update, with cost results tabulated; details the initial update of the technical conceptual design, the capital cost, the quantities of commodities and their unit costs, and craft labor man hours and costs for each EEDB program model; and details the fuel-cycle-cost initial update and the operating- and maintenance-cost initial update. Finally, an extensive list of references and a glossary are presented.

  16. Optimization of volume to point conduction problem based on a novel thermal conductivity discretization algorithm

    Institute of Scientific and Technical Information of China (English)

    Wenjing Du; Peili Wang; Lipeng Song; Lin Cheng

    2015-01-01

    A conduction heat transfer process is enhanced by filling prescribed quantity and optimized-shaped high thermal conductivity materials to the substrate. Numerical simulations and analyses are performed on a volume to point conduction problem based on the principle of minimum entropy generation. In the optimization, the arrange-ment of high thermal conductivity materials is variable, the quantity of high thermal-conductivity material is constrained, and the objective is to obtain the maximum heat conduction rate as the entropy is the minimum. A novel algorithm of thermal conductivity discretization is proposed based on large quantity of calculations. Compared with other algorithms in literature, the average temperature in the substrate by the new algorithm is lower, while the highest temperature in the substrate is in a reasonable range. Thus the new algorithm is fea-sible. The optimization of volume to point heat conduction is carried out in a rectangular model with radiation boundary condition and constant surface temperature boundary condition. The results demonstrate that the al-gorithm of thermal conductivity discretization is applicable for volume to point heat conduction problems.

  17. Energy Economic Data Base (EEDB) Program: Phase I, Volume I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Energy Economic Data Base Program, which deals with the development of cost data for nuclear and comparison electric power generating stations, provides periodic updates of technical and cost (capital, fuel, and operating and maintenance) information of significance to DOE. The information allows for evaluation and monitoring of US civilian nuclear power programs and provides a consistent means of evaluation the nuclear option against alternatives. Currently, the EEDB contains 6 nuclear electrical generating plant technical models and 5 comparison coal-fired electrical generating plant technical models. Each of these technical plant models is a complete conceptual design for a single unit, steam electric power generating station located on a standard, hypothetical Middletown site. A description of the site is provided in Appendix A-1 (Volume 2) for nuclear plants, and Appendix A-2 (Volume 2) for coal-fired plants. The EEDB also includes a conceptual design of a coal liquefaction plant for comparison purposes. Volume 1 provides a description of the current Data Base, as of September 30, 1978: gives assumptions and ground rules for the initial-cost update; summarizes the initial cost update, with cost results tabulated; details the initial update of the technical conceptual design, the capital cost, the quantities of commodities and their unit costs, and craft labor man hours and costs for each EEDB program model; and details the fuel-cycle-cost initial update and the operating- and maintenance-cost initial update. Finally, an extensive list of references and a glossary are presented.

  18. Predicting the long-term durability of hemp-lime renders in inland and coastal areas using Mediterranean, Tropical and Semi-arid climatic simulations.

    Science.gov (United States)

    Arizzi, Anna; Viles, Heather; Martín-Sanchez, Inés; Cultrone, Giuseppe

    2016-01-15

    Hemp-based composites are eco-friendly building materials as they improve energy efficiency in buildings and entail low waste production and pollutant emissions during their manufacturing process. Nevertheless, the organic nature of hemp enhances the bio-receptivity of the material, with likely negative consequences for its long-term performance in the building. The main purpose of this study was to study the response at macro- and micro-scale of hemp-lime renders subjected to weathering simulations in an environmental cabinet (one year was condensed in twelve days), so as to predict their long-term durability in coastal and inland areas with Mediterranean, Tropical and Semi-arid climates, also in relation with the lime type used. The simulated climatic conditions caused almost unnoticeable mass, volume and colour changes in hemp-lime renders. No efflorescence or physical breakdown was detected in samples subjected to NaCl, because the salt mainly precipitates on the surface of samples and is washed away by the rain. Although there was no visible microbial colonisation, alkaliphilic fungi (mainly Penicillium and Aspergillus) and bacteria (mainly Bacillus and Micrococcus) were isolated in all samples. Microbial growth and diversification were higher under Tropical climate, due to heavier rainfall. The influence of the bacterial activity on the hardening of samples has also been discussed here and related with the formation and stabilisation of vaterite in hemp-lime mixes. This study has demonstrated that hemp-lime renders show good durability towards a wide range of environmental conditions and factors. However, it might be useful to take some specific preventive and maintenance measures to reduce the bio-receptivity of this material, thus ensuring a longer durability on site.

  19. ClipCard: Sharable, Searchable Visual Metadata Summaries on the Cloud to Render Big Data Actionable

    Science.gov (United States)

    Saripalli, P.; Davis, D.; Cunningham, R.

    2013-12-01

    Research firm IDC estimates that approximately 90 percent of the Enterprise Big Data go un-analyzed, as 'dark data' - an enormous corpus of undiscovered, untagged information residing on data warehouses, servers and Storage Area Networks (SAN). In the geosciences, these data range from unpublished model runs to vast survey data assets to raw sensor data. Many of these are now being collected instantaneously, at a greater volume and in new data formats. Not all of these data can be analyzed, nor processed in real time, and their features may not be well described at the time of collection. These dark data are a serious data management problem for science organizations of all types, especially ones with mandated or required data reporting and compliance requirements. Additionally, data curators and scientists are encouraged to quantify the impact of their data holdings as a way to measure research success. Deriving actionable insights is the foremost goal of Big Data Analytics (BDA), which is especially true with geoscience, given its direct impact on most of the pressing global issues. Clearly, there is a pressing need for innovative approaches to making dark data discoverable, measurable, and actionable. We report on ClipCard, a Cloud-based SaaS analytic platform for instant summarization, quick search, visualization and easy sharing of metadata summaries form the Dark Data at hierarchical levels of detail, thus rendering it 'white', i.e., actionable. We present a use case of the ClipCard platform, a cloud-based application which helps generate (abstracted) visual metadata summaries and meta-analytics for environmental data at hierarchical scales within and across big data containers. These summaries and analyses provide important new tools for managing big data and simplifying collaboration through easy to deploy sharing APIs. The ClipCard application solves a growing data management bottleneck by helping enterprises and large organizations to summarize, search

  20. 9 CFR 315.1 - Carcasses and parts passed for cooking; rendering into lard or tallow.

    Science.gov (United States)

    2010-01-01

    ...; rendering into lard or tallow. 315.1 Section 315.1 Animals and Animal Products FOOD SAFETY AND INSPECTION... PARTS PASSED FOR COOKING § 315.1 Carcasses and parts passed for cooking; rendering into lard or tallow... subchapter or rendered into tallow, provided such rendering is done in the following manner: (a) When...

  1. A pyramid-based approach to visual exploration of a large volume of vehicle trajectory data

    Institute of Scientific and Technical Information of China (English)

    Jing SUN; Xiang LI

    2012-01-01

    Advances in positioning and wireless communicating technologies make it possible to collect large volumes of trajectory data of moving vehicles in a fast and convenient fashion.These data can be applied to traffic studies.Behind this application,a methodological issue that still requires particular attention is the way these data should be spatially visualized.Trajectory data physically consists of a large number of positioning points.With the dramatic increase of data volume,it becomes a challenge to display and explore these data.Existing commercial software often employs vector-based indexing structures to facilitate the display of a large volume of points,but their performance downgrades quickly when the number of points is very large,for example,tens of millions.In this paper,a pyramid-based approach is proposed.A pyramid method initially is invented to facilitate the display of raster images through the tradeoff between storage space and display time.A pyramid is a set of images at different levels with different resolutions.In this paper,we convert vector-based point data into raster data,and build a gridbased indexing structure in a 2D plane.Then,an image pyramid is built.Moreover,at the same level of a pyramid,image is segmented into mosaics with respect to the requirements of data storage and management.Algorithms or procedures on grid-based indexing structure,image pyramid,image segmentation,and visualization operations are given in this paper.A case study with taxi trajectory data in Shanghai is conducted.Results demonstrate that the proposed method outperforms the existing commercial software.

  2. Patrick Air Force Base integrated resource assessment. Volume 2, Baseline detail

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstrom, R.R.; King, D.A.; Parker, S.A.; Sandusky, W.F.

    1993-08-01

    The US Air Force has tasked the Pacific Northwest Laboratory (PNL), in support of the US Department of Energy (DOE) Federal Energy Management Program (FEMP), to assess energy use at Patrick Air Force Base (AFB). The information obtained from this assessment will be used in identifying energy resource opportunities to reduce overall energy consumption on the base. The primary focus of this report is to assess the current baseline energy consumption at Patrick AFB. It is a comparison report to Volume 1, the Executive Summary, and Volume 3, the Resource Assessment. This assessment requires that information be obtained and characterized for buildings, utilities, energy sources, energy uses, and load profile information to be used to improve the characterization of energy use on the base. The characteristics of electricity, natural gas, and No. 2 fuel oil are analyzed for on-base facilities and housing. The assessment examines basic regional information used to determine energy-use intensity (EUI) values for Patrick AFB facilities by building, fuel type, and energy end use. It also provides a summary of electricity consumption from Florida Power and Light Company (FPL) metered data for 1985-1991. Load profile information obtained from FPL data is presented for the north and south substations for the four seasons of the year, including weekdays and weekends.

  3. Realistic Haptic Rendering of Interacting Deformable Objects in Virtual Environments

    CERN Document Server

    Duriez, Christian; Kheddar, Abderrahmane; Andriot, Claude

    2008-01-01

    A new computer haptics algorithm to be used in general interactive manipulations of deformable virtual objects is presented. In multimodal interactive simulations, haptic feedback computation often comes from contact forces. Subsequently, the fidelity of haptic rendering depends significantly on contact space modeling. Contact and friction laws between deformable models are often simplified in up to date methods. They do not allow a "realistic" rendering of the subtleties of contact space physical phenomena (such as slip and stick effects due to friction or mechanical coupling between contacts). In this paper, we use Signorini's contact law and Coulomb's friction law as a computer haptics basis. Real-time performance is made possible thanks to a linearization of the behavior in the contact space, formulated as the so-called Delassus operator, and iteratively solved by a Gauss-Seidel type algorithm. Dynamic deformation uses corotational global formulation to obtain the Delassus operator in which the mass and s...

  4. Chromium Renderserver: scalable and open remote rendering infrastructure.

    Science.gov (United States)

    Paul, Brian; Ahern, Sean; Bethel, E Wes; Brugger, Eric; Cook, Rich; Daniel, Jamison; Lewis, Ken; Owen, Jens; Southard, Dale

    2008-01-01

    Chromium Renderserver (CRRS) is software infrastructure that provides the ability for one or more users to run and view image output from unmodified, interactive OpenGL and X11 applications on a remote, parallel computational platform equipped with graphics hardware accelerators via industry-standard Layer 7 network protocols and client viewers. The new contributions of this work include a solution to the problem of synchronizing X11 and OpenGL command streams, remote delivery of parallel hardware accelerated rendering, and a performance analysis of several different optimizations that are generally applicable to a variety of rendering architectures. CRRS is fully operational, Open Source software. imagery and sending it to a remote viewer.

  5. Tactile display for virtual 3D shape rendering

    CERN Document Server

    Mansutti, Alessandro; Bordegoni, Monica; Cugini, Umberto

    2017-01-01

    This book describes a novel system for the simultaneous visual and tactile rendering of product shapes which allows designers to simultaneously touch and see new product shapes during the conceptual phase of product development. This system offers important advantages, including potential cost and time savings, compared with the standard product design process in which digital 3D models and physical prototypes are often repeatedly modified until an optimal design is achieved. The system consists of a tactile display that is able to represent, within a real environment, the shape of a product. Designers can explore the rendered surface by touching curves lying on the product shape, selecting those curves that can be considered style features and evaluating their aesthetic quality. In order to physically represent these selected curves, a flexible surface is modeled by means of servo-actuated modules controlling a physical deforming strip. The tactile display is designed so as to be portable, low cost, modular,...

  6. Morpes: A Model for Personalized Rendering of Web Content on Mobile Devices

    CERN Document Server

    Kuppusamy, K S; 10.5121/ijfcst.2012.2204

    2012-01-01

    With the tremendous growth in the information communication sector, the mobile phones have become the prime information communication devices. The convergence of traditional telephony with the modern web enabled communication in the mobile devices has made the communication much effective and simpler. As mobile phones are becoming the crucial source of accessing the contents of the World Wide Web which was originally designed for personal computers, has opened up a new challenge of accommodating the web contents in to the smaller mobile devices. This paper proposes an approach towards building a model for rendering the web pages in mobile devices. The proposed model is based on a multi-dimensional web page segment evaluation model. The incorporation of personalization in the proposed model makes the rendering user-centric. The proposed model is validated with a prototype implementation.

  7. A Semi-automated Approach to Improve the Efficiency of Medical Imaging Segmentation for Haptic Rendering.

    Science.gov (United States)

    Banerjee, Pat; Hu, Mengqi; Kannan, Rahul; Krishnaswamy, Srinivasan

    2017-08-01

    The Sensimmer platform represents our ongoing research on simultaneous haptics and graphics rendering of 3D models. For simulation of medical and surgical procedures using Sensimmer, 3D models must be obtained from medical imaging data, such as magnetic resonance imaging (MRI) or computed tomography (CT). Image segmentation techniques are used to determine the anatomies of interest from the images. 3D models are obtained from segmentation and their triangle reduction is required for graphics and haptics rendering. This paper focuses on creating 3D models by automating the segmentation of CT images based on the pixel contrast for integrating the interface between Sensimmer and medical imaging devices, using the volumetric approach, Hough transform method, and manual centering method. Hence, automating the process has reduced the segmentation time by 56.35% while maintaining the same accuracy of the output at ±2 voxels.

  8. Egg volume prediction using machine vision technique based on pappus theorem and artificial neural network.

    Science.gov (United States)

    Soltani, Mahmoud; Omid, Mahmoud; Alimardani, Reza

    2015-05-01

    Egg size is one of the important properties of egg that is judged by customers. Accordingly, in egg sorting and grading, the size of eggs must be considered. In this research, a new method of egg volume prediction was proposed without need to measure weight of egg. An accurate and efficient image processing algorithm was designed and implemented for computing major and minor diameters of eggs. Two methods of egg size modeling were developed. In the first method, a mathematical model was proposed based on Pappus theorem. In second method, Artificial Neural Network (ANN) technique was used to estimate egg volume. The determined egg volume by these methods was compared statistically with actual values. For mathematical modeling, the R(2), Mean absolute error and maximum absolute error values were obtained as 0.99, 0.59 cm(3) and 1.69 cm(3), respectively. To determine the best ANN, R(2) test and RMSEtest were used as selection criteria. The best ANN topology was 2-28-1 which had the R(2) test and RMSEtest of 0.992 and 0.66, respectively. After system calibration, the proposed models were evaluated. The results which indicated the mathematical modeling yielded more satisfying results. So this technique was selected for egg size determination.

  9. Automated mass detection in contrast-enhanced CT colonography: an approach based on contrast and volume

    Energy Technology Data Exchange (ETDEWEB)

    Luboldt, W. [University Hospital Essen, Clinic and Policlinic of Angiology, Essen (Germany); Multiorgan Screening Foundation (Germany); Tryon, C. [Philips Medical Systems, Best (Netherlands); Kroll, M.; Vogl, T.J. [University Hospital Frankfurt, Department of Radiology, Frankfurt (Germany); Toussaint, T.L. [Multiorgan Screening Foundation (Germany); Holzer, K. [University Hospital Frankfurt, Department of Visceral and Vascular Surgery, Frankfurt (Germany); Hoepffner, N. [University Hospital Frankfurt, Department of Gastroenterology, Frankfurt (Germany)

    2005-02-01

    The purpose of this feasibility study was to design and test an algorithm for automating mass detection in contrast-enhanced CT colonography (CTC). Five patients with known colorectal masses underwent a pre-surgical contrast-enhanced (120 ml volume 1.6 g iodine/s injection rate, 60 s scan delay) CTC in high spatial resolution (16-slice CT: collimation: 16 x 0.75 mm, tablefeed: 24 mm/0.5 s, reconstruction increment: 0.5 mm). A CT-density- and volume-based algorithm searched for masses in the colonic wall, which was extracted before by segmenting and dilating the colonic air lumen and subtracting the inner air. A radiologist analyzed the detections and causes of false positives. All masses were detected, and false positives were easy to identify. Combining CT density with volume as a cut-off is a promising approach for automating mass detection that should be further refined and also tested in contrast-enhanced MR colonography. (orig.)

  10. Automated CT-based segmentation and quantification of total intracranial volume

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, Carlos; Wahlund, Lars-Olof; Westman, Eric [Karolinska Institute, Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, Stockholm (Sweden); Edholm, Kaijsa; Cavallin, Lena; Muller, Susanne; Axelsson, Rimma [Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Medical Imaging and Technology, Stockholm (Sweden); Karolinska University Hospital in Huddinge, Department of Radiology, Stockholm (Sweden); Simmons, Andrew [King' s College London, Institute of Psychiatry, London (United Kingdom); NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia, London (United Kingdom); Skoog, Ingmar [Gothenburg University, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Gothenburg (Sweden); Larsson, Elna-Marie [Uppsala University, Department of Surgical Sciences, Radiology, Akademiska Sjukhuset, Uppsala (Sweden)

    2015-11-15

    To develop an algorithm to segment and obtain an estimate of total intracranial volume (tICV) from computed tomography (CT) images. Thirty-six CT examinations from 18 patients were included. Ten patients were examined twice the same day and eight patients twice six months apart (these patients also underwent MRI). The algorithm combines morphological operations, intensity thresholding and mixture modelling. The method was validated against manual delineation and its robustness assessed from repeated imaging examinations. Using automated MRI software, the comparability with MRI was investigated. Volumes were compared based on average relative volume differences and their magnitudes; agreement was shown by a Bland-Altman analysis graph. We observed good agreement between our algorithm and manual delineation of a trained radiologist: the Pearson's correlation coefficient was r = 0.94, tICVml[manual] = 1.05 x tICVml[automated] - 33.78 (R{sup 2} = 0.88). Bland-Altman analysis showed a bias of 31 mL and a standard deviation of 30 mL over a range of 1265 to 1526 mL. tICV measurements derived from CT using our proposed algorithm have shown to be reliable and consistent compared to manual delineation. However, it appears difficult to directly compare tICV measures between CT and MRI. (orig.)

  11. A spatial discretization of the MHD equations based on the finite volume - spectral method

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Takahiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2000-05-01

    Based on the finite volume - spectral method, we present new discretization formulae for the spatial differential operators in the full system of the compressible MHD equations. In this approach, the cell-centered finite volume method is adopted in a bounded plane (poloidal plane), while the spectral method is applied to the differential with respect to the periodic direction perpendicular to the poloidal plane (toroidal direction). Here, an unstructured grid system composed of the arbitrary triangular elements is utilized for constructing the cell-centered finite volume method. In order to maintain the divergence free constraint of the magnetic field numerically, only the poloidal component of the rotation is defined at three edges of the triangular element. This poloidal component is evaluated under the assumption that the toroidal component of the operated vector times the radius, RA{sub {phi}}, is linearly distributed in the element. The present method will be applied to the nonlinear MHD dynamics in an realistic torus geometry without the numerical singularities. (author)

  12. Binaural technology for e.g. rendering auditory virtual environments

    DEFF Research Database (Denmark)

    Hammershøi, Dorte

    2008-01-01

    , helped mediate the understanding that if the transfer functions could be mastered, then important dimensions of the auditory percept could also be controlled. He early understood the potential of using the HRTFs and numerical sound transmission analysis programs for rendering auditory virtual...... environments. Jens Blauert participated in many European cooperation projects exploring  this field (and others), among other the SCATIS project addressing the auditory-tactile dimensions in the absence of visual information....

  13. Haptic Rendering Techniques for Non-Physical, Command Decision Support

    Science.gov (United States)

    2004-04-01

    tactile and haptic rendering techniques. BACKGROUND Usually visualizing battlefield implies maps, computer screens filled with information and perhaps 3...Traditional 2-D Screens 3-D stereo glasses HMD CAVE Audio Haptics Level 1, 2 3 …..Fusion - Estimates INTEL SATELLITE RAW DATA Transforms...sensory modes of data presentation Haptics Tactile 8-14 Virtual Lexicon Haptic feedback The sensation of weight or resistance in a virtual world. (from

  14. SU-F-207-06: CT-Based Assessment of Tumor Volume in Malignant Pleural Mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Qayyum, F; Armato, S; Straus, C; Husain, A; Vigneswaran, W; Kindler, H [The University of Chicago, Chicago, IL (United States)

    2015-06-15

    Purpose: To determine the potential utility of computed tomography (CT) scans in the assessment of physical tumor bulk in malignant pleural mesothelioma patients. Methods: Twenty-eight patients with malignant pleural mesothelioma were used for this study. A CT scan was acquired for each patient prior to surgical resection of the tumor (median time between scan and surgery: 27 days). After surgery, the ex-vivo tumor volume was measured by a pathologist using a water displacement method. Separately, a radiologist identified and outlined the tumor boundary on each CT section that demonstrated tumor. These outlines then were analyzed to determine the total volume of disease present, the number of sections with outlines, and the mean volume of disease per outlined section. Subsets of the initial patient cohort were defined based on these parameters, i.e. cases with at least 30 sections of disease with a mean disease volume of at least 3mL per section. For each subset, the R- squared correlation between CT-based tumor volume and physical ex-vivo tumor volume was calculated. Results: The full cohort of 28 patients yielded a modest correlation between CT-based tumor volume and the ex-vivo tumor volume with an R-squared value of 0.66. In general, as the mean tumor volume per section increased, the correlation of CT-based volume with the physical tumor volume improved substantially. For example, when cases with at least 40 CT sections presenting a mean of at least 2mL of disease per section were evaluated (n=20) the R-squared correlation increased to 0.79. Conclusion: While image-based volumetry for mesothelioma may not generally capture physical tumor volume as accurately as one might expect, there exists a set of conditions in which CT-based volume is highly correlated with the physical tumor volume. SGA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology.

  15. Capturing, processing, and rendering real-world scenes

    Science.gov (United States)

    Nyland, Lars S.; Lastra, Anselmo A.; McAllister, David K.; Popescu, Voicu; McCue, Chris; Fuchs, Henry

    2000-12-01

    While photographs vividly capture a scene from a single viewpoint, it is our goal to capture a scene in such a way that a viewer can freely move to any viewpoint, just as he or she would in an actual scene. We have built a prototype system to quickly digitize a scene using a laser rangefinder and a high-resolution digital camera that accurately captures a panorama of high-resolution range and color information. With real-world scenes, we have provided data to fuel research in many area, including representation, registration, data fusion, polygonization, rendering, simplification, and reillumination. The real-world scene data can be used for many purposes, including immersive environments, immersive training, re-engineering and engineering verification, renovation, crime-scene and accident capture and reconstruction, archaeology and historic preservation, sports and entertainment, surveillance, remote tourism and remote sales. We will describe our acquisition system, the necessary processing to merge data from the multiple input devices and positions. We will also describe high quality rendering using the data we have collected. Issues about specific rendering accelerators and algorithms will also be presented. We will conclude by describing future uses and methods of collection for real- world scene data.

  16. VOLUME STUDY WITH HIGH DENSITY OF PARTICLES BASED ON CONTOUR AND CORRELATION IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Tatyana Yu. Nikolaeva

    2014-11-01

    Full Text Available The subject of study is the techniques of particle statistics evaluation, in particular, processing methods of particle images obtained by coherent illumination. This paper considers the problem of recognition and statistical accounting for individual images of small scattering particles in an arbitrary section of the volume in case of high concentrations. For automatic recognition of focused particles images, a special algorithm for statistical analysis based on contouring and thresholding was used. By means of the mathematical formalism of the scalar diffraction theory, coherent images of the particles formed by the optical system with high numerical aperture were simulated. Numerical testing of the method proposed for the cases of different concentrations and distributions of particles in the volume was performed. As a result, distributions of density and mass fraction of the particles were obtained, and the efficiency of the method in case of different concentrations of particles was evaluated. At high concentrations, the effect of coherent superposition of the particles from the adjacent planes strengthens, which makes it difficult to recognize images of particles using the algorithm considered in the paper. In this case, we propose to supplement the method with calculating the cross-correlation function of particle images from adjacent segments of the volume, and evaluating the ratio between the height of the correlation peak and the height of the function pedestal in the case of different distribution characters. The method of statistical accounting of particles considered in this paper is of practical importance in the study of volume with particles of different nature, for example, in problems of biology and oceanography. Effective work in the regime of high concentrations expands the limits of applicability of these methods for practically important cases and helps to optimize determination time of the distribution character and

  17. Fast estimation of lacustrine groundwater discharge volumes based on stable water isotopes

    Science.gov (United States)

    Lewandowski, Jörg; Gercken, Jasper; Premke, Katrin; Meinikmann, Karin

    2017-04-01

    Lake eutrophication is still a severe problem in many parts of the world, commonly due to anthropogenic sources of nutrients such as fertilizer, manure or sewage. Improved quantification of nutrient inputs to lakes is required to address this problem. One possible input path for nutrients is lacustrine groundwater discharge (LGD). However, LGD has often been disregarded in water and nutrient budgets of lakes although some studies reveal an extraordinary importance of LGD for phosphorus inputs. The aim of the present study is to identify lakes that receive large LGD volumes compared to other input paths. Such lakes are more prone to high groundwater-borne nutrient inputs than lakes with small LGD volumes. . The simple and fast approach used in the present study is based on the fact that evaporation of surface water causes an enrichment of heavier isotopes in lake and river water while precipitation and groundwater are lighter and have similar isotopic signatures. The isotopic signature of lake water depends on a) the isotopic signature of its inputs and b) the lakés residence time (the longer the more enriched with heavier isotopes). In the present study we used the citizen science project "Tatort Gewässer" to let people collect lake water samples all over Germany. Based on additional information we identified lakes without or with small (compared to the lake volume) aboveground inflows. Based on the isotopic signatures of these lakes and additional background information such as the mean depth we could identify lakes in which groundwater is an important component of the water balance. The results will be used as a basis of intense research on groundwater-driven lake eutrophication.

  18. Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter

    2011-01-01

    design, in particular shape and topology optimization, and are most often solved numerically utilizing a finite element approach. Within the FV framework for control in the coefficients problems the main difficulty we face is the need to analyze the convergence of fluxes defined on the faces of cells......We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal...

  19. Simulation of DNAPL migration in heterogeneous translucent porous media based on estimation of representative elementary volume

    Science.gov (United States)

    Wu, Ming; Wu, Jianfeng; Wu, Jichun

    2017-10-01

    When the dense nonaqueous phase liquid (DNAPL) comes into the subsurface environment, its migration behavior is crucially affected by the permeability and entry pressure of subsurface porous media. A prerequisite for accurately simulating DNAPL migration in aquifers is then the determination of the permeability, entry pressure and corresponding representative elementary volumes (REV) of porous media. However, the permeability, entry pressure and corresponding representative elementary volumes (REV) are hard to determine clearly. This study utilizes the light transmission micro-tomography (LTM) method to determine the permeability and entry pressure of two dimensional (2D) translucent porous media and integrates the LTM with a criterion of relative gradient error to quantify the corresponding REV of porous media. As a result, the DNAPL migration in porous media might be accurately simulated by discretizing the model at the REV dimension. To validate the quantification methods, an experiment of perchloroethylene (PCE) migration is conducted in a two-dimensional heterogeneous bench-scale aquifer cell. Based on the quantifications of permeability, entry pressure and REV scales of 2D porous media determined by the LTM and relative gradient error, different models with different sizes of discretization grid are used to simulate the PCE migration. It is shown that the model based on REV size agrees well with the experimental results over the entire migration period including calibration, verification and validation processes. This helps to better understand the microstructures of porous media and achieve accurately simulating DNAPL migration in aquifers based on the REV estimation.

  20. Amniotic fluid volume: Rapid MR-based assessment at 28-32 weeks gestation

    Energy Technology Data Exchange (ETDEWEB)

    Hilliard, N.J.; Hawkes, R.; Patterson, A.J.; Graves, M.J.; Priest, A.N.; Hunter, S.; Set, P.A.; Lomas, D.J. [Cambridge University Hospitals NHS Foundation Trust, Department of Radiology, Cambridge (United Kingdom); Lees, C. [Imperial College Healthcare NHS Trust, Department of Obstetrics and Fetal Medicine, London (United Kingdom)

    2016-10-15

    This work evaluates rapid magnetic resonance projection hydrography (PH) based amniotic fluid volume (AFV) estimates against established routine ultrasound single deepest vertical pocket (SDVP) and amniotic fluid index (AFI) measurements, in utero at 28-32 weeks gestation. Manual multi-section planimetry (MSP) based measurement of AFV is used as a proxy reference standard. Thirty-five women with a healthy singleton pregnancy (20-41 years) attending routine antenatal ultrasound were recruited. SDVP and AFI were measured using ultrasound, with same day MRI assessing AFV with PH and MSP. The relationships between the respective techniques were assessed using linear regression analysis and Bland-Altman method comparison statistics. When comparing estimated AFV, a highly significant relationship was observed between PH and the reference standard MSP (R{sup 2} = 0.802, p < 0.001). For the US measurements, SDVP measurement related most closely to amniotic fluid volume, (R{sup 2} = 0.470, p < 0.001), with AFI demonstrating a weaker relationship (R{sup 2} = 0.208, p = 0.007). This study shows that rapid MRI based PH measurement is a better predictor of AFV, relating more closely to our proxy standard than established US techniques. Although larger validation studies across a range of gestational ages are required this approach could form part of MR fetal assessment, particularly where poly- or oligohydramnios is suspected. (orig.)