WorldWideScience

Sample records for volume pv manufacturing

  1. Real time PV manufacturing diagnostic system

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [MicroXact Inc., Blacksburg, VA (United States); Crawford, Michael A. [MicroXact Inc., Blacksburg, VA (United States)

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  2. PVMaT Cost Reductions in the EFG High Volume PV Manufacturing Line: Final Subcontract Report, 5 August 1998 -- 4 February 2001

    Energy Technology Data Exchange (ETDEWEB)

    Kalejs, J.; Bathey, B.; Brown, B.; Cao, J.; Doedderlein, J.; Ebers, S.; Gonsiorawski, R.; Heath, B.; Kardauskas, M.; Mackintosh, B.; Ouellette, M.; Piwczyk, B.; Rosenblum, M.; Southimath, B.

    2002-03-01

    This report describes the three major task areas: manufacturing systems development, low-cost processing technology, and flexible manufacturing methods. In Manufacturing Systems, we have worked on implementing and utilizing SPC on a larger scale by developing support systems for computer-aided data bases and equipment and process-tracking methodology; developing and implementing new diagnostic techniques; reducing acid use and waste products by introducing a new dry-etch process; and formalizing documentation and training procedures for manufacturing processes (ISO 9000) and for waste product and safety management (ISO 14000) to assist in handling the larger manufacturing organization. Low-Cost Processes, we report on progress in demonstrating low-damage, high-throughput laser technology; studies on Rapid Thermal Processing approaches to improving cell efficiency; evaluating new thin-wafer technology using EFG cylinders; and developing a large EFG octagon and laser-cutting technology for producing 12.5 cm x 12.5 cm wafers. For Flexible Manufacturing, we completed introduction of manufacturing data bases for wafer and cell manufacturing; process modifications to accommodate manufacture of 10 cm x 15 cm wafers; and module field-performance studies and defect tracking to be used to improve manufacturing processes, new encapsulant qualification and introduction into manufacturing, and progress in developing designs for low-cost modules.

  3. PV Cz silicon manufacturing technology improvements

    Science.gov (United States)

    Jester, T.

    1995-09-01

    This describes work done in the final phase of a 3-y, 3-phase contract to demonstrate cost reductions and improvements in manufacturing technology. The work focused on near-term projects in the SSI (Siemens Solar Industries) Czochralski (Cz) manufacturing facility in Camarillo, CA; the final phase was concentrated in areas of crystal growth, wafer technology, and environmental, safety, and health issues. During this period: (1) The crystal-growing operation improved with increased growth capacity; (2) Wafer processing with wire saws continued to progress; the wire saws yielded almost 50 percent more wafers per inch in production. The wire saws needs less etching, too; (3) Cell processing improvements focused on better handling and higher mechanical yield. The cell electrical distribution improved with a smaller standard deviation in the distribution; and (4) Module designs for lower material and labor costs continued, with focus on a new junction box, larger modules with larger cells, and less costly framing techniques. Two modules demonstrating these cost reductions were delivered during this phase.

  4. DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-02-01

    This draft report summarizes the results of the U.S. Department of Energy PV Manufacturing Request for Information (RFI), DE-FOA-0000153, that was released in September 2009. The PV Manufacturing Initiative is intended to help facilitate the development of a strong PV manufacturing industry in the United States.

  5. Thin film PV manufacturing. Materials costs and their optimization

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. [National Renewable Energy Laboratory, Thin Film PV Partnership, 1617 Cole Boulevard, 80401 Golden, CO (United States)

    2000-08-31

    Thin film PV technologies face a number of hurdles as they advance towards low-cost goals that would make them competitive with traditional sources of electricity. The US Department of Energy cost goal for thin films is about $0.33/W{sub p}, which corresponds to module efficiencies of about 15% and module manufacturing costs of about $50/m{sup 2}. Past papers have provided a framework for examining thin film efficiencies and manufacturing costs, especially those costs for equipment, labor, materials, utilities, and others. Although materials costs appear to be a large fraction of the total, we have not yet broken them down in enough detail to seek significant improvement. In the future, with more mature thin film production, materials costs such as those from semiconductor layers, contacts, pottants, substrates, and electrical interconnection will dominate total module cost. This paper (1) breaks down the materials costs into two broad categories (active and inactive materials) and then (2) investigates the issues associated with reducing their costs much below today's levels. Materials will likely be such an overwhelming cost-driver for mature manufacturing of thin film PV that issues associated with their optimization should be examined as soon as possible in order to meet the DOE long-term goals for PV module costs.

  6. Final Technical Report for Automated Manufacturing of Innovative CPV/PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Okawa, David [Cogenra Solar, Fremont, CA (United States)

    2017-12-15

    Cogenra’s Dense Cell Interconnect system was designed to use traditional front-contact cells and string them together into high efficiency and high reliability “supercells”. This novel stringer allows one to take advantage of the ~100 GW/year of existing cell production capacity and create a solar product for the customer that will produce more power and last longer than traditional PV products. The goal for this program was for Cogenra Solar to design and develop a first-of-kind automated solar manufacturing line that produces strings of overlapping cells or “supercells” based on Cogenra’s Dense Cell Interconnect (DCI) technology for their Low Concentration Photovoltaic (LCPV) systems. This will enable the commercialization of DCI technology to improve the efficiency, reliability and economics for their Low Concentration Photovoltaic systems. In this program, Cogenra Solar very successfully designed, developed, built, installed, and started up the ground-breaking manufacturing tools required to assemble supercells. Cogenra then successfully demonstrated operation of the integrated line at high yield and throughput far exceeding expectations. The development of a supercell production line represents a critical step toward a high volume and low cost Low Concentration Photovoltaic Module with Dense Cell Interconnect technology and has enabled the evaluation of the technology for reliability and yield. Unfortunately, performance and cost headwinds on Low Concentration Photovoltaics systems including lack of diffuse capture (10-15% hit) and more expensive tracker requirements resulted in a move away from LCPV technology. Fortunately, the versatility of Dense Cell Interconnect technology allows for application to flat plate module technology as well and Cogenra has worked with the DOE to utilize the learning from this grant to commercialize DCI technology for the solar market through the on-going grant: Catalyzing PV Manufacturing in the US With Cogenra

  7. The vital role of manufacturing quality in the reliability of PV modules

    Science.gov (United States)

    Rusch, Peter

    2014-10-01

    The influence of manufacturing quality on the reliability of PV modules coming out of today's factories has been, and is still, under estimated among investors and buyers. The main reason is perception. Contrary to popular belief, PV modules are not a commodity. Module quality does differ among module brands. Certification alone does not guarantee the quality or reliability of a module. Cost reductions in manufacturing have unequivocally affected module quality. And the use of new, cheaper materials has had a measureable impact on module reliability. The need for meaningful manufacturing quality standards has been understood by the leading technical institutions and important industry players. The fact that most leading PV panel manufacturers have been certified according to ISO 9001 has led to some level of improvement and higher effectiveness. The new ISO 9001 PV QMS standards will be a major step in providing a tool to assess PV manufacturers' quality management systems. The current lack of sufficient standards has still got a negative influence on the quality of modules being installed today. Today every manufacturer builds their modules in their own way with little standardization or adherence to quality processes and methods, which are commonplace in other manufacturing industries. Although photovoltaic technology is to a great extent mature, the way modules are being produced has changed significantly over the past few years and it continues to change at a rapid pace. Investors, financiers and lenders stand the most to gain from PV systems over the long-term, but also the most to lose. Investors, developers, EPC, O&M and solar asset management companies must all manage manufacturing quality more proactively or they will face unexpected risks and failures down the road. Manufacturing quality deserves more transparency and attention, as it is a major driver of module performance and reliability. This paper will explain the benefits of good manufacturing

  8. PV Inverter Products Manufacturing and Design Improvements for Cost Reduction and Performance Enhancements: Final Subcontract Report, November 2003 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    West, R.

    2004-04-01

    The specific objectives of this subcontracted development work by Xantrex Technology Inc. were to: (1) Capture the newest digital signal processor (DSP) technology to create high-impact,''next generation'' power conversion equipment for the PV industry; (2) Create a common resource base for three PV product lines. This standardized approach to both hardware and software control platforms will provide significant market advantage over foreign competition; (3) Achieve cost reductions through increased volume of common components, reduced assembly labor, and the higher efficiency of producing more products with fewer design, manufacturing, and production test variations; (4) Increase PV inverter product reliability. Reduce inverter size, weight and conversion losses. The contract goals were to achieve an overall cost reduction of 10% to 20% for the three inverters and with no compromise in performance. The cost of the 10-kW inverter was reduced by 56%, and the cost of the 25-kW inverter was reduced by 53%. The 2.5-kW inverter has no basis for comparison, but should benefit equally from this design approach. Not only were the contract cost reduction goals exceeded by a wide margin, but the performance and reliability of the products were also enhanced. The conversion efficiency improvement, as reflected in the 50% conversion loss reduction, adds significant value in renewable energy applications. The size and weight reductions also add value by providing less cumbersome product solutions for system designers.

  9. Updated Proposal for a Guide for Quality Management Systems for PV Manufacturing. Supplemental Requirements to ISO 9001-2008

    Energy Technology Data Exchange (ETDEWEB)

    Ramu, Govind [Sun Power, San Jose, CA (United States); Yamamichi, Masaaki [National Inst. of Advanced Industrial Science and Technology (AIST); Zhou, Wei [Trina Solar, San Jose, CA (United States); Mikonowicz, Alex [Powermark, Dallas, TX (United States); Lokanath, Sumanth [First Solar, Tempe, AZ (United States); Eguchi, Yoshihito [Mitsui Chemical, Rye Brook, NY (United States); Norum, Paul [Amonix, Seal Beach, CA (United States); Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    The goal of this Technical Specification is to provide a guideline for manufacturers of photovoltaic (PV) modules to produce modules that, once the design is proven to meet the quality and reliability requirements, replicate the design on an industrial scale without compromising its consistency with the requirements.

  10. Efficiency and Throughput Advances in Continuous Roll-to-Roll a-Si Alloy PV Manufacturing Technology: Final Subcontract Report, 22 June 1998 -- 5 October 2001

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, T.

    2002-04-01

    This report describes a roll-to-roll triple-junction amorphous silicon alloy PV manufacturing technology developed and commercialized by Energy Conversion Devices (ECD) and United Solar Systems. This low material cost, roll-to-roll production technology has the economies of scale needed to meet the cost goals necessary for widespread use of PV. ECD has developed and built six generations of a-Si production equipment, including the present 5 MW United Solar manufacturing plant in Troy, Michigan. ECD is now designing and building a new 25-MW facility, also in Michigan. United Solar holds the world's record for amorphous silicon PV conversion efficiency, and manufactures and markets a wide range of PV products, including flexible portable modules, power modules, and innovative building-integrated PV (BIPV) shingle and metal-roofing modules that take advantage of this lightweight, rugged, and flexible PV technology. All of United Solar's power and BIPV products are approved by Underwriters Laboratories and carry a 10-year warranty. In this PVMaT 5A subcontract, ECD and United Solar are addressing issues to reduce the cost and improve the manufacturing technology for the ECD/United Solar PV module manufacturing process. ECD and United Solar identified five technology development areas that would reduce the module manufacturing cost in the present 5-MW production facility, and also be applicable to future larger-scale manufacturing facilities.

  11. Heliostat manufacturing cost analysis. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, K; Schulte, S C; Dilbeck, R A; Long, L W

    1979-10-01

    This study has two primary objectives. The first is to provide a detailed cost evaluation of the second generation of DOE heliostats, from which repowering heliostat designs are likely to be derived. A second objective is to provide an analytical foundation for the evaluation of futue heliostat designs. The approach taken for this study was to produce a cost estimate for the production of the McDonnell Douglas prototype design by generating estimates of the materials, labor, overhead, and facilities costs for two different production scenarios, 25,000 heliostats per year and 250,000 heliostats per year. The primary conclusion of this study is that the second generation of heliostat designs should cost approximately $100/m/sup 2/ at volumes of 25,000 units/year. This price falls to approximately $80/m/sup 2/ at volumes of 250,000 units/year. A second conclusion is that cost reduction begins at relatively low production volumes and that many production benefits can be obtained at production rates of 5,000 to 15,000 units/year. A third conclusion is that the SAMICS model and the SAMIS III program can be useful tools in heliostat manufacturing, costing, and economic studies.

  12. Research Leading to High Throughput Manufacturing of Thin-Film CdTe PV Modules: Annual Technical Report, September 2003-September 2004

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R. C.

    2004-12-01

    First Solar is actively commercializing CdTe-based thin-film photovoltaics. During the past year, major additions of production capability have been completed, as well as process improvements to achieve higher throughput and efficiency and greater durability. This report presents the results of Phase II of the subcontract, entitled ''Research Leading to High Throughput Manufacturing of Thin-Film CdTe PV Modules.'' The subcontract supports several important aspects needed for high-volume manufacturing of high-efficiency modules, including exploration of large-area advanced front-contact window layers, improvements of the semiconductor deposition system, advancement in understanding of post-deposition processing steps and accelerated life testing methods, and progress in the environmental, health and safety programs. Work under this subcontract contributes to the overall manufacturing operation. During Phase II, average module efficiency (total area) on the production line was improved from 7.9% to 8.6% due primarily to process optimization. At the same, time production volume for commercial sales increased from 2.5 MW in 2003 to an estimated 6 MW in 2004. Much of the new 25 MW/yr production line has been qualified, and production volume is steadily increasing.

  13. PowerLight Corporation Lean Manufacturing, PV Manufacturing R&D Phase I Report: 6 December 2001--31 March 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, L; Botkin, J.

    2005-06-01

    PowerLight Corporation (PowerLight) has completed Phase I of its PV Manufacturing R&D subcontract, ''PowerGuard Lean Manufacturing,'' Subcontract No. NDO-1-30628-04. The overall technical goal of this project was to reduce the cost of PowerGuard manufacturing while simultaneously improving product quality. This will enable PowerLight to scale up production capacity as the market for PowerGuard continues to grow. Through the introduction of world-class lean manufacturing techniques, PowerLight was to cut out waste in the manufacturing process of PowerGuard. The manufacturing process was to be overhauled with an objective of removing as much as possible those steps that do not add value to the product. Quality of finished goods was also to be improved through the use of statistical process control and error-proofing in the manufacturing process. Factory operations were also to be addressed to streamline those factory activities that support the manufacturing process. This report de tails the progress made toward the above listed goals during the first phase of this subcontract.

  14. PV Manufacturing R&D -- Integrated CIS Thin-Film Manufacturing Infrastructure: Phase I Technical Report, 2 August 2002--31 October 2003

    Energy Technology Data Exchange (ETDEWEB)

    Tarrant, D. E.; Gay, R. R.

    2004-06-01

    This subcontract report describes Shell Solar Industries (SSI), formerly Siemens Solar Industries, pursuing research and development of CuInSe2-based thin-film PV technology since 1980. In the 1980s, SSI demonstrated a 14.1%-efficient 3.4-cm2 active-area cell; unencapsulated integrated modules with aperture efficiencies of 11.2% on 940 cm2 and 9.1% on 3900 cm2; and an encapsulated module with 8.7% efficiency on 3883 cm2 (verified by NREL). Since these early achievements, SSI has made outstanding progress in the initial commercialization of high-performance thin-film CIS technology. Line yield has been increased from about 60% in 2000 to about 85% in 2002. This major accomplishment supports attractive cost projections for CIS. Recently, NREL confirmed a champion 12.8% aperture-area conversion efficiency for a large-area (3626 cm2) CIS module. Other than definition of the aperture area, this module is simply one module from the upper end of the production distribution for standard modules. Prerequisites for commitment to large-scale commercialization have been demonstrated at successive levels of CIS production. Remaining R&D challenges are to scale the processes to even larger areas, to reach higher production capacity, to demonstrate in-service durability over longer times, and to advance the fundamental understanding of CIS-based materials and devices with the goal of improvements for future products. SSI's thin-film CIS technology is poised to make very significant contributions to DOE/NREL/NCPV long-term goals of higher volume, lower-cost commercial products. The objective of this subcontract is to continue advancement of SSI's copper indium diselenide (CIS) technology through development and implementation of: high-throughput CIS absorber formation reactors; an XRF measurement system; a bar-code scribing system; a high-capacity ZnO monitoring system; a high-capacity continuous-light-source simulator; and integrated manufacturing infrastructure

  15. Additive Manufacturing for Low Volume Bearings

    Energy Technology Data Exchange (ETDEWEB)

    Tate, John G. [Schaeffler Group USA, Spartanburg, SC (United States); Richardson, Bradley S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    ORNL worked with the Schaeffler Group USA to explore additive manufacturing techniques that might be appropriate for prototyping of bearing cages. Multiple additive manufacturing techniques were investigated, including e-beam, binder jet and multiple laser based processes. The binder jet process worked best for the thin, detailed cages printed.

  16. Innovative manufacturing technologies for low-cost, high efficiency PERC-based PV modules

    Energy Technology Data Exchange (ETDEWEB)

    Yelundur, Vijay [Suniva Inc., Norcross, GA (United States)

    2017-04-19

    The goal this project was to accelerate the deployment of innovative solar cell and module technologies that reduce the cost of PERC-based modules to best-in-class. New module integration technology was to be used to reduce the cost and reliance on conventional silver bus bar pastes and enhance cell efficiency. On the cell manufacturing front, the cost of PERC solar cells was to be reduced by introducing advanced metallization approaches to increase cell efficiency. These advancements will be combined with process optimization to target cell efficiencies in the range of 21 to 21.5%. This project will also explore the viability of a bifacial PERC solar cell design to enable cost savings through the use of thin silicon wafers. This project was terminated on 4/30/17 after four months of activity due financial challenges facing the recipient.

  17. Development of flame retardant PV module encapsulants: Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Galica, J.P.

    1998-06-01

    This Phase 1 final report covers the work performed by Springborn Testing and Research, Inc., for the period October 1, 1997 to June 30, 1998 under the Department of Energy Cooperative Agreement Number DE-FC36-97GO10255, entitled Development of Flame Retardant PV Module Encapsulants. While use of roof-mounted arrays has always been an attractive means of deploying PV, only within recent years have such building integrated concepts (BIPV) found renewed interest among module makers and end-users. Prior to building integrated and rooftop applications, flammability requirements for modules have not been a great industry concern. However, with growing interest in BIPV and the requirement for building code requirements for commercial and industrial structures, flammability issues have become a barrier to entry for many module constructions into this potentially huge domestic market for PV. The overall goal of the 3 phase PV BONUS two project is to develop and commercialize a line of fire retardant encapsulation materials to serve the emerging building integrated and building mounted PV market. The objectives of the Phase 1 effort are limited to concept development and business planning activities.

  18. Research Leading to High Throughput Manufacturing of Thin-Film CdTe PV Modules: Annual Subcontract Report, September 2004--September 2005

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R. C.

    2006-04-01

    Specific overall objectives of this subcontract are improvement in baseline field performance of manufactured CdTe PV modules while reducing environmental, health and safety risk in the manufacturing environment. Project objectives focus on four broad categories: (1) development of advanced front-contact window layers, (2) improved semiconductor film deposition, (3) development of improved accelerated life test procedures that indicate baseline field performance, and (4) reduction of cadmium-related environmental, health and safety risks. First Solar has significantly increased manufacturing capacity from less than 2 MW/yr to more than 20 MW/yr, while increasing the average module total-area power conversion efficiency from 7% to >9%. First Solar currently manufactures and sells 50-65-W thin-film CdTe PV modules at a rate of about 1.9 MW/month. Sales backlog (booked sales less current inventory divided by production rate) is more than a year. First Solar is currently building new facilities and installing additional equipment to increase production capacity by 50 MW/yr; the additional capacity is expected to come on line in the third quarter of 2006.

  19. Community biomass handbook volume 4: enterprise development for integrated wood manufacturing

    Science.gov (United States)

    Eini Lowell; D.R. Becker; D. Smith; M. Kauffman; D. Bihn

    2017-01-01

    The Community Biomass Handbook Volume 4: Enterprise Development for Integrated Wood Manufacturing is a guide for creating sustainable business enterprises using small diameter logs and biomass. This fourth volume is a companion to three Community Biomass Handbook volumes: Volume 1: Thermal Wood Energy; Volume 2: Alaska, Where Woody Biomass Can Work; and Volume 3: How...

  20. Surrogate Plant Data Base : Volume 4. Appendix E : Medium and Heavy Truck Manufacturing

    Science.gov (United States)

    1983-05-01

    This four volume report consists of a data base describing "surrogate" automobile and truck manufacturing plants developed as part of a methodology for evaluating capital investment requirements in new manufacturing facilities to build new fleets of ...

  1. EFG Technology and Diagnostic R&D for Large-Scale PV Manufacturing; Final Subcontract Report, 1 March 2002 - 31 March 2005

    Energy Technology Data Exchange (ETDEWEB)

    Kalejs, J.; Aurora, P.; Bathey, B.; Cao, J.; Doedderlein, J.; Gonsiorawski, R.; Heath, B.; Kubasti, J.; Mackintosh, B.; Ouellette, M.; Rosenblum, M.; Southimath, S.; Xavier, G.

    2005-10-01

    The objective of this subcontract was to carry out R&D to advance the technology, processes, and performance of RWE Schott-Solar's wafer, cell, and module manufacturing lines, and help configure these lines for scaling up of edge-defined, film-fed growth (EFG) ribbon technology to the 50-100 MW PV factory level. EFG ribbon manufacturing continued to expand during this subcontract period and now has reached a capacity of 40 MW. EFG wafer products were diversified over this time period. In addition to 10 cm x 10 cm and 10 cm x 15 cm wafer areas, which were the standard products at the beginning of this program, R&D has focused on new EFG technology to extend production to 12.5 cm x 12.5 cm EFG wafers. Cell and module production also has continued to expand in Billerica. A new 12-MW cell line was installed and brought on line in 2003. R&D on this subcontract improved cell yield and throughput, and optimized the cell performance, with special emphasis on work to speed up wafer transfer, hence enhancing throughput. Improvements of wafer transfer processes during this program have raised cell line capacity from 12 MW to over 18 MW. Optimization of module manufacturing processes was carried out on new equipment installed during a manufacturing upgrade in Billerica to a 12-MW capacity to improve yield and reliability of products.

  2. Advanced Engineering Environments for Small Manufacturing Enterprises: Volume I

    National Research Council Canada - National Science Library

    Fenves, Steven J

    2003-01-01

    Advanced engineering environments (AEEs) are computational and communications systems that link researchers, technologists, designers, manufacturers, suppliers, and customers during the design phase of a product...

  3. The Present, Mid-Term, and Long-Term Supply Curves for Tellurium; and Updates in the Results from NREL's CdTe PV Module Manufacturing Cost Model (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Woodhouse, M.; Goodrich, A.; Redlinger, M.; Lokanc, M.; Eggert, R.

    2013-09-01

    For those PV technologies that rely upon Te, In, and Ga, first-order observations and calculations hint that there may be resource constraints that could inhibit their successful deployment at a SunShot level. These are only first-order approximations, however, and the possibility for an expansion in global Te, In, and Ga supplies needs to be considered in the event that there are upward revisions in their demand and prices.In this study, we examine the current, mid-term, and long-term prospects of Tellurium (Te) for use in PV. We find that the current global supply base of Te would support <10 GW of annual traditional CdTe PV manufacturing production. But as for the possibility that the supply base for Te might be expanded, after compiling several preliminary cumulative availability curves we find that there may be significant upside potential in the supply base for this element - principally vis a vis increasing demand and higher prices. Primarily by reducing the Tellurium intensity in manufacturing and by increasing the recovery efficiency of Te in Cu refining processes, we calculate that it may prove affordable to PV manufacturers to expand the supply base for Te such that 100 GW, or greater, of annual CdTe PV production is possible in the 2030 - 2050 timeframe.

  4. Proposal for a Guide for Quality Management Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Norum, P.; Sinicco, I.; Eguchi, Y.; Lokanath, S.; Zhou, W.; Brueggemann, G.; Mikonowicz, A.; Yamamichi, M.; Kurtz, S.

    2013-09-01

    This technical specification provides a guideline for photovoltaic module manufacturers to produce modules that, once the design has proven to meet the quality and reliability requirements, replicate such design in an industrial scale without compromising its consistency with the requirements.

  5. III-Vs at Scale: A PV Manufacturing Cost Analysis of the Thin Film Vapor-Liquid-Solid Growth Mode

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Maxwell; Horowitz, Kelsey; Woodhouse, Michael; Battaglia, Corsin; Kapadia, Rehan; Javey, Ali

    2016-06-01

    The authors present a manufacturing cost analysis for producing thin-film indium phosphide modules by combining a novel thin-film vapor-liquid-solid (TF-VLS) growth process with a standard monolithic module platform. The example cell structure is ITO/n-TiO2/p-InP/Mo. For a benchmark scenario of 12% efficient modules, the module cost is estimated to be $0.66/W(DC) and the module cost is calculated to be around $0.36/W(DC) at a long-term potential efficiency of 24%. The manufacturing cost for the TF-VLS growth portion is estimated to be ~$23/m2, a significant reduction compared with traditional metalorganic chemical vapor deposition. The analysis here suggests the TF-VLS growth mode could enable lower-cost, high-efficiency III-V photovoltaics compared with manufacturing methods used today and open up possibilities for other optoelectronic applications as well.

  6. Manufacture and quality control of interconnecting wire hardnesses, Volume 1

    Science.gov (United States)

    1972-01-01

    A standard is presented for manufacture, installation, and quality control of eight types of interconnecting wire harnesses. The processes, process controls, and inspection and test requirements reflected are based on acknowledgment of harness design requirements, acknowledgment of harness installation requirements, identification of the various parts, materials, etc., utilized in harness manufacture, and formulation of a typical manufacturing flow diagram for identification of each manufacturing and quality control process, operation, inspection, and test. The document covers interconnecting wire harnesses defined in the design standard, including type 1, enclosed in fluorocarbon elastomer convolute, tubing; type 2, enclosed in TFE convolute tubing lines with fiberglass braid; type 3, enclosed in TFE convolute tubing; and type 5, combination of types 3 and 4. Knowledge gained through experience on the Saturn 5 program coupled with recent advances in techniques, materials, and processes was incorporated.

  7. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume III. Technical issues and design guidance

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    This report provide appropriate guidance for addressing the major technical issues associated with the design and installation of a photovoltaic-thermal (PV-T) system. Nomographs are presented for developing preliminary sizing and costing, and issues associated with specific components and the overall design of the electrical and mechanical system are discussed. SAND82-7157/2 presents a review of current PV-T technology and operating systems and a study of potential PV-T applications. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  8. ICAM (Integrated Computer-Aided Manufacturing) Manufacturing Cost/Design Guide. Volume 7. Technology Transfer Summary.

    Science.gov (United States)

    1984-09-01

    TechMod Pro- gram, Tech Area 3, "Computer-Aided Value Engineering". Colt Industries * Assist in automating production lines . Computer Avionics e Optimize...design and manufacture of power system equipment, power supplies, radar modulations, radar equipment, and test equipment. Emhart Machinery Assist in...manufacturability impacts to mechanical designers. ITT Defense Comunications e Analyze design to unit productionK costs; provide guidelines for program

  9. Study of Potential Cost Reductions Resulting from Super-Large-Scale Manufacturing of PV Modules: Final Subcontract Report, 7 August 2003--30 September 2004

    Energy Technology Data Exchange (ETDEWEB)

    Keshner, M. S.; Arya, R.

    2004-10-01

    Hewlett Packard has created a design for a ''Solar City'' factory that will process 30 million sq. meters of glass panels per year and produce 2.1-3.6 GW of solar panels per year-100x the volume of a typical, thin-film, solar panel manufacturer in 2004. We have shown that with a reasonable selection of materials, and conservative assumptions, this ''Solar City'' can produce solar panels and hit the price target of $1.00 per peak watt (6.5x-8.5x lower than prices in 2004) as the total price for a complete and installed rooftop (or ground mounted) solar energy system. This breakthrough in the price of solar energy comes without the need for any significant new invention. It comes entirely from the manufacturing scale of a large plant and the cost savings inherent in operating at such a large manufacturing scale. We expect that further optimizations from these simple designs will lead to further improvements in cost. The manufacturing process and cost depend on the choice for the active layer that converts sunlight into electricity. The efficiency by which sunlight is converted into electricity can range from 7% to 15%. This parameter has a large effect on the overall price per watt. There are other impacts, as well, and we have attempted to capture them without creating undue distractions. Our primary purpose is to demonstrate the impact of large-scale manufacturing. This impact is largely independent of the choice of active layer. It is not our purpose to compare the pro's and con's for various types of active layers. Significant improvements in cost per watt can also come from scientific advances in active layers that lead to higher efficiency. But, again, our focus is on manufacturing gains and not on the potential advances in the basic technology.

  10. Surrogate Plant Data Base : Volume 3. Appendix D : Facilities Planning Data ; Operating Manpower, Manufacturing Budgets and Pre-Production Launch ...

    Science.gov (United States)

    1983-05-01

    This four volume report consists of a data base describing "surrogate" automobile and truck manufacturing plants developed as part of a methodology for evaluating capital investment requirements in new manufacturing facilities to build new fleets of ...

  11. PV Manufacturing R&D -- Integrated CIS Thin-Film Manufacturing Infrastructure: Final Technical Report, 2 August 2002--30 April 2004

    Energy Technology Data Exchange (ETDEWEB)

    Tarrant, D. E.; Gay, R. R.

    2004-11-01

    The objective of this subcontract was to continue the advancement of CIS production at Shell Solar Industries through the development of high-throughput CIS absorber formation reactors, implementation of associated safety infrastructure, an XRF measurement system, a bar code scribing system, and Intelligent Processing functions for the CIS production line. The intent was to open up production bottlenecks thereby allowing SSI to exercise the overall process at higher production rates and lay the groundwork for evaluation of near-term and long-term manufacturing scale-up. The goal of the absorber formation reactor subcontract work was to investigate conceptual designs for high-throughput, large area (2x5 ft.) CIS reactors and provide design specifications for the first generation of these reactors. The importance of reactor design to the CIS formation process was demonstrated when first scaling from a baseline process in reactors for substrates to a large area reactor. SSI demonstrated that lower performance for large substrates was due to differences in absorber layer properties that were due to differences in the materials of construction and the physical design of the large reactor. As a result of these studies, a new large area reactor was designed and built that demonstrated circuit plate performance comparable to the performance using small area reactors. For this subcontract work, three tasks were identified to accomplish the absorber formation reactor work: Modeling, Mockup and Vendor Search. The goal of the mockup task was to demonstrate that large area substrates, nominally 2 by 5 ft., could be heated without warping and to begin exploring the achievable thermal uniformity for various reactor and substrate configurations and varied ramp rates. The mockup consisted of a metal simulation of the reactor that was placed in a large industrial furnace. Substrate temperature variations ranged from minimal to significant with increasing substrate load. Warping

  12. Technology Reinvestment Project Manufacturing Education and Training. Volume 1

    Science.gov (United States)

    Schroer, Bernard J.; Bond, Arthur J.

    1997-01-01

    The manufacturing education program is a joint program between the University of Alabama in Huntsville's (UAH) College of Engineering and Alabama A&M University's (AAMLJ) School of Engineering and Technology. The objective of the program is to provide more hands-on experiences to undergraduate engineering and engineering technology students. The scope of work consisted of. Year 1, Task 1: Review courses at Alabama Industrial Development Training (AIDT); Task 2: Review courses at UAH and AAMU; Task 3: Develop new lab manuals; Task 4: Field test manuals; Task 5: Prepare annual report. Year 2, Task 1: Incorporate feedback into lab manuals; Task 2 : Introduce lab manuals into classes; Task 3: Field test manuals; Task 4: Prepare annual report. Year 3, Task 1: Incorporate feedback into lab manuals; Task 2: Introduce lab manuals into remaining classes; Task 3: Conduct evaluation with assistance of industry; Task 4: Prepare final report. This report only summarizes the activities of the University of Alabama in Huntsville. The activities of Alabama A&M University are contained in a separate report.

  13. Development of volume deposition on cast iron by additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Niyanth S, Niyanth [ORNL; Dehoff, Ryan R [ORNL; Jordan, Brian H [ORNL; Babu, Suresh S. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL)

    2016-11-10

    ORNL partnered with Cummins to demonstrate the feasibility of using additive manufacturing techniques to help develop repair techniques for refurbished cast iron engine blocks. Cummins is interested in the refurbished engine business due to the increased cost savings and reduced emissions. It is expected that by refurbishing engines could help reduce the green house gas emissions by as much as 85%. Though such repair techniques are possible in principle there has been no major industry in the automotive sector that has deployed this technology. Therefore phase-1 would seek to evaluate the feasibility of using the laser directed energy deposition technique to repair cast iron engine blocks. The objective of the phase-1 would be to explore various strategies and understand the challenges involved. During phase-1 deposits were made using Inconel-718, Nickel, Nr-Cr-B braze filler. Inconel 718 builds showed significant cracking in the heat-affected zone in the cast iron. Nickel was used to reduce the cracking in the cast iron substrate, however the Ni builds did not wet the substrate sufficiently resulting in poor dimensional tolerance. In order to increase wetting the Ni was alloyed with the Ni-Cr-B braze to decrease the surface tension of Ni. This however resulted in significant cracks in the build due to shrinkage stresses associated with multiple thermal cycling. Hence to reduce the residual stresses in the builds the DMD-103D equipment was modified and the cast iron block was pre heated using cartridge heaters. Inconel-718 alloyed with Ni was deposited on the engine block. The pre-heated deposits showed a reduced susceptibility to cracking. If awarded the phase-2 of the project would aim to develop process parameters to achieve a crack free deposit engine block.

  14. Pressure-volume (P-V) curves in Atriplex nummularia Lindl. for evaluation of osmotic adjustment and water status under saline conditions.

    Science.gov (United States)

    Teixeira Lins, Cíntia Maria; Rodrigues de Souza, Edivan; Farias de Melo, Hidelblandi; Silva Souza Paulino, Martha Katharinne; Dourado Magalhães, Pablo Rugero; Yago de Carvalho Leal, Lucas; Bentzen Santos, Hugo Rafael

    2018-03-01

    The survival of Atriplex nummularia plants in saline environments is possible mainly due to the presence of salt-accumulating epidermal vesicles. Commonly, destructive methods, such as plant material maceration and subsequent reading in osmometers, are employed in studies on water relations and osmotic adjustment and are inconvenient due to their underestimation of the total water potential inside the cells, which can cause overestimation of an osmotic adjustment that is not present. As a result, methods that preserve leaf structure, such as pressure-volume (P-V) curves, which take into consideration only the salts that compose the symplastic solution, are more adequate. Thus, the main objectives of this study were to evaluate the effect of determination methods of osmotic potential (Ψo) in Atriplex nummularia through destructive and leaf structure-preserving techniques and to determine the water relations of the species under increasing NaCl concentrations. Plants were subjected to daily irrigations, maintaining soil moisture at 80% of field capacity, with solutions of increasing NaCl concentration (0, 0.05, 0.1, 0.2, 0.25 and 0.3 M) for 84 days. Water potential, osmotic potential and osmotic adjustment were determined. In addition, P-V curves were constructed using pressure chambers. Water and osmotic potentials decreased linearly with increasing NaCl concentration in the irrigation solution. The main discrepancies observed were related to the osmotic adjustments determined through maceration and P-V curves. Based on the present research, it was possible to conclude that in studies with species that have salt-accumulating vesicles in the epidermis, such as the plants in the genus Atriplex, constructing P-V curves is more adequate than destructive methods. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. 40 CFR 86.1838-01 - Small volume manufacturer certification procedures.

    Science.gov (United States)

    2010-07-01

    ... ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Small volume manufacturer certification procedures. 86.1838-01 Section 86.1838-01 Protection of Environment ENVIRONMENTAL PROTECTION...

  16. High Volume Manufacturing of Silicon-Film Solar Cells and Modules; Final Subcontract Report, 26 February 2003 - 30 September 2003

    Energy Technology Data Exchange (ETDEWEB)

    Rand, J. A.; Culik, J. S.

    2005-10-01

    The objective of the PV Manufacturing R&D subcontract was to continue to improve AstroPower's technology for manufacturing Silicon-Film* wafers, solar cells, and modules to reduce costs, and increase production yield, throughput, and capacity. As part of the effort, new technology such as the continuous back metallization screen-printing system and the laser scribing system were developed and implemented. Existing processes, such as the silicon nitride antireflection coating system and the fire-through process were optimized. Improvements were made to the statistical process control (SPC) systems of the major manufacturing processes: feedstock preparation, wafer growth, surface etch, diffusion, and the antireflection coating process. These process improvements and improved process control have led to an increase of 5% relative power, and nearly 15% relative improvement in mechanical and visual yield.

  17. SOLVENT-BASED TO WATERBASED ADHESIVE-COATED SUBSTRATE RETROFIT - VOLUME III: LABEL MANUFACTURING CASE STUDY: NASHUA CORPORATION

    Science.gov (United States)

    This volume discusses Nashua Corporation's Omaha facility, a label and label stock manufacturing facility that no longer uses solvent-based adhesives. Information obtained includes issues related to the technical, economic, and environmental barriers and opportunities associated ...

  18. Outdoor PV Degradation Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

  19. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  20. Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries - Volume 1: Concepts and Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, D.B. (Pacific Northwest Lab., Richland, WA (USA)); Serot, D.E. (D/E/S Research, Richland, WA (USA)); Kellogg, M.A. (ERCE, Inc., Portland, OR (USA))

    1991-03-01

    Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner to allow evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key nonmanufacturing sectors. This volume lays out the general concepts and methods used to develop the emergency operating estimates. The historical analysis of capacity extends from 1974 through 1986. Some nonmanufacturing industries are included. In addition to mining and utilities, key industries in transportation, communication, and services were analyzed. Physical capacity and efficiency of production were measured. 3 refs., 2 figs., 12 tabs. (JF)

  1. Nanoimprint system development and status for high-volume semiconductor manufacturing

    Science.gov (United States)

    Takashima, Tsuneo; Takabayashi, Yukio; Nishimura, Naosuke; Emoto, Keiji; Matsumoto, Takahiro; Hayashi, Tatsuya; Kimura, Atsushi; Choi, Jin; Schumaker, Philip

    2016-03-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash* Imprint Lithography (J-FIL*) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. Criteria specific to any lithographic process for the semiconductor industry include overlay, throughput and defectivity. The purpose of this paper is to describe the technology advancements made overlay, throughput and defectivity and to introduce the FPA-1200NZ2C cluster system designed for high volume manufacturing of semiconductor devices. in the reduction of particle adders in an imprint tool and introduce the new mask replication tool that will enable the fabrication of replica masks with added residual image placement errors suitable for memory devices with half pitches smaller than 15nm. Overlay results better than 5nm 3sigma have been demonstrated. To further enhance overlay, wafer chucks with improved flatness have been implemented to reduce distortion at the wafer edge. To address higher order corrections, a two part solution is discussed. An array of piezo actuators can be applied to enable linear corrections. Additional reductions in distortion can then be addressed by the local heating of a wafer field. The NZ2C cluster platform for high volume manufacturing is also discussed. System development continues this year with a target for introduction later in 2016. The first application is likely to be NAND Flash memory, and eventual use for DRAM and logic devices as both overlay and defectivity improve.

  2. 40 CFR 94.209 - Special provisions for post-manufacture marinizers and small-volume manufacturers.

    Science.gov (United States)

    2010-07-01

    ... name and trademark. (iii) Engine displacement (in liters), rated power, and model year of the engine or... COMPRESSION-IGNITION ENGINES Certification Provisions § 94.209 Special provisions for post-manufacture... engines, but not for Category 3 engines. (a) Broader engine families. Instead of the requirements of § 94...

  3. Efficiency and throughput advances in continuous roll-to-roll a-Si alloy PV manufacturing technology: Annual technical progress report: 22 June 1998--21 June 1999

    Energy Technology Data Exchange (ETDEWEB)

    Izu, M.

    1999-11-09

    This document reports on work performed by Energy Conversion Devices, Inc. (ECD) during Phase 1 of this subcontract. During this period, ECD researchers: (1) Completed design and construction of new, improved substrate heater; (2) Tested and verified improved performance of the new substrate heater in the pilot machine; (3) Verified improved performance of the new substrate heater in the production machine; (4) Designed and bench-tested a new infrared temperature sensor; (5) Installed a prototype new infrared temperature sensor in the production machine for evaluation; (6) Designed a new rolling thermocouple temperature sensor; (7) Designed and bench-tested a reflectometer for the backreflector deposition machine; (8) Designed and bench-tested in-line non-contacting cell diagnostic sensor and PV capacitive diagnostic system; (9) Installed the in-line cell diagnostic sensor in the 5-MW a-Si deposition machine for evaluation; (10) Demonstrated a new low-cost zinc metal process in the pilot back reflector machine; and (11) Fully tested a new cathode design for improved uniformity.

  4. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Annual Subcontract Report, 1 April 2002--30 September 2003 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Shea, S. P.

    2004-04-01

    The goal of BP Solar's Crystalline PVMaT program is to improve the present polycrystalline silicon manufacturing facility to reduce cost, improve efficiency, and increase production capacity. Key components of the program are: increasing ingot size; improving ingot material quality; improving material handling; developing wire saws to slice 100 ..mu..m thick silicon wafers on 200 ..mu..m centers; developing equipment for demounting and subsequent handling of very thin silicon wafers; developing cell processes using 100 ..mu..m thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%; expanding existing in-line manufacturing data reporting systems to provide active process control; establishing a 50 MW (annual nominal capacity) green-field Mega plant factory model template based on this new thin polycrystalline silicon technology; and facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock.

  5. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Annual Subcontract Report, 1 October 2003--30 September 2004

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Narayanan, M.

    2005-03-01

    The major objectives of this program are to continue the advancement of BP Solar polycrystalline silicon manufacturing technology. The program includes work in the following areas: Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations; developing wire saws to slice 100- m-thick silicon wafers on 290- m centers; developing equipment for demounting and subsequent handling of very thin silicon wafers; developing cell processes using 100- m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%; expanding existing in-line manufacturing data reporting systems to provide active process control; establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology; facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock.

  6. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Narayanan, M.

    2006-07-01

    The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

  7. National Center for Advanced Information Components Manufacturing. Program summary report, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The National Center for Advanced Information Components Manufacturing focused on manufacturing research and development for flat panel displays, advanced lithography, microelectronics, and optoelectronics. This report provides an overview of the program, summaries of the technical projects, and key program accomplishments.

  8. Experimental results of controlled PV module for building integrated PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Roman, E.; Alonso, R.; Ibanez, P.; Elorduizapatarietxe, S. [Energy Unit, Robotiker Corporacion Tecnologica Tecnalia, Parque Tecnologico de Zamudio. Edif. 202, 48170 Zamudio (Spain); Martinez, V.; Jimeno, J.C. [EHU/UPV Instituto de Tecnologia Microelectronica, Alda. Urquijo s/n, 48013 Bilbao (Spain)

    2008-05-15

    Last issues about Building Integrated Photovoltaic Systems (BIPV) still show average Performance Ratio (PR) values in the range of 0.75-0.80. The main causes well known: partial shadows, temperature effects, PV inverter losses, thermal losses, etc. and mismatching losses. Ideally, all the modules work in the same conditions, but differences between modules really exist due to differences in the working temperature, the inclination or orientation angles, differences in the I-V characteristic coming from the manufacturing process, etc. The effect is that the output power of the complete PV system is lower than the addition of the power of each PV module. These mismatching losses can be decreased by means of suitable electronics. This paper presents the experimental results obtained over PV systems equipped with controlled PV modules, PV modules with low cost and high efficiency DC-DC converters, including MPPT algorithm and other functions, such as power control and Power Line Communications (PLC). Tests have been divided into two great categories: tests on the electronic performance of the DC-DC converter and tests on grid-connected PV systems with multiple DC-DC converters. Many of these tests have been carried out taking advantage of the PV System Test Platform, a powerful tool especially designed by Robotiker to evaluate all kind of PV systems, especially systems with differences between modules. Aspects of the DC-DC converter performance have been detailed and among the most important experiments, the paper analyses different situations such as partial shadows, different inclined planes, PV systems with different PV modules, and finally a comparison between a conventional system and a system composed by controlled PV modules have been described. To sum up, the importance of a good system dimensioning is analysed, with very interesting results. (author)

  9. Innovative Approaches to Low-Cost Module Manufacturing of String Ribbon Si PV Modules; Final Subcontract Report, March 2002 - January 2005

    Energy Technology Data Exchange (ETDEWEB)

    Hanoka, J. I.

    2005-10-01

    As a result of this work, Evergreen Solar, Inc., is now poised to take String Ribbon technology to new heights. In the ribbon growth area, Project Gemini-the growth of dual ribbons from a single crucible-has reached or exceeded all the manufacturing goals set for it. This project grew from an R&D concept to a production pilot phase and finally to a full production phase, all within the span of this subcontract. A major aspect of the overall effort was the introduction of controls and instrumentation as in-line diagnostic tools. In the ribbon production area, the result has been a 12% increase in yields, a 10% increase in machine uptime, and the flattest ribbon ever grown at Evergreen. In the cell area, advances in process development and robotic handling of Gemini wafers have contributed, along with the advances in crystal growth, to a yield improvement of 6%. Particularly noteworthy in the cell area was the refinement of the no-etch process whereby the as-grown ribbon surface could be controlled sufficiently to allow this process to succeed as well as it has. This process obviates any need for wet chemistry or etching between ribbon growth and diffusion.

  10. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume IV. Design analysis and trade-off study

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    Detailed reference designs developed for optimally sized photovoltaic-thermal (PV-T) systems are presented for three selected applications. The results of trade-off analyses to determine the effects of load variations, new components, changes in location, and variations in array cost are also discussed.

  11. Space station automation study. Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The two manufacturing concepts developed represent innovative, technologically advanced manufacturing schemes. The concepts were selected to facilitate an in depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, and artificial intelligence. While the cost effectiveness of these facilities has not been analyzed as part of this study, both appear entirely feasible for the year 2000 timeframe. The growing demand for high quality gallium arsenide microelectronics may warrant the ventures.

  12. Space station automation study: Automation requriements derived from space manufacturing concepts,volume 2

    Science.gov (United States)

    1984-01-01

    Automation reuirements were developed for two manufacturing concepts: (1) Gallium Arsenide Electroepitaxial Crystal Production and Wafer Manufacturing Facility, and (2) Gallium Arsenide VLSI Microelectronics Chip Processing Facility. A functional overview of the ultimate design concept incoporating the two manufacturing facilities on the space station are provided. The concepts were selected to facilitate an in-depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, sensors, and artificial intelligence. While the cost-effectiveness of these facilities was not analyzed, both appear entirely feasible for the year 2000 timeframe.

  13. Automated High-Volume Manufacturing of Modular Photovoltaic Panel Assemblies for Space Solar Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) will focus the proposed SBIR program on the creation and development of an automated robotic manufacturing infrastructure...

  14. Energy balance of the global photovoltaic (PV) industry--is the PV industry a net electricity producer?

    Science.gov (United States)

    Dale, Michael; Benson, Sally M

    2013-04-02

    A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors.

  15. Environmentally benign silicon solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S. [National Renewable Energy Lab., Golden, CO (United States); Gee, J.M. [Sandia National Labs., Albuquerque, NM (United States); Menna, P. [National Agency for New Technologies Energy and Environment, Portici (Italy); Strebkov, D.S.; Pinov, A.; Zadde, V. [Intersolarcenter, Moscow (Russian Federation)

    1998-09-01

    The manufacturing of silicon devices--from polysilicon production, crystal growth, ingot slicing, wafer cleaning, device processing, to encapsulation--requires many steps that are energy intensive and use large amounts of water and toxic chemicals. In the past two years, the silicon integrated-circuit (IC) industry has initiated several programs to promote environmentally benign manufacturing, i.e., manufacturing practices that recover, recycle, and reuse materials resources with a minimal consumption of energy. Crystalline-silicon solar photovoltaic (PV) modules, which accounted for 87% of the worldwide module shipments in 1997, are large-area devices with many manufacturing steps similar to those used in the IC industry. Obviously, there are significant opportunities for the PV industry to implement more environmentally benign manufacturing approaches. Such approaches often have the potential for significant cost reduction by reducing energy use and/or the purchase volume of new chemicals and by cutting the amount of used chemicals that must be discarded. This paper will review recent accomplishments of the IC industry initiatives and discuss new processes for environmentally benign silicon solar-cell manufacturing.

  16. National Center for Advanced Information Components Manufacturing. Program summary report, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The National Center for Advanced Information Components Manufacturing focused on manufacturing research and development for flat panel displays, advanced lithography, microelectronics, and optoelectronics. This report provides an overview of the program, program history, summaries of the technical projects, and key program accomplishments.

  17. Current and future industrial energy service characterizations. Volume III. Energy data on 15 selected states' manufacturing subsector

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-11-01

    An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchased by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)

  18. Fire resistant PV shingle assembly

    Science.gov (United States)

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  19. Automated High-Volume Manufacturing of Modular Photovoltaic Panel Assemblies for Space Solar Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems, Inc. (DSS) will focus the proposed SBIR Phase 2 program on the development and demonstration of an automated robotic manufacturing...

  20. Final Report - Advanced MEA's for Enhanced Operating Conditions, Amenable to High Volume Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Debe, Mark K.

    2007-09-30

    This report summarizes the work completed under a 3M/DOE contract directed at advancing the key fuel cell (FC) components most critical for overcoming the polymer electrolyte membrane fuel cell (PEMFC) performance, durability & cost barriers. This contract focused on the development of advanced ion exchange membranes & electrocatalysts for PEMFCs that will enable operation under ever more demanding automotive operating conditions & the use high volume compatible processes for their manufacture. Higher performing & more durable electrocatalysts must be developed for PEMFCs to meet the power density & lifetime hours required for FC vehicles. At the same time the amount of expensive Pt catalyst must be reduced to lower the MEA costs. While these two properties are met, the catalyst must be made resistant to multiple degradation mechanisms to reach necessary operating lifetimes. In this report, we present the work focused on the development of a completely new approach to PEMFC electrocatalyts, called nanostructured thin film (NSTF) catalysts. The carbon black supports are eliminated with this new approach which eliminates the carbon corrosion issue. The thin film nature of the catalyst significantly improves its robustness against dissolution & grain growth, preserving the surface area. Also, the activity of the NSTF for oxygen reduction is improved by over 500% compared to dispersed Pt catalyts. Finally, the process for fabricating the NSTF catalysts is consistent with high volume roll-good manufacturing & extremely flexible towards the introduction of new catalyst compositions & structures. This report documents the work done to develop new multi-element NSTF catalysts with properties that exceed pure Pt, that are optimized for use with the membranes discussed below, & advance the state-of-the-art towards meeting the DOE 2010 targets for PEMFC electrocatalysts. The work completed advances the understanding of the NSTF catalyst technology, identifies new NSTF

  1. Parts on Demand: Evaluation of Approaches to Achieve Flexible Manufacturing Systems for Navy Partson Demand. Volume 1

    Science.gov (United States)

    1984-02-01

    computer-aided technol- ogy which capitalizes upon improved information handling and manufacturing process- ing capabilities. The use of computer-aided...COST $2,938.91 ORDERING COSTo 309.89 x (41.25 x 4) 51131.85 . $11.019.79 8 x (309.89) x 25.563 4.64 * .28 x 10,496.17 TOTAL YEARLY...to capitalize upon advanced technology to improve low volume production capability. CP/5A-39 60 q 60 -- -.. Coll) 0 LL. A.)) I-L En LL. *c 2c C- 61J

  2. PV standards overview

    Science.gov (United States)

    DeBlasio, Richard

    1997-02-01

    A brief historical perspective and current status of the on going evolution of photovoltaic standards development and the use of these standards in promulgating accepted practices used in producing, measuring, and deploying Photovoltaic (PV) components and systems in the field. After nearly 20 years of experience in developing and writing domestic and international consensus PV standards the need and importance of standard methods and practices continues, as in the past, to be essential for a maturing PV industry. Part of this maturity has been in establishing and maintaining a common ground through the development of consensus standards and furthering the use of standards for PV commercialization in support of test facility accreditation, product certification, systems deployment, and safety code development to assure PV quality, performance, reliability, and safety.

  3. Plasma volume in acute hypoxia

    DEFF Research Database (Denmark)

    Poulsen, T D; Klausen, T; Richalet, J P

    1998-01-01

    Exposure to acute hypoxia is associated with changes in body fluid homeostasis and plasma volume (PV). This study compared a dye dilution technique using Evans' blue (PV[Evans']) with a carbon monoxide (CO) rebreathing method (PV[CO]) for measurements of PV in ten normal subjects at sea level...

  4. Environmental impact of PV cell waste scenario.

    Science.gov (United States)

    Bogacka, M; Pikoń, K; Landrat, M

    2017-12-01

    Rapid growth of the volume of waste from PV cells is expected in the following years. The problem of its utilization seems to be the most important issue for future waste management systems. The environmental impacts of the PV recycling scenario are presented in the manuscript. The analysis is based on the LCA approach and the average data available in specialized databases for silicon standard PV cell is used. The functional unit includes parameters like: efficiency, composition, surface area. The discussion on the environmental impact change due to the location of the PV production and waste processing plants is presented in the manuscript. Additionally, the discussion on the environmental effect of substituting different energy resources with PV cells is presented in the manuscript. The analysis of the PV cell life cycle scenario presented in the article was performed using the SIMA PRO software and data from Ecoinvent 3.0 database together with additional data obtained from other sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Integrated Computer-Aided Manufacturing (ICAM) Architecture Part 2. Volume 6. Dynamics Modeling Manual (IDEF2)

    Science.gov (United States)

    1981-06-01

    w^mmmmiu «i ii,i ii.i..ii ^ wmw ^mm ■■■■■■■ Manufacturing systems can be viewed and modeled in many different ways. IDEF- views a system as...Users Manual, in preparation, Pritsker & Associates, Inc. 2. H. hn, C. J. a.id S. S. Shapiro, Statistical Models in Engineering , John Wiley & Sons

  6. Integrated Computer-Aided Manufacturing (ICAM) Architecture. Part 3. Volume 1. Architecture. Accomplishments.

    Science.gov (United States)

    1983-09-01

    for release of such drawings. Finally, it was determined that the DESl Information Model would concern itself only with the information that passed...architectures and the methods is already widespread. These recommendations are concerned with maximizing the future contribution of both the architectures...The only multi-model recommendation is that MFG1 and DESl should be reconciled as was mentioned earlier. 4.4.1 IDEFO Model of Manufacture (MWG0) MFGO is

  7. CONWIP versus POLCA: A comparative analysis in a high-mix, low-volume (HMLV manufacturing environment

    Directory of Open Access Journals (Sweden)

    Todd Frazee

    2016-04-01

    Full Text Available Purpose: Few studies comparing manufacturing control systems as they relate to high-mix, low-volume applications have been reported. This paper compares two strategies, constant work in process (CONWIP and Paired-cell Overlapping Loops of Cards with Authorization (POLCA, for controlling work in process (WIP in such a manufacturing environment. Characteristics of each control method are explained in regards to lead time impact and thus, why one may be advantageous over the other. Design/methodology/approach: An industrial system in the Photonics industry is studied. Discrete event simulation is used as the primary tool to compare performance of CONWIP and POLCA controls for the same WIP level with respect to lead time. Model verification and validation are accomplished by comparing historic data to simulation generated data including utilizations. Both deterministic and Poisson distributed order arrivals are considered.  Findings: For the system considered in this case study, including order arrival patterns, a POLCA control can outperform a CONWIP parameter in terms of average lead time for a given level of WIP. At higher levels of WIP, the performance of POLCA and CONWIP is equivalent.  Practical Implications: The POLCA control helps limit WIP in specific áreas of the system where the CONWIP control only limits the overall WIP in the system. Thus, POLCA can generate acceptably low lead times at lower levels of WIP for conditions equivalent to the HMLV manufacturing systems studied. Originality/value: The study compliments and extends previous studies of  CONWIP and POLCA performance to a HMLV manufacturing environment. It demonstrates the utility of discrete event simulation in that regard. It shows that proper inventory controls in bottleneck áreas of a system can reduce average lead time.

  8. CONWIP versus POLCA: A comparative analysis in a high-mix, low-volume (HMLV) manufacturing environment

    Energy Technology Data Exchange (ETDEWEB)

    Frazee, T.; Standridge, C.

    2016-07-01

    Few studies comparing manufacturing control systems as they relate to high-mix, low-volume applications have been reported. This paper compares two strategies, constant work in process (CONWIP) and Paired-cell Overlapping Loops of Cards with Authorization (POLCA), for controlling work in process (WIP) in such a manufacturing environment. Characteristics of each control method are explained in regards to lead time impact and thus, why one may be advantageous over the other. An industrial system in the Photonics industry is studied. Discrete event simulation is used as the primary tool to compare performance of CONWIP and POLCA controls for the same WIP level with respect to lead time. Model verification and validation are accomplished by comparing historic data to simulation generated data including utilizations. Both deterministic and Poisson distributed order arrivals are considered. For the system considered in this case study, including order arrival patterns, a POLCA control can outperform a CONWIP parameter in terms of average lead time for a given level of WIP. At higher levels of WIP, the performance of POLCA and CONWIP is equivalent. The POLCA control helps limit WIP in specific áreas of the system where the CONWIP control only limits the overall WIP in the system. Thus, POLCA can generate acceptably low lead times at lower levels of WIP for conditions equivalent to the HMLV manufacturing systems studied. The study compliments and extends previous studies of CONWIP and POLCA performance to a HMLV manufacturing environment. It demonstrates the utility of discrete event simulation in that regard. It shows that proper inventory controls in bottleneck áreas of a system can reduce average lead time. (Author)

  9. Feasibility of commercial space manufacturing, production of pharmaceuticals. Volume 2: Technical analysis

    Science.gov (United States)

    1978-01-01

    A technical analysis on the feasibility of commercial manufacturing of pharmaceuticals in space is presented. The method of obtaining pharmaceutical company involvement, laboratory results of the separation of serum proteins by the continuous flow electrophoresis process, the selection and study of candidate products, and their production requirements is described. The candidate products are antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin and interferon. Production mass balances for antihemophelic factor, beta cells, and erythropoietin were compared for space versus ground operation. A conceptual description of a multiproduct processing system for space operation is discussed. Production requirements for epidermal growth factor of alpha-1-antitrypsin and interferon are presented.

  10. 40 CFR 86.094-14 - Small-volume manufacturers certification procedures.

    Science.gov (United States)

    2010-07-01

    ...-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.094-14 Small-volume... paragraph (b) of this section or with new technology not previously certified may use assigned deterioration... numerical axle ratio offered in the engine family, and the maximum fuel flow calibration. (2) Heavy-duty...

  11. Grid integrated distributed PV (GridPV).

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J.; Coogan, Kyle

    2013-08-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  12. Design optimization of transformerless grid-connected PV inverters including reliability

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2012-01-01

    This paper presents a new methodology for optimal design of transformerless Photovoltaic (PV) inverters targeting a cost-effective deployment of grid-connected PV systems. The optimal values and types of the PV inverter components are calculated such that the PV inverter Levelized Cost...... Of the Electricity (LCOE) generated during the PV system lifetime period is minimized. The LCOE is calculated also considering the failure rates of the components, which affect the reliability performance and lifetime maintenance cost of the PV inverter. A design example is presented, demonstrating that compared...... to the non-optimized PV inverter structures, the PV inverters designed using the proposed optimization methodology exhibit lower total manufacturing and lifetime maintenance cost and inject more energy into the electric-grid and by that minimizing LCOE....

  13. Design Optimization of Transformerless Grid-Connected PV Inverters Including Reliability

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    This paper presents a new methodology for optimal design of transformerless photovoltaic (PV) inverters targeting a cost-effective deployment of grid-connected PV systems. The optimal switching frequency as well as the optimal values and types of the PV inverter components is calculated...... such that the PV inverter LCOE generated during the PV system lifetime period is minimized. The LCOE is also calculated considering the failure rates of the components, which affect the reliability performance and lifetime maintenance cost of the PV inverter. A design example is presented, demonstrating...... that compared to the nonoptimized PV inverter structures, the PV inverters designed using the proposed optimization methodology exhibit lower total manufacturing and lifetime maintenance cost and inject more energy into the electric-grid and by that minimizing LCOE....

  14. Methodology for the optimal design of tansformerless grid-connected PV interters

    DEFF Research Database (Denmark)

    Koutroulis, E.; Blaabjerg, Frede

    2012-01-01

    The transformerless photovoltaic (PV) inverters are the major functional units of modern grid-connected PV energy production systems. In this study, a new optimisation technique is presented for the calculation of the optimal types and values of the components comprising a transformerless PV...... inverter, such that the PV inverter levelised cost of the generated electricity is minimised. The proposed method constitutes a systematic design process, which is capable to explore the impact of the PV inverter configuration on the trade-off between the PV inverter manufacturing cost and the power losses...... affecting the corresponding energy production. The design optimisation results demonstrate that the optimal values of the PV inverter design variables depend on the inverter specifications, the technical and economical characteristics of the components used to build the PV inverter and the meteorological...

  15. Space station automation study: Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The electroepitaxial process and the Very Large Scale Integration (VLSI) circuits (chips) facilities were chosen because each requires a very high degree of automation, and therefore involved extensive use of teleoperators, robotics, process mechanization, and artificial intelligence. Both cover a raw materials process and a sophisticated multi-step process and are therfore highly representative of the kinds of difficult operation, maintenance, and repair challenges which can be expected for any type of space manufacturing facility. Generic areas were identified which will require significant further study. The initial design will be based on terrestrial state-of-the-art hard automation. One hundred candidate missions were evaluated on the basis of automation portential and availability of meaning ful knowldege. The design requirements and unconstrained design concepts developed for the two missions are presented.

  16. Plug and Play Components for Building Integrated PV Systems, Phase II Final Report, 20 February 2003 - 31 May 2007

    Energy Technology Data Exchange (ETDEWEB)

    Rowell, D.

    2008-04-01

    Progress by Schott Solar, Inc. under NREL's PV Manufacturing R&D Project. Details progress on meter-interconnect device; free-standing mounting system; dark I-V curves to unearth problems with PV module strings; new 34-V version of ASE-300 PV module; and updated source-circuit protectors.

  17. Investigation of EUV tapeout flow issues, requirements, and options for volume manufacturing

    Science.gov (United States)

    Cobb, Jonathan; Jang, Sunghoon; Ser, Junghoon; Kim, Insung; Yeap, Johnny; Lucas, Kevin; Do, Munhoe; Kim, Young-Chang

    2011-04-01

    Although technical issues remain to be resolved, EUV lithography is now a serious contender for critical layer patterning of upcoming 2X node memory and 14nm Logic technologies in manufacturing. If improvements continue in defectivity, throughput and resolution, then EUV lithography appears that it will be the most extendable and the cost-effective manufacturing lithography solution for sub-78nm pitch complex patterns. EUV lithography will be able to provide a significant relaxation in lithographic K1 factor (and a corresponding simplification of process complexity) vs. existing 193nm lithography. The increased K1 factor will result in some complexity reduction for mask synthesis flow elements (including illumination source shape optimization, design pre-processing, RET, OPC and OPC verification). However, EUV does add well known additional complexities and issues to mask synthesis flows such as across-lens shadowing variation, across reticle flare variation, new proximity effects to be modeled, significant increase in pre-OPC and fracture file size, etc. In this paper, we investigate the expected EUV-specific issues and new requirements for a production tapeout mask synthesis flow. The production EUV issues and new requirements are in the categories of additional physical effects to be corrected for; additional automation or flow steps needed; and increase in file size at different parts in the flow. For example, OASIS file sizes after OPC of 250GigaBytes (GB) and files sizes after mask data prep of greater than three TeraBytes (TB) are expected to be common. These huge file sizes will place significant stress on post-processing methods, OPC verification, mask data fracture, file read-in/read-out, data transfer between sites (e.g., to the maskshop), etc. With current methods and procedures, it is clear that the hours/days needed to complete EUV mask synthesis mask data flows would significantly increase if steps are not taken to make efficiency improvements

  18. Industrial based volume manufacturing of lightweight aluminium alloy panel components with high-strength and complex-shape for car body and chassis structures

    Science.gov (United States)

    Anyasodor, Gerald; Koroschetz, Christian

    2017-09-01

    To achieve the high volume manufacture of lightweight passenger cars at economic cost as required in the automotive industry, low density materials and new process route will be needed. While high strength aluminium alloy grades: AA7075 and AA6082 may provide the alternative material solution, hot stamping process used for high-strength and ultrahigh strength steels such as boron steel 22mnb5 can enable the volume manufacture of panel components with high-strength and complex-shape for car body and chassis structures. These aluminium alloy grades can be used to manufacture panel components with possible yield strengths ≥ 500 MPa. Due to the differences in material behaviors, hot stamping process of 22mnb5 cannot be directly applied to high strength aluminium alloy grades. Despite recorded successes in laboratories, researches and niche hot forming processes of high strength aluminium alloy grades, not much have been achieved for adequate and efficient volume manufacturing system applicable in the automotive industry. Due to lack of such system and based on expert knowledge in hot stamping production-line, AP&T presents in this paper a hot stamping processing route for high strength aluminium alloys been suitable for production-line development and volume manufacturing.

  19. Robustness analysis of the efficiency in PV inverters

    DEFF Research Database (Denmark)

    Pigazo, Alberto; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    During last years an increasing attention has been paid to the efficiency of grid-connected PV inverters. They are manufactured from a number of discrete components and by using a certain topology and control strategy. Hence, the performance of a certain PV inverter not only depends on the select...... provides a better understanding of the PV inverter performance and, in this sense, the definition of the European Efficiency must be reviewed in order to show the quality of the manufactured product.......During last years an increasing attention has been paid to the efficiency of grid-connected PV inverters. They are manufactured from a number of discrete components and by using a certain topology and control strategy. Hence, the performance of a certain PV inverter not only depends on the selected...... topology and control strategy but also on the characteristics of the employed components. The aim of this paper is evaluate the effect of physical variations associated to the main components on the overall efficiency of PV inverters. It is concluded that a statistical evaluation of the power converter...

  20. Firefighter Safety for PV Systems

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Sera, Dezso; Spataru, Sergiu

    2015-01-01

    An important and highly discussed safety issue for photovoltaic (PV) systems is that as long as the PV panels are illuminated, a high voltage is present at the PV string terminals and cables between the string and inverters that is independent of the state of the inverter's dc disconnection switch....... The presence of these energized conductors on the dc side of the PV system can pose a danger to anyone performing maintenance or firefighting....

  1. EUV sources for EUV lithography in alpha-, beta-, and high volume chip manufacturing: an update on GDPP and LPP technology

    Science.gov (United States)

    Stamm, U.; Kleinschmidt, J.; Gabel, K.; Hergenhan, G.; Ziener, C.; Schriever, G.; Ahmad, I.; Bolshukhin, D.; Brudermann, J.; de Bruijn, R.; Chin, T. D.; Geier, A.; Gotze, S.; Keller, A.; Korobotchko, V.; Mader, B.; Ringling, J.; Brauner, T.

    2005-05-01

    In the paper we report about the progress made at XTREME technologies in the development of EUV sources based on gas discharge produced plasma (GDPP) technologies and laser produced plasma (LPP) technologies. First prototype xenon GDPP sources of the type XTS 13-35 based on the Z-pinch principle with 35 W power in 2π sr have been integrated into micro-exposure tools from Exitech, UK. Specifications of the EUV sources and experience of integration as well as data about component and optics lifetime are presented. In the source development program for Beta exposure tools and high volume manufacturing exposure tools both tin and xenon have been investigated as fuel for the EUV sources. Development progress in porous metal cooling technology as well as pulsed power circuit design has led to GDPP sources with xenon fuel continuous operating with an output power of 200 W in 2π sr at 4500 Hz repetition rate. With tin fuel an output power of 400 W in 2π sr was obtained leaving all other conditions unaltered with respect to the xenon based source. The performance of the xenon fueled sources is sufficiently good to fulfill all requirements up to the beta tool level. For both the xenon and the tin GDPP sources detailed data about source performance are reported, including component lifetime and optics lifetime. The status of the integration of the sources with grazing incidence collector optics is discussed. Theoretical estimations of collection efficiencies are compared with experimental data to determine the loss mechanisms in the beam path. Specifically contamination issues related to tin as target material as well as debris mitigation in tin sources is addressed. As driver lasers for the LPP source research diode-pumped Nd:YAG lasers have been used to generate EUV emitting plasma. As target material xenon has been employed. Conversion efficiencies have been measured and currently the maximum conversion efficiency amounts to 1 %. The laser driver power of 1.2 kW is

  2. Testing for PV Reliability (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.; Bansal, S.

    2014-09-01

    The DOE SUNSHOT workshop is seeking input from the community about PV reliability and how the DOE might address gaps in understanding. This presentation describes the types of testing that are needed for PV reliability and introduces a discussion to identify gaps in our understanding of PV reliability testing.

  3. PV potential and potential PV rent in European regions

    DEFF Research Database (Denmark)

    Hansen, Anders Chr.; Thorn, Paul

    2013-01-01

    The paper provides a GIS based model for assessing the potentials of photovoltaic electricity in Europe by NUTS 2 regions. The location specific energy potential per PV-­‐panel area is estimated based on observations of solar irradiation, conversion efficiency, levelised costs and the social value...... of PV-­‐electricity. Combined with the potential density of PV-­‐panel area based on land cover and environental restrictions, the PV energy potential and the potential PV ressource rent is calculated. These calculations enbable the model to estimate the regional patterns at NUTS 2 level...

  4. Global PV markets and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wolfsegger, Cristoph [European Photolvoltaic Industry Association (EPIA), Brussels, Belgium (Belgium)

    2007-06-15

    This presentation mainly talks about the global importance of the PV industry, not only in the environmental sphere but also in the economic sphere. It is firstly given the major information of the European Photovoltaic Industry Association (EPIA), where there can be found the lists of those full member countries that work as: components manufacturers, consulting, and associate members. Then, it is given a briefly explanation about the Alliance for Rural Electrification (ARE), and the reasons why the -PV systems- are almost the panacea to both the energy and the environmental issue. In addition, it is given the most relevant information about how to implement this system in those regions that have not yet implemented it. Besides, there are explained some of the benefits that this system has. It is shortly explained how this system is working in German and it is also shown a comparison chart about the photovoltaic feed-in tariffs. There are shown some graphics and charts having information related to the global markets and the global installations of PV systems and other issues related to them. [Spanish] Esta presentacion habla principalmente acerca de la importancia que hoy en dia tiene la industria fotovoltaica alrededor del mundo, esto no solo ocurre en el ambito ambiental sino tambien en el economico. En la primer parte se muestra la informacion mas importante acerca de la Asociacion Europea de la Industria Fotovoltaica (EPIA por sus siglas en ingles), en donde se encuentran las listas de los paises que son miembros permanentes trabajando como: fabricantes de componentes, asesores y miembros asociados. Enseguida, se da, de manera escueta, una explicacion acerca de la ARE, asi como las razones por las que los sistemas fotovoltaicos son casi la panacea tanto para los problemas ambientales como para los energeticos. Ademas, se explica la informacion mas relevante acerca de como implementar este sistema en aquellas partes del mundo que todavia no lo han realizado

  5. Design, Fabrication and Certification of Advanced Modular PV Power Systems

    Science.gov (United States)

    Minyard, Glen E.; Lambarski, Timothy J.

    1997-02-01

    The Design, Fabrication and Certification of Advanced Modular PV Power Systems contract is a Photovoltaic Manufacturing Technology (PVMaT) cost-shared contract under Phase 4A1 for Product Driven Systems and Component Technologies. Phase 4A1 has the goals to improve the cost-effectiveness and manufacturing efficiency of PV end-products, optimize manufacturing and packaging methods, and generally improve balance-of-system performance, integration and manufacturing. This contract has the specific goal to reduce the installed PV system life cycle costs to the customer with the ultimate goal of increasing PV system marketability and customer acceptance. The specific objectives of the project are to develop certified, standardized, modular, pre-engineered products lines of our main stand-alone systems, the Modular Autonomous PV Power Supply (MAPPS) and PV-Generator Hybrid System (Photogenset). To date, we have designed a 200 W MAPPS and a 1 kW Photogenset and are in the process of having the MAPPS certified by Underwriters Laboratories (UL Listed) and approved for hazardous locations by Factory Mutual (FM). We have also developed a manufacturing plan for product line expansion for the MAPPS. The Photogenset will be fabricated in February 1997 and will also be UL Listed. Functionality testing will be performed at NREL and Sandia with the intentions of providing verification of performance and reliability and of developing test-based performance specifications. In addition to an expansion on the goals, objectives and status of the project, specific accomplishments and benefits are also presented in this paper.

  6. Chapter 10.2: Encapsulant Materials for PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Kempe, Michael D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-01-07

    Encapsulant materials used in photovoltaic (PV) modules serve multiple purposes; it provides optical coupling of PV cells and protection against environmental stress. Polymers must perform these functions under prolonged periods of high temperature, humidity, and UV radiation. When PV panels were first developed in the 1960s and the 1970s, the dominant encapsulants were based on polydimethyl siloxane (PDMS). Ethylene-co-vinyl acetate (EVA) is currently the dominant encapsulant chosen for PV applications, not because it has the best combination of properties, but because it is an economical option with an established history of acceptable durability. Getting new products onto the market is challenging because there is no room for dramatic improvements, and one must balance the initial cost and performance with the unknowns of long-term service life. Recently, there has been renewed interest in using alternative encapsulant materials with some significant manufacturers switching from EVA to polyolefin elastomer-based (POE) alternatives.

  7. Stability of Grid-Connected PV Inverters with Large Grid Impedance Variation

    DEFF Research Database (Denmark)

    Liserre, Marco; Teodorescu, Remus; Blaabjerg, Frede

    2004-01-01

    Photovoltaic (PV) inverters used in dispersed power generation of houses in the range of 1-5 kW are currently available from several manufactures. However, large grid impedance variation is challenging the control and the grid filter design in terms of stability. In fact the PV systems are well...

  8. Computers in engineering 1983; Proceedings of the International Conference and Exhibit, Chicago, IL, August 7-11, 1983. Volume 1 - Computer-aided design, manufacturing, and simulation

    Science.gov (United States)

    Cokonis, T. J.

    The papers presented in this volume provide examples of the impact of computers on present engineering practice and indicate some future trends in computer-aided design, manufacturing, and simulation. Topics discussed include computer-aided design of turbine cycle configuration, managing and development of engineering computer systems, computer-aided manufacturing with robots in the automotive industry, and computer-aided design/analysis techniques of composite materials in the cure phase. Papers are also presented on computer simulation of vehicular propulsion systems, the performance of a hydraulic system simulator in a CAD environment, and computer simulation of hovercraft heave dynamics and control.

  9. Comparative analysis of old, recycled and new PV modules

    Directory of Open Access Journals (Sweden)

    Haroon Ashfaq

    2017-01-01

    Full Text Available This paper presents comparative analysis of old, recycled and new PV modules. It is possible to recycle even very old products by modern standard processes in a value-conserving manner. About 90% of the materials recovered from solar panels can be recycled into useful products. Carbon emission and energy cost are low in manufacturing recycled SPV. Modules can be manufactured with recycled materials and reinstalled in systems as a full quality product with today’s technology good for another 25–30 years. Analysis of all the models of PV module is done with the help of MATLAB. This helps in comparison and proves the effectiveness of the recycled PV module based systems.

  10. Integrated Computer-Aided Manufacturing (ICAM) Architecture. Part 3. Volume 6. Composite Information Model of ’Manufacture Product’ (MFG1)

    Science.gov (United States)

    1983-09-08

    E319 CALLOUT MACHINE INSTROCTIDN E320 NJMERICAL CONTRil .. PROGRAM E32l MACHINE USE QUALITY ASSURAt\\CE NEED E322 SERIALIZED SUPPLIER PART E323...three models was established. In the next stage, QAl, the IDEFl model of Quality Assurance, was composited with MFGl. This resulted in the addition...manufactured and drawn from inventory for inclusion in a higher assembly must be subjected to quality assurance validation before use. Before the parts are

  11. Design and high-volume manufacture of low-cost molded IR aspheres for personal thermal imaging devices

    Science.gov (United States)

    Zelazny, A. L.; Walsh, K. F.; Deegan, J. P.; Bundschuh, B.; Patton, E. K.

    2015-05-01

    The demand for infrared optical elements, particularly those made of chalcogenide materials, is rapidly increasing as thermal imaging becomes affordable to the consumer. The use of these materials in conjunction with established lens manufacturing techniques presents unique challenges relative to the cost sensitive nature of this new market. We explore the process from design to manufacture, and discuss the technical challenges involved. Additionally, facets of the development process including manufacturing logistics, packaging, supply chain management, and qualification are discussed.

  12. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991

    Energy Technology Data Exchange (ETDEWEB)

    Saifee, T.; Konnerth, A. III [Solar Kinetics, Inc., Dallas, TX (United States)

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

  13. PV water pumping: NEOS Corporation recent PV water pumping activities

    Energy Technology Data Exchange (ETDEWEB)

    Lane, C.

    1995-11-01

    NEOS Corporation has been very active in PV-powered water pumping, particularly with respect to electric utilities. Most of the recent activity has been through the Photovoltaic Services Network (PSN). The PSN is an independent, not-for-profit organization comprised of all types of electric utilities: rural electric coops, public power districts, investor-owned utilities, and power marketing agencies. The PSN`s mission is to work pro-actively to promote utility involvement in PV through education and training. PV information is distributed by the PSN in three primary forms: (1) consultation with PSN technical service representatives: (2) literature generated by the PSN; and (3) literature published by other organizations. The PSN can also provide assistance to members in developing PV customer service programs. The PSN`s product support activities include consolidation of information on existing packaged PV systems and facilitation of the development of new PV product packages that meet utility-defined specifications for cost performance, and reliability. The PSN`s initial product support efforts will be focused on commercially available packaged PV systems for a variety of off-grid applications. In parallel with this effort, if no products exist that meet the PSN`s functional specifications, the PSN will initiate the second phase of product development support process by encouraging the development of new packaged systems. Through these services and product support activities, the PSN anticipates engaging all segments for the PV industry, thus providing benefits to PV systems suppliers as well as local PV service contractors.This paper describes field testing of pv power systems for water pumping.

  14. The Capital Intensity of Photovoltaics Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Basore, Paul

    2015-10-19

    Factory capital expenditure (capex) for photovoltaic (PV) module manufacturing strongly influences the per-unit cost of a c-Si module. This provides a significant opportunity to address the U.S. DOE SunShot module price target through capex innovation. Innovation options to reduce the capex of PV manufacturing include incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches. and financial approaches.

  15. Optimal design of NPC and Active-NPC transformerless PV inverters

    DEFF Research Database (Denmark)

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2012-01-01

    Targeting at a cost-effective deployment of grid-connected PhotoVoltaic (PV) systems, this paper presents a new methodology for the optimal design of transformerless PV inverters, which are based on the Neutral Point Clamped (NPC) and the Active-Neutral Point Clamped (ANPC) topologies. The design...... optimization results demonstrate that a different set of optimal values of the PV inverter switching frequency and output filter components are derived for the NPC and ANPC topologies, respectively, as well as for each of the PV inverter installation sites under study. The NPC and ANPC PV inverter structures......, which are derived using the proposed design optimization methodology exhibit lower Levelized Cost Of generated Electricity (LCOE) and manufacturing cost and they are simultaneously capable to inject more energy into the electric grid than the corresponding non-optimized PV inverters. Thus, the proposed...

  16. Plug and Play PV Systems for American Homes

    Energy Technology Data Exchange (ETDEWEB)

    Hoepfner, Christian [Fraunhofer USA, Inc., Boston, MA (United States)

    2016-12-22

    The core objectives of the Plug & Play PV Systems Project were to develop a PV system that can be installed on a residential rooftop for less than $1.50/W in 2020, and in less than 10 hours (from point of purchase to commissioning). The Fraunhofer CSE team’s approach to this challenge involved a holistic approach to system design – hardware and software – that make Plug & Play PV systems: • Quick, easy, and safe to install • Easy to demonstrate as code compliant • Permitted, inspected, and interconnected via an electronic process Throughout the three years of work during this Department of Energy SunShot funded project, the team engaged in a substantive way with inspectional services departments and utilities, manufacturers, installers, and distributors. We received iterative feedback on the system design and on ideas for how such systems can be commercialized. This ultimately led us to conceiving of Plug & Play PV Systems as a framework, with a variety of components compatible with the Plug & Play PV approach, including string or microinverters, conventional modules or emerging lightweight modules. The framework enables a broad group of manufacturers to participate in taking Plug & Play PV Systems to market, and increases the market size for such systems. Key aspects of the development effort centered on the system hardware and associated engineering work, the development of a Plug & Play PV Server to enable the electronic permitting, inspection and interconnection process, understanding the details of code compliance and, on occasion, supporting applications for modifications to the code to allow lightweight modules, for example. We have published a number of papers on our testing and assessment of novel technologies (e.g., adhered lightweight modules) and on the electronic architecture.

  17. Sensorless PV Array Diagnostic Method for Residential PV Systems

    DEFF Research Database (Denmark)

    Sera, Dezso; Spataru, Sergiu; Mathe, Laszlo

    2011-01-01

    This work proposes a temperature and irradiance sensorless diagnostic method suitable for small residential PV installations, focusing on detection of partial shadows. The method works by detection of failures in crystalline silicone PV arrays by concomitant monitoring of some of their key...

  18. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    Science.gov (United States)

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  19. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 15, System design description. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-22

    This System Design Description, prepared in accordance with the TPX Project Management Plan provides a summary or TF Magnet System design features at the conclusion of Phase I, Preliminary Design and Manufacturing Research. The document includes the analytical and experimental bases for the design, and plans for implementation in final design, manufacturing, test, and magnet integration into the tokamak. Requirements for operation and maintenance are outlined, and references to sources of additional information are provided.

  20. Challenge to Move from 'One Size Fits All' to PV Modules the Customer Needs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Bosco, N.; Kempe, M.; Smith, R.; Packard, C. E.

    2011-09-01

    Historically, PV companies requested a single qualification test for a single product. As the market has grown, there have been increasing opportunities for companies to differentiate their products while still maintaining high manufacturing volumes of each product. At the same time, as PV is deployed in an increasingly broad range of conditions, modules need to be able to withstand a wide range of stresses. In some cases, targeting a specific deployment condition may allow reduction of product cost. Realizing this opportunity will require the ability to confidently predict long-term performance based on accelerated tests and known weather conditions. By working together, the community can most quickly develop tests that identify which products perform well under which conditions. This paper discusses some of the challenges of predicting long-term PV performance, including the wide range of stresses that may be encountered, the variability of the stresses from moment to moment, the complexity of some degradation mechanisms, and the dependence of accelerated testing on module geometry. The paper also describes two international projects that deal with location-specific durability evaluation and long-term module performance.

  1. Method of manufacturing a large-area segmented photovoltaic module

    Science.gov (United States)

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  2. Impacts of PV Array Sizing on PV Inverter Lifetime and Reliability

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2017-01-01

    In order to enable a more wide-scale utilization of PV systems, the cost of PV energy has to be comparable with other energy sources. Oversizing the PV array is one common approach to reduce the cost of PV energy, since it increases the PV energy yield during low solar irradiance conditions....... However, oversizing the PV array will increase the loading of PV inverters, which may have undesired influence on the PV inverter lifetime and reliability. In that case, it may result in a negative impact on the overall PV energy cost, due to the increased maintenance for the PV inverters. This paper...... evaluates the lifetime of PV inverters considering the PV array sizing and installation sites, e.g., Denmark and Arizona. The results reveal that the PV array sizing has a considerable impact on the PV inverter lifetime and reliability, especially in Denmark, where the average solar irradiance level...

  3. Terrestrial photovoltaic technologies - Recent progress in manufacturing R&D

    Energy Technology Data Exchange (ETDEWEB)

    Witt, C. E.; Surek, T.; Mitchell, R. L.; Symko-Davies, M.; Thomas, H. P.

    2000-05-15

    This paper describes photovoltaics (PV) as used for energy generation in terrestrial applications. A brief historical perspective of PV development is provided. Solar-to-electricity conversion efficiencies for various photovoltaic materials are presented, as well as expectations for further material improvements. Recent progress in reducing manufacturing costs through process R&D and product improvements are described. Applications that are most suitable for the different technologies are discussed. Finally, manufacturing capacities and current and projected module manufacturing costs are presented.

  4. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 21, Materials and processes selection. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.R. [Babcock and Wilcox Co., Lynchburg, VA (United States)

    1995-08-15

    This document identifies the candidate materials and manufacturing processes selected for development of the TPX Toroidal Field (TF) Magnet. Supporting rationale and selection criteria are provided for justification and the materials properties database report is included for completeness. Specific properties for each material selection are included in this document.

  5. SLAM: a fast high volume additive manufacturing concept by impact welding; application to Ti6Al4V alloy

    NARCIS (Netherlands)

    Wentzel, C.M.; Carton, E.P.; Kloosterman, A.

    2006-01-01

    Against the manufacturing requirement for both lower lead time and reduced machining time for titanium components, a new concept was conceived assembling sheet material and other stock into semi finished parts by (explosive) impact welding. It is believed that this concept (which we named SLAM)

  6. Characterisation of PV CIS module by artificial neural networks. A comparative study with other methods

    Energy Technology Data Exchange (ETDEWEB)

    Almonacid, F.; Rus, C.; Hontoria, L.; Munoz, F.J. [Grupo Investigacion y Desarrollo en Energia Solar y Automatica, Dpto. de Ingenieria Electronica. E.P.S. Jaen., Universidad de Jaen. 23071- Jaen (Spain)

    2010-05-15

    The presence of PV modules made with new technologies and materials is increasing in PV market, in special Thin Film Solar Modules (TFSM). They are ready to make a substantial contribution to the world's electricity generation. Although Si wafer-based cells account for the most of increase, technologies of thin film have been those of the major growth in last three years. During 2007 they grew 133%. On the other hand, manufacturers provide ratings for PV modules for conditions referred to as Standard Test Conditions (STC). However, these conditions rarely occur outdoors, so the usefulness and applicability of the indoors characterisation in standard test conditions of PV modules is a controversial issue. Therefore, to carry out a correct photovoltaic engineering, a suitable characterisation of PV module electrical behaviour is necessary. The IDEA Research Group from Jaen University has developed a method based on artificial neural networks (ANNs) to electrical characterisation of PV modules. An ANN was able to generate V-I curves of si-crystalline PV modules for any irradiance and module cell temperature. The results show that the proposed ANN introduces a good accurate prediction for si-crystalline PV modules performance when compared with the measured values. Now, this method is going to be applied for electrical characterisation of PV CIS modules. Finally, a comparative study with other methods, of electrical characterisation, is done. (author)

  7. Performance enhancement of PV cells through micro-channel cooling

    Directory of Open Access Journals (Sweden)

    Muzaffar Ali

    2015-11-01

    Full Text Available Efficiency of a PV cell is strongly dependent on its surface temperature. The current study is focused to achieve maximum efficiency of PV cells even in scorching temperatures in hot climates like Pakistan where the cell surface temperatures can even rise up to around 80 ℃. The study includes both the CFD and real time experimental investigations of a solar panel using micro channel cooling. Initially, CFD analysis is performed by developing a 3D model of a Mono-Crystalline cell with micro-channels to analyze cell surface temperature distribution at different irradiance and water flow rates. Afterwards, an experimental setup is developed for performance investigations under the real conditions of an open climate of a Pakistan's city, Taxila. Two 35W panels are manufactured for the experiments; one is based on the standard manufacturing procedure while other cell is developed with 4mm thick aluminum sheet having micro-channels of cross-section of 1mm by 1mm. The whole setup also includes different sensors for the measurement of solar irradiance, cell power, surface temperature and water flow rates. The experimental results show that PV cell surface temperature drop of around 15 ℃ is achieved with power increment of around 14% at maximum applied water flow rate of 3 LPM. Additionally, a good agreement is also found between CFD and experimental results. Therefore, that study clearly shows that a significant performance improvement of PV cells can be achieved through the proposed cell cooling technique.

  8. Development of Manufacturing Technology to Accelerate Cost Reduction of Low Concentration and

    Energy Technology Data Exchange (ETDEWEB)

    Detrick, Adam [The Solaria Corporation, Fremont, CA (United States)

    2017-09-27

    The purpose of this project was to accelerate deployment of cost-effective US-based manufacturing of Solaria’s unique c-Si module technology. This effort successfully resulted in the development of US-based manufacturing technology to support two highly-differentiated, market leading product platforms. The project was initially predicated on developing Solaria’s low-concentration PV (LCPV) module technology which at the time of the award was uniquely positioned to exceed the SunShot price goal of $0.50/Wp for standard c-Si modules. The Solaria LCPV module is a 2.5x concentrator that leverages proven, high-reliability PV module materials and low silicon cell usage into a technology package that already had the lowest direct material cost and leading Levelized Cost of Electricity (LCOE). With over 25 MW commercially deployed globally, the Solaria module was well positioned to continue to lead in PV module cost reduction. Throughout the term of the contract, market conditions changed dramatically and so to did Solaria’s product offerings to support this. However, the manufacturing technology developed for the LCPV module was successfully leveraged and optimized to support two new and different product platforms. BIPV “PowerVision” and High-efficiency “PowerXT” modules. The primary barrier to enabling high-volume PV module manufacturing in the US is the high manual labor component in certain unique aspects of our manufacturing process. The funding was used to develop unique manufacturing automation which makes the manual labor components of these key processes more efficient and increase throughput. At the core of Solaria’s product offerings are its unique and proprietary techniques for dicing and re-arranging solar cells into modules with highly-differentiated characteristics that address key gaps in the c-Si market. It is these techniques that were successfully evolved and deployed into US-based manufacturing site with SunShot funding. Today, Solaria

  9. Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods Volume 2

    CERN Document Server

    Rao, R Venkata

    2013-01-01

    Decision Making in Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods presents the concepts and details of applications of MADM methods. A range of methods are covered including Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), VIšekriterijumsko KOmpromisno Rangiranje (VIKOR), Data Envelopment Analysis (DEA), Preference Ranking METHod for Enrichment Evaluations (PROMETHEE), ELimination Et Choix Traduisant la Realité (ELECTRE), COmplex PRoportional ASsessment (COPRAS), Grey Relational Analysis (GRA), UTility Additive (UTA), and Ordered Weighted Averaging (OWA). The existing MADM methods are improved upon and three novel multiple attribute decision making methods for solving the decision making problems of the manufacturing environment are proposed. The concept of integrated weights is introduced in the proposed subjective and objective integrated weights (SOIW) method and the weighted Euclidean distance ba...

  10. PSCAD Modules Representing PV Generator

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  11. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 46, CPDR review package. Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.M. [Babcock and Wilcox Co., Lynchburg, VA (United States)

    1995-08-18

    This preliminary design reviews the overall design package for the magnet system. It is mostly presented in viewgraphs. The lengthy presentation took up two full days. Sections are given on TF SDD, TF magnet specifications, TF interface definition, drawing tree and design control, winding pack design, manufacturing, coil setup for VPI, TPX TF magnet assembly, TF materials and processes, quality assurance and test requirements, coil verification testing, TPX acceptance tools, and planning tools.

  12. Analysis of Defects in Trouser Manufacturing: Development of a Knowledge-Based Framework. Volume 1. Final Technical Report

    Science.gov (United States)

    1992-02-28

    and their opinion was sought extensively on several aspects of software design and implementation. The classification of sewing defects centered around...Seam Excessive Fullness Puckered Seam Wrong Component Run Off T w seIe r S lider D efects 4 Chain/Tooth Defect ZippC40 TcOP/Bouanm Stop Tape/Cord...questionnaire is to solicit your expert opinion on defects in gar- ment manufacturing based on your experience. The listed questions may miss some points that

  13. Large scale PV plants - also in Denmark. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Ahm, P. (PA Energy, Malling (Denmark)); Vedde, J. (SiCon. Silicon and PV consulting, Birkeroed (Denmark))

    2011-04-15

    the associated levelized cost of electricity (LCOE) has been found to be in the range of DKK 1 - 1,16 per kWh. With the present wind turbine tariff at around DKK 0,60/kWh the economics in isolation present a bleak picture for LPV. However, over the last four decades the learning curve of the PV technology exhibits a cost reduction of about 20 % for every doubling of the production volume, and there is nothing to indicate that this learning curve trend will not continue in the coming two decades leading to increasing competitiveness for LPV in Denmark. (LN)

  14. Experimental study of the effect of fully shading on the Solar PV module performance

    Science.gov (United States)

    Al-chaderchi, Monadhil; Sopain, K.; Alghoul, M. A.; Salameh, T.

    2017-11-01

    Experimental tests were performed to study the effects of shading for different string inside the photovoltaic (PV) panels, power equipped with different number of diodes from the same manufacturer as of solar panel. The IV curve for all cases were recorded to see how the bypass diodes will reduce the effects of shading .The case for 3 by pass diode show the best performance of solar PV module under shading phenomena.

  15. PV FAQs: Will We Have Enough Materials for Energy-Significant PV Production?

    Energy Technology Data Exchange (ETDEWEB)

    2004-01-01

    This PV FAQ fact sheet discusses whether we will have enough of the feedstock materials used for energy-significant PV production. The answer is that, for a set amount of PV production, we will indeed have enough materials.

  16. Flexible packaging for PV modules

    Science.gov (United States)

    Dhere, Neelkanth G.

    2008-08-01

    Economic, flexible packages that provide needed level of protection to organic and some other PV cells over >25-years have not yet been developed. However, flexible packaging is essential in niche large-scale applications. Typical configuration used in flexible photovoltaic (PV) module packaging is transparent frontsheet/encapsulant/PV cells/flexible substrate. Besides flexibility of various components, the solder bonds should also be flexible and resistant to fatigue due to cyclic loading. Flexible front sheets should provide optical transparency, mechanical protection, scratch resistance, dielectric isolation, water resistance, UV stability and adhesion to encapsulant. Examples are Tefzel, Tedlar and Silicone. Dirt can get embedded in soft layers such as silicone and obscure light. Water vapor transmittance rate (WVTR) of polymer films used in the food packaging industry as moisture barriers are ~0.05 g/(m2.day) under ambient conditions. In comparison, light emitting diodes employ packaging components that have WVTR of ~10-6 g/(m2.day). WVTR of polymer sheets can be improved by coating them with dense inorganic/organic multilayers. Ethylene vinyl acetate, an amorphous copolymer used predominantly by the PV industry has very high O2 and H2O diffusivity. Quaternary carbon chains (such as acetate) in a polymer lead to cleavage and loss of adhesional strength at relatively low exposures. Reactivity of PV module components increases in presence of O2 and H2O. Adhesional strength degrades due to the breakdown of structure of polymer by reactive, free radicals formed by high-energy radiation. Free radical formation in polymers is reduced when the aromatic rings are attached at regular intervals. This paper will review flexible packaging for PV modules.

  17. Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Paul [State University of New York Research Foundation, Albany, NY (United States)

    2014-06-27

    The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.

  18. Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, L.; Gostein, M.; Emery, K.

    2012-09-01

    As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

  19. On the Path to SunShot. Emerging Opportunities and Challenges in U.S. Solar Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, Kelsey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    This report provides insights into photovoltaic (PV) and concentrating solar power (CSP) manufacturing in the context of the U.S. Department of Energy's SunShot Initiative. Although global PV price reductions and deployment have been strong recently, PV manufacturing faces challenges. Slowing rates of manufacturing cost reductions, combined with the relatively low price of incumbent electricity generating sources in most large global PV markets, may constrain profit opportunities for firms and poses a potential challenge to the sustainable operation and growth of the global PV manufacturing base. In the United States, manufacturers also face a factors-of-production cost disadvantage compared with competing nations. However, the United States is one of the world's most competitive and innovative countries as well as one of the best locations for PV manufacturing. In conjunction with strong projected PV demand in the United States and across the Americas, these advantages could increase the share of PV technologies produced by U.S. manufacturers as the importance of innovation-driven PV cost reductions increases. Compared with PV, CSP systems are much more complex and require a much larger minimum effective scale, resulting in much higher total CAPEX requirements for system construction, lengthier development cycles, and ultimately higher costs of energy produced. The global lack of consistent CSP project development creates challenges for companies that manufacture specialty CSP components, and the potential lack of a near-term U.S. market could hinder domestic CSP manufacturers. However, global and U.S. CSP deployment is expected to expand beyond 2020, and U.S. CSP manufacturers could benefit from U.S. innovation advantages similar to those associated with PV. Expansion of PV and CSP manufacturing also presents U.S. job-growth opportunities.

  20. Solar PV. Innovators talking; Zon PV. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on solar PV [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar zon PV.

  1. Progress & Frontiers in PV Performance

    Energy Technology Data Exchange (ETDEWEB)

    Deline, Chris; DiOrio, Nick; Jordan, Dirk; Toor, Fatima

    2016-09-12

    PowerPoint slides for a presentation given at Solar Power International 2016. Presentation includes System Advisor Model (SAM) introduction and battery modeling, bifacial PV modules and modeling, shade modeling and module level power electronics (MLPE), degradation rates, and PVWatts updates and validation.

  2. The case for better PV forecasting

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    Rising levels of PV penetration mean increasingly sophisticated forecasting technologies are needed to maintain grid stability and maximise the economic value of PV systems. The Grid Integration working group of the European Technology and Innovation Platform – Photovoltaics (ETIP PV) shares...

  3. The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-16

    This study uses data on over 900,000 solar PV installations to summarize the evolving market structure of the U.S. residential solar PV installation industry. Over 8,000 companies have installed residential PV systems in the United States. The vast majority of these installers are small local companies. At the same time, a subset of national-scale high-volume PV installation companies hold high market shares. This study examines the factors behind these trends in market concentration, including the role of customer financing options.

  4. Grid Integrated Distributed PV (GridPV) Version 2.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  5. Optimal design of PV and HP system

    DEFF Research Database (Denmark)

    Nepper-Rasmussen, Bjarke Christian; Rasmussen, Theis Bo

    2015-01-01

    electric energy demand of the HP to hours where excess PV power is present. The self-consumption of the PV energy affects the overall net present value (NPV). In this paper, a method which maximizes the NPV by finding the cost-optimal combination of PV, HP and BT sizes, is proposed. Results show......Methods of utilizing residential produced photovoltaic (PV) power by converting to thermal energy through heat pumps (HP) are present in literature, where thermal energy is dispersed as either heat or hot water at the instant moment of PV production. In this paper an alternative solution...

  6. Multi-PV technologies method for parameters estimation of two-diode model

    Science.gov (United States)

    Sallem, Souhir; Marrekchi, Amal; Kammoun, Soulaymen; Ben Ali Kammoun, Mohamed

    2016-12-01

    Researches are showing that photovoltaic cell equivalent model parameters are not constant and are sensitive to climatic conditions changes. An improved algorithm for multi-photovoltaic cells manufacturing technologies to estimate those parameters is presented in this paper. The method allows a dynamic model for the PV cell according to different climatic conditions. This method shows a better performance of the model for several technologies (poly-crystalline, mono-crystalline and amorphous) of the PV module. Simulated I - V curves are compared to experimental characteristics and other estimation methods for different PV modules and different technologies. Some considerations about the impact of the variations of these resistances on the PV module performance are drawn.

  7. Optimization of SiC-based H5 and conergy-NPC transformerless PV inverters

    DEFF Research Database (Denmark)

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2015-01-01

    The transformerless dc/ac inverters are critical components in the rapidly growing market of grid-connected photovoltaic (PV) applications. They are synthesized by combining available solutions in terms of the power-section topology, power-semiconductors manufacturing technology, and structure...... and structure of the output filter (either LCL- or LLCL-type) in transformerless H5 and conergy-neutral point clamped (Conergy-NPC) PV inverters, which employ SiC-type power devices. The design results demonstrate that the optimized SiC-based H5 and Conergy-NPC transformerless PV inverters are more effective...... in terms of energy production than their nonoptimized and silicon (Si)-based counterparts. In addition, by reducing the market price of SiC-type power semiconductors to the level of Si-based power devices, enables the development of optimized SiC-based PV inverters with a lower cost of energy than...

  8. Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Final Technical Progress Report, 22 October 2002 - 15 November 2007

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, R.

    2008-04-01

    Report on objectives to work with U.S.-based PV module manufacturers (c-Si, a-Si, CIS, other thin films) to develop/qualify new low-cost, high-performance PV module encapsulant/packaging materials, and processes using the packaging materials.

  9. Heritage Park Facilities PV Project

    Energy Technology Data Exchange (ETDEWEB)

    Hobaica, Mark [City of Henderson Nevada, Henderson, NV (United States)

    2013-09-26

    Project Objective: To procure a photovoltaic array (PV) system which will generate approximately 256kW of power to be used for the operations of the Aquatic Complex and the adjacent Senior Facility at the Heritage Park. This project complies with the EERE’s work and objectives by promoting the development and deployment of an energy system that will provide current and future generations with clean, efficient, affordable, and reliable energy.

  10. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Manufacturing/producibility final report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Ritschel, A.J.; White, W.L.

    1985-05-01

    This Final MFTF-B Manufacturing/Producibility Report covers facilities, tooling plan, manufacturing sequence, schedule and performance, producibility, and lessons learned for the solenoid, axicell, and transition coils, as well as a deactivation plan, conclusions, references, and appendices.

  11. Filter optimization of Si and SiC semiconductor-based H5 and Conergy-NPC transformerless PV inverters

    DEFF Research Database (Denmark)

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    semiconductors type (Si- or SiC-based), switching frequency and output filter (LCL- or LLCL-type) employed in H5 and Conergy-NPC PV inverters, considering the simultaneous impact of the factors affecting the PV energy processing performance and PV inverter cost. According to the design results, the optimized Si......C-based PV inverters will inject more energy into the electric grid, compared to the Si-based structures and enable the reduction of the output filter size, weight and cost. Employing an LLCL-type output filter and simultaneously reducing the cost of SiC power semiconductors to the level of their Si......Single-phase transformerless Photovoltaic (PV) inverters are synthesized by combining available solutions in terms of the power section topology, power semiconductors manufacturing technology and structure of the output filter. A design method is presented in this paper for optimizing the power...

  12. Quantifying Reliability - The Next Step for a Rapidly Maturing PV Industry and China's Role

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah

    2015-10-14

    PV customers wish to know how long their PV modules will last, but quantitatively predicting service life is difficult because of the large number of ways that a module can fail, the variability of the use environment, the cost of the testing, and the short product development time, especially when compared with the long desired lifetime. China should play a key role in developing international standards because China manufactures most of the world's PV modules. The presentation will describe the steps that need to be taken to create a service life prediction within the context of a defined bill of materials, process window and use environment. Worldwide standards for cost-effective approaches to service-life predictions will be beneficial to both PV customers and manufacturers since the consequences of premature module failure can be disastrous for both.

  13. Annual technical report. PV domestic field trial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report describes progress at the first five sites of the UK photovoltaic (PV) domestic field trial. All five sites are generating electricity, but one has not yet been commissioned and two sites are not yet monitoring performance. The BedZED development has roof-mounted PV modules and PV cells installed in sealed double-glazing. Solar slates/tiles have been installed at the Laing Homes development in Montagu Road, where the designer has sought to minimise the visual impact of the PV system on the roofs. At Hunters Moon, PV modules have been retrofitted and some unforeseen difficulties have arisen. PV is an integral part of the roof design at the state-of-the-art low energy development by Integer Houses at Greenfields. Corn Croft uses a British mounting system to facilitate integration of the modules flush with the roof. Installation issues and the progress of the trial are discussed.

  14. Review of Novel Topologies for PV Applications

    OpenAIRE

    Makovenko, Elena; Husev, Oleksandr; Roncero-Clemente, Carlos; Romero-Cadaval, Enrique

    2016-01-01

    Part 11: Renewable Energy; International audience; Renewable energy capacity has been growing rapidly, exceeding 140 GW of installed power in solar Photovoltaic (PV) power generation. Along with PV installations, the variety of applied power electronics topologies has also increased, resulting in a key point of future Smart Grids, as long as they allow new operation possibilities. This paper reviews the emerging topologies for PV applications that could be used in the generation of new smart ...

  15. PV panel model based on datasheet values

    DEFF Research Database (Denmark)

    Sera, Dezso; Teodorescu, Remus; Rodriguez, Pedro

    2007-01-01

    This work presents the construction of a model for a PV panel using the single-diode five-parameters model, based exclusively on data-sheet parameters. The model takes into account the series and parallel (shunt) resistance of the panel. The equivalent circuit and the basic equations of the PV cell....... Based on these equations, a PV panel model, which is able to predict the panel behavior in different temperature and irradiance conditions, is built and tested....

  16. Reliability Assessment of Transformerless PV Inverters considering Mission Profiles

    Directory of Open Access Journals (Sweden)

    Yongheng Yang

    2015-01-01

    Full Text Available Due to the small volume and high efficiency, transformerless inverters have gained much popularity in grid-connected PV applications, where minimizing leakage current injection is mandatory. This can be achieved by either modifying the modulation schemes or adding extra power switching devices, resulting in an uneven distribution of the power losses on the switching devices. Consequently, the device thermal loading is redistributed and thus may alter the entire inverter reliability performance, especially under a long-term operation. In this consideration, this paper assesses the device reliability of three transformerless inverters under a yearly mission profile (i.e., solar irradiance and ambient temperature. The mission profile is translated to device thermal loading, which is used for lifetime prediction. Comparison results reveal the lifetime mismatches among the power switching devices operating under the same condition, which offers new thoughts for a robust design and a reliable operation of grid-connected transformerless PV inverters with high efficiency.

  17. Reliability Assessment of Transformerless PV Inverters Considering Mission Profiles

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2015-01-01

    Due to the small volume and high efficiency, transformerless inverters have gained much popularity in grid-connected PV applications, where minimizing leakage current injection is mandatory. This can be achieved either by modifying the modulation schemes or adding extra power switching devices...... reliability of three transformerless inverters under a yearly mission profile (i.e., solar irradiance and ambient temperature). The mission profile is translated to device thermal loading, which is used for lifetime prediction. Compar¬ison results reveal the lifetime mismatches among the power switching...... devices operating under the same condition, which offers new thoughts for a robust design and a reliable operation of grid-connected transformerless PV inverters with high efficiency....

  18. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-Cost PV Future

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zuboy, Jarrett; Woodhouse, Michael A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-01

    This presentation summarizes the findings from the report 'SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future.' This presentation was given as a webinar on September 26, 2017.

  19. Leakage current measurement in transformerless PV inverters

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Mathe, Laszlo

    2012-01-01

    Photovoltaic (PV) installations have seen a huge increase during the last couple of years. Transformerless PV inverters are gaining more share of the total inverter market, due to their high conversion efficiency, small weight and size. Nevertheless safety should have an important role in case...... to be used in commercial PV inverters for the measurement of leakage and fault ground currents. The German VDE0126–1–1 standard gives the limit for fault and leakage ground currents and all grid connected PV inverters have to comply with these limits and disconnect from the grid in case of a fault....

  20. Seven indicators variations for multiple PV array configurations under partial shading and faulty PV conditions

    OpenAIRE

    Dhimish, M; Holmes, V.; Mehrdadi, B; Dales, M; Chong, B; Zhang, L.

    2017-01-01

    The goal of this paper is to model, compare and analyze the performance of multiple photovoltaic (PV) array configurations under various partial shading and faulty PV conditions. For this purpose, a multiple PV array configurations including series (S), parallel (P), series-parallel (SP), total-cross-tied (TCT) and bridge-linked (BL) are carried out under several partial shading conditions such as, increase or decrease in the partial shading on a row of PV modules and increase or decrease in ...

  1. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Science.gov (United States)

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. ...

  2. Pv rural electrification programme at the Bolivian high plateau

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, E.; Aguilera, J. [Instituto de Energia Solar, ETSI Telecomunicacion, (Spain)

    1995-12-31

    Since 1988 the Institute of Solar Energy of the Universidad Politecnica de Madrid is carrying out a pv rural electrification programme at the Bolivian high plateau. This programme has been focused in three aspects: the domestic electrification, users participation and transfer technology. At present, there are about 1,500 electrified dwellings distributed in the Bolivian high plateau. We have got deep knowledge about life style and organization of the aymara Indians who are the inhabitants of the working zone. We think that this knowledge can be very useful for a large scale introduction of PV solar energy in this region. Finally, we present a new way to transfer PV technology to developing countries. Thanks to this programme a group of aymara Indians is able to manufacture charge regulators and electronic ballast to use in the PV installations of the programme. [Espanol] Desde 1988 el Instituto de Energia Solar de la Universidad Politecnica de Madrid esta llevando a cabo un programa fotovoltaico de electrificacion rural en la altiplanicie Boliviana. Este programa ha sido enfocado a tres aspectos: la electrificacion domestica, la participacion de los usuarios y la transferencia de la tecnologia. Actualmente, hay alrededor de 1500 conjuntos habitacionales electrificados distribuidos en la altiplanicie Boliviana. Hemos obtenido un profundo conocimiento del estilo de vida y de la organizacion de los indios aymara que son los habitantes de la zona de trabajo. Pensamos que este conocimiento puede ser muy util para una introduccion en gran escala de la energia solar fotovoltaica en esta region. Finalmente, presentamos una nueva forma de transferir la tecnologia fotovoltaica a paises en desarrollo. Gracias a este programa un grupo de indios aymara pueden fabricar reguladores de carga y balastros electronicos para ser usados en instalaciones fotovoltaicas del programa.

  3. LonWorks as Fieldbus for PV-Installations; LonWorks als Feldbus fuer PV-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, Ch. von

    2003-07-01

    The growing market for photovoltaics increasingly requires suitable quality controls covering plant operators, planners and installers, as well as the electric utilities. Additionally, the interest of the general public in the behaviour of photovoltaic (PV) plants is growing. This includes information from everyday practice. Alongside data retrieval, other themes such as the operative management of the unit and energy management become increasingly important for grid-connected PV systems. Todays measuring systems are not compatible with each other. Data communication between different PV plants with computer-aided analysis- and visualisation programmes is very complicated. LonWorks was introduced by Motorola and Toshiba in 1991. Today it leads the world market for field bus systems. With plug and play, components by several manufacturers can easily be incorporated into a LonWorks network. Today more than 3,500 companies use LonWorks technology. The goal of this project is to introduce the very popular LonWorks technology as a new standard for PV applications. The first objective was to develop a LonWorks interface for our Convert inverters and to connect them into a small network. In a second step we installed a LonWorks system at the 260 kW{sub p} PV plant 'Felsenau' in Berne, Switzerland. All 68 inverters are controlled over power line with LonWorks. The on-site PC acts as LonWorks DataServer and making remote information monitoring and data gathering possible. As soon as a functional error occurs, an alarm will be transmitted via modem to the SMSC (Short Message Service Centre). After two years of operation we can say that all expectations were fulfilled by our new system. Knowledge gained from this project has shown that LonWorks has lived up its considerable promise and can be regarded as a high-quality piece of technology. Integration into an overall system is technically very easy. To do this, however, relatively expensive software solutions have

  4. Measurement of liver volumes by portal vein flow by Doppler ultrasound in living donor liver transplantation.

    Science.gov (United States)

    Choi, Sang Hyun; Kwon, Jae Hyun; Kim, Kyoung Won; Jang, Hye Young; Kim, Ji Hye; Kwon, Heon-Ju; Lee, Jeongjin; Song, Gi-Won; Lee, Sung-Gyu

    2017-09-01

    The accurate estimation of liver volume and right/left ratio in donor candidates is critical, but there is no method using portal vein (PV) flow. Of 125 donor candidates, right/left liver volume ratio was estimated using ultrasound (US)-PV area ratio and Doppler US-PV flow ratio, and the results were compared with CT volumetry. We analyzed these results in 76 donors who underwent hemihepatectomy. We evaluated diagnostic values of Doppler US-PV flow for Doppler US-PV flow with actual graft weight. In 125 donor candidates, 96.8% showed Doppler US-PV flow ratio and CT volumetry. Compared with CT volumetry, the mean percentage difference of liver volume ratio by Doppler US-PV flow ratio was significantly smaller than that by US-PV area ratio (±0.7% vs ±6.3%, PDoppler US-PV flow ratio than that by US-PV area ratio (±1.0% vs ±6.0%, PDoppler US-PV flow was linearly correlated with graft weight (R 2 =0.770, PDoppler US-PV flow can effectively estimate right/left liver volume ratio in initial donor investigation. However, Doppler US-PV flow is not accurate in assessing donors with <30% remnant liver volume and in estimating actual graft weight. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Adiabatic Rearrangement of Hollow PV Towers

    Directory of Open Access Journals (Sweden)

    Eric A Hendricks

    2010-10-01

    Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane

  6. Modelling a reliable wind/PV/storage power system for remote radio base station sites without utility power

    Science.gov (United States)

    Bitterlin, Ian F.

    The development of photovoltaic (PV) cells has made steady progress from the early days, when only the USA space program could afford to deploy them, to now, seeing them applied to roadside applications even in our Northern European climes. The manufacturing cost per watt has fallen and the daylight-to-power conversion efficiency increased. At the same time, the perception that the sun has to be directly shining on it for a PV array to work has faded. On some of those roadside applications, particularly for remote emergency telephones or for temporary roadwork signage where a utility electrical power connection is not practical, the keen observer will spot, usually in addition to a PV array, a small wind-turbine and an electrical cabinet quite obviously (by virtue of its volume) containing a storage battery. In the UK, we have the lions share (>40%) of Europe's entire wind power resource although, despite press coverage of the "anti-wind" lobby to the contrary, we have hardly started to harvest this clean and free energy source. Taking this (established and proven) roadside solution one step further, we will consider higher power applications. A cellular phone system is one where a multitude of remote radio base stations (RBS) are required to provide geographical coverage. With networks developing into the so called "3G" technologies the need for base stations has tripled, as each 3G cell covers only 1/3 the geographical area of its "2G" counterpart. To cover >90% of the UK's topology (>97% population coverage) with 3G cellular technology will requires in excess of 12,000 radio base stations per operator network. In 2001, there were around 25,000 established sites and, with an anticipated degree of collocation by necessity, that figure is forecast to rise to >47,000. Of course, the vast majority of these sites have a convenient grid connection. However, it is easy to see that the combination of wind and PV power generation and an energy storage system may be an

  7. Competitive Manufacturing Dynamics

    DEFF Research Database (Denmark)

    Rymaszewska, Anna; Christensen, Irene; Karlsson, Christer

    The increasing complexity of business environments and the pressure for organizations on delivering new products faster while maintaining the superior quality of their products, has forced manufacturing organizations to rethink their operations. Managers responsible for manufacturing ramp-up need...... to constantly improve this process in terms of time to volume, according to predefined cost and quality measures. The importance of the success of this process can lead to a significant creation of competitive advantage. This paper addresses the challenges of the manufacturing ramp-up process in the context...... of lean improvements as well as organizational learning....

  8. Distributed PV Adoption - Sensitivity to Market Factors

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, Pieter; Sigrin, Ben

    2016-02-01

    NREL staff used the dSolar (distributed solar) model to forecast the adoption of distributed, behind-the-meter PV through the year 2050 for 9 different scenarios. The scenarios varied in their assumptions about a carbon tax, the cost of PV systems in the future, and what credit would be given for excess generation once current net metering policies expire.

  9. PV integration into a CSP plant

    Science.gov (United States)

    Carvajal, Javier López; Barea, Jose M.; Barragan, Jose; Ortega, Carlos

    2017-06-01

    This paper describes a preliminary techno-economic analysis of the integration of a PV plant into an optimized Parabolic Trough Plant in order to reduce the online consumptions and thus, increase the net electricity injected into the grid. The idea is to assess the feasibility of such project and see what configuration would be the optimal. An extra effort has been made in terms of modelling as the analysis has to be done to the integrated CSP + PV plant instead of analyzing them independently. Two different technologies have been considered for the PV plant, fix and one-axis tracking. Additionally three different scenarios have been considered for the CSP plant auxiliary consumptions as they are essential for determining the optimal PV plant (the higher the auxiliary consumption the higher the optimal PV plant). As could be expected, the results for all cases with PV show an improvement in terms of electricity generation and also in terms of LCOE with respect to the CSP plant. Such improvement is slightly higher with tracking technology for this specific study. Although this exercise has been done to an already designed CSP plant (so only the PV plant had to be optimized), the methodology could be applied for the optimization of an integrated CSP + PV plant during the design phase.

  10. PV FAQs: Does the world have enough materials for PV to help address climate change?

    Energy Technology Data Exchange (ETDEWEB)

    2005-06-01

    In the ongoing discussion of what needs to be done to stabilize atmospheric CO2 by mid-century (Hoffert 1998), one possible option would be to add about 10-20 terawatts (trillion watts, or TW) of photovoltaics (PV) in place of conventional sources. PV would help because, unlike burning fossil fuels, it produces no CO2. However, 10-20 TW is an enormous amount of energy. In peak Watts, the way PV installations are generally rated, it is about 50-100 TWpeak (TWp) of PV. Would we have enough materials to make this much PV? As we explain in this PV FAQ, we think our planet has enough feedstock materials for PV to meet the ''TW challenge.''

  11. US manufacturers of commercially available stand-alone photovoltaic lighting systems

    Science.gov (United States)

    McNutt, P.

    1994-05-01

    This report introduces photovoltaic (PV) lighting systems, gives some specifications for ordering these systems, and provides a list of some of the manufacturers of these systems in the United States. These PV lighting systems are all commercially available. They are stand-alone systems because they are not tied to the electric utility power grid.

  12. Manufacturing Interfaces

    NARCIS (Netherlands)

    van Houten, Frederikus J.A.M.

    1992-01-01

    The paper identifies the changing needs and requirements with respect to the interfacing of manufacturing functions. It considers the manufacturing system, its components and their relationships from the technological and logistic point of view, against the background of concurrent engineering.

  13. 1366 Project Silicon: Reclaiming US Silicon PV Leadership

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Adam [1366 Technologies, Bedford, MA (United States)

    2016-02-16

    1366 Technologies’ Project Silicon addresses two of the major goals of the DOE’s PV Manufacturing Initiative Part 2 program: 1) How to reclaim a strong silicon PV manufacturing presence and; 2) How to lower the levelized cost of electricity (“LCOE”) for solar to $0.05-$0.07/kWh, enabling wide-scale U.S. market adoption. To achieve these two goals, US companies must commercialize disruptive, high-value technologies that are capable of rapid scaling, defensible from foreign competition, and suited for US manufacturing. These are the aims of 1366 Technologies Direct Wafer ™ process. The research conducted during Project Silicon led to the first industrial scaling of 1366’s Direct Wafer™ process – an innovative, US-friendly (efficient, low-labor content) manufacturing process that destroys the main cost barrier limiting silicon PV cost-reductions: the 35-year-old grand challenge of making quality wafers (40% of the cost of modules) without the cost and waste of sawing. The SunPath program made it possible for 1366 Technologies to build its demonstration factory, a key and critical step in the Company’s evolution. The demonstration factory allowed 1366 to build every step of the process flow at production size, eliminating potential risk and ensuring the success of the Company’s subsequent scaling for a 1 GW factory to be constructed in Western New York in 2016 and 2017. Moreover, the commercial viability of the Direct Wafer process and its resulting wafers were established as 1366 formed key strategic partnerships, gained entry into the $8B/year multi-Si wafer market, and installed modules featuring Direct Wafer products – the veritable proving grounds for the technology. The program also contributed to the development of three Generation 3 Direct Wafer furnaces. These furnaces are the platform for copying intelligently and preparing our supply chain – large-scale expansion will not require a bigger machine but more machines. SunPath filled the

  14. Development of a Visual Inspection Data Collection Tool for Evaluation of Fielded PV Module Condition

    Energy Technology Data Exchange (ETDEWEB)

    Packard, C. E.; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-08-01

    A visual inspection data collection tool for the evaluation of fielded photovoltaic (PV) modules has been developed to facilitate describing the condition of PV modules with regard to field performance. The proposed data collection tool consists of 14 sections, each documenting the appearance or properties of a part of the module. This report instructs on how to use the collection tool and defines each attribute to ensure reliable and valid data collection. This tool has been evaluated through the inspection of over 60 PV modules produced by more than 20 manufacturers and fielded at two different sites for varying periods of time. Aggregated data from such a single data collection tool has the potential to enable longitudinal studies of module condition over time, technology evolution, and field location for the enhancement of module reliability models.

  15. ABLE project: Development of an advanced lead-acid storage system for autonomous PV installations

    Science.gov (United States)

    Lemaire-Potteau, Elisabeth; Vallvé, Xavier; Pavlov, Detchko; Papazov, G.; Borg, Nico Van der; Sarrau, Jean-François

    In the advanced battery for low-cost renewable energy (ABLE) project, the partners have developed an advanced storage system for small and medium-size PV systems. It is composed of an innovative valve-regulated lead-acid (VRLA) battery, optimised for reliability and manufacturing cost, and an integrated regulator, for optimal battery management and anti-fraudulent use. The ABLE battery performances are comparable to flooded tubular batteries, which are the reference in medium-size PV systems. The ABLE regulator has several innovative features regarding energy management and modular series/parallel association. The storage system has been validated by indoor, outdoor and field tests, and it is expected that this concept could be a major improvement for large-scale implementation of PV within the framework of national rural electrification schemes.

  16. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  17. Jebel Ali Hotel PV lighting systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, M.

    1984-05-01

    A large stand-alone PV lighting project was installed in June 1983 at the Jebel Ali Hotel in Dubai, United Arab Emirates. A high mast lighting system provides illumination for a 130 meter diameter traffic roundabout. The high mast system is powered by a 15 kilowatt peak array of Mobil Solar ribbon PV modules. Along the 700 meter access road leading to the hotel entrance, twenty-one PV powered streetlights provide low-level lighting. Each streetlight consists of a 20 watt fluorescent tube powered by two 35 Wp modules. Operation of both systems is completely automatic. Design, installation, and operating experience to date are reviewed.

  18. PV Ceph: Young Star Caught Speeding?

    OpenAIRE

    Goodman, Alyssa A.; Arce, Hector G.

    2004-01-01

    Three independent lines of evidence imply that the young star PV Ceph is moving at roughly 20 km/s through the interstellar medium. The first, and strongest, suggestion of motion comes from the geometry of the HH knots in the "giant" Herbig-Haro (HH) flow associated with PV Ceph. Bisectors of lines drawn between pairs of knots at nearly equal distances from PV Ceph imply an E-W motion of the source, and a plasmon model fit to the knot positions gives a good fit of 22 km/s motion for the star....

  19. Multifunctional a-Si PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Peippo, K.; Lund, P.; Vartiainen, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The optimal use of the various forms of solar energy (passive, active, daylighting, photovoltaics) in buildings calls for an optimal integration of the technologies. As energy conservation potential in space heating may soon be exhausted, electricity efficiency and on-site generation will play an increasing role in energy-conscious building design. There, dispersed PV systems integrated into buildings show a significant market potential, due to a number of benefits: no extra land area is required, PV-array may replace conventional cladding materials and become a building element. Moreover, the produced PV-electricity is more valuable for the building owner than for an electric utility

  20. PV-hybrid and mini-grid

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the 5th European PV-hybrid and mini-grid conference 29th and 30th April, 2010 in Tarragona (Spain) the following lectures were held: (1) Overview of IEA PVPS Task 11 PV-hybrid systems within mini grids; (2) Photovoltaic revolution for deployment in developing countries; (3) Legal and financial conditions for the sustainable operation of mini-grids; (4) EU instruments to promote renewable energies in developing countries; (5) PV hybridization of diesel electricity generators: Conditions of profitability and examples in differential power and storage size ranges; (6) Education suit of designing PV hybrid systems; (7) Sustainable renewable energy projects for intelligent rural electrification in Laos, Cambodia and Vietnam; (8) Techno-economic feasibility of energy supply of remote villages in Palestine by PV systems, diesel generators and electric grid (Case studies: Emnazeil and Atouf villages); (9) Technical, economical and sustainability considerations of a solar PV mini grid as a tool for rural electrification in Uganda; (10) Can we rate inverters for rural electrification on the basis of energy efficiency?; (11) Test procedures for MPPT charge controllers characterization; (12) Energy storage for mini-grid stabilization; (13) Redox flow batteries - Already an alternative storage solution for hybrid PV mini-grids?; (14) Control methods for PV hybrid mini-grids; (15) Partial AC-coupling in mini-grids; (15) Normative issues of small wind turbines in PV hybrid systems; (16) Communication solutions for PV hybrid systems; (17) Towards flexible control and communication of mini-grids; (18) PV/methanol fuel cell hybrid system for powering a highway security variable message board; (19) Polygeneration smartgrids: A solution for the supply of electricity, potable water and hydrogen as fuel for transportation in remote Areas; (20) Implementation of the Bronsbergen micro grid using FACDS; (21) A revisited approach for the design of PV wind hybrid systems; (22

  1. Benefits from the U.S. photovoltaic manufacturing technology project

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    This paper examines the goals of the Photovoltaic Manufacturing Technology (PVMaT) project and its achievements in recapturing the investment by the photovoltaic (PV) industry and the public in this research. The PVMaT project was initiated in 1990 with the goal of enhancing the world-wide competitiveness of the U.S. PV industry. Based on the authors analysis, PVMaT has contributed to PV module manufacturing process improvements, increased product value, and reductions in the price of today`s PV products. An evaluation of success in this project was conducted using data collected from 10 of the PVMaT industrial participants in late fiscal year (FY) 1995. These data indicate a reduction of 56% in the weighted average module manufacturing costs from 1992 to 1996. During this same period, U.S. module manufacturing capacity has increased by more than a factor of 6. Finally, the analysis indicates that both the public and the manufacturers will recapture the funds expended in R&D manufacturing improvements well before the year 2000.

  2. Designing PV Incentive Programs to Promote System Performance: AReview of Current Practice

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-11-12

    Some stakeholders continue to voice concerns about the performance of customer-sited photovoltaic (PV) systems, particularly because these systems typically receive financial support through ratepayer- or publicly-funded programs. Although much remains to be understood about the extent and specific causes of poor PV system performance, several studies of the larger programs and markets have shed some light on the issue. An evaluation of the California Energy Commission (CEC)'s Emerging Renewables Program, for example, found that 7% of systems, in a sample of 95, had lower-than-expected power output due to shading or soiling (KEMA 2005). About 3% of a larger sample of 140 systems were not operating at all or were operating well below expected output, due to failed equipment, faulty installation workmanship, and/or a lack of basic maintenance. In a recent evaluation of the other statewide PV incentive program in California, the Self-Generation Incentive Program, 9 of 52 projects sampled were found to have annual capacity factors less than 14.5%, although reasons for these low capacity factors generally were not identified (Itron 2005). Studies of PV systems in Germany and Japan, the two largest PV markets worldwide, have also revealed some performance problems associated with issues such as shading, equipment and installation defects, inverter failure, and deviations from module manufacturers' specifications (Otani et al. 2004, Jahn & Nasse 2004). Although owners of PV systems have an inherent incentive to ensure that their systems perform well, many homeowners and building operators may lack the necessary information and expertise to carry out this task effectively. Given this barrier, and the responsibility of PV incentive programs to ensure that public funds are prudently spent, these programs should (and often do) play a critical role in promoting PV system performance. Performance-based incentives (PBIs), which are based on actual energy production

  3. China PV Business and Applications Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sherring, Chris (Sherring Energy Associates)

    1999-08-30

    This report provides an overview of photovoltaics (PV) business and applications in China. Although more than 70 million people in China are without access to grid electricity, many of the unelectrified regions benefit from considerable renewable resources, including good solar insolation. Current annual PV sales are still modest, however, and are estimated to be between 2.0 and 2.5 megawatts. This and other significant PV data, including information regarding the current status of key aspects of Chinese businesses, markets, and distribution channels, are included in the report. Detailed company profiles of Chinese business organizations and summaries of visits made to these companies (as well as to more remote sites in Inner Mongolia to examine PV usage by the end-use customer) in September-October 1998 are also presented.

  4. Robust PV Degradation Methodology and Application

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Dirk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Deline, Christopher A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kimball, Greg [SunPower; Anderson, Mike [SunPower

    2017-11-15

    The degradation rate plays an important role in predicting and assessing the long-term energy generation of PV systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this manuscript, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year (YOY) rate calculation. We show the method to provide reliable degradation rate estimates even in the case of sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.

  5. Distributed PV Adoption in Maine Through 2021

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, Pieter; Sigrin, Ben

    2015-11-06

    NREL has used its dSolar (distributed solar) model to generate low-medium-high estimates of distributed PV adoption in Maine through 2021. This presentation gives a high-level overview of the model and modeling results.

  6. Robust PV Degradation Methodology and Application

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Dirk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Deline, Christopher A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kimball, Gregory M. [SunPower Corporation; Anderson, Mike [SunPower Corporation

    2017-12-21

    The degradation rate plays an important role in predicting and assessing the long-term energy generation of photovoltaics (PV) systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this paper, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year rate calculation. We show the method to provide reliable degradation rate estimates even in the case of sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.

  7. PV Module Reliability Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its PV module reliability research. The scope and core competencies and capabilities are discussed and recent publications are listed.

  8. Interharmonics from Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2017-01-01

    As the penetration level of grid-connected Photovoltaic (PV) systems increases, the power quality is one of the major concerns for system operators and the demands are becoming even stricter. The impact of interharmonics on the grid has been acknowledged in recent research when considering a large......-scale adoption of PV inverters. However, the origins of interharmonics remain unclear. Thus, this paper performs tests on a commercial PV inverter to explore interharmonic generation and more important investigates the mechanism of interharmonic emission. The investigation reveals that the perturbation...... of the solutions. Simulation results indicate that the constant-voltage MPPT method is the most suitable solution to the mitigation of interharmonics introduced by the MPPT operation, as it avoids the perturbation in the PV voltage during operation....

  9. DNA polymorphism analysis of Xanthomonas campestris pv ...

    African Journals Online (AJOL)

    strand conformation polymorphism (SSCP) techniques using M13 and 16S rRNA primers, respectively, for genotyping of the phytopathogenic bacterium Xanthomonas campestris pv. campestris was studied. RAPD provided a simple, rapid, and ...

  10. Rating PV Power and Energy: Cell, Module, and System Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Keith

    2016-06-02

    A summary of key points related to research-level measurements of current vs. voltage measurement theory including basic PV operation, equivalent circuit, and concept of spectral error; PV power performance including PV irradiance sensors, simulators and commercial and generic I-V systems; PV measurement artifacts, intercomparisons, and alternative rating methods.

  11. PV System Energy Evaluation Method (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.

    2014-01-01

    This presentation describes a comparison of the "predicted" energy (based on historical weather data) with the "expected" energy (based on the measured weather data) to determine whether a PV system is performing as modeled in order to verify the accuracy of a model. A key factor in defining this energy test is determining the test boundary so that weather variations are not inadvertently included in what is considered to be PV system performance.

  12. Addressing firefighter safety around solar PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. [Sustainable Energy Technologies, Calgary, AB (Canada)

    2010-11-15

    The article discussed new considerations for installing photovoltaic (PV) systems that address the needs of fire service personnel. The presence of a PV system presents a multitude of dangers for firefighters, including electrical shock, the inhalation of toxic gases from being unable to cut a hole through the roof, falling debris and flying glass, and dead loading on a compromised structure and tripping on conduits. Mapping systems should be modified so that buildings with PV systems are identified for first responders, including firefighters who should learn that solar modules present an electrical hazard during the day but not at night; covering PV modules with foam or salvage covers may not shut the system down to a safe level; it takes a few moments for the power in PV modules to reduce to zero; and PV modules or conduit should never be cut, broke, chopped, or walked upon. The California Department of Forestry and Fire Protection recommends creating pathways and allowing easier access to the roof by setting the modules back from roof edges, creating a structurally sound pathway for firefighters to walk on and space to cut ventilation holes. However, the setback rule makes the economics of solar installation less viable for residential applications. The technological innovations aimed at addressing system safety all focus on limiting firefighter contact with live electrical components to within the extra-low-voltage (ELV) band. Some of the inverters on the market that support ELV system architecture were described. 1 fig.

  13. PV-Developer. A Concept Paper. Version 4.0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    The market for Photovoltaic Energy systems is developing very rapidly with annual growth rates in the range of 20-40%. The growth creates new business opportunities for project development. The markets are immature and the competitiveness of PV is increasing, whereby it is important to develop the business concept within the next few years if the long-term aim is to become a major player in the field of PV-project development. Like in the field of wind energy, which has grown to a large-scale business area within the last decade, the long-term perspectives of photovoltaic energy will depend upon the market development, interest groups and stake holders. The solar power developers might be catalysts for high growth rates like in the wind energy field. The concern for global warming leads the international energy policies in favour of renewable energy incentives followed by the technological development of PV-equipment, which constantly improves the cost level of PV-produced electricity. The markets for PV-systems are geographically widespread and the way to implement systems goes to a large extent via financing from international governmental as well as non-governmental lateral and bilateral aid organisations. Lead times to develop projects are counted in years, and the time from the first project idea to the final commissioning of the installed plants might take 3-5 years. More specific studies of market segments and business opportunities, development of market penetration and design of strategy must be carried out. Organisation seems to be a major issue as the complexity of the projects and the project location in 3rd world countries as well as in the industrialised countries combined with high proportion of donor funding will require a high level of organisation and coordination. In general a detailed study should be made in order to create a business plan. The business plan must contain budgets, volume estimates, sensitivity analyses, organisational proposals

  14. The Value of Transparency in Distributed Solar PV Markets

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zamzam, Ahmed S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-01

    Market transparency refers to the degree of customer awareness of product options and fair market prices for a given good. In The Value of Transparency in Distributed Solar PV Markets, we use residential solar photovoltaic (PV) quote data to study the value of transparency in distributed solar PV markets. We find that improved market transparency results in lower installation offer prices. Further, the results of this study suggest that PV customers benefit from gaining access to more PV quotes.

  15. Manufacturing technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  16. The reliability and stability of multijunction amorphous silicon PV modules

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D.E. [Solarex, Newtown, PA (United States)

    1995-11-01

    Solarex is developing a manufacturing process for the commercial production of 8 ft{sup 2} multijunction amorphous silicon (a-Si) PV modules starting in 1996. The device structure used in these multijunction modules is: glass/textured tin oxide/p-i-n/p-i-n/ZnO/Al/EVA/Tedlar where the back junction of the tandem structure contains an amorphous silicon germanium alloy. As an interim step, 4 ft{sup 2} multijunction modules have been fabricated in a pilot production mode over the last several months. The distribution of initial conversion efficiencies for an engineering run of 67 modules (4 ft{sup 2}) is shown. Measurements recently performed at NREL indicate that the actual efficiencies are about 5% higher than those shown, and thus exhibit an average initial conversion efficiency of about 9.5%. The data indicates that the process is relatively robust since there were no modules with initial efficiencies less than 7.5%.

  17. Technology support for initiation of high-throughput processing of thin-film CdTe PV modules. Phase 3 final technical report, 14 March 1997--1 April 1998

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.C.; Dorer, G.L.; Jayamaha, U.; Hanak, J.J. [Solar Cells, Inc., Toledo, OH (United States)

    1998-09-01

    Thin-film PV devices based on cadmium telluride have been identified as one of the candidates for high-performance, low-cost source of renewable electrical energy. Roadblocks to their becoming a part of the booming PV market growth have been a low rate of production and high manufacturing cost caused by several rate-limiting process steps. Solar Cells Inc. has focused on the development of manufacturing processes that will lead to high volume and low-cost manufacturing of solar cells and on increasing the performance of the present product. The process research in Phase 3 was concentrated on further refinement of a newly developed vapor transport deposition (VTD) process and its implementation into the manufacturing line. This development included subsystems for glass substrate transport, continuous feed of source materials, generation of source vapors, and uniform deposition of the semiconductor layers. As a result of this R and D effort, the VTD process has now achieved a status in which linear coating speeds in excess of 8 ft/min have been achieved for the semiconductor, equal to about two modules per minute, or 144 kW per 24 hour day. The process has been implemented in a production line, which is capable of round-the-clock continuous production of coated substrates 120 cm x 60 cm in size at a rate of 1 module every four minutes, equal to 18 kW/day. Currently the system cycle time is limited by the rate of glass introduction into the system and glass heating, but not by the rate of the semiconductor deposition. A new SCI record efficiency of 14.1% has been achieved for the cells.

  18. Optimization of PV-based energy production by dynamic PV-panel/inverter configuration

    DEFF Research Database (Denmark)

    Paasch, Kasper; Nymand, Morten; Haase, Frerk

    This paper investigates the possible increase in annual energy production of a PV system with more than one MPPT (maximum power point tracker) input channels under Nordic illumination conditions, in case a concept of dynamic switching of the PV panels is used at the inputs of the inverters....

  19. Prospects of Nanostructure-Based Solar Cells for Manufacturing Future Generations of Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    N. Gupta

    2009-01-01

    Full Text Available We present a comprehensive review on prospects for one-, two-, or three-dimensional nanostructure-based solar cells for manufacturing the future generation of photovoltaic (PV modules. Reducing heat dissipation and utilizing the unabsorbed part of the solar spectrum are the key driving forces for the development of nanostructure-based solar cells. Unrealistic assumptions involved in theoretical work and the tendency of stretching observed experimental results are the primary reasons why quantum phenomena-based nanostructures solar cells are unlikely to play a significant role in the manufacturing of future generations of PV modules. Similar to the invention of phase shift masks (to beat the conventional diffraction limit of optical lithography clever design concepts need to be invented to take advantage of quantum-based nanostructures. Silicon-based PV manufacturing will continue to provide sustained growth of the PV industry.

  20. The quality of PV systems; De kwaliteit van PV-systemen

    Energy Technology Data Exchange (ETDEWEB)

    Jablonska, B.; Rooij, P.M. [ECN Duurzame Energie in de Gebouwde Omgeving DEGO, Petten (Netherlands); Molenbroek, E.C.; Deege, P.W.F. [Ecofys, Utrecht (Netherlands)

    2004-03-01

    With more than 1.3 Wp of grid connected Wp per capita, the Netherlands ranks among countries with the highest installed PV power per capita. Since the start with demonstration systems in the early nineties, projects have increased in size and numbers. In 2002, 5 MWp of grid connected PV-systems was installed, adding up to a total of 21.7 MWp installed grid-connected PV capacity. Now that the PV-market is growing and more and more consumers are coming into contact with the technology, detailed monitoring is not necessary and not done anymore. On the other hand, demands on quality and reliability are increasing, which makes assurance of quality all the more important. Rumours about bad functioning PV systems spread faster than about the good functioning ones. These rumours can affect the trust of the market in this technology. In this report, results of the first investigation of this kind in the Netherlands are presented. Information on quality was obtained through review of results of commissioning tests, contacting the involved market actors, experience with operation and maintenance, through analysis of performance data and through carrying out extra tests where needed. In this way, information was gathered on 25% of the total installed capacity in the Netherlands. [Dutch] Verhalen over slecht functionerende PV-systemen, ook al zijn het slechts geruchten, incidenten of kleine aantallen, verspreiden zich sneller dan verhalen over goed functionerende PV-systemen en kunnen het vertrouwen van de markt schaden. Het is daarom van groot (en algemeen) belang dat er toezicht gehouden wordt op de kwaliteit van PV-systemen, zodat ongewenste ontwikkelingen tijdig gesignaleerd en aangepakt kunnen worden. Eveneens is het van belang dat de consument geinformeerd wordt over de kwaliteit van PV-systemen. In dit project is daarom onderzoek verricht om een overzicht over de kwaliteit van PV-systemen in Nederland te verkrijgen.

  1. The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-22

    Market structure refers to the number of firms and the distribution of market shares among firms within an industry. In The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016, we examine market structure in the context of residential solar PV. We find that over 8,000 companies have installed at least one residential PV system, with about 2,900 companies active in 2016. The majority of residential PV installers are relatively small companies, with about half of installers installing fewer than five systems. At the same time, a subset of high-volume installers accumulated market share, especially beginning around 2010 with the emergence of alternative customer financing options.

  2. PV performance modeling workshop summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Cameron, Christopher P.

    2011-05-01

    During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been published on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.

  3. Robust Manufacturing Control

    CERN Document Server

    2013-01-01

    This contributed volume collects research papers, presented at the CIRP Sponsored Conference Robust Manufacturing Control: Innovative and Interdisciplinary Approaches for Global Networks (RoMaC 2012, Jacobs University, Bremen, Germany, June 18th-20th 2012). These research papers present the latest developments and new ideas focusing on robust manufacturing control for global networks. Today, Global Production Networks (i.e. the nexus of interconnected material and information flows through which products and services are manufactured, assembled and distributed) are confronted with and expected to adapt to: sudden and unpredictable large-scale changes of important parameters which are occurring more and more frequently, event propagation in networks with high degree of interconnectivity which leads to unforeseen fluctuations, and non-equilibrium states which increasingly characterize daily business. These multi-scale changes deeply influence logistic target achievement and call for robust planning and control ...

  4. Investigation of indirect benefits of PV rooftop in Thailand

    Science.gov (United States)

    Khumkrong, T.; Chuangchote, S.; Chenvidhya, D.; Kirtikara, K.

    2017-05-01

    Other than electricity generation, which is the direct benefit of PV rooftop, cooling load reduction due to PV shading is a benefit impact in the uses of PV rooftop. This report is a study of those indirect benefits of PV rooftop. Relation of shading of PV modules and reduction of cooling load was studied in a real testing cite at the office building of CES Solar Cell Testing Center (CSSC). Several data, i.e. solar radiation, rooftop temperatures before/after PV-panel installation, and electricity consumed by equipment, were monitored and collected. This data could be further estimated for cooling load via transient heat conduction approach.

  5. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance....... If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  6. Smart Manufacturing.

    Science.gov (United States)

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  7. PV Systems Reliability Final Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schindelholz, Eric John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yang, Benjamin Bing-Yeh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

  8. Quantifying Soiling Loss Directly From PV Yield

    Energy Technology Data Exchange (ETDEWEB)

    Deceglie, Michael G.; Micheli, Leonardo; Muller, Matthew

    2018-01-01

    Soiling of photovoltaic (PV) panels is typically quantified through the use of specialized sensors. Here, we describe and validate a method for estimating soiling loss experienced by PV systems directly from system yield without the need for precipitation data. The method, termed the stochastic rate and recovery (SRR) method, automatically detects soiling intervals in a dataset, then stochastically generates a sample of possible soiling profiles based on the observed characteristics of each interval. In this paper, we describe the method, validate it against soiling station measurements, and compare it with other PV-yield-based soiling estimation methods. The broader application of the SRR method will enable the fleet scale assessment of soiling loss to facilitate mitigation planning and risk assessment.

  9. POWERED LED LIGHTING SUPPLIED FROM PV CELLS

    Directory of Open Access Journals (Sweden)

    Tirshu M.

    2011-12-01

    Full Text Available The paper deals with practical realization of efficient lighting system based on LED’s of 80W total power mounted on corridor ceiling total length of which is 120m and substitutes existing traditional lighting system consisting of 29 lighting blocks with 4 fluorescent lamps each of them and summary power 2088W. Realized lighting system is supplied from two photovoltaic panels of power 170W. Generated energy by PV cells is accumulated in two accumulators of 75Ah capacity and from battery by means of specialized convertor is applied to lighting system. Additionally, paper present data measured by digital weather station (solar radiation and UV index, which is mounted near of PV cells and comparative analyze of solar energy with real energy generated by PV cells is done. Measured parameters by digital weather station are stored by computer in on-line mode.

  10. Terawatt Challenge for Thin-Film PV

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    2005-08-01

    The evolution of PV into one of the world's largest industries is not going to happen without major unforeseen problems. However, this study attempts to address the obvious ones, so that we can put aside the mythology of PV (for example, that it is only ''boutique power'' or that one must pave the world with it to be useful) and get on with changing the world's energy infrastructure. With the years of rapid market growth now under way in PV, the author is sure this will not be the last effort to understand the real potential and pitfalls of meeting the Challenge.

  11. Novel Methods to Determine Feeder Locational PV Hosting Capacity and PV Impact Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coogan, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seuss, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Often PV hosting capacity analysis is performed for a limited number of distribution feeders. For medium - voltage distribution feeders, previous results generally analyze less than 20 feeders, and then the results are extrapolated out to similar types of feeders. Previous hosting capacity research has often focused on determining a single value for the hosting capacity for the entire feeder, whereas this research expands previous hosting capacity work to investigate all the regions of the feeder that may allow many different hosting capacity values wit h an idea called locational hosting capacity (LHC)to determine the largest PV size that can be interconnected at different locations (buses) on the study feeders. This report discusses novel methods for analyzing PV interconnections with advanced simulati on methods. The focus is feeder and location - specific impacts of PV that determine the locational PV hosting capacity. Feeder PV impact signature are used to more precisely determine the local maximum hosting capacity of individual areas of the feeder. T he feeder signature provides improved interconnection screening with certain zones that show the risk of impact to the distribution feeder from PV interconnections.

  12. Photovoltaic industry manufacturing technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

    1998-08-01

    This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

  13. Seasonal energy storage - PV-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, J. [Neste Oy/NAPS (Finland)

    1998-10-01

    PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

  14. Updating Interconnection Screens for PV System Integration

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  15. MPPT algorithm for voltage controlled PV inverters

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Teodorescu, Remus; Liserre, Marco

    2008-01-01

    This paper presents a novel concept for an MPPT that can be used in case of a voltage controlled grid connected PV inverters. In case of single-phase systems, the 100 Hz ripple in the AC power is also present on the DC side. Depending on the DC link capacitor, this power fluctuation can be used...... to track the MPP of the PV array, using the information that at MPP the power oscillations are very small. In this way the algorithm can detect the fact that the current working point is at the MPP, for the current atmospheric conditions....

  16. International PV QA Task Force's Proposed Comparative Rating System for PV Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.; Kurtz, S.

    2014-10-01

    The International PV Quality Assurance Task Force is developing a rating system that provides comparative information about the relative durability of PV modules. Development of accelerated stress tests that can provide such comparative information is seen as a major step toward being able to predict PV module service life. This paper will provide details of the ongoing effort to determine the format of such an overall module rating system. The latest proposal is based on using three distinct climate zones as defined in IEC 60721-2-1 for two different mounting systems. Specific stresses beyond those used in the qualification tests are being developed for each of the selected climate zones.

  17. SOLVENT-BASED TO WATERBASED ADHESIVE-COATED SUBSTRATE RETROFIT - VOLUME IV: FILM AND LABEL MANUFACTURING CASE STUDY: FLEXCON COMPANY, INC.

    Science.gov (United States)

    This volume discusses a visit to a site operated by FLEXcon Company, Inc., a pressure-sensitive adhesive coater, to collect information on the pollution prevention opportunities and barriers associated with waterbased adhesives. The purpose of the visit to FLEXcon was to gather i...

  18. Serum prostate-specific antigen as a predictor of prostate volume in the community: the Krimpen study.

    NARCIS (Netherlands)

    Bohnen, A.M.; Groeneveld, F.P.; Bosch, J.L.H.R.

    2007-01-01

    OBJECTIVES: Serum prostate-specific antigen (PSA) is considered a proxy for prostate volume (PV). This study investigates which range of PSA values has the best utility in the determination of PV (4. Low PSA ranges (0-2 and 2.1-4.0) discriminate better for a PV of 30 cc (eg, in men with a PSA range

  19. Design optimization of grid-connected PV inverters

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2011-01-01

    The DC/AC inverters are the key elements in grid-connected PV energy production systems. In this paper, new design optimization techniques focused on transformerless (very high efficiency) PV inverters are proposed. They have been developed based on an analysis of the deficiencies of the current......, state-of-the-art PV inverters design technology, which limits the amount of PV energy supplied into the electric grid. The influences of the electric grid regulations and standards and the PV array operational characteristics on the design of grid-connected PV inverters have also been considered....... The simulation results verify that the proposed optimization techniques enable the maximization of the PV energy injected into the electric grid by the optimized PV installation....

  20. A Practical Irradiance Model for Bifacial PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; MacAlpine, Sara; Deline, Chris; Asgharzadeh, Amir; Toor, Fatima; Riley, Daniel; Stein, Joshua; Hansen, Clifford

    2017-06-21

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using ray tracing software.

  1. A Practical Irradiance Model for Bifacial PV Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; MacAlpine, Sara; Deline, Chris; Asgharzadeh, Amir; Toor, Fatima; Riley, Daniel; Stein, Joshua; Hansen, Clifford

    2017-06-15

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors (CFs) to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using the RADIANCE ray tracing program.

  2. PV-mooduli toodang suurfarmis / Teolan Tomson

    Index Scriptorium Estoniae

    Tomson, Teolan, 1932-

    2015-01-01

    Artiklis uuritakse PV-paneelide tootlikkuse langust nende vastastikuse varjutamise tõttu. Näidatakse, et Eesti oludes on soovitav kasutada paneelide madalaid kaldenurki ja suhtelist reavahet, mis ületab paneeli kõrguse pooleteistkordset väärtust

  3. Occurrence and Characterisation of Xanthomonas axonopodis pv ...

    African Journals Online (AJOL)

    To improve soybean (Glycine max L.) production in Benin, knowledge of bacterial diseases is needed. The objective of this study was to establish the disease occurrence and to identify Xanthomonas axonopodis pv. glycines, the causal agent of soybean bacterial pustule. Soybean bacterial pustule disease was studied ...

  4. Xanthan gum production by Xanthomonas campestris pv ...

    African Journals Online (AJOL)

    Cassava starch is a main renewable bio-resource with low price and mass production in Guangxi, China. It was used as carbon source in growing Xanthomonas campestris pv. campestris 8004 (Xcc 8004) for xanthan gum production in this study. The xanthan gum yield of gelatinized cassava starch was higher than that of ...

  5. Final Technical Report: PV Fault Detection Tool.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  6. TRNSYS HYBRID wind diesel PV simulator

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J. [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  7. Characterization of Xanthomonas axonopodis pv. phaseoli isolates

    NARCIS (Netherlands)

    Nunes, W.M.C.; Corazza, M.J.; De Souza, S.A.C.D.; Tsai, S.M.; Kuramae, E.E.

    2008-01-01

    A simple, quick and easy protocol was standardized for extraction of total DNA of the bacteria Xanthomonas axonopodis pv. phaseoli. The DNA obtained by this method had high quality and the quantity was enough for the Random Amplified Polymorphic DNA (RAPD) reactions with random primers, and

  8. Assessing the need for better forecasting and observability of pv

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2017-01-01

    In its review of the challenges and opportunities associated with massive deployment of solar PV generation, the Grid integration working group of the ETIP PV identified forecasting and observability as critical technologies for the planning and operation of the power system with large PV...... penetration. In this white paper ETIP PV set out to spell out in more details what features are needed from these technologies and what is the state of the art....

  9. On the Impact of Partial Shading on PV Output Power

    DEFF Research Database (Denmark)

    Sera, Dezso; Baghzouz, Yahia

    2008-01-01

    clarifies the mechanism of partial PV shading on a number of PV cells connected in series and/or parallel with and without bypass diodes. The analysis is presented in simple terms and can be useful to someone who wishes to determine the impact of some shading geometry on a PV system. The analysis...... is illustrated by measurements on a commercial 70 W panel, and a 14.4 kW PV array....

  10. Hawaii PV: 4. world conference on photovoltaic energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Pearsall, Nicola; Forbes, Ian [Northumbria Univ., Northumbria Photovoltaics Applications Centre (NPAC) (United Kingdom)

    2006-07-15

    A discussion of the technologies and topics on show at the conference under the headings: novel materials and devices; CIGS, II and IV and related thin film cells and technologies; concentrator cells and systems, III-V materials and devices; crystalline silicon solar cells and technologies; amorphous, nanocrystalline and thin film silicon; PV cells and systems for space; PV modules and system components; terrestrial PV systems; PV programmes, policies and economics; silicon concentrators and tracking; and markets (UK.) (author)

  11. National solar technology roadmap: Film-silicon PV

    Energy Technology Data Exchange (ETDEWEB)

    Keyes, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2007-06-01

    Silicon photovoltaic (PV) technologies are addressed in two different technology roadmaps: Film-Silicon PV and Wafer-Silicon PV. This Film-Silicon PV roadmap applies to all silicon-film technologies that rely on a supporting substrate such as glass, polymer, aluminum, stainless steel, or metallurgical-grade silicon. Such devices typically use amorphous, nanocrystalline, fine-grained polycrystalline, or epitaxial silicon layers that are 1–20 μm thick.

  12. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  13. Parameter extraction and estimation based on the PV panel outdoor ...

    African Journals Online (AJOL)

    This work presents a novel approach to predict the voltage-current (V-I) characteristics of a PV panel under varying weather conditions to estimate the PV parameters. Outdoor performance of the PV module (AP-PM-15) was carried out for several times. The experimental data obtained are validated and compared with the ...

  14. parameter extraction and estimation based on the pv panel outdoor ...

    African Journals Online (AJOL)

    userpc

    PV panel under varying weather conditions to estimate the PV parameters. Outdoor ... panel parameters. The majority of the methods are based on measurements of the I-V characteristic of the panel (Jack et al., 2015). The main aspect of PV simulation that requires attention ... incident solar irradiance, the cell temperature,.

  15. Impedance characterization of PV modules in outdoor conditions

    DEFF Research Database (Denmark)

    Oprea, Matei-lon; Thorsteinsson, Sune; Spataru, Sergiu

    2016-01-01

    Impedance spectroscopy (IS) has been used for laboratory characterizations of photovoltaic (PV) technologies under well controlled conditions. This work applies IS for outdoor characterization of PV panels, in order to observe the effect of irradiance (G) and temperature (T) on the PV module...

  16. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  17. High Resolution PV Power Modeling for Distribution Circuit Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  18. PV Perspectives On The Titan Atmospheric Circulation

    Science.gov (United States)

    Allison, M.

    Potential vorticity (or PV) has become an important tool for the conceptual model- ing of atmospheric/oceanic circulations and promises to be an important element of the diagnostic study of Titan. Recent applications of PV thinking to numerical simu- lations and observations of several extraterrestrial atmospheres have encouraged the prospects for a unified understanding of planetary circulations encompassing a wide range of rotation and stratification parameters. The accumulated evidence suggests that zonal-mean winds and temperatures at the jet levels approximate a state of zero potential vorticity within the bounding low-latitudes of anticyclonic flow, with the ex- terior cyclonic regions conforming to a PV state that is well mixed with respect to its polar limit [e.g. Allison et al., 1994; Allison, 2000]. The forthcoming reconnais- sance of Titan's atmosphere by the Cassini-Huygens mission will likely represent the greatest leap in the science of planetary meteorology for the coming decade, and pro- vide a unique test of the application of PV thinking to a global cyclostrophic regime, possibly in combination with a geostrophic sub-layer. The visualization of potential vorticity maps of the eight scale-height depth of atmosphere between Titan's surface and its visually opaque haze layer may be facilitated with an appropriately modeified but informationally equivalent formulation of the Ertel PV which removes the expo- nential variation with altitude of its inverse density factor [cf. Lait, 1994]. Specific examples of these kinds of maps and sections will be presented, as constrained by available observations, with a view to their eventual definition by anticipated in situ vertical profiles and orbital global maps from Cassini-Huygens.

  19. Computer Modelling and Simulation of Solar PV Array Characteristics

    Science.gov (United States)

    Gautam, Nalin Kumar

    2003-02-01

    the mismatches due to manufacturer's tolerances in cell characteristics, shadowing, soiling and aging of solar cells. The current-voltage curves and the values of energy yield characterized by maximum-power points and fill factors for these arrays were also obtained. Two different mathematical models, one for smaller size arrays and the other for the larger size arrays, were developed. The first model takes account of the partial differential equations with boundary value conditions, whereas the second one involves the simple linear programming concept. Based on the initial information on the values of short-circuit current and open-circuit voltage of thirty-six single-crystalline silicon solar cells provided by a manufacturer, the values of these parameters for up to 14,400 solar cells were generated randomly. Thus, the investigations were done for three different cases of array sizes, i.e., (6 x 6), (36 x 8) and (720 x 20), for each configuration. The operational lifetimes of different interconnected solar PV arrays and the improvement in their life properties through different interconnection and modularized configurations were investigated using a reliability-index model. Under normal conditions, the efficiency of a solar cell degrades in an exponential manner, and its operational life above a lowest admissible efficiency may be considered as the upper bound of its lifetime. Under field conditions, the solar cell may fail any time due to environmental stresses, or it may function up to the end of its expected lifetime. In view of this, the lifetime of a solar cell in an array was represented by an exponentially distributed random variable. At any instant of time t, this random variable was considered to have two states: (i) the cell functioned till time t, or (ii) the cell failed within time t. It was considered that the functioning of the solar cell included its operation at an efficiency decaying with time under normal conditions. It was assumed that the

  20. PV Obelisk - Information system with photovoltaics; PV-Obelisk Orientierungssystem mit Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, D.; Rasmussen, J.

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the development of an information system powered by a photovoltaic (PV) array. As an innovative approach, the 'PV-Obelisk' project is the combination of PV with a multi-functional pillar made of natural stone in an aesthetic way. The PV modules serve both as a power supply and as a design element. Two initial prototypes led the way to a third, optimised consumer configuration that was planned to guarantee maximum user frequency. Test operation in front of the 'Heidiland' motor way restaurant confirmed the market analyses made and delivered the expected results. The product, whose three LCD displays are updated via a mobile telephony-based text-message system, proved its technical reliability and showed a high user frequency. Because of the high overall energy consumption, PV power can only partially contribute to the energy supply needed. Various compromises in the technical and aesthetic areas are discussed that were made for the sake of product acceptance in the market. The range of application areas for such a 'PV Obelisk' are discussed and the need for early co-ordination with urban planners is stressed.

  1. Battery and charge controller evaluations in small stand-alone PV systems

    Science.gov (United States)

    Woodworth, J. R.; Thomas, M. G.; Stevens, J. W.; Dunlop, J. L.; Swamy, M. R.; Demetrius, L.; Harrington, S. R.

    1994-12-01

    We report the results of two separate long-term tests of batteries and charge controllers in small stand-alone PV systems. In these experiments, seven complete systems were tested for two years at each of two locations: Sandia National Laboratories in Albuquerque and the Florida Solar Energy Center in Cape Canaveral, Florida. Each system contained a PV array, flooded-lead-acid battery, a charge controller and a resistive load. Performance of the systems was strongly influenced by the difference in solar irradiance at the two sites, with some batteries at Sandia exceeding manufacturer's predictions for cycle life. System performance was strongly correlated with regulation reconnect voltage (R(sup 2) correlation coefficient = 0.95) but only weakly correlated with regulation voltage. We will also discuss details of system performance, battery lifetime and battery water consumption.

  2. Large-area, high-intensity PV arrays for systems using dish concentrating optics

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.S.; Duda, A.; Zweibel, K.; Coutts, T.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    In this paper, the authors report on efforts to fabricate monolithic interconnected modules (MIMs) using III-V semiconductors with bandgaps appropriate for the terrestrial solar spectrum. The small size of the component cells comprising the MIM allows for operation at extremely high flux densities and relaxes the requirement for a small spot size to be generated by the optics. This makes possible a PV option for the large dish concentrator systems that have been developed by the solar thermal community for use with Stirling engines. Additionally, the highly effective back-surface reflector integrated into the MIM design is an effective tool for thermal management of the array. Development of this technology would radically alter the projections for PV manufacturing capacity because of the potential for extremely high power generation per unit area of semiconductor material.

  3. Influence of inclusion on nucleation of silicon casting for photovoltaic (PV) application

    Science.gov (United States)

    Wu, Bei; Clark, Roger

    2011-03-01

    The photovoltaic (PV) industry has grown rapidly in recent years. The predominant PV material, multicrystalline silicon (mc-Si), is manufactured by relatively low-cost casting methods, especially directional solidification. One factor affecting the quality of cast silicon and the resultant mc-Si solar cells is Si3N4 and SiC precipitates and inclusions. These inclusions cause crystal defects, distorted grain structure, decreased wafer yield and quality and even electrical shunts. A Computational Fluid Dynamic (CFD) Simulation tool has been applied to simulate temperatures and flow fields during growth and how they will affect the grain structure under the influence of inclusions. The Cellular Automata Finite Element (CAFE) modeling technique is used to simulate silicon grain growth.

  4. Micro manufacturing techniques and applications

    CERN Document Server

    Du, Ruxu; Li, Zifu

    2013-01-01

    Micro/meso-scale manufacturing has been developed in research fields of machining, forming, materials and others, but its potential to industries are yet to be fully realized. The theme of the current volume was to build a bridge joining academic research and industrial needs in micro manufacturing. Among the 12 papers selected for publication are three keynote addresses onmicro and desktop factories for micro/meso-scale manufacturing applicationsand future visions, tissue cutting mechanics and applications for needlecore biopsy and guidance, and micro-texturing onto amorphous carbonmaterials

  5. PV Working with Industry, 2nd Quarter, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.; Moon, S.

    2000-06-29

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The Second Quarter, 2000, issue is titled ``Our Shared PV Future''. It contains a review of several important PV-related meetings held in the prior three months: the NCPV Program Review, the 16 European PV Conference, and year-2000 Earth Day activities in Denver, CO. The editorialist is Paul Maycock, Publisher of PV News.

  6. Remote and Centralized Monitoring of PV Power Plants

    DEFF Research Database (Denmark)

    Kopacz, Csaba; Spataru, Sergiu; Sera, Dezso

    2014-01-01

    the inverters within each PV plant. The monitoring software stores the PV measurements in a data warehouse optimized for managing and data mining large amounts of data, from where it can be later visualized, analyzed and exported. By combining PV production measurements data with I-V curve measurements......This paper presents the concept and operating principles of a low-cost and flexible monitoring system for PV plants. Compared to classical solutions which can require dedicated hardware and/or specialized data logging systems, the monitoring system we propose allows parallel monitoring of PV plants...

  7. Voltage rise mitigation for solar PV integration at LV grids

    DEFF Research Database (Denmark)

    Yang, Guangya; Marra, Francesco; Juamperez Goñi, Miguel Angel

    2015-01-01

    Solar energy from photovoltaic (PV) is among the fastest developing renewable energy systems worldwide. Driven by governmental subsidies and technological development, Europe has seen a fast expansion of solar PV in the last few years. Among the installed PV plants, most of them are situated...... at the distribution systems and bring various operational challenges such as power quality and power flow management. The paper discusses the modelling requirements for PV system integration studies, as well as the possible techniques for voltage rise mitigation at low voltage (LV) grids for increasing PV penetration...

  8. A Practical Optimization Method for Designing Large PV Plants

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Koutroulis, E.; Eyigun, S.

    2011-01-01

    Nowadays Photovoltaic (PV) plants have multi MW sizes, the biggest plants reaching tens of MW of capacity. Such large-scale PV plants are made up of several thousands of PV panels, each panel being in the range of 150-350W. This means that the design of a Large PV power plant is a big challenge...... and configuring such a plant should be implemented taking into consideration not only the cost of the installation, but also the Annual Energy Production, the Performance Ratio and the Levelized Cost Of Energy. In this paper, an algorithm is presented including the most important models of the PV system...

  9. On Distributed PV Hosting Capacity Estimation, Sensitivity Study, and Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fei; Mather, Barry

    2017-07-01

    This paper first studies the estimated distributed PV hosting capacities of seventeen utility distribution feeders using the Monte Carlo simulation based stochastic analysis, and then analyzes the sensitivity of PV hosting capacity to both feeder and photovoltaic system characteristics. Furthermore, an active distribution network management approach is proposed to maximize PV hosting capacity by optimally switching capacitors, adjusting voltage regulator taps, managing controllable branch switches and controlling smart PV inverters. The approach is formulated as a mixed-integer nonlinear optimization problem and a genetic algorithm is developed to obtain the solution. Multiple simulation cases are studied and the effectiveness of the proposed approach on increasing PV hosting capacity is demonstrated.

  10. Technologies to Increase PV Hosting Capacity in Distribution Feeders: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fei; Mather, Barry; Gotseff, Peter

    2016-08-01

    This paper studies the distributed photovoltaic (PV) hosting capacity in distribution feeders by using the stochastic analysis approach. Multiple scenario simulations are conducted to analyze several factors that affect PV hosting capacity, including the existence of voltage regulator, PV location, the power factor of PV inverter and Volt/VAR control. Based on the conclusions obtained from simulation results, three approaches are then proposed to increase distributed PV hosting capacity, which can be formulated as the optimization problem to obtain the optimal solution. All technologies investigated in this paper utilize only existing assets in the feeder and therefore are implementable for a low cost. Additionally, the tool developed for these studies is described.

  11. Bottom-Up Cost Analysis of a High Concentration PV Module; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, K.; Woodhouse, M.; Lee, H.; Smestad, G.

    2015-04-13

    We present a bottom-up model of III-V multi-junction cells, as well as a high concentration PV (HCPV) module. We calculate $0.65/Wp(DC) manufacturing costs for our model HCPV module design with today’s capabilities, and find that reducing cell costs and increasing module efficiency offer the promising pathways for future cost reductions. Cell costs could be significantly reduced via an increase in manufacturing scale, substrate reuse, and improved manufacturing yields. We also identify several other significant drivers of HCPV module costs, including the Fresnel lens primary optic, module housing, thermal management, and the receiver board. These costs could potentially be lowered by employing innovative module designs.

  12. Optimal Design of Modern Transformerless PV Inverter Topologies

    DEFF Research Database (Denmark)

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    The design optimization of H5, H6, neutral point clamped, active-neutral point clamped, and conergy-NPC transformerless photovoltaic (PV) inverters is presented in this paper. The components reliability in terms of the corresponding malfunctions, affecting the PV inverter maintenance cost during...... the operational lifetime period of the PV installation, is also considered in the optimization process. According to the results of the proposed design method, different optimal values of the PV inverter design variables are derived for each PV inverter topology and installation site. The H5, H6, neutral point...... clamped, active-neutral point clamped and conergy-NPC PV inverters designed using the proposed optimization process feature lower levelized cost of generated electricity and lifetime cost, longer mean time between failures and inject more PV-generated energy into the electric grid than their nonoptimized...

  13. Solight - Investigation on lightweight PV-Module mountings for gravel roofs; Solight - Untersuchung Leicht-Modulaufstaenderungen fuer Kiesflachdaecher

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Ch.; Frei, R.

    2002-07-01

    The additional load of a photovoltaic (PV) plant on a flat roof represents a problem for certain types of buildings what regards the static reserves. Such roofs cannot be used today to produce solar power with the existing mounting systems for solar PV modules. A goal of the project was to find a way to secure the possibility of using flat roofs with critical static reserves as locations for PV plants. The main innovation of the development of the new mounting system Solight consists in the compensation of the usually needed additional weight of the mounting system - to guarantee the heavy wind loads according to the Swiss standard 'SIA 160/1' - by the already existing dead load of the roof. This compensation allows a minimisation of the additional weight brought on the roof by the mounting system by a factor 3 to 5. The PV module holding structure itself should have almost no weight, so the additional weight brought onto the roof would remain minimal. The main goal - to make the large number of flat roofs with critical static reserves accessible for the equipment with PV plants - was reached and at the same time the resources consumption and the manufacturing costs of the mounting systems were reduced. (author)

  14. Apparel Manufacture

    Science.gov (United States)

    1995-01-01

    Marshall Space Flight Center teamed with the University of Alabama in Huntsville (UAH) in 1989 on a program involving development of advanced simulation software. Concurrently, the State of Alabama chartered UAH to conduct a technology advancement program in support of the state's apparel manufacturers. In 1992, under contract to Marshall, UAH developed an apparel-specific software package that allows manufacturers to design and analyze modules without making an actual investment -- it functions on ordinary PC equipment. By 1995, Marshall had responded to requests for the package from more than 400 companies in 36 states; some of which reported savings up to $2 million. The National Garment Company of Missouri, for example, uses the system to design and balance a modular line before committing to expensive hardware; for setting up sewing lines; and for determining the composition of a new team.

  15. Materials Testing for PV Module Encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.; Terwilliger, K.; Glick, S.; Pern, J.; McMahon, T.

    2003-05-01

    Important physical properties of materials used in PV module packaging are presented. High-moisture-barrier, high-resistivity, adhesion-promoting coatings on polyethyl-ene terephthalate (PET) films have been fabricated and characterized for use in PV module application and com-pared to standard polymer backsheet materials. Ethylene vinyl acetate (EVA) and an encapsulant replacement for EVA are studied for their water vapor transmission rate (WVTR) and adhesion properties. WVTR, at test conditions up to 85C/100% relative humidity (RH), and adhesion val-ues are measured before and after filtered xenon arc lamp ultraviolet (UV) exposure and damp heat exposure at 85C/85% RH. Water ingress is quantified by weight gain and embedded humidity sensors.

  16. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  17. Development of a dispatchable PV peak shaving system. Final report on PV:BONUS Phase 2 activities

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, W.D. [Conectiv, Inc., Wilmington, DE (United States); Nigro, R.M. [Applied Energy Group, Inc., Hauppauge, NY (United States)

    1999-01-20

    In July 1993, the Delmarva Power and Light Company (now Conectiv, Inc.) was awarded a contract for the development of a Dispatchable Photovoltaic Peak Shaving System under the US Department of Energy PV:BONUS Program. The rationale for the dispatchable PV peak shaving system is based on the coincidence between the solar resource and the electrical load in question. Where poor coincidence exists, a PV array by itself does little to offset peak demands. However, with the addition of a relatively small amount of energy storage, the energy from the PV array can be managed and the value of the PV system increases substantially. In Phase 2, Delmarva Power continued the refinement of the system deployed in Phase 1. Four additional dispatchable PV peak shaving systems were installed for extended testing and evaluation at sites in Delaware, Maryland, Wisconsin and North Carolina. A second type of system that can be used to provide back-up power as well as peak shaving was also developed in Phase 2. This PV-UPS system used a packaging approach nearly identical to the PV peak shaving system, although there were significant differences in the design of the power electronics and control systems. Conceptually, the PV-UPS system builds upon the idea of adding value to PV systems by increasing functionality. A prototype of the PV-UPS system was installed in Delaware for evaluation near the end of the contract period.

  18. An Analysis of Open World PvP in LOTRO's PvMP as a Case Study for PvP Games

    Directory of Open Access Journals (Sweden)

    Toh Weimin

    2014-11-01

    Full Text Available This article focuses on the analysis of emergent gameplay, based on a case study of the author's subjective gameplay experience of Player versus Monster Player (PvMP in The Lord of the Rings Online (LOTRO. The argument presented here is that although there is a core system of Player versus Player (PvP which LOTRO shares with other online games, each type of online game has a specific kind of PvP system which attracts players to engage in the gameplay. For instance, the open world sandbox type of PvP attracts certain players to play in LOTRO's PvMP. One of the main aims of this study is thus to investigate some of the core systems of PvP gameplay in open world sandbox PvP. In this article, LOTRO is shown to offer unique opportunities for studying emergent gameplay in open world games, with particular relevance to PvP studies. Two of the core systems of PvP discussed include the design of the simple gameplay rules to support emergent gameplay, and the community's attitudes towards player's behaviours. The types of emergent gameplay discussed include free play versus negotiated fair play, the players' utilisation of strategies in open world PvP to support collaborative and competitive gameplay, and the changing dynamics of open ended gameplay. It is hoped that the analysis provided in this article would form the­ basis of future work on a more general framework for understanding PvP in other online games.

  19. Energy from the desert very large scale PV power : state of the art and into the future

    CERN Document Server

    Komoto, Keiichi; Cunow, Edwin; Megherbi, Karim; Faiman, David; van der Vleuten, Peter

    2013-01-01

    The fourth volume in the established Energy from the Desert series examines and evaluates the potential and feasibility of Very Large Scale Photovoltaic Power Generation (VLS-PV) systems, which have capacities ranging from several megawatts to gigawatts, and to develop practical project proposals toward implementing the VLS-PV systems in the future. It comprehensively analyses all major issues involved in such large scale applications, based on the latest scientific and technological developments by means of close international co-operation with experts from different countries. From t

  20. Integrating Solar PV in Utility System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  1. Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T) system against conventional photovoltaic (PV) system

    OpenAIRE

    Xu, Peng; Zhang, Xingxing; Shen, Jingchun; Zhao, Xudong; He, Wei; Li, Deying

    2015-01-01

    Photovoltaic (PV) semiconductor degrades in performance due to temperature rise. A super thin-conductive thermal absorber is therefore developed to regulate the PV working temperature by retrofitting the existing PV panel into the photovoltaic/thermal (PV/T) panel. This article presented the parallel comparative investigation of the two different systems through both laboratory and field experiments. The laboratory evaluation consisted of one PV panel and one PV/T panel respectively while the...

  2. LEAN Manufacturing

    DEFF Research Database (Denmark)

    Bilberg, Arne

      As part of an employment as Technology Architect at the company Linak in combination with research at the University of Southern Denmark, this paper will present results from a strategy process where Lean has been pointed out as being a very strategic element in the Linak Production System....... The mission with the strategy is to obtain competitive production in Denmark and in Western Europe based on the right combination of manufacturing principles, motivated and trained employees, level of automation, and cooperation with suppliers and customers worldwide. The strategy has resulted in technical...

  3. Flexible automated manufacturing for SMEs

    DEFF Research Database (Denmark)

    Grube Hansen, David; Bilberg, Arne; Madsen, Erik Skov

    SMEs are in general highly flexible and agile in order to accommodate the customer demands in the paradigm of High Mix-Low Volume manufacturing. The flexibility and agility have mainly been enabled by manual labor, but as we are entering the technology and data driven fourth industrial revolution...

  4. Reliability assessment of single-phase grid-connected PV microinverters considering mission profile and uncertainties

    DEFF Research Database (Denmark)

    Zare, Mohammad Hadi; Mohamadian, Mustafa; Wang, Huai

    2017-01-01

    Microinverters usually connect a PV panel to a Single-phase power grid. In such system, the input power is constant while the output power oscillates twice the line frequency. Thus, the input and output power differences should be stored in a storage component, which is typically an electrolytic...... can influence the microinverter lifetime. This paper investigates the microinverter reliability according to mission profile where it is installed. To get more accurate results, uncertainties in both lifetime model and manufacturing process are considered. The effect of ambient temperature and solar...

  5. Results of 3 years' PV module weathering in various open-air climates

    Science.gov (United States)

    Bogdanski, N.; Herrmann, W.; Reil, F.; Köhl, M.; Weiss, K.-A.; Heck, M.

    2010-08-01

    During the past 3 years crystalline PV modules fabricated by various German manufacturers have been exposed to outdoor conditions in four different climates: warm moderate climate (Cologne, Germany), tropical climate (Serpong, Indonesia), cold high mountain climate (Zugspitze, Germany; arid conditions (Sede Boqer, Israel). Annual inspections and measurements examined the degradation of these modules with respect to electrical performance, mechanical condition and visible alterations. We give a detailed report of the results after 3 years of weathering, along with the outlook for an extension to new worldwide test locations and for the enhancement of measurement options for long-term characterizations.

  6. Research Leading to High Throughput Processing of Thin-Film CdTe PV Module: Phase I Annual Report, October 2003 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R. C.; Meyers, P. V.

    2004-02-01

    Work under this subcontract contributes to the overall manufacturing operation. During Phase I, average module efficiency on the line was improved from 7.1% to 7.9%, due primarily to increased photocurrent resulting from a decrease in CdS thickness. At the same time, production volume for commercial sale increased from 1.5 to 2.5 MW/yr. First Solar is committed to commercializing CdTe-based thin-film photovoltaics. This commercialization effort includes a major addition of floor space and equipment, as well as process improvements to achieve higher efficiency and greater durability. This report presents the results of Phase I of the subcontract entitled''Research Leading to High Throughput Processing of Thin-Film CdTe PV Modules.'' The subcontract supports several important aspects needed to begin high-volume manufacturing, including further development of the semiconductor deposition reactor, advancement of accelerated life testing methods and understanding, and improvements to th e environmental, health, and safety programs. Progress in the development of the semiconductor deposition reactor was made in several areas. First, a new style of vapor transport deposition distributor with simpler operational behavior and the potential for improved cross-web uniformity was demonstrated. Second, an improved CdS feed system that will improve down-web uniformity was developed. Third, the core of a numerical model of fluid and heat flow within the distributor was developed, including flow in a 3-component gas system at high temperature and low pressure and particle sublimation.

  7. Closed-Loop Supply Chain Planning Model for a Photovoltaic System Manufacturer with Internal and External Recycling

    Directory of Open Access Journals (Sweden)

    Songi Kim

    2016-06-01

    Full Text Available The photovoltaic (PV generation system has been widely used since the late 1990s. Considering its lifespan of 20 to 30 years, many end-of-life systems will emerge in the near future. This is why recycling PV systems will be beneficial (and may even be detrimental to both the environment and the economy. Through the recycling process, hazardous by-product substances such as cadmium and lead can be treated properly. Moreover, valuable materials including indium, gallium, and tellurium can be extracted and reused for manufacturing purposes. Even though many studies have dealt with issues related to the PV system and its recycling policy, they lack significant factors regarding the recycling policy. This study analyzes and compares three real cases of manufacturer’s recycling policy, including Deutsche Solar, First Solar, and PV Cycle, from the perspective of a closed-loop supply chain. Two mathematical models are developed to help PV system manufacturers establish supply chain planning and choose suitable recycling policies in consideration of different circumstances. Furthermore, an experimental example of these models will be used to validate and conclude the significance of the models. The results from this study will show that recycling CdTe PV systems is much more efficient than recycling c-Si PV systems and that, in the case of c-Si, it is better to outsource recycling end-of-life systems and dispose of all manufacturing scrap.

  8. The Value of Transparency in Distributed Solar PV Markets

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-09

    Distributed solar photovoltaic (PV) markets are relatively non-transparent: PV price and product information is not readily available, searching for this information is costly (in terms of time and effort), and customers are mostly unfamiliar with the new technology. Quote aggregation, where third-party companies collect PV quotes on behalf of customers, may be one way to increase PV market transparency. In this paper, quote aggregation data are analyzed to study the value of transparency for distributed solar PV markets. The results suggest that easier access to more quotes results in lower prices. We find that installers tend to offer lower prices in more competitive market environments. We supplement the empirical analysis with key findings from interviews of residential PV installers.

  9. Impact of Rooftop Solar PV on Residential Distribution Network

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    Increased environmental awareness in recent years has encouraged rapid growth of renewable energy sources especially solar PV and wind. Among them, small scale solar PV has been gaining more momentum especially at residential level. Even today moderate penetration of grid tied rooftop solar PV has...... become reality in many countries. In spite of various benefits, higher penetration of rooftop PVs might come up with number of detrimental effects, with power quality and overcurrent protection being the major ones. Therefore, it is reasonable to quantify both drawback and benefits of rooftop PV...... to foresee the potential issues of high PV penetration and to facilitate effective solutions for grid reinforcement and grid management. Unlike many research focusing on impact analysis with PV at utility or commercial scale, this research make comprehensive analysis with a detailed modeling of a residential...

  10. Degradation evaluation of PV modules operating under Northern Saharan environment in Algeria

    Science.gov (United States)

    Charrouf, Omar; Betka, Achour; hadef, Hefaidh; Djebabra, Mebarek; Tiar, Mourad

    2017-02-01

    The degradation of Monocrystalline-silicone solar PV modules in Biskra, semi-arid climate, at the north of the Algerian Sahara was studied. As first inspection in this region, the electrical parameters of two PV modules A and B fielded during two different periods, ten and five years respectively, are measured under real climatic conditions and their I-V characteristics were fitted. The standardized I-V characteristics was performed using translation method and compared to their initial I-V characteristics at standard test conditions(STC) given by the manufacturer. The main important parameters of the studied PV modules: short-circuit current Ish, open circuit voltage Voc and maximum power Pmax are evaluated and then compared to the STC parameters to estimate their degradation and degradation rates according to their exposure duration. Moreover, other possible defects are explored by visual inspection method. The results show degradation rates of maximum power nearing 1.7 %/year and 3.6%/year for the ten and five operating years.

  11. NREL PV Working With Industry Newsletter: 4th Quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.; Poole, L.

    2000-03-03

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The Fourth Quarter, 1999 issue, titled ''Knowledge is PV Power'' focuses on the contribution of the university-based subcontractors to the PV Program. The editorialist is Robert Birkmire, Director of the Institute of Energy Conversion, which is affiliated with the University of Delaware.

  12. PV succeeds because 'customers love it'

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, John

    2000-06-01

    The opportunities for customers of the restructured US power supply industry to own grid-connected photovoltaic (PV) installations are outlined in this article. Customer requirements, PV products, successful public relations, organising for success, the delivery of the product, and the importance of siting and design are discussed. The contracting procedures, approvals of permits, the PV National Electric Code, equipment testing, customer follow-up, maintenance and performance are considered.

  13. Self-control system in storage unit of PV plants

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shaban, Saad; Mohmoud, Ali [Hadhramout Univ. of Science and Technology, Faculty of Engineering, Mukalla (Yemen)

    2000-04-01

    A new system for self-controlling of storage batteries being charged by PV plants has been developed. This provides enhanced system reliability, lower system cost, and simpler operation for the user. In this system, the only requirement is to design and select PV panels so that their voltage-sensitive region (on the I-V curve) coincides with that required for a simpler remote PV plant and for long periods. (Author)

  14. Manufacturing processes 2 grinding, honing, lapping

    CERN Document Server

    Klocke, Fritz

    2009-01-01

    Presents a view of the most common machining and non-machining manufacturing processes. This volume describes the characteristics of abrasive tools, their design and manufacturing, followed by the fundamentals of grinding fluids. It also discusses grinding of different materials (steel, cast iron, hard and brittle materials, nickel and titanium).

  15. PV-MCT working standard radiometer

    Science.gov (United States)

    Eppeldauer, George P.; Podobedov, V. B.

    2012-06-01

    Sensitive infrared working-standard detectors with large active area are needed to extend the signal dynamic range of the National Institute of Standards and Technology (NIST) pyroelectric transfer-standards used for infrared spectral power responsivity calibrations. Increased sensitivity is especially important for irradiance mode responsivity measurements. The noise equivalent power (NEP) of the NIST used pyroelectric transfer-standards is about 8 nW/Hz1/2, equal to a D*= 5.5 x 107 cm Hz1/2/W. A large-area photovoltaic HgCdTe (PV-MCT) detector was custom made for the 2.5 μm to 11 μm wavelength range using a 4-stage thermoelectric cooler. At least an order of magnitude lower NEP was expected than that of the pyroelectric transfer-standards to measure irradiance. The large detector area was produced with multiple p-n junctions. The periodical, multiple-junction structure produced a spatial non-uniformity in the detector response. The PV-MCT radiometer was characterized for spatial non-uniformity of response using different incident beam sizes to evaluate the uncertainty component caused by the spatial non-uniformity. The output voltage noise and also the current and voltage responsivities were evaluated at different signal gains and frequencies. The output voltage noise was decreased and the voltage responsivity was increased to lower the NEP of the radiometer. The uncertainty of the spectral power responsivity measurements was evaluated. It is recommended to use a bootstrap type trans-impedance amplifier along with a cold field-of-view limiter to improve the NEP of the PV-MCT radiometer.

  16. PV window - Development and demonstrations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haugaard, P.

    2011-05-15

    Using the results from the EU project RenewTransnet, which focused on the development of a pane with integrated solar cells, the goal of this project is to develop these principles into a window solution. This window solution is targeted to Danish building tradition and architecture. It is expected that an elegant PV-window solution for both new and retrofit buildings is developed during this project, and which appearance can be customized to each building. Based on results from a related projects carried out by Gaia Solar, the window solution will have the potential of being approximately 30% cheaper than similar products on the market. In this project this price reduction is the objective of the development of a window solution. The project team has succeeded in developing a 2-layer PV-window with glass / glass lamination with EVA as foil, which is 35% cheaper than similar products on the market. Since the price for the frame-profile does not differ significantly at market level, the price comparison is made on the basis of the developed PV-pane. The objective of 30 % price reduction in relation to similar products on the market is met. A special production process to the making glass/glass lamination with EVA as foil has been developed, in which a frame is put around the module which intends both to remove the unwanted tension along the edges, and to prevent the significant spillage of EVA from the module under pressure and prevent the invasive bubbles along the edge of module. Since the developed production method for making glass/glass modules with EVA is simple, a further cost reduction will primarily be in a reduction of the price of the cell. The project process has resulted in the development of a product, which due to continuous restrictions in the building regulations, will be very attractive in future buildings. (LN)

  17. $P-V$ Criticality In the Extended Phase Space of Charged Accelerating AdS Black Holes

    CERN Document Server

    Liu, Hang

    2016-01-01

    In this paper, we investigate the $P-V$ criticality and phase transition of charged accelerating AdS black holes in the extended thermodynamic phase space in analogy between black hole system and Van der Waals liquid-gas system, where the cosmological constant $\\Lambda$ is treated as a thermodynamical variable interpreted as dynamic pressure and its conjugate quantity is the thermodynamic volume of the black holes. When the electric charge vanishes, we find that no $P-V$ criticality will appear but the Hawking-Page like phase transition will be present, just as what Schwarzschild-AdS black holes behave like. For the charged case, the $P-V$ criticality appears and the accelerating black holes will undergo a small black hole/large phase transition under the condition that the acceleration parameter $A$ and the horizon radius $r_h$ meet a certain simple relation $A r_h=a$, where $a$ is a constant in our discussion. To make $P-V$ criticality appear, there exists an upper bounds for constant $a$. When $P-V$ critic...

  18. Ultra accelerated testing of PV module components

    Science.gov (United States)

    Pitts, J. R.; King, D. E.; Bingham, C.; Czanderna, A. W.

    1999-03-01

    Using concentrated natural sunlight at the NREL High Flux Solar Furnace, we have exposed several materials to acceleration factors of up to 400 times the normal outdoor UV exposure dose. This accelerated rate allows the exposure of materials such that a year of outdoor exposure can be simulated in about 5 hours. We have studied the solarization of cerium containing glass, the degradation of ethylene vinyl acetate laminated between borosilicate glass, and the yellowing of standard polystyrene test coupons. The first two candidates are of interest to the photovoltaics (PV) program, and the last candidate material is a widely used dosimeter for ultra violet (UV) exposure in accelerated weathering chambers.

  19. Ultra Accelerated Testing of PV Module Components

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, J. R.; King, D. E.; Bingham, C.; Czanderna, A. W.

    1998-10-28

    Using concentrated natural sunlight at the NREL High Flux Solar Furnace, we have exposed several materials to acceleration factors of up to 400 times the normal outdoor UV exposure dose. This accelerated rate allows the exposure of materials such that a year of outdoor exposure can be simulated in about 5 hours. We have studied the solarization of cerium containing glass, the degradation of ethylene vinyl acetate laminated between borosilicate glass, and the yellowing of standard polystyrene test coupons. The first two candidates are of interest to the photovoltaics (PV) program, and the last candidate material is a widely used dosimeter for ultra violet (UV) exposure in accelerated weathering chambers

  20. Evaluation of a solar PV tracking prototype on tropic regions

    Directory of Open Access Journals (Sweden)

    Cristian Manuel Agudelo Restrepo

    2016-06-01

    Full Text Available Nowadays climate change is a big concern for human society, due to our high dependence on fossil fuels. A great amount of research effort is focused in solar photovoltaic (PV systems, particularly on the improvement of the conversion efficiency. One technique commonly used is the tracking systems, where the solar PV moves with the sun in order to capture the maximum direct solar radiation. This paper presents a solar PV single-axis tracking system prototype, and a comparison regarding its energy conversion efficiency with a fixed solar PV installation. The system was tested in Fusagasugá, Colombia, which is located in the tropics region.

  1. Overview of Recent Grid Codes for PV Power Integration

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2012-01-01

    The challenge to bring down the cost of produced photovoltaic (PV) power had a major impact on the PV market and in consequence the grid operators experienced higher and higher PV power penetration. The growing share of this decentralized generation plants started to affect the grid stability...... and Distribution System Operators (DSOs) had to keep the safety and reliability of the network under strict rules and regulations. The aim of the paper is to realize a survey of recent Grid Codes (GC) and regulations for grid connected PV systems. The focus is on grid interface requirements, power quality concerns...

  2. NREL PV Working With Industry, v. 27, Third Quarter 2000

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.; Nahan, R.

    2000-09-12

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The third quarter, contains articles on several important PV-related conferences held in the prior three months: the REAP/HBCU Conference and the IPS-2000 Photochemistry Conference. The issue also contains a preview article of the PV Specialists conference held in Alaska in September. The editorialist is John Benner, PV Specialist Conference Program Chairman.

  3. Fault Analysis and Detection in Microgrids with High PV Penetration

    Energy Technology Data Exchange (ETDEWEB)

    El Khatib, Mohamed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hernandez Alvidrez, Javier [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    In this report we focus on analyzing current-controlled PV inverters behaviour under faults in order to develop fault detection schemes for microgrids with high PV penetration. Inverter model suitable for steady state fault studies is presented and the impact of PV inverters on two protection elements is analyzed. The studied protection elements are superimposed quantities based directional element and negative sequence directional element. Additionally, several non-overcurrent fault detection schemes are discussed in this report for microgrids with high PV penetration. A detailed time-domain simulation study is presented to assess the performance of the presented fault detection schemes under different microgrid modes of operation.

  4. Solar Energy: Incentives to Promote PV in EU27

    Directory of Open Access Journals (Sweden)

    María del P. Pablo-Romero

    2013-11-01

    Full Text Available The growth in the use of renewable energies in the EU has been remarkable. Among these energies is PV. The average annual growth rate for the EU-27 countries in installed PV capacity in the period 2005-2012 was 41.2%. While the installed capacity of PV has reached almost 82 % of National Renewable Energy Action Plan (NREAP targets for the EU-27 countries for 2020, it is still far from being used at its full potential. Over recent years, several measures have been adopted in the EU to enhance and promote PV. This paper undertakes a complete review of the state of PV power in Europe and the measures taken to date to promote it in EU-27. 25 countries have adopted measures to promote PV. The most widespread measure to promote PV use is Feed- in Tariffs. Tariffs are normally adjusted, in a decreasing manner, annually. Nevertheless, currently, seven countries have decided to accelerate this decrease rate in view of cost reduction of the installations and of higher efficiencies. The second instrument used to promote PV in the EU-27 countries is the concession of subsidies. Nevertheless, subsidies have the disadvantage of being closely linked to budgetary resources and therefore to budgetary constraints. In most EU countries, subsidies for renewable energy for PV are being lowered. Twelve EU-27 countries adopted tax measures. Low-interest loans and green certificate systems were only sparingly used.

  5. Simulation of Power Produced by a Building Added PV System in Indonesia using virtual reality

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.

    2014-01-01

    In this study a PV system will be simulated using virtual reality software for PV system simulations -called VR4PV - to show the effectiveness of the modelling of PV systems on buildings which are placed in the tropics. The PV system used for this study has been installed in Papua, Indonesia and

  6. ANFIS-based estimation of PV module equivalent parameters: application to a stand-alone PV system with MPPT controller

    OpenAIRE

    KULAKSIZ, Ahmet Afşin

    2012-01-01

    The performance and system cost of photovoltaic (PV) systems can be improved by employing high-efficiency power conditioners with maximum power point tracking (MPPT) methods. Fast implementation and accurate operation of MPPT controllers can be realized by modeling the characteristics of PV modules, obtaining equivalent parameters. In this study, adaptive neuro-fuzzy inference systems (ANFISs) have been used to obtain 3 of the parameters in a single-diode model of PV cells, namely serie...

  7. Projecting of PV facades in consideration of PV-specific operating conditions; Besonderheiten bei der Projektierung von Photovoltaik-Fassadenanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Decker, B.; Grimmig, B.; Mencke, D. [Institut fuer Solarenergieforschung GmbH Hameln/Emmerthal (ISFH), Emmerthal (Germany). Gruppe Photovoltaik-Systeme; Stellbogen, D. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany). Fachgebiet Photovoltaische Anlagentechnik

    1998-02-01

    PV facades can provide several additional functions such as weather protection, thermal insulation, daylighting or sun protection. On the other hand, specific operating conditions for PV facades must be taken into account when selecting components and designing the system. Depending on ventilation conditions, there is a large range of maximum module temperatures. South-oriented PV facades receive about 30% less yearly irradiation than an optimally inclined PV generator, hence reflection losses are approximately 4% higher. The maximum of yearly irradiation lies only in the 400-600 W/m{sup 2} range. Surrounding buildings and/or vegetation can impair performance of the PV-facades. For a south-oriented PV facade an annual yield in the range of 470-560 kwh/kW{sub p}.a has been prodicted which was verified by operating results of eight PV facades. (orig.) [Deutsch] Photovoltaik (PV) Fassaden ermoeglichen neben der Stromerzeugung zusaetzliche Funktionen wie Wetterschutz bzw. Waermedaemmung des Gebaeudes oder Tageslichtnutzung bzw. Sonnenschutz der Innenraeume. Allerdings muessen fassadenspezifische Betriebsbedingungen, bei der Komponentenauswahl und Systemauslegung beruecksichtigt werden. Unterschiedliche Hinterlueftungsbedingungen fuehren zu einer grossen Bandbreite der maximalen Modultemperatur. PV-Suedfassaden empfangen etwa 30% weniger Jahreseinstrahlung als ein optimal geneigter PV-Generator. Die Haelfte der jaehrlichen Einstrahlung trifft mit Einfallswinkeln groesser 50 auf die vertikal angeordneten Module wodurch die Reflexionsverluste um ca. 4% hoeher sind. Das Maximum der Jahreseinstrahlung liegt nur um 400-600 W/m{sup 2} und erreicht selten Werte ueber 800 W/m{sup 2}. Umliegende Gebaeude oder Vegetation koennen zu Teilabschattungen des Generators fuehren. Fuer eine vertikale PV-Suedfassade wird ein Jahresenergieertrag in Hoehe von 470-560 kWh/kW{sub p}.a prognostiziert, der anhand der Betriebsergebnisse von acht PV-Fassadenanlagen verifiziert werden konnte

  8. Quantification of the islet product: presentation of a standardized current good manufacturing practices compliant system with minimal variability.

    Science.gov (United States)

    Friberg, Andrew S; Brandhorst, Heide; Buchwald, Peter; Goto, Masafumi; Ricordi, Camillo; Brandhorst, Daniel; Korsgren, Olle

    2011-03-27

    Accurate islet quantification has proven difficult to standardize in a good manufacturing practices (GMP) approved manner. The influence of assessment variables from both manual and computer-assisted digital image analysis (DIA) methods were compared using calibrated, standardized microspheres or islets alone. Additionally, a mixture of microspheres and exocrine tissue was used to evaluate the variability of both the current, internationally recognized, manual method and a novel GMP-friendly purity- and volume-based method (PV) evaluated by DIA in a semiclosed, culture bag system. Computer-assisted DIA recorded known microsphere size distribution and quantities accurately. By using DIA to evaluate islets, the interindividual manually evaluated percent coefficients of variation (CV%; n=14) were reduced by almost half for both islet equivalents (IEs; 31% vs. 17%, P=0.002) and purity (20% vs. 13%, P=0.033). The microsphere pool mixed with exocrine tissue did not differ from expected IE with either method. However, manual IE resulted in a total CV% of 44.3% and a range spanning 258 k IE, whereas PV resulted in CV% of 10.7% and range of 60 k IE. Purity CV% for each method were similar approximating 10.5% and differed from expected by +7% for the manual method and +3% for PV. The variability of standard counting methods for islet samples and clinical quantities of microspheres mixed with exocrine tissue were reduced with DIA. They were reduced even further by use of a semiclosed bag system compared with standard manual counting, thereby facilitating the standardization of islet evaluation according to GMP standards.

  9. Changes in plasma volume and baroreflex function following resistance exercise

    Science.gov (United States)

    Ploutz, L. L.; Tatro, D. L.; Dudley, G. A.; Convertino, V. A.

    1993-01-01

    The dynamics of change in plasma volume (PV) and baroreflex responses have been reported over 24 h immediately following maximal cycle exercise. The purpose of this study was to determine if PV and baroreflex showed similar changes for 24 h after resistance exercise. Eight men were studied on 2 test days, 1 week apart. On 1 day, per cent change (% delta) in PV was estimated at 0,3, and 6 h after resistance exercise using haematocrit and haemoglobin. Baseline PV was measured 24 h after exercise using Evans blue dye. The carotid baroreceptor-cardiac reflex response was measured before, and 3, 6, 9, 12, and 24 h post-exercise. Each subject performed six sets of the bench press and leg press with 10 repetitions per set with a load that induced failure within each set. On a control day, the protocol was used without exercise. Plasma volume did not change during the control day. There was a 20% decrease in PV immediately post-exercise; the recovery of the PV was rapid and complete within 3 h. PV was 20% greater 24 h post-exercise than on the control day. There were no differences in any of the baroreflex measurements. Therefore, it is suggested that PV shifts may occur without altering baroreflex sensitivity.

  10. Large-scale PV grid integration

    Energy Technology Data Exchange (ETDEWEB)

    Martins Souza, Hellen; Jose do Carmo, Marlon; Rocha de Oliveira, Angelo [CEFET-MG, Leopoldina (Brazil). Dept. of Control and Automation; Willer de Oliveira, Leonard [Universidade Federal de Juiz de Fora (UFJF) (Brazil). Power Systems; Ribeiro, Paulo Fernando [Technische Univ. Eindhoven (Netherlands). Electrical Energy Systems

    2012-07-01

    This paper aims to review the development of solar energy as a renewable source of electricity, which is vital to the development of a more sustainable world, pointing out challenges and technology trends. First, there will be a review of the development of photovoltaic panels, focusing on countries where the technology is in its most advanced stage, such as Germany, Netherlands, the United States and Spain as well as showing trends of this type of power generation source. Important aspects such as efficiency and production costs of photovoltaic power plants will be covered. In addition, the integration of this generation sources to the electric power system will be considered concerning their impact on system parameters as power quality, stability and protection. The existing rules and interconnection standards for large-scale integration / implementation of photovoltaic (PV) generation are reviewed and discussed. Finally, a special application case of PV in the country of Brazil is briefly mentioned considering its potential for generation and implementation in the upcoming years. (orig.)

  11. Methodology and systems to ensure reliable thin-film PV modules

    Science.gov (United States)

    Call, Jon; Varde, Uday; Konson, Alla; Walters, Mike; Kotarba, Chad, III; Kraft, Tim; Guha, Subhendu

    2008-08-01

    The reliability of Uni-Solar triple-junction amorphous silicon thin-film PV modules is very important to their success in an increasingly competitive PV market. Modules must show useful operating lifetimes on the order of 20 to 30 years, and although module efficiency is very important, the total energy a module will produce is largely dependent on its operating lifetime. Thus, it is essential to evaluate module reliability in order to estimate module lifetime and establish customer warranty periods. While real world outdoor exposure testing is necessary and important, it is essential that accelerated environmental test methods are utilized to provide more rapid feedback regarding failure modes, design flaws and degradation mechanisms. The following paper gives an overview of the methodology used to ensure long-term reliability of Uni-Solar flexible thin-film modules. The applied test methods are primarily based upon accepted industry test standards such as IEC-61646, UL-1703, and ASTM. The design, screening, and qualification process to ensure the robustness of new designs is described as well as subsequent module validation testing and manufacturing process control. Test methods important for flexible module laminates are briefly discussed and examples of reliability tests are given. Upon successful design validation and certification, the quality and reliability of manufactured modules is maintained through supplier and product quality assurance programs.

  12. The impact of fit manufacturing on green manufacturing: A review

    Science.gov (United States)

    Qi, Ang Nian; Sin, Tan Chan; Fathullah, M.; Lee, C. C.

    2017-09-01

    Fit manufacturing and Green manufacturing are a new trend principle and concept. They are getting popular in industrial. This paper is identifying the impact between Fit manufacturing and Green manufacturing. Besides Fit manufacturing, Lean manufacturing, Agile manufacturing and Sustainable manufacturing gives big impacts to Green Manufacturing. On top of that, this paper also discuss the benefits of applying Fit manufacturing and Green manufacturing in industrial as well as environment. Hence, applications of Fit manufacturing and Green Manufacturing are increasing year by year.

  13. PV O&M Cost Model and Cost Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Andy

    2017-03-15

    This is a presentation on PV O&M cost model and cost reduction for the annual Photovoltaic Reliability Workshop (2017), covering estimating PV O&M costs, polynomial expansion, and implementation of Net Present Value (NPV) and reserve account in cost models.

  14. Linearised model for PV panel power output variation with changes ...

    Indian Academy of Sciences (India)

    PALLAVI BHARADWAJ

    2017-10-26

    Oct 26, 2017 ... This equivalent resistance represents the load seen at the PV panel terminals. It is dependent on the actual power drawn by the system and the interfacing converter between the PV panels and the load. Thus it is a function of the converter duty ratio and load characteristics. Due to the disturbance, output ...

  15. Pathogenic and genetic variation in Xanthomonas axonopodis pv ...

    African Journals Online (AJOL)

    Common bacterial blight (CBB) caused by Xanthomonas axonopodis pv. phaseoli and its fuscans variant, X. axonopodis pv. phaseoli var. fuscans is a widespread disease of dry beans in South Africa. Variation within pathogen populations has been reported and in order to breed for resistance it is important to investigate ...

  16. Applications of ``PV Optics`` for solar cell and module design

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Madjdpour, J.; Chen, W. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper describes some applications of a new optics software package, PV Optics, developed for the optical design of solar cells and modules. PV Optics is suitable for the analysis and design of both thick and thin solar cells. It also includes a feature for calculation of metallic losses related to contacts and back reflectors.

  17. Energy requirements and CO2 mitigation potential of PV systems

    NARCIS (Netherlands)

    Alsema, E.A.

    1998-01-01

    In this paper we investigate the energy requirements of PV modules and systems and calculate the Energy Pay-Back Time for two major PV applications. Based on a review of past energy analysis studies we explain the main sources of differences and establish a "best estimate" for key system components.

  18. PVSOFT99 - Photovoltaic (PV) System Sizing And Simulation Software

    African Journals Online (AJOL)

    A computer program (PVSOFT99) has been developed for sizing and simulation of stand-alone photovoltaic (PV) systems. Two distinct PV sizing algorithms, one based on the worst case and the other on the reliability concept, have been incorporated in the program. The reliability concept is generalized in that variation of ...

  19. Product integrated PV: the future is design and styling

    NARCIS (Netherlands)

    Eggink, Wouter; Reinders, Angelina H.M.E.

    2016-01-01

    In this paper we explore how PV powered products have been designed in the past. For this purpose we have drawn a historical time line of the design features of PV powered products in the context of main stream design and styling. Our time frame is 1970 till 2016, focusing in first instance on

  20. Simulation of regional day-ahead PV power forecast scenarios

    DEFF Research Database (Denmark)

    Nuno, Edgar; Koivisto, Matti Juhani; Cutululis, Nicolaos Antonio

    2017-01-01

    Uncertainty associated with Photovoltaic (PV) generation can have a significant impact on real-time planning and operation of power systems. This obstacle is commonly handled using multiple forecast realizations, obtained using for example forecast ensembles and/or probabilistic forecasts, often...... PV production matching the spatio-temporal characteristics while preserving the statistical properties of actual records....

  1. Analysis of Long-Term Performance of PV Systems

    NARCIS (Netherlands)

    Nordmann, T.; Clavadetscher, L.; van Sark, Wilfried; Green, M.

    This report describes the activities, conclusions and continued efforts undertaken in Subtask 1 by the participating countries in IEA-PVPS Task 13. Subtask 1 examines the PV power plant as a system. It collects and studies the data supplied from installed operating PV plants from different countries

  2. National survey report on PV power applications in Switzerland 2006

    Energy Technology Data Exchange (ETDEWEB)

    Huesser, P. [Nova Energie GmbH, Aarau (Switzerland); Hostettler, T. [Ingenieurbuero Hostettler, Berne (Switzerland)

    2007-07-01

    This annual report was published by the Swiss Federal Office of Energy (SFOE) as part of the International Energy Agency's work on the exchange and dissemination of information on photovoltaic power systems (PVPS). The political situation in Switzerland with regard to the promotion of photovoltaics (PV) and new legislation in the energy area is discussed. The report provides information on installed PV power, costs and prices and the Swiss PV industry. Examples of PV applications are presented and data on the cumulative installed PV power in various application sectors is presented and discussed. Highlights, major projects and various demonstration and field-test programmes are dealt with, as are public budgets for market stimulation. Figures on the development, production and prices of PV cells and modules are presented. Swiss balance-of-system products are reviewed, as are PV-related services and the value of the Swiss PV business. A review of non-technical factors and new initiatives completes the report.

  3. Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Elmore, R.; Suh, C.; Jones, W.

    2010-10-01

    Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

  4. Additive manufacturing – a sustainable manufacturing route

    Directory of Open Access Journals (Sweden)

    Frăţilă Domniţa

    2017-01-01

    Full Text Available Additive Manufacturing (AM technologies allow developing and manufacturing very complex shaped parts and functional products with a high level of customization, being a great alternative to Traditional Manufacturing (TM methods like injection molding, die-casting or machining. Due to the importance of cleaner production in the field of manufacturing processes, sustainability of AM processes needs to be assessed in order to make easier its acceptance and implementation in the industry. Furthermore, the manufacturers can improve their competitiveness and profitability by considering the ecological aspects during the manufacturing step of a product. This paper gives a survey on sustainability issues related to AM.

  5. On the Path to SunShot - Emerging Opportunities and Challenges in U.S. Solar Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, Kelsey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Innovation-driven cost and performance improvements, along with strong projected solar demand in the United States and across the Americas, could increase the attractiveness of U.S.-based solar manufacturing (see Chung et al. 2016). Although improvements to standard PV modules have produced deep cost reductions over the past 5 years, the returns on such incremental improvements appear to be diminishing, and more dramatic innovations in module design and manufacturing are required to continue along the path of rapid progress. At the same time, major opportunities exist for innovation to unlock the potential of CSP technologies. This need for innovation could benefit U.S. PV and CSP manufacturers. The United States has been rated one of the world’s most competitive and innovative countries as well as one of the best locations for PV manufacturing. It is a global leader in PV and CSP R&D and patent production, and U.S. PV manufacturers are already pursuing highly differentiated innovations.

  6. Comparative assessment of PV plant performance models considering climate effects

    DEFF Research Database (Denmark)

    Tina, Giuseppe; Ventura, Cristina; Sera, Dezso

    2017-01-01

    The paper investigates the effect of climate conditions on the accuracy of PV system performance models (physical and interpolation methods) which are used within a monitoring system as a reference for the power produced by a PV system to detect inefficient or faulty operating conditions. The met......The paper investigates the effect of climate conditions on the accuracy of PV system performance models (physical and interpolation methods) which are used within a monitoring system as a reference for the power produced by a PV system to detect inefficient or faulty operating conditions...... the performance of the studied PV plants with others, the efficiency of the systems has been estimated by both conventional Performance Ratio and Corrected Performance Ratio...

  7. Costs of Residential Solar PV Plants in Distribution Grid Networks

    DEFF Research Database (Denmark)

    Kjær, Søren Bækhøj; Yang, Guangya; Ipsen, Hans Henrik

    2015-01-01

    In this article we investigate the impact of residential solar PV plants on energy losses in distribution networks and their impact on distribution transformers lifetime. Current guidelines in Denmark states that distribution transformers should not be loaded with more than 67% solar PV power...... to avoid accelerated loss of life. If a solar PV plant causes this limit to be exceeded, the particular owner has to pay for upgrading the transformer. Distribution Network Operators also charge an annual tariff from the solar PV plants to cover the expenses to keep the grid capacity available, the so...... called “Availability Tariff”. According to the Danish Energy Regulatory Authority, the Availability Tariff must cover the exact expenses, with energy savings etc. from the solar PV plants taken into consideration. Our conclusion is that a distribution network, which represents a typical residential...

  8. Optimum Design Of On Grid Pv System Using Tracking System

    Directory of Open Access Journals (Sweden)

    Saeed Mansour

    2015-05-01

    Full Text Available Abstract The fossil fuel is a main issue in the world due to the increase of fossil fuel cost and the depletion of the fossil fuel with continuous increasing demand on electricity. With continuous decrease of PV panels cost it is interesting to consider generation of electricity from PV system. To provide electric energy to a load in a remote area where electric grid utility is not available or connection with grid utility is available there are two approaches of photovoltaic system PV without tracking system Fixed System and PV with tracking systems. The result shows that the energy production by using PV with tracking system generates more energy in comparison with fixed panels system. However the cost per produced KWH is less in case of using fixed panels. This is the backbone in choice between two approaches of photovoltaic system. In this work a system design and cost analysis for two approaches of photovoltaic system are considered.

  9. Status of High Performance PV: Polycrystalline Thin-Film Tandems

    Energy Technology Data Exchange (ETDEWEB)

    Symko-Davies, M.

    2005-02-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

  10. Physical Effects of Distributed PV Generation on California's Distribution System

    CERN Document Server

    Cohen, Michael A

    2015-01-01

    Deployment of high-penetration photovoltaic (PV) power is expected to have a range of effects -- both positive and negative -- on the distribution grid. The magnitude of these effects may vary greatly depending upon feeder topology, climate, PV penetration level, and other factors. In this paper we present a simulation study of eight representative distribution feeders in three California climates at PV penetration levels up to 100\\%, supported by a unique database of distributed PV generation data that enables us to capture the impact of PV variability on feeder voltage and voltage regulating equipment. When comparing the influence of feeder location (i.e. climate) versus feeder type on outcomes, we find that location more strongly influences the incidence of reverse power flow, reductions in peak loading and the presence of voltage excursions. On the other hand, we find that feeder characteristics more strongly influence the magnitude of loss reduction and changes in voltage regulator operations. We find th...

  11. Universality of P-V Criticality in Horizon Thermodynamics

    CERN Document Server

    Hansen, Devin; Mann, Robert B

    2016-01-01

    We study P-V criticality of black holes in Lovelock gravities in the context of horizon thermodynamics. The corresponding first law of horizon thermodynamics emerges as one of the Einstein-Lovelock equations and assumes the universal (independent of matter content) form dE=TdS-PdV, where P is identified with the total pressure of all matter in the spacetime (including a cosmological constant Lambda if present). We compare this approach to recent advances in extended phase space thermodynamics of asymptotically AdS black holes where the "standard" first law of black hole thermodynamics is extended to include a pressure-volume term, where the pressure is entirely due to the (variable) cosmological constant. We show that both approaches are quite different in interpretation. Provided there is sufficient non-linearity in the gravitational sector, we find that horizon thermodynamics admits the same interesting black hole phase behaviour seen in the extended case, such as a Hawking-Page transition, Van der Waals li...

  12. Carbon composite manufacturing in automotive volume production

    DEFF Research Database (Denmark)

    Geiger, Raphael; Pahl, Julia

    2017-01-01

    Lightweight constructions are a continuously increasing trend in the automotive industry. Main drivers for that trend are the challenging emission reduction targets regarding combustion engines and increasing ranges in electric mobility. This article presents different composite production methods...... and discusses their ability within mass production giving also an example within the automotive production....

  13. Carbon composite manufacturing in automotive volume production

    DEFF Research Database (Denmark)

    Geiger, Raphael; Pahl, Julia

    2017-01-01

    Lightweight constructions are a continuously increasing trend in the automotive industry. Main drivers for that trend are the challenging emission reduction targets regarding combustion engines and increasing ranges in electric mobility. This article presents different composite production methods...

  14. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  15. PV Performance Modeling Methods and Practices: Results from the 4th PV Performance Modeling Collaborative Workshop.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    In 2014, the IEA PVPS Task 13 added the PVPMC as a formal activity to its technical work plan for 2014-2017. The goal of this activity is to expand the reach of the PVPMC to a broader international audience and help to reduce PV performance modeling uncertainties worldwide. One of the main deliverables of this activity is to host one or more PVPMC workshops outside the US to foster more international participation within this collaborative group. This report reviews the results of the first in a series of these joint IEA PVPS Task 13/PVPMC workshops. The 4th PV Performance Modeling Collaborative Workshop was held in Cologne, Germany at the headquarters of TÜV Rheinland on October 22-23, 2015.

  16. Molecular detection of Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Burkholderia glumae in infected rice seeds and leaves

    Science.gov (United States)

    Polymerase chain reaction (PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR green real-time PCR were developed to facilitate simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Bur...

  17. Molecular detection of Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Burkholderia glumae in infected rice seeds and leaves

    Directory of Open Access Journals (Sweden)

    Wen Lu

    2014-12-01

    Full Text Available The polymerase chain reaction (PCR is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR Green real-time PCR were developed to facilitate the simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Burkholderia glumae. The unique PCR primer sets were designed from portions of a putative glycosyltransferase gene of X. oryzae pv. oryzae, an AvrRxo gene of X. oryzae pv. oryzicola, and an internal transcribed spacer (ITS sequence of B. glumae. Using a multiplex PCR assay, X. oryzae pv. oryzae, X. oryzae pv. oryzicola, and B. glumae were detected in one PCR reaction that contained the newly developed primer set mix. Using SYBR Green real-time PCR assays, X. oryzae pv. oryzae, X. oryzae pv. oryzicola, and B. glumae were detected at 1, 1, and 10 fg μL− 1, respectively. These newly designed molecular assays are sensitive and could be reliable tools for pathogen detection and disease forecasting.

  18. Innovations in Wind and Solar PV Financing

    Energy Technology Data Exchange (ETDEWEB)

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  19. Analytical Improvements in PV Degradation Rate Determination

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  20. Managing PV Power on Mars - MER Rovers

    Science.gov (United States)

    Stella, Paul M.; Chin, Keith; Wood, Eric; Herman, Jennifer; Ewell, Richard

    2009-01-01

    The MER Rovers have recently completed over 5 years of operation! This is a remarkable demonstration of the capabilities of PV power on the Martian surface. The extended mission required the development of an efficient process to predict the power available to the rovers on a day-to-day basis. The performance of the MER solar arrays is quite unlike that of any other Space array and perhaps more akin to Terrestrial PV operation, although even severe by that comparison. The impact of unpredictable factors, such as atmospheric conditions and dust accumulation (and removal) on the panels limits the accurate prediction of array power to short time spans. Based on the above, it is clear that long term power predictions are not sufficiently accurate to allow for detailed long term planning. Instead, the power assessment is essentially a daily activity, effectively resetting the boundary points for the overall predictive power model. A typical analysis begins with the importing of the telemetry from each rover's previous day's power subsystem activities. This includes the array power generated, battery state-of-charge, rover power loads, and rover orientation, all as functions of time. The predicted performance for that day is compared to the actual performance to identify the extent of any differences. The model is then corrected for these changes. Details of JPL's MER power analysis procedure are presented, including the description of steps needed to provide the final prediction for the mission planners. A dust cleaning event of the solar array is also highlighted to illustrate the impact of Martian weather on solar array performance

  1. Valley of Death analysis for polymer PV technology; Valley of Death analyse voor polymere PV technologie

    Energy Technology Data Exchange (ETDEWEB)

    Schoots, K. [ECN Beleidsstudies, Petten (Netherlands)

    2013-12-15

    This report describes the results of a qualitative study of the barriers that actors involved in the development and commercialization of polymer solar cells, may encounter. The purpose of this socio-economic research is to identify these barriers for the (market) development of thin film polymeric PV technology and to develop strategies for them in order to overcome the constraints. The necessary data are collected from interviews with actors who are active in the development and deployment of conventional solar cells. Based on the results from this study, it is conclude that it is important for the Organic PV industry to carry out many market experiments beyond the built environment. The report provides recommendations with regard to the markets in which these experiments are most likely to succeed and which drivers should be taken into account [Dutch] Dit rapport beschrijft de resultaten van een kwalitatief onderzoek naar de barrieres die actoren, betrokken bij de ontwikkeling en marktintroductie van polymere zonnecellen, kunnen tegenkomen. Het doel van dit sociaal-economische onderzoek is deze barrieres voor de (markt)ontwikkeling van dunne film polymere PV technologie te identificeren en strategieen te ontwikkelen om ze voor te zijn of ze te overbruggen. De benodigde gegevens worden verzameld uit interviews met actoren die actief zijn in de ontwikkeling en uitrol van conventionele zonnecellen. Op basis van de resultaten uit dit onderzoek komen we tot de conclusie dat het voor de Organische PV sector belangrijk is veel marktexperimenten aan te gaan buiten de gebouwde omgeving. Het rapport geeft aanbevelingen in welke soort markten deze experimenten de meeste kans van slagen hebben en met welke drivers van marktpartijen rekening moet worden gehouden.

  2. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Woodhouse, Michael A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-12

    In this report we summarize the implications, impacts, and deployment potential of reaching the SunShot 2030 targets for the electricity system in the contiguous United States. We model 25 scenarios of the U.S. power sector using the Regional Energy Deployment Systems (ReEDS) and Distributed Generation (dGen) capacity expansion models. The scenarios cover a wide range of sensitivities to capture future uncertainties relating to fuel prices, retirements, renewable energy capital costs, and load growth. We give special attention to the potential for storage costs to also rapidly decline due to its large synergies with low-cost solar. The ReEDS and dGen models project utility- and distributed-scale power sector evolution, respectively, for the United States. Both models have been designed with special emphasis on capturing the unique traits of renewable energy, including variability and grid integration requirements. Across the suite of scenarios modeled, we find that reaching the SunShot 2030 target has the potential to lead to significant capacity additions of PV in the United States. By 2050, PV penetration levels are projected to reach 28-46 percent of total generation. If storage also sees significant reductions in cost, then the 2050 solar penetration levels could reach 41-64 percent. PV deployment is projected to occur in all of the lower 48 states, though the specific deployment level is scenario dependent. The growth in PV is projected to be dominated by utility-scale systems, but the actual mix between utility and distributed systems could ultimately vary depending on how policies, system costs, and rate structures evolve.

  3. Additive manufacturing – a sustainable manufacturing route

    OpenAIRE

    Frăţilă Domniţa; Rotaru Horaţiu

    2017-01-01

    Additive Manufacturing (AM) technologies allow developing and manufacturing very complex shaped parts and functional products with a high level of customization, being a great alternative to Traditional Manufacturing (TM) methods like injection molding, die-casting or machining. Due to the importance of cleaner production in the field of manufacturing processes, sustainability of AM processes needs to be assessed in order to make easier its acceptance and implementation in the industry. Furth...

  4. Turbine airfoil manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

    1995-10-01

    The efficiency and effectiveness of the gas turbine engine is directly related to the turbine inlet temperatures. The ability to increase these temperatures has occurred as a result of improvements in materials, design, and processing techniques. A generic sequence indicating the relationship of these factors to temperature capability is schematically shown in Figure 1 for aircraft engine and land based engine materials. A basic contribution that is not captured by the Figure is the significant improvement in process and manufacturing capability that has accompanied each of these innovations. It is this capability that has allowed the designs and innovations to be applied on a high volume, cost effective scale in the aircraft gas turbine market.

  5. Flexible scalable photonic manufacturing method

    Science.gov (United States)

    Skunes, Timothy A.; Case, Steven K.

    2003-06-01

    A process for flexible, scalable photonic manufacturing is described. Optical components are actively pre-aligned and secured to precision mounts. In a subsequent operation, the mounted optical components are passively placed onto a substrate known as an Optical Circuit Board (OCB). The passive placement may be either manual for low volume applications or with a pick-and-place robot for high volume applications. Mating registration features on the component mounts and the OCB facilitate accurate optical alignment. New photonic circuits may be created by changing the layout of the OCB. Predicted yield data from Monte Carlo tolerance simulations for two fiber optic photonic circuits is presented.

  6. Contemporary design and manufacturing technology

    CERN Document Server

    Wang, Taiyong; Zuo, Dunwen

    2013-01-01

    The special topic volume communicates the latest progress and research results of new theory, new technology, method, equipment and so on in Engineering Technology, and to grasp the updated technological and research trends in internationally. The major topics covered by the special volumes include Advanced Materials and Manufacturing Technologies, Control, Automation and Detection Systems, Advanced Design Technology, Optimization and Modeling. In 80 invited and peer-reviewed papers, mechanical and other engineers describe their recent and current research and results in advanced materials and

  7. Determination of PV Generator I-V/P-V Characteristic Curves Using a DC-DC Converter Controlled by a Virtual Instrument

    Directory of Open Access Journals (Sweden)

    E. Durán

    2012-01-01

    Full Text Available A versatile measurement system for systematic testing and measurement of the evolution of the I-V characteristic curves of photovoltaic panels or arrays (PV generators is proposed in this paper. The measurement system uses a circuit solution based on DC-DC converters that involves several advantages relative to traditional methods: simple structure, scalability, fast response, and low cost. The measurement of the desired characteristics of PV generators includes high speed of response and high fidelity. The prototype system built is governed by a microcontroller, and experimental results prove the proposed measurement system useful. A virtual instrument (VI was developed for full system control from a computer. The developed system enables monitoring the suitable operation of a PV generator in real time, since it allows comparing its actual curves with those provided by the manufacturer.

  8. Tribology in Manufacturing Technology

    CERN Document Server

    2013-01-01

    The present book aims to provide research advances on tribology in manufacturing technology for modern industry. This book can be used as a research book for final undergraduate engineering course (for example, mechanical, manufacturing, materials, etc) or as a subject on manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, manufacturing and tribology researchers, mechanical, mechanical, manufacturing and materials engineers, professionals in related industries with manufacturing and tribology.

  9. Kauai Island Utility Co-op (KIUC) PV integration study.

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Abraham; Mousseau, Tom (Knoxville, TN)

    2011-08-01

    This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

  10. Sub-synchronous resonance damping using high penetration PV plant

    Science.gov (United States)

    Khayyatzadeh, M.; Kazemzadeh, R.

    2017-02-01

    The growing need to the clean and renewable energy has led to the fast development of transmission voltage-level photovoltaic (PV) plants all over the world. These large scale PV plants are going to be connected to power systems and one of the important subjects that should be investigated is the impact of these plants on the power system stability. Can large scale PV plants help to damp sub-synchronous resonance (SSR) and how? In this paper, this capability of a large scale PV plant is investigated. The IEEE Second Benchmark Model aggregated with a PV plant is utilized as the case study. A Wide Area Measurement System (WAMS) based conventional damping controller is designed and added to the main control loop of PV plant in order to damp the SSR and also investigation of the destructive effect of time delay in remote feedback signal. A new optimization algorithm called teaching-learning-based-optimization (TLBO) algorithm has been used for managing the optimization problems. Fast Furrier Transformer (FFT) analysis and also transient simulations of detailed nonlinear system are considered to investigate the performance of the controller. Robustness of the proposed system has been analyzed by facing the system with disturbances leading to significant changes in generator and power system operating point, fault duration time and PV plant generated power. All the simulations are carried out in MATLAB/SIMULINK environment.

  11. Reduction of Life Cycle CO2 Emission in Public Welfare Facilities Equipped with PV/Solar Heat/Cogeneration System

    Science.gov (United States)

    Oke, Shinichiro; Kemmoku, Yoshishige; Takikawa, Hirofumi; Sakakibara, Tateki

    The reduction effect of life cycle CO2 emission is examined in case of introducing a PV/solar heat/cogeneration system into public welfare facilities(hotel and hospital). Life cycle CO2 emission is calculated as the sum of that when operating and that when manufacturing equipments. The system is operated with the dynamic programming method, into which hourly data of electric and heat loads, solar insolation, and atmospheric temperature during a year are input. The proposed system is compared with a conventional system and a cogeneration system. The life cycle CO2 emission of the PV/solar heat/cogeneration system is lower than that of the conventional system by 20% in hotel and by 14% in hospital.

  12. Performance testing and module monitoring at the EC Necessary steps to develop cost-effective PV modules

    Science.gov (United States)

    Krebs, K.

    Testing programs carried out by the European Communities to establish testing techniques and standards for verifying the reliability and integrity of solar cells intended for the marketplace are described. The efforts are being expended to assure quality control and certification for photovoltaic (PV) products manufactured in any of the member nations. The failure rate for PV modules was lowered to 0.5 pct/year by 1981, and single cell failures are projected to be lowered to 0.00001/yr, connectors to 0.001/yr, and batteries to 0.01/yr. Day/night thermal cycling causes the most dominant type of failures, i.e., cracked cells and interconnect defects. Tests have been standardized for inspection, verification, performance, mechanical loading, hail impact, damp heat, high temperature long exposure, hot-spot heating, thermal cycling, and humidity-freezing tolerance.

  13. DECOMPOSITION OF MANUFACTURING PROCESSES: A REVIEW

    Directory of Open Access Journals (Sweden)

    N.M.Z.N. Mohamed

    2012-06-01

    Full Text Available Manufacturing is a global activity that started during the industrial revolution in the late 19th century to cater for the large-scale production of products. Since then, manufacturing has changed tremendously through the innovations of technology, processes, materials, communication and transportation. The major challenge facing manufacturing is to produce more products using less material, less energy and less involvement of labour. To face these challenges, manufacturing companies must have a strategy and competitive priority in order for them to compete in a dynamic market. A review of the literature on the decomposition of manufacturing processes outlines three main processes, namely: high volume, medium volume and low volume. The decomposition shows that each sub process has its own characteristics and depends on the nature of the firm’s business. Two extreme processes are continuous line production (fast extreme and project shop (slow extreme. Other processes are in between these two extremes of the manufacturing spectrum. Process flow patterns become less complex with cellular, line and continuous flow compared with jobbing and project. The review also indicates that when the product is high variety and low volume, project or functional production is applied.

  14. Regulation of phytotoxin production in Pseudomonas syringae pv. tabaci

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, L.M.; Ghosh, S.; Knight, T.J.; Unkefer, P.J. (Los Alamos National Lab., NM (United States))

    1991-05-01

    Pseudomonas syringae pv. tabaci, a pathogen of tobacco, is capable of colonizing the rhizosphere of many plants. This pathogen excretes tabtoxinine-{beta}-lactam (T{beta}L), an active site directed, irreversible inhibitor of glutamine synthetase. T{beta}L is produced in planta, in the rhizosphere, and under certain culture conditions. However, the factors which regulated T{beta}L production in these environments are unknown. As a first step in characterizing T{beta}L synthesis by P. syringae pv. tabaci, the authors have determined the effects of root exudates and various nutrients on production of T{beta}L by P. syringae pv. tabaci PT113.

  15. Design Considerations for Stand-Alone Photovoltaic (PV) Cell Applications

    OpenAIRE

    Mehmet Cebeci; Ahmet Şenpinar

    2013-01-01

    Solar energy is one of the most important renewable energy sources. The photovoltaic (PV) cell systems are used to convert solar energy into electricity. PV systems are divided into two as fixed systems and tracking systems. Fixed systems are mounted at a certain tilt with horizontal to make full use of sunlight. The tilt angle of PV arrays in a fixed system depends on the location and time. If this tilt angle is determined well, the amount of insolation and the energy that is generated incre...

  16. PV Project Finance in the United States, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David; Lowder, Travis; Schwabe, Paul

    2016-09-01

    This brief is a compilation of data points and market insights that reflect the state of the project finance market for solar photovoltaic (PV) assets in the United States as of the third quarter of 2016. This information can generally be used as a simplified benchmark of the costs associated with securing financing for solar PV as well as the cost of the financing itself (i.e., the cost of capital). Three sources of capital are considered -- tax equity, sponsor equity, and debt -- across three segments of the PV marketplace.

  17. PV Validation and Bankability Workshop: San Jose, California

    Energy Technology Data Exchange (ETDEWEB)

    Granata, J.; Howard, J.

    2011-12-01

    This report is a collaboration between Sandia National Laboratories, the National Renewable Energy Laboratory, and the Florida Solar Energy Center (FSEC). The report provides feedback from the U.S. Department of Energy's (DOE) Solar Program PV Validation and Bankability Workshop in San Jose, California on August 31, 2011. It focuses on the current state of PV in the United States, private funding to fund U.S. PV industry growth, roles and functions of the regional test center program, and ways to improve the current validation and bankability practices.

  18. Consortia Focused on Photovoltaic R&D, Manufacturing, and Testing: A Review of Existing Models and Structures

    Energy Technology Data Exchange (ETDEWEB)

    Coggeshall, C.; Margolis, R. M.

    2010-03-01

    As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program prepares to initiate a new cost-shared research and development (R&D) effort on photovoltaic (PV) manufacturing, it is useful to review the experience to date with consortia focused on PV R&D, manufacturing, and testing. Information was gathered for this report by conducting interviews and accessing Web sites of 14 U.S. consortia and four European consortia, each with either a primary focus on or an emerging interest in PV technology R&D, manufacturing, or testing. Additional input was collected from several workshops held by the DOE and National Academy of Sciences (NAS) in 2009, which examined the practical steps -- including public-private partnerships and policy support -- necessary to enhance the United States' capacity to competitively manufacture photovoltaics. This report categorizes the 18 consortia into three groups: university-led consortia, industry-led consortia, and manufacturing and testing facilities consortia. The first section summarizes the organizations within the different categories, with a particular focus on the key benefits and challenges for each grouping. The second section provides a more detailed overview of each consortium, including the origins, goals, organization, membership, funding sources, and key contacts. This survey is a useful resource for stakeholders interested in PV manufacturing R&D, but should not imply endorsement of any of these groups.

  19. Recovery of plasma volume after 1 week of exposure at 4,350 m

    DEFF Research Database (Denmark)

    Robach, Paul; Lafforgue, Eric; Olsen, Niels Vidiendal

    2002-01-01

    Plasma volume (PV) decreases at high altitude, but is rapidly restored upon return to sea-level (RSL). The aim of this study was (1) to describe PV recovery upon RSL with concomitant changes in major fluid regulating hormones, and (2) to test the hypothesis that PV recovery is promoted...... natriuretic factor (ANF) and arginine vasopressin (AVP) were measured at rest and during exercise. The subjects were divided into two groups 1 h before RSL, one group receiving PV expansion (475+/-219 ml) to ensure normovolemia (PVX, n=6), the others serving as controls (Control, n=4). PV decreased by 13...... groups, whereas water output dropped in RSL. PVX increased urine flow rate in RSL1 compared with subjects not given PVX. The present results suggest that PV recovery during early RSL is mainly due to a decreased diuresis, promoted at least in part by changes in fluid regulating hormones. However, neither...

  20. Evaluation of PV Module Field Performance

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, John; Silverman, Timothy; Miller, David C.; McNutt, Peter; Kempe, Michael; Deceglie, Michael

    2015-06-14

    This paper describes an effort to inspect and evaluate PV modules in order to determine what failure or degradation modes are occurring in field installations. This paper will report on the results of six site visits, including the Sacramento Municipal Utility District (SMUD) Hedge Array, Tucson Electric Power (TEP) Springerville, Central Florida Utility, Florida Solar Energy Center (FSEC), the TEP Solar Test Yard, and University of Toledo installations. The effort here makes use of a recently developed field inspection data collection protocol, and the results were input into a corresponding database. The results of this work have also been used to develop a draft of the IEC standard for climate and application specific accelerated stress testing beyond module qualification. TEP Solar Test Yard, and University of Toledo installations. The effort here makes use of a recently developed field inspection data collection protocol, and the results were input into a corresponding database. The results of this work have also been used to develop a draft of the IEC standard for climate and application specific accelerated stress testing beyond module qualification. TEP Solar Test Yard, and University of Toledo installations. The effort here makes use of a recently developed field inspection data collection protocol, and the results were input into a corresponding database. The results of this work have also been used to develop a draft of the IEC standard for climate and application specific accelerated stress testing beyond module qualification.

  1. The Ramakrishna Mission economic PV development initiative

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.L.; Ullal, H.S. [National Renewable Energy Lab., Golden, CO (United States); Sherring, C. [Sherring Energy Associates, Princeton, NJ (United States)

    1998-09-01

    India is the world`s second most populous country, quickly approaching one billion persons. Although it has a well-developed electricity grid, many of the people have little or no access to electricity and all of the benefits associated with it. There are areas that are isolated from the grid and will not be connected for many years, if ever. One such area is the Sundarbans located in the delta region of the two great rivers, the Ganges and Brahmaputra, partially in India and partially in Bangladesh. It is estimated that 1.5 million people live in this area, crisscrossed by many islands and rivers, who have only marginal supplies of electricity generated primarily from diesel generators and batteries. Working with the regional non-governmental organization (NGO), the Ramakrishna Mission, and the West Bengal Renewable Energy Development Agency, the governments of India and the US initiated a rural electrification initiative to demonstrate the economic and technical feasibility of photovoltaics to provide limited supplies of electricity for such applications as solar home lighting systems (SHS), water pumping, vaccine refrigeration, communications, and economic development activities. This paper details initial results from approximately 30 kilowatts of PV systems installed in the area, including socio-economic impacts and technical performance.

  2. State financed PV technology projects in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Gyoh, L.; Gyoh, S. [Iceberg PVPS Consultants, Sheffield (United Kingdom)

    2004-07-01

    Despite the progress made by the democratic government of Nigeria to eradicate poverty, there are still millions of people without access to electricity. It would not be financially viable to extend the national electricity grid to each electoral ward, in remote locations in the country. The use of photovoltaic technology now brings electricity to many rural areas as part of the provision of basic needs by the Nigerian authorities. The Nasarawa State Government has embarked on the provision of all it electoral wards with solar powered water supply systems to carter for a mostly rural population of 3.4 million people. The Benue, Taraba, Bauchi and Jigawa State governments have embarked on similar schemes in Rural Water Supply, Health and the Educational sectors of the economy. Ambitious PV programmes, of this nature, inevitably face challenges in developing countries. The preliminary recommendations, of this ongoing study, have been made to address some of the potential challenges in some of the key areas. This paper reviews the implementation progress and suggests some of the lessons that might be learnt. (authors)

  3. Promotional drivers for grid-connected PV

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Polo, A.; Hass, R.; Suna, D.

    2009-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at promotional measures for grid-connected photovoltaic systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The paper discusses the core objective of this study which was to analyse the success of various governmental regulatory programs and governmental and non-governmental marketing programs for grid-connected PV systems. To meet this objective, a review of the most important past and current programs around the world was conducted. The theoretical bases of supply and demand are explained and the types of existing strategies are documented in a second Section. In Chapter 3, various programs around the world are described. Chapter 4 focuses on defining success criteria which will be used for the analysis of the programs. Finally, the major conclusions drawn complete this analysis.

  4. Heritage plaza parking lots improvement project- Solar PV installation

    Energy Technology Data Exchange (ETDEWEB)

    Hooks, Todd [Agua Caliente Indian Reservation, Palm Springs, CA (United States)

    2017-03-31

    The Agua Caliente Band of Cahuilla Indians (ACBCI or the “Tribe”) installed a 79.95 kW solar photovoltaic (PV) system to offset the energy usage costs of the Tribal Education and Family Services offices located at the Tribe's Heritage Plaza office building, 90I Tahquitz Way, Palm Springs, CA, 92262 (the "Project"). The installation of the Solar PV system was part of the larger Heritage Plaza Parking Lot Improvements Project and mounted on the two southern carport shade structures. The solar PV system will offset 99% of the approximately 115,000 kWh in electricity delivered annually by Southern California Edison (SCE) to the Tribal Education and Family Services offices at Heritage Plaza, reducing their annual energy costs from approximately $22,000 annually to approximately $200. The total cost of the proposed solar PV system is $240,000.

  5. Design Considerations for Stand-Alone Photovoltaic (PV Cell Applications

    Directory of Open Access Journals (Sweden)

    Mehmet Cebeci

    2013-06-01

    Full Text Available Solar energy is one of the most important renewable energy sources. The photovoltaic (PV cell systems are used to convert solar energy into electricity. PV systems are divided into two as fixed systems and tracking systems. Fixed systems are mounted at a certain tilt with horizontal to make full use of sunlight. The tilt angle of PV arrays in a fixed system depends on the location and time. If this tilt angle is determined well, the amount of insolation and the energy that is generated increases. When a stand-alone PV cell system is being chosen, certain design operations should be implemented. The number of modules and batteries needed for any system should be calculated by means of the amount of load, insolation level, module characteristics, etc. The design of system is finalized according to the energy demand.

  6. New test and characterization methods for PV modules and cells

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, B.; Sommeling, P. [ECN Solar Energy, Petten (Netherlands); Scholten, H. [Solland, Heerlen (Netherlands); Muller, J. [Moser-Baer, Eindhoven (Netherlands); Grossiord, N. [Holst Centre, Eindhoven (Netherlands); Smits, C.; Blanco Mantecon, M. [Holland Innovative, Eindhoven (Netherlands); Verheijen, M.; Van Berkum, J. [Philips Innovation Services, Eindhoven (Netherlands)

    2012-08-15

    The results of the project geZONd (shared facility for solar module analysis and reliability testing) are described. The project was set up by Philips, ECN, Holst, Solland, OM and T and Holland Innovative. The partners have shared most of their testing and analysis equipment for PV modules and cells, and together developed new or improved methods (including the necessary application know-how). This enables faster and more efficient innovation projects for each partner, and via commercial exploitation for other interested parties. The project has concentrated on five failure modes: corrosion, delamination, moisture ingress, UV irradiation, and mechanical bending. Test samples represented all main PV technologies: wafer based PV and rigid and flexible thin-film PV. Breakthroughs are in very early detection of corrosion, in quantitative characterization of adhesion, in-situ detection of humidity and oxygen inside modules, and ultra-fast screening of materials on UV stability.

  7. Velocity Curve Analysis of the Spectroscopic Binary Stars PV Pup ...

    Indian Academy of Sciences (India)

    2016-01-27

    lined spectroscopic binary systems PV Pup, HD 141929, EE Cet and V921 Her, we find both the orbital and the combined spectroscopic elements of these systems. Our numerical results are in good agreement with those obtained ...

  8. Review of Solar PV Market Development in East Africa

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer; Pedersen, Mathilde Brix; Nygaard, Ivan

    While the diffusion of solar home systems in Kenya has been market-based for some years, the diffusion of PV in most other Sub-Saharan African countries has been driven by government and donor-supported projects aimed at serving specific needs for electricity while at the same time creating...... a national niche market for PV. This practice is rapidly changing and, as in industrialised countries, there is evidence of a transition towards more market-based diffusion and private-sector involvement for PV systems for private consumers, institutions and villages. This transition has been facilitated...... to understanding these effects by reviewing the development of markets for solar PV in Kenya, Tanzania and Uganda, focusing on how the differences in market development have been explained in the literature. The paper finds that, although Tanzania and Uganda are rapidly catching up, Kenya is still leading...

  9. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented....... The main elements of the PV control structure are: - a maximum power point tracker (MPPT) algorithm using the incremental conductance method; - a synchronization method using the phase-locked-loop (PLL), based on delay; - the input power control using the dc voltage controller and power feed......-forward; - and the grid current controller implemented in two different ways, using the classical proportional integral (PI) and the novel proportional resonant (PR) controllers. The control strategy was tested experimentally on 1.5 kW PV inverter....

  10. Measures for diffusion of solar PV in selected African countries

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Hansen, Ulrich Elmer; Mackenzie, Gordon A.

    2017-01-01

    that governments’ strategies to promoting solar PV are moving from isolated projects towards frameworks for market development and that there are high expectations to upgrading in the PV value chain through local assembly of panels and local production of other system elements. Commonly identified measures include......This paper investigates how African governments are considering supporting and promoting the diffusion of solar PV. This issue is explored by examining so-called ‘technology action plans (TAPs)’, which were main outputs of the Technology Needs Assessment project implemented in 10 African countries...... from 2010 to 2013. The paper provides a review of three distinct but characteristic trajectories for PV market development in Kenya (private-led market for solar home systems), Morocco (utility-led fee-for service model) and Rwanda (donorled market for institutional systems). The paper finds...

  11. PV GRID Advisory Paper. Consultation version: key recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Bianca; Concas, Giorgia; Cossent, Rafael; Franz, Oliver; Frias, Pablo; Hermes, Roland; Lama, Riccardo; Loew, Holger; Mateo, Carlos; Rekinger, Manoel; Sonvilla, Paolo Michele; Vandenbergh, Michel

    2014-01-15

    PV GRID is a transnational collaborative effort under the umbrella of the Intelligent Energy Europe programme. The main project goal is to enhance photovoltaic (PV) hosting capacity in distribution grids while overcoming regulatory and normative barriers hampering the application of available technical solutions. The European PV GRID advisory paper aims at providing an overview of the issues and barriers that need to be addressed in order to enhance the distribution grid hosting capacity for PV and other distributed generation (DG).To this purpose, barriers are classified as either cross-cutting challenges or specific barriers, depending on whether they have an overarching, system-wide character or rather focus on one single issue such as curtailment, self-consumption or storage. Finally, a set of preliminary recommendations on how to overcome these issues is presented, allowing for the implementation of the identified technical solutions.

  12. The PV Corrosion Fault Prognosis Based on Ensemble Kalman Filter

    Directory of Open Access Journals (Sweden)

    Radouane Ouladsine

    2017-01-01

    Full Text Available The degradation of photovoltaic (PV modules remains a major concern on the control and the development of the photovoltaic field, particularly, in regions with difficult climatic conditions. The main degradation modes of the PV modules are corrosion, discoloration, glass breaks, and cracks of cells. However, corrosion and discoloration remain the predominant degradation modes that still require further investigations. In this paper, a model-based PV corrosion prognostic approach, based on an ensemble Kalman filter (EnKF, is introduced to identify the PV corrosion parameters and then estimate the remaining useful life (RUL. Simulations have been conducted using measured data set, and results are reported to show the efficiency of the proposed approach.

  13. Retaining the Value of PV at High Penetration Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah; Bolen, Michael

    2017-01-19

    PV prices have dropped and are now attractive without incentives for peaking applications in some locations. Modeling suggests and, empirically, some regions demonstrate that as PV penetration increases its value decreases, predominantly due to a decrease in energy and capacity value. It is not apparent what technologies and price may be needed for PV to supply tens of percent of electricity in the most economically efficient manner. A 1-day workshop was co-sponsored by EPRI and NREL with support from ASU. A dozen presentations and discussions introduced how the interplay of various technologies impact the value of PV, identified technical challenges and gaps impeding implementation, and discussed future R&D needs and opportunities.

  14. A comparison of design features of 80 pv-powered products

    NARCIS (Netherlands)

    Apostolou, G.; Reinders, A.H.M.E.

    2012-01-01

    In this paper 80 commercially available PV products have been analysed. The data set comprises 46 low power PV products in the range of 0 to 17 Wp and 34 PV products with a power of 17 Wp up to 27 kWp. The goal of our study is to investigate and evaluate features of PV products that are available on

  15. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed......, the complex phenomenon of a manufacturing network evolution is observed by combining the analysis of a manufacturing plant and network level. The historical trajectories of manufacturing networks that are presented in the case studies are examined in order to understand and determine the future shape...

  16. Time-dependent first-principles approaches to PV materials

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiyuki [Nanosystem Research Institute, AIST, Central 2, 1-1-1, Umezono, Tsukuba, 305-8568 (Japan)

    2013-12-10

    Computational scheme for designing photovoltaic (PV) materials is presented. First-principles electron dynamics of photo-excitation and subsequent electron-hole splitting is performed based on the time-dependent density functional theory. Photo-induced enhancement of dipole moment was observed in a polar crystal and a donor-acceptor molecular pair. These experiences will pave a way to design PV material from first-principles simulations.

  17. NREL PV working with industry, Third quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.; Cook, G.

    1998-12-04

    This quarterly report encourages cooperative R and D by providing the US PV industry with information on activities and capabilities of the laboratories. This issue contains information on the CIS and CdTe R and D teams, an editorial by Richard King on the stand-out accomplishments of the PV Program, and an overview of the NCPV Program Review Meeting highlighting the strength of US photovoltaics.

  18. Improvements in world-wide intercomparison of PV module calibration

    OpenAIRE

    Salis, E.; Pavanello, D.; Field, M.; Kräling, U.; Neuberger, F.; Kiefer, K.; Osterwald, C.; Rummel, S.; Levi, D.; Hishikawa, Y.; Yamagoe, K.; Ohshima, H.; Yoshita, M.; Müllejans, H.

    2017-01-01

    The calibration of the electrical performance for seven photovoltaic (PV) modules was compared between four reference laboratories on three continents. The devices included two samples in standard and two in high-efficiency crystalline silicon technology, two CI(G)S and one CdTe module. The reference value for each PV module parameter was calculated from the average of the results of all four laboratories, weighted by the respective measurement uncertainties. All single results were then anal...

  19. Measures for diffusion of solar PV in selected African countries

    OpenAIRE

    Nygaard, Ivan; Hansen, Ulrich Elmer; Mackenzie, Gordon A.; Pedersen, Mathilde Brix

    2017-01-01

    This paper investigates how African governments are considering supporting and promoting the diffusion of solar PV. This issue is explored by examining so-called ‘technology action plans (TAPs)’, which were main outputs of the Technology Needs Assessment project implemented in 10 African countries from 2010 to 2013. The paper provides a review of three distinct but characteristic trajectories for PV market development in Kenya (private-led market for solar home systems), Morocco (utility-led ...

  20. Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T system against conventional photovoltaic (PV system

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-11-01

    Full Text Available Photovoltaic (PV semiconductor degrades in performance due to temperature rise. A super thin-conductive thermal absorber is therefore developed to regulate the PV working temperature by retrofitting the existing PV panel into the photovoltaic/thermal (PV/T panel. This article presented the parallel comparative investigation of the two different systems through both laboratory and field experiments. The laboratory evaluation consisted of one PV panel and one PV/T panel respectively while the overall field system involved 15 stand-alone PV panels and 15 retrofitted PV/T panels. The laboratory testing results demonstrated the PV/T panel could achieve the electrical efficiency of about 16.8% (relatively 5% improvement comparing with the stand-alone PV panel, and yield an extra amount of heat with thermal efficiency of nearly 65%. The field testing results indicated that the hybrid PV/T panel could enhance the electrical return of PV panels by nearly 3.5%, and increase the overall energy output by nearly 324.3%. Further opportunities and challenges were then discussed from aspects of different PV/T stakeholders to accelerate the development. It is expected that such technology could become a significant solution to yield more electricity, offset heating load freely and reduce carbon footprint in contemporary energy environment.

  1. Real Time Photovoltaic Array Simulator for Testing Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sera, Dezso; Valentini, Massimo; Raducu, Alin

    2008-01-01

    In this paper a real time flexible PV array simulator is presented. It is a system that can simulate different PV panel arrays in specific environmental conditions. To evaluate performance of the Maximum Power Point Tracking (MPPT) of grid-connected Photovoltaic (PV) inverters only measurements...... undertaken with an appropriate PV array simulator provide accurate and reproducible results. Thus the PV array simulator has been developed and implemented. MPPT efficiency tests on a commercial grid-connected PV inverter have been performed to validate the PV array simulator....

  2. Blood Volume: Importance and Adaptations to Exercise Training, Environmental Stresses and Trauma/Sickness

    Science.gov (United States)

    Sawka, Michael N.; Convertino, Victor A.; Eichner, E. Randy; Schnieder, Suzanne M.; Young, Andrew J.

    2000-01-01

    This paper reviews the influence of several perturbations (physical exercise, heat stress, terrestrial altitude, microgravity, and trauma/sickness) on adaptations of blood volume (BV), erythrocyte volume (EV), and plasma volume (PV). Exercise training can induced BV expansion; PV expansion usually occurs immediately, but EV expansion takes weeks. EV and PV expansion contribute to aerobic power improvements associated with exercise training. Repeated heat exposure induces PV expansion but does not alter EV. PV expansion does not improve thermoregulation, but EV expansion improves thermoregulation during exercise in the heat. Dehydration decreases PV (and increases plasma tonicity) which elevates heat strain and reduces exercise performance. High altitude exposure causes rapid (hours) plasma loss. During initial weeks at altitude, EV is unaffected, but a gradual expansion occurs with extended acclimatization. BV adjustments contribute, but are not key, to altitude acclimatization. Microgravity decreases PV and EV which contribute to orthostatic intolerance and decreased exercise capacity in astronauts. PV decreases may result from lower set points for total body water and central venous pressure, which EV decrease bay result form increased erythrocyte destruction. Trauma, renal disease, and chronic diseases cause anemia from hemorrhage and immune activation, which suppressions erythropoiesis. The re-establishment of EV is associated with healing, improved life quality, and exercise capabilities for these injured/sick persons.

  3. Lifetime Evaluation of Grid-Connected PV Inverters Considering Panel Degradation Rates and Installation Sites

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2018-01-01

    Lifetime of PV inverters is affected by the installation sites related to different solar irradiance and ambient temperature profiles (also referred to as mission profiles). In fact, the installation site also affects the degradation rate of the PV panels, and thus long-term energy production...... and reliability. Prior-art lifetime analysis in PV inverters has not yet investigated the impact of PV panel degradations. This paper thus evaluates the lifetime of PV inverters considering panel degradation rates and mission profiles. Evaluations have been carried out on PV systems installed in Denmark...... and Arizona. The results reveal that the PV panel degradation rate has a considerable impact on the PV inverter lifetime, especially in the hot climate (e.g., Arizona), where the panel degrades at a faster rate. In that case, the PV inverter lifetime prediction can be deviated by 54%, if the impact of PV...

  4. Performance evaluation of stand alone hybrid PV-wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H. [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia); Yahaya, M. S. [Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia)

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  5. Performance evaluation of stand alone hybrid PV-wind generator

    Science.gov (United States)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  6. Continuing Developments in PV Risk Management: Strategies, Solutions, and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Lowder, T.; Mendelsohn, M.; Speer, B.; Hill, R.

    2013-02-01

    As the PV industry matures, successful risk management practices will become more imperative to ensure investor confidence, control costs, and facilitate further growth. This report discusses several key aspects of risk management during the commercial- and utility-scale project life cycle, from identification of risks, to the process of mitigating and allocating those risks among project parties, to transferring those risks through insurance. The report also explores novel techniques in PV risk management, options to offload risks onto the capital markets, and innovative insurance policies (namely warranty policies) that address risks unique to the PV sector. One of the major justifications for robust risk management in the PV industry is the cost-reduction opportunities it affords. If the PV industry can demonstrate the capability to successfully manage its risks, thereby inspiring confidence in financiers, it may be able to obtain a lower cost of capital in future transactions. A lower cost of capital translates to a lower cost of energy, which will in turn enhance PV?s competitiveness at a time when it will have to rely less on subsidies to support its market penetration.

  7. Performance analysis of PV panel under varying surface temperature

    Directory of Open Access Journals (Sweden)

    Kumar Tripathi Abhishek

    2018-01-01

    Full Text Available The surface temperature of PV panel has an adverse impact on its performance. The several electrical parameters of PV panel, such as open circuit voltage, short circuit current, power output and fill factor depends on the surface temperature of PV panel. In the present study, an experimental work was carried out to investigate the influence of PV panel surface temperature on its electrical parameters. The results obtained from this experimental study show a significant reduction in the performance of PV panel with an increase in panel surface temperature. A 5W PV panel experienced a 0.4% decrease in open circuit voltage for every 1°C increase in panel surface temperature. Similarly, there was 0.6% and 0.32% decrease in maximum power output and in fill factor, respectively, for every 1°C increase in panel surface temperature. On the other hand, the short circuit current increases with the increase in surface temperature at the rate of 0.09%/°C.

  8. Review of Artificial Abrasion Test Methods for PV Module Technology

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muller, Matt T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpson, Lin J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This review is intended to identify the method or methods--and the basic details of those methods--that might be used to develop an artificial abrasion test. Methods used in the PV literature were compared with their closest implementation in existing standards. Also, meetings of the International PV Quality Assurance Task Force Task Group 12-3 (TG12-3, which is concerned with coated glass) were used to identify established test methods. Feedback from the group, which included many of the authors from the PV literature, included insights not explored within the literature itself. The combined experience and examples from the literature are intended to provide an assessment of the present industry practices and an informed path forward. Recommendations toward artificial abrasion test methods are then identified based on the experiences in the literature and feedback from the PV community. The review here is strictly focused on abrasion. Assessment methods, including optical performance (e.g., transmittance or reflectance), surface energy, and verification of chemical composition were not examined. Methods of artificially soiling PV modules or other specimens were not examined. The weathering of artificial or naturally soiled specimens (which may ultimately include combined temperature and humidity, thermal cycling and ultraviolet light) were also not examined. A sense of the purpose or application of an abrasion test method within the PV industry should, however, be evident from the literature.

  9. Performance Parameters for Grid-Connected PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marion, B.; Adelstein, J.; Boyle, K.; Hayden, H.; Hammond, B.; Fletcher, T.; Canada, B.; Narang, D.; Shugar, D.; Wenger, H.; Kimber, A.; Mitchell, L.; Rich, G.; Townsend, T.

    2005-02-01

    The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.

  10. Fuzzy Logic Based MPPT Controller for a PV System

    Directory of Open Access Journals (Sweden)

    Carlos Robles Algarín

    2017-12-01

    Full Text Available The output power of a photovoltaic (PV module depends on the solar irradiance and the operating temperature; therefore, it is necessary to implement maximum power point tracking controllers (MPPT to obtain the maximum power of a PV system regardless of variations in climatic conditions. The traditional solution for MPPT controllers is the perturbation and observation (P&O algorithm, which presents oscillation problems around the operating point; the reason why improving the results obtained with this algorithm has become an important goal to reach for researchers. This paper presents the design and modeling of a fuzzy controller for tracking the maximum power point of a PV System. Matlab/Simulink (MathWorks, Natick, MA, USA was used for the modeling of the components of a 65 W PV system: PV module, buck converter and fuzzy controller; highlighting as main novelty the use of a mathematical model for the PV module, which, unlike diode based models, only needs to calculate the curve fitting parameter. A P&O controller to compare the results obtained with the fuzzy control was designed. The simulation results demonstrated the superiority of the fuzzy controller in terms of settling time, power loss and oscillations at the operating point.

  11. Residential Solar PV Systems in the Carolinas: Opportunities and Outcomes.

    Science.gov (United States)

    Alqahtani, Bandar Jubran; Holt, Kyra Moore; Patiño-Echeverri, Dalia; Pratson, Lincoln

    2016-02-16

    This paper presents a first-order analysis of the feasibility and technical, environmental, and economic effects of large levels of solar photovoltaic (PV) penetration within the services areas of the Duke Energy Carolinas (DEC) and Duke Energy Progress (DEP). A PV production model based on household density and a gridded hourly global horizontal irradiance data set simulates hourly PV power output from roof-top installations, while a unit commitment and real-time economic dispatch (UC-ED) model simulates hourly system operations. We find that the large generating capacity of base-load nuclear power plants (NPPs) without ramping capability in the region limits PV integration levels to 5.3% (6510 MW) of 2015 generation. Enabling ramping capability for NPPs would raise the limit of PV penetration to near 9% of electricity generated. If the planned retirement of coal-fired power plants together with new installations and upgrades of natural gas and nuclear plants materialize in 2025, and if NPPs operate flexibly, then the share of coal-fired electricity will be reduced from 37% to 22%. A 9% penetration of electricity from PV would further reduce the share of coal-fired electricity by 4-6% resulting in a system-wide CO2 emissions rate of 0.33 to 0.40 tons/MWh and associated abatement costs of 225-415 (2015$ per ton).

  12. PVMirrors: Hybrid PV/CSP collectors that enable lower LCOEs

    Science.gov (United States)

    Fisher, Kate; Yu, Zhengshan Jason; Striling, Rob; Holman, Zachary

    2017-06-01

    The primary challenge with concentrating solar power (CSP) is that the conversion efficiency is low—and the cost high—compared to that of photovoltaics (PV), and the primary challenge with PV is that the energy generated cannot be stored cost effectively. We introduce a technology that hybridizes CSP and PV, resulting in power plants with high energy conversion efficiency and affordable storage. This is accomplished by replacing silvered troughs (or heliostat facets) with "PVMirrors" that and direct photons of each wavelength to the converter (PV or thermal) that may best use them. A PVMirror looks like a curved PV module that includes a spectrum-splitting dichroic mirror film; this film, which is the heart of the technology, transmits near-infrared light to the underlying silicon PV cells while reflecting both longer and shorter wavelengths to a thermal absorber tube. This paper investigates the optical performance of dichroic mirror film, the specularity of PVMirrors, and the anticipated levelized cost of energy (LCOE) from a PVMirror power plant. PVMirrors are found to decrease LCOE by more than 15% relative to CSP while retaining full dispatchability.

  13. Battery Energy Storage System for PV Output Power Leveling

    Directory of Open Access Journals (Sweden)

    Rajkiran Singh

    2014-01-01

    Full Text Available Fluctuating photovoltaic (PV output power reduces the reliability in power system when there is a massive penetration of PV generators. Energy storage systems that are connected to the PV generators using bidirectional isolated dc-dc converter can be utilized for compensating the fluctuating PV power. This paper presents a grid connected energy storage system based on a 2 kW full-bridge bidirectional isolated dc-dc converter and a PWM converter for PV output power leveling. This paper proposes two controllers: a current controller using the d-q synchronous reference and a phase-shift controller. The main function of the current controller is to regulate the voltage at the high-side dc, so that the voltage ratio of the high-voltage side (HVS with low-voltage side (LVS is equal to the transformer turns ratio. The phase-shift controller is employed to manage the charging and discharging modes of the battery based on PV output power and battery voltage. With the proposed system, unity power factor and efficient active power injection are achieved. The feasibility of the proposed control system is investigated using PSCAD simulation.

  14. Review of PV Inverter Technology Cost and Performance Projections

    Energy Technology Data Exchange (ETDEWEB)

    Navigant Consulting Inc.

    2006-01-01

    The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

  15. Accelerating PV Cost Effectiveness Through Systems Design, Engineering, and Quality Assurance: Phase I Annual Technical Report, 4 November 2004 - 3 November 2005

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, J.

    2006-07-01

    During Phase I of this PV Manufacturing R&D subcontract, PowerLight Corporation has made significant progress toward the reduction of installed costs for commercial-scale, rooftop PV systems. PowerLight has worked to reduce operating costs by improving long-term reliability and performance through the development of more sophisticated tools used in system design and monitoring. Additionally, PowerLight has implemented design improvements with the goal of reducing cost while maintaining and/or improving product quality. As part of this effort, PowerLight also modified manufacturing and shipping processes to accommodate these design changes, streamline material flow, reduce cost, and decrease waste streams. During Phase II of this project, PowerLight plans to continue this work with the goal of reducing system cost and improving system performance.

  16. Low Cost Automated Manufacture of PV Array Technology (P-NASA12-007-1) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft for NASA, DoD and commercial missions need higher power than ever before, with lower mass, compact stowage, and lower cost. While high efficiency,...

  17. What drives the profitability of household PV investments, self-consumption and self-sufficiency?

    OpenAIRE

    BERTSCH, VALENTIN; Geldermann, Jutta; Lühn, Tobias

    2017-01-01

    Many countries introduced subsidy schemes that were successful in incentivising investments into residential solar PV. The resulting growth of the global PV market was accompanied by cost reductions for PV systems, reductions of PV subsidies and, often, increasing electricity retail prices. Along with decreasing costs for battery storages, these developments made self-consumption and self-sufficiency continuously more attractive. However, the profitability of PV-storage systems depends on man...

  18. A Software Tool for Optimal Sizing of PV Systems in Malaysia

    OpenAIRE

    Tamer Khatib; Azah Mohamed; K. Sopian

    2012-01-01

    This paper presents a MATLAB based user friendly software tool called as PV.MY for optimal sizing of photovoltaic (PV) systems. The software has the capabilities of predicting the metrological variables such as solar energy, ambient temperature and wind speed using artificial neural network (ANN), optimizes the PV module/ array tilt angle, optimizes the inverter size and calculate optimal capacities of PV array, battery, wind turbine and diesel generator in hybrid PV systems. The ANN based mo...

  19. Qualification Testing Versus Quantitative Reliability Testing of PV - Gaining Confidence in a Rapidly Changing Technology: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Repins, Ingrid L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hacke, Peter L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jordan, Dirk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kempe, Michael D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Whitfield, Kent [Underwriters Laboratories; Phillips, Nancy [DuPont; Sample, Tony [European Commission; Monokroussos, Christos [TUV Rheinland; Hsi, Edward [Swiss RE; Wohlgemuth, John [PowerMark Corporation; Seidel, Peter [First Solar; Jahn, Ulrike [TUV Rheinland; Tanahashi, Tadanori [National Institute of Advanced Industrial Science and Technology; Chen, Yingnan [China General Certification Center; Jaeckel, Bengt [Underwriters Laboratories; Yamamichi, Masaaki [RTS Corporation

    2017-10-05

    Continued growth of PV system deployment would be enhanced by quantitative, low-uncertainty predictions of the degradation and failure rates of PV modules and systems. The intended product lifetime (decades) far exceeds the product development cycle (months), limiting our ability to reduce the uncertainty of the predictions for this rapidly changing technology. Yet, business decisions (setting insurance rates, analyzing return on investment, etc.) require quantitative risk assessment. Moving toward more quantitative assessments requires consideration of many factors, including the intended application, consequence of a possible failure, variability in the manufacturing, installation, and operation, as well as uncertainty in the measured acceleration factors, which provide the basis for predictions based on accelerated tests. As the industry matures, it is useful to periodically assess the overall strategy for standards development and prioritization of research to provide a technical basis both for the standards and the analysis related to the application of those. To this end, this paper suggests a tiered approach to creating risk assessments. Recent and planned potential improvements in international standards are also summarized.

  20. Hypovolemia explains the reduced stroke volume at altitude

    NARCIS (Netherlands)

    Siebenmann, Christoph; Hug, Mike; Keiser, Stefanie; Müller, Andrea; van Lieshout, Johannes; Rasmussen, Peter; Lundby, Carsten

    2013-01-01

    During acute altitude exposure tachycardia increases cardiac output (Q) thus preserving systemic O2 delivery. Within days of acclimatization, however, Q normalizes following an unexplained reduction in stroke volume (SV). To investigate whether the altitude-mediated reduction in plasma volume (PV)

  1. Sustainable manufacturing challenges, solutions and implementation perspectives

    CERN Document Server

    Seliger, Günther; Bonvoisin, Jérémy

    2017-01-01

    Sustainability imposes an unprecedented challenge on society and has become the driving force of an urgent search for innovative solutions in all branches of economy. Manufacturing plays a key role in many areas of human living, and it is both part of the problem and of the solution. This book offers an overview of the broad field of research on sustainability in manufacturing with a particular focus on manufacturing technology and management. It summarizes the current challenges, describes best in class methods for development of sustainable manufacturing solutions and offers implementation perspectives. This volume covers areas of research such as production processes, product development, business model and corporate development, macro economy and education. The target audience primarily comprises research experts and practitioners in the field of manufacturing, but the book may also be beneficial for graduate students. .

  2. Strategic Roles of Manufacturing

    DEFF Research Database (Denmark)

    Yang, Cheng

    Addressing three development trends of manufacturing, this thesis aims to explore: (1) facing challenges on manufacturing (globalisation, knowledge-based manufacturing and servitisation of manufacturing), what kinds of roles does manufacturing play within industrial companies; (2) along...... with the trend of globalisation, how do industrial companies develop their global manufacturing networks? These two questions are actually interlinked. On the one hand, facing increasing offshoring and outsourcing of production activities, industrial companies have to understand how to develop their global...... manufacturing networks. On the other hand, ongoing globalisation also brings tremendous impacts to post-industrial economies (e.g. Denmark). A dilemma therefore arises, i.e. whether it is still necessary to keep manufacturing in these post-industrial economies; if yes, what kinds of roles manufacturing should...

  3. Analysis of performance and device parameters of CIGS PV modules deployed outdoors

    Energy Technology Data Exchange (ETDEWEB)

    Radue, C. [Physics Department, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth, 6031 (South Africa)], E-mail: chantelle.radue@nmmu.ac.za; Dyk, E.E. van; Macabebe, E.Q. [Physics Department, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth, 6031 (South Africa)

    2009-02-02

    Two 20 W copper indium gallium diselenide photovoltaic modules were subjected to a thorough indoor assessment procedure, followed by outdoor deployment at the Nelson Mandela Metropolitan University as part of an ongoing study. The initial indoor measurement of maximum power output (P{sub MAX}) of one of the modules was considerably higher than the manufacturer's rating (E.E. van Dyk, C. Radue and A.R. Gxasheka, Thin Solid Films 515 (2007) 6196). The modules were deployed on a dual-axis solar tracker and current-voltage characteristics were obtained weekly. In addition to the normal PV parameters of short-circuit current, open-circuit voltage, P{sub MAX}, fill factor and efficiency, shunt and series resistances were also monitored. The performances of the two modules are compared and analyzed and the results presented in this paper.

  4. Fidelity susceptibility as holographic PV-criticality

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Myrzakulov, Kairat, E-mail: kairatmyrzakul@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Myrzakulov, Ratbay, E-mail: rmyrzakulov@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2017-02-10

    It is well known that entropy can be used to holographically establish a connection among geometry, thermodynamics and information theory. In this paper, we will use complexity to holographically establish a connection among geometry, thermodynamics and information theory. Thus, we will analyze the relation among holographic complexity, fidelity susceptibility, and thermodynamics in extended phase space. We will demonstrate that fidelity susceptibility (which is the informational complexity dual to a maximum volume in AdS) can be related to the thermodynamical volume (which is conjugate to the cosmological constant in the extended thermodynamic phase space). Thus, this letter establishes a relation among geometry, thermodynamics, and information theory, using complexity.

  5. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    Science.gov (United States)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal

  6. Performance of a 34 kWp grid-connected PV system in Indonesia - A comparison of tropical and European PV systems

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.

    2014-01-01

    We analysed a monitored grid-connected PV system of 34 kWp in Indonesia to investigate the performance of PV systems in tropical climates. The PV system has been installed in Jayapura, the capital of the Province of Papua, Indonesia, by the beginning of 2012. Due to the aged gensets and frequent

  7. PV Cell and Module Calibrations at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Keith

    2012-10-22

    NREL has equipment to measure any conceivable cell or module technology. The lack of standards for low concentration modules complicates matters. Spectrally adjustable simulators are critical for more than three junctions. NREL's 10-channel fiber optic simulator has shown that the light can be set for each junction within 1% of what it would be under the reference spectrum for up to a five-junction cell. Uncertainty in module simulators dominated by spatial nonuniformity for calibration labs. Manufacturers can mitigate this error by using matched reference modules instead of cells.

  8. Orthostatic stress response during the menstrual cycle is unaltered in formerly preeclamptic women with low plasma volume.

    NARCIS (Netherlands)

    Courtar, D.A.; Spaanderman, M.E.A.; Janssen, B.J.; Peeters, L.L.

    2007-01-01

    Plasma volume (PV) varies with the menstrual cycle not only in healthy parous controls (CON) but also in formerly preeclamptic women with a subnormal PV (LPV). It is unknown whether formerly preeclamptic women with LPV are more susceptible to orthostatic stress than healthy controls. In this study,

  9. PV-BUK: Operating and maintenance costs of photovoltaic installations; PV-BUK - Betriebs- und Unterhaltskosten von PV-Anlagen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stettler, S.; Toggweiler, P. [Enecolo AG, Moenchaltorf (Switzerland); Ruoss, D.; Schudel, P. [Envision, Lucerne (Switzerland); Kottmann, A.; Steinle, F. [BE Netz AG, Lucerne (Switzerland)

    2008-03-15

    This final report elaborated for the Swiss Federal Office of Energy (SFOE) takes a look at the results of a project carried out to determine the costs for facility management, to estimate future cost development and to propose activities for the further reduction of the operation and maintenance costs of photovoltaic systems. Information on the cost situation was collected by literature study, as well as in interviews and surveys with photovoltaic (PV) experts and the owners of PV installations. The discussion of the results at a workshop with about 20 Swiss PV experts is noted. The results are presented and discussed. These show that operating costs per kWh decrease with the size of the PV system. Figures are quoted. The major part of the costs are quoted as being those for spare parts, especially for the inverter. The authors are of the opinion that, in future, costs for facility management will further decrease, as they are partly linked to capital and insurance costs. Potential for optimisation is said to exist in several areas of facility management such as, for example, in system monitoring and fast reaction in the case of malfunctions.

  10. Electrical Rating of Concentrated Photovoltaic (CPV) Systems: Long-Term Performance Analysis and Comparison to Conventional PV Systems

    KAUST Repository

    Burhan, Muhammad

    2016-02-29

    The dynamic nature of meteorological data and the commercial availability of diverse photovoltaic systems, ranging from single-junction silicon-based PV panels to concentrated photovoltaic (CPV) systems utilizing multi-junction solar cells and a two-axis solar tracker, demand a simple but accurate methodology for energy planners and PV system designers to understand the economic feasibility of photovoltaic or renewable energy systems. In this paper, an electrical rating methodology is proposed that provides a common playing field for planners, consumers and PV manufacturers to evaluate the long-term performance of photovoltaic systems, as long-term electricity rating is deemed to be a quick and accurate method to evaluate economic viability and determine plant sizes and photovoltaic system power production. A long-term performance analysis based on monthly and electrical ratings (in kWh/m2/year) of two developed CPV prototypes, the Cassegrain mini dish and Fresnel lens CPVs with triple-junction solar cells operating under the meteorological conditions of Singapore, is presented in this paper. Performances are compared to other conventional photovoltaic systems.

  11. Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Arens, Anne I.J.; Grootjans, Willem; Oyen, Wim J.G.; Visser, Eric P. [Radboud University Medical Center, Department of Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); Troost, Esther G.C. [Radboud University Medical Center, Department of Radiation Oncology, Nijmegen (Netherlands); Maastricht University Medical Centre, MAASTRO clinic, GROW School for Oncology and Developmental Biology, Maastricht (Netherlands); Hoeben, Bianca A.W.; Bussink, Johan; Kaanders, Johannes H.A.M. [Radboud University Medical Center, Department of Radiation Oncology, Nijmegen (Netherlands); Lee, John A.; Gregoire, Vincent [St-Luc University Hospital, Department of Radiation Oncology, Universite Catholique de Louvain, Brussels (Belgium); Hatt, Mathieu; Visvikis, Dimitris [Laboratoire de Traitement de l' Information Medicale (LaTIM), INSERM UMR1101, Brest (France)

    2014-05-15

    Radiotherapy of head and neck cancer induces changes in tumour cell proliferation during treatment, which can be depicted by the PET tracer {sup 18}F-fluorothymidine (FLT). In this study, three advanced semiautomatic PET segmentation methods for delineation of the proliferative tumour volume (PV) before and during (chemo)radiotherapy were compared and related to clinical outcome. The study group comprised 46 patients with 48 squamous cell carcinomas of the head and neck, treated with accelerated (chemo)radiotherapy, who underwent FLT PET/CT prior to treatment and in the 2nd and 4th week of therapy. Primary gross tumour volumes were visually delineated on CT images (GTV{sub CT}). PVs were visually determined on all PET scans (PV{sub VIS}). The following semiautomatic segmentation methods were applied to sequential PET scans: background-subtracted relative-threshold level (PV{sub RTL}), a gradient-based method using the watershed transform algorithm and hierarchical clustering analysis (PV{sub W} and {sub C}), and a fuzzy locally adaptive Bayesian algorithm (PV{sub FLAB}). Pretreatment PV{sub VIS} correlated best with PV{sub FLAB} and GTV{sub CT}. Correlations with PV{sub RTL} and PV{sub W} and {sub C} were weaker although statistically significant. During treatment, the PV{sub VIS}, PV{sub W} and {sub C} and PV{sub FLAB} significant decreased over time with the steepest decline over time for PV{sub FLAB}. Among these advanced segmentation methods, PV{sub FLAB} was the most robust in segmenting volumes in the third scan (67 % of tumours as compared to 40 % for PV{sub W} and {sub C} and 27 % for PV{sub RTL}). A decrease in PV{sub FLAB} above the median between the pretreatment scan and the scan obtained in the 4th week was associated with better disease-free survival (4 years 90 % versus 53 %). In patients with head and neck cancer, FLAB proved to be the best performing method for segmentation of the PV on repeat FLT PET/CT scans during (chemo)radiotherapy. This may

  12. Further Cost Reduction of Battery Manufacturing

    Directory of Open Access Journals (Sweden)

    Amir A. Asif

    2017-06-01

    Full Text Available The demand for batteries for energy storage is growing with the rapid increase in photovoltaics (PV and wind energy installation as well as electric vehicle (EV, hybrid electric vehicle (HEV and plug-in hybrid electric vehicle (PHEV. Electrochemical batteries have emerged as the preferred choice for most of the consumer product applications. Cost reduction of batteries will accelerate the growth in all of these sectors. Lithium-ion (Li-ion and solid-state batteries are showing promise through their downward price and upward performance trends. We may achieve further performance improvement and cost reduction for Li-ion and solid-state batteries through reduction of the variation in physical and electrical properties. These properties can be improved and made uniform by considering the electrical model of batteries and adopting novel manufacturing approaches. Using quantum-photo effect, the incorporation of ultra-violet (UV assisted photo-thermal processing can reduce metal surface roughness. Using in-situ measurements, advanced process control (APC can help ensure uniformity among the constituent electrochemical cells. Industrial internet of things (IIoT can streamline the production flow. In this article, we have examined the issue of electrochemical battery manufacturing of Li-ion and solid-state type from cell-level to battery-level process variability, and proposed potential areas where improvements in the manufacturing process can be made. By incorporating these practices in the manufacturing process we expect reduced cost of energy management system, improved reliability and yield gain with the net saving of manufacturing cost being at least 20%.

  13. Performance of a PV module augmented by a plane reflector

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, G. E; Hussein, H. M. S; Mohamad, M. A [Dokki, Giza (Egypt)

    2000-07-01

    This paper presents a comparative experimental study on the performance of a PV module augmented by a south facing titled plane reflector and another identical one without reflector. The tilt angles of the two PV modules and reflector overhang are selected to be according to a previous theoretical study by the authors. The reflector tilt angle has been changed once a month so that the reflected beams from the plane reflector cover the total surface area of the PV module all days of every month during the high solar radiation period (i.e. three hours before and after solar noon). The study has been carried out on the two PV modules for a complete year under the actual atmospheric conditions of Cairo, Egypt. The measuring system used in the study comprises a data acquisition system, a computer, an electronic load and weather station. The experimental results indicate that the plane reflector enhances the yearly output energy of the PV module y about 22%. [Spanish] Este articulo presenta un estudio comparativo experimental sobre el rendimiento de un modulo de PV aumentado por un reflector plano inclinado mirando hacia el sur y otro identico sin reflector. Los angulos de inclinacion de los dos modulos y el reflector sobresaliente se seleccionan para que esten de acuerdo con un estudio teorico previo hecho por los autores. El angulo de inclinacion del reflector se cambio una vez al mes de manera que los rayos reflejados por el reflector plano cubrieran el area total de la superficie del modulo de PV todos los dias de cada mes durante el periodo de radiacion alto (o sea tres horas antes y despues del medio dia solar). El estudio ha sido llevado a cabo en dos modulos de PV durante un ano completo bajo condiciones atmosfericas reales de El Cairo, Egipto. El sistema de medicion usado en el estudio comprende un sistema de adquisicion de datos, una computadora, una memoria electronica y una estacion climatologica. Los resultados experimentales indican que el reflector plano

  14. Methods for the Optimal Design of Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2011-01-01

    The DC/AC inverters are used in grid-connected PV energy production systems as the power processing interface between the PV energy source and the electric grid. The energy injected into the electric grid by the PV installation depends on the amount of power extracted from the PV power source...... and the efficient processing of this power by the DC/AC inverter. In this paper two new methods are presented for the optimal design of a PV inverter power section, output filter and MPPT control strategy. The influences of the electric grid regulations and standards as well as the PV array operational...... characteristics on the design of grid-connected PV inverters have been considered. The proposed methods have been applied for the optimal design of PV inverters installed at various sites in Europe. The simulation results verify that the proposed optimization techniques enable the maximization of the PV energy...

  15. Lifetime Evaluation of PV Inverters considering Panel Degradation Rates and Installation Sites

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2017-01-01

    The PV inverter lifetime is affected by the installed sites related to different solar irradiance and ambient temperature profiles. In fact, the installation site also affects the PV panel degradation rate, and thus the long-term power production. Prior-art lifetime analysis in PV inverters has...... not yet investigated the impact of panel degradation. This paper thus evaluates the lifetime of PV inverters considering panel degradation rates and installation sites. Evaluations have been carried out on PV systems installed in Denmark and Arizona. The results reveal that the PV panel degradation rate...... has a considerable impact on the PV inverter lifetime, especially in the hot climate (e.g., Arizona), where the panel degrades at a faster rate. In that case, the PV inverter lifetime estimation can be deviated by 54%, if the impact of PV panel degradation is not taken into account....

  16. Manufacturing in Denmark

    DEFF Research Database (Denmark)

    Hansen, Johannes; Boer, Henrike Engele Elisabeth; Boer, Harry

    This report compares the manufacturing strategies, practices, performances and improvement activities of 39 companies that are representative for the Danish assembly industry with those of 804 companies from 19 other countries. The data supporting this report were collected in 2013 and concern......: • Manufacturing strategies pursued and implemented between 2010 and 2012. • Performance improvements achieved during that period. • Actual manufacturing practices and performances as well as competitive priorities in 2012. • Manufacturing strategies pursued for the years 2010-2012....

  17. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  18. Wire + Arc Additive Manufacturing

    OpenAIRE

    Williams, Stewart W.; Martina, Filomeno; Addison, Adrian C.; Ding, Jialuo; Pardal, Goncalo; Colegrove, Paul A.

    2016-01-01

    Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to ...

  19. Methodology for assessment of characteristics of PV water pumping systems using a DC power supply; Metodologia de levantamento de caracteristicas de sistemas fotovoltaicos de bombeamento d'agua utilizando fonte de alimentacao CC

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Olga de Castro; Fraidenraich, Naum [Universidade Federal de Pernambuco (FAE/DEN/UFPE), Recife, PE (Brazil). Grupo de Fontes Alternativas de Energia. Dept. de Energia Nuclear], Emails: ocv@ufpe.br, nf@ufpe.br; Galdino, Marco Antonio [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)], E-mail: marcoag@cepel.br

    2010-07-01

    This article describes a methodology which was used to reduce the time required to perform experimental assessment of characteristic curves (flowrate vs. solar irradiance) of PV water pumping systems showing different configurations. The characteristic curves are proposed to be obtained from two other types of curves: flowrate vs. DC power - measured using a DC power supply adjusted to simulate the operation of the PV panel in the system, and DC power vs. solar irradiance - obtained through outdoors measurements using PV panels. It is demonstrated how is possible to reduce the number of days of outdoor measurements necessary for obtaining these curves when the systems under test show configurations using the same pumping heights or the same PV panels. The flowrates, thus also the daily pumped volumes, calculated using the curves obtained through this methodology are considered the upper limits of system performance. (author)

  20. PV Reconfiguration Systems: a Technical and Economic Study

    Directory of Open Access Journals (Sweden)

    Caruso M.

    2017-03-01

    Full Text Available Dynamical electrical array reconfiguration strategies for grid-connected PV systems have been proposed as solution to improve energy production due to the mismatch effect of PV plants during partial shading conditions. Strategies are based on the use of dynamic connections between PV panels given by the employment of switches that allow for each panel the series, parallel or exclusion connections, physically changing the electrical connections between the related PV modules, consequentially modifying the layout of the plant. Usually the cost of the dynamic matrix is not taken into account. This novel work evaluates the economic advantages obtained by the use of reconfiguration strategies in PV systems, by taking into consideration the price of energy due to incentives in different European and non-European countries and correlates it with the employment of two types of reconfigurators, with different internal structures. For each of the incentives proposed by the different Countries, the main strength and weakness points of the possible investment are highlighted and critically analyzed. From this analysis, it can be stated that the adoption of reconfiguration systems, in certain cases, can be a very convenient solution.

  1. Solar Plus: A Holistic Approach to Distributed Solar PV

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cutler, Dylan S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-08

    Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domestic water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.

  2. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  3. ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Can Coskun

    2016-12-01

    Full Text Available This study aimed to use the artificial neural network (ANN method to estimate the surface temperature of a photovoltaic (PV panel. Using the experimentally obtained PV data, the accuracy of the ANN model was evaluated. To train the artificial neural network (ANN, outer temperature solar radiation and wind speed values were inputs and surface temperature was an output. The ANN was used to estimate PV panel surface temperature. Using the Levenberg-Marquardt (LM algorithm the feed forward artificial neural network was trained. Two back propagation type ANN algorithms were used and their performance was compared with the estimate from the LM algorithm. To train the artificial neural network, experimental data were used for two thirds with the remaining third used for testing. Additionally scaled conjugate gradient (SCG back propagation and resilient back propagation (RB type ANN algorithms were used for comparison with the LM algorithm. The performances of these three types of artificial neural network were compared and mean error rates of between 0.005962 and 0.012177% were obtained. The best estimate was produced by the LM algorithm. Estimation of PV surface temperature with artificial neural networks provides better results than conventional correlation methods. This study showed that artificial neural networks may be effectively used to estimate PV surface temperature.

  4. Design of direct solar PV driven air conditioner

    KAUST Repository

    Huang, Bin-Juine

    2015-12-05

    © 2015 Elsevier Ltd. Solar air conditioning system directly driven by stand-alone solar PV is studied. The air conditioning system will suffer from loss of power if the solar PV power generation is not high enough. It requires a proper system design to match the power consumption of air conditioning system with a proper PV size. Six solar air conditioners with different sizes of PV panel and air conditioners were built and tested outdoors to experimentally investigate the running probabilities of air conditioning at various solar irradiations. It is shown that the instantaneous operation probability (OPB) and the runtime fraction (RF) of the air conditioner are mainly affected by the design parameter rpL (ratio of maximum PV power to load power). The measured OPB is found to be greater than 0.98 at instantaneous solar irradiation IT > 600 W m-2 if rpL > 1.71 RF approaches 1.0 (the air conditioner is run in 100% with solar power) at daily-total solar radiation higher than 13 MJ m-2 day-1, if rpL > 3.

  5. Solar Plus: A Holistic Approach to Distributed Solar PV

    Energy Technology Data Exchange (ETDEWEB)

    O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ardani, Kristen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-25

    Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domestic water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.

  6. Geographic smoothing of solar PV: results from Gujarat

    Science.gov (United States)

    Klima, Kelly; Apt, Jay

    2015-10-01

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log-log domain at high frequencies f, ranging from {f}-1.23 to {f}-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a {f}-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an {f}-1.76 spectrum. This suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.

  7. Thermal performances of vertical hybrid PV/T air collector

    Science.gov (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  8. Advanced Manufacture of Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Roger [Univ. of Arizona, Tucson, AZ (United States)

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  9. Micro/Nano manufacturing

    DEFF Research Database (Denmark)

    Tosello, Guido

    2017-01-01

    Micro- and nano-scale manufacturing has been the subject of an increasing amount of interest and research effort worldwide in both academia and industry over the past 10 years.Traditional (MEMS) manufacturing, but also precision manufacturing technologies have been developed to cover micro...

  10. Genetic Diversity and Pathogenic Variation of Common Blight Bacteria (Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans) Suggests Pathogen Coevolution with the Common Bean.

    Science.gov (United States)

    Mkandawire, Alexander B C; Mabagala, Robert B; Guzmán, Pablo; Gepts, Paul; Gilbertson, Robert L

    2004-06-01

    ABSTRACT Common bacterial blight (CBB), caused by Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans, is one of the most important diseases of common bean (Phaseolus vulgaris) in East Africa and other bean-growing regions. Xanthomonad-like bacteria associated with CBB in Malawi and Tanzania, East Africa, and in Wisconsin, U.S., were characterized based on brown pigment production, pathogenicity on common bean, detection with an X. campestris pv. phaseoli- or X. campestris pv. phaseoli var. fuscans-specific PCR primer pair, and repetitive element polymerase chain reaction (rep-PCR) and restriction fragment length polymorphism (RFLP) analyses. The common bean gene pool (Andean or Middle American) from which each strain was isolated also was determined. In Malawi, X. campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans were isolated predominantly from Andean or Middle American beans, respectively. In Tanzania, X. campestris pv. phaseoli var. fuscans was most commonly isolated, irrespective of gene pool; whereas, in Wisconsin, only X. campestris pv. phaseoli was isolated from Andean red kidney beans. Three rep-PCR fingerprints were obtained for X. campestris pv. phaseoli strains; two were unique to East African strains, whereas the other was associated with strains collected from all other (mostly New World) locations. RFLP analyses with repetitive DNA probes revealed the same genetic diversity among X. campestris pv. phaseoli strains as did rep-PCR. These probes hybridized with only one or two fragments in the East African strains, but with multiple fragments in the other X. campestris pv. phaseoli strains. East African X. campestris pv. phaseoli strains were highly pathogenic on Andean beans, but were significantly less pathogenic on Middle American beans. In contrast, X. campestris pv. phaseoli strains from New World locations were highly pathogenic on beans of both gene pools. Together, these results indicate the

  11. Low Cost Lithography Tool for High Brightness LED Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  12. Advanced Manufacturing Technologies (AMT): Manufacturing Initiative Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA supports the Advanced Manufacturing National Program Office (AMNPO). Hosted by the National Institute of Standards and Technology (NIST) the AMNPO is...

  13. Manufacturer Identification Code (MID) - ACE

    Data.gov (United States)

    Department of Homeland Security — The ACE Manufacturer Identification Code (MID) application is used to track and control identifications codes for manufacturers. A manufacturer is identified on an...

  14. Photovoltaic Module Simulink Model for a Stand-alone PV System

    Science.gov (United States)

    Qi, Chen; Ming, Zhu

    Photovoltaic(PV) Module is indispensable of a stand-alone PV system. In this paper, a one-diode equivalent circuit-based versatile simulation model in the form of masked block PV module is proposed. By the model, it is allowed to estimate behavior of PV module with respect changes on irradiance intensity, ambient temperature and parameters of the PV module. In addition, the model is capable of function of Maximum Power Point Tracking (MPPT) which can be used in the dynamic simulation of stand-alone PV systems.

  15. Grid Integration of PV Power based on PHIL testing using different Interface Algorithms

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2013-01-01

    Photovoltaic (PV) power among all renewable energies had the most accelerated growth rate in terms of installed capacity in recent years. Transmission System Operators (TSOs) changed their perspective about PV power and started to include it into their planning and operation, imposing PV systems...... to be more active in grid support. Therefore, a better understanding and detailed analysis of the PV systems interaction with the grid is needed; hence power hardware in the loop (PHIL) testing involving PV power became an interesting subject to look into. To test PV systems for grid code (GC) compliance...

  16. Manufacturing Planning Guide

    Science.gov (United States)

    Waid, Michael

    2011-01-01

    Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  17. Chapter 10.3: Reliability and Durability of PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah

    2017-01-07

    Each year the world invests tens of billions of dollars or euros in PV systems with the expectation that these systems will last approximately 25 years. Although the disciplines of reliability, quality, and service life prediction have been well established for numerous products, a full understanding of these is currently challenging for PV modules because the desired service lifetimes are decades, preventing direct verification of lifetime predictions. A number of excellent reviews can be found in the literature summarizing the types of failures that are commonly observed for PV modules. This chapter discusses key failure/degradation mechanisms selected to highlight how the kinetics of failure rates can and cannot be confidently predicted. For EVA-encapsulated modules, corrosion is observed to follow delamination, which then allows water droplets to directly contact the metallization. Extended test protocols such as Qualification Plus were created to address the known problems while standards groups update standard tests through the consensus process.

  18. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    Energy Technology Data Exchange (ETDEWEB)

    Enbar, Nadav [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weng, Dean [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefit the industry at-large.

  19. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    Energy Technology Data Exchange (ETDEWEB)

    Enbar, Nadav [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Weng, Dean [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefi t the industry at-large.

  20. Models for a stand-alone PV system

    DEFF Research Database (Denmark)

    Hansen, A.D.; Sørensen, Poul Ejnar; Hansen, L.H.

    2001-01-01

    This report presents a number of models for modelling and simulation of a stand-alone photovoltaic (PV) system with a battery bank verified against a system installed at Risø National Laboratory. The work has been supported by the Danish Ministry ofEnergy, as a part of the activities in the Solar...... Energy Centre Denmark. The study is carried out at Risø National Laboratory with the main purpose to establish a library of simple mathematical models for each individual element of a stand-alone PVsystem, namely solar cells, battery, controller, inverter and load. The models for PV module and battery...... are based on the model descriptions found in the literature. The battery model is developed at UMASS and is known as the Kinetic Battery Model(KiBaM). The other component models in the PV system are based on simple electrical knowledge. The implementation is done using Matlab/Simulink, a simulation program...

  1. DC-PLC Modem design for PV module monitoring

    Directory of Open Access Journals (Sweden)

    Seong-Duc Ma

    2016-01-01

    Full Text Available Nowadays, power line communication (PLC is a very efficient technique in cost aspect because it is communication system using power line without extra communication cables. In case of DC-PLC, it send a communication signal of the high frequency band to the monitoring system through the DC power line and is widely used for DC grid or the distributed generation system using DC source. Especially, the management system which evaluates the performance and efficiency of PV module by measuring PV power through monitoring system based on the DC-PLC has been increased. In this paper, apply the DC-PLC method for low cost PV module monitoring system and constitutes a measuring device and communication modem on a MCU. For the communication performance, we use the digital filter and apply the multi-carrier communication. The proposed DC-PLC Modem is verified through simulation and experiment.

  2. PV Systems Installed in Marine Vessels: Technologies and Specifications

    Directory of Open Access Journals (Sweden)

    Ioannis Kobougias

    2013-01-01

    Full Text Available Considerations are held about the specificationin whichthe PV plants have to fulfill so that they can be installed on marine vessels. Initially, a brief description of the typical electrical grid of ships is presented, distinguishing the main parts, reporting the typical electrical magnitudes, and choosing the most preferable installation areas. The technical specifications,in whichthe PV plants have to be compatible with, are fully described. They are determined by the special marine environmental conditions, taking into consideration parameters like wind, humidity, shading, corrosion, and limited installation area. The work is carried out with the presentation of the most popular trends in the field of solar cell types and PV system technologies and their ability to keep up with the aforementioned specifications.

  3. Estimation of Curve Tracing Time in Supercapacitor based PV Characterization

    Science.gov (United States)

    Basu Pal, Sudipta; Das Bhattacharya, Konika; Mukherjee, Dipankar; Paul, Debkalyan

    2017-08-01

    Smooth and noise-free characterisation of photovoltaic (PV) generators have been revisited with renewed interest in view of large size PV arrays making inroads into the urban sector of major developing countries. Such practice has recently been observed to be confronted by the use of a suitable data acquisition system and also the lack of a supporting theoretical analysis to justify the accuracy of curve tracing. However, the use of a selected bank of supercapacitors can mitigate the said problems to a large extent. Assuming a piecewise linear analysis of the V-I characteristics of a PV generator, an accurate analysis of curve plotting time has been possible. The analysis has been extended to consider the effect of equivalent series resistance of the supercapacitor leading to increased accuracy (90-95%) of curve plotting times.

  4. Time series power flow analysis for distribution connected PV generation.

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  5. Sustainable recycling technologies for Solar PV off-grid system

    Directory of Open Access Journals (Sweden)

    Uppal Bhavesh

    2017-01-01

    Full Text Available Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  6. Sustainable recycling technologies for Solar PV off-grid system

    Science.gov (United States)

    Uppal, Bhavesh; Tamboli, Adish; Wubhayavedantapuram, Nandan

    2017-11-01

    Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP) recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology) while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  7. Development of a GIS Tool for High Precision PV Degradation Monitoring and Supervision: Feasibility Analysis in Large and Small PV Plants

    Directory of Open Access Journals (Sweden)

    Miguel de Simón-Martín

    2017-06-01

    Full Text Available It is well known that working photovoltaic (PV plants show several maintenance needs due to wiring and module degradation, mismatches, dust, and PV cell defects and faults. There are a wide range of theoretical studies as well as some laboratory tests that show how these circumstances may affect the PV production. Thus, it is mandatory to evaluate the whole PV plant performance and, then, its payback time, profitability, and environmental impact or carbon footprint. However, very few studies include a systematic procedure to quantify and supervise the real degradation effects and fault impacts on the field. In this paper, the authors first conducted a brief review of the most frequent PV faults and the degradation that can be found under real conditions of operation of PV plants. Then, they proposed and developed an innovative Geographic Information System (GIS application to locate and supervise them. The designed tool was applied to both a large PV plant of 108 kWp and a small PV plant of 9 kWp installed on a home rooftop. For the large PV plant, 24 strings of PV modules were modelized and introduced into the GIS application and every module in the power plant was studied including voltage, current, power, series and parallel resistances, fill factor, normalized PV curve to standard test conditions (STC, thermography and visual analysis. For the small PV installation three strings of PV panels were studied identically. It must be noted that PV modules in this case included power optimizers. The precision of the study enabled the researchers to locate and supervise up to a third part of every PV cell in the system, which can be adequately georeferenced. The developed tool allows both the researchers and the investors to increase control of the PV plant performance, to lead to better planning of maintenance actuations, and to evaluate several PV module replacement strategies in a preventive maintenance program. The PV faults found include hot

  8. PV domestic field trial. Third annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    Crick, F.; Davies, N.; Munzinger, M.; Pearsall, N.; Martin, C.

    2004-07-01

    This report summaries the results of a field trials investigating the design, construction and operation of photovoltaic (PV) systems installed during 2003 to provide information for utilities, building developers and those involved in PV installations and operations. Topics examined include the appearance of the systems, their architectural integration, the different fixing methods, the cost effectiveness of the systems, problems encountered, and monitoring activities. Key issues discussed include communication and co-ordination between interested bodies, siting and location, and good practice. Details are given of monitoring inspection visits, and performance analysis.

  9. High Efficient Bidirectional Battery Converter for residential PV Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Kerekes, Tamas; Teodorescu, Remus

    2012-01-01

    Photovoltaic (PV) installation is suited for the residential environment and the generation pattern follows the distribution of residential power consumption in daylight hours. In the cases of unbalance between generation and demand, the Smart PV with its battery storage can absorb or inject...... the power to balance it. High efficient bidirectional converter for the battery storage is required due high system cost and because the power is processed twice. A 1.5kW prototype is designed and built with CoolMOS and SiC diodes, >;95% efficiency has been obtained with 200 kHz hard switching....

  10. Progress Toward Sequestering Carbon Nanotubes in PmPV

    Science.gov (United States)

    Bley, Richard A.

    2009-01-01

    Sequestration of single-walled carbon nanotubes (SWNTs) in molecules of poly(m-phenylenevinylene-co-2,5-diocty-loxy-p-phenylenevinylene) [PmPV] is a candidate means of promoting dissolution of single-walled carbon nanotubes (SWNTs) into epoxies for making strong, lightweight epoxy-matrix/carbon-fiber composite materials. Bare SWNTs cannot be incorporated because they are not soluble in epoxies. In the present approach, one exploits the tendency of PmPV molecules to wrap themselves around SWNTs without chemically bonding to them.

  11. Spatio-temporal analysis of regional PV generation

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Cutululis, Nicolaos Antonio

    2016-01-01

    Photovoltaic (PV) power is growing in importance worldwide and hence needs to be represented in operation and planning of power system. As opposed to traditional generation technologies, it is characterized by exhibiting both a high variability and a significant spatial dependence. This paper...... presents a fundamental analysis of regional solar generation time series, aiming to potentially facilitate large-scale solar integration. It will focus on characterizing the underlying dependence structure at the system level as well as describing both statistical and temporal properties of regional PV...

  12. Simulation of transcontinental wind and solar PV generation time series

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Maule, Petr; Hahmann, Andrea N.

    2018-01-01

    The deployment of Renewable Energy Sources (RES) is driving modern power systems towards a fundamental green transition. In this regard, there is a need to develop models to accurately capture the variability of wind and solar photovoltaic (PV) power, at different geographical and temporal scales....... This paper presents a general methodology based on meteorological reanalysis techniques allowing to simulate aggregated RES time series over large geographical areas. It also introduces a novel PV conversion approach based on aggregated power curves in order to capture the uncertainty associated...

  13. Multi-Input Converter with MPPT Feature for Wind-PV Power Generation System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A multi-input converter (MIC to process wind-PV power is proposed, designed, analyzed, simulated, and implemented. The MIC cannot only process solar energy but deal with wind power, of which structure is derived from forward-type DC/DC converter to step-down/up voltage for charger systems, DC distribution applications, or grid connection. The MIC comprises an upper modified double-ended forward, a lower modified double-ended forward, a common output inductor, and a DSP-based system controller. The two modified double-ended forwards can operate individually or simultaneously so as to accommodate the variation of the hybrid renewable energy under different atmospheric conditions. While the MIC operates at interleaving mode, better performance can be achieved and volume also is reduced. The proposed MIC is capable of recycling the energy stored in the leakage inductance and obtaining high step-up output voltage. In order to draw maximum power from wind turbine and PV panel, perturb-and-observe method is adopted to achieve maximum power point tracking (MPPT feature. The MIC is constructed, analyzed, simulated, and tested. Simulations and hardware measurements have demonstrated the feasibility and functionality of the proposed multi-input converter.

  14. Task 9. PV deployment in developing countries. Institutional framework and financial instruments for PV deployment in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-15

    This report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at the institutional framework and financial instruments necessary for PV deployment in developing countries. This guide describes the institutional and financial aspects that need to be addressed to ensure that a long term sustainable (and profitable) PV market is established in developing countries. The guide details main fundamental functions that need to be performed such as the agents needed to perform the functions and their differing roles within the framework, the relationships between these agents and the financial instruments available. It is stated that the majority of the aspects recommended in this guide can be adopted to two main PV deployment models: direct sales and rural electrification and development programmes. It is noted that both approaches will have to be tailored and adapted to local conditions.

  15. Low Noise PAV Ducted Propeller using Automotive Manufacturing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A critical barrier for GA to serve as viable and volume personal transportation is the lack of a cost-effective, yet open-growth, Lean Design and manufacturing...

  16. Optimization of laser scribing for thin-film PV modules. Annual technical progress report, 12 April 1995--11 April 1996

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.D.; Jayamaha, U.; Matulionis, I.; Miller, M.J. [Univ. of Toledo, OH (United States)

    1996-10-01

    One of the most important aspects in moving from the cell level to the integrated module level in thin-film photovoltaics is to achieve reliable and reproducible cell interconnects having low series resistance and high shunt resistance, and to do this with a minimum of dead area between cells. It is known that mechanical scribing often produces considerable damage (e.g., film tearing) surrounding the scribe. Laser scribing has shown the potential for superior scribe widths and profiles for many of the materials involved with thin-film PV. However, problems arc also known to occur with a heat-affected zone around the scribe, and for some materials and some focus conditions high positive ridges or collars are left along the scribe line. The commercially-available scribing systems have been optimized typically for other applications and other materials such as scribing of crystalline Si. Optimum operation for thin-film PV materials has been investigated by several PV manufacturers but there has been limited discussion of problems or of optimum parameters in the open literature. Furthermore, to our knowledge, there has been little investigation of the applicability, for thin-film PV, of laser systems other than the traditional cw lamp-pumped, Q-switched Nd:YAG.

  17. Commercialization of Fuel Cell Bipolar Plate Manufacturing by Electromagnetic Forming

    OpenAIRE

    Daehn, G. S.; Hatkevich, S.; Shang, J; Wilkerson, L

    2010-01-01

    The cost of manufacturing bipolar plates is a major component to the overall cost structure of a Proton Exchange Membrane (PEM) fuel cell stack. To achieve the commercialization of PEM fuel cells, a high volume and low cost manufacturing process for the bipolar plate must be developed. American Trim has identified high velocity electromagnetic forming as a suitable technology to manufacture metallic fuel cell bipolar plates, because of its low capital cost, flexible tooling and rapid prototyp...

  18. Potential of Securitization in Solar PV Finance

    Energy Technology Data Exchange (ETDEWEB)

    Lowder, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mendelsohn, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    This report aims to demonstrate, hypothetically and at a high level, what volumes of solar deployment could be supported given solar industry access to the capital markets in the form of security issuance. Securitization is not anticipated to replace tax equity in the near- to mid-term, but it could provide an additional source of funds that would be comparatively inexpensive and could reduce the weighted average cost of capital for a given solar project or portfolio. Thus, the potential to securitize solar assets and seek financing in the capital markets could help to sustain the solar industry when the investment tax credit (ITC) -- one of the federal incentives that has leveraged billions of dollars of private capital in the solar industry -- drops from 30% to 10% at the close of 2016. The report offers analysis on the size of the U.S. third-party financed solar market, as well as on the volumes (in MW) of solar asset origination possible through a $100 million securitization fund (assuming no overcollateralization). It also provides data on the size of the relevant securities markets and how the solar asset class may fit into these markets.

  19. Changes in superior mesenteric artery Doppler waveform during reduction of cardiac stroke volume and hypotension

    DEFF Research Database (Denmark)

    Perko, M J; Perko, Grazyna; Just, S

    1996-01-01

    Influence of stroke volume reduction and hypotension on the superior mesenteric artery (SMA) Doppler waveform was evaluated during head-up tilt-induced central hypovolemia in 11 healthy volunteers. During normotensive reduction in stroke volume, peak systolic velocity (pV), mean velocity, pulsati......Influence of stroke volume reduction and hypotension on the superior mesenteric artery (SMA) Doppler waveform was evaluated during head-up tilt-induced central hypovolemia in 11 healthy volunteers. During normotensive reduction in stroke volume, peak systolic velocity (pV), mean velocity...

  20. Next Generation Print-based Manufacturing for Photovoltaics and Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Sue A. Carter

    2012-09-07

    For the grand challenge of reducing our energy and carbon footprint, the development of renewable energy and energy efficient technologies offer a potential solution. Energy technologies can reduce our dependence on foreign oil as well as the energy consumed by the petroleum industry, the leading consumer of energy by a U.S. industry sector. Nonetheless, the manufacturing processes utilized to manufacture equipment for alternative energy technologies often involve energy-intensive processes. This undermines some of the advantages to moving to 'green' technologies in the first place. Our answer to the Industrial Technology Program's (ITP) Grand Challenge FOA was to develop a transformational low cost manufacturing process for plastic-based photovoltaics that will lower by over 50% both energy consumption and greenhouse emissions and offer a return-of-investment of over 20%. We demonstrated a Luminescent Solar Concentrator fabricated on a plastic acrylic substrate (i.e. no glass) that increases the power output of the PV cell by 2.2x with a 2% power efficiency as well as an LSC with a 7% power efficiency that increased the power output from the PV cells by 35%. S large area 20-inch x 60-inch building-integrated photovoltaic window was fabricated using contract manufacturing with a 4% power efficiency which improved the power output of the PV cell by over 50%. In addition, accelerated lifetimes of the luminescent material demonstrate lifetimes of 20-years.

  1. Delta Power Control Strategy for Multistring Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    With a still increasing penetration level of grid-connected photovoltaic (PV) systems, more advanced active power control functionalities have been introduced in certain grid regulations. A delta power constraint, where a portion of the active power from the PV panels is reserved during operation......, is required for grid support (e.g., during frequency deviation). In this paper, a cost-effective solution to realize delta power control (DPC) for grid-connected PV systems is presented, where the multistring PV inverter configuration is adopted. This control strategy is a combination of maximum power point...... tracking (MPPT) and constant power generation (CPG) modes. In this control scheme, one PV string operating in the MPPT mode estimates the available power, whereas the other PV strings regulate the total PV power by the CPG control strategy in such a way that the delta power constraint for the entire PV...

  2. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goodrich, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-11-30

    The installed capacity of global and U.S. photovoltaic (PV) systems has soared in recent years, driven by declining PV prices and government incentives. The U.S. Department of Energy’s (DOE) SunShot Initiative aims to make PV cost competitive without incentives by reducing the cost of PV-generated electricity by about 75% between 2010 and 2020. This summary report—based on research at Lawrence Berkeley National Laboratory (LBNL) and the National Renewable Energy Laboratory (NREL)—examines progress in PV price reductions to help DOE and other PV stakeholders manage the transition to a market-driven PV industry, and to provide clarity surrounding the wide variety of potentially conflicting data available about PV system prices.

  3. MONITORING STRESSES ON THE PV-4 ISOSTATIC PRESS FROM 1960 TO 1997

    Energy Technology Data Exchange (ETDEWEB)

    ADAMSKI, R.E.; FRAZIER, J.L.; HORAK, J.A.; HOWARD, D.C.; KELLEY, D.K.

    1998-12-01

    The PV-4 isostatic press has a very large working volume (98 ft{sup 3}) that was designed for routine operations at internal pressures up to 30 ksi and is, therefore, a unique and valuable component of the U.S. DOE Y-12 manufacturing capability. More than 13,000 pressing operations have been conducted since initiation of operations in September 1960. The pressure vessel portion consists of three concentric cylinders of high-strength steel with the outer two cylinders shrink-fitted on the imermost cylinder to minimize tensile stresses on the inner surface of the vessel. The third, outermost cylinder consists of two sections; each section is one-half the length of the pressure vessel. The vessel is contained within a large frame which is made of T-1 steel. In 1982 and 1983 precision strain gauges were mounted at selected locations on the frame and the outer surface of the pressure vessel to monitor the operating stresses. Where possible, locations of the gauges mounted in 1982 and 1983 were at or near the same locations as the strain gauges mounted in 1960 to monitor stresses on the frame and vessel during preoperational testing and design verification of the press. This report presents the information obtained with these strain gauges for tests conducted in September 1960 prior to any operation of the press and for the period July 1983 to August 1997. On September 8 and 9, 1960, Sturm & Krouse used 120 strain gauges on the frame and 20 strain gauges on the outer surface of the pressure vessel to measure strains in PV-4 as a function of operating pressure from O to 33 ksi. Although the design maximum operating pressure of the press was 30 ksi, to provide a safety factor for operations at 30 ksi and to assure totally elastic behavior of the steel components of the frame and pressure vessel at pressures above the design pressure, strains were also measured at operating pressures of 32 and 33 ksi. Sturm & Krouse observed that the stresses on the frame and vessel were a

  4. Measuring Manufacturing Innovativeness

    DEFF Research Database (Denmark)

    Blichfeldt, Henrik; Knudsen, Mette Præst

    2017-01-01

    technology and organizational concepts. Based on Danish survey data from the European Manufacturing Survey (EMS-2015) this paper finds that there is a relation between innovative companies, and their level of technology and use of organizational concepts. Technology and organizational concepts act...... as manufacturing levers to support the manufacturing and production system to provide innovativeness. The managerial implication lies in building manufacturing capabilities to support the innovative process, by standardization, optimization and creating stability in combination with automation and advanced......Globalization and customization increases the pressure on manufacturing companies, and the ability to provide innovativeness is a potential source of competitive advantage. This paper positions the manufacturing entity in the innovation process, and investigates the relation between innovation vers...

  5. Optimized manufacturable porous materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard

    to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM....../S). The available manufacturing methods are best suited for porous materials (one constituent and void), but the optimization procedure can easily include more constituents. The elasticity tensor is found from one unit cell using the homogenization method together with a standard finite element (FE) discretization....... The distribution of the material in the unit cell is optimized according to a given objective (e.g. maximum bulk modulus or minimum Poisson’s ratio) and some given constraints (e.g. isotropy) using topology optimization. The manufacturability is achieved using various filtering techniques together...

  6. Velocity Curve Analysis of the Spectroscopic Binary Stars PV Pup ...

    Indian Academy of Sciences (India)

    ity for the primary and secondary components of PV Pup, HD 141929, EE Cet and. V921 Her, respectively. The solid closed curves are the result of the nonlinear regres- sion of equation (14), which their good coincidence with the measured data yields to derive the optimized parameters K, e and ω. Figures show that also ...

  7. Performance Evaluation of PV Panel Under Dusty Condition

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar Tripathi

    2017-11-01

    Full Text Available The performance of PV panel depends on the incoming sunlight on its surface. The accumulated airborne dust particles on panel surface creates a barrier in the path of sunlight and panel surface, which significantly reduces the amount of solar radiation falling on the panel surface. The present study shows a significant reduction in short circuit current and power output of PV panel due to dust deposition on its surface, whereas the reduction in open circuit voltage is not much prominent. This study has been carried in the field as well as in the laboratory. The reduction in maximum power output of PV panel for both the studies ensures a linear relation with the dust deposition on its surface. In the field study, the reduction in the power output due to 12.86gm of dust deposition on the panel surface was 43.18%, whereas in the laboratory study it was 44.75% due to 11gm of dust deposition Article History: Received July 10th 2017; Received in revised form Sept 15th 2017x; Accepted 1st Oct 2017; Available online How to Cite This Article: Tripathi, A.K., Aruna, M. and Murthy, Ch.,S.N. (2017. Performance Evaluation of PV Panel Under Dusty Condition. International Journal of Renewable Energy Develeopment, 6(3, 225-233. https://doi.org/10.14710/ijred.6.3.225-233

  8. PV Systems Reliability Final Technical Report: Ground Fault Detection

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  9. Luminescence imaging strategies for drone-based PV array inspection

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Riedel, Nicholas; Mantel, Claire

    2017-01-01

    The goal of this work is to perform outdoor defect detection imaging that will be used in a fast, accurate and automatic drone-based survey system for PV power plants. The imaging development focuses on techniques that do not require electrical contact, permitting automatic drone inspections...

  10. studies on seed transmissfon of xanthomqnas campestris pv

    African Journals Online (AJOL)

    1993-03-03

    Mar 3, 1993 ... Centro International de Agricultura. Tropical. Pastor Corrales, M.A., S.A. Beebe and FJ. Correa, 1981. Comparing two inoculation techniques for evaluating resistance in beans to Xanthomonas campestris pv phaseoli. in: Proceedings of the Fifth international. Conference on Plant Pathogenic Bacteria,. 1981 ...

  11. Angle Resolved Performance Measurements on PV Glass and Modules

    DEFF Research Database (Denmark)

    Juutilainen, Line Tollund; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    The angular response of PV-modules has significant impact on the energy production. This is especially pronounced in BIPV where installation angles often are far from optimal. Nevertheless, a gain in energy yield may be obtained by choosing a proper glass as superstrate. In this work we present...

  12. Is solar PV generated electricity cheap in South Africa?

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2015-07-01

    Full Text Available for South Africa (2x) Solar irradiation in South Africa ... ... as compared to Germany, where solar PV is now close to cost competitiveness with new coal and gas Source: Joint Research Center of the European Commission, PVGIS, BCG analysis 10 More sun makes...

  13. Comparison of Predictive Models for PV Module Performance (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Marion, B.

    2008-05-01

    This paper examines three models used to estimate the maximum power (P{sub m}) of PV modules when the irradiance and PV cell temperature are known: (1) the power temperature coefficient model, (2) the PVFORM model, and (3) the bilinear interpolation model. A variation of the power temperature coefficient model is also presented that improved model accuracy. For modeling values of P{sub m}, an 'effective' plane-of-array (POA) irradiance (E{sub e}) and the PV cell temperature (T) are used as model inputs. Using E{sub e} essentially removes the effects of variations in solar spectrum and reflectance losses, and permits the influence of irradiance and temperature on model performance for P{sub m} to be more easily studied. Eq. 1 is used to determine E{sub e} from T and the PV module's measured short-circuit current (I{sub sc}). Zero subscripts denote performance at Standard Reporting Conditions (SRC).

  14. Modeling a PV-FC-Hydrogen Hybrid Power Generation System

    Directory of Open Access Journals (Sweden)

    S. Javadpoor

    2017-04-01

    Full Text Available Electrical grid expansion onto remote areas is often not cost-effective and/or technologically feasible. Thus, isolated electrical systems are preferred in such cases. This paper focuses on a hybrid photovoltaic (PV-hydrogen/fuel cell (FC system which basic components include a PV, a FC, alkaline water electrolysis and a hydrogen gas tank. To increase the response rate, supercapacitors or small batteries are usually employed in such systems. This study focuses on the dynamics of the system. In the suggested structure, the PV is used as the main source of power. The FC is connected to the load in parallel with the PV by a transducer in order to inject the differential power while reducing power generation in relation to power consumption. An electrolyzer is used to convert the surplus power to hydrogen. This study studies a conventional hybrid photovoltaic-hydrogen/fuel cell system to evaluate different loading behaviors. Software modeling is done for the suggested hybrid system using MATLAB/SIMULINK.

  15. Design of fibre reinforced PV concepts for building integrated applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; de Wit, H.; de Boer, Andries; Ossenbrink Sinke, W.; Helm, P.

    2009-01-01

    Fibre reinforced polymers present an interesting encapsulation medium for PV-modules. Glass fibres can provide increased strength and stiffness to thin polymer layers overcoming the brittleness and limited deformability of glass-panes. Glass fibre reinforced polymers allows for transparency over a

  16. A Mistake Based Approach Probing Students' Under- standing of PV ...

    Indian Academy of Sciences (India)

    plot holds good under what conditions? The seemingly simple ... work done on the system, minimum work is 'used up' in a reversible process. to themselves, the slightly counter-intuitive point that when PV-type work is done by the system ... and the thought process of the student getting the correct answer can be easily ...

  17. Application of PSpice in simulation of a photovoltaic (PV) system ...

    African Journals Online (AJOL)

    In the later approach, either dedicated simulating software can be used or general-purpose software can be adapted to suit particular needs. The work done is based on the general-purpose electronic simulation package (PSpice) for which a custom library of PV components and subsystems has been developed ...

  18. Xanthomonas campestris pv. campestris race 1 is the main causal ...

    African Journals Online (AJOL)

    Severe outbreaks of bacterial black rot caused by Xanthomonas campestris pv. campestris (Xcc) were observed in Brassica production fields of Southern Mozambique. The causal agent of the disease in the Mahotas and Chòkwé districts was identified and characterised. In total, 83 Xanthomonas-like strains were isolated ...

  19. ECO-TOURISM SUSTAINABILITY THROUGH PV TECHNOLOGY: A COMPREHENSIVE REVIEW

    Directory of Open Access Journals (Sweden)

    ARAVIND C. V

    2013-12-01

    Full Text Available Through the Economic Transformation program the Malaysian Government aims to consider tourism as one of the major contributors to the country’s economy and as an industry that imbibe on the principles of environmental responsibility and sustainable development. The growing challenges in the prevention of expansion in agriculture, forestry and aquaculture, and over-exploitation of the natural resources, have made ecotourism extremely popular as a solution for developing tourism sites. Ecotourism attracts many people who wish not only to explore natural wonders but also to protect them for future generations. Most of the ecotourism sites are presumably situated far from the conventional energy resources and thus transporting electricity to those areas are discussed as inefficient and unsustainable. However, solar Photo-voltaic (PV system is clean and alternative energy to suffice the energy demands of eco-tourist sites. This paper puts statements of the energy demand in global and its impact on the traditional fossil fuels and proposes PV as an alternative renewable technology pertaining to the eco-tourism application. The paper especially focuses on solar PV systems which not only could supply the energy demand of tourist sites but can also maintain the image of the ecotourism. A case of a model lodge is used for the study, through the energy demand analysis. A comprehensive review on the PV architecture is presented that derive interest in the implementation of such structure for the case presented.

  20. Assessing the Causes of Encapsulant Delamination in PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, John H.; Hacke, Peter; Bosco, Nick; Miller, David C.; Kempe, Michael D.; Kurtz, Sarah R.

    2016-11-21

    Delamination of the encapsulant is one of the most prevalent PV module field failures. This paper will present examples of various types of delaminations that have been observed in the field. It will then discuss the development of accelerated stress tests designed to duplicate those field failures and thus provide tools for avoiding them in the future.

  1. Best practices for mitigating soiling risk on PV power plants

    KAUST Repository

    AlDowsari, A.

    2015-09-24

    Solar power generates proven, predictable and economical energy and new innovations have made solar PV power plants easy to deploy, integrate and maintain. Areas with large solar energy potential are among the dustiest in the world. At first glance, solar would be a natural fit in many of these environments but humidity, airborne dust, and wind of these regions often bring high soiling rates that can accumulate to reduce performance by up to 10% per month on average, where soiling can be a major loss factor that affects the energy yield for PV plants especially in humid and dusty climates. Therefore, to achieve the desired performance ratio and obtain stable generation, mitigation solutions are proposed to overcome dust issues that affect the performance of PV plants. This makes PV module cleaning a key component for long-term plant performance and sustainable profitability. In this paper, a review of the mechanisms and mitigation solutions to overcome soiling on solar installations using real-world testing and verification is investigated with emphasis on dry type cleaning methods. © 2014 IEEE.

  2. Selecting Solar. Insights into Residential Photovoltaic (PV) Quote Variation

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    This analysis leverages available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  3. Recent advances in PV systems technology development in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, M.; Grottke, M.; Weiss, I. [WIP Renewable Energies Division, Munich (Germany)

    1995-11-01

    The objectives of the photovoltaics (PV) systems technology development were to study several aspects of plant design, monitoring, control, operation, and management of different types of photovoltaic plants. Unsolved problems were to be identified and analysed, and guidelines to improve the monitoring system were to be developed. Principal studies are summarized.

  4. Simulation of regional day-ahead PV power forecast scenarios

    DEFF Research Database (Denmark)

    Nuno, Edgar; Koivisto, Matti Juhani; Cutululis, Nicolaos Antonio

    2017-01-01

    Uncertainty associated with Photovoltaic (PV) generation can have a significant impact on real-time planning and operation of power systems. This obstacle is commonly handled using multiple forecast realizations, obtained using for example forecast ensembles and/or probabilistic forecasts, often ...

  5. 5bv.3.21 PV led engine

    DEFF Research Database (Denmark)

    Thorsteinsson, Sune; Poulsen, Peter Behrensdorff; Dam-Hansen, Carsten

    PV-powered lighting systems, light to light systems (L2L), offer outdoor lighting where it is elsewhere cumbersome to enable lighting. Application of these systems at high latitudes, where the difference in day length between summer and winter is large and the solar energy is less requires smart ...

  6. Microgrid-Ready Solar PV - Planning for Resiliency

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Samuel S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-17

    This fact sheet provides background information on microgrids with suggested language for several up-front considerations that can be added to a solar project procurement or request for proposal (RFP) that will help ensure that PV systems are built for future microgrid connection.

  7. Luminescence Imaging Strategies for Drone-Based PV Array Inspection

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Riedel, Nicholas; Mantel, Claire

    2017-01-01

    The goal of this work is to develop outdoor defect detection imaging and understand fully its challenges and limitations. The imaging is based on luminescence strategies that will be used for fast and accurate UAV-based inspection system for PV power plants. We studied electroluminescence (EL...

  8. National solar technology roadmap: Wafer-silicon PV

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, Bhushan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2007-06-01

    This report applies to all bulk-silicon-based PV technologies, including those based on Czochralski, multicrystalline, float-zone wafers, and melt-grown crystals that are 100 μm or thicker, such as ribbons, sheet, or spheral silicon.

  9. Development of outdoor luminescence imaging for drone-based PV array inspection

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Riedel, Nicholas; Thorsteinsson, Sune

    This work has the goal to examined experimentally PV module imaging methods under natural light conditions, that will be used in a fast, accurate and automatic drone-based inspection system for PV power plants.......This work has the goal to examined experimentally PV module imaging methods under natural light conditions, that will be used in a fast, accurate and automatic drone-based inspection system for PV power plants....

  10. Manufacturability considerations for DSA

    Science.gov (United States)

    Farrell, Richard A.; Hosler, Erik R.; Schmid, Gerard M.; Xu, Ji; Preil, Moshe E.; Rastogi, Vinayak; Mohanty, Nihar; Kumar, Kaushik; Cicoria, Michael J.; Hetzer, David R.; DeVilliers, Anton

    2014-03-01

    Implementation of Directed Self-Assembly (DSA) as a viable lithographic technology for high volume manufacturing will require significant efforts to co-optimize the DSA process options and constraints with existing work flows. These work flows include established etch stacks, integration schemes, and design layout principles. The two foremost patterning schemes for DSA, chemoepitaxy and graphoepitaxy, each have their own advantages and disadvantages. Chemoepitaxy is well suited for regular repeating patterns, but has challenges when non-periodic design elements are required. As the line-space polystyrene-block-polymethylmethacrylate chemoepitaxy DSA processes mature, considerable progress has been made on reducing the density of topological (dislocation and disclination) defects but little is known about the existence of 3D buried defects and their subsequent pattern transfer to underlayers. In this paper, we highlight the emergence of a specific type of buried bridging defect within our two 28 nm pitch DSA flows and summarize our efforts to characterize and eliminate the buried defects using process, materials, and plasma-etch optimization. We also discuss how the optimization and removal of the buried defects impacts both the process window and pitch multiplication, facilitates measurement of the pattern roughness rectification, and demonstrate hard-mask open within a back-end-of-line integration flow. Finally, since graphoepitaxy has intrinsic benefits in terms of design flexibility when compared to chemoepitaxy, we highlight our initial investigations on implementing high-chi block copolymer patterning using multiple graphoepitaxy flows to realize sub-20 nm pitch line-space patterns and discuss the benefits of using high-chi block copolymers for roughness reduction.

  11. Rapid manufacturing facilitated customisation

    OpenAIRE

    Tuck, Christopher John; Hague, Richard; Ruffo, Massimiliano; Ransley, Michelle; Adams, Paul Russell

    2008-01-01

    Abstract This paper describes the production of body-fitting customised seat profiles utilising the following digital methods: three dimensional laser scanning, reverse engineering and Rapid Manufacturing (RM). The seat profiles have been manufactured in order to influence the comfort characteristics of an existing ejector seat manufactured by Martin Baker Aircraft Ltd. The seat, known as Navy Aircrew Common Ejection Seat (NACES), was originally designed with a generic profile. ...

  12. The Manufacturing Industry

    Science.gov (United States)

    2005-06-01

    their currencies to the dollar at an artificially weak exchange rate in order to ensure continued access to the US market on favorable terms. China is...creates US jobs in the manufacturing sector, spurring investments in people and equipment, which contributes to the strength of the economy.73 US...movements are: (1) Kaizen , (2) Synchronous Manufacturing, and (3) Just-In-Time (JIT) Manufacturing. Kaizen : Kaizen is a Japanese word that means

  13. Manufacturing tolerant topology optimization

    OpenAIRE

    Sigmund, Ole

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining an...

  14. Leakage current analysis of single-phase transformer-less grid-connected PV inverters

    DEFF Research Database (Denmark)

    Ma, Lin; Kerekes, Tamas; Teodorescu, Remus

    2015-01-01

    Transformer-less string PV inverter is getting more and more widely utilized due to its higher efficiency, smaller volume and weight. However, without the galvanic isolation, the leakage current limitation and operation safety became the key issues of transformer-less inverters. This paper...... simplifies the leakage current generation circuit model and presents a leakage current estimation method both in real time and frequency domain. It shows that the leakage current is related to the circuit stray parameters, output filter and common mode voltage. Furthermore, with the proposed analysis method......, the leakage current generation of H-bridge with different modulation methods and HERIC inverter are discussed individually. At last, the presented method has been verified via simulation....

  15. Rooftop PV system. PV:BONUS Phase 3B, final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Under the PV:BONUS Program, ECD and United Solar developed, demonstrated and commercialized two new lightweight, flexible BIPV modules specifically designed as replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and can be used to address the even larger roofing-replacement market. An important design feature of these modules, which minimizes the installation and balance-of-system costs, is their ability to be installed by conventional roofing contractors without special training. The modules are fabricated from high-efficiency, triple-junction spectrum-splitting a-Si alloy solar cells developed by ECD and United Solar. These cells are produced on thin, flexible stainless steel substrates and encapsulated with polymer materials. The Phase 3 program began in August 1995. The principal tasks and goals of this program, which have all been successfully completed by ECD and United Solar, are described in the body and appendices of this report.

  16. Insights into xanthomonas axonopodis pv. Citri biofilm through proteomics

    KAUST Repository

    Zimaro, Tamara

    2013-08-07

    Background: Xanthomonas axonopodis pv. Citri (X. a. pv. Citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. Citri this process is a requirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. Results: In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. Citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. Citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. Citri mature biofilm and planktonic cells were evaluated by

  17. Manufacturing with the Sun

    Science.gov (United States)

    Murphy, L. M.; Hauser, S. G.; Clyne, R. J.

    1992-05-01

    Concentrated solar radiation is now a viable alternative energy source for many advanced manufacturing processes. Researchers at the National Renewable Energy Laboratory (NREL) have demonstrated the feasibility of processes such as solar-induced surface transformation of materials (SISTM), solar-based manufacturing, and solar-pumped lasers. Researchers are also using sunlight to decontaminate water and soils polluted with organic compounds; these techniques could provide manufacturers with innovative alternatives to traditional methods of waste management. The solar technology that is now being integrated into today's manufacturing processes offers even greater potential for tomorrow, especially as applied to the radiation-abundant environment available in space and on the lunar surface.

  18. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  19. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  20. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  1. Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jin; Zhang, Yingchen; Veda, Santosh; Elgindy, Tarek; Liu, Yilu

    2017-04-11

    Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interest to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.

  2. Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants: Report Summary

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eichman, Joshua D. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-28

    The decreasing costs of both PV and energy storage technologies have raised interest in the creation of combined PV plus storage systems to provide dispatchable energy and reliable capacity. In this study, we examine the tradeoffs among various PV plus storage configurations and quantify the impact of configuration on system net value.

  3. Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eichman, Joshua D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-08-17

    The decreasing costs of both PV and energy storage technologies have raised interest in the creation of combined PV plus storage systems to provide dispatchable energy and reliable capacity. In this study, we examine the tradeoffs among various PV plus storage configurations and quantify the impact of configuration on system net value.

  4. Defining Bankability for Each Step of a PV Project Using IECRE

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah

    2016-07-12

    How can a PV customer know whether a PV plant is 'good'? IECRE was created to provide a cost-effective way to identify 'good' PV plants. This presentation describes the motivation, strategy, and status of the IECRE effort as of July, 2016.

  5. Monitoring en lessen PV-projecten Amersfoort en HAL-gebied

    NARCIS (Netherlands)

    Westerhuis, R.; Verhoef, L.; van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526

    2008-01-01

    In Nederland zijn er twee nieuwbouwgebieden waar photovoltaïsche zonne-energie (PV) systemen op grote schaal zijn toegepast. Dit zijn de PV-projecten gerealiseerd in de wijk ‘Nieuwland’ in Amersfoort en in het HAL-gebied. Onder het HAL-gebied worden de PV-projecten verstaan die in Heerhugowaard,

  6. PV-θ view of the zonal mean state of the atmosphere

    NARCIS (Netherlands)

    van Delden, A.J.|info:eu-repo/dai/nl/072670703; Hinssen, Y.B.L.|info:eu-repo/dai/nl/297039016

    2012-01-01

    The relation between zonal mean potential vorticity (PV) in potential temperature (u) coordinates and the zonal mean zonal wind in January and in July is studied. PV-anomalies are defined with respect to a reference state that is at rest with respect to the rotating earth. Two important PV-anomalies

  7. Large Scale Solar Power Integration in Distribution Grids : PV Modelling, Voltage Support and Aggregation Studies

    NARCIS (Netherlands)

    Samadi, A.

    2014-01-01

    Long term supporting schemes for photovoltaic (PV) system installation have led to accommodating large numbers of PV systems within load pockets in distribution grids. High penetrations of PV systems can cause new technical challenges, such as voltage rise due to reverse power flow during light load

  8. Experimental comparison of PV-smoothing controllers using distributed generators

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Hawkins, John N.; Arellano, Brian; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2014-02-01

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

  9. Clean Energy Manufacturing: U.S. Competitiveness and State Policy Strategies (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.

    2014-02-01

    The capital intensive nature of clean energy technologies suggests that manufacturing clean energy equipment has the potential to support state and local economic development efforts. However, manufacturing siting decisions tend to be complex and multi-variable decision processes that require in-depth knowledge of specific markets, the logistical requirements of a given technology, and insight into global clean tech trends. This presentation highlights the potential of manufacturing in supporting economic development opportunities while also providing examples of the financial considerations affecting manufacturing facility siting decisions for wind turbine blades and solar PV. The presentation also includes discussion of other more qualitative drivers of facility siting decisions as gleaned from NREL industry interviews and discusses strategies state and local policymakers may employee to bolster their chances of successfully attracting clean energy manufacturers to their localities.

  10. PLASMA VOLUME EXPANSION 24-HOURS POST-EXERCISE: EFFECT OF DOUBLING THE VOLUME OF REPLACEMENT FLUID

    Directory of Open Access Journals (Sweden)

    Bartholomew Kay

    2005-06-01

    Full Text Available The effects of two volumes (1.5 L or 3.0 L of commercially available electrolyte beverage (1.44 mM·L-1 Na+ taken during a 24-hour recovery period post-exercise, on plasma volume (PV expansion 24-hours post-exercise were assessed. A simple random-order crossover research design was used. Subjects (n = 9 males: age 21 ± 4 years, body mass 80.0 ± 9.0 kg, peak incremental 60-second cycling power output 297 ± 45 W [means ± SD] completed an identical exercise protocol conducted in hot ambient conditions (35oC, 50% relative humidity on two occasions; separated by 7-days. On each occasion, subjects received a different volume of 24-hour fluid intake (commercial beverage in random order. In each case, the fluid was taken in five equal aliquots over 24-hours. PV expansions 24-hours post-exercise were estimated from changes in haemoglobin and haematocrit. Dependent t-testing revealed no significant differences in PV expansions between trials, however a significant expansion with respect to zero was identified in the 3.0 L trial only. Specifically, PV expansions (% were; 1.5 L trial: (mean ± SE 2.3 ± 2.0 (not significant with respect to zero, 3.0 L trial: 5.0 ± 2.0 (p < 0.05, with respect to zero. Under the conditions imposed in the current study, ingesting the greater volume of the beverage lead to larger mean PV expansion

  11. Quantification, challenges and outlook of PV integration in the power system: a review by the European PV Technology Platform

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Baccaro, Federica; De Felice, Matteo

    2015-01-01

    networks. Forecasting, storage, and combination with other renewable sources are interdependent solutions to solve the intermittency issue. Finally, we found that PV is also an opportunity to reduce some investment required to upgrade existing power networks. Through integration with micro-grids and hybrid...

  12. Local energy management for optimizing the PV grid integration; Lokales Energiemanagement fuer die optimale PV-Netzintegration

    Energy Technology Data Exchange (ETDEWEB)

    Beister, Detlef [SMA Solar Technology AG, Niestetal (Germany)

    2012-07-01

    The seamless integration of distributed renewable energy resources into the electricity grid is a necessity to make this safe and reliable. Up to a certain extend it can even avoid future grid extensions. This paper describes how photovoltaic plants support the grid through a sophisticated local energy management optimizing the correlation between PV generation and load demand. You will read about automatic appliance control depending on surplus PV energy and variable energy tariffs, never forgetting the user's needs. Besides these preferences the load profiles of single appliances and the specific PV energy forecast for the next hours and days are taken into account. An intelligent usage of energy storage provides additional benefits. All of this result in a win-win-situation: The grid is relieved and customers enjoy financial benefits through optimized PV self-consumption, ideal usage of variable energy tariffs and a mitigated impact of potential power curtailments by the grid operator. The prospect of clusters of multiple energy managing systems forming a virtual power plant finally expands the solution to even further improved balancing effects and new business models. (orig.)

  13. Consequences of Reducing the Cost of PV Modules on a PV Wind Diesel Hybrid System with Limited Sizing Components

    Directory of Open Access Journals (Sweden)

    Jones S. Silva

    2012-01-01

    Full Text Available The use of renewable resources for power supply in family homes has passed the stage of utopia to became a reality, with limits set by technical and economic parameters. This paper presents the results of a project originated from the initiative of a middle-class family to achieve energy independence at home. The starting point was the concept of home with “zero energy” in which the total energy available is equal to the energy consumed. The solution devised to meet the energy demand of the residence in question is a PV wind diesel hybrid system connected to the grid, with the possibility of energy storage in batteries and in the form of heating water and the environment of the house. As a restriction, the family requested that the system would represent little impact to the lifestyle and landscape. This paper aims to assess the consequences of reductions in the cost of the PV modules on the optimization space, as conceived by the software Homer. The results show that for this system, a 50% reduction in the cost of PV modules allows all viable solutions including PV modules.

  14. Update of the Dutch PV specific yield for determination of PV contribution to renewable energy production: 25% more energy!

    NARCIS (Netherlands)

    van Sark, Wilfried|info:eu-repo/dai/nl/074628526; Bosselaar, L.; Gerrissen, P.; Esmeijer, K.B.D.; Moraitis, Panagiotis|info:eu-repo/dai/nl/413292975; van den Donker, M.; Emsbroek, G.

    2014-01-01

    Statistics Netherlands (CBS) annually publishes the contribution of renewables to the Dutch electricity supply, by following a national protocol. The amount of electricity generated by photovoltaic (PV) technology is calculated from the average installed capacity in a particular year multiplied by a

  15. A reference frame for blood volume in children and adolescents

    Directory of Open Access Journals (Sweden)

    Donckerwolcke Raymond

    2006-02-01

    Full Text Available Abstract Background Our primary purpose was to determine the normal range and variability of blood volume (BV in healthy children, in order to provide reference values during childhood and adolescence. Our secondary aim was to correlate these vascular volumes to body size parameters and pubertal stages, in order to determine the best normalisation parameter. Methods Plasma volume (PV and red cell volume (RCV were measured and F-cell ratio was calculated in 77 children with idiopathic nephrotic syndrome in drug-free remission (mean age, 9.8 ± 4.6 y. BV was calculated as the sum of PV and RCV. Due to the dependence of these values on age, size and sex, all data were normalised for body size parameters. Results BV normalised for lean body mass (LBM did not differ significantly by sex (p Conclusion LBM was the anthropometric index most closely correlated to vascular fluid volumes, independent of age, gender and pubertal stage.

  16. A PV-approach for dense water formation along fronts: Application to the Northwestern Mediterranean

    Science.gov (United States)

    Giordani, Hervé; Lebeaupin-Brossier, Cindy; Léger, Fabien; Caniaux, Guy

    2017-02-01

    The mechanisms of dense water formation (σ>29.0kg m-3) at work in the baroclinic cyclonic gyre of the North-Western Mediterranean basin are investigated through a PV-budget (PV: Potential Vorticity). The PV-budget is diagnosed from an eddy-resolving (1/36o) ocean simulation driven in surface by hourly air-sea fluxes provided by a nonhydrostatic atmospheric model at 2.5 km resolution. The PV-budget is controlled by the diabatic, frictional, and advective PV-fluxes. Around the gyre the surface diabatic PV-flux dominates the PV-destruction, except along the northern branch of the North Current where the surface frictional PV-flux is strongly negative. In this region, the bathymetry stabilizes the front and maintains the current northerly in the same direction as the dominant northerly wind. This configuration leads to optimal wind-current interactions and explains the preponderance of frictional PV-destruction on diabatic PV-destruction. This mechanical forcing drives a cross-front ageostrophic circulation which subducts surface low-PV waters destroyed by wind on the dense side of the front and obducts high-PV waters from the pycnocline on the light side of the front. The horizontal PV-advections associated with the geostrophic cyclonic gyre and turbulent entrainment at the pycnocline also contribute to the PV-refueling in the frontal region. The surface nonadvective PV-flux involves energy exchanges down to -1400 W m-2 in the frontal zone: this flux is 3.5 times stronger than atmospheric buoyancy flux. These energy exchanges quantify the coupling effects between the surface atmospheric forcing with the oceanic frontal structures at submesoscale.

  17. Modern manufacturing engineering

    CERN Document Server

    2015-01-01

    This book covers recent research and trends in Manufacturing Engineering. The chapters emphasize different aspects of the transformation from materials to products. It provides the reader with fundamental materials treatments and the integration of processes. Concepts such as green and lean manufacturing are also covered in this book.

  18. Predictive Manufacturing: Classification of categorical data

    DEFF Research Database (Denmark)

    Khan, Abdul Rauf; Schiøler, Henrik; Kulahci, Murat

    2018-01-01

    processes is high volume of information about the process dynamics. In this paper we present a methodology to deal with the categorical data streams from manufacturing processes, with an objective of predicting failures on the last stage of the process. A thorough examination of the behaviour...... and classification capabilities of our methodology (on different experimental settings) is done through a specially designed simulation experiment. Secondly, in order to demonstrate the applicability in a real life problem a data set from electronics component manufacturing is being analysed through our proposed...

  19. Manufacturing tolerant topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick...... (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization...... that the method provides manufacturing tolerant designs with little decrease in performance. As a positive side effect the robust design formulation also eliminates the longstanding problem of one-node connected hinges in compliant mechanism design using topology optimization....

  20. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  1. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    Energy Technology Data Exchange (ETDEWEB)

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  2. Residential Solar PV Planning in Santiago, Chile: Incorporating the PM10 Parameter

    Directory of Open Access Journals (Sweden)

    Gustavo Cáceres

    2014-12-01

    Full Text Available This paper addresses an economic study of the installation of photovoltaic (PV solar panels for residential power generation in Santiago, Chile, based on the different parameters of a PV system, such as efficiency. As a performance indicator, the Levelized Cost of Energy (LCOE was used, which indicates the benefit of the facility vs. the current cost of electrical energy. In addition, due to a high level of airborne dusts typically associated with PM10, the effect of the dust deposition on PV panels’ surfaces and the effect on panel performance are examined. Two different scenarios are analyzed: on-grid PV plants and off-grid PV plants.

  3. A Novel Frequency Restoring Strategy of Hydro-PV Hybrid Microgrid

    DEFF Research Database (Denmark)

    Wei, Feng; Kai, Sun; Guan, Yajuan

    2014-01-01

    The conventional PV systems based on the voltage inverters only inject dispatched power to the utility grid when they work at a grid-connected mode in the hydro-PV hybrid microgrid. Due to the droop method employed for load sharing between generators, as well as the enormous inertia of system....... The existence of frequency steady-state error and the slow active power/frequency dynamic response are inevitable. Therefore, a novel frequency restoring strategy for the hydro-PV hybrid microgrid based on the improved hierarchical control of PV systems is proposed in this paper. The output active power of PV...

  4. Plasma volume, fluid shifts, and renal responses in humans during 12 h of head-out water immersion.

    Science.gov (United States)

    Johansen, L B; Foldager, N; Stadeager, C; Kristensen, M S; Bie, P; Warberg, J; Kamegai, M; Norsk, P

    1992-08-01

    Changes in plasma volume (PV) throughout 12 h of thermoneutral (34.5 degrees C) water immersion (WI) were evaluated in eight subjects by an improved Evans blue (EB) technique and by measurements of hematocrit (Hct), hemoglobin (Hb), and plasma protein concentrations (Pprot). Appropriate time control studies (n = 6) showed no measurable change in PV. At 30 min of immersion, EB measurements demonstrated an increase in PV of 16 +/- 2% (457 +/- 70 ml). Calculations, however, based on concomitant changes in Hct, Hb, and Pprot showed an increase in PV of only 6.9 +/- 0.9 to 10.0 +/- 0.8% at 30 min of WI. PV values based on EB measurements subsequently declined throughout WI to (but not below) the preimmersion level. Concomitantly, changes in PV calculated from Pprot values remained increased, whereas estimations of changes in PV based on Hct and Hb values returned to prestudy levels after 4 h of immersion. It is concluded that PV initially increases by 16 +/- 2% during WI and does not decline below preimmersion and control levels during 12 h of immersion despite a loss of 0.9 +/- 0.2 liter of body fluid. Furthermore, changes in Hct, Hb, and Pprot do not provide accurate measures of the changes in PV during WI in humans.

  5. 4th International Conference on Sustainable Design and Manufacturing

    CERN Document Server

    Howlett, Robert; Setchi, Rossi; Cimatti, Barbara

    2017-01-01

    This volume includes papers presented at the 4th International Conference on Sustainable Design and Manufacturing (SDM-17) held in Bologna, Italy, in April 2017. The conference covered a wide range of topics from cutting-edge sustainable product design and service innovation, sustainable processes and technology for the manufacturing of sustainable products, sustainable manufacturing systems and enterprises, decision support for sustainability, and the study of the societal impact of sustainability including research for circular economy. Application areas are wide and varied, and the book provides an excellent overview of the latest research and development in the area of Sustainable Design and Manufacturing.

  6. Solder technology in the manufacturing of electronic products

    Energy Technology Data Exchange (ETDEWEB)

    Vianco, P.T.

    1993-08-01

    The electronics industry has relied heavily upon the use of soldering for both package construction and circuit assembly. The solder attachment of devices onto printed circuit boards and ceramic microcircuits has supported the high volume manufacturing processes responsible for low cost, high quality consumer products and military hardware. Defects incurred during the manufacturing process are minimized by the proper selection of solder alloys, substrate materials and process parameters. Prototyping efforts are then used to evaluate the manufacturability of the chosen material systems. Once manufacturing feasibility has been established, service reliability of the final product is evaluated through accelerated testing procedures.

  7. A Software Tool for Optimal Sizing of PV Systems in Malaysia

    Directory of Open Access Journals (Sweden)

    Tamer Khatib

    2012-01-01

    Full Text Available This paper presents a MATLAB based user friendly software tool called as PV.MY for optimal sizing of photovoltaic (PV systems. The software has the capabilities of predicting the metrological variables such as solar energy, ambient temperature and wind speed using artificial neural network (ANN, optimizes the PV module/ array tilt angle, optimizes the inverter size and calculate optimal capacities of PV array, battery, wind turbine and diesel generator in hybrid PV systems. The ANN based model for metrological prediction uses four meteorological variables, namely, sun shine ratio, day number and location coordinates. As for PV system sizing, iterative methods are used for determining the optimal sizing of three types of PV systems, which are standalone PV system, hybrid PV/wind system and hybrid PV/diesel generator system. The loss of load probability (LLP technique is used for optimization in which the energy sources capacities are the variables to be optimized considering very low LLP. As for determining the optimal PV panels tilt angle and inverter size, the Liu and Jordan model for solar energy incident on a tilt surface is used in optimizing the monthly tilt angle, while a model for inverter efficiency curve is used in the optimization of inverter size.

  8. Towards the next generation 23% efficient n-type cells with low cost manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Yelundur, Vijay [Suniva Inc., Norcross, GA (United States)

    2017-04-19

    Suniva, Inc., in collaboration with the University Center for Excellence in Photovoltaics (UCEP) at the Georgia Institute of Technology (GIT) proposed this comprehensive three year program to enable the development of an advanced high performance product that will help the US regain its competitive edge in PV. This project was designed to overcome cost and efficiency barriers through advances in PV science, technology innovation, low-cost manufacturing and full production of ~22.5% efficient n-type Si cells in Norcross, GA. At the heart of the project is the desire to complement the technology being developed concurrently under the Solarmat and ARPAe initiatives to develop a differentiated product superior in both performance and cost effectiveness to the competing alternatives available on the market, and push towards achieving SunShot objectives while ensuring a sustainable business model based on US manufacturing. A significant reduction of the costs in modules produced today will need to combine reductions in wafer costs, cell processing costs as well as module fabrication costs while delivering a product that is not only more efficient under test conditions but also increases the energy yield in outdoor operations. This project will result in a differentiated high performance product and technology that is consistent with sustaining PV manufacturing in the US for a longer term and further highlights the need for continued support for developing the next generation concepts that can keep US manufacturing thriving to support the growing demand for PV in the US and consistent with the US government’s mandates for energy independence.

  9. Manufacture and quality control of interconnecting wire harnesses

    Science.gov (United States)

    1973-01-01

    Four-volume series of documents has been prepared as standard reference. Each volume may be used separately and covers wire and cable preparation as well as harness fabrication and installation. Series should be useful addition to libraries of manufactures of electrical and electronic equipment.

  10. The Manufacture of Synthetic Drugs and Fine Chemicals

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 12. The Manufacture of Synthetic Drugs and Fine Chemicals. K Venkataraman. Classics Volume 9 Issue 12 December 2004 pp 81-85 ... Author Affiliations. K Venkataraman1. Department of Chemical Technology, The University, Bombay ...

  11. PowerGuard Advanced Manufacturing, PVMaT Phase II Technical Progress Report; 1 July 1999--30 September 2000

    Energy Technology Data Exchange (ETDEWEB)

    Dinwoodie, T.L.; Botkin, J.

    2001-06-05

    This project introduced incremental improvements to PowerGuard system components and manufacturing processes to significantly reduce the costs of a PowerGuard system. The improvement resulted in a lower cost, higher impact PV product. During Phase II, these accomplishments have resulted in: A production rate of greater than 400 PowerGuard tiles per shift (20 MW/year) manufacturing capacity; 57% cost reduction for PowerGuard tile; UL listing for four additional PowerGuard tiles configurations; Improved quality of finished goods due to improved tooling and processes in manufacturing, simultaneously improving throughput and lowering cost of $3.80Wp for large systems. In Phase III of this contract, PowerLight will continue efforts to improve the manufacturing processes for PowerGuard. Specific performance objectives during phase III are as follows: Demonstrate system cost reduction from $3.80/Wp to $3.05/Wp for large systems; Establish or assess the performance of dedicated PowerGuard PV module plant capacity of 2 MW per year; Complete wind tunnel testing of all design refinements; Produce an installation manual and training program for installing PowerGuard systems; Establish performance of manufacturing modifications based on assessment of commercial systems which incorporate the new features and processes; and Finalize UL, International Conference of Building Officials (ICBO), and international listings of PowerGuard improvements. These are expected to result in a lower cost, higher impact PV product, as sought by this program.

  12. 1366 Project Automate: Enabling Automation for <$0.10/W High-Efficiency Kerfless Wafers Manufactured in the US

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Adam [1366 Technologies, Bedford, MA (United States)

    2017-05-10

    For photovoltaic (PV) manufacturing to thrive in the U.S., there must be an innovative core to the technology. Project Automate builds on 1366’s proprietary Direct Wafer® kerfless wafer technology and aims to unlock the cost and efficiency advantages of thin kerfless wafers. Direct Wafer is an innovative, U.S.-friendly (efficient, low-labor content) manufacturing process that addresses the main cost barrier limiting silicon PV cost-reductions – the 35-year-old grand challenge of manufacturing quality wafers (40% of the cost of modules) without the cost and waste of sawing. This simple, scalable process will allow 1366 to manufacture “drop-in” replacement wafers for the $10 billion silicon PV wafer market at 50% of the cost, 60% of the capital, and 30% of the electricity of conventional casting and sawing manufacturing processes. This SolarMat project developed the Direct Wafer processes’ unique capability to tailor the shape of wafers to simultaneously make thinner AND stronger wafers (with lower silicon usage) that enable high-efficiency cell architectures. By producing wafers with a unique target geometry including a thick border (which determines handling characteristics) and thin interior regions (which control light capture and electron transport and therefore determine efficiency), 1366 can simultaneously improve quality and lower cost (using less silicon).

  13. Hemoglobin mass and intravascular volume kinetics during and after exposure to 3,454-m altitude

    DEFF Research Database (Denmark)

    Siebenmann, C; Cathomen, A; Hug, M

    2015-01-01

    High altitude (HA) exposure facilitates a rapid contraction of plasma volume (PV) and a slower occurring expansion of hemoglobin mass (Hbmass). The kinetics of the Hbmass expansion has never been examined by multiple repeated measurements, and this was our primary study aim. The second aim...... was to investigate the mechanisms mediating the PV contraction. Nine healthy, normally trained sea-level (SL) residents (8 males, 1 female) sojourned for 28 days at 3,454 m. Hbmass was measured and PV was estimated by carbon monoxide rebreathing at SL, on every 4th day at HA, and 1 and 2 wk upon return to SL. Four...

  14. How PV system ownership can impact the market value of residential homes

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jamie L. [Energy Sense Finance, LLC, Punta Gorda, FL (United States)

    2014-01-01

    There are multiple ways for a homeowner to obtain the electricity generating and savings benefits offered by a photovoltaic (PV) system. These include purchasing a PV system through various financing mechanisms, or by leasing the PV system from a third party with multiple options that may include purchase, lease renewal or PV system removal. The different ownership options available to homeowners presents a challenge to appraisal and real estate professionals during a home sale or refinance in terms of how to develop a value that is reflective of the PV systems operational characteristics, local market conditions, and lender and underwriter requirements. This paper presents these many PV system ownership options with a discussion of what considerations an appraiser must make when developing the contributory value of a PV system to a residential property.

  15. An Emulated PV Source Based on an Unilluminated Solar Panel and DC Power Supply

    Directory of Open Access Journals (Sweden)

    Zhongfu Zhou

    2017-12-01

    Full Text Available This paper provides a review on various PV simulator technologies as well as presents a novel equivalent photovoltaic (PV source that was constructed by using un-illuminated solar panels and a DC power supply that operates in current source mode. The constructed PV source was used for testing photovoltaic converters and various maximum power point tracking (MPPT algorithms required for capturing the maximum possible output power. The mathematical model and electrical characteristics of the constructed PV source were defined and analyzed in detail in the paper. The constructed PV source has the advantages of high bandwidth over the switching circuit based PV simulators. The constructed PV source has been used for testing various power electronics converters and various control techniques effectively in laboratory environments for researchers and university students.

  16. Control of Grid Interactive PV Inverters for High Penetration in Low Voltage Distribution Networks

    DEFF Research Database (Denmark)

    Demirok, Erhan

    distorted conditions. Chapter 2, therefore; overviews the latest ancillary services such as real power reduction during over frequency/over voltage events and reactive power control for static grid voltage support function of PV inverters. In case of high density of PV integration, grid connection rules...... of these inverters may depend on grid connection rules which are forced by DSOs. Minimum requirement expected from PV inverters is to transfer maximum power by taking direct current (DC) form from PV modules and release it into AC grid and also continuously keep the inverters synchronized to the grid even under...... widespread usage in residential areas and are usually single-phase connected to 230/400-V grid. Since realistic assessment of PV integration should include both single- and three-phase PV connections, a three-phase load flow script which is able to allow more precise estimation of PV hosting capacity...

  17. Delta Power Control Strategy for Multi-String Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With a still increasing penetration level of grid-connected PV systems, more advanced active power control functionalities have been introduced in certain grid regulations. A delta power constraint, where a portion of the active power from the PV panels is reserved during operation, is required...... for grid support (e.g., during frequency deviation). In this paper, a cost-effective solution to realize delta power control for grid-connected PV systems is presented, where the residential/commercial multi-string PV inverter configuration is adopted. This control strategy is a combination of Maximum...... Power Point Tracking (MPPT) and Constant Power Generation (CPG) modes. In this control scheme, one PV string operating in the MPPT mode estimates the available power, while the other PV strings regulate the total PV power by the CPG control strategy in such a way that the delta power constraint...

  18. Post-Lamination Manufacturing Process Automation for Photovoltaic Modules; Annual Technical Progress Report: 15 June 1999--14 July 2000

    Energy Technology Data Exchange (ETDEWEB)

    Nowlan, M. J.; Murach, J. M.; Sutherland, S. F.; Lewis, E. R.; Hogan, S. J.

    2000-09-29

    Spire is addressing the PVMaT project goals of photovoltaic (PV) module cost reduction and improved module manufacturing process technology. New cost-effective automation processes are being developed for post-lamination PV module assembly, where post-lamination is defined as the processes after the solar cells are encapsulated. These processes apply to both crystalline and thin-film solar cell modules. Four main process areas are being addressed: (1) Module buffer storage and handling between steps; (2) Module edge trimming, edge sealing, and framing; (3) Junction-box installation; and (4) Testing for module performance, electrical isolation, and ground-path continuity.

  19. Quality management of manufacturing process based on manufacturing execution system

    Science.gov (United States)

    Zhang, Jian; Jiang, Yang; Jiang, Weizhuo

    2017-04-01

    Quality control elements in manufacturing process are elaborated. And the approach of quality management of manufacturing process based on manufacturing execution system (MES) is discussed. The functions of MES for a microcircuit production line are introduced conclusively.

  20. Mitigating Interconnection Challenges of the High Penetration Utility-Interconnected Photovoltaic (PV) in the Electrical Distribution Systems: Cooperative Research and Development Final Report, CRADA Number CRD-14-563

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Sudipta [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of the electric power systems. Some of the urgent areas for research, as identified by inverter manufacturers, installers and utilities, are potential for transient overvoltage from PV inverters, multi-inverter anti-islanding, impact of smart inverters on volt-VAR support, impact of bidirectional power flow, and potential for distributed generation curtailment solutions to mitigate grid stability challenges. Under this project, NREL worked with SolarCity to address these challenges through research, testing and analysis at the Energy System Integration Facility (ESIF). Inverters from different manufacturers were tested at ESIF and NREL's unique power hardware-in-the-loop (PHIL) capability was utilized to evaluate various system-level impacts. Through the modeling, simulation, and testing, this project eliminated critical barriers on high PV penetration and directly supported the Department of Energy's SunShot goal of increasing the solar PV on the electrical grid.