WorldWideScience

Sample records for volume pv manufacturing

  1. Real time PV manufacturing diagnostic system

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [MicroXact Inc., Blacksburg, VA (United States); Crawford, Michael A. [MicroXact Inc., Blacksburg, VA (United States)

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  2. DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-02-01

    This draft report summarizes the results of the U.S. Department of Energy PV Manufacturing Request for Information (RFI), DE-FOA-0000153, that was released in September 2009. The PV Manufacturing Initiative is intended to help facilitate the development of a strong PV manufacturing industry in the United States.

  3. Decade of PV Industry R and D Advances in Silicon Module Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Symko-Davis, M.; Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Laboratory; King, R.[U.S. Department of Energy; Ruby, D.S. [Sandia National Laboratories

    2001-01-18

    The US Photovoltaic (PV) industry has made significant technical advances in crystalline silicon (Si) module manufacturing through the PV Manufacturing R and D Project during the past decade. Funded Si technologies in this project have been Czochralski, cast polycrystalline, edge-defined film-fed growth (EFG) ribbon, string ribbon, and Si-film. Specific R and D Si module-manufacturing categories that have shown technical growth and will be discussed are in crystal growth and processing, wafering, cell fabrication, and module manufacturing. These R and D advancements since 1992 have contributed to a 30% decrease in PV manufacturing costs and stimulated a sevenfold increase in PV production capacity.

  4. The vital role of manufacturing quality in the reliability of PV modules

    Science.gov (United States)

    Rusch, Peter

    2014-10-01

    The influence of manufacturing quality on the reliability of PV modules coming out of today's factories has been, and is still, under estimated among investors and buyers. The main reason is perception. Contrary to popular belief, PV modules are not a commodity. Module quality does differ among module brands. Certification alone does not guarantee the quality or reliability of a module. Cost reductions in manufacturing have unequivocally affected module quality. And the use of new, cheaper materials has had a measureable impact on module reliability. The need for meaningful manufacturing quality standards has been understood by the leading technical institutions and important industry players. The fact that most leading PV panel manufacturers have been certified according to ISO 9001 has led to some level of improvement and higher effectiveness. The new ISO 9001 PV QMS standards will be a major step in providing a tool to assess PV manufacturers' quality management systems. The current lack of sufficient standards has still got a negative influence on the quality of modules being installed today. Today every manufacturer builds their modules in their own way with little standardization or adherence to quality processes and methods, which are commonplace in other manufacturing industries. Although photovoltaic technology is to a great extent mature, the way modules are being produced has changed significantly over the past few years and it continues to change at a rapid pace. Investors, financiers and lenders stand the most to gain from PV systems over the long-term, but also the most to lose. Investors, developers, EPC, O&M and solar asset management companies must all manage manufacturing quality more proactively or they will face unexpected risks and failures down the road. Manufacturing quality deserves more transparency and attention, as it is a major driver of module performance and reliability. This paper will explain the benefits of good manufacturing

  5. The market for photovoltaic (PV) technology

    International Nuclear Information System (INIS)

    Frantzis, L.; Vejtasa, K.M.

    1993-01-01

    This paper describes a study that was intended to provide the Electric Power Research Institute (EPRI) with a market analysis for photovoltaic (PV) technologies under development by EPRI and others. The analysis was to focus on markets and factors leading to significant incremental growth for PV demand, large enough to support more efficient scale PV manufacturing capacity. EPRI anticipates that PV ultimately could provide grid-connected power, however, the 1995--2010 market dynamics are uncertain. The specific objectives of this study, therefore, were to: determine what major future domestic US markets for PV technologies will emerge and provide enough volume to support significant improvements in manufacturing costs through manufacturing economies of scale; provide insight on what is needed to gain acceptance of PV technologies for electric power generation in those major markets; provide insight on when investments in demonstration and manufacturing facilities should be made and what is needed to be successful in each element of the business that these markets could support (e.g., technology development, manufacturing, sales, installation, and service); and provide key insights on the requirements for commercial success of PV in the utility sector

  6. Final Technical Report for Automated Manufacturing of Innovative CPV/PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Okawa, David [Cogenra Solar, Fremont, CA (United States)

    2017-12-15

    Cogenra’s Dense Cell Interconnect system was designed to use traditional front-contact cells and string them together into high efficiency and high reliability “supercells”. This novel stringer allows one to take advantage of the ~100 GW/year of existing cell production capacity and create a solar product for the customer that will produce more power and last longer than traditional PV products. The goal for this program was for Cogenra Solar to design and develop a first-of-kind automated solar manufacturing line that produces strings of overlapping cells or “supercells” based on Cogenra’s Dense Cell Interconnect (DCI) technology for their Low Concentration Photovoltaic (LCPV) systems. This will enable the commercialization of DCI technology to improve the efficiency, reliability and economics for their Low Concentration Photovoltaic systems. In this program, Cogenra Solar very successfully designed, developed, built, installed, and started up the ground-breaking manufacturing tools required to assemble supercells. Cogenra then successfully demonstrated operation of the integrated line at high yield and throughput far exceeding expectations. The development of a supercell production line represents a critical step toward a high volume and low cost Low Concentration Photovoltaic Module with Dense Cell Interconnect technology and has enabled the evaluation of the technology for reliability and yield. Unfortunately, performance and cost headwinds on Low Concentration Photovoltaics systems including lack of diffuse capture (10-15% hit) and more expensive tracker requirements resulted in a move away from LCPV technology. Fortunately, the versatility of Dense Cell Interconnect technology allows for application to flat plate module technology as well and Cogenra has worked with the DOE to utilize the learning from this grant to commercialize DCI technology for the solar market through the on-going grant: Catalyzing PV Manufacturing in the US With Cogenra

  7. Cost reduction in PV manufacturing. Impact on grid-connected and building-integrated markets

    International Nuclear Information System (INIS)

    Maycock, Paul D.

    1997-01-01

    In the past three years there have been several key events or changes that can lead to fully economic, massive deployment to the grid-connected and central PV markets. The factors discussed in this report include: (1) significant cost reduction in single crystal and polycrystal silicon so that modules profitably priced at $3.10-$3.30 per peak watt and installed grid-connected systems with installed cost of $5.50 per watt are being offered; (2) several new thin film plants - amorphous silicon, cadmium telluride, and copper indium diselenide are being built for 1996, 1997 production with greatly reduced costs; (3) government subsidized volume orders for PV in grid-connected houses (Japan, Germany, Switzerland, Italy, and the United States) provide volume (2000+ units per year) that lead to reduced costs; (4) environmental benefits for PV are being applied in Europe and Japan permitting 'early adopters' to enter the market; and (5) government and commercial acceptance of PV building integrated products, especially in Europe, are expanding PV markets. The combination of these forces lead to the prediction that an 'accelerated' market mode could start in the year 2000

  8. Efficiency and Throughput Advances in Continuous Roll-to-Roll a-Si Alloy PV Manufacturing Technology: Final Subcontract Report, 22 June 1998 -- 5 October 2001

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, T.

    2002-04-01

    This report describes a roll-to-roll triple-junction amorphous silicon alloy PV manufacturing technology developed and commercialized by Energy Conversion Devices (ECD) and United Solar Systems. This low material cost, roll-to-roll production technology has the economies of scale needed to meet the cost goals necessary for widespread use of PV. ECD has developed and built six generations of a-Si production equipment, including the present 5 MW United Solar manufacturing plant in Troy, Michigan. ECD is now designing and building a new 25-MW facility, also in Michigan. United Solar holds the world's record for amorphous silicon PV conversion efficiency, and manufactures and markets a wide range of PV products, including flexible portable modules, power modules, and innovative building-integrated PV (BIPV) shingle and metal-roofing modules that take advantage of this lightweight, rugged, and flexible PV technology. All of United Solar's power and BIPV products are approved by Underwriters Laboratories and carry a 10-year warranty. In this PVMaT 5A subcontract, ECD and United Solar are addressing issues to reduce the cost and improve the manufacturing technology for the ECD/United Solar PV module manufacturing process. ECD and United Solar identified five technology development areas that would reduce the module manufacturing cost in the present 5-MW production facility, and also be applicable to future larger-scale manufacturing facilities.

  9. PowerLight Corporation Lean Manufacturing, PV Manufacturing R&D Phase I Report: 6 December 2001--31 March 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, L; Botkin, J.

    2005-06-01

    PowerLight Corporation (PowerLight) has completed Phase I of its PV Manufacturing R&D subcontract, ''PowerGuard Lean Manufacturing,'' Subcontract No. NDO-1-30628-04. The overall technical goal of this project was to reduce the cost of PowerGuard manufacturing while simultaneously improving product quality. This will enable PowerLight to scale up production capacity as the market for PowerGuard continues to grow. Through the introduction of world-class lean manufacturing techniques, PowerLight was to cut out waste in the manufacturing process of PowerGuard. The manufacturing process was to be overhauled with an objective of removing as much as possible those steps that do not add value to the product. Quality of finished goods was also to be improved through the use of statistical process control and error-proofing in the manufacturing process. Factory operations were also to be addressed to streamline those factory activities that support the manufacturing process. This report de tails the progress made toward the above listed goals during the first phase of this subcontract.

  10. PV supply chain growing pains

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, A. [Matrix Energy Inc., Montreal, PQ (Canada)

    2010-11-15

    This article discussed issues involving the supply chain for photovoltaic (PV) equipment that is emerging in Ontario as a result of the Feed-in-Tariff (FIT) program that was launched in late 2009. The rapidly developing PV supply chain may not be taking a sustainable path. The domestic-content requirement is making manufacturers outlay capital to set up manufacturing in Ontario without reliable market data. Only a small number of dealer/installers have any meaningful experience designing and installing grid-tie PV. Until recently, wholesale distributors designed and supplied most grid-tie PV systems in Canada, and solar dealers/installers or electricians or electrical contractors did the installation. Instead of selling directly to dealer/installers, solar manufacturers should develop strong relationships with wholesalers, who have system design experience and product training. This would allow manufacturers to focus on their core strength, reach more customers, and keep lower inventory levels. Wholesale distributors in turn provide dealer/installers with expertise in product and system design, training from a range of manufacturers, marketing and logistics support, and immediate access to inventory. Manufacturers generally lack appropriate accounting, engineering, marketing, and logistics services to deal with a multitude of active accounts, and they are not structured to work with architects and engineers to do complete system design. Partnering with wholesale distributors allows manufacturers to take on the residential and small-scale commercial sectors by building brand awareness and increasing market share and sales across Canada. 2 figs.

  11. PV supply chain growing pains

    International Nuclear Information System (INIS)

    Wilkins, A.

    2010-01-01

    This article discussed issues involving the supply chain for photovoltaic (PV) equipment that is emerging in Ontario as a result of the Feed-in-Tariff (FIT) program that was launched in late 2009. The rapidly developing PV supply chain may not be taking a sustainable path. The domestic-content requirement is making manufacturers outlay capital to set up manufacturing in Ontario without reliable market data. Only a small number of dealer/installers have any meaningful experience designing and installing grid-tie PV. Until recently, wholesale distributors designed and supplied most grid-tie PV systems in Canada, and solar dealers/installers or electricians or electrical contractors did the installation. Instead of selling directly to dealer/installers, solar manufacturers should develop strong relationships with wholesalers, who have system design experience and product training. This would allow manufacturers to focus on their core strength, reach more customers, and keep lower inventory levels. Wholesale distributors in turn provide dealer/installers with expertise in product and system design, training from a range of manufacturers, marketing and logistics support, and immediate access to inventory. Manufacturers generally lack appropriate accounting, engineering, marketing, and logistics services to deal with a multitude of active accounts, and they are not structured to work with architects and engineers to do complete system design. Partnering with wholesale distributors allows manufacturers to take on the residential and small-scale commercial sectors by building brand awareness and increasing market share and sales across Canada. 2 figs.

  12. Back-end interconnection. A generic concept for high volume manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Bosman, J.; Budel, T.; De Kok, C.J.G.M.

    2013-10-15

    The general method to realize series connection in thin film PV modules is monolithical interconnection through a sequence of laser scribes (P1, P2 and P3) and layer depositions. This method however implies that the deposition processes are interrupted several times, an undesirable situation in high volume processing. In order to eliminate this drawback we focus our developments on the so called 'back-end interconnection concept' in which series interconnection takes place AFTER the deposition of the functional layers of the thin film PV device. The process of making a back-end interconnection combines laser scribing, curing, sintering and inkjet processes. These different processes interacts with each other and are investigated in order to create processing strategies that are robust to ensure high volume production. The generic approach created a technology base that can be applied to any thin film PV technology.

  13. Environmentally benign silicon solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S. [National Renewable Energy Lab., Golden, CO (United States); Gee, J.M. [Sandia National Labs., Albuquerque, NM (United States); Menna, P. [National Agency for New Technologies Energy and Environment, Portici (Italy); Strebkov, D.S.; Pinov, A.; Zadde, V. [Intersolarcenter, Moscow (Russian Federation)

    1998-09-01

    The manufacturing of silicon devices--from polysilicon production, crystal growth, ingot slicing, wafer cleaning, device processing, to encapsulation--requires many steps that are energy intensive and use large amounts of water and toxic chemicals. In the past two years, the silicon integrated-circuit (IC) industry has initiated several programs to promote environmentally benign manufacturing, i.e., manufacturing practices that recover, recycle, and reuse materials resources with a minimal consumption of energy. Crystalline-silicon solar photovoltaic (PV) modules, which accounted for 87% of the worldwide module shipments in 1997, are large-area devices with many manufacturing steps similar to those used in the IC industry. Obviously, there are significant opportunities for the PV industry to implement more environmentally benign manufacturing approaches. Such approaches often have the potential for significant cost reduction by reducing energy use and/or the purchase volume of new chemicals and by cutting the amount of used chemicals that must be discarded. This paper will review recent accomplishments of the IC industry initiatives and discuss new processes for environmentally benign silicon solar-cell manufacturing.

  14. Energy balance of the global photovoltaic (PV) industry--is the PV industry a net electricity producer?

    Science.gov (United States)

    Dale, Michael; Benson, Sally M

    2013-04-02

    A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors.

  15. Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Goodrich, A. C.; Woodhouse, M.; James, T.

    2011-02-01

    EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

  16. Economic PV - a shift in thinking

    International Nuclear Information System (INIS)

    Maycock, P.

    1999-01-01

    This article argues that photovoltaic (PV) technology is already economically viable contrary to current opinion. A table of world PV module shipments for 1990 to 1998 by market sector is presented, and use of PV modules in consumer electronics such as calculators, battery trickle chargers, and garden lights; in communications and signals (eg. microwave repeaters, cellular communication); and in the residential sector in fluorescent lights, radios etc. are discussed. The early adopters of PV technology, and the value placed on PV devices by consumers are considered. Details of PV manufacturing costs for 1997, and forecasts for 2000 and 2010 are tabulated

  17. Updated Proposal for a Guide for Quality Management Systems for PV Manufacturing. Supplemental Requirements to ISO 9001-2008

    Energy Technology Data Exchange (ETDEWEB)

    Ramu, Govind [Sun Power, San Jose, CA (United States); Yamamichi, Masaaki [National Inst. of Advanced Industrial Science and Technology (AIST); Zhou, Wei [Trina Solar, San Jose, CA (United States); Mikonowicz, Alex [Powermark, Dallas, TX (United States); Lokanath, Sumanth [First Solar, Tempe, AZ (United States); Eguchi, Yoshihito [Mitsui Chemical, Rye Brook, NY (United States); Norum, Paul [Amonix, Seal Beach, CA (United States); Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    The goal of this Technical Specification is to provide a guideline for manufacturers of photovoltaic (PV) modules to produce modules that, once the design is proven to meet the quality and reliability requirements, replicate the design on an industrial scale without compromising its consistency with the requirements.

  18. The Present, Mid-Term, and Long-Term Supply Curves for Tellurium; and Updates in the Results from NREL's CdTe PV Module Manufacturing Cost Model (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Woodhouse, M.; Goodrich, A.; Redlinger, M.; Lokanc, M.; Eggert, R.

    2013-09-01

    For those PV technologies that rely upon Te, In, and Ga, first-order observations and calculations hint that there may be resource constraints that could inhibit their successful deployment at a SunShot level. These are only first-order approximations, however, and the possibility for an expansion in global Te, In, and Ga supplies needs to be considered in the event that there are upward revisions in their demand and prices.In this study, we examine the current, mid-term, and long-term prospects of Tellurium (Te) for use in PV. We find that the current global supply base of Te would support <10 GW of annual traditional CdTe PV manufacturing production. But as for the possibility that the supply base for Te might be expanded, after compiling several preliminary cumulative availability curves we find that there may be significant upside potential in the supply base for this element - principally vis a vis increasing demand and higher prices. Primarily by reducing the Tellurium intensity in manufacturing and by increasing the recovery efficiency of Te in Cu refining processes, we calculate that it may prove affordable to PV manufacturers to expand the supply base for Te such that 100 GW, or greater, of annual CdTe PV production is possible in the 2030 - 2050 timeframe.

  19. PV power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the international seminar of the Ostbayerisches Technologie-Transfer-Institut e.V. (OTTI) at 11th June, 2012 in Munich (Federal Republic of Germany), the following lectures were held: (1) Technical due diligence (Dietmar Obst); (2) Certification / rating system for large PV plants (Robert Pfatischer); (3) O and M requirements (Lars Rulf); (4) IR photography for large scale systems (Bernhard Weinreich); (5) New market models for PV systems - direct marketing and sales of PV electricity (Martin Schneider); (6) Needs and benefits for plant certification for grid connection and operation (Christoph Luetke-Lengerich); (7) Lare volume module testing / Screening in the field and workshop (Semir Merzoug); (8) Dismantling costs of large scale PV plants (Siegfried Schimpf).

  20. Accelerating residential PV expansion: supply analysis for competitive electricity markets

    International Nuclear Information System (INIS)

    Payne, Adam; Williams, Robert H.; Duke, Richard

    2001-01-01

    Photovoltaic (PV) technology is now sufficiently advanced that market support mechanisms such as net metering plus a renewable portfolio standard (RPS) could induce rapid PV market growth in grid-connected applications. With such support mechanisms, markets would be sufficiently large that manufacturers could profitably build and operate 100 MW p /yr PV module factories, and electricity costs for residential rooftop PV systems would compare favorably with residential electricity prices in certain areas (e.g., California and the greater New York region in the US). This prospect is illustrated by economic and market analyses for one promising technology (amorphous silicon thin-film PV) from the perspectives of both module manufacturers and buyers of new homes with rooftop PV systems. With public policies that reflect the distributed and environmental benefits offered by PV-and that can sustain domestic PV market demand growth at three times the historical growth rate for a period of the order of two decades - PV could provide 3% of total US electricity supply by 2025. (Author)

  1. Overview of the Photovoltaic Manufacturing Technology (PVMaT) project

    International Nuclear Information System (INIS)

    Witt, C.E.; Mitchell, R.L.; Mooney, G.D.

    1993-08-01

    The Photovoltaic Manufacturing Technology (PVMaT) project is a historic government/industry photovoltaic (PV) manufacturing R ampersand D partnership composed of joint efforts between the federal government (through the US Department of Energy) and members of the US PV industry. The project's ultimate goal is to ensure that the US industry retains and extends its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is designed to do this by helping the US PV industry improve manufacturing processes, accelerate manufacturing cost reductions for PV modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of US-based PV manufacturing capacities. Phase 1 of the project, the problem identification phase, was completed in early 1991. Phase 2, the problem solution phase, which addresses process-specific problems of specific manufacturers, is now underway with an expected duration of 5 years. Phase 3 addresses R ampersand D problems that are relatively common to a number of PV companies or the PV industry as a whole. These ''generic'' problem areas are being addressed through a teamed research approach

  2. Respiratory system model for quasistatic pulmonary pressure-volume (P-V) curve: inflation-deflation loop analyses.

    Science.gov (United States)

    Amini, R; Narusawa, U

    2008-06-01

    A respiratory system model (RSM) is developed for the deflation process of a quasistatic pressure-volume (P-V) curve, following the model for the inflation process reported earlier. In the RSM of both the inflation and the deflation limb, a respiratory system consists of a large population of basic alveolar elements, each consisting of a piston-spring-cylinder subsystem. A normal distribution of the basic elements is derived from Boltzmann statistical model with the alveolar closing (opening) pressure as the distribution parameter for the deflation (inflation) process. An error minimization by the method of least squares applied to existing P-V loop data from two different data sources confirms that a simultaneous inflation-deflation analysis is required for an accurate determination of RSM parameters. Commonly used terms such as lower inflection point, upper inflection point, and compliance are examined based on the P-V equations, on the distribution function, as well as on the geometric and physical properties of the basic alveolar element.

  3. Comparative analysis of old, recycled and new PV modules

    Directory of Open Access Journals (Sweden)

    Haroon Ashfaq

    2017-01-01

    Full Text Available This paper presents comparative analysis of old, recycled and new PV modules. It is possible to recycle even very old products by modern standard processes in a value-conserving manner. About 90% of the materials recovered from solar panels can be recycled into useful products. Carbon emission and energy cost are low in manufacturing recycled SPV. Modules can be manufactured with recycled materials and reinstalled in systems as a full quality product with today’s technology good for another 25–30 years. Analysis of all the models of PV module is done with the help of MATLAB. This helps in comparison and proves the effectiveness of the recycled PV module based systems.

  4. Methodology for the optimal design of tansformerless grid-connected PV interters

    DEFF Research Database (Denmark)

    Koutroulis, E.; Blaabjerg, Frede

    2012-01-01

    inverter, such that the PV inverter levelised cost of the generated electricity is minimised. The proposed method constitutes a systematic design process, which is capable to explore the impact of the PV inverter configuration on the trade-off between the PV inverter manufacturing cost and the power losses...

  5. Design optimization of transformerless grid-connected PV inverters including reliability

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2012-01-01

    Of the Electricity (LCOE) generated during the PV system lifetime period is minimized. The LCOE is calculated also considering the failure rates of the components, which affect the reliability performance and lifetime maintenance cost of the PV inverter. A design example is presented, demonstrating that compared...... to the non-optimized PV inverter structures, the PV inverters designed using the proposed optimization methodology exhibit lower total manufacturing and lifetime maintenance cost and inject more energy into the electric-grid and by that minimizing LCOE.......This paper presents a new methodology for optimal design of transformerless Photovoltaic (PV) inverters targeting a cost-effective deployment of grid-connected PV systems. The optimal values and types of the PV inverter components are calculated such that the PV inverter Levelized Cost...

  6. Design Optimization of Transformerless Grid-Connected PV Inverters Including Reliability

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    such that the PV inverter LCOE generated during the PV system lifetime period is minimized. The LCOE is also calculated considering the failure rates of the components, which affect the reliability performance and lifetime maintenance cost of the PV inverter. A design example is presented, demonstrating...... that compared to the nonoptimized PV inverter structures, the PV inverters designed using the proposed optimization methodology exhibit lower total manufacturing and lifetime maintenance cost and inject more energy into the electric-grid and by that minimizing LCOE.......This paper presents a new methodology for optimal design of transformerless photovoltaic (PV) inverters targeting a cost-effective deployment of grid-connected PV systems. The optimal switching frequency as well as the optimal values and types of the PV inverter components is calculated...

  7. On the Path to SunShot. Emerging Opportunities and Challenges in U.S. Solar Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, Kelsey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    This report provides insights into photovoltaic (PV) and concentrating solar power (CSP) manufacturing in the context of the U.S. Department of Energy's SunShot Initiative. Although global PV price reductions and deployment have been strong recently, PV manufacturing faces challenges. Slowing rates of manufacturing cost reductions, combined with the relatively low price of incumbent electricity generating sources in most large global PV markets, may constrain profit opportunities for firms and poses a potential challenge to the sustainable operation and growth of the global PV manufacturing base. In the United States, manufacturers also face a factors-of-production cost disadvantage compared with competing nations. However, the United States is one of the world's most competitive and innovative countries as well as one of the best locations for PV manufacturing. In conjunction with strong projected PV demand in the United States and across the Americas, these advantages could increase the share of PV technologies produced by U.S. manufacturers as the importance of innovation-driven PV cost reductions increases. Compared with PV, CSP systems are much more complex and require a much larger minimum effective scale, resulting in much higher total CAPEX requirements for system construction, lengthier development cycles, and ultimately higher costs of energy produced. The global lack of consistent CSP project development creates challenges for companies that manufacture specialty CSP components, and the potential lack of a near-term U.S. market could hinder domestic CSP manufacturers. However, global and U.S. CSP deployment is expected to expand beyond 2020, and U.S. CSP manufacturers could benefit from U.S. innovation advantages similar to those associated with PV. Expansion of PV and CSP manufacturing also presents U.S. job-growth opportunities.

  8. Innovation and technology transfer through global value chains: Evidence from China's PV industry

    International Nuclear Information System (INIS)

    Zhang, Fang; Gallagher, Kelly Sims

    2016-01-01

    China's success as a rapid innovation follower in the infant Photovoltaic (PV) industry surprised many observers. This paper explores how China inserted itself into global clean energy innovation systems by examining the case of the solar PV industry. The paper decomposes the global PV industrial value chain, and determines the main factors shaping PV technology transfer and diffusion. Chinese firms first entered PV module manufacturing through technology acquisition, and then gradually built their global competitiveness by utilizing a vertical integration strategy within segments of the industry as well as the broader PV value chain. The main drivers for PV technology transfer from the global innovation system to China are global market formation policy, international mobilization of talent, the flexibility of manufacturing in China, and belated policy incentives from China's government. The development trajectory of the PV industry in China indicates that innovation in cleaner energy technologies can occur through both global and national innovation processes, and knowledge exchange along the global PV value chain. - Highlights: •The value chain analytical approach is synergized with the theories of technology transfer and innovation systems. •A detailed review of how China integrated itself into the global solar PV innovation system is provided. •Four main factors shape PV technology transfer to China across various value chain segments. •Innovation in cleaner energy technologies is a combination of global and national innovation processes.

  9. Evaluation of the PV energy production after 12-years of operating

    Science.gov (United States)

    Bouchakour, Salim; Arab, Amar Hadj; Abdeladim, Kamel; Boulahchiche, Saliha; Amrouche, Said Ould; Razagui, Abdelhak

    2018-05-01

    This paper presents a simple way to approximately evaluate the photovoltaic (PV) array performance degradation, the studied PV arrays are connected to the local electric grid at the Centre de Developpement des Energies Renouvelables (CDER) in Algiers, Algeria, since June 2004. The used PV module model takes in consideration the module temperature and the effective solar radiance, the electrical characteristics provided by the manufacturer data sheet and the evaluation of the performance coefficient. For the dynamic behavior we use the Linear Reoriented Coordinates Method (LRCM) to estimate the maximum power point (MPP). The performance coefficient is evaluated on the one hand under STC conditions to estimate the dc energy according to the manufacturer data. On the other hand, under real conditions using both the monitored data and the LM optimization algorithm, allowing a good degree of accuracy of estimated dc energy. The application of the developed modeling procedure to the analysis of the monitored data is expected to improve understanding and assessment of the PV performance degradation of the PV arrays after 12 years of operation.

  10. Automotive Manufacturing Assessment System : Volume 1. Master Product Schedules.

    Science.gov (United States)

    1999-11-01

    Volume I is part of a four volume set documenting areas of research resulting from the development of the Automotive Manufacturing Assessment System (AMAS) for the DOT/Transportation Systems Center. AMAS was designed to assist in the evaluation of in...

  11. Robustness analysis of the efficiency in PV inverters

    DEFF Research Database (Denmark)

    Pigazo, Alberto; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    topology and control strategy but also on the characteristics of the employed components. The aim of this paper is evaluate the effect of physical variations associated to the main components on the overall efficiency of PV inverters. It is concluded that a statistical evaluation of the power converter......During last years an increasing attention has been paid to the efficiency of grid-connected PV inverters. They are manufactured from a number of discrete components and by using a certain topology and control strategy. Hence, the performance of a certain PV inverter not only depends on the selected...

  12. Benefits from the U.S. photovoltaic manufacturing technology project

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    This paper examines the goals of the Photovoltaic Manufacturing Technology (PVMaT) project and its achievements in recapturing the investment by the photovoltaic (PV) industry and the public in this research. The PVMaT project was initiated in 1990 with the goal of enhancing the world-wide competitiveness of the U.S. PV industry. Based on the authors analysis, PVMaT has contributed to PV module manufacturing process improvements, increased product value, and reductions in the price of today`s PV products. An evaluation of success in this project was conducted using data collected from 10 of the PVMaT industrial participants in late fiscal year (FY) 1995. These data indicate a reduction of 56% in the weighted average module manufacturing costs from 1992 to 1996. During this same period, U.S. module manufacturing capacity has increased by more than a factor of 6. Finally, the analysis indicates that both the public and the manufacturers will recapture the funds expended in R&D manufacturing improvements well before the year 2000.

  13. On the influence of the European trade barrier on the chinese pv industry: Is the solution to the solar-dispute “successful”?

    International Nuclear Information System (INIS)

    McCarthy, Killian J.

    2016-01-01

    In July 2013 the European Union (EU) imposed restrictions on Chinese solar photovoltaic (PV) manufacturers, looking to exporting to the EU. In this paper, we consider the impact of this trade barrier, using a sample of 454 stock-listed PV producing firms. We find that the trade barrier erased US$ 8,19 million off the value of the average European PV manufacturers and US$ 247.03 million off the value of the average Chinese PV manufacturers. We also find that while the trade barrier reduced the willingness of the industry to reorganise, it stimulates Chinese manufacturers to reorganise both their domestic and their international operations. The latter, we warn, is likely an attempt by Chinese manufacturers to ‘tariff jump’. We conclude, therefore, that the trade barrier was both inefficient, in that it both hurt the companies it aimed to protect, and ineffective, as those it sought to punish may have circumvented it. - Highlights: • Consider the impact of EU trade restrictions on 454 PV producing firms. • Show that the regulation wiped $8 m off the average European PV manufacturer. • Show that the regulation wiped US$247 m off the value of the average Chinese PV manufacturers. • Show that the regulation stimulated Chinese firms to circumvent the barrier. • Conclude that the trade barrier was inefficient and ineffective.

  14. Plug and Play PV Systems for American Homes

    Energy Technology Data Exchange (ETDEWEB)

    Hoepfner, Christian [Fraunhofer USA, Inc., Boston, MA (United States)

    2016-12-22

    The core objectives of the Plug & Play PV Systems Project were to develop a PV system that can be installed on a residential rooftop for less than $1.50/W in 2020, and in less than 10 hours (from point of purchase to commissioning). The Fraunhofer CSE team’s approach to this challenge involved a holistic approach to system design – hardware and software – that make Plug & Play PV systems: • Quick, easy, and safe to install • Easy to demonstrate as code compliant • Permitted, inspected, and interconnected via an electronic process Throughout the three years of work during this Department of Energy SunShot funded project, the team engaged in a substantive way with inspectional services departments and utilities, manufacturers, installers, and distributors. We received iterative feedback on the system design and on ideas for how such systems can be commercialized. This ultimately led us to conceiving of Plug & Play PV Systems as a framework, with a variety of components compatible with the Plug & Play PV approach, including string or microinverters, conventional modules or emerging lightweight modules. The framework enables a broad group of manufacturers to participate in taking Plug & Play PV Systems to market, and increases the market size for such systems. Key aspects of the development effort centered on the system hardware and associated engineering work, the development of a Plug & Play PV Server to enable the electronic permitting, inspection and interconnection process, understanding the details of code compliance and, on occasion, supporting applications for modifications to the code to allow lightweight modules, for example. We have published a number of papers on our testing and assessment of novel technologies (e.g., adhered lightweight modules) and on the electronic architecture.

  15. The Capital Intensity of Photovoltaics Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Basore, Paul

    2015-10-19

    Factory capital expenditure (capex) for photovoltaic (PV) module manufacturing strongly influences the per-unit cost of a c-Si module. This provides a significant opportunity to address the U.S. DOE SunShot module price target through capex innovation. Innovation options to reduce the capex of PV manufacturing include incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches. and financial approaches.

  16. The Historical Evolution of South Korea's Solar PV Policies since the 1970's

    International Nuclear Information System (INIS)

    Hyun Jin Yu, Julie; Popiolek, Nathalie

    2013-01-01

    The study aims at analyzing the historical evolution of South Korea's solar PV policies from the 1970's until today. An in-depth analysis of different policy instruments has been conducted to understand the PV policy context and the consequences of public policies in the PV sector in terms of patents, manufacturing capacity, PV installations, and impacts on the national economy and energy transition. Also, the key success factors and barriers in South Korea's past PV policies have been identified to make recommendations for future development

  17. Community biomass handbook volume 4: enterprise development for integrated wood manufacturing

    Science.gov (United States)

    Eini Lowell; D.R. Becker; D. Smith; M. Kauffman; D. Bihn

    2017-01-01

    The Community Biomass Handbook Volume 4: Enterprise Development for Integrated Wood Manufacturing is a guide for creating sustainable business enterprises using small diameter logs and biomass. This fourth volume is a companion to three Community Biomass Handbook volumes: Volume 1: Thermal Wood Energy; Volume 2: Alaska, Where Woody Biomass Can Work; and Volume 3: How...

  18. Energy metrics analysis of hybrid - photovoltaic (PV) modules

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Arvind [Department of Electronics and Communication, Krishna Institute of Engineering and Technology, 13 k.m. stone, Ghaziabad - Meerut Road, Ghaziabad 201 206, UP (India); Barnwal, P.; Sandhu, G.S.; Sodha, M.S. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 (India)

    2009-12-15

    In this paper, energy metrics (energy pay back time, electricity production factor and life cycle conversion efficiency) of hybrid photovoltaic (PV) modules have been analyzed and presented for the composite climate of New Delhi, India. For this purpose, it is necessary to calculate (1) the energy consumption in making different components of the PV modules and (2) the annual energy (electrical and thermal) available from the hybrid-PV modules. A set of mathematical relations have been reformulated for computation of the energy metrics. The manufacturing energy, material production energy, energy use and distribution energy of the system have been taken into account, to determine the embodied energy for the hybrid-PV modules. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. For hybrid PV module, it has been observed that the EPBT gets significantly reduced by taking into account the increase in annual energy availability of the thermal energy in addition to the electrical energy. The values of EPF and LCCE of hybrid PV module become higher as expected. (author)

  19. Optimal design of NPC and Active-NPC transformerless PV inverters

    DEFF Research Database (Denmark)

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2012-01-01

    Targeting at a cost-effective deployment of grid-connected PhotoVoltaic (PV) systems, this paper presents a new methodology for the optimal design of transformerless PV inverters, which are based on the Neutral Point Clamped (NPC) and the Active-Neutral Point Clamped (ANPC) topologies. The design...... optimization results demonstrate that a different set of optimal values of the PV inverter switching frequency and output filter components are derived for the NPC and ANPC topologies, respectively, as well as for each of the PV inverter installation sites under study. The NPC and ANPC PV inverter structures......, which are derived using the proposed design optimization methodology exhibit lower Levelized Cost Of generated Electricity (LCOE) and manufacturing cost and they are simultaneously capable to inject more energy into the electric grid than the corresponding non-optimized PV inverters. Thus, the proposed...

  20. High Volume Manufacturing and Field Stability of MEMS Products

    Science.gov (United States)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are

  1. PV installations, protection and the code

    Energy Technology Data Exchange (ETDEWEB)

    Silecky, L. [Mersen, Toronto, ON (Canada)

    2010-12-15

    This article discussed the need for improved standards in Ontario's solar industry to ensure safety for the systems and also safety for the workers. Photovoltaic cells used in solar arrays can now deliver between 50 vDC to 600 vDC. The workings of such a high voltage photocell must be understood in order to understand its protection needs. Since PVs are semiconductors and susceptible to damage from short circuits and overloads, a fast-acting overcurrent protective device (OCPD) should be used. Combiner boxes are also needed to provide a clean method of safely connecting all the wires that are needed in the system, including surge protection and a means of isolation between the PV array and the inverter. Section 50 of the Canadian Electrical Code outlines the requirements for solar PV systems, but it does not mention the protection of DC circuits, including DC fuse protectors which are manufactured to provide a high degree of protection for the PV array. As the photovoltaic (PV) market continues to grow in Ontario, the PV industry also has a responsibility to ensure it is in compliance with codes and standards related to photovoltaic systems. This author suggested that Article 690 of the National Electric Code (NEC) is a good document to use when determining the requirements for PV systems. 3 figs.

  2. Environmental impact of PV cell waste scenario.

    Science.gov (United States)

    Bogacka, M; Pikoń, K; Landrat, M

    2017-12-01

    Rapid growth of the volume of waste from PV cells is expected in the following years. The problem of its utilization seems to be the most important issue for future waste management systems. The environmental impacts of the PV recycling scenario are presented in the manuscript. The analysis is based on the LCA approach and the average data available in specialized databases for silicon standard PV cell is used. The functional unit includes parameters like: efficiency, composition, surface area. The discussion on the environmental impact change due to the location of the PV production and waste processing plants is presented in the manuscript. Additionally, the discussion on the environmental effect of substituting different energy resources with PV cells is presented in the manuscript. The analysis of the PV cell life cycle scenario presented in the article was performed using the SIMA PRO software and data from Ecoinvent 3.0 database together with additional data obtained from other sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A New Controller to Enhance PV System Performance Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Roshdy A AbdelRassoul

    2017-06-01

    Full Text Available In recent years, a radical increase of photovoltaic (PV power generators installation took place because of increased efficiency of solar cells, as well as the growth of manufacturing technology of solar panels. This paper shows the operation and modeling of photovoltaic systems, particularly designing neural controller to control the system. Neural controller is optimized using particle swarm optimization (PSO   leads to getting the best performance of the designed PV system. Using neural network the maximum overshoot and rise time obtained become 0.00001% and 0.1798 seconds, respectively also this paper introduce a comparison between some kind of controller for PV system.In recent years, a radical increase of photovoltaic (PV power generators installation took place because of increased efficiency of solar cells, as well as the growth of manufacturing technology of solar panels. This paper shows the operation and modeling of photovoltaic systems, particularly designing neural controller to control the system. Neural controller is optimized using particle swarm optimization (PSO   leads to getting the best performance of the designed PV system. Using neural network the maximum overshoot and rise time obtained become 0.00001% and 0.1798 seconds, respectively also this paper introduce a comparison between some kind of controller for PV system.

  4. Development of Manufacturing Technology to Accelerate Cost Reduction of Low Concentration and

    Energy Technology Data Exchange (ETDEWEB)

    Detrick, Adam [The Solaria Corporation, Fremont, CA (United States)

    2017-09-27

    The purpose of this project was to accelerate deployment of cost-effective US-based manufacturing of Solaria’s unique c-Si module technology. This effort successfully resulted in the development of US-based manufacturing technology to support two highly-differentiated, market leading product platforms. The project was initially predicated on developing Solaria’s low-concentration PV (LCPV) module technology which at the time of the award was uniquely positioned to exceed the SunShot price goal of $0.50/Wp for standard c-Si modules. The Solaria LCPV module is a 2.5x concentrator that leverages proven, high-reliability PV module materials and low silicon cell usage into a technology package that already had the lowest direct material cost and leading Levelized Cost of Electricity (LCOE). With over 25 MW commercially deployed globally, the Solaria module was well positioned to continue to lead in PV module cost reduction. Throughout the term of the contract, market conditions changed dramatically and so to did Solaria’s product offerings to support this. However, the manufacturing technology developed for the LCPV module was successfully leveraged and optimized to support two new and different product platforms. BIPV “PowerVision” and High-efficiency “PowerXT” modules. The primary barrier to enabling high-volume PV module manufacturing in the US is the high manual labor component in certain unique aspects of our manufacturing process. The funding was used to develop unique manufacturing automation which makes the manual labor components of these key processes more efficient and increase throughput. At the core of Solaria’s product offerings are its unique and proprietary techniques for dicing and re-arranging solar cells into modules with highly-differentiated characteristics that address key gaps in the c-Si market. It is these techniques that were successfully evolved and deployed into US-based manufacturing site with SunShot funding. Today, Solaria

  5. The impact of high PV penetration levels on electrical distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Collinson, A; Beddoes, A; Thornycroft, J [Halcrow (United Kingdom); Strbac, G; Jenkins, N [UMIST, Manchester (United Kingdom); Verhoeven, B [KEMA (Netherlands)

    2002-07-01

    This report describes the results of a collaborative study by EA Technology, UMIST and Halcrow into the effects of large-scale connection of dispersed photovoltaic (PV) power systems on the national electricity supply network. The report is intended to help manufacturers and installers of PV systems and electricity companies to understand the issues associated with grid connection of PV power systems. The increased use of PV systems is expected to have a significant impact on the design, operation and management of electricity supply networks. The study examined three main areas: probability and risk analysis of islanding; PV and network voltage control (including analysis of voltage control in a commercial, domestic retrofit and domestic new build scenarios); and future low voltage network design and operational policies.

  6. Method of manufacturing a large-area segmented photovoltaic module

    Science.gov (United States)

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  7. Building Integrated PV and PV/Hybrid Products - The PV:BONUS Experience: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, H.; Pierce, L. K.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Successes and lessons learned from PV:BONUS (Building Opportunities in the United States in PV). This program has funded the development of PV or PV/hybrid products for building applications.

  8. Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Paul [State University of New York Research Foundation, Albany, NY (United States)

    2014-06-27

    The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.

  9. Terrestrial photovoltaic technologies - Recent progress in manufacturing R&D

    Energy Technology Data Exchange (ETDEWEB)

    Witt, C. E.; Surek, T.; Mitchell, R. L.; Symko-Davies, M.; Thomas, H. P.

    2000-05-15

    This paper describes photovoltaics (PV) as used for energy generation in terrestrial applications. A brief historical perspective of PV development is provided. Solar-to-electricity conversion efficiencies for various photovoltaic materials are presented, as well as expectations for further material improvements. Recent progress in reducing manufacturing costs through process R&D and product improvements are described. Applications that are most suitable for the different technologies are discussed. Finally, manufacturing capacities and current and projected module manufacturing costs are presented.

  10. On the Path to SunShot - Emerging Opportunities and Challenges in U.S. Solar Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Horowitz, Kelsey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Innovation-driven cost and performance improvements, along with strong projected solar demand in the United States and across the Americas, could increase the attractiveness of U.S.-based solar manufacturing (see Chung et al. 2016). Although improvements to standard PV modules have produced deep cost reductions over the past 5 years, the returns on such incremental improvements appear to be diminishing, and more dramatic innovations in module design and manufacturing are required to continue along the path of rapid progress. At the same time, major opportunities exist for innovation to unlock the potential of CSP technologies. This need for innovation could benefit U.S. PV and CSP manufacturers. The United States has been rated one of the world’s most competitive and innovative countries as well as one of the best locations for PV manufacturing. It is a global leader in PV and CSP R&D and patent production, and U.S. PV manufacturers are already pursuing highly differentiated innovations.

  11. Operational characteristic analysis of PV generation system for grid connection by using a senseless MPPT control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.-J.; Kim, K.-H.; Park, H.-Y.; Seo, H.-R.; Park, M.; Yu, I.-K. [Changwon National Univ., SarimDong (Korea, Republic of). Dept. of Electrical Engineering

    2007-07-01

    In photovoltaics, the sun's light energy is captured to create electricity. One of the key issues about a photovoltaic (PV) generation system is to keep the output power of photovoltaic cells maximized under any weather conditions. In a conventional maximum power point tracking (MPPT) control method, both voltage and current coming out from PV array require feedback. The system may fail to track the MPP of a PV array when unexpected weather conditions happen. This paper proposed a novel PV output senseless (POS) control method to solve the problem. The proposed POS MPPT control method only had one factor to consider, the load current. To verify this theory, a POS MPPT control was applied to a manufactured PV generation system, and the results of the the simulated and experimental data under real weather conditions were compared and analyzed. Several tables and diagrams were presented, including the circuit diagram of a manufactured PV generation system connected to grid as well as the the specifications of the PV array and PCS used for the experiment. Reasonable results were obtained in this study. In addition, the scheme was found to be very useful in maximizing power from PV array to load with feedback of only the load current. 8 refs., 3 tabs., 15 figs.

  12. In the balance. The social costs and benefits of PV

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, C. [ECN Solar Energy, Petten (Netherlands)

    2013-10-16

    For more than a decade, the growth in PV markets surpassed expectations. Then, in 2012, the European market declined for the first time compared with the previous year. As policymakers' support for PV hesitates over the costs to society of this technology, it is timely to take an overview of the social costs and benefits, also referred to as the 'external costs', of PV electricity. In this article, these costs are put into perspective vis-a-vis those associated with conventional electricity-generating technologies. The external costs of electricity can be broken down into: (1) the environmental and health costs; (2) the costs of subsidies and energy security; and (3) the costs for grid expansion and reliability. Included in these costs are the increased insurance, health, social and environmental costs associated with damages to health, infrastructure and environment, as well as tax payments that subsidize producers of electricity or fuels, their markets and the electricity infrastructure. A life cycle assessment (LCA) of the environmental impact is used in the quantification of the associated environmental and health costs. Because the environmental footprint of PV electricity is highly dependent on the electricity mix used in PV module fabrication, the environmental indicators are calculated for PV electricity manufactured using different electricity mixes, and compared with those for the European electricity mix (UCTE), and electricity generated by burning 100% coal or 100% natural gas. In 2012 USD, coal electricity requires 19-29 eurocent/kWh above the market price, compared with 1-1.6 eurocent/kWh for PV manufactured with 100% coal electricity. The sum of the subsidies, avoided fossil-fuel imports and energy security, and the economic stimulation associated with PV electricity deployment, amounts to net external benefits. Integrating high penetrations of renewables, with the same reliability as we have today, appears to be fully feasible and

  13. Accelerating residential PV expansion: demand analysis for competitive electricity markets

    International Nuclear Information System (INIS)

    Duke, Richard; Williams, Robert; Payne, Adam

    2005-01-01

    This article quantifies the potential market for grid-connected, residential photovoltaic (PV) electricity integrated into new homes built in the US. It complements an earlier supply-side analysis by the authors that demonstrates the potential to reduce PV module prices below $1.5/W p by scaling up existing thin-film technology in 100 MW p /yr manufacturing facilities. The present article demonstrates that, at that price, PV modules may be cost effective in 125,000 new home installations per year (0.5 GW p /yr). While this market is large enough to support multiple scaled up thin-film PV factories, inefficient energy pricing and demand-side market failures will inhibit prospective PV consumers without strong public policy support. Net metering rules, already implemented in many states to encourage PV market launch, represent a crude but reasonable surrogate for efficient electricity pricing mechanisms that may ultimately emerge to internalize the externality benefits of PV. These public benefits include reduced air pollution damages (estimated costs of damage to human health from fossil fuel power plants are presented in Appendix A), deferral of transmission and distribution capital expenditures, reduced exposure to fossil fuel price risks, and increased electricity system reliability for end users. Thus, net metering for PV ought to be implemented as broadly as possible and sustained until efficient pricing is in place. Complementary PV 'buydowns' (e.g., a renewable portfolio standard with a specific PV requirement) are needed to jumpstart regional PV markets

  14. PV-CAD: an integrated tool for designing PV facades; PV-CAD - Ein integriertes Werkzeug zur Auslegung von PV-Fassaden

    Energy Technology Data Exchange (ETDEWEB)

    Giese, H.; Viotto, M. [Inst. fuer Solare Energieversorgungstechnik (ISET) e.V., Kassel (Germany); Esser, M.; Pukrop, D. [Univ. Oldenburg (Germany). Abt. Energie- und Halbleiterforschung; Stellbogen, D. [Zentrum fuer Sonnenergie- und Wasserstoff-Forschung, Stuttgart (Germany)

    1997-12-31

    PV-CAD provides PV system planners with a practice-oriented tool for an efficient design of PV facades. Being compatible with the standard programmes of the architects` and electrical engineering sectors it can be used on already existing systems and allows the user to draw on previously acquired knowedge. Its open interfaces permit the integration of further design tools. PV CAD works under Microsoft Windows for which it has the necessary graphic user interface. Its compliance to PC standards opens up a wide range of applications and permits its use also on inexpensive computers. Thanks to its promotion by the Federal Ministry for Education, Science, Research, and Technology under the research project ``Computer programmes for the design of photovoltaic facades`` PV-CAD is available at a moderate price. PV-CAD permits an efficient planning of solar facades and therefore has the potential to stimulate the use of PV on buildings. (orig.) [Deutsch] Mit PV-CAD steht dem Anlagenplaner ein anwendungsorientiertes Werkzeug zur Verfuegung, das eine rationelle Auslegung von PV-Fassaden ermoeglicht. Die Kompatibilitaet zu Standardprogrammen aus dem Architektur- und Elektrosektor erlaubt die Nutzung bereits vorhandener Systeme und damit erworbener Kenntnisse. Offene Schnittstellen gestatten die Einbindung weiterer Entwurfswerkzeuge. PV-CAD arbeitet unter Microsoft-Windows und verfuegt ueber die entsprechende grafische Benutzerschnittstelle. Die Kompatibilitaet zum PC-Standard eroeffnet eine sehr breite Anwenderbasis und ermoeglicht den Einsatz des Programms auch auf preiswerten Rechnern. Aufgrund der Foerderung durch das Bundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie im Rahmen des Forschungsprojekts `Rechnerprogramm zur Auslegung von Photovoltaik-Fassaden` steht PV-CAD preiswert zur Verfuegung. PV-CAD ermoeglicht eine effiziente Planung von Solarfassaden und kann daher dem PV-Einsatz in Gebaeuden weitere Impulse geben. (orig.)

  15. PV-WEB: internet-based PV information tool

    International Nuclear Information System (INIS)

    Cowley, P.

    2003-01-01

    This report gives details of a project to create a web-based information system on photovoltaic (PV) systems for the British PV Association (PV-UK) for use by decision makers in government, the utilities, and the housing and construction sectors. The project, which aims to provide an easily accessible tool for UK companies, promote PV technology, increase competitiveness, and identify market opportunities, is described. The design of the web site and its implementation and the evolution are discussed, along with the maintenance of the site by PV-UK and the opportunities offered to PV-UK Members

  16. PV-WEB: internet-based PV information tool

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, P

    2003-07-01

    This report gives details of a project to create a web-based information system on photovoltaic (PV) systems for the British PV Association (PV-UK) for use by decision makers in government, the utilities, and the housing and construction sectors. The project, which aims to provide an easily accessible tool for UK companies, promote PV technology, increase competitiveness, and identify market opportunities, is described. The design of the web site and its implementation and the evolution are discussed, along with the maintenance of the site by PV-UK and the opportunities offered to PV-UK Members.

  17. Quantifying Reliability - The Next Step for a Rapidly Maturing PV Industry and China's Role

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah

    2015-10-14

    PV customers wish to know how long their PV modules will last, but quantitatively predicting service life is difficult because of the large number of ways that a module can fail, the variability of the use environment, the cost of the testing, and the short product development time, especially when compared with the long desired lifetime. China should play a key role in developing international standards because China manufactures most of the world's PV modules. The presentation will describe the steps that need to be taken to create a service life prediction within the context of a defined bill of materials, process window and use environment. Worldwide standards for cost-effective approaches to service-life predictions will be beneficial to both PV customers and manufacturers since the consequences of premature module failure can be disastrous for both.

  18. A review of manufacturing metrology for improved reliability of silicon photovoltaic modules

    Science.gov (United States)

    Davis, Kristopher O.; Walters, Joseph; Schneller, Eric; Seigneur, Hubert; Brooker, R. Paul; Scardera, Giuseppe; Rodgers, Marianne P.; Mohajeri, Nahid; Shiradkar, Narendra; Dhere, Neelkanth G.; Wohlgemuth, John; Rudack, Andrew C.; Schoenfeld, Winston V.

    2014-10-01

    In this work, the use of manufacturing metrology across the supply chain to improve crystalline silicon (c-Si) photovoltaic (PV) module reliability and durability is addressed. Additionally, an overview and summary of a recent extensive literature survey of relevant measurement techniques aimed at reducing or eliminating the probability of field failures is presented. An assessment of potential gaps is also given, wherein the PV community could benefit from new research and demonstration efforts. This review is divided into three primary areas representing different parts of the c-Si PV supply chain: (1) feedstock production, crystallization and wafering; (2) cell manufacturing; and (3) module manufacturing.

  19. Surrogate Plant Data Base : Volume 4. Appendix E : Medium and Heavy Truck Manufacturing

    Science.gov (United States)

    1983-05-01

    This four volume report consists of a data base describing "surrogate" automobile and truck manufacturing plants developed as part of a methodology for evaluating capital investment requirements in new manufacturing facilities to build new fleets of ...

  20. PV and PV/hybrid products for buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, H. P.; Hayter, S. J.; Martin, R. L., Pierce, L. K.

    2000-05-15

    Residential, commercial, and industrial buildings combined are the largest consumers of electricity in the United States and represent a significant opportunity for photovoltaic (PV) and PV/hybrid systems. The U.S. Department of Energy (DOE) is conducting a phased research and product development program, Building Opportunities in the United States for Photovoltaics (PV:BONUS), focused on this market sector. The purpose of the program is to develop technologies and foster business arrangements integrating cost-effective PV or hybrid products into buildings. The first phase was completed in 1996 and a second solicitation, PV:BONUS2, was initiated during 1997. These projects are resulting in a variety of building-integrated products. This paper summarizes the recent progress of the seven firms and collaborative teams currently participating in PV:BONUS2 and outlines planned work for the final phase of their work.

  1. Architecturally integrated PV system at the Ford Bridgend Engine Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, K.; Phillips, R.

    2001-07-01

    The aim of the project was to design and install a solar photovoltaic (PV) plant that could be retrofitted into an existing factory and to evaluate the cost and advantages of using the most recent advances in photovoltaic technology as follows: to demonstrate the use of the latest mono crystalline silicon technology within a large scale manufacturing environment, with the long term view of designing a state of the art installation for use in an environmentally sensitive {sup F}actory of the Future{sup .} To determine the performance and operating costs of a photovoltaic plant in northern latitudes thus providing data for the potential use of similar integrated systems elsewhere in the UK and Northern Europe. To evaluate the long term behaviour of an integrated system and its component parts. To demonstrate the feasibility of retrofitting PV roof lights into a fully operational manufacturing plant. To provide natural daylight into the manufacturing facility thereby improving the working environment, enhancing productivity and reducing the electrical lighting load within the plant during daylight hours. (author)

  2. Design, production and materials of PV powered consumer products - the case of mass production (cd-rom)

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Akkerman, Remko; Palz, W.; Ossenbrink, H.; Helm, P.

    2005-01-01

    Though many options exist, the application of integrated PV systems in mass produced consumer products is still unusual and rare [1]. Therefore, to date, design and manufacturing aspects of product-integrated PV systems have been explored only to a very limited extent. The requirements for the

  3. Performance enhancement of PV cells through micro-channel cooling

    Directory of Open Access Journals (Sweden)

    Muzaffar Ali

    2015-11-01

    Full Text Available Efficiency of a PV cell is strongly dependent on its surface temperature. The current study is focused to achieve maximum efficiency of PV cells even in scorching temperatures in hot climates like Pakistan where the cell surface temperatures can even rise up to around 80 ℃. The study includes both the CFD and real time experimental investigations of a solar panel using micro channel cooling. Initially, CFD analysis is performed by developing a 3D model of a Mono-Crystalline cell with micro-channels to analyze cell surface temperature distribution at different irradiance and water flow rates. Afterwards, an experimental setup is developed for performance investigations under the real conditions of an open climate of a Pakistan's city, Taxila. Two 35W panels are manufactured for the experiments; one is based on the standard manufacturing procedure while other cell is developed with 4mm thick aluminum sheet having micro-channels of cross-section of 1mm by 1mm. The whole setup also includes different sensors for the measurement of solar irradiance, cell power, surface temperature and water flow rates. The experimental results show that PV cell surface temperature drop of around 15 ℃ is achieved with power increment of around 14% at maximum applied water flow rate of 3 LPM. Additionally, a good agreement is also found between CFD and experimental results. Therefore, that study clearly shows that a significant performance improvement of PV cells can be achieved through the proposed cell cooling technique.

  4. Parameters affecting the life cycle performance of PV technologies and systems

    International Nuclear Information System (INIS)

    Pacca, Sergio; Sivaraman, Deepak; Keoleian, Gregory A.

    2007-01-01

    This paper assesses modeling parameters that affect the environmental performance of two state-of-the-art photovoltaic (PV) electricity generation technologies: the PVL136 thin film laminates and the KC120 multi-crystalline modules. We selected three metrics to assess the modules' environmental performance, which are part of an actual 33 kW installation in Ann Arbor, MI. The net energy ratio (NER), the energy pay back time (E-PBT), and the CO 2 emissions are calculated using process based LCA methods. The results reveal some of the parameters, such as the level of solar radiation, the position of the modules, the modules' manufacturing energy intensity and its corresponding fuel mix, and the solar radiation conversion efficiency of the modules, which affect the final analytical results. A sensitivity analysis shows the effect of selected parameters on the final results. For the baseline scenario, the E-PBT for the PVL136 and KC120 are 3.2 and 7.5 years, respectively. When expected future conversion efficiencies are tested, the E-PBT is 1.6 and 5.7 years for the PVL136 and the KC120, respectively. Based on the US fuel mix, the CO 2 emissions for the PVL136 and the KC120 are 34.3 and 72.4 g of CO 2 /kW h, respectively. The most effective way to improve the modules' environmental performance is to reduce the energy input in the manufacturing phase of the modules, provided that other parameters remain constant. Consequently, the use of PV as an electricity source during PV manufacturing is also assessed. The NER of the supplier PV is key for the performance of this scheme. The results show that the NER based on a PV system can be 3.7 times higher than the NER based on electricity supplied by the traditional grid mix, and the CO 2 emissions can be reduced by 80%

  5. Household photovoltaic market in Xining, Qingha province, China: the role of local PV business

    International Nuclear Information System (INIS)

    Ling, S.; Boardman, B.

    2002-01-01

    This paper assesses the present and future market for household photovoltaic (PV) systems in rural Northwest China, especially from the PV commerce at Xining, Qinghai Province. This unsubsidised free market is now met by the emerging PV industry in China, which includes cell and module manufacturers, and PV system distributors and assemblers. For widespread deployment of such a renewable energy technology, the development of a local free market seems more successful than donor- or 'government subsidy'-driven programmes. Presently, there is a thriving infant PV industry in Northwest China, mostly centred in Xining. Xining-based PV sales companies have extensive networks for selling, marketing and servicing household PV systems for rural farmers and nomads. Small systems are now ordinary items on sale in local shops. Based on interviews and fieldwork observations with seven major PV sales companies in Xining, the household PV market is assessed from the present business operations of these companies. Detail of primary sources is given with the aim of archiving seminal progress in the history of photovoltaic power. The results suggest that although the household PV market will continue to grow, current government and international sponsored PV programmes can create both opportunities and barriers for the infant PV market an industry in China. (author)

  6. A function-driven characterization of printed conductors on PV cells

    Science.gov (United States)

    Bellotti, Roberto; Furin, Valentina; Maras, Claire; Bartolo Picotto, Gian; Ribotta, Luigi

    2018-06-01

    Nowadays the development in photovoltaic (PV) cells manufacturing requires increasingly sophisticated technologies, and in order to avoid efficiency losses in PV cell, printing techniques of the front contacts have to be well controlled. To this purpose, printed linear conductors (PLCs) on a PV standard cell are characterized by morphology- and resistance-based measurements, creating a well-calibrated test structure towards the development of an application-oriented material measure. It can be noticed that morphology and texture parameters determined by stylus and optical profilers are well in agreement, and the resistance calculated from the reconstructed cross-section area matches quite well the measured resistance of fingers. Uncertainties of about 14% to 17% are estimated for local measurements of morphology-based and measured resistance of finger segments up to 5 mm length. Fingers characterized by somewhat larger roughness/waviness values (, , ) show some local irregularities, which may degrade the electrical contact of the PV front surface.

  7. PV Status Report 2009. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2009-08-01

    Photovoltaics is a key technology option to realise the shift to a decarbonised energy supply. The solar resources in Europe and world wide are abundant and cannot be monopolised by one country. Regardless for what reasons and how fast the oil price and energy prices increase in the future, Photovoltaics and other renewable energies are the only ones to offer a reduction of prices rather than an increase in the future. As a response to the economic crisis, most of the G20 countries have designed economic recovery packages which include 'green stimulus' measures. However, compared to the new Chinese Energy Revitalisation Plan under discussion, the pledged investments in green energy are marginal. If no changes are made, China which now strongly supports its renewable energy industry, will emerge even stronger after the current financial crisis. In 2008, the Photovoltaic industry production almost doubled and reached a world-wide production volume of 7.3 GWp of Photovoltaic modules. Yearly growth rates over the last decade were in average more than 40%, which makes Photovoltaics one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect lower prices for consumers. The trend that thin-film Photovoltaics grew faster than the overall PV market continued in 2008. The Eighth Edition of the 'PV Status Report' tries to give an overview about the current activities regarding Research, Manufacturing and Market Implementation.

  8. PV Cz silicon manufacturing technology improvements

    Science.gov (United States)

    Jester, T.

    1995-09-01

    This describes work done in the final phase of a 3-y, 3-phase contract to demonstrate cost reductions and improvements in manufacturing technology. The work focused on near-term projects in the SSI (Siemens Solar Industries) Czochralski (Cz) manufacturing facility in Camarillo, CA; the final phase was concentrated in areas of crystal growth, wafer technology, and environmental, safety, and health issues. During this period: (1) The crystal-growing operation improved with increased growth capacity; (2) Wafer processing with wire saws continued to progress; the wire saws yielded almost 50 percent more wafers per inch in production. The wire saws needs less etching, too; (3) Cell processing improvements focused on better handling and higher mechanical yield. The cell electrical distribution improved with a smaller standard deviation in the distribution; and (4) Module designs for lower material and labor costs continued, with focus on a new junction box, larger modules with larger cells, and less costly framing techniques. Two modules demonstrating these cost reductions were delivered during this phase.

  9. Flexible manufacturing system handbook. Volume 1: Executive summary

    Science.gov (United States)

    1983-02-01

    Flexible Manufacturing Systems (FMSs) represent a relatively new strategy to increase productivity. The technology is especially attractive for manufacturers who produce in the middle ranges of production volumes, neither mass production nor one of a kind. Today's unpredictable market environment demands low-cost solutions that provide quick product start-up, adaptability and responsiveness to changes in demand, and the capacity to easily resurrect out-of-production designs. In many instances, FMSs provide a direct hardware/software solution to this threefold management challenge. The adoption of FMS technology requires that one address many questions beforehand. This handbook provides a methodical approach to answering these questions. But it is not a cookbook; it cannot be. Each application of FMS technology is unique, therefore, the guidelines presented are fairly general.

  10. Continuous, Automated Manufacturing of String Ribbon Si PV Modules: Final Report, 21 May 1998 - 20 May 2001; FINAL

    International Nuclear Information System (INIS)

    Hanoka, J. I.

    2001-01-01

    This report summarizes the work done under a three-year PVMaT Phase 5A2 program. The overall goal was to attain a continuous, highly automated, fully integrated PV production line. In crystal growth, advances were made that resulted in lower substrate costs, higher yields, and lower capital and labor costs. A new string material was developed and implemented. Following this development, better control of the edge meniscus was achieved. A completely new furnace design was accomplished, and this became the standard platform in our new factory. Automation included ribbon thickness control and laser cutting of String Ribbon strips. Characterization of Evergreen's String Ribbon silicon was done with extensive help from the NREL laboratories, and this work provided a foundation for higher efficiency cells in the future. Advances in cell manufacturing included the development of high-speed printing and drying methods for Evergreen's unique cell making method and the design and building of a completely automated cell line from the beginning of front-contact application to the final tabbing of the cells. A so-called no-etch process whereby substrates from crystal growth go directly into p-n junction formation and emerge from this sequence without needing to go in and out of plastic carriers for any wet-chemical processing was developed. Process development as well as automation were brought to bear on improvements in soldering technology and cell interconnection in general. Using state-of-the-art manufacturing science, the Fraunhofer USA Center for Manufacturing Innovation at Boston University facilitated layout and process flow for the operation of our new factory. Evergreen Solar's new factory began operations in the second quarter of 2001. A good measure of the significant impact of this PVMaT subcontract is that virtually all of the manufacturing developments stemming from this project have been incorporated in this new factory

  11. Impacts of PV Array Sizing on PV Inverter Lifetime and Reliability

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2017-01-01

    . However, oversizing the PV array will increase the loading of PV inverters, which may have undesired influence on the PV inverter lifetime and reliability. In that case, it may result in a negative impact on the overall PV energy cost, due to the increased maintenance for the PV inverters. This paper...... evaluates the lifetime of PV inverters considering the PV array sizing and installation sites, e.g., Denmark and Arizona. The results reveal that the PV array sizing has a considerable impact on the PV inverter lifetime and reliability, especially in Denmark, where the average solar irradiance level...

  12. Variations of PV Panel Performance Installed over a Vegetated Roof and a Conventional Black Roof

    Directory of Open Access Journals (Sweden)

    Mohammed J. Alshayeb

    2018-05-01

    Full Text Available The total worldwide photovoltaic (PV capacity has been growing from about 1 GW at the beginning of the twenty-first century to over 300 GW in 2016 and is expected to reach 740 GW by 2022. PV panel efficiency is reported by PV manufacturers based on laboratory testing under Standard Testing Condition with a specific temperature of 25 °C and solar irradiation of 1000 W/m2. This research investigated the thermal interactions between the building roof surface and PV panels by examining the differences in PV panel temperature and energy output for those installed over a green roof (PV-Green and those installed over a black roof (PV-Black. A year-long experimental study was conducted over the roof of an educational building with roof mounted PV panels with a system capacity of 4.3 kW to measure PV underside surface temperature (PV-UST, ambient air temperature between PV panel and building roof (PV-AT, and PV energy production (PV-EP. The results show that during the summer the PV-Green consistently recorded lower PV-UST and PV-AT temperatures and more PV-EP than PV-Black. The average hourly PV-EP difference was about 0.045 kWh while the maximum PV-EP difference was about 0.075 kWh, which represents roughly a 3.3% and 5.3% increase in PV-EP. For the entire study period, EP-Green produced 19.4 kWh more energy, which represents 1.4% more than EP-Black.

  13. Plasma volume in acute hypoxia

    DEFF Research Database (Denmark)

    Poulsen, T D; Klausen, T; Richalet, J P

    1998-01-01

    Exposure to acute hypoxia is associated with changes in body fluid homeostasis and plasma volume (PV). This study compared a dye dilution technique using Evans' blue (PV[Evans']) with a carbon monoxide (CO) rebreathing method (PV[CO]) for measurements of PV in ten normal subjects at sea level...

  14. Impacts of PV Array Sizing on PV Inverter Lifetime and Reliability

    OpenAIRE

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso; Blaabjerg, Frede

    2017-01-01

    In order to enable a more wide-scale utilization of PV systems, the cost of PV energy has to be comparable with other energy sources. Oversizing the PV array is one common approach to reduce the cost of PV energy, since it increases the PV energy yield during low solar irradiance conditions. However, oversizing the PV array will increase the loading of PV inverters, which may have undesired influence on the PV inverter lifetime and reliability. In that case, it may result in a negative impact...

  15. Photovoltaic technology, performance, manufacturing cost and markets

    International Nuclear Information System (INIS)

    Maycock, P.D.

    1999-01-01

    A comprehensive discussion of key aspects of photovoltaic energy conversion systems will provide the basis for forecasting PV module shipments from 1999 to 2010. Principal areas covered include: (1) Technology and Performance Status: The module efficiency and performance are described for commercial cell technologies including single crystal silicon, polycrystal silicon, ribbon silicon, film silicon on low cost substrate, amorphous silicon, copper indium diselenide, and cadmium telluride; (2) Manufacturing cost: 1999 costs for PV technologies in production (single crystal silicon, polycrystal silicon, and amorphous silicon) are developed. Manufacturing costs for 10--25 MW plants and 100 MW plants will be estimated; (3) The world PV market is summarized by region, top ten companies, and technology; and (4) Forecast of the World Market (seven market sectors) to 2010 will be presented. Key assumptions, price of modules, incentive programs, price of competing electricity generation will be detailed

  16. High Volume Manufacturing of Silicon-Film Solar Cells and Modules; Final Subcontract Report, 26 February 2003 - 30 September 2003

    Energy Technology Data Exchange (ETDEWEB)

    Rand, J. A.; Culik, J. S.

    2005-10-01

    The objective of the PV Manufacturing R&D subcontract was to continue to improve AstroPower's technology for manufacturing Silicon-Film* wafers, solar cells, and modules to reduce costs, and increase production yield, throughput, and capacity. As part of the effort, new technology such as the continuous back metallization screen-printing system and the laser scribing system were developed and implemented. Existing processes, such as the silicon nitride antireflection coating system and the fire-through process were optimized. Improvements were made to the statistical process control (SPC) systems of the major manufacturing processes: feedstock preparation, wafer growth, surface etch, diffusion, and the antireflection coating process. These process improvements and improved process control have led to an increase of 5% relative power, and nearly 15% relative improvement in mechanical and visual yield.

  17. Parameter extraction and estimation based on the PV panel outdoor ...

    African Journals Online (AJOL)

    The experimental data obtained are validated and compared with the estimated results obtained through simulation based on the manufacture's data sheet. The simulation is based on the Newton-Raphson iterative method in MATLAB environment. This approach aids the computation of the PV module's parameters at any ...

  18. Experimental study of the effect of fully shading on the Solar PV module performance

    Science.gov (United States)

    Al-chaderchi, Monadhil; Sopain, K.; Alghoul, M. A.; Salameh, T.

    2017-11-01

    Experimental tests were performed to study the effects of shading for different string inside the photovoltaic (PV) panels, power equipped with different number of diodes from the same manufacturer as of solar panel. The IV curve for all cases were recorded to see how the bypass diodes will reduce the effects of shading .The case for 3 by pass diode show the best performance of solar PV module under shading phenomena.

  19. PV potential and potential PV rent in European regions

    DEFF Research Database (Denmark)

    Hansen, Anders Chr.; Thorn, Paul

    2013-01-01

    The paper provides a GIS based model for assessing the potentials of photovoltaic electricity in Europe by NUTS 2 regions. The location specific energy potential per PV-­‐panel area is estimated based on observations of solar irradiation, conversion efficiency, levelised costs and the social value...... of PV-­‐electricity. Combined with the potential density of PV-­‐panel area based on land cover and environental restrictions, the PV energy potential and the potential PV ressource rent is calculated. These calculations enbable the model to estimate the regional patterns at NUTS 2 level...

  20. parameter extraction and estimation based on the pv panel outdoor

    African Journals Online (AJOL)

    userpc

    The five parameters in Equation (1) depend on the incident solar irradiance, the cell temperature, and on their reference values. These reference values are generally provided by manufacturers of PV modules for specified operating condition such as STC (Standard Test Conditions) for which the irradiance is 1000 and the.

  1. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991

    Energy Technology Data Exchange (ETDEWEB)

    Saifee, T.; Konnerth, A. III [Solar Kinetics, Inc., Dallas, TX (United States)

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

  2. Mass productions of thin film silicon PV modules

    International Nuclear Information System (INIS)

    Tawada, Y.; Yamagishi, H.; Yamamoto, K.

    2003-01-01

    Mass production technologies of a-Si single junction and a-Si/poly-Si hybrid modules with stable 8% and 10% efficiency were developed in the Shiga factory of Kaneka Corporation. Kaneka instituted Kaneka Solartech Corporation (KST) as a subsidiary company of 100% shareholder and invested 20 MW production plant in Toyooka City in 1999. There are fully automatic thin film fabrication equipments. KST started the manufacturing amorphous silicon PV modules in 1999 and those of hybrid type PV modules in 2001. The largest size glass substrates used for these modules are 95x98 cm and variable size of modules are being produced by cutting these large area base modules. Recent production yields are higher than 98%. Production technologies of a-Si, thin c-Si and solar cells, performances of modules, applications to the rooftop PV systems will be presented. We estimate the production cost of a-Si solar modules and a-Si/thin c-Si hybrid solar modules. The future business plan of our new type solar modules and our production lines will be discussed. (author)

  3. EUV mask defect inspection and defect review strategies for EUV pilot line and high volume manufacturing

    Science.gov (United States)

    Chan, Y. David; Rastegar, Abbas; Yun, Henry; Putna, E. Steve; Wurm, Stefan

    2010-04-01

    Reducing mask blank and patterned mask defects is the number one challenge for extreme ultraviolet lithography. If the industry succeeds in reducing mask blank defects at the required rate of 10X every year for the next 2-3 years to meet high volume manufacturing defect requirements, new inspection and review tool capabilities will soon be needed to support this goal. This paper outlines the defect inspection and review tool technical requirements and suggests development plans to achieve pilot line readiness in 2011/12 and high volume manufacturing readiness in 2013. The technical specifications, tooling scenarios, and development plans were produced by a SEMATECH-led technical working group with broad industry participation from material suppliers, tool suppliers, mask houses, integrated device manufacturers, and consortia. The paper summarizes this technical working group's assessment of existing blank and mask inspection/review infrastructure capabilities to support pilot line introduction and outlines infrastructure development requirements and tooling strategies to support high volume manufacturing.

  4. LonWorks as Fieldbus for PV-Installations; LonWorks als Feldbus fuer PV-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, Ch. von

    2003-07-01

    The growing market for photovoltaics increasingly requires suitable quality controls covering plant operators, planners and installers, as well as the electric utilities. Additionally, the interest of the general public in the behaviour of photovoltaic (PV) plants is growing. This includes information from everyday practice. Alongside data retrieval, other themes such as the operative management of the unit and energy management become increasingly important for grid-connected PV systems. Todays measuring systems are not compatible with each other. Data communication between different PV plants with computer-aided analysis- and visualisation programmes is very complicated. LonWorks was introduced by Motorola and Toshiba in 1991. Today it leads the world market for field bus systems. With plug and play, components by several manufacturers can easily be incorporated into a LonWorks network. Today more than 3,500 companies use LonWorks technology. The goal of this project is to introduce the very popular LonWorks technology as a new standard for PV applications. The first objective was to develop a LonWorks interface for our Convert inverters and to connect them into a small network. In a second step we installed a LonWorks system at the 260 kW{sub p} PV plant 'Felsenau' in Berne, Switzerland. All 68 inverters are controlled over power line with LonWorks. The on-site PC acts as LonWorks DataServer and making remote information monitoring and data gathering possible. As soon as a functional error occurs, an alarm will be transmitted via modem to the SMSC (Short Message Service Centre). After two years of operation we can say that all expectations were fulfilled by our new system. Knowledge gained from this project has shown that LonWorks has lived up its considerable promise and can be regarded as a high-quality piece of technology. Integration into an overall system is technically very easy. To do this, however, relatively expensive software solutions have

  5. The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-16

    This study uses data on over 900,000 solar PV installations to summarize the evolving market structure of the U.S. residential solar PV installation industry. Over 8,000 companies have installed residential PV systems in the United States. The vast majority of these installers are small local companies. At the same time, a subset of national-scale high-volume PV installation companies hold high market shares. This study examines the factors behind these trends in market concentration, including the role of customer financing options.

  6. PV in the US: where is the market going and how will it get there?

    International Nuclear Information System (INIS)

    Mints, P.

    2006-01-01

    As the global PV industry continues its rapid growth in Europe and Japan, the reasons for the USA losing its once leading position are considered. An important factor influencing the demand for photovoltaics anywhere is the subsidies. In Germany, their very successful feed-in tariff law is currently the driving-force for their PV industry and has created the biggest market in the world for PV products. Similar schemes in other parts of Europe are expected to stimulate demand. In the USA, demand for photovoltaics has slowed and production has followed, and in Asia manufacturing costs are much less. For a surge in the PV industry in the USA, it will be necessary for state and federal governments to provide motivation. (author)

  7. Lean Production Control at a High-Variety, Low-Volume Parts Manufacturer

    NARCIS (Netherlands)

    Bokhorst, Jos A. C.; Slomp, Jannes

    2010-01-01

    Eaton Electric General Supplies, a parts manufacturing unit that supplies parts for Eaton's electrical business unit, implemented several lean control elements in its high-variety, low-volume production units. These control elements include a constant work-in-process mechanism to limit and control

  8. 3D Volume Rendering and 3D Printing (Additive Manufacturing).

    Science.gov (United States)

    Katkar, Rujuta A; Taft, Robert M; Grant, Gerald T

    2018-07-01

    Three-dimensional (3D) volume-rendered images allow 3D insight into the anatomy, facilitating surgical treatment planning and teaching. 3D printing, additive manufacturing, and rapid prototyping techniques are being used with satisfactory accuracy, mostly for diagnosis and surgical planning, followed by direct manufacture of implantable devices. The major limitation is the time and money spent generating 3D objects. Printer type, material, and build thickness are known to influence the accuracy of printed models. In implant dentistry, the use of 3D-printed surgical guides is strongly recommended to facilitate planning and reduce risk of operative complications. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Adnan; Othman, Mohd Yusof; Ruslan, Mohd Hafidz; Mat, Sohif; Sopian, Kamaruzzaman [Solar Energy Research Institute Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-01-15

    Flat plate photovoltaic/thermal (PV/T) solar collector produces both thermal energy and electricity simultaneously. This paper presents the state-of-the-art on flat plate PV/T collector classification, design and performance evaluation of water, air and combination of water and/or air based. This review also covers the future development of flat plate PV/T solar collector on building integrated photovoltaic (BIPV) and building integrated photovoltaic/thermal (BIPVT) applications. Different designs feature and performance of flat plate PV/T solar collectors have been compared and discussed. Future research and development (R and D) works have been elaborated. The tube and sheet design is the simplest and easiest to be manufactured, even though, the efficiency is 2% lower compared to other types of collectors such as, channel, free flow and two-absorber. It is clear from the review that for both air and water based PV/T solar collectors, the important key factors that influenced the efficiency of the system are the area where the collector covered, the number of passes and the gap between the absorber collector and solar cells. From the literature review, it is obvious that the flat plate PV/T solar collector is an alternative promising system for low-energy applications in residential, industrial and commercial buildings. Other possible areas for the future works of BIPVT are also mentioned. (author)

  10. Embodied energy analysis of photovoltaic (PV) system based on macro- and micro-level

    International Nuclear Information System (INIS)

    Nawaz, I.; Tiwari, G.N.

    2006-01-01

    In this paper the energy payback time and CO 2 emissions of photovoltaic (PV) system have been analyzed. The embodied energy for production of PV module based on single crystal silicon, as well as for the manufacturing of other system components have been computed at macro- and micro-level assuming irradiation of 800-1200 W/m 2 in different climatic zones in India for inclined surface. The energy payback time with and without balance-of-system for open field and rooftop has been evaluated. It is found that the embodied energy at micro-level is significantly higher than embodied energy at macro-level. The effect of insolation, overall efficiency, lifetime of PV system on energy pay back time and CO 2 emissions have been studied with and without balance of system. A 1.2 kW p PV system of SIEMENS for mudhouse at IIT, Delhi based on macro- and micro-level has been evaluated. The CO 2 mitigation potential, the importance and role of PV system for sustainable development are also highlighted

  11. Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Final Technical Progress Report, 22 October 2002 - 15 November 2007

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, R.

    2008-04-01

    Report on objectives to work with U.S.-based PV module manufacturers (c-Si, a-Si, CIS, other thin films) to develop/qualify new low-cost, high-performance PV module encapsulant/packaging materials, and processes using the packaging materials.

  12. Development of solar energy for efficient PV application systems

    International Nuclear Information System (INIS)

    Said, Aziz

    2006-01-01

    It is essential to increase research, development, awareness for the application of solar energy as an important source of life. The cost of PV systems has decreased due to the improvement in techniques of manufacturing and performance. In reality, photovoltaic is one technology that allows the production of electricity with only two components: technological, which is the PV module and environmental, which is the sun. The knowledge of the components market represents a critical parameters in establishing sustainable industrial applications on different activity sectors. This paper illustrates the advantages of using photovoltaic in rural area and their economic and environmental impact. In regions where petroleum or other fossil fuels are not available, and where these remote area are not connected to the electrical grid, there is a strong and increasing demand for the technologies related to photovoltaic application systems. Water extracting and pumping, telecommunication and lighting, irrigation systems, electrical driven cars and trucks represent some of these important applications. The paper also develops critical skills for the most useful PV application in Egypt and provide to the industry a development forecast for the new technology. Then an initiation contacts and cooperation on PV application between industries specially in North Africa Middle East in order to improve the reliability and to get cheaper systems.(Author)

  13. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    Science.gov (United States)

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  14. An Analysis of Open World PvP in LOTRO's PvMP as a Case Study for PvP Games

    Directory of Open Access Journals (Sweden)

    Toh Weimin

    2014-11-01

    Full Text Available This article focuses on the analysis of emergent gameplay, based on a case study of the author's subjective gameplay experience of Player versus Monster Player (PvMP in The Lord of the Rings Online (LOTRO. The argument presented here is that although there is a core system of Player versus Player (PvP which LOTRO shares with other online games, each type of online game has a specific kind of PvP system which attracts players to engage in the gameplay. For instance, the open world sandbox type of PvP attracts certain players to play in LOTRO's PvMP. One of the main aims of this study is thus to investigate some of the core systems of PvP gameplay in open world sandbox PvP. In this article, LOTRO is shown to offer unique opportunities for studying emergent gameplay in open world games, with particular relevance to PvP studies. Two of the core systems of PvP discussed include the design of the simple gameplay rules to support emergent gameplay, and the community's attitudes towards player's behaviours. The types of emergent gameplay discussed include free play versus negotiated fair play, the players' utilisation of strategies in open world PvP to support collaborative and competitive gameplay, and the changing dynamics of open ended gameplay. It is hoped that the analysis provided in this article would form the­ basis of future work on a more general framework for understanding PvP in other online games.

  15. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  16. Optimization of SiC-based H5 and conergy-NPC transformerless PV inverters

    DEFF Research Database (Denmark)

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2015-01-01

    The transformerless dc/ac inverters are critical components in the rapidly growing market of grid-connected photovoltaic (PV) applications. They are synthesized by combining available solutions in terms of the power-section topology, power-semiconductors manufacturing technology, and structure...

  17. Consortia Focused on Photovoltaic R&D, Manufacturing, and Testing: A Review of Existing Models and Structures

    Energy Technology Data Exchange (ETDEWEB)

    Coggeshall, C.; Margolis, R. M.

    2010-03-01

    As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program prepares to initiate a new cost-shared research and development (R&D) effort on photovoltaic (PV) manufacturing, it is useful to review the experience to date with consortia focused on PV R&D, manufacturing, and testing. Information was gathered for this report by conducting interviews and accessing Web sites of 14 U.S. consortia and four European consortia, each with either a primary focus on or an emerging interest in PV technology R&D, manufacturing, or testing. Additional input was collected from several workshops held by the DOE and National Academy of Sciences (NAS) in 2009, which examined the practical steps -- including public-private partnerships and policy support -- necessary to enhance the United States' capacity to competitively manufacture photovoltaics. This report categorizes the 18 consortia into three groups: university-led consortia, industry-led consortia, and manufacturing and testing facilities consortia. The first section summarizes the organizations within the different categories, with a particular focus on the key benefits and challenges for each grouping. The second section provides a more detailed overview of each consortium, including the origins, goals, organization, membership, funding sources, and key contacts. This survey is a useful resource for stakeholders interested in PV manufacturing R&D, but should not imply endorsement of any of these groups.

  18. Fire resistant PV shingle assembly

    Science.gov (United States)

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  19. PV/T slates - Laboratory measurements; PV/T-Schiefer. Labormessungen

    Energy Technology Data Exchange (ETDEWEB)

    Kropf, S.

    2003-07-01

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) is one a series of five reports dealing with increasing the overall efficiency of photovoltaic (PV) installations by also using the heat collected by the dark-coloured PV panels. The work reported on addresses open questions on the use of the heat and its optimal use. This report deals with an experimental outdoor set-up and reviews in-situ measurements made on a prototype of a ventilated PV-tile system (PV/T-Slates). The report describes the configuration and construction of the experimental PV-tiled roof and the measurement system used to measure its electrical and thermal performance. The results of the measurements made are presented in detail in graphical form. The influence of various factors such as air-slit width and mounting angle are discussed.

  20. Raising objectives: how global PV production could reach 5 GWp by 2010

    International Nuclear Information System (INIS)

    Cameron, A.; Jones, J.

    2006-01-01

    A recent international workshop for the solar photovoltaic (PV) industry organised by the European Photovoltaic Industry Association (EPIA) examined market trends and technological developments. Under a business-as-usual (BAU) scenario, the EPIA predicts that the global PV market would only reach 3.2 GWp by 2010. But workshop participants believe that, given sufficient support measures to encourage investment, the global market could be accelerated to reach 5400 MW per year by 2010, with an achievable annual installed capacity of over 5 GWp and production of 30,000 tonnes of solar-grade silicon per year at a cost of 30-40 euros/kg. Major markets are expected to be Germany, Japan, USA, China and Spain. Examples of the type of policies and strategies necessary for accelerated growth are given and countries with potential for a significant increase in annual PV installation rates are identified. The current main constraint on market growth is the global shortage of suitable silicon, but confidence in the solar market is now sufficient for significant new manufacturing plant to be planned. Investment in other PV technologies is also required, plus a decrease in the price of PV modules. EPIA does not expect a short-term price reduction for PV until after 2007 but the workshop concluded that the PV industry could expect to see an average price reduction of around 5% per year (for cells, modules and complete systems) by 2011

  1. Simplified life-cycle analysis of PV systems in buildings: present situation and future trends

    International Nuclear Information System (INIS)

    Frankl, P.; Masini, A.; Gamberale, M.; Toccaceli, D.

    1998-01-01

    The integration of photovoltaic (PV) systems in buildings shows several advantages compared to conventional PV power plants. The main objectives of the present study are the quantitative evaluation of the benefits of building-integrated PV systems over their entire life-cycle and the identification of best solutions to maximise their energy efficiency and CO 2 mitigation potential. In order to achieve these objectives, a simplified life-cycle analysis (LCA) has been carried out. Firstly, a number of existing applications have been studied. Secondly, a parametric analysis of possible improvements in the balance-of-system (BOS) has been developed. Finally, the two steps have been combined with the analysis of crystalline silicon technologies. Results are reported in terms of several indicators: energy pay-back time, CO 2 yield and specific CO 2 emissions. The Indicators show that the integration of PV systems in buildings clearly increases the environmental benefits of present PV technology. These benefits will further increase with future PV technologies. Future optimised PV roof-integrated systems are expected to have an energy pay-back time of around 1-5 years (1 year with heat recovery) and to save during their lifetime more than 20 times the amount of CO 2 emitted during their manufacturing (34 times with heat recovery). (Author)

  2. The ultrasound-guided retrolaminar block: volume-dependent injectate distribution

    Directory of Open Access Journals (Sweden)

    Damjanovska M

    2018-02-01

    Full Text Available Marija Damjanovska,1 Tatjana Stopar Pintaric,1,2 Erika Cvetko,2 Kamen Vlassakov3 1Clinical Department of Anesthesiology and Intensive Therapy, University Medical Centre Ljubljana, Ljubljana, Slovenia; 2Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; 3Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA Purpose: The ultrasound-guided retrolaminar block is one of the newer and simpler alternatives to the traditional, often technically challenging, paravertebral (PV block. Its feasibility, safety, and efficacy have already been clinically demonstrated in patients with multiple rib fractures using higher volumes of local anesthetic, when compared with the traditional approach. The primary aim of this observational anatomical study was to assess the spread of local anesthetic from the retrolaminar injection point to the PV space and its volume dependence. Second, we assessed the incidence of epidural and contralateral PV spread in the both groups.Methods: Ten fresh porcine cadavers were randomized into 2 groups (n=5 each to receive ultrasound-guided retrolaminar injections at Th4-Th5 level with either 10 mL (low-volume group or 30 mL (high-volume group of 2% lidocaine and methylene blue mixture. After the procedure, the cadavers were dissected and frozen. Cross-section cuts (~1 cm thick were performed to evaluate the injectate spread.Results: In the high-volume group, injectate spread from the retrolaminar to the PV space was observed in all specimens (5 out of 5; 100%, while in the low-volume group, no apparent spread to the PV space was found (0 out of 5; 0%. No epidural or contralateral PV spread was observed in any of the specimens.Conclusion: Following ultrasound-guided retrolaminar injections in fresh porcine cadavers, injectate spread from the retrolaminar tissue plane to the PV space is strongly volume dependent

  3. Plasmodium vivax Tryptophan Rich Antigen PvTRAg36.6 Interacts with PvETRAMP and PvTRAg56.6 Interacts with PvMSP7 during Erythrocytic Stages of the Parasite.

    Directory of Open Access Journals (Sweden)

    Kriti Tyagi

    Full Text Available Plasmodium vivax is most wide spread and a neglected malaria parasite. There is a lack of information on parasite biology of this species. Genome of this parasite encodes for the largest number of tryptophan-rich proteins belonging to 'Pv-fam-a' family and some of them are potential drug/vaccine targets but their functional role(s largely remains unexplored. Using bacterial and yeast two hybrid systems, we have identified the interacting partners for two of the P. vivax tryptophan-rich antigens called PvTRAg36.6 and PvTRAg56.2. The PvTRAg36.6 interacts with early transcribed membrane protein (ETRAMP of P.vivax. It is apically localized in merozoites but in early stages it is seen in parasite periphery suggesting its likely involvement in parasitophorous vacuole membrane (PVM development or maintenance. On the other hand, PvTRAg56.2 interacts with P.vivax merozoite surface protein7 (PvMSP7 and is localized on merozoite surface. Co-localization of PvTRAg56.2 with PvMSP1 and its molecular interaction with PvMSP7 probably suggest that, PvTRAg56.2 is part of MSP-complex, and might assist or stabilize the protein complex at the merozoite surface. In conclusion, the PvTRAg proteins have different sub cellular localizations and specific associated functions during intra-erythrocytic developmental cycle.

  4. Plasmodium vivax Tryptophan Rich Antigen PvTRAg36.6 Interacts with PvETRAMP and PvTRAg56.6 Interacts with PvMSP7 during Erythrocytic Stages of the Parasite

    Science.gov (United States)

    Tyagi, Kriti; Hossain, Mohammad Enayet; Thakur, Vandana; Aggarwal, Praveen; Malhotra, Pawan; Mohmmed, Asif; Sharma, Yagya Dutta

    2016-01-01

    Plasmodium vivax is most wide spread and a neglected malaria parasite. There is a lack of information on parasite biology of this species. Genome of this parasite encodes for the largest number of tryptophan-rich proteins belonging to ‘Pv-fam-a’ family and some of them are potential drug/vaccine targets but their functional role(s) largely remains unexplored. Using bacterial and yeast two hybrid systems, we have identified the interacting partners for two of the P. vivax tryptophan-rich antigens called PvTRAg36.6 and PvTRAg56.2. The PvTRAg36.6 interacts with early transcribed membrane protein (ETRAMP) of P.vivax. It is apically localized in merozoites but in early stages it is seen in parasite periphery suggesting its likely involvement in parasitophorous vacuole membrane (PVM) development or maintenance. On the other hand, PvTRAg56.2 interacts with P.vivax merozoite surface protein7 (PvMSP7) and is localized on merozoite surface. Co-localization of PvTRAg56.2 with PvMSP1 and its molecular interaction with PvMSP7 probably suggest that, PvTRAg56.2 is part of MSP-complex, and might assist or stabilize the protein complex at the merozoite surface. In conclusion, the PvTRAg proteins have different sub cellular localizations and specific associated functions during intra-erythrocytic developmental cycle. PMID:26954579

  5. Characterisation of PV CIS module by artificial neural networks. A comparative study with other methods

    International Nuclear Information System (INIS)

    Almonacid, F.; Rus, C.; Hontoria, L.; Munoz, F.J.

    2010-01-01

    The presence of PV modules made with new technologies and materials is increasing in PV market, in special Thin Film Solar Modules (TFSM). They are ready to make a substantial contribution to the world's electricity generation. Although Si wafer-based cells account for the most of increase, technologies of thin film have been those of the major growth in last three years. During 2007 they grew 133%. On the other hand, manufacturers provide ratings for PV modules for conditions referred to as Standard Test Conditions (STC). However, these conditions rarely occur outdoors, so the usefulness and applicability of the indoors characterisation in standard test conditions of PV modules is a controversial issue. Therefore, to carry out a correct photovoltaic engineering, a suitable characterisation of PV module electrical behaviour is necessary. The IDEA Research Group from Jaen University has developed a method based on artificial neural networks (ANNs) to electrical characterisation of PV modules. An ANN was able to generate V-I curves of si-crystalline PV modules for any irradiance and module cell temperature. The results show that the proposed ANN introduces a good accurate prediction for si-crystalline PV modules performance when compared with the measured values. Now, this method is going to be applied for electrical characterisation of PV CIS modules. Finally, a comparative study with other methods, of electrical characterisation, is done. (author)

  6. The PV market

    International Nuclear Information System (INIS)

    Hammond, B.

    1992-01-01

    This paper forecasts the photovoltaic (PV) market growth for the 1990s. Ten years of PV history are reviewed and used to establish market trends in terms of average selling price (ASP) and kilowatts shipped by market segment. The market is segmented into indoor consumer, stand-alone, and grid-connected applications. Indoor consumer presently represents a saturated market and is fairly predictable. The stand-alone market (i.e. not connected to the utility grid) is fairly stable and predictable. The utility PV market however is highly dependent on a number of market factors such as the cost of conventional energy the cost of PV systems utility acceptance of PV and regulatory controls. Government and institutional regulations, environmental issues, and OPEC and Middle East politics will have the greatest impact on the cost of conventional fuels. Private and federal investment in PV technology development could have a significant impact on the cost of PV systems. Forecasts are provided through the year 2000 for indoor consumer stand-alone and utility markets

  7. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume III. Technical issues and design guidance

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, W.E.

    1984-09-01

    This report provide appropriate guidance for addressing the major technical issues associated with the design and installation of a photovoltaic-thermal (PV-T) system. Nomographs are presented for developing preliminary sizing and costing, and issues associated with specific components and the overall design of the electrical and mechanical system are discussed. SAND82-7157/2 presents a review of current PV-T technology and operating systems and a study of potential PV-T applications. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  8. Closed-Loop Supply Chain Planning Model for a Photovoltaic System Manufacturer with Internal and External Recycling

    Directory of Open Access Journals (Sweden)

    Songi Kim

    2016-06-01

    Full Text Available The photovoltaic (PV generation system has been widely used since the late 1990s. Considering its lifespan of 20 to 30 years, many end-of-life systems will emerge in the near future. This is why recycling PV systems will be beneficial (and may even be detrimental to both the environment and the economy. Through the recycling process, hazardous by-product substances such as cadmium and lead can be treated properly. Moreover, valuable materials including indium, gallium, and tellurium can be extracted and reused for manufacturing purposes. Even though many studies have dealt with issues related to the PV system and its recycling policy, they lack significant factors regarding the recycling policy. This study analyzes and compares three real cases of manufacturer’s recycling policy, including Deutsche Solar, First Solar, and PV Cycle, from the perspective of a closed-loop supply chain. Two mathematical models are developed to help PV system manufacturers establish supply chain planning and choose suitable recycling policies in consideration of different circumstances. Furthermore, an experimental example of these models will be used to validate and conclude the significance of the models. The results from this study will show that recycling CdTe PV systems is much more efficient than recycling c-Si PV systems and that, in the case of c-Si, it is better to outsource recycling end-of-life systems and dispose of all manufacturing scrap.

  9. Photovoltaic industry manufacturing technology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

    1998-08-01

    This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

  10. A PV temperature prediction model for BIPV configurations, comparison with other models and experimental results

    OpenAIRE

    Kaplanis, Socrates; Kaplani, Eleni

    2018-01-01

    The temperatures of c-Si and pc-Si BIPV configurations of different manufacturers were studied when operating under various environmental conditions. The BIPV configurations formed part of the roof in a Zero Energy Building, (ZEB), hanged over windows with varying inclination on a seasonal basis and finally two identical 0.5kWp PV generators were mounted on a terrace in two modes: fixed inclination and sun-tracking. The PV and ambient temperatures, Tpv and Ta, respectively, the intensity of t...

  11. Shorter amortization and more return on investment revive the market segment; Kuerzere Amortisation und mehr Rendite. Innovative PV-Nachfuehrungen beleben das Marktsegment

    Energy Technology Data Exchange (ETDEWEB)

    Theiss, Eric

    2012-09-15

    There is a growing demand for PV systems with opportunities for own consumption in Germany. Due to the fluctuating price stability many plant operators want to become independent from electrical suppliers. Right here, the advantages of tracked PV modules are becoming interesting: innovations and increasing earnings while compensating the investment costs simultaneously. In the medium term, most product manufacturers see good market opportunities for the use of tracked PV modules in Germany.

  12. Building brighter PV business

    International Nuclear Information System (INIS)

    Hacker, R.

    2002-01-01

    The current status and future prospects of the UK market for solar photovoltaic (PV) electricity are briefly discussed. Through the Department of Trade and Industry (DTI), the UK Government has supported research and development (R and D) into PV for a number of years. This programme has now been extended to demonstrating PV systems on houses. Phase 2 - the domestic field trial programme - aims to monitor the performance of individual systems and the impact on a cluster of systems on the electricity network. New funding had allowed a trebling of the size of this programme, which involves both private developers and housing associations. The DTI is also working to promote PV on commercial buildings, eg the installation of BP Solar PV systems at BP petrol stations. The PV industry in the UK is technically strong and is working to overcome the barriers in the UK to greater uptake of the technology (including cost, conservatism, legal requirements and metering practices). Improvements are expected in a number of recent initiatives in the electricity industry to boost PV use and the PV industry is lobbying for PV to be included in the Enhanced Capital Allowances (ECA) scheme

  13. Building opportunities in the U.S. for PV (PV:BONUS): A progress report

    International Nuclear Information System (INIS)

    Taylor, R.W.

    1994-01-01

    Five contract teams are developing photovoltaic (PV) products that will have a significant impact on building-integrated PV systems. The product lines that these teams are pursuing include roofing materials, building facade materials, PV integrated into modular homes, ac-PV modules, and utility-dispatchable PV systems. The objective of these efforts is to develop product and market opportunities that can provide for the introduction of PV into the buildings market sector at higher allowable installed systems costs than conventional ground- or roof-mounted systems. Each of the teams has a unique approach, and synergistic opportunities among teams are beginning to emerge. This paper reviews the product and market development efforts of these teams and describes the links between the product efforts and parallel analytical work to develop PV as a demand-side management option

  14. A minimum achievable PV electrical generating cost

    International Nuclear Information System (INIS)

    Sabisky, E.S.

    1996-01-01

    The role and share of photovoltaic (PV) generated electricity in our nation's future energy arsenal is primarily dependent on its future production cost. This paper provides a framework for obtaining a minimum achievable electrical generating cost (a lower bound) for fixed, flat-plate photovoltaic systems. A cost of 2.8 $cent/kWh (1990$) was derived for a plant located in Southwestern USA sunshine using a cost of money of 8%. In addition, a value of 22 $cent/Wp (1990$) was estimated as a minimum module manufacturing cost/price

  15. The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-22

    Market structure refers to the number of firms and the distribution of market shares among firms within an industry. In The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016, we examine market structure in the context of residential solar PV. We find that over 8,000 companies have installed at least one residential PV system, with about 2,900 companies active in 2016. The majority of residential PV installers are relatively small companies, with about half of installers installing fewer than five systems. At the same time, a subset of high-volume installers accumulated market share, especially beginning around 2010 with the emergence of alternative customer financing options.

  16. 1366 Project Silicon: Reclaiming US Silicon PV Leadership

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Adam [1366 Technologies, Bedford, MA (United States)

    2016-02-16

    1366 Technologies’ Project Silicon addresses two of the major goals of the DOE’s PV Manufacturing Initiative Part 2 program: 1) How to reclaim a strong silicon PV manufacturing presence and; 2) How to lower the levelized cost of electricity (“LCOE”) for solar to $0.05-$0.07/kWh, enabling wide-scale U.S. market adoption. To achieve these two goals, US companies must commercialize disruptive, high-value technologies that are capable of rapid scaling, defensible from foreign competition, and suited for US manufacturing. These are the aims of 1366 Technologies Direct Wafer ™ process. The research conducted during Project Silicon led to the first industrial scaling of 1366’s Direct Wafer™ process – an innovative, US-friendly (efficient, low-labor content) manufacturing process that destroys the main cost barrier limiting silicon PV cost-reductions: the 35-year-old grand challenge of making quality wafers (40% of the cost of modules) without the cost and waste of sawing. The SunPath program made it possible for 1366 Technologies to build its demonstration factory, a key and critical step in the Company’s evolution. The demonstration factory allowed 1366 to build every step of the process flow at production size, eliminating potential risk and ensuring the success of the Company’s subsequent scaling for a 1 GW factory to be constructed in Western New York in 2016 and 2017. Moreover, the commercial viability of the Direct Wafer process and its resulting wafers were established as 1366 formed key strategic partnerships, gained entry into the $8B/year multi-Si wafer market, and installed modules featuring Direct Wafer products – the veritable proving grounds for the technology. The program also contributed to the development of three Generation 3 Direct Wafer furnaces. These furnaces are the platform for copying intelligently and preparing our supply chain – large-scale expansion will not require a bigger machine but more machines. SunPath filled the

  17. PV ready roofing systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The integration of PV technology into roofs of houses has become very popular in the United States, Japan, Germany and The Netherlands. There could be a considerable market in the UK for these systems, given the large number of houses that are projected to be built in the next 10 years, and taking account of increased awareness of energy issues. A significant proportion of the market share of annual installed PV is for solar PV systems installed into homes (currently 15%), this is expected to rise to 23% (900MW) by 2010. The grid connected roof and building mounted facade systems represent the fastest growing market for PV systems in Europe. In conclusion, therefore, innovative approached for fixing PV technology onto roofs have been identified for both domestic roofs and for the commercial sector. With reference to production methodologies within the roofing industry, both approaches should be capable of being designed with PV-ready connections suitable for fixing PV modules at a later date. This will help overcome the key barriers of cost of installation, skills required and the lack of retrofit potential. Based on the results of this project, Sustainable Energy together with PV Systems are keen to take forward the full research and development of PV-ready systems for both the domestic and commercial sectors.

  18. Sensorless PV Array Diagnostic Method for Residential PV Systems

    DEFF Research Database (Denmark)

    Sera, Dezso; Spataru, Sergiu; Mathe, Laszlo

    2011-01-01

    This work proposes a temperature and irradiance sensorless diagnostic method suitable for small residential PV installations, focusing on detection of partial shadows. The method works by detection of failures in crystalline silicone PV arrays by concomitant monitoring of some of their key...

  19. Technology support for initiation of high-throughput processing of thin-film CdTe PV modules. Phase 3 final technical report, 14 March 1997--1 April 1998

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.C.; Dorer, G.L.; Jayamaha, U.; Hanak, J.J. [Solar Cells, Inc., Toledo, OH (United States)

    1998-09-01

    Thin-film PV devices based on cadmium telluride have been identified as one of the candidates for high-performance, low-cost source of renewable electrical energy. Roadblocks to their becoming a part of the booming PV market growth have been a low rate of production and high manufacturing cost caused by several rate-limiting process steps. Solar Cells Inc. has focused on the development of manufacturing processes that will lead to high volume and low-cost manufacturing of solar cells and on increasing the performance of the present product. The process research in Phase 3 was concentrated on further refinement of a newly developed vapor transport deposition (VTD) process and its implementation into the manufacturing line. This development included subsystems for glass substrate transport, continuous feed of source materials, generation of source vapors, and uniform deposition of the semiconductor layers. As a result of this R and D effort, the VTD process has now achieved a status in which linear coating speeds in excess of 8 ft/min have been achieved for the semiconductor, equal to about two modules per minute, or 144 kW per 24 hour day. The process has been implemented in a production line, which is capable of round-the-clock continuous production of coated substrates 120 cm x 60 cm in size at a rate of 1 module every four minutes, equal to 18 kW/day. Currently the system cycle time is limited by the rate of glass introduction into the system and glass heating, but not by the rate of the semiconductor deposition. A new SCI record efficiency of 14.1% has been achieved for the cells.

  20. City and County Solar PV Training Program, Module 2: Screening and Identifying PV Projects

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-09

    When screening and identifying PV projects, cities and counties should understand the different factors that impact the technical and economic potential of a PV project, the steps of the PV screening process, and how to use REopt Lite to screen a site for PV and storage project potential.

  1. Towards the next generation 23% efficient n-type cells with low cost manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Yelundur, Vijay [Suniva Inc., Norcross, GA (United States)

    2017-04-19

    Suniva, Inc., in collaboration with the University Center for Excellence in Photovoltaics (UCEP) at the Georgia Institute of Technology (GIT) proposed this comprehensive three year program to enable the development of an advanced high performance product that will help the US regain its competitive edge in PV. This project was designed to overcome cost and efficiency barriers through advances in PV science, technology innovation, low-cost manufacturing and full production of ~22.5% efficient n-type Si cells in Norcross, GA. At the heart of the project is the desire to complement the technology being developed concurrently under the Solarmat and ARPAe initiatives to develop a differentiated product superior in both performance and cost effectiveness to the competing alternatives available on the market, and push towards achieving SunShot objectives while ensuring a sustainable business model based on US manufacturing. A significant reduction of the costs in modules produced today will need to combine reductions in wafer costs, cell processing costs as well as module fabrication costs while delivering a product that is not only more efficient under test conditions but also increases the energy yield in outdoor operations. This project will result in a differentiated high performance product and technology that is consistent with sustaining PV manufacturing in the US for a longer term and further highlights the need for continued support for developing the next generation concepts that can keep US manufacturing thriving to support the growing demand for PV in the US and consistent with the US government’s mandates for energy independence.

  2. Key technical and non-technical challenges for mass deployment of photovoltaic solar energy (PV)

    International Nuclear Information System (INIS)

    Sinke, W.C.

    2001-12-01

    Photovoltaic solar energy (PV) is used for direct conversion of sunlight into electricity. It is not to be confused with low-temperature thermal solar energy (e.g. solar domestic hot water systems) and with solar electricity production using a conventional high-temperature steam cycle (using parabolic troughs or 'power towers'). Important features of PV are: inherently renewable; sustainable if well designed, manufactured, used, and disposed; no moving parts, quiet; reliable if well designed and engineered; modular (from milliwatts to multi-megawatts); suitable for a wide variety of applications (stand-alone and grid-connected); large potential (regionally and globally); intermittent; capacity factor (ratio of average system power to installed (=peak) power) =0.08-0.24. PV is among the major renewable energy technologies in all well known energy scenarios, although a substantial role in % of the total energy production can only be achieved on the long term (typically 40-60 years years). Fortunately, long before that the PV market may be a rapidly growing, multi-billion euro business, providing enormous economic opportunities and many jobs

  3. Numerical modeling of uncertainty and variability in the technology, manufacturing, and economics of crystalline silicon photovoltaics

    Science.gov (United States)

    Ristow, Alan H.

    2008-10-01

    Electricity generated from photovoltaics (PV) promises to satisfy the world's ever-growing thirst for energy without significant pollution and greenhouse gas emissions. At present, however, PV is several times too expensive to compete economically with conventional sources of electricity delivered via the power grid. To ensure long-term success, must achieve cost parity with electricity generated by conventional sources of electricity. This requires detailed understanding of the relationship between technology and economics as it pertains to PV devices and systems. The research tasks of this thesis focus on developing and using four types of models in concert to develop a complete picture of how solar cell technology and design choices affect the quantity and cost of energy produced by PV systems. It is shown in this thesis that high-efficiency solar cells can leverage balance-of-systems (BOS) costs to gain an economic advantage over solar cells with low efficiencies. This advantage is quantified and dubbed the "efficiency premium." Solar cell device models are linked to models of manufacturing cost and PV system performance to estimate both PV system cost and performance. These, in turn, are linked to a model of levelized electricity cost to estimate the per-kilowatt-hour cost of electricity produced by the PV system. A numerical PV module manufacturing cost model is developed to facilitate this analysis. The models and methods developed in this thesis are used to propose a roadmap to high-efficiency multicrystalline-silicon PV modules that achieve cost parity with electricity from the grid. The impact of PV system failures on the cost of electricity is also investigated; from this, a methodology is proposed for improving the reliability of PV inverters.

  4. Development of a new compound method to extract the five parameters of PV modules

    International Nuclear Information System (INIS)

    Bai, Jianbo; Liu, Sheng; Hao, Yuzhe; Zhang, Zhen; Jiang, Meng; Zhang, Yu

    2014-01-01

    Highlights: • A compound method to extract the five parameters of the five-parameter PV model. • A piecewise curve-fitting method to obtain the differential values at the short and open circuit points. • Simulated and experimental I–V and P–V curves at any operating conditions have excellent agreement. • Prediction of generation output for a PV power station has high accuracy. - Abstract: The five-parameter photovoltaic (PV) mathematical model has been considered a reliable and accurate method for simulating the performance of PV modules. This paper puts forth a new compound method to extract the five parameters of the model with the basic manufacture template data. As the two differential values at the short and open circuit points of the I–V curve at standard testing conditions (STC) are fundamental data to obtain the five parameters and not normally available from the template data, we use a piecewise I–V curve-fitting method combined with the four-parameter PV model to calculate them with which an explicit extraction method is then presented to extract the five parameters at STC conditions by using five individual algebraic equations. Furthermore, the five parameters are revised according to certain operating conditions. In order to evaluate the effectiveness of the proposed method, the simulated I–V characteristic curves for three types of PV modules over a range of operating conditions are compared with the measured data. The experimental results demonstrate that the method has high accuracy. This method is also used to predict the generation power of an actual PV power station; the simulation results show good agreement with the field data. This proposed method is easy to carry out and especially useful for simulating the actual performances of PV modules or arrays at various operating conditions and predicting the output power of real PV power stations

  5. 40 CFR 1045.635 - What special provisions apply for small-volume engine manufacturers?

    Science.gov (United States)

    2010-07-01

    ... provisions related to the transition to new emission standards. See § 1045.145. (2) More flexible arrangements for creating engine families for high-performance engines. See § 1045.230. (3) Assigned... small-volume engine manufacturer, we will work with you to determine a reasonable schedule for complying...

  6. PV Obelisk - Information system with photovoltaics; PV-Obelisk Orientierungssystem mit Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, D.; Rasmussen, J.

    2004-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the development of an information system powered by a photovoltaic (PV) array. As an innovative approach, the 'PV-Obelisk' project is the combination of PV with a multi-functional pillar made of natural stone in an aesthetic way. The PV modules serve both as a power supply and as a design element. Two initial prototypes led the way to a third, optimised consumer configuration that was planned to guarantee maximum user frequency. Test operation in front of the 'Heidiland' motor way restaurant confirmed the market analyses made and delivered the expected results. The product, whose three LCD displays are updated via a mobile telephony-based text-message system, proved its technical reliability and showed a high user frequency. Because of the high overall energy consumption, PV power can only partially contribute to the energy supply needed. Various compromises in the technical and aesthetic areas are discussed that were made for the sake of product acceptance in the market. The range of application areas for such a 'PV Obelisk' are discussed and the need for early co-ordination with urban planners is stressed.

  7. Toward GW/year of CIGS production within the next decade

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, Neelkanth G. [Florida Solar Energy Center, 1679 Clearlake Road, Cocoa, FL 32922-5703 (United States)

    2007-09-22

    A detailed study carried out in 1996-1997 showed that manufacturing cost of crystalline silicon PV modules could be lowered to 1 ECU/Wp when the c-Si annual module production level reaches 500 MWp while an annual production of only 60 MWp would lower production cost of thin-film PV modules to 0.6 ECU/Wp. During 1976-2003, the PV module price has followed the 80% learning curve with cumulative production volume. However, the price reduction has slowed since because of the polysilicon supply problem. Because of their high potential for improvement, thin-film PV and especially copper (Cu)-indium (In)-gallium (Ga)-selenide (Se)-sulfide (CIGS) technology have the potential for growing at the fastest rate and consequently not only to complement the lagging c-Si PV production but also to assist in following the 80% learning curve. This paper reviews the CIGS PV manufacturing processes in comparison to those of other PV technologies and predicts that annual production volume of CIGS thin-film PV modules will exceed 1 GW/year within the next 10 years. (author)

  8. Toward GW/year of CIGS production within the next decade

    International Nuclear Information System (INIS)

    Dhere, Neelkanth G.

    2007-01-01

    A detailed study carried out in 1996-1997 showed that manufacturing cost of crystalline silicon PV modules could be lowered to 1 ECU/Wp when the c-Si annual module production level reaches 500 MWp while an annual production of only 60 MWp would lower production cost of thin-film PV modules to 0.6 ECU/Wp. During 1976-2003, the PV module price has followed the 80% learning curve with cumulative production volume. However, the price reduction has slowed since because of the polysilicon supply problem. Because of their high potential for improvement, thin-film PV and especially copper (Cu)-indium (In)-gallium (Ga)-selenide (Se)-sulfide (CIGS) technology have the potential for growing at the fastest rate and consequently not only to complement the lagging c-Si PV production but also to assist in following the 80% learning curve. This paper reviews the CIGS PV manufacturing processes in comparison to those of other PV technologies and predicts that annual production volume of CIGS thin-film PV modules will exceed 1 GW/year within the next 10 years. (author)

  9. Novel Methods to Determine Feeder Locational PV Hosting Capacity and PV Impact Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coogan, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seuss, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Often PV hosting capacity analysis is performed for a limited number of distribution feeders. For medium - voltage distribution feeders, previous results generally analyze less than 20 feeders, and then the results are extrapolated out to similar types of feeders. Previous hosting capacity research has often focused on determining a single value for the hosting capacity for the entire feeder, whereas this research expands previous hosting capacity work to investigate all the regions of the feeder that may allow many different hosting capacity values wit h an idea called locational hosting capacity (LHC)to determine the largest PV size that can be interconnected at different locations (buses) on the study feeders. This report discusses novel methods for analyzing PV interconnections with advanced simulati on methods. The focus is feeder and location - specific impacts of PV that determine the locational PV hosting capacity. Feeder PV impact signature are used to more precisely determine the local maximum hosting capacity of individual areas of the feeder. T he feeder signature provides improved interconnection screening with certain zones that show the risk of impact to the distribution feeder from PV interconnections.

  10. Next Generation Print-based Manufacturing for Photovoltaics and Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Sue A. Carter

    2012-09-07

    For the grand challenge of reducing our energy and carbon footprint, the development of renewable energy and energy efficient technologies offer a potential solution. Energy technologies can reduce our dependence on foreign oil as well as the energy consumed by the petroleum industry, the leading consumer of energy by a U.S. industry sector. Nonetheless, the manufacturing processes utilized to manufacture equipment for alternative energy technologies often involve energy-intensive processes. This undermines some of the advantages to moving to 'green' technologies in the first place. Our answer to the Industrial Technology Program's (ITP) Grand Challenge FOA was to develop a transformational low cost manufacturing process for plastic-based photovoltaics that will lower by over 50% both energy consumption and greenhouse emissions and offer a return-of-investment of over 20%. We demonstrated a Luminescent Solar Concentrator fabricated on a plastic acrylic substrate (i.e. no glass) that increases the power output of the PV cell by 2.2x with a 2% power efficiency as well as an LSC with a 7% power efficiency that increased the power output from the PV cells by 35%. S large area 20-inch x 60-inch building-integrated photovoltaic window was fabricated using contract manufacturing with a 4% power efficiency which improved the power output of the PV cell by over 50%. In addition, accelerated lifetimes of the luminescent material demonstrate lifetimes of 20-years.

  11. Surrogate Plant Data Base : Volume 3. Appendix D : Facilities Planning Data ; Operating Manpower, Manufacturing Budgets and Pre-Production Launch ...

    Science.gov (United States)

    1983-05-01

    This four volume report consists of a data base describing "surrogate" automobile and truck manufacturing plants developed as part of a methodology for evaluating capital investment requirements in new manufacturing facilities to build new fleets of ...

  12. Large scale PV plants - also in Denmark. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Ahm, P [PA Energy, Malling (Denmark); Vedde, J [SiCon. Silicon and PV consulting, Birkeroed (Denmark)

    2011-04-15

    the associated levelized cost of electricity (LCOE) has been found to be in the range of DKK 1 - 1,16 per kWh. With the present wind turbine tariff at around DKK 0,60/kWh the economics in isolation present a bleak picture for LPV. However, over the last four decades the learning curve of the PV technology exhibits a cost reduction of about 20 % for every doubling of the production volume, and there is nothing to indicate that this learning curve trend will not continue in the coming two decades leading to increasing competitiveness for LPV in Denmark. (LN)

  13. Filter optimization of Si and SiC semiconductor-based H5 and Conergy-NPC transformerless PV inverters

    DEFF Research Database (Denmark)

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    Single-phase transformerless Photovoltaic (PV) inverters are synthesized by combining available solutions in terms of the power section topology, power semiconductors manufacturing technology and structure of the output filter. A design method is presented in this paper for optimizing the power......C-based PV inverters will inject more energy into the electric grid, compared to the Si-based structures and enable the reduction of the output filter size, weight and cost. Employing an LLCL-type output filter and simultaneously reducing the cost of SiC power semiconductors to the level of their Si...

  14. PV Thermal systems: PV panels supplying renewable electricity and heat

    NARCIS (Netherlands)

    Helden, van W.G.J.; Zolingen, van R.J.C.; Zondag, H.A.

    2004-01-01

    With PV Thermal panels sunlight is converted into electricity and heat simultaneously. Per unit area the total efficiency of a PVT panel is higher than the sum of the efficiencies of separate PV panels and solar thermal collectors. During the last 20 years research into PVT techniques and concepts

  15. Advanced development of PV encapsulants. Semiannual technical progress report, June 30, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Holley, W.A. [Springborn Laboratories, Inc., Enfield, CT (United States)

    1996-06-01

    The goals of the NREL PVMaT program are, among others, to reduce module manufacturing costs and improve the quality, and we might add here the reliability, of manufactured PV products. One component critical to the service life of PV modules is the useful life of the EVA resin-based encapsulant which is employed extensively by module manufacturers on a worldwide basis. This pottant has been in commercial use since 1982, and over that time has proven to be a dependable material from the standpoint of production, module fabrication, and end-use. But despite the widespread acceptance of the EVA resin-based A9918 and similar formulations for PV encapsulation, some module producers, end-users, and investigators have reported a yellowing or browning phenomenon with EVA resin-based encapsulants in the field. Wile the incidence of this discoloration/degradation appeared at comparatively few sites at the time that this present program was conceived, it raised serious concern as to the long term reliability of EVA resin-based encapsulation systems. Consequently, under the NREL PVMaT program, Springborn Laboratories proposed a comprehensive study of the EVA aging and discoloration problem and its possible solution(s). During the first year of this program, accelerated U.V. aging methods were surveyed. On careful review of the various types of accelerated U.V. aging equipment available, an Atlas Ci35A Weather-Ometer Xenon Exposure System was selected as appropriate equipment for this work. The following report summarizes how this accelerated aging technique has been used to develop a family of solutions to the discoloration problem, the most significant of which is a series of EVA-based encapsulants which are resistant to discoloration.

  16. 1366 Project Automate: Enabling Automation for <$0.10/W High-Efficiency Kerfless Wafers Manufactured in the US

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Adam [1366 Technologies, Bedford, MA (United States)

    2017-05-10

    For photovoltaic (PV) manufacturing to thrive in the U.S., there must be an innovative core to the technology. Project Automate builds on 1366’s proprietary Direct Wafer® kerfless wafer technology and aims to unlock the cost and efficiency advantages of thin kerfless wafers. Direct Wafer is an innovative, U.S.-friendly (efficient, low-labor content) manufacturing process that addresses the main cost barrier limiting silicon PV cost-reductions – the 35-year-old grand challenge of manufacturing quality wafers (40% of the cost of modules) without the cost and waste of sawing. This simple, scalable process will allow 1366 to manufacture “drop-in” replacement wafers for the $10 billion silicon PV wafer market at 50% of the cost, 60% of the capital, and 30% of the electricity of conventional casting and sawing manufacturing processes. This SolarMat project developed the Direct Wafer processes’ unique capability to tailor the shape of wafers to simultaneously make thinner AND stronger wafers (with lower silicon usage) that enable high-efficiency cell architectures. By producing wafers with a unique target geometry including a thick border (which determines handling characteristics) and thin interior regions (which control light capture and electron transport and therefore determine efficiency), 1366 can simultaneously improve quality and lower cost (using less silicon).

  17. Comparison of three different methods of perturbing the potential vorticity field in mesoscale forecasts of Mediterranean heavy precipitation events: PV-gradient, PV-adjoint and PV-satellite

    Science.gov (United States)

    Vich, M.; Romero, R.; Richard, E.; Arbogast, P.; Maynard, K.

    2010-09-01

    Heavy precipitation events occur regularly in the western Mediterranean region. These events often have a high impact on the society due to economic and personal losses. The improvement of the mesoscale numerical forecasts of these events can be used to prevent or minimize their impact on the society. In previous studies, two ensemble prediction systems (EPSs) based on perturbing the model initial and boundary conditions were developed and tested for a collection of high-impact MEDEX cyclonic episodes. These EPSs perturb the initial and boundary potential vorticity (PV) field through a PV inversion algorithm. This technique ensures modifications of all the meteorological fields without compromising the mass-wind balance. One EPS introduces the perturbations along the zones of the three-dimensional PV structure presenting the local most intense values and gradients of the field (a semi-objective choice, PV-gradient), while the other perturbs the PV field over the MM5 adjoint model calculated sensitivity zones (an objective method, PV-adjoint). The PV perturbations are set from a PV error climatology (PVEC) that characterizes typical PV errors in the ECMWF forecasts, both in intensity and displacement. This intensity and displacement perturbation of the PV field is chosen randomly, while its location is given by the perturbation zones defined in each ensemble generation method. Encouraged by the good results obtained by these two EPSs that perturb the PV field, a new approach based on a manual perturbation of the PV field has been tested and compared with the previous results. This technique uses the satellite water vapor (WV) observations to guide the correction of initial PV structures. The correction of the PV field intents to improve the match between the PV distribution and the WV image, taking advantage of the relation between dark and bright features of WV images and PV anomalies, under some assumptions. Afterwards, the PV inversion algorithm is applied to run

  18. Stability of Grid-Connected PV Inverters with Large Grid Impedance Variation

    DEFF Research Database (Denmark)

    Liserre, Marco; Teodorescu, Remus; Blaabjerg, Frede

    2004-01-01

    Photovoltaic (PV) inverters used in dispersed power generation of houses in the range of 1-5 kW are currently available from several manufactures. However, large grid impedance variation is challenging the control and the grid filter design in terms of stability. In fact the PV systems are well...... suited for loads connected in a great distance to the transformer (long wires) and the situation becomes even more difficult in low-developed remote areas characterized by low power transformers and long distribution wires with high grid impedance. Hence a theoretical analysis is needed because the grid...... impedance variation leads to dynamic and stability problems both in the low frequency range (around the current controller bandwidth frequency) as well as in the high frequency range (around the LCL-filter resonance frequency). In the low frequency range the possible variation of the impedance challenges...

  19. Blood Volume: Importance and Adaptations to Exercise Training, Environmental Stresses and Trauma/Sickness

    Science.gov (United States)

    Sawka, Michael N.; Convertino, Victor A.; Eichner, E. Randy; Schnieder, Suzanne M.; Young, Andrew J.

    2000-01-01

    This paper reviews the influence of several perturbations (physical exercise, heat stress, terrestrial altitude, microgravity, and trauma/sickness) on adaptations of blood volume (BV), erythrocyte volume (EV), and plasma volume (PV). Exercise training can induced BV expansion; PV expansion usually occurs immediately, but EV expansion takes weeks. EV and PV expansion contribute to aerobic power improvements associated with exercise training. Repeated heat exposure induces PV expansion but does not alter EV. PV expansion does not improve thermoregulation, but EV expansion improves thermoregulation during exercise in the heat. Dehydration decreases PV (and increases plasma tonicity) which elevates heat strain and reduces exercise performance. High altitude exposure causes rapid (hours) plasma loss. During initial weeks at altitude, EV is unaffected, but a gradual expansion occurs with extended acclimatization. BV adjustments contribute, but are not key, to altitude acclimatization. Microgravity decreases PV and EV which contribute to orthostatic intolerance and decreased exercise capacity in astronauts. PV decreases may result from lower set points for total body water and central venous pressure, which EV decrease bay result form increased erythrocyte destruction. Trauma, renal disease, and chronic diseases cause anemia from hemorrhage and immune activation, which suppressions erythropoiesis. The re-establishment of EV is associated with healing, improved life quality, and exercise capabilities for these injured/sick persons.

  20. Photovoltaics for Buildings Cutting-Edge PV

    International Nuclear Information System (INIS)

    Hayter, S. J.; Martin, R. L.

    1998-01-01

    Photovoltaic (PV) technology development for building-integrated applications (commonly called PV for Buildings) is one of the fastest growing areas in the PV industry. Buildings represent a huge potential market for photovoltaics because they consume approximately two-thirds of the electricity consumed in the US. The PV and buildings industries are beginning to work together to address issues including building codes and standards, integration, after-market servicing, education, and building energy efficiency. One of the most notable programs to encourage development of new PV-for-buildings products is the PV:BONUS program, supported by the US Department of Energy. Demand for these products from building designers has escalated since the program was initiated in 1993. This paper presents a range of PV-for-buildings issues and products that are currently influencing today's PV and buildings markets

  1. Global PV Market Development

    International Nuclear Information System (INIS)

    Schmidt, F.

    2009-01-01

    The dawn of 2009 saw several events which caused major turbulence in the global photovoltaic industry. In 2008 the Spanish PV market grew beyond all expectations and even outranked Germany as the world's number one market. However, the promotion scheme was modified and a market cap was introduced in 2009, cutting back the maximum capacity to be installed to about the level of 2007. In addition, the industry is facing an oversupply of PV modules and a harsh recession which is significantly affecting the traditionally strong PV markets. International photovoltaic companies are challenged by a changing market situation: all of a sudden, competition has increased significantly, pushing the customer to the fore. As a result, a consolidation process is expected within the PV industry worldwide. However, the story is not all negative. In the U.S., the election of Barack Obama may be seen as the starting signal for a massive expansion in PV, likely to bring the country to first place globally within the next five years. Furthermore, different markets and market segments are being opened up - especially in Europe - thanks to the gradual arrival of generation parity and new PV support mechanisms. EuPD Research has observed and studied international PV markets since its foundation. The information included in the presentation is based on a wide range of quantitative and qualitative studies that EuPD Research has conducted in the key markets since 2002. Florian Schmidt, EuPD Research's Head of Product Management, will give an overview of the global PV market and how it is developing in this crucial year 2009. Aspects such as technology development, production capacities and the demand side will be included, with a special emphasis on the European PV markets. So far Chinese PV companies have often benefited from the booming PV markets in Europe, above all Germany and Spain. Due to the lack of domestic market, the Chinese industry strongly depends on the export and is

  2. Bottom-Up Cost Analysis of a High Concentration PV Module; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, K.; Woodhouse, M.; Lee, H.; Smestad, G.

    2015-04-13

    We present a bottom-up model of III-V multi-junction cells, as well as a high concentration PV (HCPV) module. We calculate $0.65/Wp(DC) manufacturing costs for our model HCPV module design with today’s capabilities, and find that reducing cell costs and increasing module efficiency offer the promising pathways for future cost reductions. Cell costs could be significantly reduced via an increase in manufacturing scale, substrate reuse, and improved manufacturing yields. We also identify several other significant drivers of HCPV module costs, including the Fresnel lens primary optic, module housing, thermal management, and the receiver board. These costs could potentially be lowered by employing innovative module designs.

  3. Large-area, high-intensity PV arrays for systems using dish concentrating optics

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.S.; Duda, A.; Zweibel, K.; Coutts, T.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    In this paper, the authors report on efforts to fabricate monolithic interconnected modules (MIMs) using III-V semiconductors with bandgaps appropriate for the terrestrial solar spectrum. The small size of the component cells comprising the MIM allows for operation at extremely high flux densities and relaxes the requirement for a small spot size to be generated by the optics. This makes possible a PV option for the large dish concentrator systems that have been developed by the solar thermal community for use with Stirling engines. Additionally, the highly effective back-surface reflector integrated into the MIM design is an effective tool for thermal management of the array. Development of this technology would radically alter the projections for PV manufacturing capacity because of the potential for extremely high power generation per unit area of semiconductor material.

  4. PV-hybrid and mini-grid

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the 5th European PV-hybrid and mini-grid conference 29th and 30th April, 2010 in Tarragona (Spain) the following lectures were held: (1) Overview of IEA PVPS Task 11 PV-hybrid systems within mini grids; (2) Photovoltaic revolution for deployment in developing countries; (3) Legal and financial conditions for the sustainable operation of mini-grids; (4) EU instruments to promote renewable energies in developing countries; (5) PV hybridization of diesel electricity generators: Conditions of profitability and examples in differential power and storage size ranges; (6) Education suit of designing PV hybrid systems; (7) Sustainable renewable energy projects for intelligent rural electrification in Laos, Cambodia and Vietnam; (8) Techno-economic feasibility of energy supply of remote villages in Palestine by PV systems, diesel generators and electric grid (Case studies: Emnazeil and Atouf villages); (9) Technical, economical and sustainability considerations of a solar PV mini grid as a tool for rural electrification in Uganda; (10) Can we rate inverters for rural electrification on the basis of energy efficiency?; (11) Test procedures for MPPT charge controllers characterization; (12) Energy storage for mini-grid stabilization; (13) Redox flow batteries - Already an alternative storage solution for hybrid PV mini-grids?; (14) Control methods for PV hybrid mini-grids; (15) Partial AC-coupling in mini-grids; (15) Normative issues of small wind turbines in PV hybrid systems; (16) Communication solutions for PV hybrid systems; (17) Towards flexible control and communication of mini-grids; (18) PV/methanol fuel cell hybrid system for powering a highway security variable message board; (19) Polygeneration smartgrids: A solution for the supply of electricity, potable water and hydrogen as fuel for transportation in remote Areas; (20) Implementation of the Bronsbergen micro grid using FACDS; (21) A revisited approach for the design of PV wind hybrid systems; (22

  5. Industrial based volume manufacturing of lightweight aluminium alloy panel components with high-strength and complex-shape for car body and chassis structures

    Science.gov (United States)

    Anyasodor, Gerald; Koroschetz, Christian

    2017-09-01

    To achieve the high volume manufacture of lightweight passenger cars at economic cost as required in the automotive industry, low density materials and new process route will be needed. While high strength aluminium alloy grades: AA7075 and AA6082 may provide the alternative material solution, hot stamping process used for high-strength and ultrahigh strength steels such as boron steel 22mnb5 can enable the volume manufacture of panel components with high-strength and complex-shape for car body and chassis structures. These aluminium alloy grades can be used to manufacture panel components with possible yield strengths ≥ 500 MPa. Due to the differences in material behaviors, hot stamping process of 22mnb5 cannot be directly applied to high strength aluminium alloy grades. Despite recorded successes in laboratories, researches and niche hot forming processes of high strength aluminium alloy grades, not much have been achieved for adequate and efficient volume manufacturing system applicable in the automotive industry. Due to lack of such system and based on expert knowledge in hot stamping production-line, AP&T presents in this paper a hot stamping processing route for high strength aluminium alloys been suitable for production-line development and volume manufacturing.

  6. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-Cost PV Future

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zuboy, Jarrett; Woodhouse, Michael A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-01

    This presentation summarizes the findings from the report 'SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future.' This presentation was given as a webinar on September 26, 2017.

  7. PV module mounting method and mounting assembly

    Science.gov (United States)

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  8. Changes in plasma volume and baroreflex function following resistance exercise

    Science.gov (United States)

    Ploutz, L. L.; Tatro, D. L.; Dudley, G. A.; Convertino, V. A.

    1993-01-01

    The dynamics of change in plasma volume (PV) and baroreflex responses have been reported over 24 h immediately following maximal cycle exercise. The purpose of this study was to determine if PV and baroreflex showed similar changes for 24 h after resistance exercise. Eight men were studied on 2 test days, 1 week apart. On 1 day, per cent change (% delta) in PV was estimated at 0,3, and 6 h after resistance exercise using haematocrit and haemoglobin. Baseline PV was measured 24 h after exercise using Evans blue dye. The carotid baroreceptor-cardiac reflex response was measured before, and 3, 6, 9, 12, and 24 h post-exercise. Each subject performed six sets of the bench press and leg press with 10 repetitions per set with a load that induced failure within each set. On a control day, the protocol was used without exercise. Plasma volume did not change during the control day. There was a 20% decrease in PV immediately post-exercise; the recovery of the PV was rapid and complete within 3 h. PV was 20% greater 24 h post-exercise than on the control day. There were no differences in any of the baroreflex measurements. Therefore, it is suggested that PV shifts may occur without altering baroreflex sensitivity.

  9. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Science.gov (United States)

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  10. Design, performance and cost of energy from high concentration and flat-plate utility-scale PV systems

    International Nuclear Information System (INIS)

    Stolte, W.J.; Whisnant, R.A.; McGowin, C.R.

    1993-01-01

    This paper presents the results of a recent study to assess the near-term cost of power in central station applications. Three PV technologies were evaluated: Fresnel-lens high-concentration photovoltaic (HCPV), central receiver HCPV, and flat-plate PV using thin-film copper indium diselenide (CIS) cell technology. Baseline assumptions included PV cell designs and performances projected for the 1995 timeframe, 25 and 100 MW/year cell manufacturing rates, 50 MW power plant size, and mature technology cost and performance estimates. The plant design characteristics are highlighted. Potential sites were evaluated and selected for the PV power plants (Carrisa Plains, CA and Apalachicola, FL) and cell manufacturing plants (Dallas-Fort Worth, TX). Conceptual designs and cost estimates were developed for the plants and their components. Plant performance was modeled and the designs were optimized to minimize levelized energy costs. Overall, the flat plate design exhibited the lowest energy costs among the designs evaluated. Its levelized energy costs at the Carrisa Plains site were estimated to be 11.8 and 10.8 cents/kWh (1990 $) for 25 and 100 MW/year module production rates, respectively. This meets the 12 cents/kWh DOE near-term goal. The energy cost of the Fresnel lens plant (at Carrisa Plains and a 100 MW/year cell production rate) was estimated to be 12.4 cents/kWh and the corresponding central receiver energy cost was estimated to be 13.1 cents/kWh, both of which are very close to the DOE goal. Further design optimization efforts are still warranted and can be expected to reduce plant capital costs

  11. Numerical study of PV/T-SAHP system

    Institute of Scientific and Technical Information of China (English)

    Gang PEI; Jie JI; Ke-liang LIU; Han-feng HE; Ai-guo JIANG

    2008-01-01

    In order to utilize solar energy effectively and to achieve a higher electrical efficiency by limiting the operating temperature of the photovoltaic (PV) panel, a novel photovoltaic/thermal solar-assisted heat pump (PV/T-SAHP) system was proposed and constructed. The hybrid solar system generates electricity and thermal energy simultaneously. A distributed parameters model of the PV/T-SAHP system was developed and applied to analyze the system dynamic performance in terms of PV action, photothermal action and Rankine cycle processes. The simulation results indicated that the coefficient of performance (COP) of the proposed PV/T-SAHP can be much better than that of the conventional heat pump. Both PV-efficiency and photothermic efficiency have been improved considerably. The results also showed that the performance of this PV/T-SAHP system was strongly influenced by the evaporator area, tube pitch and tilt angle of the PV/T evaporator, which are the key factors in PV/T-SAHP system optimization and PV/T evaporator design.

  12. Design optimization of grid-connected PV inverters

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2011-01-01

    The DC/AC inverters are the key elements in grid-connected PV energy production systems. In this paper, new design optimization techniques focused on transformerless (very high efficiency) PV inverters are proposed. They have been developed based on an analysis of the deficiencies of the current......, state-of-the-art PV inverters design technology, which limits the amount of PV energy supplied into the electric grid. The influences of the electric grid regulations and standards and the PV array operational characteristics on the design of grid-connected PV inverters have also been considered....... The simulation results verify that the proposed optimization techniques enable the maximization of the PV energy injected into the electric grid by the optimized PV installation....

  13. A case study of utility PV economics

    International Nuclear Information System (INIS)

    Wenger, H.; Hoff, T.; Osborn, D.E.

    1997-01-01

    This paper presents selected results from a detailed study of grid-connected photovoltaic (PV) applications within the service area of the Sacramento Municipal Utility District. The intent is to better understand the economics and markets for grid-connected PV systems in a utility setting. Research results include: Benefits calculations for utility-owned PV systems at transmission and distribution voltages; How the QuickScreen software package can help utilities investigate the viability of distributed PV; Energy production and capacity credit estimates for fixed and tracking PV systems; Economics and rate impacts of net metering residential PV systems; Market potential estimates for residential rooftop PV systems; and Viability and timing of grid-connected PV commercialization paths

  14. SOLGASMIX-PV, Chemical System Equilibrium of Gaseous and Condensed Phase Mixtures

    International Nuclear Information System (INIS)

    Besmann, T.M.

    1986-01-01

    1 - Description of program or function: SOLGASMIX-PV, which is based on the earlier SOLGAS and SOLGASMIX codes, calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressure can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available. 2 - Restrictions on the complexity of the problem: The program is designed to handle a maximum of 20 elements, 99 substances, and 10 mixtures, where the gas phase is considered a mixture. Each substance is either a gas or condensed phase species, or a member of a condensed phase mixture

  15. Solar PV. Innovators talking; Zon PV. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on solar PV [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar zon PV.

  16. Solar PV. Innovators talking; Zon PV. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on solar PV [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar zon PV.

  17. Firefighter Safety for PV Systems

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Sera, Dezso; Spataru, Sergiu

    2015-01-01

    An important and highly discussed safety issue for photovoltaic (PV) systems is that as long as the PV panels are illuminated, a high voltage is present at the PV string terminals and cables between the string and inverters that is independent of the state of the inverter's dc disconnection switch...

  18. Calculated optimism at 'PV Cycle'. EU does not approve of the solar industry's voluntary recycling programme; Zweckoptimismus bei 'PV Cycle'. Die Solarindustrie ist mit ihrem freiwilligen Recyclingprogram bei der EU gescheitert

    Energy Technology Data Exchange (ETDEWEB)

    Beneking, Andreas

    2011-12-15

    'PV Cycle' was an initiative of the solar industry for voluntary recycling of used solar modules. Now that the EU decided to integrate solar modules in the EU electronic scrap regulation, the organisation will serve to implement EU policy. The economic results for manufacturers will depend on political decisions.

  19. Pv rural electrification programme at the Bolivian high plateau

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, E.; Aguilera, J. [Instituto de Energia Solar, ETSI Telecomunicacion, (Spain)

    1995-12-31

    Since 1988 the Institute of Solar Energy of the Universidad Politecnica de Madrid is carrying out a pv rural electrification programme at the Bolivian high plateau. This programme has been focused in three aspects: the domestic electrification, users participation and transfer technology. At present, there are about 1,500 electrified dwellings distributed in the Bolivian high plateau. We have got deep knowledge about life style and organization of the aymara Indians who are the inhabitants of the working zone. We think that this knowledge can be very useful for a large scale introduction of PV solar energy in this region. Finally, we present a new way to transfer PV technology to developing countries. Thanks to this programme a group of aymara Indians is able to manufacture charge regulators and electronic ballast to use in the PV installations of the programme. [Espanol] Desde 1988 el Instituto de Energia Solar de la Universidad Politecnica de Madrid esta llevando a cabo un programa fotovoltaico de electrificacion rural en la altiplanicie Boliviana. Este programa ha sido enfocado a tres aspectos: la electrificacion domestica, la participacion de los usuarios y la transferencia de la tecnologia. Actualmente, hay alrededor de 1500 conjuntos habitacionales electrificados distribuidos en la altiplanicie Boliviana. Hemos obtenido un profundo conocimiento del estilo de vida y de la organizacion de los indios aymara que son los habitantes de la zona de trabajo. Pensamos que este conocimiento puede ser muy util para una introduccion en gran escala de la energia solar fotovoltaica en esta region. Finalmente, presentamos una nueva forma de transferir la tecnologia fotovoltaica a paises en desarrollo. Gracias a este programa un grupo de indios aymara pueden fabricar reguladores de carga y balastros electronicos para ser usados en instalaciones fotovoltaicas del programa.

  20. Pv rural electrification programme at the Bolivian high plateau

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, E; Aguilera, J [Instituto de Energia Solar, ETSI Telecomunicacion, (Spain)

    1996-12-31

    Since 1988 the Institute of Solar Energy of the Universidad Politecnica de Madrid is carrying out a pv rural electrification programme at the Bolivian high plateau. This programme has been focused in three aspects: the domestic electrification, users participation and transfer technology. At present, there are about 1,500 electrified dwellings distributed in the Bolivian high plateau. We have got deep knowledge about life style and organization of the aymara Indians who are the inhabitants of the working zone. We think that this knowledge can be very useful for a large scale introduction of PV solar energy in this region. Finally, we present a new way to transfer PV technology to developing countries. Thanks to this programme a group of aymara Indians is able to manufacture charge regulators and electronic ballast to use in the PV installations of the programme. [Espanol] Desde 1988 el Instituto de Energia Solar de la Universidad Politecnica de Madrid esta llevando a cabo un programa fotovoltaico de electrificacion rural en la altiplanicie Boliviana. Este programa ha sido enfocado a tres aspectos: la electrificacion domestica, la participacion de los usuarios y la transferencia de la tecnologia. Actualmente, hay alrededor de 1500 conjuntos habitacionales electrificados distribuidos en la altiplanicie Boliviana. Hemos obtenido un profundo conocimiento del estilo de vida y de la organizacion de los indios aymara que son los habitantes de la zona de trabajo. Pensamos que este conocimiento puede ser muy util para una introduccion en gran escala de la energia solar fotovoltaica en esta region. Finalmente, presentamos una nueva forma de transferir la tecnologia fotovoltaica a paises en desarrollo. Gracias a este programa un grupo de indios aymara pueden fabricar reguladores de carga y balastros electronicos para ser usados en instalaciones fotovoltaicas del programa.

  1. SOLVENT-BASED TO WATERBASED ADHESIVE-COATED SUBSTRATE RETROFIT - VOLUME III: LABEL MANUFACTURING CASE STUDY: NASHUA CORPORATION

    Science.gov (United States)

    This volume discusses Nashua Corporation's Omaha facility, a label and label stock manufacturing facility that no longer uses solvent-based adhesives. Information obtained includes issues related to the technical, economic, and environmental barriers and opportunities associated ...

  2. PV-Developer. A Concept Paper. Version 4.0

    International Nuclear Information System (INIS)

    2001-10-01

    The market for Photovoltaic Energy systems is developing very rapidly with annual growth rates in the range of 20-40%. The growth creates new business opportunities for project development. The markets are immature and the competitiveness of PV is increasing, whereby it is important to develop the business concept within the next few years if the long-term aim is to become a major player in the field of PV-project development. Like in the field of wind energy, which has grown to a large-scale business area within the last decade, the long-term perspectives of photovoltaic energy will depend upon the market development, interest groups and stake holders. The solar power developers might be catalysts for high growth rates like in the wind energy field. The concern for global warming leads the international energy policies in favour of renewable energy incentives followed by the technological development of PV-equipment, which constantly improves the cost level of PV-produced electricity. The markets for PV-systems are geographically widespread and the way to implement systems goes to a large extent via financing from international governmental as well as non-governmental lateral and bilateral aid organisations. Lead times to develop projects are counted in years, and the time from the first project idea to the final commissioning of the installed plants might take 3-5 years. More specific studies of market segments and business opportunities, development of market penetration and design of strategy must be carried out. Organisation seems to be a major issue as the complexity of the projects and the project location in 3rd world countries as well as in the industrialised countries combined with high proportion of donor funding will require a high level of organisation and coordination. In general a detailed study should be made in order to create a business plan. The business plan must contain budgets, volume estimates, sensitivity analyses, organisational proposals

  3. Grid integrated distributed PV (GridPV).

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J.; Coogan, Kyle

    2013-08-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  4. PV/T slates - Pilot project in Steinhausen; PV/T-Schiefer. Pilotprojekt Steinhausen

    Energy Technology Data Exchange (ETDEWEB)

    Kropf, S.

    2003-07-01

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) is one a series of five reports dealing with increasing the overall efficiency of photovoltaic (PV) installations by also using the heat collected by the dark-coloured PV panels. The work reported on addresses open questions on the use of the heat and its optimal use. This report deals with a ventilated PV-tile system (PV/T-Slates) mounted on a garden shed in Steinhausen, Switzerland. The installation provides power and heat to the main house. The report describes the construction and operation of this pilot project and the results of measurements made on its electrical and thermal performance. The results of measurements made are presented in detail in graphical form and compared with the results of simulation. Suggestions are made for the optimisation of the system. Figures are presented on energy production and energy flows in graphical form.

  5. Photovoltaics: PV takes off the UK

    International Nuclear Information System (INIS)

    Noble, Ray; Gregory, Jenny

    2000-01-01

    Despite historical ups and downs, there is still ambition to bring increasingly efficient photovoltaic (PV) systems to the market. PV for major remote telecommunications systems is now an established part of the market, many mobile phone systems are powered by PV and there is potential for increased use of home solar systems, especially in developing countries. Over the past few years, building-integrated PV (BIPV) has been on the increase. In 1999, global production from PV exceeded 200 MW and the UK installed capacity was greater than 1 MW. BIPV is a fast growing market and its characteristics and advantages are discussed. PV installations at Nottingham University, Greenwich Pavilion, BP Amoco Sunbury, Baglan Bay, BP filling stations, and Sainsbury's are described

  6. PV-BUK: Operating and maintenance costs of photovoltaic installations; PV-BUK - Betriebs- und Unterhaltskosten von PV-Anlagen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stettler, S.; Toggweiler, P. [Enecolo AG, Moenchaltorf (Switzerland); Ruoss, D.; Schudel, P. [Envision, Lucerne (Switzerland); Kottmann, A.; Steinle, F. [BE Netz AG, Lucerne (Switzerland)

    2008-03-15

    This final report elaborated for the Swiss Federal Office of Energy (SFOE) takes a look at the results of a project carried out to determine the costs for facility management, to estimate future cost development and to propose activities for the further reduction of the operation and maintenance costs of photovoltaic systems. Information on the cost situation was collected by literature study, as well as in interviews and surveys with photovoltaic (PV) experts and the owners of PV installations. The discussion of the results at a workshop with about 20 Swiss PV experts is noted. The results are presented and discussed. These show that operating costs per kWh decrease with the size of the PV system. Figures are quoted. The major part of the costs are quoted as being those for spare parts, especially for the inverter. The authors are of the opinion that, in future, costs for facility management will further decrease, as they are partly linked to capital and insurance costs. Potential for optimisation is said to exist in several areas of facility management such as, for example, in system monitoring and fast reaction in the case of malfunctions.

  7. Atmospheric Pressure Chemical Vapor Deposition of CdTe for High-Efficiency Thin-Film PV Devices; Annual Report, 26 January 1998-25 January 1999

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, P. V. [ITN Energy Systems, Wheat Ridge, Colorado (US); Kee, R.; Wolden, C.; Raja, L.; Kaydanov, V.; Ohno, T.; Collins, R.; Aire, M.; Kestner, J. [Colorado School of Mines, Golden, Colorado (US); Fahrenbruch, A. [ALF, Inc., Stanford, California (US)

    1999-09-30

    ITN's 3-year project, titled ''Atmospheric Pressure Chemical Vapor Deposition (APCVD) of CdTe for High-Efficiency Thin-Film Photovoltaic (PV) Devices,'' has the overall objectives of improving thin-film CdTe PV manufacturing technology and increasing CdTe PV device power conversion efficiency. CdTe deposition by APCVD employs the same reaction chemistry as has been used to deposit 16%-efficient CdTe PV films, i.e., close-spaced sublimation, but employs forced convection rather than diffusion as a mechanism of mass transport. Tasks of the APCVD program center on demonstrating APCVD of CdTe films, discovering fundamental mass-transport parameters, applying established engineering principles to the deposition of CdTe films, and verifying reactor design principles that could be used to design high-throughput, high-yield manufacturing equipment. Additional tasks relate to improved device measurement and characterization procedures that can lead to a more fundamental understanding of CdTe PV device operation, and ultimately, to higher device conversion efficiency and greater stability. Specifically, under the APCVD program, device analysis goes beyond conventional one-dimensional device characterization and analysis toward two-dimension measurements and modeling. Accomplishments of the first year of the APCVD subcontract include: selection of the Stagnant Flow Reactor design concept for the APCVD reactor, development of a detailed reactor design, performance of detailed numerical calculations simulating reactor performance, fabrication and installation of an APCVD reactor, performance of dry runs to verify reactor performance, performance of one-dimensional modeling of CdTe PV device performance, and development of a detailed plan for quantification of grain-boundary effects in polycrystalline CdTe devices.

  8. Design, Fabrication, and Certification of Advanced Modular PV Power Systems Final Technical Progress Report

    International Nuclear Information System (INIS)

    Minyard, G.

    1998-01-01

    This report describes the overall accomplishments and benefits of Solar Electric Specialties Co. (SES) under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. SES addressed design issues related to their modular autonomous PV power supply (MAPPS) and a mobile photogenset. MAPPS investigations included gel-cell batteries mounted horizontally; redisgn of the SES power supply; modified battery enclosure for increased safety and reduced cost; programmable, interactive battery charge controllers; and UL and FM listings. The photogenset systems incorporate generators, battery storage, and PV panels for a mobile power supply. The unit includes automatic oil-change systems for the propane generators, collapsible array mounts for the PV enclosure, and internal stowage of the arrays. Standardizing the products resulted in product lines of MAPPS and Photogensets that can be produced more economically and with shorter lead times, while increasing product quality and reliability. Product assembly and quality control have also been improved and streamlined with the development of standardized assembly processes and QC testing procedures. SES offers the UL-listed MAPPS at about the same price as its previous non-standardized, unlisted products

  9. Designing PV Incentive Programs to Promote System Performance: AReview of Current Practice

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-11-12

    Some stakeholders continue to voice concerns about the performance of customer-sited photovoltaic (PV) systems, particularly because these systems typically receive financial support through ratepayer- or publicly-funded programs. Although much remains to be understood about the extent and specific causes of poor PV system performance, several studies of the larger programs and markets have shed some light on the issue. An evaluation of the California Energy Commission (CEC)'s Emerging Renewables Program, for example, found that 7% of systems, in a sample of 95, had lower-than-expected power output due to shading or soiling (KEMA 2005). About 3% of a larger sample of 140 systems were not operating at all or were operating well below expected output, due to failed equipment, faulty installation workmanship, and/or a lack of basic maintenance. In a recent evaluation of the other statewide PV incentive program in California, the Self-Generation Incentive Program, 9 of 52 projects sampled were found to have annual capacity factors less than 14.5%, although reasons for these low capacity factors generally were not identified (Itron 2005). Studies of PV systems in Germany and Japan, the two largest PV markets worldwide, have also revealed some performance problems associated with issues such as shading, equipment and installation defects, inverter failure, and deviations from module manufacturers' specifications (Otani et al. 2004, Jahn & Nasse 2004). Although owners of PV systems have an inherent incentive to ensure that their systems perform well, many homeowners and building operators may lack the necessary information and expertise to carry out this task effectively. Given this barrier, and the responsibility of PV incentive programs to ensure that public funds are prudently spent, these programs should (and often do) play a critical role in promoting PV system performance. Performance-based incentives (PBIs), which are based on actual energy production

  10. Additive Manufacturing for Low Volume Bearings

    Energy Technology Data Exchange (ETDEWEB)

    Tate, John G. [Schaeffler Group USA, Spartanburg, SC (United States); Richardson, Bradley S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    ORNL worked with the Schaeffler Group USA to explore additive manufacturing techniques that might be appropriate for prototyping of bearing cages. Multiple additive manufacturing techniques were investigated, including e-beam, binder jet and multiple laser based processes. The binder jet process worked best for the thin, detailed cages printed.

  11. Design and optimization of a self-developing single axis tracking PV array

    International Nuclear Information System (INIS)

    Colozza, A.J.

    1992-01-01

    This paper reports on a study performed in order to design a tracking PV array and optimize the design for maximum specific power. The design considerations were minimal deployment time, high reliability and small stowage volume. The array design was self-deployable, from a compact stowage configuration, using a passive pressurized gas deployment mechanism. The array structural components consist of a combination of beams, columns and cables used to deploy and orient a flexible PV blanket. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces it would be subjected to. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power

  12. Optimization of PV-based energy production by dynamic PV-panel/inverter configuration

    DEFF Research Database (Denmark)

    Paasch, Kasper; Nymand, Morten; Haase, Frerk

    This paper investigates the possible increase in annual energy production of a PV system with more than one MPPT (maximum power point tracker) input channels under Nordic illumination conditions, in case a concept of dynamic switching of the PV panels is used at the inputs of the inverters....

  13. Research Leading to High Throughput Processing of Thin-Film CdTe PV Module: Phase I Annual Report, October 2003 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R. C.; Meyers, P. V.

    2004-02-01

    Work under this subcontract contributes to the overall manufacturing operation. During Phase I, average module efficiency on the line was improved from 7.1% to 7.9%, due primarily to increased photocurrent resulting from a decrease in CdS thickness. At the same time, production volume for commercial sale increased from 1.5 to 2.5 MW/yr. First Solar is committed to commercializing CdTe-based thin-film photovoltaics. This commercialization effort includes a major addition of floor space and equipment, as well as process improvements to achieve higher efficiency and greater durability. This report presents the results of Phase I of the subcontract entitled''Research Leading to High Throughput Processing of Thin-Film CdTe PV Modules.'' The subcontract supports several important aspects needed to begin high-volume manufacturing, including further development of the semiconductor deposition reactor, advancement of accelerated life testing methods and understanding, and improvements to th e environmental, health, and safety programs. Progress in the development of the semiconductor deposition reactor was made in several areas. First, a new style of vapor transport deposition distributor with simpler operational behavior and the potential for improved cross-web uniformity was demonstrated. Second, an improved CdS feed system that will improve down-web uniformity was developed. Third, the core of a numerical model of fluid and heat flow within the distributor was developed, including flow in a 3-component gas system at high temperature and low pressure and particle sublimation.

  14. PV integration into a CSP plant

    Science.gov (United States)

    Carvajal, Javier López; Barea, Jose M.; Barragan, Jose; Ortega, Carlos

    2017-06-01

    This paper describes a preliminary techno-economic analysis of the integration of a PV plant into an optimized Parabolic Trough Plant in order to reduce the online consumptions and thus, increase the net electricity injected into the grid. The idea is to assess the feasibility of such project and see what configuration would be the optimal. An extra effort has been made in terms of modelling as the analysis has to be done to the integrated CSP + PV plant instead of analyzing them independently. Two different technologies have been considered for the PV plant, fix and one-axis tracking. Additionally three different scenarios have been considered for the CSP plant auxiliary consumptions as they are essential for determining the optimal PV plant (the higher the auxiliary consumption the higher the optimal PV plant). As could be expected, the results for all cases with PV show an improvement in terms of electricity generation and also in terms of LCOE with respect to the CSP plant. Such improvement is slightly higher with tracking technology for this specific study. Although this exercise has been done to an already designed CSP plant (so only the PV plant had to be optimized), the methodology could be applied for the optimization of an integrated CSP + PV plant during the design phase.

  15. Projecting of PV facades in consideration of PV-specific operating conditions; Besonderheiten bei der Projektierung von Photovoltaik-Fassadenanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Decker, B.; Grimmig, B.; Mencke, D. [Institut fuer Solarenergieforschung GmbH Hameln/Emmerthal (ISFH), Emmerthal (Germany). Gruppe Photovoltaik-Systeme; Stellbogen, D. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany). Fachgebiet Photovoltaische Anlagentechnik

    1998-02-01

    PV facades can provide several additional functions such as weather protection, thermal insulation, daylighting or sun protection. On the other hand, specific operating conditions for PV facades must be taken into account when selecting components and designing the system. Depending on ventilation conditions, there is a large range of maximum module temperatures. South-oriented PV facades receive about 30% less yearly irradiation than an optimally inclined PV generator, hence reflection losses are approximately 4% higher. The maximum of yearly irradiation lies only in the 400-600 W/m{sup 2} range. Surrounding buildings and/or vegetation can impair performance of the PV-facades. For a south-oriented PV facade an annual yield in the range of 470-560 kwh/kW{sub p}.a has been prodicted which was verified by operating results of eight PV facades. (orig.) [Deutsch] Photovoltaik (PV) Fassaden ermoeglichen neben der Stromerzeugung zusaetzliche Funktionen wie Wetterschutz bzw. Waermedaemmung des Gebaeudes oder Tageslichtnutzung bzw. Sonnenschutz der Innenraeume. Allerdings muessen fassadenspezifische Betriebsbedingungen, bei der Komponentenauswahl und Systemauslegung beruecksichtigt werden. Unterschiedliche Hinterlueftungsbedingungen fuehren zu einer grossen Bandbreite der maximalen Modultemperatur. PV-Suedfassaden empfangen etwa 30% weniger Jahreseinstrahlung als ein optimal geneigter PV-Generator. Die Haelfte der jaehrlichen Einstrahlung trifft mit Einfallswinkeln groesser 50 auf die vertikal angeordneten Module wodurch die Reflexionsverluste um ca. 4% hoeher sind. Das Maximum der Jahreseinstrahlung liegt nur um 400-600 W/m{sup 2} und erreicht selten Werte ueber 800 W/m{sup 2}. Umliegende Gebaeude oder Vegetation koennen zu Teilabschattungen des Generators fuehren. Fuer eine vertikale PV-Suedfassade wird ein Jahresenergieertrag in Hoehe von 470-560 kWh/kW{sub p}.a prognostiziert, der anhand der Betriebsergebnisse von acht PV-Fassadenanlagen verifiziert werden konnte

  16. Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Olama, Mohammed M [ORNL; Sharma, Isha [ORNL; Kuruganti, Teja [ORNL; Fugate, David L [ORNL

    2017-01-01

    In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis of building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.

  17. Accelerating PV Cost Effectiveness Through Systems Design, Engineering, and Quality Assurance: Phase I Annual Technical Report, 4 November 2004 - 3 November 2005

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, J.

    2006-07-01

    During Phase I of this PV Manufacturing R&D subcontract, PowerLight Corporation has made significant progress toward the reduction of installed costs for commercial-scale, rooftop PV systems. PowerLight has worked to reduce operating costs by improving long-term reliability and performance through the development of more sophisticated tools used in system design and monitoring. Additionally, PowerLight has implemented design improvements with the goal of reducing cost while maintaining and/or improving product quality. As part of this effort, PowerLight also modified manufacturing and shipping processes to accommodate these design changes, streamline material flow, reduce cost, and decrease waste streams. During Phase II of this project, PowerLight plans to continue this work with the goal of reducing system cost and improving system performance.

  18. The case for better PV forecasting

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2016-01-01

    Rising levels of PV penetration mean increasingly sophisticated forecasting technologies are needed to maintain grid stability and maximise the economic value of PV systems. The Grid Integration working group of the European Technology and Innovation Platform – Photovoltaics (ETIP PV) shares the ...

  19. Development of a GIS Tool for High Precision PV Degradation Monitoring and Supervision: Feasibility Analysis in Large and Small PV Plants

    Directory of Open Access Journals (Sweden)

    Miguel de Simón-Martín

    2017-06-01

    Full Text Available It is well known that working photovoltaic (PV plants show several maintenance needs due to wiring and module degradation, mismatches, dust, and PV cell defects and faults. There are a wide range of theoretical studies as well as some laboratory tests that show how these circumstances may affect the PV production. Thus, it is mandatory to evaluate the whole PV plant performance and, then, its payback time, profitability, and environmental impact or carbon footprint. However, very few studies include a systematic procedure to quantify and supervise the real degradation effects and fault impacts on the field. In this paper, the authors first conducted a brief review of the most frequent PV faults and the degradation that can be found under real conditions of operation of PV plants. Then, they proposed and developed an innovative Geographic Information System (GIS application to locate and supervise them. The designed tool was applied to both a large PV plant of 108 kWp and a small PV plant of 9 kWp installed on a home rooftop. For the large PV plant, 24 strings of PV modules were modelized and introduced into the GIS application and every module in the power plant was studied including voltage, current, power, series and parallel resistances, fill factor, normalized PV curve to standard test conditions (STC, thermography and visual analysis. For the small PV installation three strings of PV panels were studied identically. It must be noted that PV modules in this case included power optimizers. The precision of the study enabled the researchers to locate and supervise up to a third part of every PV cell in the system, which can be adequately georeferenced. The developed tool allows both the researchers and the investors to increase control of the PV plant performance, to lead to better planning of maintenance actuations, and to evaluate several PV module replacement strategies in a preventive maintenance program. The PV faults found include hot

  20. Adiabatic Rearrangement of Hollow PV Towers

    Directory of Open Access Journals (Sweden)

    Eric A Hendricks

    2010-10-01

    Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane

  1. Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T system against conventional photovoltaic (PV system

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-11-01

    Full Text Available Photovoltaic (PV semiconductor degrades in performance due to temperature rise. A super thin-conductive thermal absorber is therefore developed to regulate the PV working temperature by retrofitting the existing PV panel into the photovoltaic/thermal (PV/T panel. This article presented the parallel comparative investigation of the two different systems through both laboratory and field experiments. The laboratory evaluation consisted of one PV panel and one PV/T panel respectively while the overall field system involved 15 stand-alone PV panels and 15 retrofitted PV/T panels. The laboratory testing results demonstrated the PV/T panel could achieve the electrical efficiency of about 16.8% (relatively 5% improvement comparing with the stand-alone PV panel, and yield an extra amount of heat with thermal efficiency of nearly 65%. The field testing results indicated that the hybrid PV/T panel could enhance the electrical return of PV panels by nearly 3.5%, and increase the overall energy output by nearly 324.3%. Further opportunities and challenges were then discussed from aspects of different PV/T stakeholders to accelerate the development. It is expected that such technology could become a significant solution to yield more electricity, offset heating load freely and reduce carbon footprint in contemporary energy environment.

  2. Reliability Assessment of Transformerless PV Inverters considering Mission Profiles

    Directory of Open Access Journals (Sweden)

    Yongheng Yang

    2015-01-01

    Full Text Available Due to the small volume and high efficiency, transformerless inverters have gained much popularity in grid-connected PV applications, where minimizing leakage current injection is mandatory. This can be achieved by either modifying the modulation schemes or adding extra power switching devices, resulting in an uneven distribution of the power losses on the switching devices. Consequently, the device thermal loading is redistributed and thus may alter the entire inverter reliability performance, especially under a long-term operation. In this consideration, this paper assesses the device reliability of three transformerless inverters under a yearly mission profile (i.e., solar irradiance and ambient temperature. The mission profile is translated to device thermal loading, which is used for lifetime prediction. Comparison results reveal the lifetime mismatches among the power switching devices operating under the same condition, which offers new thoughts for a robust design and a reliable operation of grid-connected transformerless PV inverters with high efficiency.

  3. Financial return for government support of large-scale thin-film solar photovoltaic manufacturing in Canada

    International Nuclear Information System (INIS)

    Branker, K.; Pearce, J.M.

    2010-01-01

    As the Ontario government has recognized that solar photovoltaic (PV) energy conversion is a solution to satisfying energy demands while reducing the adverse anthropogenic impacts on the global environment that compromise social welfare, it has begun to generate policy to support financial incentives for PV. This paper provides a financial analysis for investment in a 1 GW per year turnkey amorphous silicon PV manufacturing plant. The financial benefits for both the provincial and federal governments were quantified for: (i) full construction subsidy, (ii) construction subsidy and sale, (iii) partially subsidize construction, (iv) a publicly owned plant, (v) loan guarantee for construction, and (vi) an income tax holiday. Revenues for the governments are derived from: taxation (personal, corporate, and sales), sales of panels in Ontario, and saved health, environmental and economic costs associated with offsetting coal-fired electricity. Both governments enjoyed positive cash flows from these investments in less than 12 years and in many of the scenarios both governments earned well over 8% on investments from 100 s of millions to $2.4 billion. The results showed that it is in the financial best interest of both the Ontario and Canadian federal governments to implement aggressive fiscal policy to support large-scale PV manufacturing.

  4. Landfill waste and recycling: Use of a screening-level risk assessment tool for end-of-life cadmium telluride (CdTe) thin-film photovoltaic (PV) panels

    International Nuclear Information System (INIS)

    Cyrs, William D.; Avens, Heather J.; Capshaw, Zachary A.; Kingsbury, Robert A.; Sahmel, Jennifer; Tvermoes, Brooke E.

    2014-01-01

    Grid-connected solar photovoltaic (PV) power is currently one of the fastest growing power-generation technologies in the world. While PV technologies provide the environmental benefit of zero emissions during use, the use of heavy metals in thin-film PV cells raises important health and environmental concerns regarding the end-of-life disposal of PV panels. To date, there is no published quantitative assessment of the potential human health risk due to cadmium leaching from cadmium telluride (CdTe) PV panels disposed in a landfill. Thus, we used a screening-level risk assessment tool to estimate possible human health risk associated with disposal of CdTe panels into landfills. In addition, we conducted a literature review of potential cadmium release from the recycling process in order to contrast the potential health risks from PV panel disposal in landfills to those from PV panel recycling. Based on the results of our literature review, a meaningful risk comparison cannot be performed at this time. Based on the human health risk estimates generated for PV panel disposal, our assessment indicated that landfill disposal of CdTe panels does not pose a human health hazard at current production volumes, although our results pointed to the importance of CdTe PV panel end-of-life management. - Highlights: • Analysis of possible human health risk posed by disposal of CdTe panels into landfills. • Qualitative comparison of risks associated with landfill disposal and recycling of CdTe panels. • Landfill disposal of CdTe panels does not pose a human health hazard at current production volumes. • There could be potential risks associated with recycling if not properly managed. • Factors other than concerns over toxic substances will likely drive the decisions of how to manage end-of-life PV panels

  5. Optical and mechanical tolerances in hybrid concentrated thermal-PV solar trough.

    Science.gov (United States)

    Diaz, Liliana Ruiz; Cocilovo, Byron; Miles, Alexander; Pan, Wei; Blanche, Pierre-Alexandre; Norwood, Robert A

    2018-05-14

    Hybrid thermal-PV solar trough collectors combine concentrated photovoltaics and concentrated solar power technology to harvest and store solar energy. In this work, the optical and mechanical requirements for optimal efficiency are analyzed using non-sequential ray tracing techniques. The results are used to generate opto-mechanical tolerances that can be compared to those of traditional solar collectors. We also explore ideas on how to relieve tracking tolerances for single-axis solar collectors. The objective is to establish a basis for tolerances required for the fabrication and manufacturing of hybrid solar trough collectors.

  6. Experimental investigation of PV modules recycling; PV module recycle no jikkenteki kento

    Energy Technology Data Exchange (ETDEWEB)

    Unagida, H; Kurokawa, K [Tokyo University of Agriculture and Technology, Tokyo (Japan); Sakuta, K; Otani, K; Murata, K [Electrotechnical Laboratory, Tsukuba (Japan)

    1997-11-25

    Recycling, cost/energy analysis and recovery experiment were made on crystalline silicon PV modules with EVA(ethylene vinyl acetate)-laminated structure. The life of modules is dependent not on performance deterioration of PV cells themselves but on yellowing or poor transmittance of EVA caused by ultraviolet ray, and disconnection between cells by thermal stress. Recovery is carried out in 3 stages of cell, wafer and material. Recovery in the stages of cell and wafer results in considerable reduction of energy and cost. The recovery experiment was carried out using PV module samples prepared by cutting the modules into 25times15mm pieces after removing Al frames from the used modules, peeling back sheets and cutting off EVA. Since a nitric acid process at 70-80degC can dissolve EVA effectively, it is promising for reuse of surface glass and PV cells as they are. This process is also carried out under a condition around room temperature and pressure, contributing to cost reduction and energy saving for recycling. Generation of harmful NOx is only a problem to be solved. 2 refs., 6 figs., 1 tab.

  7. Evaluation of the potential of PV noise barrier technology for electricity production and market share. Final report

    International Nuclear Information System (INIS)

    Goetzberger, A.; Kleiss, G.; Castello, S.; Hille, G.; Reise, C.; Wiemken, E.; Betcke, J.W.H.; Van Dijk, V.A.P.; Pearsall, N.; Hynes, K.; Gaidddon, B.; Nordmann, T.; Froelich, A.

    1999-06-01

    The analysis of existing and planned noise barriers along rails and roads has been carried out by the national partners together with national authorities, which are experts and responsible for the required data. The methodical approach of this study includes the set-up of a grid along longitude and latitudes with 1 by 1 degrees for Germany, Italy, France, United Kingdom and 0.5 by 0.5 degrees for the Netherlands and Switzerland. For each degree the length and orientation of rails and roads, the existing and planned noise barriers are registered and grouped according to their orientations. The solar radiation is based on data of a METEONORM data set. This includes the solar radiation on horizontal orientation as well as various inclination angles for all possible orientations. Moreover, possible shading has been considered. The technical specifications of noise barriers (PVNB) are based on the comprehensive knowledge of TNC GmbH and TNC AG with various plants realised. Technologies have been considered for both state-of-the-art and innovative concepts such as bifacial PVNB. In bifacial PVNB the PV-module is mounted vertically on both sides and is used at the same time as noise reflecting material. Installed PV power and produced electricity have been calculated for: 1. theoretical potential 2. technical potential 3. short-term resp. European extrapolated potential 4. anticipated potential 5. EU-member assessment The result of this study confirms the current activities to implement PV on noise barriers as an important share in the PV market.The report is subdivided into two volumes: Volume 1 contains the main topics and results, and Volume 2 contains additional information on the solar radiation, typical concepts as an excerpt of the various potentials and all country maps with the required explanations. 95 refs

  8. A Practical Irradiance Model for Bifacial PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; MacAlpine, Sara; Deline, Chris; Asgharzadeh, Amir; Toor, Fatima; Riley, Daniel; Stein, Joshua; Hansen, Clifford

    2017-06-21

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using ray tracing software.

  9. Plasma volume expansion does not increase maximal cardiac output or VO2 max in lowlanders acclimatized to altitude

    DEFF Research Database (Denmark)

    Calbet, José A L; Rådegran, Göran; Boushel, Robert Christopher

    2004-01-01

    liter of 6% dextran 70 (BV = 6.32 +/- 0.34 liters). PV expansion had no effect on Qmax, maximal O2 consumption (VO2), and exercise capacity. Despite maximal systemic O2 transport being reduced 19% due to hemodilution after PV expansion, whole body VO2 was maintained by greater systemic O2 extraction (P...... VO2 during exercise regardless of PV. Pulmonary ventilation, gas exchange, and acid-base balance were essentially unaffected by PV expansion. Sea......With altitude acclimatization, blood hemoglobin concentration increases while plasma volume (PV) and maximal cardiac output (Qmax) decrease. This investigation aimed to determine whether reduction of Qmax at altitude is due to low circulating blood volume (BV). Eight Danish lowlanders (3 females, 5...

  10. Power of design - the future of building-integrated PV

    International Nuclear Information System (INIS)

    Abbate, Cinzia

    2001-01-01

    This paper discusses strategies to make building integrated photovoltaic (PV) systems more acceptable and to allow PV material to compete with conventional construction material. The history of developments in building integration and difficulties encountered by architects wishing to use PV products are explored, and the Dutch Amersfoot project in Utrecht involving a new suburb of 501 house covered with PV panels is described. Questions raised regarding architectural integration of PV systems, and PV systems and the construction market are discussed. The Italian PV programme, financial and political constraints, and the positioning of PV on existing structures are reported

  11. Determination of PV Generator I-V/P-V Characteristic Curves Using a DC-DC Converter Controlled by a Virtual Instrument

    Directory of Open Access Journals (Sweden)

    E. Durán

    2012-01-01

    Full Text Available A versatile measurement system for systematic testing and measurement of the evolution of the I-V characteristic curves of photovoltaic panels or arrays (PV generators is proposed in this paper. The measurement system uses a circuit solution based on DC-DC converters that involves several advantages relative to traditional methods: simple structure, scalability, fast response, and low cost. The measurement of the desired characteristics of PV generators includes high speed of response and high fidelity. The prototype system built is governed by a microcontroller, and experimental results prove the proposed measurement system useful. A virtual instrument (VI was developed for full system control from a computer. The developed system enables monitoring the suitable operation of a PV generator in real time, since it allows comparing its actual curves with those provided by the manufacturer.

  12. Impact of diuretic treatment and sodium intake on plasma volume in patients with compensated systolic heart failure

    DEFF Research Database (Denmark)

    Bonfils, Peter K; Damgaard, Morten; Taskiran, Mustafa

    2010-01-01

    AIMS: In patients with heart failure (HF), the use of diuretics may be a double-edged sword that can alleviate symptoms of congestion, but also result in over-diuresis and intravascular volume depletion. The purpose of the present study was to examine plasma volume (PV) in HF patients receiving...... difference in PV between patients with HF and control subjects (37.3 +/- 6.0 and 40.2 +/- 5.8 mL/kg, respectively, P = 0.092) with a significant tendency towards a contraction of PV with increasing use of diuretics (P = 0.031). There was no difference in extracellular volume between patients with HF...... and control subjects (P = 0.844). NT-proBNP plasma concentrations had no correlation to either sodium excretion (P = 0.193) or PV (P = 0.471) in patients with HF. CONCLUSION: Plasma volume in patients with HF was within normal limits, but patients treated with high doses of loop-diuretics tended to have...

  13. PSCAD Modules Representing PV Generator

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  14. OnToPV - a virtual guidance through the PV-plant ''Solardach New Munich Trade Fair''; OnToPV - eine virtuelle Fuehrung druch die PV-Anlage ''Solardach Neue Messe Muenchen''

    Energy Technology Data Exchange (ETDEWEB)

    Stich, C.; Becker, G.; Zehner, M. [Fachhochschule Muenchen (Germany). Fachbereich Elektrotechnik; Giesler, B. [Shell Solar GmbH, Muenchen (Germany); Weber, W.; Flade, F. [Solarenergiefoerderverein Bayern e.V., Muenchen (Germany)

    2003-07-01

    OnToPV is the project of an online tour guide through the PV-plant of the new Munich trade fair. The first focs was to provide an interactive circuit of a PV-plant. Within a virtual tour different areas of the plant should be made accessible over the internet. For this purpose a three-dimensional, multimedia guidance was developed for the PV-plant of the new Munich trade fair with informative diagrams, *.pdf-files and retrievable video-files. In such a way interested internet-users could experience with minimum system requirements, local- and time-independently the PV-plant in its structure and components and could receive different background informations in addition. From the view of the plant operators such an internet project serves on the one hand as an additional source of information where questions could be referred to and on the other hand as sort of advertisement for the technology and the PV-system. In addition the attractiveness of the internet appearance of the plant operator rises and the public awareness of such projects could increase. Seen from the user perspective - such an internet project gives private or business users the possibility to inform themselves interactively, purposefully and with the possibility to move through the plant on their own. Users could utilize the guidance through the plant without overcoming far geographical distances, saving time and money. Perhaps this source of information helps awaking a larger consciousness for renewable energies. The result OnToPV showed the various possibilities offered by projects of this kind in the internet. Ideas of possible extensions as for example the integration of current PV-plant operational data or of a virtual learning platform illustrate the perspectives of the project. Virtual guidance of this kind for various types of power plants are conceivable. (orig.)

  15. PV monitoring at Jubilee Campus - Nottingham University

    Energy Technology Data Exchange (ETDEWEB)

    Riffat, S.B.; Gan, G.

    2002-07-01

    This report summarises the results of a project monitoring the efficiency of photovoltaic (PV) modules integrated in the roofs of atria to meet the energy consumption needs of ventilation fans in the academic buildings at the Jubilee Campus of the University of Nottingham. Details are given of the instrumentation of one atrium to allow the monitoring the effectiveness of the ventilation in cooling the PV arrays integrated in the atrium roof, the economic analysis of the benefit of cooling the PV system, and the use of computational fluid dynamics (CFD) modelling to predict the performance of the atrium. The design of the PV system, the calculated system efficiency, the high cost of atrium integrated PV power supplies, the periodic failure of the inverters, and the overheating of the PV array and the atrium space in the summer are discussed.

  16. PV-DSM: Policy actions to speed commercialization

    International Nuclear Information System (INIS)

    Hoff, T.; Wenger, H.J.; Keane, D.M.

    1993-01-01

    Pacific Gas and Electric Company (PG ampersand E) recently applied Demand-Side Management (DSM) evaluation techniques to photovoltaic (PV) technology to develop the concept of photovoltaics as a Demand-Side Management option (PV-DSM). The analysis demonstrated that PV-DSM has the potential to be economically attractive. Two criticisms in response to that analysis are that the assumptions of 25 year financing and a 25 year evaluation period are unrealistic. This paper responds to those criticisms and documents the mathematical relationships to calculate the value of PV-DSM from a customer's perspective. It demonstrates how regulatory and government agencies could implement policies to resolve both issues and speed PV commercialization

  17. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  18. Diastolic chamber properties of the left ventricle assessed by global fitting of pressure-volume data: improving the gold standard of diastolic function.

    Science.gov (United States)

    Bermejo, Javier; Yotti, Raquel; Pérez del Villar, Candelas; del Álamo, Juan C; Rodríguez-Pérez, Daniel; Martínez-Legazpi, Pablo; Benito, Yolanda; Antoranz, J Carlos; Desco, M Mar; González-Mansilla, Ana; Barrio, Alicia; Elízaga, Jaime; Fernández-Avilés, Francisco

    2013-08-15

    In cardiovascular research, relaxation and stiffness are calculated from pressure-volume (PV) curves by separately fitting the data during the isovolumic and end-diastolic phases (end-diastolic PV relationship), respectively. This method is limited because it assumes uncoupled active and passive properties during these phases, it penalizes statistical power, and it cannot account for elastic restoring forces. We aimed to improve this analysis by implementing a method based on global optimization of all PV diastolic data. In 1,000 Monte Carlo experiments, the optimization algorithm recovered entered parameters of diastolic properties below and above the equilibrium volume (intraclass correlation coefficients = 0.99). Inotropic modulation experiments in 26 pigs modified passive pressure generated by restoring forces due to changes in the operative and/or equilibrium volumes. Volume overload and coronary microembolization caused incomplete relaxation at end diastole (active pressure > 0.5 mmHg), rendering the end-diastolic PV relationship method ill-posed. In 28 patients undergoing PV cardiac catheterization, the new algorithm reduced the confidence intervals of stiffness parameters by one-fifth. The Jacobian matrix allowed visualizing the contribution of each property to instantaneous diastolic pressure on a per-patient basis. The algorithm allowed estimating stiffness from single-beat PV data (derivative of left ventricular pressure with respect to volume at end-diastolic volume intraclass correlation coefficient = 0.65, error = 0.07 ± 0.24 mmHg/ml). Thus, in clinical and preclinical research, global optimization algorithms provide the most complete, accurate, and reproducible assessment of global left ventricular diastolic chamber properties from PV data. Using global optimization, we were able to fully uncouple relaxation and passive PV curves for the first time in the intact heart.

  19. [Measurement of maternal plasma volume during pregnancy].

    Science.gov (United States)

    Uzan, S; Beaufils, M; Uzan, M; Donsimoni, R; Mareck, A; Salat-Baroux, J; Sureau, C

    1988-02-01

    An increased maternal plasma volume (PV) is a characteristic phenomenon of normal pregnancy, which may be related to a physiological decrease of peripheral resistances. The authors have studied the plasma volume of 1,105 patients distributed as follows: normal (387), permanently hypertensive patients (84), hypertensive patients during pregnancy (390), patients with apparently isolated RCIU (154) or with a pathological past-history during previous pregnancies (90). It appears that the PV is a sign of a severe HBP, and presents a rather early and good predictive value regarding the weight of the fetus and some complications such as severe UCIU and fetal death in utero. In case of pathological past events or pre-existing hypertension, the PV enables to differentiate rather well patients who will be prone to a complicated pregnancy. In view of these results, utilization and interpretation criteria of this parameter during pregnancies with hypertension or pregnancies in which there is a suspicion or a risk of intra-uterine growth delay, are defined.

  20. PV Obelisk - Information system with photovoltaics

    International Nuclear Information System (INIS)

    Ruoss, D.; Rasmussen, J.

    2004-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the development of an information system powered by a photovoltaic (PV) array. As an innovative approach, the 'PV-Obelisk' project is the combination of PV with a multi-functional pillar made of natural stone in an aesthetic way. The PV modules serve both as a power supply and as a design element. Two initial prototypes led the way to a third, optimised consumer configuration that was planned to guarantee maximum user frequency. Test operation in front of the 'Heidiland' motor way restaurant confirmed the market analyses made and delivered the expected results. The product, whose three LCD displays are updated via a mobile telephony-based text-message system, proved its technical reliability and showed a high user frequency. Because of the high overall energy consumption, PV power can only partially contribute to the energy supply needed. Various compromises in the technical and aesthetic areas are discussed that were made for the sake of product acceptance in the market. The range of application areas for such a 'PV Obelisk' are discussed and the need for early co-ordination with urban planners is stressed

  1. The new NOZ-PV: Market-oriented

    International Nuclear Information System (INIS)

    Ter Horst, E.

    1995-01-01

    In the proposal for the new National Research Program for Photovoltaics (NOZ-PV) 1995-1999 the focus is on four subjects: solar cell technology, the industrial support, the stimulation of autonomous, favorable applications and markets for PV, and the realization of a training program PV in the Built Areas. The program will be carried out as a market-oriented program. 1 tab., 2 figs

  2. DECOMPOSITION OF MANUFACTURING PROCESSES: A REVIEW

    Directory of Open Access Journals (Sweden)

    N.M.Z.N. Mohamed

    2012-06-01

    Full Text Available Manufacturing is a global activity that started during the industrial revolution in the late 19th century to cater for the large-scale production of products. Since then, manufacturing has changed tremendously through the innovations of technology, processes, materials, communication and transportation. The major challenge facing manufacturing is to produce more products using less material, less energy and less involvement of labour. To face these challenges, manufacturing companies must have a strategy and competitive priority in order for them to compete in a dynamic market. A review of the literature on the decomposition of manufacturing processes outlines three main processes, namely: high volume, medium volume and low volume. The decomposition shows that each sub process has its own characteristics and depends on the nature of the firm’s business. Two extreme processes are continuous line production (fast extreme and project shop (slow extreme. Other processes are in between these two extremes of the manufacturing spectrum. Process flow patterns become less complex with cellular, line and continuous flow compared with jobbing and project. The review also indicates that when the product is high variety and low volume, project or functional production is applied.

  3. Annual technical report. PV domestic field trial

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report describes progress at the first five sites of the UK photovoltaic (PV) domestic field trial. All five sites are generating electricity, but one has not yet been commissioned and two sites are not yet monitoring performance. The BedZED development has roof-mounted PV modules and PV cells installed in sealed double-glazing. Solar slates/tiles have been installed at the Laing Homes development in Montagu Road, where the designer has sought to minimise the visual impact of the PV system on the roofs. At Hunters Moon, PV modules have been retrofitted and some unforeseen difficulties have arisen. PV is an integral part of the roof design at the state-of-the-art low energy development by Integer Houses at Greenfields. Corn Croft uses a British mounting system to facilitate integration of the modules flush with the roof. Installation issues and the progress of the trial are discussed.

  4. PV in a sports arena; PV im Hexenkessel

    Energy Technology Data Exchange (ETDEWEB)

    Hoeche, B.

    2008-05-19

    The German soccer club Werder Bremen is reconstructing its stadium. Apart from higher spectator comfort and a better atmosphere, there will also be PV systems on the roof and external walls of the arena. (orig.)

  5. The PV market - Past, present, and future

    International Nuclear Information System (INIS)

    Hammond, B.

    1992-01-01

    This paper forecasts the photovoltaic (PV) market growth for the 1900's. Ten years of PV history are reviewed and used to establish market trends in terms of average selling price (ASP) and kilowatts shipped by market segment. The market is segmented into indoor consumer, stand-alone, and grid-connected applications. Indoor consumer presently represents a saturated market and is fairly predictable. The stand-alone market (i.e. not connected to the utility grid) is fairly stable and predictable. The utility PV market, however, is highly dependent on a number of market factors such as the cost of conventional energy, the cost of PV systems, utility acceptance of PV, and regulatory controls. Government and institutional regulations, environmental issues, OPEC and Middle East politics will have the greatest impact on the cost of conventional fuels. Private and federal investment in PV technology development could have a significant impact on the cost of PV systems. Forecasts are provided through the year 2000 for indoor consumer, stand-alone, and utility markets. PV has unique attributes which make it a desirable source of energy in specific applications. It is a renewable source of energy, non-polluting, very reliable, predictable, low maintenance, modular, and has a very low operating cost. The energy source (sunlight) is distributed around the globe. Its limitations are high initial cost, no inherent energy storage, and low energy density

  6. Optimal Design of Modern Transformerless PV Inverter Topologies

    DEFF Research Database (Denmark)

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    the operational lifetime period of the PV installation, is also considered in the optimization process. According to the results of the proposed design method, different optimal values of the PV inverter design variables are derived for each PV inverter topology and installation site. The H5, H6, neutral point...... clamped, active-neutral point clamped and conergy-NPC PV inverters designed using the proposed optimization process feature lower levelized cost of generated electricity and lifetime cost, longer mean time between failures and inject more PV-generated energy into the electric grid than their nonoptimized......The design optimization of H5, H6, neutral point clamped, active-neutral point clamped, and conergy-NPC transformerless photovoltaic (PV) inverters is presented in this paper. The components reliability in terms of the corresponding malfunctions, affecting the PV inverter maintenance cost during...

  7. PV-HYBRID and MINI-GRID. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Within the 3rd European Conference at the Centre de Congres in Aix en Provence (France) between 11th and 12th May, 2006, the following lessons were held: (1) Small electric networks: European drivers and projects for the integration of RES and DG into the electricity grids of the future (Manuel Sanchez-Jimenez); (2) PV hybrid system within mini grids - IEA PVPS programme (Meuch Konraf); (3) Renewables for the developing world (Alvaro Ponce Plaza); (4) Rural electicity supply using photovoltaic / - Diesel hybrid systems: Attractive for investors in the renewable energy sector? (Andreas Hahn); (5) Economic analysis of stand-alone and grid-connected photovoltaic systems under current tariff structure of Taiwan (Yaw-Juen Wang); (6) Using wind-PV-diesel hybrid system for electrification of remote village in Western Libya (N.M. Kreama); (7) Venezuela's renewable energy program for small towns and rural areas ''Sembrando Luz'' (Jorge Torres); (8) AeroSmart5, the professional, sysem-compatible small-scale wind energy converter will be tested in field tests (Fabian Jochem); (9) Lifetime, test procedures and recommendations for optimal operating strategies for lead-acid-batteries in renewable energy systems - A survey on results from European projects from the 5th framework programme (Rudi Kaiser); (10) Prototype of a reversible fuel cell system for autonomous power supplies (Tom Smolinska); (11) Interconnection management in microgrids (Michel Vandenbergh); (12) Control strategy for a small-scale stand-alone power system based on renewable energy and hydrogen (Harald Miland); (13) Standard renewable electricity supply for people in rural areas - mini-grids in western provinces of China (Michael Wollny); (14) The Brava island a ''100% renewable energy'' project (Jean-Christian Marcel); (15) Breakthrough to a new era of PV-hybrid systems with the help of standardised components communication? (Michael Mueller); (16) Standardized

  8. Novel laboratory mouse papillomavirus (MusPV) infection.

    Science.gov (United States)

    Ingle, A; Ghim, S; Joh, J; Chepkoech, I; Bennett Jenson, A; Sundberg, J P

    2011-03-01

    Most papillomaviruses (PVs) are oncogenic. There are at least 100 different human PVs and 65 nonhuman vertebrate hosts, including wild rodents, which have species-specific PV infections. Florid papillomatosis arose in a colony of NMRI-Foxn1(nu)/Foxn1(nu) (nude) mice at the Advanced Centre for Treatment Research and Education in Cancer in India. Lesions appeared at the mucocutaneous junctions of the nose and mouth. Histologically, lesions were classical papillomas with epidermal hyperplasia on thin fibrovascular stalks in a verrucous pattern. Koilocytotic cells were observed in the stratum granulosum of the papillomatous lesions. Immunohistochemically, these abnormal cells were positive for PV group-specific antigens. With transmission electron microscopy, virus particles were observed in crystalline intranuclear inclusions within keratinocytes. The presence of a mouse PV, designated MusPV, was confirmed by amplification of PV DNA with degenerative primers specific for PVs. This report is the first of a PV and its related disease in laboratory mice.

  9. PV Working with Industry, 2nd Quarter, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.; Moon, S.

    2000-06-29

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The Second Quarter, 2000, issue is titled ``Our Shared PV Future''. It contains a review of several important PV-related meetings held in the prior three months: the NCPV Program Review, the 16 European PV Conference, and year-2000 Earth Day activities in Denver, CO. The editorialist is Paul Maycock, Publisher of PV News.

  10. Estimation of ocular volume from axial length.

    Science.gov (United States)

    Nagra, Manbir; Gilmartin, Bernard; Logan, Nicola S

    2014-12-01

    To determine which biometric parameters provide optimum predictive power for ocular volume. Sixty-seven adult subjects were scanned with a Siemens 3-T MRI scanner. Mean spherical error (MSE) (D) was measured with a Shin-Nippon autorefractor and a Zeiss IOLMaster used to measure (mm) axial length (AL), anterior chamber depth (ACD) and corneal radius (CR). Total ocular volume (TOV) was calculated from T2-weighted MRIs (voxel size 1.0 mm(3)) using an automatic voxel counting and shading algorithm. Each MR slice was subsequently edited manually in the axial, sagittal and coronal plane, the latter enabling location of the posterior pole of the crystalline lens and partitioning of TOV into anterior (AV) and posterior volume (PV) regions. Mean values (±SD) for MSE (D), AL (mm), ACD (mm) and CR (mm) were -2.62±3.83, 24.51±1.47, 3.55±0.34 and 7.75±0.28, respectively. Mean values (±SD) for TOV, AV and PV (mm(3)) were 8168.21±1141.86, 1099.40±139.24 and 7068.82±1134.05, respectively. TOV showed significant correlation with MSE, AL, PV (all p<0.001), CR (p=0.043) and ACD (p=0.024). Bar CR, the correlations were shown to be wholly attributable to variation in PV. Multiple linear regression indicated that the combination of AL and CR provided optimum R(2) values of 79.4% for TOV. Clinically useful estimations of ocular volume can be obtained from measurement of AL and CR. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. The Development of Standardized, Low-Cost AC PV Systems; TOPICAL; Final Technical Report; 8 September 1995-30 June 1998

    International Nuclear Information System (INIS)

    Strong, S.

    1999-01-01

    Solar Design Associates, Inc. (SDA), of Harvard, Massachusetts, and Solarex Corporation, of Frederick, Maryland, teamed with Advanced Energy Systems (AES) of Wilton, New Hampshire, to pursue a multi-level program under a Photovoltaic Manufacturing Technology (PVMaT) solicitation. This program was targeted at design innovation, standardization, and modularity, with the goal to deliver low-cost AC PV systems to the utility-interactive market. One significant result of this program is that Solarex filed a U.S. patent application on the new module frame and mounting system that was developed with support from PVMaT. Solarex has already started to manufacture this new combination framing and array mounting system, and a number of residential-scale installations are already in place in the field. The major AES accomplishment under this program was the development of a reliable, FCC-compliant AC module inverter fully listed by Underwriters Laboratories (UL). The inverter passed various environmental tests, including those required by UL (the same temperature and humidity cycling tests that PV modules require), and is now in commercial production

  12. Electrical Rating of Concentrated Photovoltaic (CPV) Systems: Long-Term Performance Analysis and Comparison to Conventional PV Systems

    KAUST Repository

    Burhan, Muhammad

    2016-02-29

    The dynamic nature of meteorological data and the commercial availability of diverse photovoltaic systems, ranging from single-junction silicon-based PV panels to concentrated photovoltaic (CPV) systems utilizing multi-junction solar cells and a two-axis solar tracker, demand a simple but accurate methodology for energy planners and PV system designers to understand the economic feasibility of photovoltaic or renewable energy systems. In this paper, an electrical rating methodology is proposed that provides a common playing field for planners, consumers and PV manufacturers to evaluate the long-term performance of photovoltaic systems, as long-term electricity rating is deemed to be a quick and accurate method to evaluate economic viability and determine plant sizes and photovoltaic system power production. A long-term performance analysis based on monthly and electrical ratings (in kWh/m2/year) of two developed CPV prototypes, the Cassegrain mini dish and Fresnel lens CPVs with triple-junction solar cells operating under the meteorological conditions of Singapore, is presented in this paper. Performances are compared to other conventional photovoltaic systems.

  13. Global PV markets and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Wolfsegger, Cristoph [European Photolvoltaic Industry Association (EPIA), Brussels, Belgium (Belgium)

    2007-06-15

    This presentation mainly talks about the global importance of the PV industry, not only in the environmental sphere but also in the economic sphere. It is firstly given the major information of the European Photovoltaic Industry Association (EPIA), where there can be found the lists of those full member countries that work as: components manufacturers, consulting, and associate members. Then, it is given a briefly explanation about the Alliance for Rural Electrification (ARE), and the reasons why the -PV systems- are almost the panacea to both the energy and the environmental issue. In addition, it is given the most relevant information about how to implement this system in those regions that have not yet implemented it. Besides, there are explained some of the benefits that this system has. It is shortly explained how this system is working in German and it is also shown a comparison chart about the photovoltaic feed-in tariffs. There are shown some graphics and charts having information related to the global markets and the global installations of PV systems and other issues related to them. [Spanish] Esta presentacion habla principalmente acerca de la importancia que hoy en dia tiene la industria fotovoltaica alrededor del mundo, esto no solo ocurre en el ambito ambiental sino tambien en el economico. En la primer parte se muestra la informacion mas importante acerca de la Asociacion Europea de la Industria Fotovoltaica (EPIA por sus siglas en ingles), en donde se encuentran las listas de los paises que son miembros permanentes trabajando como: fabricantes de componentes, asesores y miembros asociados. Enseguida, se da, de manera escueta, una explicacion acerca de la ARE, asi como las razones por las que los sistemas fotovoltaicos son casi la panacea tanto para los problemas ambientales como para los energeticos. Ademas, se explica la informacion mas relevante acerca de como implementar este sistema en aquellas partes del mundo que todavia no lo han realizado

  14. Grid Integrated Distributed PV (GridPV) Version 2.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  15. Flexible packaging for PV modules

    Science.gov (United States)

    Dhere, Neelkanth G.

    2008-08-01

    Economic, flexible packages that provide needed level of protection to organic and some other PV cells over >25-years have not yet been developed. However, flexible packaging is essential in niche large-scale applications. Typical configuration used in flexible photovoltaic (PV) module packaging is transparent frontsheet/encapsulant/PV cells/flexible substrate. Besides flexibility of various components, the solder bonds should also be flexible and resistant to fatigue due to cyclic loading. Flexible front sheets should provide optical transparency, mechanical protection, scratch resistance, dielectric isolation, water resistance, UV stability and adhesion to encapsulant. Examples are Tefzel, Tedlar and Silicone. Dirt can get embedded in soft layers such as silicone and obscure light. Water vapor transmittance rate (WVTR) of polymer films used in the food packaging industry as moisture barriers are ~0.05 g/(m2.day) under ambient conditions. In comparison, light emitting diodes employ packaging components that have WVTR of ~10-6 g/(m2.day). WVTR of polymer sheets can be improved by coating them with dense inorganic/organic multilayers. Ethylene vinyl acetate, an amorphous copolymer used predominantly by the PV industry has very high O2 and H2O diffusivity. Quaternary carbon chains (such as acetate) in a polymer lead to cleavage and loss of adhesional strength at relatively low exposures. Reactivity of PV module components increases in presence of O2 and H2O. Adhesional strength degrades due to the breakdown of structure of polymer by reactive, free radicals formed by high-energy radiation. Free radical formation in polymers is reduced when the aromatic rings are attached at regular intervals. This paper will review flexible packaging for PV modules.

  16. Interharmonics from Grid-Connected PV Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2017-01-01

    As the penetration level of grid-connected Photovoltaic (PV) systems increases, the power quality is one of the major concerns for system operators and the demands are becoming even stricter. The impact of interharmonics on the grid has been acknowledged in recent research when considering a large......-scale adoption of PV inverters. However, the origins of interharmonics remain unclear. Thus, this paper performs tests on a commercial PV inverter to explore interharmonic generation and more important investigates the mechanism of interharmonic emission. The investigation reveals that the perturbation...... of the solutions. Simulation results indicate that the constant-voltage MPPT method is the most suitable solution to the mitigation of interharmonics introduced by the MPPT operation, as it avoids the perturbation in the PV voltage during operation....

  17. Optimal Solar PV Arrays Integration for Distributed Generation

    Energy Technology Data Exchange (ETDEWEB)

    Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  18. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  19. Reaction of common bean lines to Xanthomonas axonopodis pv. phaseoli and Curtobacterium flaccumfaciens pv. flaccumfaciens

    Directory of Open Access Journals (Sweden)

    Tamires Ribeiro

    2016-12-01

    Full Text Available The aim of this study was to evaluate the resistance of 58 common bean lines against common bacterial blight (Xanthomonas axonopodis pv. phaseoli and bacterial wilt (Curtobacterium flaccumfaciens pv. flaccumfaciens. The experimental design consisted of completely randomized blocks, with four replications per pathogen. The results were subjected to variance analysis by the F test at 1% probability. Significant differences between the treatments indicated different resistance levels among the lines against both pathogens. According to the Scott-Knott test, six lines were resistant to Xanthomonas axonopodis pv. phaseoli, 14 moderately resistant, and 38 susceptible. To Curtobacterium flaccumfaciens pv. flaccumfaciens, 11 lines were resistant, 26 moderately resistant and 21 susceptible. Among these, the lines Pr10-3-4/1, Pr10-5-2/1 and Pr10-5- 2/2 of the black bean group and C10-2-4/2 of the Carioca group were resistant to both major bacterial diseases affecting common bean in Brazil.

  20. A Practical Irradiance Model for Bifacial PV Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Bill; MacAlpine, Sara; Deline, Chris; Asgharzadeh, Amir; Toor, Fatima; Riley, Daniel; Stein, Joshua; Hansen, Clifford

    2017-06-15

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors (CFs) to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using the RADIANCE ray tracing program.

  1. Multifunctional a-Si PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Peippo, K; Lund, P; Vartiainen, E [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    The optimal use of the various forms of solar energy (passive, active, daylighting, photovoltaics) in buildings calls for an optimal integration of the technologies. As energy conservation potential in space heating may soon be exhausted, electricity efficiency and on-site generation will play an increasing role in energy-conscious building design. There, dispersed PV systems integrated into buildings show a significant market potential, due to a number of benefits: no extra land area is required, PV-array may replace conventional cladding materials and become a building element. Moreover, the produced PV-electricity is more valuable for the building owner than for an electric utility

  2. PV Status Report 2008. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-09-01

    Photovoltaics is a solar power technology to generate electricity using semiconductor devices, known as solar cells. A number of solar cells form a solar 'Module' or 'Panel', which can then be combined to solar systems, ranging from a few Watts of electricity output to multi Megawatt power stations. The unique format of the Photovoltaic Status Report is to combine international up-to-date information about Research Activities with Manufacturing and Market Implementation data of Photovoltaics. These data are collected on a regular basis from public and commercial studies and cross-checked with personal communications. Regular fact-finding missions with company visits, as well as meetings with officials from funding organisations and policy makers, complete the picture. Growth in the solar Photovoltaic sector has been robust. Yearly growth rates over the last five years were on average more than 40%, thus making Photovoltaics one of the fastest growing industries at present. Business analysts predict that the market volume will increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. The PV Status Report provides comprehensive and relevant information on this dynamic sector for the public interested, as well as decision-makers in policy and industry.

  3. Modelling a reliable wind/PV/storage power system for remote radio base station sites without utility power

    Energy Technology Data Exchange (ETDEWEB)

    Bitterlin, Ian F [Emerson Network Power Ltd., Globe Park, Marlow, SL7 1YG (United Kingdom)

    2006-11-22

    The development of photovoltaic (PV) cells has made steady progress from the early days, when only the USA space program could afford to deploy them, to now, seeing them applied to roadside applications even in our Northern European climes. The manufacturing cost per watt has fallen and the daylight-to-power conversion efficiency increased. At the same time, the perception that the sun has to be directly shining on it for a PV array to work has faded. On some of those roadside applications, particularly for remote emergency telephones or for temporary roadwork signage where a utility electrical power connection is not practical, the keen observer will spot, usually in addition to a PV array, a small wind-turbine and an electrical cabinet quite obviously (by virtue of its volume) containing a storage battery. In the UK, we have the lions share (>40%) of Europe's entire wind power resource although, despite press coverage of the 'anti-wind' lobby to the contrary, we have hardly started to harvest this clean and free energy source. Taking this (established and proven) roadside solution one step further, we will consider higher power applications. A cellular phone system is one where a multitude of remote radio base stations (RBS) are required to provide geographical coverage. With networks developing into the so called '3G' technologies the need for base stations has tripled, as each 3G cell covers only 1/3 the geographical area of its '2G' counterpart. To cover >90% of the UK's topology (>97% population coverage) with 3G cellular technology will requires in excess of 12,000 radio base stations per operator network. In 2001, there were around 25,000 established sites and, with an anticipated degree of collocation by necessity, that figure is forecast to rise to >47,000. Of course, the vast majority of these sites have a convenient grid connection. However, it is easy to see that the combination of wind and PV power generation and an energy storage system may be an

  4. Experimental grid connected PV system power analysis

    Science.gov (United States)

    Semaoui, Smail; Abdeladim, Kamel; Arab, Amar Hadj; Boulahchich, Saliha; Amrouche, Said Ould; Yassaa, Noureddine

    2018-05-01

    Almost 80 % of Algerian territory is appropriate for the exploitation of solar energy. The Algerian energetic strategy provides a substantial injection of PV electricity to the national grid. Currently, about 344 MWp of PV arrays which corresponds approximately to 2,34 km2 of module surfaces, are connected on electricity grid over the national territory. The Algerian Northern regions are characterized by strong pollution and high humidity. These phenomena affect the energetic productivity of PV generator. The objective of our study is to analyze experimental grid connected PV system power in coastal locations. Hence, experiments have been conducted on three identical PV systems to determine the electrical performances. Transformer-less inverters are the most attractive for the ground-based photovoltaic (PV) system due to their efficiencies, reduced cost and weight. Besides, the absence of the galvanic isolation generates problems of capacitive leakage current on the AC side and the degradation of the insulation resistance on the DC side of the inverter. In this work, experimental study of the behavior of single-phase inverters without transformers is presented. The main objective of this work is to study the degradation of the insulation resistance at the input of the inverter, and the capacitive leakage current at the output of the inverter. This study was achieved at the CDER on a rainy day of 15/03/2017, on the first PV plant connected to the low voltage network in Algeria. This investigation can help forecasting the PV array energetic production by taking into account natural conditions.

  5. Development of Automated Production Line Processes for Solar Brightfield Modules: Annual Technical Progress Report, 1 January 2003 -- 30 June 2004

    Energy Technology Data Exchange (ETDEWEB)

    Nowlan, M. J.; Murach, J. M.; Sutherland, S. F.; Miller, D. C.; Moore, S. B.; Hogan, S. J.

    2005-06-01

    This report describes how Spire Corporation is addressing the PV Manufacturing R&D project goals of improving photovoltaic (PV) manufacturing processes and products while reducing costs and providing a technology foundation that supports significant manufacturing scale-up. To accomplish this, we are focusing our efforts on the design of a large-area utility-scale module and the development of the necessary manufacturing techniques and equipment to manufacture such a module in a high-volume production environment. A three-phase program is under way for developing and demonstrating new automated systems for fabricating very large PV modules ideal for use in multi-megawatt grid-connected applications. We designed a large-area 800 W module and we are developing associated module production equipment that will minimize the total installed system cost for utility-scale PV arrays. Unique features of the module design include a cantilevered glass superstrate to reduce the glass thickness a nd internally laminated bypass diodes that simplify internal busing and junction-box designs. Other program activities include the development of automation for solar cell string inspections, string busing, materials lay-up, and lamination; enhancements to the lamination process; and performance testing of large-area modules.

  6. China PV Business and Applications Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sherring, Chris (Sherring Energy Associates)

    1999-08-30

    This report provides an overview of photovoltaics (PV) business and applications in China. Although more than 70 million people in China are without access to grid electricity, many of the unelectrified regions benefit from considerable renewable resources, including good solar insolation. Current annual PV sales are still modest, however, and are estimated to be between 2.0 and 2.5 megawatts. This and other significant PV data, including information regarding the current status of key aspects of Chinese businesses, markets, and distribution channels, are included in the report. Detailed company profiles of Chinese business organizations and summaries of visits made to these companies (as well as to more remote sites in Inner Mongolia to examine PV usage by the end-use customer) in September-October 1998 are also presented.

  7. Robust PV Degradation Methodology and Application

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Dirk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Deline, Christopher A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kimball, Greg [SunPower; Anderson, Mike [SunPower

    2017-11-15

    The degradation rate plays an important role in predicting and assessing the long-term energy generation of PV systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this manuscript, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year (YOY) rate calculation. We show the method to provide reliable degradation rate estimates even in the case of sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.

  8. Adaptive partial volume classification of MRI data

    International Nuclear Information System (INIS)

    Chiverton, John P; Wells, Kevin

    2008-01-01

    Tomographic biomedical images are commonly affected by an imaging artefact known as the partial volume (PV) effect. The PV effect produces voxels composed of a mixture of tissues in anatomical magnetic resonance imaging (MRI) data resulting in a continuity of these tissue classes. Anatomical MRI data typically consist of a number of contiguous regions of tissues or even contiguous regions of PV voxels. Furthermore discontinuities exist between the boundaries of these contiguous image regions. The work presented here probabilistically models the PV effect using spatial regularization in the form of continuous Markov random fields (MRFs) to classify anatomical MRI brain data, simulated and real. A unique approach is used to adaptively control the amount of spatial regularization imposed by the MRF. Spatially derived image gradient magnitude is used to identify the discontinuities between image regions of contiguous tissue voxels and PV voxels, imposing variable amounts of regularization determined by simulation. Markov chain Monte Carlo (MCMC) is used to simulate the posterior distribution of the probabilistic image model. Promising quantitative results are presented for PV classification of simulated and real MRI data of the human brain.

  9. Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors

    International Nuclear Information System (INIS)

    Al-Waeli, Ali H.A.; Chaichan, Miqdam T.; Kazem, Hussein A.; Sopian, K.

    2017-01-01

    Highlights: • Three types of nanoparticles (Al 2 O 3 , CuO and SiC) were added to water which was used as a base fluid. • The resulted nanofluid was used for cooling an indoor PV/T system. • The used nanofluids improved the thermal and electrical efficiencies of the PV/T system. • The stability of nanofluids was examined for an extended period and found to be stable. • SiC nanofluid showed better thermal conductivity and stability compared with Al 2 O 3 and CuO nanofluids. - Abstract: The reduction in efficiency of photovoltaic (PV) units due to increases in cell temperature occurs when a small part of the absorbed solar radiation is converted into electricity and the remaining part is lost as heat. Recently, the addition of a range of nanomaterials with high thermal conductivity to the cooling fluid in PV/T systems has been the subject of much research. In this study, three nanomaterials were added to water as a base fluid with several volume fractions to determine the best concentration and nanoparticle for this application. The PV/T system was setup in an indoor laboratory. Knowing which material has a better effect on the PV unit in particular, and the PV/T unit in general, is important for deciding which nanomaterial is more suitable for the system. The results reveal that nanofluid gives higher thermal conductivity with very little increase in the fluid density and viscosity compared with the base fluid. The studied volume fractions were 0.5, 1, 2, 3, and 4% and the selected nanoparticles were Al 2 O 3 , CuO, and SiC. It was found that silicon carbide nanoparticles have the best stability and the highest thermal conductivity compared to the other two nano-substances. Copper oxide nanofluid has higher thermal conductivity than aluminium oxide but lower stability, although it was found here that this material reliably stable compared to in other studies. The nanofluid reduced the indoor PV/T system temperature and enhanced its generated power.

  10. Optimal Design of Modern Transformerless PV Inverter Topologies

    OpenAIRE

    Saridakis, Stefanos; Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    The design optimization of H5, H6, neutral point clamped, active-neutral point clamped, and conergy-NPC transformerless photovoltaic (PV) inverters is presented in this paper. The components reliability in terms of the corresponding malfunctions, affecting the PV inverter maintenance cost during the operational lifetime period of the PV installation, is also considered in the optimization process. According to the results of the proposed design method, different optimal values of the PV inver...

  11. Thermodynamic variables of first-order entropy corrected Lovelock-AdS black holes: P{-}V criticality analysis

    Science.gov (United States)

    Haldar, Amritendu; Biswas, Ritabrata

    2018-06-01

    We investigate the effect of thermal fluctuations on the thermodynamics of a Lovelock-AdS black hole. Taking the first order logarithmic correction term in entropy we analyze the thermodynamic potentials like Helmholtz free energy, enthalpy and Gibbs free energy. We find that all the thermodynamic potentials are decreasing functions of correction coefficient α . We also examined this correction coefficient must be positive by analysing P{-}V diagram. Further we study the P{-}V criticality and stability and find that presence of logarithmic correction in it is necessary to have critical points and stable phases. When P{-}V criticality appears, we calculate the critical volume V_c, critical pressure P_c and critical temperature T_c using different equations and show that there is no critical point for this black hole without thermal fluctuations. We also study the geometrothermodynamics of this kind of black holes. The Ricci scalar of the Ruppeiner metric is graphically analysed.

  12. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.; Yang, P.E.; Lin, Y.P.; Lin, B.Y.; Chen, H.J.; Lai, R.C.; Cheng, J.S.

    2011-01-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well

  13. Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goodrich, Alan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-11-30

    The installed capacity of global and U.S. photovoltaic (PV) systems has soared in recent years, driven by declining PV prices and government incentives. The U.S. Department of Energy’s (DOE) SunShot Initiative aims to make PV cost competitive without incentives by reducing the cost of PV-generated electricity by about 75% between 2010 and 2020. This summary report—based on research at Lawrence Berkeley National Laboratory (LBNL) and the National Renewable Energy Laboratory (NREL)—examines progress in PV price reductions to help DOE and other PV stakeholders manage the transition to a market-driven PV industry, and to provide clarity surrounding the wide variety of potentially conflicting data available about PV system prices.

  14. The Value of Transparency in Distributed Solar PV Markets

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zamzam, Ahmed S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-01

    Market transparency refers to the degree of customer awareness of product options and fair market prices for a given good. In The Value of Transparency in Distributed Solar PV Markets, we use residential solar photovoltaic (PV) quote data to study the value of transparency in distributed solar PV markets. We find that improved market transparency results in lower installation offer prices. Further, the results of this study suggest that PV customers benefit from gaining access to more PV quotes.

  15. Optimal design of PV and HP system

    DEFF Research Database (Denmark)

    Nepper-Rasmussen, Bjarke Christian; Rasmussen, Theis Bo

    2015-01-01

    Methods of utilizing residential produced photovoltaic (PV) power by converting to thermal energy through heat pumps (HP) are present in literature, where thermal energy is dispersed as either heat or hot water at the instant moment of PV production. In this paper an alternative solution is descr...... that the thermal storage with a BT is a better investment than a PV system without HP or no investment. Furthermore, it showed that the optimization model developed in this project is capable of finding the optimal combination of component sizes based on our data.......Methods of utilizing residential produced photovoltaic (PV) power by converting to thermal energy through heat pumps (HP) are present in literature, where thermal energy is dispersed as either heat or hot water at the instant moment of PV production. In this paper an alternative solution...... is described, where the thermal energy is stored in a buffer tank (BT) capable of dispersing heat to either the heating system of a house or a hot water tank, for later use. The thermal storage solution including a BT can increase the self-consumption of residentially produced PV power and thereby shift...

  16. Learning in PV trends and future prospects

    International Nuclear Information System (INIS)

    Schaeffer, G.J.; De Moor, H.H.C.

    2004-06-01

    For large scale application of PV cost reduction is essential. It is shown in this study that the price evolution is on track and even accelerating the last 15 years. Using an experience curve approach a learning rate of little over 20% was found consistent with other studies. As data were collected for small rooftop grid connected systems, it could be shown that this learning rate is not only found for modules, but also for BOS (all costs apart from the modules) in Germany as well as in the Netherlands. Projections of the future price of PV systems show that a learning rate of at least 20% is needed to make introduction of PV affordable. It is very effective to invest in learning, thus increasing the learning rate, as well as developing market segments were the value of PV is higher, such as residential PV systems in southern Europe

  17. PV solar system feasibility study

    International Nuclear Information System (INIS)

    Ashhab, Moh’d Sami S.; Kaylani, Hazem; Abdallah, Abdallah

    2013-01-01

    Highlights: ► This research studies the feasibility of PV solar systems. ► The aim is to develop the theory and application of a hybrid system. ► Relevant research topics are reviewed and some of them are discussed in details. ► A prototype of the PV solar system is designed and built. - Abstract: This research studies the feasibility of PV solar systems and aims at developing the theory and application of a hybrid system that utilizes PV solar system and another supporting source of energy to provide affordable heating and air conditioning. Relevant research topics are reviewed and some of them are discussed in details. Solar heating and air conditioning research and technology exist in many developed countries. To date, the used solar energy has been proved to be inefficient. Solar energy is an abundant source of energy in Jordan and the Middle East; with increasing prices of oil this source is becoming more attractive alternative. A good candidate for the other system is absorption. The overall system is designed such that it utilizes solar energy as a main source. When the solar energy becomes insufficient, electricity or diesel source kicks in. A prototype of the PV solar system that operates an air conditioning unit is built and proper measurements are collected through a data logging system. The measured data are plotted and discussed, and conclusions regarding the system performance are extracted.

  18. Data monitoring system for PV solar generators

    International Nuclear Information System (INIS)

    Stoev, M.; Katerski, A.; Williams, A.

    2000-01-01

    The two 1.5 kWp photovoltaic (PV) solar generators are installed and the new PC data monitoring system is developed by applying EC standards for European Solar Test Installation (ESTI). The schematic system diagram of PV generator is presented. The recording parameters for analytical and global monitoring are discussed. The meteorological data from ESTI sensors, temperature sensor and electrical data from inverter and calibrated shunt are stored via analog digital converters (ADC) on a hard disk of data storage PC. Data Logger and Monitor software for automatic data acquisition, treatment and visual distance control of all output PV data from PV solar generator has been created

  19. Serum prostate-specific antigen as a predictor of prostate volume in the community: the Krimpen study.

    NARCIS (Netherlands)

    Bohnen, A.M.; Groeneveld, F.P.; Bosch, J.L.H.R.

    2007-01-01

    OBJECTIVES: Serum prostate-specific antigen (PSA) is considered a proxy for prostate volume (PV). This study investigates which range of PSA values has the best utility in the determination of PV (4. Low PSA ranges (0-2 and 2.1-4.0) discriminate better for a PV of 30 cc (eg, in men with a PSA range

  20. Simulation of Distributed PV Power Output in Oahu Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Lave, Matthew Samuel [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-08-01

    Distributed solar photovoltaic (PV) power generation in Oahu has grown rapidly since 2008. For applications such as determining the value of energy storage, it is important to have PV power output timeseries. Since these timeseries of not typically measured, here we produce simulated distributed PV power output for Oahu. Simulated power output is based on (a) satellite-derived solar irradiance, (b) PV permit data by neighborhood, and (c) population data by census block. Permit and population data was used to model locations of distributed PV, and irradiance data was then used to simulate power output. PV power output simulations are presented by sub-neighborhood polygons, neighborhoods, and for the whole island of Oahu. Summary plots of annual PV energy and a sample week timeseries of power output are shown, and a the files containing the entire timeseries are described.

  1. Impedance characterization of PV modules in outdoor conditions

    DEFF Research Database (Denmark)

    Oprea, Matei-lon; Thorsteinsson, Sune; Spataru, Sergiu

    2016-01-01

    Impedance spectroscopy (IS) has been used for laboratory characterizations of photovoltaic (PV) technologies under well controlled conditions. This work applies IS for outdoor characterization of PV panels, in order to observe the effect of irradiance (G) and temperature (T) on the PV module’s...

  2. Performance of a 34 kWp grid-connected PV system in Indonesia - A comparison of tropical and European PV systems

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.

    2014-01-01

    We analysed a monitored grid-connected PV system of 34 kWp in Indonesia to investigate the performance of PV systems in tropical climates. The PV system has been installed in Jayapura, the capital of the Province of Papua, Indonesia, by the beginning of 2012. Due to the aged gensets and frequent

  3. Study of bypass diodes configuration on PV modules

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, S.; Boronat, A.; Chouder, A. [Electronics Engineering Department - UPC., C/Jordi Girona 1-3, Modul C4 Campus Nord UPC., 08034 Barcelona (Spain)

    2009-09-15

    A procedure of simulation and modelling solar cells and PV modules, working partially shadowed in Pspice environment, is presented. Simulation results have been contrasted with real measured data from a commercial PV module of 209 Wp from Siliken. Some cases of study are presented as application examples of this simulation methodology, showing its potential on the design of bypass diodes configuration to include in a PV module and also on the study of PV generators working in partial shading conditions. (author)

  4. Latin America as new PV market opportunity

    International Nuclear Information System (INIS)

    Weiss, Ingrid

    2015-01-01

    It is important to recognize solar energy as an international and strategic opportunity for the European market to expand. The objective of this paper is to apply the methodology created during the PV Parity project for analyzing PV Competitiveness in the emerging residential PV market in Brazil, using information from the State of Rio de Janeiro. The dynamic competitiveness analysis was performed considering the price with and without taxes in order to assess the year when PV will reach grid parity in Rio de Janeiro and how the taxes impact on the results. Results are divided into 3 scenarios: Optimistic, Conservative, and Conservative Moderate. The LCOE of residential systems will likely become competitive with the residential electricity tariffs between 2020 and 2030, assuming the residential tariffs in Rio de Janeiro. This is an indicator that PV energy business opportunities are increasing in Brazil and, with the adequate policy support, its market competitiveness could be improved. We are also looking in other markets of Latin America. (full text)

  5. Dissipation of heat from building integrated PV

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.M.L.

    2001-07-01

    The objectives of the project were to investigate methods for improving heat transfer and the reflection of heat from PV modules in building integrated situations and to develop the design of a building integrated PV element with improved heat transfer characteristics, with the aim of reducing the operating temperature of the PV cells. The prototypes developed for improving heat transfer have only shown small reductions in the PV cell operating temperature and these results have not been fully quantified due to problems associated with experimental testing. The improvement in the overall electrical performance of PV modules operating at lower temperatures is consequently even smaller. As a result, none of the prototypes can be considered to be economically viable. Based upon the theoretical and experimental results of this work, it is the recommendation of this project that no further work be conducted in improving BIPV performance through improved heat transfer of BIPV. (Author)

  6. The potential of solar PV in Ontario

    International Nuclear Information System (INIS)

    McMonagle, R.

    2005-01-01

    Canada has lagged behind other industrialized nations in the growth of solar energy markets. Currently, over 78 per cent of the global market for solar energy is for grid-connected applications where power is fed into the electrical distribution network. Less than 3.5 per cent of the Canadian solar market is grid-connected. This report investigated the potential size of the photovoltaic (PV) market in Ontario given adequate support from both governments and utilities. The forecast was based on sustainable growth levels that the solar industry as a whole might maintain over an extended period of time. It was suggested that it is technically feasible to install over 3000 MW of PV in single, detached homes in the province, which could generate over 3200 GWh each year. If the right policy conditions were put in place, the technical potential for PV on all buildings in Ontario is over 14,000 MW by 2025, which would generate over 13,000 GWh annually. Support mechanisms such as the Advanced Renewable Tariff (ART) or Standard Offer Contracts (SOC) will enable the PV industry to build capacity. Future markets for PV include new homes, commercial buildings and the existing housing stock. With a properly designed system, it is forecasted that the deployment of PV by 2025 could result in the involvement of 400,000 homes with over 1200 MW of installed capacity and over 290 MW installed annually by 2025. Recommendations to Ontario Power Authority's (OPA) report supply mix report focused on the use of SOCs as the appropriate support mechanism to start building solar capacity in Ontario, as projections using SOCs would see Ontario following the growth patterns of other nations. It was concluded that the OPA report does not acknowledge the current growth rates of PV globally, nor does it fully consider the potential of PV in Ontario. 9 refs., 8 figs

  7. A reference frame for blood volume in children and adolescents

    Directory of Open Access Journals (Sweden)

    Donckerwolcke Raymond

    2006-02-01

    Full Text Available Abstract Background Our primary purpose was to determine the normal range and variability of blood volume (BV in healthy children, in order to provide reference values during childhood and adolescence. Our secondary aim was to correlate these vascular volumes to body size parameters and pubertal stages, in order to determine the best normalisation parameter. Methods Plasma volume (PV and red cell volume (RCV were measured and F-cell ratio was calculated in 77 children with idiopathic nephrotic syndrome in drug-free remission (mean age, 9.8 ± 4.6 y. BV was calculated as the sum of PV and RCV. Due to the dependence of these values on age, size and sex, all data were normalised for body size parameters. Results BV normalised for lean body mass (LBM did not differ significantly by sex (p Conclusion LBM was the anthropometric index most closely correlated to vascular fluid volumes, independent of age, gender and pubertal stage.

  8. Quantification of the islet product: presentation of a standardized current good manufacturing practices compliant system with minimal variability.

    Science.gov (United States)

    Friberg, Andrew S; Brandhorst, Heide; Buchwald, Peter; Goto, Masafumi; Ricordi, Camillo; Brandhorst, Daniel; Korsgren, Olle

    2011-03-27

    Accurate islet quantification has proven difficult to standardize in a good manufacturing practices (GMP) approved manner. The influence of assessment variables from both manual and computer-assisted digital image analysis (DIA) methods were compared using calibrated, standardized microspheres or islets alone. Additionally, a mixture of microspheres and exocrine tissue was used to evaluate the variability of both the current, internationally recognized, manual method and a novel GMP-friendly purity- and volume-based method (PV) evaluated by DIA in a semiclosed, culture bag system. Computer-assisted DIA recorded known microsphere size distribution and quantities accurately. By using DIA to evaluate islets, the interindividual manually evaluated percent coefficients of variation (CV%; n=14) were reduced by almost half for both islet equivalents (IEs; 31% vs. 17%, P=0.002) and purity (20% vs. 13%, P=0.033). The microsphere pool mixed with exocrine tissue did not differ from expected IE with either method. However, manual IE resulted in a total CV% of 44.3% and a range spanning 258 k IE, whereas PV resulted in CV% of 10.7% and range of 60 k IE. Purity CV% for each method were similar approximating 10.5% and differed from expected by +7% for the manual method and +3% for PV. The variability of standard counting methods for islet samples and clinical quantities of microspheres mixed with exocrine tissue were reduced with DIA. They were reduced even further by use of a semiclosed bag system compared with standard manual counting, thereby facilitating the standardization of islet evaluation according to GMP standards.

  9. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Kurucz, Ildikó; Bahria, Sofiane; Hamidat, Abderrahmane; Chaouch, Wafa Braham

    2017-01-01

    Highlights: • A detailed thermal and electrical model for PV and PV/T systems has been presented. • The developed numerical model was validated successfully with previously published experimental results. • A comparative study between four solar devices (PV and PV/T systems) was carried out. • The experimental weather conditions of Algiers site are used in the numerical model. • The glazed double-pass photovoltaic/thermal air collector shows the best overall energy efficiency. - Abstract: The thermal photovoltaic hybrid collector is a genuine cogeneration technology; it can produce electricity and heat simultaneously. In this paper, a comparative study is presented between four solar device configurations: photovoltaic module (PV-I), conventional hybrid solar air collector (PV/T-II), glazed hybrid solar air collector (PV/T-III) and glazed double-pass hybrid solar air collector (PV/T-IV). A numerical model is developed and validated through experimental results indicated in the previous literature. The numerical model takes the heat balance equations and different thermal and electrical parameters into account for each configuration included in this study, the energy performances are evaluated with a sample weather data of Algiers site. The numerical results show that the daily average of overall energy efficiency reaches: 29.63%, 51.02%, 69.47% and 74% for the first (PV-I), the second (PV/T-II), the third (PV/T-III) and the fourth (PV/T-IV) configurations respectively. These values are obtained with an air flow of 0.023 kg/s and introducing a sample of experimental weather data collected in Algiers site for a sunny day in summer.

  10. Impact of residential PV adoption on Retail Electricity Rates

    International Nuclear Information System (INIS)

    Cai, Desmond W.H.; Adlakha, Sachin; Low, Steven H.; De Martini, Paul; Mani Chandy, K.

    2013-01-01

    The price of electricity supplied from home rooftop photo voltaic (PV) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households have an economic incentive to install rooftop PV systems and reduce their purchases of electricity from the grid. A significant portion of the costs incurred by utility companies are fixed costs which must be recovered even as consumption falls. Electricity rates must increase in order for utility companies to recover fixed costs from shrinking sales bases. Increasing rates will, in turn, result in even more economic incentives for customers to adopt rooftop PV. In this paper, we model this feedback between PV adoption and electricity rates and study its impact on future PV penetration and net-metering costs. We find that the most important parameter that determines whether this feedback has an effect is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year, independent of the uncertainties of future years. These uncertainties include possible changes in rate structures such as the introduction of connection charges, the possibility of PV prices dropping significantly in the future, possible changes in tax incentives, and confidence in the reliability and maintainability of PV. -- Highlights: •Households who install PV reduce their electricity consumption from the grid. •Electricity rates must increase for utility companies to recover its fixed costs. •However, higher electricity rates give households more incentives to adopt PV. •We find that this feedback has significant impact on PV uptake only in later years. •Utility companies could lose a significant fraction of high consumption customers

  11. Remote and Centralized Monitoring of PV Power Plants

    DEFF Research Database (Denmark)

    Kopacz, Csaba; Spataru, Sergiu; Sera, Dezso

    2014-01-01

    the inverters within each PV plant. The monitoring software stores the PV measurements in a data warehouse optimized for managing and data mining large amounts of data, from where it can be later visualized, analyzed and exported. By combining PV production measurements data with I-V curve measurements...

  12. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gagnon, Pieter J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Richards, James [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Woodhouse, Michael A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-12

    In this report we summarize the implications, impacts, and deployment potential of reaching the SunShot 2030 targets for the electricity system in the contiguous United States. We model 25 scenarios of the U.S. power sector using the Regional Energy Deployment Systems (ReEDS) and Distributed Generation (dGen) capacity expansion models. The scenarios cover a wide range of sensitivities to capture future uncertainties relating to fuel prices, retirements, renewable energy capital costs, and load growth. We give special attention to the potential for storage costs to also rapidly decline due to its large synergies with low-cost solar. The ReEDS and dGen models project utility- and distributed-scale power sector evolution, respectively, for the United States. Both models have been designed with special emphasis on capturing the unique traits of renewable energy, including variability and grid integration requirements. Across the suite of scenarios modeled, we find that reaching the SunShot 2030 target has the potential to lead to significant capacity additions of PV in the United States. By 2050, PV penetration levels are projected to reach 28-46 percent of total generation. If storage also sees significant reductions in cost, then the 2050 solar penetration levels could reach 41-64 percent. PV deployment is projected to occur in all of the lower 48 states, though the specific deployment level is scenario dependent. The growth in PV is projected to be dominated by utility-scale systems, but the actual mix between utility and distributed systems could ultimately vary depending on how policies, system costs, and rate structures evolve.

  13. The Value of Transparency in Distributed Solar PV Markets

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-09

    Distributed solar photovoltaic (PV) markets are relatively non-transparent: PV price and product information is not readily available, searching for this information is costly (in terms of time and effort), and customers are mostly unfamiliar with the new technology. Quote aggregation, where third-party companies collect PV quotes on behalf of customers, may be one way to increase PV market transparency. In this paper, quote aggregation data are analyzed to study the value of transparency for distributed solar PV markets. The results suggest that easier access to more quotes results in lower prices. We find that installers tend to offer lower prices in more competitive market environments. We supplement the empirical analysis with key findings from interviews of residential PV installers.

  14. Low concentrator PV optics optimization

    Science.gov (United States)

    Sharp, Leonard; Chang, Ben

    2008-08-01

    Purpose: Cost reduction is a major focus of the solar industry. Thin film technologies and concentration systems are viable ways to reducing cost, with unique strengths and weakness for both. Most of the concentrating PV work focuses on high concentration systems for reducing energy cost. Meanwhile, many believe that low concentrators provide significant cost reduction potential while addressing the mainstream PV market with a product that acts as a flat panel replacement. This paper analyzes the relative benefit of asymmetric vs. symmetric optics for low-concentrators in light of specific PV applications. Approach: Symmetric and asymmetric concentrating PV module performance is evaluated using computer simulation to determine potential value across various geographic locations and applications. The selected optic design is modeled against standard cSi flat panels and thin film to determine application fit, system level energy density and economic value. Results: While symmetric designs may seem ideal, asymmetric designs have an advantage in energy density. Both designs are assessed for aperture, optimum concentration ratio, and ideal system array configuration. Analysis of performance across climate specific effects (diffuse, direct and circumsolar) and location specific effects (sunpath) are also presented. The energy density and energy production of low concentrators provide a compelling value proposition. More significantly, the choice of optics for a low concentrating design can affect real world performance. With the goal of maximizing energy density and return on investment, this paper presents the advantages of asymmetric optic concentration and illustrates the value of this design within specific PV applications.

  15. Commercialization and business development of grid-connected PV at SMUD

    International Nuclear Information System (INIS)

    Osborn, D.E.

    1998-01-01

    SMUD has completed its first 5 year, 6 MW PV commercialization effort based on the sustained, orderly development of the utility PV market. SMUD has begun a 5 year, 10 MW program designed to complete a process that will result in PV being at a market competitive price by 2002 and as a sustainable business opportunity for SMUD. As part of this effort, by the end of 1997, SMUD had installed over 450 PV systems totaling 6 MW. These included over 420 residential rooftop systems as well as commercial buildings, parking lots and substation systems. Under its new Business Plan, SMUD has signed contracts for an additional 10 MW of PV systems for 1998 through 2002 with cost decreasing to less than $3/W. As part of its new competitive business strategy responding to changes the utility industry is undergoing, SMUD has incorporated PV as a key business opportunity. SMUD has established partnerships with its customers through the PV Pioneer green pricing program, with DOE and UPVG through TEAM-UP and Million Solar Roofs to advance PV commercialization and to develop rooftops as PV power plant sites and with other utilities through its PV Partnership program

  16. TRNSYS HYBRID wind diesel PV simulator

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J. [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  17. Environmental and exergy benefit of nanofluid-based hybrid PV/T systems

    International Nuclear Information System (INIS)

    Hassani, Samir; Saidur, R.; Mekhilef, Saad; Taylor, Robert A.

    2016-01-01

    Highlights: • Environmental and ExPBT analysis of different PV/T configurations is presented. • The exergy payback time of nanofluid-based hybrid PV/T system is about 2 years. • Nanofluid-based hybrid PV/T system is a reliable solution for pollution prevention. • Nanofluid-based hybrid PV/T system is highly recommended at high solar concentration. - Abstract: Photovoltaic/thermal (PV/T) solar systems, which produce both electrical and thermal energy simultaneously, represent a method to achieve very high conversion rates of sunlight into useful energy. In recent years, nanofluids have been proposed as efficient coolants and optical filter for PV/T systems. Aim of this paper is to theoretically analyze the life cycle exergy of three different configurations of nanofluids-based PV/T hybrid systems, and compare their performance to a standard PV and PV/T system. Electrical and thermal performance of the analyzed solar collectors was investigated numerically. The life cycle exergy analysis revealed that the nanofluids-based PV/T system showed the best performance compared to a standard PV and PV/T systems. At the optimum value of solar concentration C, nanofluid-based PV/T configuration with optimized optical and thermal properties produces ∼1.3 MW h/m 2 of high-grade exergy annually with the lowest exergy payback time of 2 years, whereas these are ∼0.36, ∼0.79 MW h/m 2 and 3.48, 2.55 years for standard PV and PV/T systems, respectively. In addition, the nanofluids-based PV/T system can prevent the emissions of about 448 kg CO 2 eq m −2 yr −1 . Overall, it was found that the nanofluids-based PV/T with optimized optical and thermal properties has potential for further development in a high-concentration solar system.

  18. Less CO2 by means of photovoltaic energy (PV)

    International Nuclear Information System (INIS)

    Alsema, E.A.; Van Brummelen, M.

    1992-11-01

    Regarding the title subject special attention is paid to the technical limitations of a fast introduction of the use of photovoltaic (PV) energy conversion. After a brief introduction on PV systems and the operation of a solar cell in chapter two, a state of the art is given of PV technology and possible price developments for PV modules and Balance-Of-System (BOS) components up to the year 2000 in chapters three and four. In chapter five the potential of installing grid-connected PV systems in the Netherlands is determined, taking into account the options of using existing buildings (PV systems on the roof), unexplored ground, in the verge of highways or railroads, industrial areas and airports. In chapter six non-economical bottlenecks for a large-scale introduction of grid-connected PV systems are discussed: the industrial production capacity for PV modules and other components, the fitting-in into the public electricity supply, and institutional aspects of installing PV systems on roofs. In chapter seven it is determined how much costs can be saved and CO 2 emission can be reduced when PV capacity is fitted-in into the Dutch electric power supply. The calculations are based on the Global Shift scenario. In chapter eight two scenarios (an optimistic scenario and a more realistic scenario) for the introduction of PV systems are outlined. For both scenarios the financial consequences and the contribution to the electric power supply are indicated. In chapter nine the net energy yield, being the result of the previously discussed introduction scenarios, is calculated, followed by a calculation of the avoided CO 2 emission, as well as the costs to avoid such emission. 25 figs., 15 tabs., 116 refs., 1 annex

  19. Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Arens, Anne I.J.; Grootjans, Willem; Oyen, Wim J.G.; Visser, Eric P. [Radboud University Medical Center, Department of Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); Troost, Esther G.C. [Radboud University Medical Center, Department of Radiation Oncology, Nijmegen (Netherlands); Maastricht University Medical Centre, MAASTRO clinic, GROW School for Oncology and Developmental Biology, Maastricht (Netherlands); Hoeben, Bianca A.W.; Bussink, Johan; Kaanders, Johannes H.A.M. [Radboud University Medical Center, Department of Radiation Oncology, Nijmegen (Netherlands); Lee, John A.; Gregoire, Vincent [St-Luc University Hospital, Department of Radiation Oncology, Universite Catholique de Louvain, Brussels (Belgium); Hatt, Mathieu; Visvikis, Dimitris [Laboratoire de Traitement de l' Information Medicale (LaTIM), INSERM UMR1101, Brest (France)

    2014-05-15

    Radiotherapy of head and neck cancer induces changes in tumour cell proliferation during treatment, which can be depicted by the PET tracer {sup 18}F-fluorothymidine (FLT). In this study, three advanced semiautomatic PET segmentation methods for delineation of the proliferative tumour volume (PV) before and during (chemo)radiotherapy were compared and related to clinical outcome. The study group comprised 46 patients with 48 squamous cell carcinomas of the head and neck, treated with accelerated (chemo)radiotherapy, who underwent FLT PET/CT prior to treatment and in the 2nd and 4th week of therapy. Primary gross tumour volumes were visually delineated on CT images (GTV{sub CT}). PVs were visually determined on all PET scans (PV{sub VIS}). The following semiautomatic segmentation methods were applied to sequential PET scans: background-subtracted relative-threshold level (PV{sub RTL}), a gradient-based method using the watershed transform algorithm and hierarchical clustering analysis (PV{sub W} and {sub C}), and a fuzzy locally adaptive Bayesian algorithm (PV{sub FLAB}). Pretreatment PV{sub VIS} correlated best with PV{sub FLAB} and GTV{sub CT}. Correlations with PV{sub RTL} and PV{sub W} and {sub C} were weaker although statistically significant. During treatment, the PV{sub VIS}, PV{sub W} and {sub C} and PV{sub FLAB} significant decreased over time with the steepest decline over time for PV{sub FLAB}. Among these advanced segmentation methods, PV{sub FLAB} was the most robust in segmenting volumes in the third scan (67 % of tumours as compared to 40 % for PV{sub W} and {sub C} and 27 % for PV{sub RTL}). A decrease in PV{sub FLAB} above the median between the pretreatment scan and the scan obtained in the 4th week was associated with better disease-free survival (4 years 90 % versus 53 %). In patients with head and neck cancer, FLAB proved to be the best performing method for segmentation of the PV on repeat FLT PET/CT scans during (chemo)radiotherapy. This may

  20. PV panel model based on datasheet values

    DEFF Research Database (Denmark)

    Sera, Dezso; Teodorescu, Remus; Rodriguez, Pedro

    2007-01-01

    This work presents the construction of a model for a PV panel using the single-diode five-parameters model, based exclusively on data-sheet parameters. The model takes into account the series and parallel (shunt) resistance of the panel. The equivalent circuit and the basic equations of the PV cell....... Based on these equations, a PV panel model, which is able to predict the panel behavior in different temperature and irradiance conditions, is built and tested....

  1. Good and bad practices in pv plants

    OpenAIRE

    Martinez Moreno, Francisco; Helleputte, F.; Tyutyundzhiev, N.; Rabal Echeverria, Daniel; Conlon, Michael; Fartaria, Tomás; Oteiza, David

    2013-01-01

    The PVCROPS project (PhotoVolta ic Cost r€duction, Reliability, Operational performance, Prediction and Simulation), cofinanced by European Commission in the frame of Seventh Framework Programme, has compiled in the “Good and bad practices: Manual to improve the quality and reduce the cost of PV systems” a collection of good and bad practices in actual PV plants . All the situations it collects represent the state-of-the-art of existing PV installations all around Europe. They show how ...

  2. Real Time Photovoltaic Array Simulator for Testing Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sera, Dezso; Valentini, Massimo; Raducu, Alin

    2008-01-01

    In this paper a real time flexible PV array simulator is presented. It is a system that can simulate different PV panel arrays in specific environmental conditions. To evaluate performance of the Maximum Power Point Tracking (MPPT) of grid-connected Photovoltaic (PV) inverters only measurements...... undertaken with an appropriate PV array simulator provide accurate and reproducible results. Thus the PV array simulator has been developed and implemented. MPPT efficiency tests on a commercial grid-connected PV inverter have been performed to validate the PV array simulator....

  3. Vascular volumes and hematology in male and female runners and cyclists.

    Science.gov (United States)

    Green, H J; Carter, S; Grant, S; Tupling, R; Coates, G; Ali, M

    1999-02-01

    To examine the hypothesis that foot-strike hemolysis alters vascular volumes and selected hematological properties is trained athletes, we have measured total blood volume (TBV), red cell volume (RCV) and plasma volume (PV) in cyclists (n = 21) and runners (n = 17) and compared them to those of untrained controls (n = 20). TBV (ml x kg(-1)) was calculated as the sum of RCV (ml x kg(-1)) and PV (ml x kg(-1)) obtained using 51Cr and 125I-labelled albumin, respectively. Hematological assessment was carried out using a Coulter counter. Peak aerobic power (VO2peak) was measured during progressive exercise to fatigue using both cycle and treadmill ergometry. RCV was 15% higher (P strike hemolysis would not appear to have an effect on that parameter. The significant correlations (P role for the vascular system in realizing a high aerobic power.

  4. Duration of untreated psychosis/illness and brain volume changes in early psychosis.

    Science.gov (United States)

    Rapp, Charlotte; Canela, Carlos; Studerus, Erich; Walter, Anna; Aston, Jacqueline; Borgwardt, Stefan; Riecher-Rössler, Anita

    2017-09-01

    The time period during which patients manifest psychotic or unspecific symptoms prior to treatment (duration of untreated psychosis, DUP, and the duration of untreated illness, DUI) has been found to be moderately associated with poor clinical and social outcome. Equivocal evidence exists of an association between DUP/DUI and structural brain abnormalities, such as reduced hippocampus volume (HV), pituitary volume (PV) and grey matter volume (GMV). Thus, the goal of the present work was to examine if DUP and DUI are associated with abnormalities in HV, PV and GMV. Using a region of interest (ROI) based approach, we present data of 39 patients from the Basel FePsy (Früherkennung von Psychosen, early detection of psychosis) study for which information about DUP, DUI and HV, PV and GMV data could be obtained. Twenty-three of them were first episode psychosis (FEP) and 16 at-risk mental state (ARMS) patients who later made the transition to frank psychosis. In unadjusted analyses, we found a significant positive correlation between DUP and PV in FEP patients. However, when adjusted for covariates, we found no significant correlation between DUP or DUI and HV, PV or GMV anymore. There only was a trend for decreasing GMV with increasing DUI in FEP. Our results do not comprehensively support the hypothesis of a "toxic" effect of the pathogenic mechanism underlying untreated psychosis on brain structure. If there is any effect, it might rather occur very early in the disease process, during which patients experience only unspecific symptoms. Copyright © 2017. Published by Elsevier B.V.

  5. Methods for the Optimal Design of Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2011-01-01

    and the efficient processing of this power by the DC/AC inverter. In this paper two new methods are presented for the optimal design of a PV inverter power section, output filter and MPPT control strategy. The influences of the electric grid regulations and standards as well as the PV array operational......The DC/AC inverters are used in grid-connected PV energy production systems as the power processing interface between the PV energy source and the electric grid. The energy injected into the electric grid by the PV installation depends on the amount of power extracted from the PV power source...

  6. Mitigation of PID in commercial PV modules using current interruption method

    Science.gov (United States)

    Bora, Birinchi; Oh, Jaewon; Tatapudi, Sai; Sastry, Oruganty S.; Kumar, Rajesh; Prasad, Basudev; Tamizhmani, Govindasamy

    2017-08-01

    Potential-induced degradation (PID) is known to have a very severe effect on the reliability of PV modules. PID is caused due to the leakage of current from the cell circuit to the grounded frame under humid conditions of high voltage photovoltaic (PV) systems. There are multiple paths for the current leakage. The most dominant leakage path is from the cell to the frame through encapsulant, glass bulk and glass surface. This dominant path can be prevented by interrupting the electrical conductivity at the glass surface. In our previous works related to this topic, we demonstrated the effectiveness of glass surface conductivity interruption technique using one-cell PV coupons. In this work, we demonstrate the effectiveness of this technique using a full size commercial module susceptible to PID. The interruption of surface conductivity of the commercial module was achieved by attaching a narrow, thin flexible glass strips, from Corning, called Willow Glass on the glass surface along the inner edges of the frame. The flexible glass strip was attached to the module glass surface by heating the glass strip with an ionomer adhesive underneath using a handheld heat gun. The PID stress test was performed at 60°C and 85% RH for 96 hours at -600 V. Pre- and post-PID characterizations including I-V and electroluminescence were carried out to determine the performance loss and affected cell areas. This work demonstrates that the PID issue can be effectively addressed by using this current interruption technique. An important benefit of this approach is that this interruption technique can be applied after manufacturing the modules and after installing the modules in the field as well.

  7. Development of Automated Production Line Processes for Solar Brightfield Modules: Final Annual Technical Progress Report, 1 July 2004 -- 15 October 2005

    Energy Technology Data Exchange (ETDEWEB)

    Nowlan, M. J.; Murach, J. M.; Sutherland, S. F.; Miller, D. C.; Moore S. B.; Hogan, S. J.

    2006-08-01

    Spire Corporation is addressing the Photovoltaic Manufacturing R&D project goals of improving photovoltaic (PV) manufacturing processes and products while reducing costs and providing a technology foundation that supports significant manufacturing scale-up. To accomplish this, we are focusing our efforts on the design of a large-area utility-scale module and the development of the necessary manufacturing techniques and equipment to manufacture such a module in a high-volume production environment. A three-phase program is under way for developing and demonstrating new automated systems for fabricating very large PV modules ideal for use in multi-megawatt grid-connected applications. We designed a large-area (1.57 m x 3.68 m) 800-W module, and we are developing associated module production equipment that will minimize the total installed system cost for utility-scale PV arrays. Activities in Phase 2 focused on the development of automation for module materials lay-up, cell string busing, and module lamination; enhancements to the cell stringing and lamination processes; and performance testing of large-area modules.

  8. Design Optimization of Transformerless Grid-Connected PV Inverters Including Reliability

    OpenAIRE

    Koutroulis, Eftichios; Blaabjerg, Frede

    2013-01-01

    This paper presents a new methodology for optimal design of transformerless photovoltaic (PV) inverters targeting a cost-effective deployment of grid-connected PV systems. The optimal switching frequency as well as the optimal values and types of the PV inverter components is calculated such that the PV inverter LCOE generated during the PV system lifetime period is minimized. The LCOE is also calculated considering the failure rates of the components, which affect the reliability performance...

  9. Terawatt Challenge for Thin-Film PV

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    2005-08-01

    The evolution of PV into one of the world's largest industries is not going to happen without major unforeseen problems. However, this study attempts to address the obvious ones, so that we can put aside the mythology of PV (for example, that it is only ''boutique power'' or that one must pave the world with it to be useful) and get on with changing the world's energy infrastructure. With the years of rapid market growth now under way in PV, the author is sure this will not be the last effort to understand the real potential and pitfalls of meeting the Challenge.

  10. National survey report on PV power applications in Switzerland 2006

    International Nuclear Information System (INIS)

    Huesser, P.; Hostettler, T.

    2007-01-01

    This annual report was published by the Swiss Federal Office of Energy (SFOE) as part of the International Energy Agency's work on the exchange and dissemination of information on photovoltaic power systems (PVPS). The political situation in Switzerland with regard to the promotion of photovoltaics (PV) and new legislation in the energy area is discussed. The report provides information on installed PV power, costs and prices and the Swiss PV industry. Examples of PV applications are presented and data on the cumulative installed PV power in various application sectors is presented and discussed. Highlights, major projects and various demonstration and field-test programmes are dealt with, as are public budgets for market stimulation. Figures on the development, production and prices of PV cells and modules are presented. Swiss balance-of-system products are reviewed, as are PV-related services and the value of the Swiss PV business. A review of non-technical factors and new initiatives completes the report.

  11. National survey report on PV power applications in Switzerland 2006

    Energy Technology Data Exchange (ETDEWEB)

    Huesser, P. [Nova Energie GmbH, Aarau (Switzerland); Hostettler, T. [Ingenieurbuero Hostettler, Berne (Switzerland)

    2007-07-01

    This annual report was published by the Swiss Federal Office of Energy (SFOE) as part of the International Energy Agency's work on the exchange and dissemination of information on photovoltaic power systems (PVPS). The political situation in Switzerland with regard to the promotion of photovoltaics (PV) and new legislation in the energy area is discussed. The report provides information on installed PV power, costs and prices and the Swiss PV industry. Examples of PV applications are presented and data on the cumulative installed PV power in various application sectors is presented and discussed. Highlights, major projects and various demonstration and field-test programmes are dealt with, as are public budgets for market stimulation. Figures on the development, production and prices of PV cells and modules are presented. Swiss balance-of-system products are reviewed, as are PV-related services and the value of the Swiss PV business. A review of non-technical factors and new initiatives completes the report.

  12. Do feed-in tariffs drive PV cost or viceversa?

    International Nuclear Information System (INIS)

    Antonelli, Marco; Desideri, Umberto

    2014-01-01

    Highlights: • The distribution of PV installations on the territory is not a function of the solar radiation. • Cost of PV plants were adapted to the FIT framework. • The FIT for PV in Italy was considered an incentive to financial investment. • The FIT for PV in Italy did not stimulate the development of national PV industry. - Abstract: A survey of the PV market in Italy was done studying a number of installations of different sizes whose economic data were known and assessed. The Italian market has experienced a boom in the PV market after the first mechanism of feed-in tariffs was promoted in 2005. The variations of the tariff structure in the following years have caused significant changes in the market structure in terms of average size and technical characteristics of installed plants. However, an Italian PV industry was not stimulated by the incentives and only companies involved in installation and maintenance were created. At the same time, the cost of the PV plants components, design and commissioning have followed quite a particular trend, which is more determined by the tariffs than by the market development and structure. It is quite clear that the costs of PV plants component are not driven by the amount of installations but by the tariffs, with a trend that follows the decreases in the incentives and not the global installed power. It is therefore very important to study the right tariff mechanisms and benefits to avoid financial disturbances on the market and to promote a real competitive market instead of a simple financial operation under a fake façade of green economy

  13. Solar Energy: Incentives to Promote PV in EU27

    Directory of Open Access Journals (Sweden)

    María del P. Pablo-Romero

    2013-11-01

    Full Text Available The growth in the use of renewable energies in the EU has been remarkable. Among these energies is PV. The average annual growth rate for the EU-27 countries in installed PV capacity in the period 2005-2012 was 41.2%. While the installed capacity of PV has reached almost 82 % of National Renewable Energy Action Plan (NREAP targets for the EU-27 countries for 2020, it is still far from being used at its full potential. Over recent years, several measures have been adopted in the EU to enhance and promote PV. This paper undertakes a complete review of the state of PV power in Europe and the measures taken to date to promote it in EU-27. 25 countries have adopted measures to promote PV. The most widespread measure to promote PV use is Feed- in Tariffs. Tariffs are normally adjusted, in a decreasing manner, annually. Nevertheless, currently, seven countries have decided to accelerate this decrease rate in view of cost reduction of the installations and of higher efficiencies. The second instrument used to promote PV in the EU-27 countries is the concession of subsidies. Nevertheless, subsidies have the disadvantage of being closely linked to budgetary resources and therefore to budgetary constraints. In most EU countries, subsidies for renewable energy for PV are being lowered. Twelve EU-27 countries adopted tax measures. Low-interest loans and green certificate systems were only sparingly used.

  14. Kauai Island Utility Co-op (KIUC) PV integration study.

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Abraham; Mousseau, Tom (Knoxville, TN)

    2011-08-01

    This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

  15. A global strategy for the European PV industry

    International Nuclear Information System (INIS)

    Viaud, M.; Despotou, E.; Latour, M.; Hoffmann, W.; Macias, E.; Cameron, M.; Laborde, E.

    2004-01-01

    The objective was to develop a comprehensive strategy that answers to the need of today European PV industry. Namely: - Develop PV markets in Europe - Develop export markets. - Position the European PV industry within the European political environment and support the effort of national actors in their local objectives. This method lends itself to brainstorming to create actions and synergies, on order to achieve strategy objectives. The whole work is based on working groups clearly defined on the purpose, where all EPIA members are invited to participate. The overall first results are presented during the 19. EU PV Conference in Paris and EPIA will do recommendations on actions to be undertaken in the future. This strategy is co-financed by EPIA members and the 6. Framework Programme for research of the European Commission through the PV Catapult project. (authors)

  16. PowerGuard{reg_sign} Advanced Manufacturing; PVMaT Phase 1 Final Technical Report: June 1, 1998 to September 30, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, M. C.; Dinwoodie, T. L.; O' Brian, C.; Botkin, J.; Ansley, J.

    2000-06-14

    During Phase 1 of PowerGuard{reg_sign} Advanced Manufacturing, PowerLight Corporation accomplished the following advancements: (1) Decreased system cost by 15%; (2) Increased PowerGuard tile production capacity from 5 MW/year to 8 MW/yr; (3) Established a manufacturing layout master plan for sequential integration of semi-automated and automated component workstations; (4) Defined semi-automation or automation of selected stages of the existing tile fabrication sequence, including PV module preparation, XPS processing, and coating; (5) Completed the advancement of several design improvements to the grid-tied inverter control board, including controller redesign, integrated data acquisition system (DAS), and communications for audit-worthy verification of PV system performance; (6) Conformed to NEPA, OSHA, and other federal and state regulations applicable to the proposed production process and mitigated potential for waste streams; (7) Initiated Underwriters Laboratories listings and international certifications on PowerGuard improvements; (8) Developed finance packages and integrated warranties; (9) Evaluated commercial demonstrations that incorporated the new design features and manufacturing process.

  17. A Practical Optimization Method for Designing Large PV Plants

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Koutroulis, E.; Eyigun, S.

    2011-01-01

    Nowadays Photovoltaic (PV) plants have multi MW sizes, the biggest plants reaching tens of MW of capacity. Such large-scale PV plants are made up of several thousands of PV panels, each panel being in the range of 150-350W. This means that the design of a Large PV power plant is a big challenge...... and configuring such a plant should be implemented taking into consideration not only the cost of the installation, but also the Annual Energy Production, the Performance Ratio and the Levelized Cost Of Energy. In this paper, an algorithm is presented including the most important models of the PV system...

  18. PV investment in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Hueser, Pius [Nova Energy GmbH, (Switzerland)

    2007-06-15

    This presentation is mainly about how the PV market in Europe has been growing, and which elements are going to determine if this market succeed or failed not only in Europe but also in the rest of the world. In the first part of this presentation, it is mentioned how in 2005 the development of some PV technologies triggered the PV market growth without any marketing control. Then, there are explained the aspects that changed such situation out of control, therefore, it emerged the beginning of the consolidation of this market. There are briefly explained those factors that are going to determine if this market succeed or failed in the future. Finally, there are given examples of some the PV investments. [Spanish] Esta presentacion habla principalmente de la manera en como ha crecido el Mercado de sistemas fotovoltaicos en Europa, asi tambien se mencionan los elementos fundamentales que determinaran el exito o fracaso de este mercado, no solamente en Europa sino tambien en el resto del mundo, en un futuro. En la primera parte de esta presentacion, se describe como en el 2005, debido al desarrollo de algunas tecnologias fotovoltaicas se desencadeno el crecimiento desenfrenado del mercado fotovoltaico. Despues, se explican los aspectos que hicieron que dicho crecimiento tomara su curso, teniendo como resultado el inicio de un mercado mas consolidado. Se explican brevemente los factores que determinaran si este mercado encuentra el exito o el fracaso en un futuro. Finalmente, se dan ejemplos de algunas adquisiciones fotovoltaicas.

  19. China PV Business and Applications Evaluation; TOPICAL

    International Nuclear Information System (INIS)

    Sherring, Chris

    1999-01-01

    This report provides an overview of photovoltaics (PV) business and applications in China. Although more than 70 million people in China are without access to grid electricity, many of the unelectrified regions benefit from considerable renewable resources, including good solar insolation. Current annual PV sales are still modest, however, and are estimated to be between 2.0 and 2.5 megawatts. This and other significant PV data, including information regarding the current status of key aspects of Chinese businesses, markets, and distribution channels, are included in the report. Detailed company profiles of Chinese business organizations and summaries of visits made to these companies (as well as to more remote sites in Inner Mongolia to examine PV usage by the end-use customer) in September-October 1998 are also presented

  20. Rating PV Power and Energy: Cell, Module, and System Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Keith

    2016-06-02

    A summary of key points related to research-level measurements of current vs. voltage measurement theory including basic PV operation, equivalent circuit, and concept of spectral error; PV power performance including PV irradiance sensors, simulators and commercial and generic I-V systems; PV measurement artifacts, intercomparisons, and alternative rating methods.

  1. Low Cost Lithography Tool for High Brightness LED Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  2. PV System Component Fault and Failure Compilation and Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Lavrova, Olga; Gooding, Renee Lynne

    2018-02-01

    This report describes data collection and analysis of solar photovoltaic (PV) equipment events, which consist of faults and fa ilures that occur during the normal operation of a distributed PV system or PV power plant. We present summary statistics from locations w here maintenance data is being collected at various intervals, as well as reliability statistics gathered from that da ta, consisting of fault/failure distributions and repair distributions for a wide range of PV equipment types.

  3. Examples of successful architectural integration of PV: Germany

    International Nuclear Information System (INIS)

    Hagemann, I.B.

    2004-01-01

    In Germany building-integrated photovoltaics (BIPV) are developing rapidly, and much progress has been achieved in the past five years. BIPV can be used today in different ways on both existing and new buildings. Architects and designers are discovering BIPV. With the help of custom-made products available on the German market they are beginning to explore the technical limits of an aesthetic and structural integration of PV in buildings. As a result some exciting high-profile building projects with PV have been built, for example, the small service pavilion Meereslauschen in Steinhude or the new headquarters building of the Wood Trade Association in Munich. These projects show that the use of PV is very varied and offers opportunities for creative architects. However non-technical problems still need to be solved to allow a meaningful and widespread application of PV in the built environment. To decrease costs it is essential to develop further standard BIPV components. The aim of such developments should be to replace standard PV modules by products in which PV and structural building elements are melded into one design and structural unit. (author)

  4. Polysun. PV, wind and power-heat-cogeneration in one design tool

    Energy Technology Data Exchange (ETDEWEB)

    Lacoste, Baptiste; Wolf, Andreas; Witzig, Andreas [Vela Solaris AG, Winterthur (Switzerland); Maerklin, Adrian [Envergate GmbH, Horn (Switzerland)

    2010-07-01

    In this article, the simulation software Polysun is presented, which by its fundamental concept favors the combination of several energy sources (e.g. PV, Solarthermal, oil/gas boiler) and consumers (heating, sanitary hot water, swimming pool) in one simulation setup. It is discussed how the state-of-the-art small wind turbines and power-heat-cogeneration shall be integrated into the simulation tool Polysun. A close collaboration between Vela Solaris and the manufacturer is important for model validation as well as for the building up of the Polysun component database. Wind measurement results are presented from the manufacturer Envergate, which is a typical partner of choice for such collaboration. The modular concept of Polysun provides the ideal basis for communicating the advantages of new hybrid systems in de-centralized electicity production both for educational purposes as well as in renewable energy system marketing and sales. Physics-based simulation and prediction of system performance helps in the decision phase and supports the implementation of modern energy efficient and/or renewable energy systems. (orig.)

  5. PV experience curves for the Netherlands

    International Nuclear Information System (INIS)

    Gerwig, R.

    2005-01-01

    Experience curves are one of several tools used by policy makers to take a look at market development. Numerous curves have been constructed for PV but none specific to the Netherlands. The objective of this report is to take a look at the price development of grid-connected PV systems in the Netherlands using the experience curve theory. After a literature and internet search and attempts to acquire information from PV companies information on 51% of the totally installed capacity was found. Curves for the period 1991-2001 were constructed based on system price, BOS (balance-of-system) price and inverter price. The progress ratio of the locally learning BOS was similar to the globally learning module market. This indicates that the pace of development of the Dutch PV market is similar to the globally followed pace. Improvement of the detail of the data might help to get a better idea of which BOS components have declined most. The similar progress ratio also shows the importance of investing both in module and system research as is the case in the Netherlands

  6. Optimal design of orientation of PV/T collector with reflectors

    International Nuclear Information System (INIS)

    Kostic, Lj.T.; Pavlovic, T.M.; Pavlovic, Z.T.

    2010-01-01

    Hybrid conversion of solar radiation implies simultaneous solar radiation conversion into thermal and electrical energy in the PV/Thermal collector. In order to get more thermal and electrical energy, flat solar radiation reflectors have been mounted on PV/T collector. To obtain higher solar radiation intensity on PV/T collector, position of reflectors has been changed and optimal position of reflectors has been determined by both experimental measurements and numerical calculation so as to obtain maximal concentration of solar radiation intensity. The calculated values have been found to be in good agreement with the measured ones, both yielding the optimal position of the flat reflector to be the lowest (5 o ) in December and the highest (38 o ) in June. In this paper, the thermal and electrical efficiency of PV/T collector without reflectors and with reflectors in optimal position have been calculated. Using these results, the total efficiency and energy-saving efficiency of PV/T collector have been determined. Energy-saving efficiency for PV/T collector without reflectors is 60.1%, which is above the conventional solar thermal collector, whereas the energy-saving efficiency for PV/T collector with reflectors in optimal position is 46.7%, which is almost equal to the values for conventional solar thermal collector. Though the energy-saving efficiency of PV/T collector decreases slightly with the solar radiation intensity concentration factor, i.e. the thermal and electrical efficiency of PV/T collector with reflectors are lower than those of PV/T collector without reflectors, the total thermal and electrical energy generated by PV/T collector with reflectors in optimal position are significantly higher than total thermal and electrical energy generated by PV/T collector without reflectors.

  7. Battery storage for PV power systems: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chaurey, A; Deambi, S [Tata Energy Research Inst., New Delhi (India)

    1992-06-01

    Batteries used in photovoltaic applications are required to have particular properties in order to minimize the system cost, in addition to meeting stringent reliability requirements associated with PV system installations. The battery sizing, installations, operation and maintenance, thus, are fundamentally different from those used in several other energy storage applications. The current paper gives an overview of battery systems commonly used in PV installation, as well as several new options which are found suitable or have been modified suitably to meet PV energy storage requirements. The systems are discussed briefly with respect to their construction, performance characteristics and compatibility with PV systems. The battery sizing procedures are also reviewed. (Author).

  8. Study of Potential Cost Reductions Resulting from Super-Large-Scale Manufacturing of PV Modules: Final Subcontract Report, 7 August 2003--30 September 2004

    Energy Technology Data Exchange (ETDEWEB)

    Keshner, M. S.; Arya, R.

    2004-10-01

    Hewlett Packard has created a design for a ''Solar City'' factory that will process 30 million sq. meters of glass panels per year and produce 2.1-3.6 GW of solar panels per year-100x the volume of a typical, thin-film, solar panel manufacturer in 2004. We have shown that with a reasonable selection of materials, and conservative assumptions, this ''Solar City'' can produce solar panels and hit the price target of $1.00 per peak watt (6.5x-8.5x lower than prices in 2004) as the total price for a complete and installed rooftop (or ground mounted) solar energy system. This breakthrough in the price of solar energy comes without the need for any significant new invention. It comes entirely from the manufacturing scale of a large plant and the cost savings inherent in operating at such a large manufacturing scale. We expect that further optimizations from these simple designs will lead to further improvements in cost. The manufacturing process and cost depend on the choice for the active layer that converts sunlight into electricity. The efficiency by which sunlight is converted into electricity can range from 7% to 15%. This parameter has a large effect on the overall price per watt. There are other impacts, as well, and we have attempted to capture them without creating undue distractions. Our primary purpose is to demonstrate the impact of large-scale manufacturing. This impact is largely independent of the choice of active layer. It is not our purpose to compare the pro's and con's for various types of active layers. Significant improvements in cost per watt can also come from scientific advances in active layers that lead to higher efficiency. But, again, our focus is on manufacturing gains and not on the potential advances in the basic technology.

  9. Assessing the PV business opportunities in Greece

    International Nuclear Information System (INIS)

    Patlitzianas, Konstantinos D.; Skylogiannis, Georgios K.; Papastefanakis, Dimitrios

    2013-01-01

    Highlights: • An approach of qualitative judgments for the PV opportunities through the assessing of the licenses’ value in Greece. • It can be supplied in other countries by applying different weights to the criteria. • It can be used by everyone in order to find a suitable PV investment without the need of experts in the field. - Abstract: Greece, as a member of the European Union (EU), has undertaken the obligation to meet the expected goals for the penetration of Renewable Energy Sources (RES) in the national energy balance in compliance with “20–20–20” goals (20% of the Gross Energy Consumption and 40% of the Gross Electricity Consumption should be covered by RES). Although the development of RES, and particularly of Photovoltaic (PV), in Greece during the last years has presented a satisfactory growth, the country is still far away from the above goals. The main reason for this delay is that – except the financial crisis – many licenses are inactive and waiting funding in order to be utilized. Additionally, the latest law (L.4152/2013) has forbidden the interconnection of new PV power Plants to the grid until the end of 2013. The above fact determines the significance of the existing PV Licenses in achieving the national goals. The aim of this paper is to present an integrated approach of qualitative judgments for the PV business opportunities through the assessing of the licenses’ value in Greece. The approach, which is based on a Multi Criteria Decision Making (MCDM) theory of quantifying multiple qualitative judgments, takes into account the real factors which can affect the expected production and cost of the PV installation and therefore the RoI (Return of Investment)

  10. Addressing firefighter safety around solar PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. [Sustainable Energy Technologies, Calgary, AB (Canada)

    2010-11-15

    The article discussed new considerations for installing photovoltaic (PV) systems that address the needs of fire service personnel. The presence of a PV system presents a multitude of dangers for firefighters, including electrical shock, the inhalation of toxic gases from being unable to cut a hole through the roof, falling debris and flying glass, and dead loading on a compromised structure and tripping on conduits. Mapping systems should be modified so that buildings with PV systems are identified for first responders, including firefighters who should learn that solar modules present an electrical hazard during the day but not at night; covering PV modules with foam or salvage covers may not shut the system down to a safe level; it takes a few moments for the power in PV modules to reduce to zero; and PV modules or conduit should never be cut, broke, chopped, or walked upon. The California Department of Forestry and Fire Protection recommends creating pathways and allowing easier access to the roof by setting the modules back from roof edges, creating a structurally sound pathway for firefighters to walk on and space to cut ventilation holes. However, the setback rule makes the economics of solar installation less viable for residential applications. The technological innovations aimed at addressing system safety all focus on limiting firefighter contact with live electrical components to within the extra-low-voltage (ELV) band. Some of the inverters on the market that support ELV system architecture were described. 1 fig.

  11. Performance Parameters for Grid-Connected PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marion, B.; Adelstein, J.; Boyle, K.; Hayden, H.; Hammond, B.; Fletcher, T.; Canada, B.; Narang, D.; Shugar, D.; Wenger, H.; Kimber, A.; Mitchell, L.; Rich, G.; Townsend, T.

    2005-02-01

    The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.The use of appropriate performance parameters facilitates the comparison of grid-connected photovoltaic (PV) systems that may differ with respect to design, technology, or geographic location. Four performance parameters that define the overall system performance with respect to the energy production, solar resource, and overall effect of system losses are the following: final PV system yield, reference yield, performance ratio, and PVUSA rating. These performance parameters are discussed for their suitability in providing desired information for PV system design and performance evaluation and are demonstrated for a variety of technologies, designs, and geographic locations. Also discussed are methodologies for determining system a.c. power ratings in the design phase using multipliers developed from measured performance parameters.

  12. Manufacturing ontology through templates

    Directory of Open Access Journals (Sweden)

    Diciuc Vlad

    2017-01-01

    Full Text Available The manufacturing industry contains a high volume of knowhow and of high value, much of it being held by key persons in the company. The passing of this know-how is the basis of manufacturing ontology. Among other methods like advanced filtering and algorithm based decision making, one way of handling the manufacturing ontology is via templates. The current paper tackles this approach and highlights the advantages concluding with some recommendations.

  13. A Software Tool for Optimal Sizing of PV Systems in Malaysia

    Directory of Open Access Journals (Sweden)

    Tamer Khatib

    2012-01-01

    Full Text Available This paper presents a MATLAB based user friendly software tool called as PV.MY for optimal sizing of photovoltaic (PV systems. The software has the capabilities of predicting the metrological variables such as solar energy, ambient temperature and wind speed using artificial neural network (ANN, optimizes the PV module/ array tilt angle, optimizes the inverter size and calculate optimal capacities of PV array, battery, wind turbine and diesel generator in hybrid PV systems. The ANN based model for metrological prediction uses four meteorological variables, namely, sun shine ratio, day number and location coordinates. As for PV system sizing, iterative methods are used for determining the optimal sizing of three types of PV systems, which are standalone PV system, hybrid PV/wind system and hybrid PV/diesel generator system. The loss of load probability (LLP technique is used for optimization in which the energy sources capacities are the variables to be optimized considering very low LLP. As for determining the optimal PV panels tilt angle and inverter size, the Liu and Jordan model for solar energy incident on a tilt surface is used in optimizing the monthly tilt angle, while a model for inverter efficiency curve is used in the optimization of inverter size.

  14. Delta Power Control Strategy for Multistring Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    , is required for grid support (e.g., during frequency deviation). In this paper, a cost-effective solution to realize delta power control (DPC) for grid-connected PV systems is presented, where the multistring PV inverter configuration is adopted. This control strategy is a combination of maximum power point...... tracking (MPPT) and constant power generation (CPG) modes. In this control scheme, one PV string operating in the MPPT mode estimates the available power, whereas the other PV strings regulate the total PV power by the CPG control strategy in such a way that the delta power constraint for the entire PV...... system is achieved. Simulations and experiments have been performed on a 3-kW single-phase grid-connected PV system. The results have confirmed the effectiveness of the proposed DPC strategy, where the power reserve according to the delta power constraint is achieved under several operating conditions....

  15. The prospects for cost competitive solar PV power

    International Nuclear Information System (INIS)

    Reichelstein, Stefan; Yorston, Michael

    2013-01-01

    New solar Photovoltaic (PV) installations have grown globally at a rapid pace in recent years. We provide a comprehensive assessment of the cost competitiveness of this electric power source. Based on data available for the second half of 2011, we conclude that utility-scale PV installations are not yet cost competitive with fossil fuel power plants. In contrast, commercial-scale installations have already attained cost parity in the sense that the generating cost of power from solar PV is comparable to the retail electricity prices that commercial users pay, at least in certain parts of the U.S. This conclusion is shown to depend crucially on both the current federal tax subsidies for solar power and an ideal geographic location for the solar installation. Projecting recent industry trends into the future, we estimate that utility-scale solar PV facilities are on track to become cost competitive by the end of this decade. Furthermore, commercial-scale installations could reach “grid parity” in about ten years, if the current federal tax incentives for solar power were to expire at that point. - Highlights: ► Assessment of the cost competitiveness of new solar Photovoltaic (PV) installations. ► Utility-scale PV installations are not yet cost competitive with fossil fuel power plants. ► Commercial-scale installations have already attained cost parity in certain parts of the U.S. ► Utility-scale solar PV facilities are on track to become cost competitive by the end of this decade

  16. Overview of Recent Grid Codes for PV Power Integration

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2012-01-01

    The challenge to bring down the cost of produced photovoltaic (PV) power had a major impact on the PV market and in consequence the grid operators experienced higher and higher PV power penetration. The growing share of this decentralized generation plants started to affect the grid stability...

  17. Performance analysis of PV panel under varying surface temperature

    Directory of Open Access Journals (Sweden)

    Kumar Tripathi Abhishek

    2018-01-01

    Full Text Available The surface temperature of PV panel has an adverse impact on its performance. The several electrical parameters of PV panel, such as open circuit voltage, short circuit current, power output and fill factor depends on the surface temperature of PV panel. In the present study, an experimental work was carried out to investigate the influence of PV panel surface temperature on its electrical parameters. The results obtained from this experimental study show a significant reduction in the performance of PV panel with an increase in panel surface temperature. A 5W PV panel experienced a 0.4% decrease in open circuit voltage for every 1°C increase in panel surface temperature. Similarly, there was 0.6% and 0.32% decrease in maximum power output and in fill factor, respectively, for every 1°C increase in panel surface temperature. On the other hand, the short circuit current increases with the increase in surface temperature at the rate of 0.09%/°C.

  18. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  19. Recovery of plasma volume after 1 week of exposure at 4,350 m

    DEFF Research Database (Denmark)

    Robach, Paul; Lafforgue, Eric; Olsen, Niels Vidiendal

    2002-01-01

    Plasma volume (PV) decreases at high altitude, but is rapidly restored upon return to sea-level (RSL). The aim of this study was (1) to describe PV recovery upon RSL with concomitant changes in major fluid regulating hormones, and (2) to test the hypothesis that PV recovery is promoted...... natriuretic factor (ANF) and arginine vasopressin (AVP) were measured at rest and during exercise. The subjects were divided into two groups 1 h before RSL, one group receiving PV expansion (475+/-219 ml) to ensure normovolemia (PVX, n=6), the others serving as controls (Control, n=4). PV decreased by 13...... groups, whereas water output dropped in RSL. PVX increased urine flow rate in RSL1 compared with subjects not given PVX. The present results suggest that PV recovery during early RSL is mainly due to a decreased diuresis, promoted at least in part by changes in fluid regulating hormones. However, neither...

  20. Energy Innovation Clusters and their Influence on Manufacturing: A Case Study Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Engel-Cox, Jill [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hill, Derek [National Science Foundation (NSF), Washington, DC (United States)

    2017-09-12

    Innovation clusters have been important for recent development of clean energy technologies and their emergence as mature, globally competitive industries. However, the factors that influence the co-location of manufacturing activities with innovation clusters are less clear. A central question for government agencies seeking to grow manufacturing as part of economic development in their location is how innovation clusters influence manufacturing. Thus, this paper examines case studies of innovation clusters for three different clean energy technologies that have developed in at least two locations: solar PV clusters in California and the province of Jiangsu in China, wind turbine clusters in Germany and the U.S. Great Lakes region, and ethanol clusters in the U.S. Midwest and the state of Sao Paulo in Brazil. These case studies provide initial insight into factors and conditions that contribute to technology manufacturing facility location decisions.

  1. A strategic model for PV dissemination in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Hiranvarodom, S. [Rajamangala Inst. of Technology, Dept. of Electrical Engineering, Pathumthani (Thailand); Hill, R. [University of Northumbria, Newcastle Photovoltaics Applications Centre, Newcastle upon Tyne (United Kingdom); O' Keefe, P. [University of Northumbria, Dept. of Geography and Environmental Management, Newcastle upon Tyne (United Kingdom)

    1999-07-01

    The process of information dissemination is necessary for the successful implementation for photovoltaic (PV) programmes in developing countries, and it is essential to consider the strategies for implementation of a PV project to ensure that it will be successful. This paper proposes a strategic model for PV dissemination in Thailand and discusses the roles of key players in the implementation of the strategy and the responsibilities of these organisations. (Author)

  2. The world PV market 2000: shifting from subsidy to 'fully economic'?

    International Nuclear Information System (INIS)

    Maycock, Paul

    2000-01-01

    This article presents an overview of the world grid-connected photovoltaic (PV) market concentrating on the US, Japan and Germany. The PV markets in the three countries are examined, and PV module shipments, the economics of residential PVs in the markets, and forecasts of the grid-connected market are discussed. Details are given of the German 100,000 roofs PV roof subsidy programme to stimulate the residential and commercial grid-connected market. A summary of the grid-connected PV markets in the three countries, and economic information on German grid-connected PV roofs are tabulated

  3. Economic perspective of PV electricity in Oman

    International Nuclear Information System (INIS)

    Al-Badi, A.H.; Albadi, M.H.; Al-Lawati, A.M.; Malik, A.S.

    2011-01-01

    Solar and wind energies are likely to play an important role in the future energy generation in Oman. This paper utilizes average daily global solar radiation and sunshine duration data of 25 locations in Oman to study the economic prospects of solar energy. The study considers a solar PV power plant of 5-MW at each of the 25 locations. The global solar radiation varies between slightly greater than 4 kWh/m 2 /day at Sur to about 6 kWh/m 2 /day at Marmul while the average value in the 25 locations is more than 5 kWh/m 2 /day. The results show that the renewable energy produced each year from the PV power plant varies between 9000 MWh at Marmul and 6200 MWh at Sur while the mean value is 7700 MWh of all the 25 locations. The capacity factor of PV plant varies between 20% and 14% and the cost of electricity varies between 210 US$/MWh and 304 US$/MWh for the best location to the least attractive location, respectively. The study has also found that the PV energy at the best location is competitive with diesel generation without including the externality costs of diesel. Renewable energy support policies that can be implemented in Oman are also discussed. -- Research highlights: → The global solar radiation values for 25 locations in Oman are obtained using satellite data that are corrected by data from ground stations. → The study considers a solar PV power plant of 5-MW to calculate the capacity factor (CF) and the cost of energy (COE) at each of the 25 locations. → The study has found that the CF of PV plant varies between 20% and 14% and the corresponding COE varies between 210 US$/MWh and 304 US$/MWh for the best location to the least attractive location, respectively. → The study has found that the PV energy at the best location is competitive with diesel generation without including the externality costs of diesel. → Since PV energy is not competitive with fossil fuel-based generation in most locations renewable energy support mechanisms have been

  4. Status and Needs of Power Electronics for Photovoltaic Inverters

    Science.gov (United States)

    Qin, Y. C.; Mohan, N.; West, R.; Bonn, R.

    2002-06-01

    Photovoltaics is the utility connected distributed energy resource (DER) that is in widespread use today. It has one element, the inverter, which is common with all DER sources except rotating generators. The inverter is required to transfer dc energy to ac energy. With all the DER technologies, (solar, wind, fuel cells, and microturbines) the inverter is still an immature product that will result in reliability problems in fielded systems. Today, the PV inverter is a costly and complex component of PV systems that produce ac power. Inverter MTFF (mean time to first failure) is currently unacceptable. Low inverter reliability contributes to unreliable fielded systems and a loss of confidence in renewable technology. The low volume of PV inverters produced restricts the manufacturing to small suppliers without sophisticated research and reliability programs or manufacturing methods. Thus, the present approach to PV inverter supply has low probability of meeting DOE reliability goals.

  5. Photovoltaic (PV) contribution to the primary frequency control

    International Nuclear Information System (INIS)

    Rafa, Adel Hamad

    2012-01-01

    Photovoltaic (PV) technology is among the most efficient and cost effective renewable energy kinds currently available on the market. The connection of a large number of PVs to the grid may influence the frequency and voltage stability of the power system. This paper proposes load-frequency control technique for system with high penetration of photovoltaic (PV). The proposed controller has been successfully implemented and tested using PSCAD/EMTDC. In this study, the impact of photovoltaic (PV) on frequency stability of the system is studies in detail. This study shows that large penetration of photovoltaic (PV) with load and frequency control has a significant impact on the stability and security level of electrical network.(author)

  6. Photovoltaic-thermal (PV/T) solar collectors: Features and performance modelling

    International Nuclear Information System (INIS)

    Atienza-Márquez, Antonio; Bruno, Joan Carles; Coronas, Alberto; Korolija, Ivan; Greenough, Richard; Wright, Andy

    2017-01-01

    Currently, the electrical efficiency of photovoltaic (PV) solar cells ranges between 5–25%. One of the most important parameters that affects the electrical efficiency of a PV collector is the temperature of its cells: the higher temperature, the lower is the efficiency. Photovoltaic/thermal (PV/T) technology is a potential solution to ensure an acceptable solar energy conversion. The PV/T technology produces both electrical and thermal energy simultaneously. It is suitable for low temperature applications (25–40 o C) and overall efficiency increases compared to individual collectors. This paper describes an installation in a single-family house where PV/T collectors are coupled with a ground heat exchanger and a heat pump for domestic hot water and space heating purposes. The aim of this work is twofold. First, the features of the PV/T technology are analyzed. Second, a model of a flat-plate PV/T water collector was developed in TRNSYS in order to analyze collectors performance. (author)

  7. Experimental evidence for negative turgor pressure in small leaf cells of Robinia pseudoacacia L versus large cells of Metasequoia glyptostroboides Hu et W.C. Cheng. 2. Höfler diagrams below the volume of zero turgor and the theoretical implication for pressure-volume curves of living cells.

    Science.gov (United States)

    Yang, Dongmei; Li, Junhui; Ding, Yiting; Tyree, Melvin T

    2017-03-01

    The physiological advantages of negative turgor pressure, P t , in leaf cells are water saving and homeostasis of reactants. This paper advances methods for detecting the occurrence of negative P t in leaves. Biomechanical models of pressure-volume (PV) curves predict that negative P t does not change the linearity of PV curve plots of inverse balance pressure, P B , versus relative water loss, but it does predict changes in either the y-intercept or the x-intercept of the plots depending on where cell collapse occurs in the P B domain because of negative P t . PV curve analysis of Robinia leaves revealed a shift in the x-intercept (x-axis is relative water loss) of PV curves, caused by negative P t of palisade cells. The low x-intercept of the PV curve was explained by the non-collapse of palisade cells in Robinia in the P B domain. Non-collapse means that P t smoothly falls from positive to negative values with decreasing cell volume without a dramatic change in slope. The magnitude of negative turgor in non-collapsing living cells was as low as -1.3 MPa and the relative volume of the non-collapsing cell equaled 58% of the total leaf cell volume. This study adds to the growing evidence for negative P t . © 2016 John Wiley & Sons Ltd.

  8. Scale-up issues of CIGS thin film PV modules

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, Neelkanth G. [Florida Solar Energy Center, 1679 Clearlake Road, Cocoa, FL 32922 (United States)

    2011-01-15

    Photovoltaics cost has been declining following a 70% learning curve. Now the challenge is to bring down the cost of solar electricity to make it competitive with conventional sources within the next decade. In the long run, the module efficiencies tend to reach 80% of the champion cell efficiencies. Using a semiempirical methodology, it has been shown earlier that while the triple junction a-Si:H thin film technology is competitive, CIGS and CdTe thin film module technologies are highly competitive and presently offer the best approach for significantly exceeding the cost/performance levels of standard and non-standard crystalline Si PV technologies. Since 2006, the production of thin film solar cell in the U.S. has surpassed that of c-Si. At present, the production of CIGS PV modules lags considerably behind that of CdTe PV modules. This is mainly because of its complexity. Scale-up issues related to various CIGS preparation technologies such as co-evaporation, metallic precursor deposition by magnetron sputtering and non-vacuum techniques such as ink-jet printing, electroplating or doctor-blade technology followed by their selenization/sulfurization are discussed so as to assist the CIGS technology to attain its full potential. Besides the welcome announcements of large volume production, it is essential to achieve the production cost below $1/Wp in the near term and attain production speeds comparable to CdTe production speeds. Comparable production speeds are expected to be achieved within the next decade. This will enable reduction of CIGS module production costs to {proportional_to}65 cents /Wp that would be comparable to the CdTe module projected production cost. Additionally CIGS will have a higher efficiency premium. (author)

  9. Impact of Rooftop Solar PV on Residential Distribution Network

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    Increased environmental awareness in recent years has encouraged rapid growth of renewable energy sources especially solar PV and wind. Among them, small scale solar PV has been gaining more momentum especially at residential level. Even today moderate penetration of grid tied rooftop solar PV has...... become reality in many countries. In spite of various benefits, higher penetration of rooftop PVs might come up with number of detrimental effects, with power quality and overcurrent protection being the major ones. Therefore, it is reasonable to quantify both drawback and benefits of rooftop PV...

  10. Improving the efficiency of photovoltaic (PV) panels by oil coating

    International Nuclear Information System (INIS)

    Abd-Elhady, M.S.; Fouad, M.M.; Khalil, T.

    2016-01-01

    Highlights: • It is possible to improve the efficiency of PV panels by increasing the amount of light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the amount of sun light transmitted to the panel. • Coating PV panels by a fine layer of Labovac oil increases the power output of the panel. • Coating PV panels with a layer of Labovac oil has to be applied in cold countries and not in hot regions. - Abstract: The objective of this research is to develop a new technique for improving the efficiency of Photovoltaic (PV) panels. This technique is done by coating the front surface of the PV panel by a fine layer of oil in order to increase the amount of light transmitted to the panel, and consequently its efficiency. Different types of oils are examined, including both mineral oils and natural oils. In case of mineral oils; vacuum pump oil (Labovac oil), engine oil (Mobil oil) and brake oil (Abro oil) are examined, while in case of natural oils; olive and sunflower oils are examined. An experimental setup has been developed to examine the performance of the PV panels as a function of oil coatings. The experimental setup consists of an artificial sun, the PV panel under investigation, a cooling system and a measuring system to measure the performance of the panel. It has been found that coating the PV panel with a fine layer of Labovac oil, ∼1 mm thick, improves the efficiency of the PV panel by more than 20%, and this is due to the high transmissivity of the Labovac oil compared to other oils. However, the Labovac oil has a drawback which is overheating of the panel due to its high transmissivity. Coating of PV panels with a fine layer of Labovac oil should be done only in cold regions, in order to avoid the heating effect that can decrease the power output of PV panels.

  11. Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems

    International Nuclear Information System (INIS)

    Beck, T.; Kondziella, H.; Huard, G.; Bruckner, T.

    2016-01-01

    Highlights: • MILP optimization model for operation and investment of PV-battery systems. • Use of high resolution (10 s) electrical household load and PV generation profiles. • Analysis of influence of temporal resolution on self-consumption and optimal sizing. • Electrical load profile characteristics influence required temporal resolution. - Abstract: The interest in self-consumption of electricity generated by rooftop photovoltaic systems has grown in recent years, fueled by decreasing levelized costs of electricity and feed-in tariffs as well as increasing end customer electricity prices in the residential sector. This also fostered research on grid-connected PV-battery storage systems, which are a promising technology to increase self-consumption. In this paper a mixed-integer linear optimization model of a PV-battery system that minimizes the total discounted operating and investment costs is developed. The model is employed to study the effect of the temporal resolution of electrical load and PV generation profiles on the rate of self-consumption and the optimal sizing of PV and PV-battery systems. In contrast to previous studies high resolution (10 s) measured input data for both PV generation and electrical load profiles is used for the analysis. The data was obtained by smart meter measurements in 25 different households in Germany. It is shown that the temporal resolution of load profiles is more critical for the accuracy of the determination of self-consumption rates than the resolution of the PV generation. For PV-systems without additional storage accurate results can be obtained by using 15 min solar irradiation data. The required accuracy for the electrical load profiles depends strongly on the load profile characteristics. While good results can be obtained with 60 s for all electrical load profiles, 15 min data can still be sufficient for load profiles that do not exhibit most of their electricity consumption at power levels above 2 k

  12. Design procedures of hybrid PV/SMES system

    International Nuclear Information System (INIS)

    Hamad, Ismail; El-Sayas, M. A.

    2006-01-01

    This paper presents accurate procedures to determine the design parameters of an autonomous hybrid PV/SMES system. Integrating Superconductive magnetic energy storage as a recent storage technology with photovoltaic power system enhances the PV output utilization during the solar radiation fluctuations period. this is because of SMES fast response to any PV output fluctuation. The load demand is supplied either from PV plant or through SMES or from both. Imposed to the technical and economical constrains, the optimum solar cells area and the proper capacity and rating of SMES system are assessed. Regarding solar radiation profile, clear and cloudy days are accurately considered for investigation. Three indices are suggested to express the cloudy and fluctuations conditions. These indices represent the non-utilized PV energy due to clouds (x), fluctuation period (T f ) and location of fluctuations period(t s t). The incremental changes in the design parameters are computed for any variation in these indices. Differentiation between the role of BS and SMES in affecting the results is determined and quantitatively analyzed. The results of clear day condition with SMES are the bas quantities for these changes. Complete analysis of the most effective parameters is presented. Eventually, mathematical models are deduced for each parameter which assists in predicting its behavior against the independent variable.(Author)

  13. The Value of Transparency in Distributed Solar PV Markets | Solar Research

    Science.gov (United States)

    suggest that PV customers benefit from gaining access to more PV quotes. Context Prospective PV customers are relatively non-transparent; customers are largely unaware of market prices and may not obtain the lowest available price. PV customers that use quote aggregators-third-party companies that collect quotes

  14. On the Impact of Partial Shading on PV Output Power

    DEFF Research Database (Denmark)

    Sera, Dezso; Baghzouz, Yahia

    2008-01-01

    clarifies the mechanism of partial PV shading on a number of PV cells connected in series and/or parallel with and without bypass diodes. The analysis is presented in simple terms and can be useful to someone who wishes to determine the impact of some shading geometry on a PV system. The analysis...... is illustrated by measurements on a commercial 70 W panel, and a 14.4 kW PV array....

  15. Review of PV Inverter Technology Cost and Performance Projections

    Energy Technology Data Exchange (ETDEWEB)

    Navigant Consulting Inc.

    2006-01-01

    The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

  16. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    Science.gov (United States)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal

  17. Lifetime Evaluation of PV Inverters considering Panel Degradation Rates and Installation Sites

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2017-01-01

    The PV inverter lifetime is affected by the installed sites related to different solar irradiance and ambient temperature profiles. In fact, the installation site also affects the PV panel degradation rate, and thus the long-term power production. Prior-art lifetime analysis in PV inverters has...... not yet investigated the impact of panel degradation. This paper thus evaluates the lifetime of PV inverters considering panel degradation rates and installation sites. Evaluations have been carried out on PV systems installed in Denmark and Arizona. The results reveal that the PV panel degradation rate...... has a considerable impact on the PV inverter lifetime, especially in the hot climate (e.g., Arizona), where the panel degrades at a faster rate. In that case, the PV inverter lifetime estimation can be deviated by 54%, if the impact of PV panel degradation is not taken into account....

  18. Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy

    DEFF Research Database (Denmark)

    Nugent, Daniel; Sovacool, Benjamin

    2014-01-01

    This paper critically screens 153 lifecycle studies covering a broad range of wind and solar photovoltaic (PV) electricity generation technologies to identify 41 of the most relevant, recent, rigorous, original, and complete assessments so that the dynamics of their greenhouse gas (GHG) emissions...... profiles can be determined. When viewed in a holistic manner, including initial materials extraction, manufacturing, use and disposal/decommissioning, these 41 studies show that both wind and solar systems are directly tied to and responsible for GHG emissions. They are thus not actually emissions free......, this article uncovers best practices in wind and solar design and deployment that can better inform climate change mitigation efforts in the electricity sector...

  19. Long term testing and evaluation of PV modules with and without Sunarc antireflective coating of the cover glass

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Han, Jiangong

    2015-01-01

    Two Photovoltaic (PV) modules have been manufactured by Swemodule. One with Sunarc antireflective coated glass and one without glass surface treatment. The modules have been tested at DTU during 16 months under realistic outdoor conditions. Exactly the same polycrystalline cells were used...... in the modules. No cleaning of the glass has been made except for removal of bird droppings and leaves on single cells that could give a very wrong comparison. The PV modules were mounted due south at 45 degree tilt angle. They were connected to the electric grid with small 250W module inverters from Involar...... that also realized the MPP tracking to give the maximum output of each module. The electric power output was measured both on the AC and DC side and with different measurement equipment to be sure about the accuracy in improvement. The results indicate a potential long term improvement in a system from 3...

  20. Optimization of a PV/T (photovoltaic/thermal) active solar still

    International Nuclear Information System (INIS)

    Saeedi, F.; Sarhaddi, F.; Behzadmehr, A.

    2015-01-01

    In this paper, the optimization of a PV/T (photovoltaic/thermal) active solar still is carried out. Analytical expressions for glass cover temperature, basin temperature, brackish water temperature and fresh water productivity are obtained by writing energy balance for different components of PV/T active solar still. The output electrical power of PV/T active solar still is calculated by four-parameter I–V (current–voltage) model. Objective function in present study is the energy efficiency of PV/T active solar still. A computer simulation program has been developed in order to obtain thermal and electrical parameters, respectively. The simulation results of the present study are in fair agreement with the experimental data of previous literatures. Finally, the optimization of PV/T active solar still has been carried out and the optimized value of mass flow rate, number of PV/T collector and the objective function have been obtained. Furthermore, the effect of various operating parameters on energy efficiency have been investigated. - Highlights: • The comprehensive optimization of a PV/T active solar still is carried out. • Present study is based on numerical simulation. • A modified energy efficiency for PV/T active solar still is obtained. • The effect of design and operating parameters is investigated on energy efficiency

  1. Design of direct solar PV driven air conditioner

    KAUST Repository

    Huang, Bin-Juine

    2015-12-05

    © 2015 Elsevier Ltd. Solar air conditioning system directly driven by stand-alone solar PV is studied. The air conditioning system will suffer from loss of power if the solar PV power generation is not high enough. It requires a proper system design to match the power consumption of air conditioning system with a proper PV size. Six solar air conditioners with different sizes of PV panel and air conditioners were built and tested outdoors to experimentally investigate the running probabilities of air conditioning at various solar irradiations. It is shown that the instantaneous operation probability (OPB) and the runtime fraction (RF) of the air conditioner are mainly affected by the design parameter rpL (ratio of maximum PV power to load power). The measured OPB is found to be greater than 0.98 at instantaneous solar irradiation IT > 600 W m-2 if rpL > 1.71 RF approaches 1.0 (the air conditioner is run in 100% with solar power) at daily-total solar radiation higher than 13 MJ m-2 day-1, if rpL > 3.

  2. Generation of large-scale PV scenarios using aggregated power curves

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Cutululis, Nicolaos Antonio

    2017-01-01

    The contribution of solar photovoltaic (PV) power to the generation is becoming more relevant in modern power system. Therefore, there is a need to model the variability large-scale PV generation accurately. This paper presents a novel methodology to generate regional PV scenarios based...... on aggregated power curves rather than traditional physical PV conversion models. Our approach is based on hourly mesoscale reanalysis irradiation data and power measurements and do not require additional variables such as ambient temperature or wind speed. It was used to simulate the PV generation...... on the German system between 2012 and 2015 showing high levels of correlation with actual measurements (93.02–97.60%) and small deviations from the expected capacity factors (0.02–1.80%). Therefore, we are confident about the ability of the proposed model to accurately generate realistic large-scale PV...

  3. A Novel Frequency Restoring Strategy of Hydro-PV Hybrid Microgrid

    DEFF Research Database (Denmark)

    Wei, Feng; Kai, Sun; Guan, Yajuan

    2014-01-01

    . The existence of frequency steady-state error and the slow active power/frequency dynamic response are inevitable. Therefore, a novel frequency restoring strategy for the hydro-PV hybrid microgrid based on the improved hierarchical control of PV systems is proposed in this paper. The output active power of PV......The conventional PV systems based on the voltage inverters only inject dispatched power to the utility grid when they work at a grid-connected mode in the hydro-PV hybrid microgrid. Due to the droop method employed for load sharing between generators, as well as the enormous inertia of system...... systems is controlled by an extra frequency restoring controller resided in the tertiary control level. The frequency steady-state error is eliminated through regulating and rebalancing the power flow between the hydropower and the PV system. The proposed strategy has verified through simulations...

  4. Wide-band gap devices in PV systems - opportunities and challenges

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Cristian; Eni, Emanuel-Petre; Blaabjerg, Frede

    2014-01-01

    have an important role in the cost reduction. To increase the efficiency of PV systems, most of solutions for PV inverters have moved to three-level (3L) structures reaching typical efficiencies of 98% due to low switching losses of 600V Si IGBT or MOSFET and reduced core losses in the filter......The recent developments in wide band-gap devices based GaN and SiC is showing a high impact on the PV-inverter technology, which is strongly influenced by efficiency, power density and cost. Besides the high efficiency of PV inverters, also the mechanical size, the compactness and simple structure......) three-phase PV-inverter topologies in terms of efficiency, thermal loading distribution and costs. Moreover the above mentioned PV-inverters are built and tested in laboratory in order to validate the obtained results....

  5. On the Impacts of PV Array Sizing on the Inverter Reliability and Lifetime

    OpenAIRE

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso; Blaabjerg, Frede; Zhou, Dao

    2018-01-01

    To enable a more wide scale utilization of PV systems, the cost of PV energy should be comparable to or even lower than other energy sources. Due to the relatively low cost of PV modules, oversizing PV arrays becomes a common approach to reduce the cost of PV energy in practice. By doing so, the total energy yield can be increased under weak solar irradiance conditions. However, oversizing the PV array will increase the loading of PV inverters, which may have undesired influence on the PV inv...

  6. PV Module Reliability Workshop | Photovoltaic Research | NREL

    Science.gov (United States)

    Gok, Cara Fagerholm, David M. Burns, Timothy J. Peshek, Laura S. Bruckman, Roger H. French Backsheet Chen, C. H. Hsueh, W. J. Hsieh Accurately Measuring PV Power Loss Due to Soiling-Michael Gostein and Walters, Stephen Barkaszi Tracking PV Changes: Bridging Between Thin-Film Cells and Modules-Russell

  7. Assessing the need for better forecasting and observability of pv

    DEFF Research Database (Denmark)

    Alet, Pierre-Jean; Efthymiou, Venizelos; Graditi, Giorgio

    2017-01-01

    In its review of the challenges and opportunities associated with massive deployment of solar PV generation, the Grid integration working group of the ETIP PV identified forecasting and observability as critical technologies for the planning and operation of the power system with large PV...... penetration. In this white paper ETIP PV set out to spell out in more details what features are needed from these technologies and what is the state of the art....

  8. Sub-synchronous resonance damping using high penetration PV plant

    Science.gov (United States)

    Khayyatzadeh, M.; Kazemzadeh, R.

    2017-02-01

    The growing need to the clean and renewable energy has led to the fast development of transmission voltage-level photovoltaic (PV) plants all over the world. These large scale PV plants are going to be connected to power systems and one of the important subjects that should be investigated is the impact of these plants on the power system stability. Can large scale PV plants help to damp sub-synchronous resonance (SSR) and how? In this paper, this capability of a large scale PV plant is investigated. The IEEE Second Benchmark Model aggregated with a PV plant is utilized as the case study. A Wide Area Measurement System (WAMS) based conventional damping controller is designed and added to the main control loop of PV plant in order to damp the SSR and also investigation of the destructive effect of time delay in remote feedback signal. A new optimization algorithm called teaching-learning-based-optimization (TLBO) algorithm has been used for managing the optimization problems. Fast Furrier Transformer (FFT) analysis and also transient simulations of detailed nonlinear system are considered to investigate the performance of the controller. Robustness of the proposed system has been analyzed by facing the system with disturbances leading to significant changes in generator and power system operating point, fault duration time and PV plant generated power. All the simulations are carried out in MATLAB/SIMULINK environment.

  9. Effect of wind speed on performance of a solar-pv array

    Science.gov (United States)

    Thousands of solar photovoltaic (PV) arrays have been installed over the past few years, but the effect of wind speed on the predicted performance of PV arrays is not usually considered by installers. An increase in wind speed will cool the PV array, and the electrical power of the PV modules will ...

  10. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented......-forward; - and the grid current controller implemented in two different ways, using the classical proportional integral (PI) and the novel proportional resonant (PR) controllers. The control strategy was tested experimentally on 1.5 kW PV inverter....

  11. Impacts of Solar PV Arrays on Physicochemical Properties of Soil

    Science.gov (United States)

    Cagle, A.; Choi, C. S.; Macknick, J.; Ravi, S.; Bickhart, R.

    2017-12-01

    The deployment of renewable energy technologies, such as solar photovoltaics (PV), is rapidly escalating. While PV can provide clean, renewable energy, there is uncertainty regarding its potential positive and/or negative impacts on the local environment. Specifically, its effects on the physicochemical properties of the underlying soil have not been systematically quantified. This study facilitates the discussion on the effects of PV installations related to the following questions: i. How do soil moisture, infiltration rates, total organic carbon, and nitrogen contents vary spatially under a PV array? ii. How do these physicochemical properties compare to undisturbed and adjacent land covered in native vegetation? iii. Are these variations statistically significant to provide insight on whether PV installations have beneficial or detrimental impacts on soil? We address these questions through field measurements of soil moisture, infiltration, grain particle size distribution, total organic carbon, and nitrogen content at a 1-MW solar PV array located at the National Renewable Energy Laboratory in Golden, Colorado. We collect data via multiple transects underneath the PV array as as well as in an adjacent plot of undisturbed native vegetation. Measurements are taken at four positions under the solar panels; the east-facing edge, center area under the panel, west-facing edge, and interspace between panel rows to capture differences in sun exposure as well as precipitation runoff of panels. Measurements are collected before and after a precipitation event to capture differences in soil moisture and infiltration rates. Results of this work can provide insights for research fields associated with the co-location of agriculture and PV installations as well as the long term ecological impacts of solar energy development. Trends in physicochemical properties under and between solar panels can affect the viability of co-location of commercial crops in PV arrays, the

  12. Overview of PV simulation programs. Comparison to PVSUN; Oeversikt av PV simulerings-program. Jaemfoerelse med PVSUN

    Energy Technology Data Exchange (ETDEWEB)

    Perers, Bengt

    2007-02-15

    We have found a large number of PV simulation and calculation programmes available on Internet. Many of the programmes are free ware and can still be quite sophisticated like HOMER from NREL and RETSCreen from NRCan. We have made a closer look on the programmes PVSYST, HOMER, RETSCreen and compared to the Swedish PVSUN. All programmes are quite similar in use and in application areas and very easy to use nowadays. The main advantage with PVSUN for Swedish conditions is that it is based on TRNSYS knowledge available on research level. This means that the software can be adapted to new findings from research and development at a relatively low cost. The original question for this project about the availability of easy to use PV/T (photovoltaic/thermal) simulation softwares can be answered no. The PV/T technology is still mainly in the research and development stages.

  13. Prospects for PV: a learning curve analysis

    International Nuclear Information System (INIS)

    Zwaan, Bob van der; Rabi, A.

    2003-01-01

    This article gives an overview of the current state-of-the-art of photovoltaic electricity technology, and addresses its potential for cost reductions over the first few decades of the 21st century. Current PV production cost ranges are presented, both in terms of capacity installation and electricity generation, of single crystalline silicon, multi-crystalline silicon, amorphous silicon and other thin film technologies. Possible decreases of these costs are assessed, as expected according to the learning-curve methodology. We also estimate how much PV could gain if external costs (due to environmental and health damage) of energy were internalised, for example by an energy tax. Our conclusions are that, (1) mainly due its high costs, PV electricity is unlikely to play a major role in global energy supply and carbon emissions abatement before 2020, (2) extrapolating learning curves observed in the past, one can expect its costs to decrease significantly over the coming years, so that a considerable PV electricity share world-wide could materialise after 2020, (3) niche-market applications, e.g. using stand-alone systems in remote areas, are crucial for continuing 'the ride along the learning curve', (4) damage costs of conventional (fossil) power sources are considerable, and their internalisation would improve the competitiveness of PV, although probably not enough to close the current cost gap. (author)

  14. Voltage stability issues in a distribution grid with large scale PV plant

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Alvaro Ruiz; Marinopoulos, Antonios; Reza, Muhamad; Srivastava, Kailash [ABB AB, Vaesteraas (Sweden). Corporate Research Center; Hertem, Dirk van [Katholieke Univ. Leuven, Heverlee (Belgium). ESAT-ELECTA

    2011-07-01

    Solar photovoltaics (PV) has become a competitive renewable energy source. The production of solar PV cells and panels has increased significantly, while the cost is reduced due to economics of scale and technological achievements in the field. At the same time, the increase in efficiency of PV power systems and high energy prices are expected to lead PV systems to grid parity in the coming decade. This is expected to boost even more the large scale implementation of PV power plants (utility scale PV) and therefore the impact of such large scale PV plants to power system needs to be studies. This paper investigates the voltage stability issues arising from the connection of a large PV power plant to the power grid. For this purpose, a 15 MW PV power plant was implemented into a distribution grid, modeled and simulated using DIgSILENT Power Factory. Two scenarios were developed: in the first scenario, active power injected into the grid by the PV power plants was varied and the resulted U-Q curve was analyzed. In the second scenario, the impact of connecting PV power plants to different points in the grid - resulting in different strength of the connection - was investigated. (orig.)

  15. Modeling Single-Phase PV HB-ZVR Inverter Connected to Grid

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Zhu, Jieqiong

    2011-01-01

    PLECS is used to model the PV H-bridge zero voltage rectifier (HB-ZVR) inverter connected to grid and good results are obtained. First, several common topologies of PV inverters are introduced. Then the unipolar PWM control strategy is described for PV HB-ZVR inverter. Third, PLECS is briefly...... introduced. Fourth, the modeling of PV HB-ZVR inverter is presented with PLECS. Finally, a series of simulations are carried out. The simulation results tell us PLECS is very powerful tool to real power circuits and it is very easy to simulate LCL filter. They have also verified that the unipolar PWM control...... strategy is feasible to control the PV HB-ZVR inverter....

  16. Acute changes in forearm venous volume and tone using radionuclide plethysmography

    International Nuclear Information System (INIS)

    Manyari, D.E.; Malkinson, T.J.; Robinson, V.; Smith, E.R.; Cooper, K.E.

    1988-01-01

    In this investigation blood pool scintigraphy was validated as a method to study acute changes in human forearm veins. Changes in regional forearm vascular volume (capacity) and the occluding pressure-volume (P-V) relationship induced by sublingual nifedipine (NIF) and nitroglycerin (GTN) were recorded in 16 patients with simultaneous data collection by the radionuclide and the mercury-in-rubber strain-gauge techniques. The standard error of estimate (Syx) between successive control measurements using the radionuclide method was 3.1% compared with 3.2% for the strain-gauge method. The venous P-V curves were highly reproducible using both techniques. Strain gauge and radionuclide measurements of acute changes in forearm venous volume correlated well (r = 0.86; Syx = 7%, n = 156). After 20 mg of NIF or 0.6 mg of GTN, mean heart rate increased from 71 +/- 10 to 77 +/- 9 and from 68 +/- 10 to 75 +/- 11 beats/min, respectively, and group systolic blood pressure decreased from 128 +/- 22 to 120 +/- 19 and from 136 +/- 18 to 126 +/- 23 mmHg, respectively (P less than 0.05). At venous occluding pressures of 0 and 30 mmHg, the forearm vascular volume did not change after NIF (2 +/- 4 and -1 +/- 4%; P greater than 0.05), whereas it increased after GTN (8 +/- 5 and 12 +/- 7%; P less than 0.001). The forearm venous P-V relationship did not change after NIF, whereas a significant rightward shift (venodilation, with an increase in unstressed volume) occurred after GTN

  17. Manufacturing cost analysis of a parabolic dish concentrator (General Electric design) for solar thermal electric power systems in selected production volumes

    Science.gov (United States)

    1981-01-01

    The manufacturing cost of a General Electric 12 meter diameter concentrator was estimated. This parabolic dish concentrator for solar thermal system was costed in annual production volumes of 100 - 1,000 - 5,000 - 10,000 - 50,000 100,000 - 400,000 and 1,000,000 units. Presented for each volume are the costs of direct labor, material, burden, tooling, capital equipment and buildings. Also presented is the direct labor personnel and factory space requirements. All costs are based on early 1981 economics.

  18. Control Strategies for the DAB Based PV Interface System.

    Directory of Open Access Journals (Sweden)

    Hadi M El-Helw

    Full Text Available This paper presents an interface system based on the Dual Active Bridge (DAB converter for Photovoltaic (PV arrays. Two control strategies are proposed for the DAB converter to harvest the maximum power from the PV array. The first strategy is based on a simple PI controller to regulate the terminal PV voltage through the phase shift angle of the DAB converter. The Perturb and Observe (P&O Maximum Power Point Tracking (MPPT technique is utilized to set the reference of the PV terminal voltage. The second strategy presented in this paper employs the Artificial Neural Network (ANN to directly set the phase shift angle of the DAB converter that results in harvesting maximum power. This feed-forward strategy overcomes the stability issues of the feedback strategy. The proposed PV interface systems are modeled and simulated using MATLAB/SIMULINK and the EMTDC/PSCAD software packages. The simulation results reveal accurate and fast response of the proposed systems. The dynamic performance of the proposed feed-forward strategy outdoes that of the feedback strategy in terms of accuracy and response time. Moreover, an experimental prototype is built to test and validate the proposed PV interface system.

  19. Voltage rise mitigation for solar PV integration at LV grids

    DEFF Research Database (Denmark)

    Yang, Guangya; Marra, Francesco; Juamperez Goñi, Miguel Angel

    2015-01-01

    Solar energy from photovoltaic (PV) is among the fastest developing renewable energy systems worldwide. Driven by governmental subsidies and technological development, Europe has seen a fast expansion of solar PV in the last few years. Among the installed PV plants, most of them are situated...

  20. Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units

    Directory of Open Access Journals (Sweden)

    Kehe Wu

    2014-01-01

    Full Text Available An optimal capacity allocation of large-scale wind-photovoltaic- (PV- battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net present cost (NPC was calculated through hybrid iteration/adaptive hybrid genetic algorithm (HIAGA. The optimal capacity ratio among wind generator, PV array, and battery device also was calculated simultaneously. A simulation was conducted based on the wind-PV-battery unit in Zhangbei, China. Results showed that a wind-PV-battery unit could effectively minimize the NPC of power-generation units under a stable grid-connected operation. Finally, the sensitivity analysis of the wind-PV-battery unit demonstrated that the optimization result was closely related to potential wind-solar resources and government support. Regions with rich wind resources and a reasonable government energy policy could improve the economic efficiency of their power-generation units.

  1. NREL PV Working With Industry, v. 27, Third Quarter 2000

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.; Nahan, R.

    2000-09-12

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The third quarter, contains articles on several important PV-related conferences held in the prior three months: the REAP/HBCU Conference and the IPS-2000 Photochemistry Conference. The issue also contains a preview article of the PV Specialists conference held in Alaska in September. The editorialist is John Benner, PV Specialist Conference Program Chairman.

  2. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems

    International Nuclear Information System (INIS)

    Denholm, Paul; Margolis, Robert M.

    2007-01-01

    In this work, we examine some of the limits to large-scale deployment of solar photovoltaics (PV) in traditional electric power systems. Specifically, we evaluate the ability of PV to provide a large fraction (up to 50%) of a utility system's energy by comparing hourly output of a simulated large PV system to the amount of electricity actually usable. The simulations use hourly recorded solar insolation and load data for Texas in the year 2000 and consider the constraints of traditional electricity generation plants to reduce output and accommodate intermittent PV generation. We find that under high penetration levels and existing grid-operation procedures and rules, the system will have excess PV generation during certain periods of the year. Several metrics are developed to examine this excess PV generation and resulting costs as a function of PV penetration at different levels of system flexibility. The limited flexibility of base load generators produces increasingly large amounts of unusable PV generation when PV provides perhaps 10-20% of a system's energy. Measures to increase PV penetration beyond this range will be discussed and quantified in a follow-up analysis

  3. CONWIP versus POLCA: A comparative analysis in a high-mix, low-volume (HMLV) manufacturing environment

    Energy Technology Data Exchange (ETDEWEB)

    Frazee, T.; Standridge, C.

    2016-07-01

    Few studies comparing manufacturing control systems as they relate to high-mix, low-volume applications have been reported. This paper compares two strategies, constant work in process (CONWIP) and Paired-cell Overlapping Loops of Cards with Authorization (POLCA), for controlling work in process (WIP) in such a manufacturing environment. Characteristics of each control method are explained in regards to lead time impact and thus, why one may be advantageous over the other. An industrial system in the Photonics industry is studied. Discrete event simulation is used as the primary tool to compare performance of CONWIP and POLCA controls for the same WIP level with respect to lead time. Model verification and validation are accomplished by comparing historic data to simulation generated data including utilizations. Both deterministic and Poisson distributed order arrivals are considered. For the system considered in this case study, including order arrival patterns, a POLCA control can outperform a CONWIP parameter in terms of average lead time for a given level of WIP. At higher levels of WIP, the performance of POLCA and CONWIP is equivalent. The POLCA control helps limit WIP in specific áreas of the system where the CONWIP control only limits the overall WIP in the system. Thus, POLCA can generate acceptably low lead times at lower levels of WIP for conditions equivalent to the HMLV manufacturing systems studied. The study compliments and extends previous studies of CONWIP and POLCA performance to a HMLV manufacturing environment. It demonstrates the utility of discrete event simulation in that regard. It shows that proper inventory controls in bottleneck áreas of a system can reduce average lead time. (Author)

  4. Training and certification of PV installers in Europe

    International Nuclear Information System (INIS)

    Tsoutsos, Theocharis; Tournaki, Stavroula; Gkouskos, Zacharias; Masson, Gaetan; Holden, John; Huidobro, Ana; Stoykova, Evelina; Rata, Camelia; Bacan, Andro; Maxoulis, Christos; Charalambous, Anthi

    2013-01-01

    The European strategy for the coming decades sets specific targets for a sustainable growth, including reaching a 20% share of renewables in final energy consumption till 2020. To achieve this target, a number of initiatives and measures have been in force. Europe, is currently the largest market for PV systems with more than 75% of the annual worldwide installations in 2011. The favourable European policies as well as the Member States’ supporting legislations have resulted in high market growth for photovoltaics. Applying PV technologies however, requires high qualified technicians to install, repair and maintain them. Until today, national markets have been growing faster than the skilled PV installers force can satisfy. The PVTRIN, an Intelligent Energy Europe action, addresses these issues by developing a training and certification scheme for technicians active in the installation and maintenance of small scale PV systems. During the implementation of the action, a market research was conducted in the six participating countries in order to record the stakeholders’ attitudes, perceptions and considerations and to adapt the training methods, tools and materials to the national PV industry requirements and markets’ needs. Indicative results of this analysis as well as the current situation regarding relevant training and certification schemes are presented in this paper. - Highlights: ► Market research in six EU countries on PV professional Training and Certification needs. ► PVTRIN scheme integrates the national legislations and the market's needs. ► The different aspects (technical, institutional, financial) are presented

  5. PV Reconfiguration Systems: a Technical and Economic Study

    Directory of Open Access Journals (Sweden)

    Caruso M.

    2017-03-01

    Full Text Available Dynamical electrical array reconfiguration strategies for grid-connected PV systems have been proposed as solution to improve energy production due to the mismatch effect of PV plants during partial shading conditions. Strategies are based on the use of dynamic connections between PV panels given by the employment of switches that allow for each panel the series, parallel or exclusion connections, physically changing the electrical connections between the related PV modules, consequentially modifying the layout of the plant. Usually the cost of the dynamic matrix is not taken into account. This novel work evaluates the economic advantages obtained by the use of reconfiguration strategies in PV systems, by taking into consideration the price of energy due to incentives in different European and non-European countries and correlates it with the employment of two types of reconfigurators, with different internal structures. For each of the incentives proposed by the different Countries, the main strength and weakness points of the possible investment are highlighted and critically analyzed. From this analysis, it can be stated that the adoption of reconfiguration systems, in certain cases, can be a very convenient solution.

  6. Molecular detection of Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Burkholderia glumae in infected rice seeds and leaves

    Science.gov (United States)

    Polymerase chain reaction (PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR green real-time PCR were developed to facilitate simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Bur...

  7. PV GRID Advisory Paper. Consultation version: key recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Bianca; Concas, Giorgia; Cossent, Rafael; Franz, Oliver; Frias, Pablo; Hermes, Roland; Lama, Riccardo; Loew, Holger; Mateo, Carlos; Rekinger, Manoel; Sonvilla, Paolo Michele; Vandenbergh, Michel

    2014-01-15

    PV GRID is a transnational collaborative effort under the umbrella of the Intelligent Energy Europe programme. The main project goal is to enhance photovoltaic (PV) hosting capacity in distribution grids while overcoming regulatory and normative barriers hampering the application of available technical solutions. The European PV GRID advisory paper aims at providing an overview of the issues and barriers that need to be addressed in order to enhance the distribution grid hosting capacity for PV and other distributed generation (DG).To this purpose, barriers are classified as either cross-cutting challenges or specific barriers, depending on whether they have an overarching, system-wide character or rather focus on one single issue such as curtailment, self-consumption or storage. Finally, a set of preliminary recommendations on how to overcome these issues is presented, allowing for the implementation of the identified technical solutions.

  8. PV Project Finance in the United States, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David; Lowder, Travis; Schwabe, Paul

    2016-09-01

    This brief is a compilation of data points and market insights that reflect the state of the project finance market for solar photovoltaic (PV) assets in the United States as of the third quarter of 2016. This information can generally be used as a simplified benchmark of the costs associated with securing financing for solar PV as well as the cost of the financing itself (i.e., the cost of capital). Three sources of capital are considered -- tax equity, sponsor equity, and debt -- across three segments of the PV marketplace.

  9. Post-Lamination Manufacturing Process Automation for Photovoltaic Modules; Annual Technical Progress Report: 15 June 1999--14 July 2000

    Energy Technology Data Exchange (ETDEWEB)

    Nowlan, M. J.; Murach, J. M.; Sutherland, S. F.; Lewis, E. R.; Hogan, S. J.

    2000-09-29

    Spire is addressing the PVMaT project goals of photovoltaic (PV) module cost reduction and improved module manufacturing process technology. New cost-effective automation processes are being developed for post-lamination PV module assembly, where post-lamination is defined as the processes after the solar cells are encapsulated. These processes apply to both crystalline and thin-film solar cell modules. Four main process areas are being addressed: (1) Module buffer storage and handling between steps; (2) Module edge trimming, edge sealing, and framing; (3) Junction-box installation; and (4) Testing for module performance, electrical isolation, and ground-path continuity.

  10. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    The installed cost of solar photovoltaics (PV) has fallen rapidly in recent years and is expected to continue declining in the future. In this report, we focus on the potential for continued PV cost reductions in the residential market. From 2010 to 2017, the levelized cost of energy (LCOE) for residential PV declined from 52 cents per kilowatt-hour (cents/kWh) to 16 cents/kWh (Fu et al. 2017). The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office (SETO) recently set new LCOE targets for 2030, including a target of 5 cents/kWh for residential PV. We present a roadmap for achieving the SETO 2030 residential PV target. Because the 2030 target likely will not be achieved under business-as-usual trends (NREL 2017), we examine two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof replacement and installing PV as part of the new home construction process. Within both market segments, we identify four key cost-reduction opportunities: market maturation, business model integration, product innovation, and economies of scale. To assess the potential impact of these cost reductions, we compare modeled residential PV system prices in 2030 to the National Renewable Energy Laboratory's (NREL's) quarter one 2017 (Q1 2017) residential PV system price benchmark (Fu et al. 2017). We use a bottom-up accounting framework to model all component and project-development costs incurred when installing a PV system. The result is a granular accounting for 11 direct and indirect costs associated with installing a residential PV system in 2030. All four modeled pathways demonstrate significant installed-system price savings over the Q1 2017 benchmark, with the visionary pathways yielding the greatest price benefits. The largest modeled cost savings are in the supply chain, sales and marketing, overhead, and installation labor cost categories. When we translate these

  11. Solar Plus: A Holistic Approach to Distributed Solar PV

    Energy Technology Data Exchange (ETDEWEB)

    O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ardani, Kristen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-25

    Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domestic water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.

  12. Solar Plus: A Holistic Approach to Distributed Solar PV

    Energy Technology Data Exchange (ETDEWEB)

    OShaughnessy, Eric J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ardani, Kristen B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cutler, Dylan S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Margolis, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-08

    Solar 'plus' refers to an emerging approach to distributed solar photovoltaic (PV) deployment that uses energy storage and controllable devices to optimize customer economics. The solar plus approach increases customer system value through technologies such as electric batteries, smart domestic water heaters, smart air-conditioner (AC) units, and electric vehicles We use an NREL optimization model to explore the customer-side economics of solar plus under various utility rate structures and net metering rates. We explore optimal solar plus applications in five case studies with different net metering rates and rate structures. The model deploys different configurations of PV, batteries, smart domestic water heaters, and smart AC units in response to different rate structures and customer load profiles. The results indicate that solar plus improves the customer economics of PV and may mitigate some of the negative impacts of evolving rate structures on PV economics. Solar plus may become an increasingly viable model for optimizing PV customer economics in an evolving rate environment.

  13. Self-control system in storage unit of PV plants

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shaban, Saad; Mohmoud, Ali [Hadhramout Univ. of Science and Technology, Faculty of Engineering, Mukalla (Yemen)

    2000-04-01

    A new system for self-controlling of storage batteries being charged by PV plants has been developed. This provides enhanced system reliability, lower system cost, and simpler operation for the user. In this system, the only requirement is to design and select PV panels so that their voltage-sensitive region (on the I-V curve) coincides with that required for a simpler remote PV plant and for long periods. (Author)

  14. PV O&M Cost Model and Cost Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Andy

    2017-03-15

    This is a presentation on PV O&M cost model and cost reduction for the annual Photovoltaic Reliability Workshop (2017), covering estimating PV O&M costs, polynomial expansion, and implementation of Net Present Value (NPV) and reserve account in cost models.

  15. Passive cooling of standalone flat PV module with cotton wick structures

    International Nuclear Information System (INIS)

    Chandrasekar, M.; Suresh, S.; Senthilkumar, T.; Ganesh karthikeyan, M.

    2013-01-01

    Highlights: • A simple passive cooling system is developed for standalone flat PV modules. • 30% Reduction in module temperature is observed with developed cooling system. • 15.61% Increase in output power of PV module is found with developed cooling system. • Module efficiency is increased by 1.4% with cooling arrangement. • Lower thermal degradation due to narrow range of temperature characteristics. - Abstract: In common, PV module converts only 4–17% of the incoming solar radiation into electricity. Thus more than 50% of the incident solar energy is converted as heat and the temperature of PV module is increased. The increase in module temperature in turn decreases the electrical yield and efficiency of the module with a permanent structural damage of the module due to prolonged period of thermal stress (also known as thermal degradation of the module). An effective way of improving efficiency and reducing the rate of thermal degradation of a PV module is to reduce the operating temperature of PV module. This can be achieved by cooling the PV module during operation. Hence in the present work, a simple passive cooling system with cotton wick structures is developed for standalone flat PV modules. The thermal and electrical performance of flat PV module with cooling system consisting of cotton wick structures in combination with water, Al 2 O 3 /water nanofluid and CuO/water nanofluid are investigated experimentally. The experimental results are also compared with the thermal and electrical performance of flat PV module without cooling system

  16. R and D into stand-alone PV systems for export

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The current status of photovoltaic (PV) technology is reviewed for systems to provide electricity where mains supplies are unavailable, known as stand-alone PV systems. Typical applications and experiences with installed stand-alone systems are described. Economic issues and barriers to the wide use of PV systems are also examined. (UK)

  17. Retaining the Value of PV at High Penetration Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah; Bolen, Michael

    2017-01-19

    PV prices have dropped and are now attractive without incentives for peaking applications in some locations. Modeling suggests and, empirically, some regions demonstrate that as PV penetration increases its value decreases, predominantly due to a decrease in energy and capacity value. It is not apparent what technologies and price may be needed for PV to supply tens of percent of electricity in the most economically efficient manner. A 1-day workshop was co-sponsored by EPRI and NREL with support from ASU. A dozen presentations and discussions introduced how the interplay of various technologies impact the value of PV, identified technical challenges and gaps impeding implementation, and discussed future R&D needs and opportunities.

  18. PV Systems Reliability Final Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzalez, Sigifredo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schindelholz, Eric John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorensen, Neil R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yang, Benjamin Bing-Yeh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The continued exponential growth of photovoltaic technologies paves a path to a solar-powered world, but requires continued progress toward low-cost, high-reliability, high-performance photovoltaic (PV) systems. High reliability is an essential element in achieving low-cost solar electricity by reducing operation and maintenance (O&M) costs and extending system lifetime and availability, but these attributes are difficult to verify at the time of installation. Utilities, financiers, homeowners, and planners are demanding this information in order to evaluate their financial risk as a prerequisite to large investments. Reliability research and development (R&D) is needed to build market confidence by improving product reliability and by improving predictions of system availability, O&M cost, and lifetime. This project is focused on understanding, predicting, and improving the reliability of PV systems. The two areas being pursued include PV arc-fault and ground fault issues, and inverter reliability.

  19. Qualification Testing Versus Quantitative Reliability Testing of PV - Gaining Confidence in a Rapidly Changing Technology: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Repins, Ingrid L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hacke, Peter L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jordan, Dirk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kempe, Michael D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Whitfield, Kent [Underwriters Laboratories; Phillips, Nancy [DuPont; Sample, Tony [European Commission; Monokroussos, Christos [TUV Rheinland; Hsi, Edward [Swiss RE; Wohlgemuth, John [PowerMark Corporation; Seidel, Peter [First Solar; Jahn, Ulrike [TUV Rheinland; Tanahashi, Tadanori [National Institute of Advanced Industrial Science and Technology; Chen, Yingnan [China General Certification Center; Jaeckel, Bengt [Underwriters Laboratories; Yamamichi, Masaaki [RTS Corporation

    2017-10-05

    Continued growth of PV system deployment would be enhanced by quantitative, low-uncertainty predictions of the degradation and failure rates of PV modules and systems. The intended product lifetime (decades) far exceeds the product development cycle (months), limiting our ability to reduce the uncertainty of the predictions for this rapidly changing technology. Yet, business decisions (setting insurance rates, analyzing return on investment, etc.) require quantitative risk assessment. Moving toward more quantitative assessments requires consideration of many factors, including the intended application, consequence of a possible failure, variability in the manufacturing, installation, and operation, as well as uncertainty in the measured acceleration factors, which provide the basis for predictions based on accelerated tests. As the industry matures, it is useful to periodically assess the overall strategy for standards development and prioritization of research to provide a technical basis both for the standards and the analysis related to the application of those. To this end, this paper suggests a tiered approach to creating risk assessments. Recent and planned potential improvements in international standards are also summarized.

  20. Issues and prospects vis a vis Indian PV commercialization programme

    International Nuclear Information System (INIS)

    Deambi, Suneel

    1994-01-01

    Following a large scale demonstration of photovoltaic systems attending to the important requirements of lighting, water pumping, television and battery charging etc. in the remote surroundings of India, serious efforts are being made to promote the commercial use of these systems. A recently launched World Bank-supported project on PV market development has provided the much needed boost to the Indian PV programme. This paper tries to analyse the issues and prospects with respect to the National PV Commercialization Programme in view of the changing PV scenario in the country. (author)

  1. Dynamic Characteristics Analysis and Stabilization of PV-Based Multiple Microgrid Clusters

    DEFF Research Database (Denmark)

    Zhao, Zhuoli; Yang, Ping; Wang, Yuewu

    2018-01-01

    -based multiple microgrid clusters. A detailed small-signal model for PV-based microgrid clusters considering local adaptive dynamic droop control mechanism of the voltage-source PV system is developed. The complete dynamic model is then used to access and compare the dynamic characteristics of the single...... microgrid and interconnected microgrids. In order to enhance system stability of the PV microgrid clusters, a tie-line flow and stabilization strategy is proposed to suppress the introduced interarea and local oscillations. Robustly selecting of the key control parameters is transformed to a multiobjective......As the penetration of PV generation increases, there is a growing operational demand on PV systems to participate in microgrid frequency regulation. It is expected that future distribution systems will consist of multiple microgrid clusters. However, interconnecting PV microgrids may lead to system...

  2. An Improved Matlab-Simulink Model of PV Module considering Ambient Conditions

    Directory of Open Access Journals (Sweden)

    R. Ayaz

    2014-01-01

    Full Text Available A photovoltaic (PV model is proposed on Matlab/Simulink environment considering the real atmospheric conditions and this PV model is tested with different PV panels technologies (monocrystalline silicon, polycrystalline silicon, and thin film. The meteorological data of Istanbul—the location of the study—such as irradiance, cell temperature, and wind speed are taken into account in the proposed model for each technology. Eventually, the power outputs of the PV module under real atmospheric conditions are measured for resistive loading and these powers are compared with the results of proposed PV model. As a result of the comparison, it is shown that the proposed model is more compatible for monocrystal silicon and thin-film modules; however, it does not show a good correlation with polycrystalline silicon PV module.

  3. Fuzzy Logic Based MPPT Controller for a PV System

    Directory of Open Access Journals (Sweden)

    Carlos Robles Algarín

    2017-12-01

    Full Text Available The output power of a photovoltaic (PV module depends on the solar irradiance and the operating temperature; therefore, it is necessary to implement maximum power point tracking controllers (MPPT to obtain the maximum power of a PV system regardless of variations in climatic conditions. The traditional solution for MPPT controllers is the perturbation and observation (P&O algorithm, which presents oscillation problems around the operating point; the reason why improving the results obtained with this algorithm has become an important goal to reach for researchers. This paper presents the design and modeling of a fuzzy controller for tracking the maximum power point of a PV System. Matlab/Simulink (MathWorks, Natick, MA, USA was used for the modeling of the components of a 65 W PV system: PV module, buck converter and fuzzy controller; highlighting as main novelty the use of a mathematical model for the PV module, which, unlike diode based models, only needs to calculate the curve fitting parameter. A P&O controller to compare the results obtained with the fuzzy control was designed. The simulation results demonstrated the superiority of the fuzzy controller in terms of settling time, power loss and oscillations at the operating point.

  4. On the Impacts of PV Array Sizing on the Inverter Reliability and Lifetime

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2018-01-01

    , the total energy yield can be increased under weak solar irradiance conditions. However, oversizing the PV array will increase the loading of PV inverters, which may have undesired influence on the PV inverter reliability and lifetime. In that case, it may result in a negative impact on the overall PV...... energy cost, due to the increased maintenance for the PV inverters. With the above concern, this paper evaluates the reliability and lifetime of PV inverters considering the PV array sizing. The evaluation is based on the mission profile of the installation sites in Denmark and Arizona, where...... the reliability-critical components such as power devices and capacitors are considered. The results reveal that the variation in the PV array sizing can considerably deviate the reliability performance and lifetime expectation of PV inverters, especially for those installed in Denmark, where the average solar...

  5. Development of outdoor luminescence imaging for drone-based PV array inspection

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Riedel, Nicholas; Thorsteinsson, Sune

    2017-01-01

    This work has the goal to examined experimentally PV module imaging methods under natural light conditions, that will be used in a fast, accurate and automatic drone-based inspection system for PV power plants.......This work has the goal to examined experimentally PV module imaging methods under natural light conditions, that will be used in a fast, accurate and automatic drone-based inspection system for PV power plants....

  6. Is rooftop solar PV at socket parity without subsidies?

    International Nuclear Information System (INIS)

    Hagerman, Shelly; Jaramillo, Paulina; Morgan, M. Granger

    2016-01-01

    Installations of rooftop solar photovoltaic (PV) technology in the United States have increased dramatically in recent years, in large part because of state and federal subsidies. In the future, such subsidies may be reduced or eliminated. From the homeowner's perspective, solar PV is competitive when it can produce electricity at a cost equivalent to the retail electricity rate, a condition sometimes referred to as “socket parity”. In assessing the economic viability of residential solar PV, most existing literature considers only a few locations and fails to consider the differences in PV system cost and electricity prices that exist across the U.S. We combined insolation data from more than 1000 locations, installation costs by region, and county-level utility rates to provide a more complete economic assessment of rooftop solar PV across the U.S. We calculated the break-even electricity prices and evaluated the reductions in installed costs needed to reach socket parity. Among the scenarios considered, we estimate that only Hawaii has achieved socket parity without the use of subsidies. With subsidies, six states reach socket parity, yet widespread parity is still not achieved. We find that high installation costs and financing rates are two of the largest barriers to socket parity. - Highlights: • We evaluate the economic viability of residential rooftop solar PV across the U.S. • Widespread socket parity has not been achieved in the U.S. without subsidies. • Net metering may be critical for the economic viability of rooftop solar PV.

  7. Cooled solar PV panels for output energy efficiency optimisation

    International Nuclear Information System (INIS)

    Peng, Zhijun; Herfatmanesh, Mohammad R.; Liu, Yiming

    2017-01-01

    Highlights: • Effects of cooling on solar PV performance have been experimentally investigated. • As a solar panel is cooled down, the electric output can have significant increase. • A cooled solar PV system has been proposed for resident application. • Life cycle assessment suggests the cost payback time of cooled PV can be reduced. - Abstract: As working temperature plays a critical role in influencing solar PV’s electrical output and efficacy, it is necessary to examine possible way for maintaining the appropriate temperature for solar panels. This research is aiming to investigate practical effects of solar PV surface temperature on output performance, in particular efficiency. Experimental works were carried out under different radiation condition for exploring the variation of the output voltage, current, output power and efficiency. After that, the cooling test was conducted to find how much efficiency improvement can be achieved with the cooling condition. As test results show the efficiency of solar PV can have an increasing rate of 47% with the cooled condition, a cooling system is proposed for possible system setup of residential solar PV application. The system performance and life cycle assessment suggest that the annual PV electric output efficiencies can increase up to 35%, and the annual total system energy efficiency including electric output and hot water energy output can increase up to 107%. The cost payback time can be reduced to 12.1 years, compared to 15 years of the baseline of a similar system without cooling sub-system.

  8. Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) Nickel-Hydrogen Battery Performance Under LEO Cycling Conditions

    Science.gov (United States)

    Miller, Thomas B.; Lewis, Harlan L.

    2004-01-01

    LEO life cycle testing of Individual Pressure Vessel (PV) and Common Pressure Vessel (CPV) nickel-hydrogen cell packs have been sponsored by the NASA Aerospace Flight Battery Program. The cell packs have cycled under both 35% and 60% depth-of- discharge and temperature conditions of -5 C and +lO C. The packs have been on test since as early as 1992 and have generated a substantial database. This report will provide insight into performance trends as a function of the specific cell configuration and manufacturer for eight separate nickel-hydrogen battery cell packs.

  9. PV solar electricity industry: Market growth and perspective

    International Nuclear Information System (INIS)

    Hoffmann, Winfried

    2006-01-01

    The photovoltaic (PV) solar electricity market has shown an impressive 33% growth per year since 1997 until today with market support programs as the main driving force. The rationales for this development and the future projections towards a 100 billion | industry in the 2020s, by then only driven by serving cost-competitively customer needs are described. The PV market, likely to have reached about 600MW in the year 2003, is discussed according to its four major segments: consumer applications, remote industrial electrification, developing countries, and grid-connected systems. While in the past, consumer products and remote industrial applications used to be the main cause for turnover in PV, in recent years the driving forces are more pronounced in the grid-connected systems and by installations in developing countries. Examples illustrating the clear advantage of systems using PV over conventional systems based, e.g., on diesel generators in the rural and remote electrification sector are discussed. For the promotion of rural electrification combined with the creation of local business and employment, suitable measures are proposed in the context of the PV product value chain. The competitiveness of grid-connected systems is addressed, where electricity generating costs for PV are projected to start to compete with conventional utility peak power quite early between 2010 and 2020 if time-dependent electricity tariffs different for bulk and peak power are assumed. The most effective current-pulling force for grid-connected systems is found to be the German Renewable Energy (EEG) Feed-in Law where the customers are focusing on yield, performance, and long-life availability. The future growth in the above-defined four market segments are discussed and the importance of industry political actions in order to stimulate the markets either in grid-connected systems by feed-in tariff programs as well as for off-grid rural developing country applications by long

  10. PV solar electricity industry: Market growth and perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Winfried [RWE SCHOTT Solar GmbH, Carl-Zeiss-Str. 4, 63755 Alzenau (Germany)

    2006-11-23

    The photovoltaic (PV) solar electricity market has shown an impressive 33% growth per year since 1997 until today with market support programs as the main driving force. The rationales for this development and the future projections towards a 100 billion | industry in the 2020s, by then only driven by serving cost-competitively customer needs are described. The PV market, likely to have reached about 600MW in the year 2003, is discussed according to its four major segments: consumer applications, remote industrial electrification, developing countries, and grid-connected systems. While in the past, consumer products and remote industrial applications used to be the main cause for turnover in PV, in recent years the driving forces are more pronounced in the grid-connected systems and by installations in developing countries. Examples illustrating the clear advantage of systems using PV over conventional systems based, e.g., on diesel generators in the rural and remote electrification sector are discussed. For the promotion of rural electrification combined with the creation of local business and employment, suitable measures are proposed in the context of the PV product value chain. The competitiveness of grid-connected systems is addressed, where electricity generating costs for PV are projected to start to compete with conventional utility peak power quite early between 2010 and 2020 if time-dependent electricity tariffs different for bulk and peak power are assumed. The most effective current-pulling force for grid-connected systems is found to be the German Renewable Energy (EEG) Feed-in Law where the customers are focusing on yield, performance, and long-life availability. The future growth in the above-defined four market segments are discussed and the importance of industry political actions in order to stimulate the markets either in grid-connected systems by feed-in tariff programs as well as for off-grid rural developing country applications by long

  11. Further Cost Reduction of Battery Manufacturing

    Directory of Open Access Journals (Sweden)

    Amir A. Asif

    2017-06-01

    Full Text Available The demand for batteries for energy storage is growing with the rapid increase in photovoltaics (PV and wind energy installation as well as electric vehicle (EV, hybrid electric vehicle (HEV and plug-in hybrid electric vehicle (PHEV. Electrochemical batteries have emerged as the preferred choice for most of the consumer product applications. Cost reduction of batteries will accelerate the growth in all of these sectors. Lithium-ion (Li-ion and solid-state batteries are showing promise through their downward price and upward performance trends. We may achieve further performance improvement and cost reduction for Li-ion and solid-state batteries through reduction of the variation in physical and electrical properties. These properties can be improved and made uniform by considering the electrical model of batteries and adopting novel manufacturing approaches. Using quantum-photo effect, the incorporation of ultra-violet (UV assisted photo-thermal processing can reduce metal surface roughness. Using in-situ measurements, advanced process control (APC can help ensure uniformity among the constituent electrochemical cells. Industrial internet of things (IIoT can streamline the production flow. In this article, we have examined the issue of electrochemical battery manufacturing of Li-ion and solid-state type from cell-level to battery-level process variability, and proposed potential areas where improvements in the manufacturing process can be made. By incorporating these practices in the manufacturing process we expect reduced cost of energy management system, improved reliability and yield gain with the net saving of manufacturing cost being at least 20%.

  12. 40 CFR 86.094-14 - Small-volume manufacturers certification procedures.

    Science.gov (United States)

    2010-07-01

    ... vehicles (or engines) covered by the certificate (the manufacturers' sales data book or advertising... Administrator shall notify the manufacturer in writing of his intention to deny certification, setting forth the...

  13. Assessment of MPPT Techniques During the Faulty Conditions of PV System

    Directory of Open Access Journals (Sweden)

    Bhukya Krishna Naick

    2018-01-01

    Full Text Available The contribution of Distributed Generation (DG systems like wind energy systems and solar Photovoltaic (PV systems on the generation of electricity has increased. Out of these DG systems, the PV systems have gained wide popularity, because of the availability of solar energy throughout the day. Depending on the size of PV installations, a large number of PV modules can be interconnected in the form of series and parallel connection. Since a large number of modules are interconnected, it is possible for the faults in a PV array to occur due to the failure of protection system, which can cause damage to the PV module and also the decrease in the output power. This paper presents the tracking of a maximum power point under the faulty conditions of 12x5 PV array. The fault conditions that have been considered in the PV array are open circuit fault, line to ground, line to line and failure of bypass diodes. Perturb and observe, incremental conductance and fuzzy logic controller are the maximum power point tracking techniques that have been implemented. For each of the fault conditions, the results have been presented in terms of the maximum power tracked, tracking time and tracking efficiency.

  14. A Non-Modeling Exploration of Residential Solar Photovoltaic (PV) Adoption and Non-Adoption

    Energy Technology Data Exchange (ETDEWEB)

    Moezzi, Mithra [Portland State Univ., Portland, OR (United States); Ingle, Aaron [Portland State Univ., Portland, OR (United States); Lutzenhiser, Loren [Portland State Univ., Portland, OR (United States); Sigrin, Benjamin O. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Although U.S. deployment of residential rooftop solar photovoltaic (PV) systems has accelerated in recent years, PV is still installed on less than 1 percent of single-family homes. Most research on household PV adoption focuses on scaling initial markets and modeling predicted growth rather than considering more broadly why adoption occurs. Among the studies that have investigated the characteristics of PV adoption, most collected data from adopters, sometimes with additional non-adopter data, and rarely from people who considered but did not adopt PV. Yet the vast majority of Americans are non-adopters, and they are a diverse group - understanding their ways of evaluating PV adoption is important. Similarly, PV is a unique consumer product, which makes it difficult to apply findings from studies of other technologies to PV. In addition, little research addresses the experience of households after they install PV. This report helps fill some of these gaps in the existing literature. The results inform a more detailed understanding of residential PV adoption, while helping ensure that adoption is sufficiently beneficial to adopters and even non-adopters.

  15. Comparison and selection of off-grid PV systems

    Science.gov (United States)

    Izmailov, Andrey Yu.; Lobachevsky, Yakov P.; Shepovalova, Olga V.

    2018-05-01

    This work deals with comparison, evaluation and selection of PV systems of the same type based on their technical parameters either indicated in their technical specifications or calculated ones. Stand-alone and grid backed up photoelectric systems have been considered. General requirements for photoelectric system selection and evaluation have been presented that ensure system operability and required efficiency in operation conditions. Generic principles and definition of photoelectric systems characteristics have been considered. The described method is mainly targeted at PV engineering personnel and private customers purchasing PV systems. It can be also applied in the course of project contests, tenders, etc.

  16. Building PV markets: customers and prices

    International Nuclear Information System (INIS)

    Haas, Reinhard

    2002-01-01

    What makes market deployment strategies for PV successful? A group of specialists (from IEA Task 7) has been looking at the progress made so far. Here, in the first of two articles based on their report, the author presents some of their findings, including benefits and barriers for defined groups of customers; how customers for PV systems are identified, and what they are willing to pay. It also looks at current prices in different countries, and their possible trends. (Author)

  17. Modelling PV modules' performance in Sahelian climates

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2003-08-01

    This paper describes the development of a thermo-optical model designed to evaluate the temperature of a photovoltaic (PV) module in an effort to design a cost-effective cooling system for PV modules operating under high ambient temperatures. The power output of a PV module is greatly reduced when its temperature rises. This loss in efficiency is particularly significant in Sahelian regions where PV modules are subjected to high solar radiation intensities and high ambient temperatures. The newly developed thermo-optical model confirms that most of the heat in a PV module is generated in the solar cell. The results of the analysis include: the optical absorption, reflection and transmission of the solar radiation incident on the module; the temperature distribution in the module; and, the heat transfer through the top and bottom of the module. At incidence angles of 60 degrees, approximately three-quarters of the heat is generated in the solar cell. The optical efficiency is 88.44 per cent at normal incidence angle and 82.48 per cent when the incidence angle is 60 degrees. It was determined that the cooling system should be located as close as possible to the solar cell in order to increase the thermal heat flow from the cell. 4 refs., 3 tabs., 4 figs.

  18. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  19. Industry consultation on grid connection of small PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Knight, J.; Thorneycroft, J.; Cotterell, M.; Gambro, S.

    2000-07-01

    This report presents the results of consultation within the PV industry and the electricity supply industry concerning guidelines for the connection of small PV systems to the electricity network. (author)

  20. Delta Power Control Strategy for Multi-String Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With a still increasing penetration level of grid-connected PV systems, more advanced active power control functionalities have been introduced in certain grid regulations. A delta power constraint, where a portion of the active power from the PV panels is reserved during operation, is required...... for grid support (e.g., during frequency deviation). In this paper, a cost-effective solution to realize delta power control for grid-connected PV systems is presented, where the residential/commercial multi-string PV inverter configuration is adopted. This control strategy is a combination of Maximum...... for the entire PV system is achieved. Simulations and experiments have been performed on a 3-kW single-phase grid-connected PV system. The results have confirmed the effectiveness of the delta power control strategy, where the power reserve according to the delta power constraint is achieved under several...

  1. Regressing Multiple Viral Plaques and Skin Fragility Syndrome in a Cat Coinfected with FcaPV2 and FcaPV3

    Directory of Open Access Journals (Sweden)

    Alberto Alberti

    2015-01-01

    Full Text Available Feline viral plaques are uncommon skin lesions clinically characterized by multiple, often pigmented, and slightly raised lesions. Numerous reports suggest that papillomaviruses (PVs are involved in their development. Immunosuppressed and immunocompetent cats are both affected, the biological behavior is variable, and the regression is possible but rarely documented. Here we report a case of a FIV-positive cat with skin fragility syndrome and regressing multiple viral plaques in which the contemporary presence of two PV types (FcaPV2 and FcaPV3 was demonstrated by combining a quantitative molecular approach to histopathology. The cat, under glucocorticoid therapy for stomatitis and pruritus, developed skin fragility and numerous grouped slightly raised nonulcerated pigmented macules and plaques with histological features of epidermal thickness, mild dysplasia, and presence of koilocytes. Absolute quantification of the viral DNA copies (4555 copies/microliter of FcaPV2 and 8655 copies/microliter of FcaPV3 was obtained. Eighteen months after discontinuation of glucocorticoid therapy skin fragility and viral plaques had resolved. The role of the two viruses cannot be established and it remains undetermined how each of the viruses has contributed to the onset of VP; the spontaneous remission of skin lesions might have been induced by FIV status change over time due to glucocorticoid withdraw and by glucocorticoids withdraw itself.

  2. PV Life Cycle Analysis

    OpenAIRE

    Karsten Wambach

    2017-01-01

    This presentation was part of the Workshop: Recycling, reuse and resource efficiency: New solutions for a PV circular economy - Results from the projects CABRISS and ECOSOLAR. The workshop was organized within Freiberg Silicon Days 2017.

  3. Energy rating procedure for PV-modules; Energy rating procedure voor PV-modules

    Energy Technology Data Exchange (ETDEWEB)

    Van der Borg, N.J.C.M.; Jansen, M.J. [ECN Zon, Petten (Netherlands)

    2005-10-15

    The performance of PV-modules is usually characterized by the nominal power at standard test conditions. However more relevant for the end-user is the energy production. To arrive at a so-called energy rating procedure the P(G{sub i},T{sub m}) matrix is defined, which makes it possible to calculate the expected annual energy production of a PV-module at any given location with known frequency distribution of horizontal irradiation and ambient temperature. In order to make the de P(G{sub i},T{sub m}) independent of the time and location of the tests the effective irradiation (G{sub i}) is measured with a device with the same characteristics as the module under test. Such a device can be a suitable reference cell or, even better, the module under test itself. The latter, however, is only possible in case the module under test is stable in time. Measurements were performed to test the applicability of the so-called self-reference for a-Si modules. Furthermore the difference between the effective irradiance and the real irradiance (measured with a pyranometer) was quantified for the test location Petten, the Netherlands. The conclusions are: Self-reference is not applicable for a-Si modules because of the time instability, even after 1 full year of degradation; Self-reference signals (the short circuit current of the module under test) can be calibrated outdoor by comparison with a pyranometer at irradiance levels above 800 W/m{sup 2}. The uncertainty of such a calibration is within 3%; The difference between the effective irradiance and the real irradiance on annual basis at Petten is virtually zero for x-Si modules and about 1% for a-Si modules. [Dutch] Het is gebruikelijk om de prestatie van PV-modules te karakteriseren met het nominale vermogen onder standaard testcondities (STC). Echter dit nominaal vermogen geeft geen directe indicatie voor de energieopbrengst. Om tot een karakteristiek voor de energie-opbrengst (energy rating) te komen wordt de prestatie van de

  4. Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing

    International Nuclear Information System (INIS)

    Van Delft, J A; Garcia-Alonso, D; Kessels, W M M

    2012-01-01

    Atomic layer deposition (ALD) is a vapour-phase deposition technique capable of depositing high quality, uniform and conformal thin films at relatively low temperatures. These outstanding properties can be employed to face processing challenges for various types of next-generation solar cells; hence, ALD for photovoltaics (PV) has attracted great interest in academic and industrial research in recent years. In this review, the recent progress of ALD layers applied to various solar cell concepts and their future prospects are discussed. Crystalline silicon (c-Si), copper indium gallium selenide (CIGS) and dye-sensitized solar cells (DSSCs) benefit from the application of ALD surface passivation layers, buffer layers and barrier layers, respectively. ALD films are also excellent moisture permeation barriers that have been successfully used to encapsulate flexible CIGS and organic photovoltaic (OPV) cells. Furthermore, some emerging applications of the ALD method in solar cell research are reviewed. The potential of ALD for solar cells manufacturing is discussed, and the current status of high-throughput ALD equipment development is presented. ALD is on the verge of being introduced in the PV industry and it is expected that it will be part of the standard solar cell manufacturing equipment in the near future. (paper)

  5. How PV system ownership can impact the market value of residential homes

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jamie L. [Energy Sense Finance, LLC, Punta Gorda, FL (United States)

    2014-01-01

    There are multiple ways for a homeowner to obtain the electricity generating and savings benefits offered by a photovoltaic (PV) system. These include purchasing a PV system through various financing mechanisms, or by leasing the PV system from a third party with multiple options that may include purchase, lease renewal or PV system removal. The different ownership options available to homeowners presents a challenge to appraisal and real estate professionals during a home sale or refinance in terms of how to develop a value that is reflective of the PV systems operational characteristics, local market conditions, and lender and underwriter requirements. This paper presents these many PV system ownership options with a discussion of what considerations an appraiser must make when developing the contributory value of a PV system to a residential property.

  6. Analysis of Long-Term Performance of PV Systems

    NARCIS (Netherlands)

    Nordmann, T.; Clavadetscher, L.; van Sark, Wilfried; Green, M.

    This report describes the activities, conclusions and continued efforts undertaken in Subtask 1 by the participating countries in IEA-PVPS Task 13. Subtask 1 examines the PV power plant as a system. It collects and studies the data supplied from installed operating PV plants from different countries

  7. Reliability evaluation of an impedance-source PV microconverter

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Liivik, Elizaveta; Blaabjerg, Frede

    2018-01-01

    The reliability of an impedance-source PV microconverter is evaluated based on the real-field mission profile. As part of a PV microinverter, the dc-dc microconverter is firstly described. Then the electro-thermal and lifetime models are built for the most reliability-critical components, i...

  8. Estimation of PV energy production based on satellite data

    Science.gov (United States)

    Mazurek, G.

    2015-09-01

    Photovoltaic (PV) technology is an attractive source of power for systems without connection to power grid. Because of seasonal variations of solar radiation, design of such a power system requires careful analysis in order to provide required reliability. In this paper we present results of three-year measurements of experimental PV system located in Poland and based on polycrystalline silicon module. Irradiation values calculated from results of ground measurements have been compared with data from solar radiation databases employ calculations from of satellite observations. Good convergence level of both data sources has been shown, especially during summer. When satellite data from the same time period is available, yearly and monthly production of PV energy can be calculated with 2% and 5% accuracy, respectively. However, monthly production during winter seems to be overestimated, especially in January. Results of this work may be helpful in forecasting performance of similar PV systems in Central Europe and allow to make more precise forecasts of PV system performance than based only on tables with long time averaged values.

  9. Highlight of Grid-connected PV systems in administrative buildings in Egypt

    Directory of Open Access Journals (Sweden)

    Dina Said

    2017-03-01

    Full Text Available Solar energy applications are becoming increasingly common in Egypt. The abundant sunshine in Egypt, as well as the increasing competitiveness of solar energy systems including- but not limited to photovoltaic (PV, – predicts that these technologies could be weighed to be raised in Egypt.PV systems are installed on roof tiles or other parts of building structures to supplement grid utility, reduce electric bills, and provide emergency back–up energy. Moreover, they simultaneously reduce significant amounts of CO2 emissions. It is foreseen, a number of residential and public buildings in Egypt are using solar power to cut electric utility bills significantly. The approximately payback period to recover the investment costs for PV systems is up to about 5 years.  In addition, it is more economical to use PV system than grid utility systems. The two components that determine the total initial price of a grid- connected PV system are the modules and the balance of systems (BOS. The BOS includes different components such as mounting frames, inverters and site- specific installation hardware.The Government of Egypt (GOE has endorsed the deployment of PV systems through three approaches. It started with a prime minister decree to install PV projects on one-thousand of the governmental buildings. This was followed by as an initiative called "Shamsk ya Masr", and finally the Feed-in Tariff (FiT projects.Following the prime minster decree the Egyptian Electricity Holding Company (EEHC and its affiliated companies took the lead to install PV systems at the top roof of their administrative buildings and interconnect these systems to the electricity network where the suitable locations have been selected for mounting them. About 90 PV systems have been already mounted with about a capacity of 9 MW. On the other hand, "Shamsk ya Masr" has considered energy efficiency (EE so as to complement the PV systems, which will be installed on administrative

  10. Performance evaluation of stand alone hybrid PV-wind generator

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H. [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia); Yahaya, M. S. [Faculty of Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Melaka (Malaysia)

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  11. Performance evaluation of stand alone hybrid PV-wind generator

    Science.gov (United States)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  12. Performance evaluation of stand alone hybrid PV-wind generator

    International Nuclear Information System (INIS)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-01-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand

  13. Designing PV Incentive Programs to Promote Performance: A Reviewof Current Practice

    Energy Technology Data Exchange (ETDEWEB)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2007-06-01

    Increasing levels of financial support for customer-sited photovoltaic (PV) systems, provided through publicly-funded incentive programs, has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in ensuring that PV systems receiving incentives perform well. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address performance issues, and highlight important differences in the implementation of these strategies among programs.

  14. Analysis on the MPPT control of PV generation system using SPRW

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Won [Osaka University (Japan); Kim, Bong Tae; Lee, Jae Deuk; Yu, In Keun [Changwon National University (Korea)

    2001-07-01

    Photovoltaic (PV) system has been studied and watch with keen interest due to a clean and renewable power source. But, because the output power of PV system is not only unstable but also uncontrollable, the MPPT control of PV power system is still hard to be optimized with the tracking failure under the sudden fluctuation of irradiance. Authors proposed a novel transient phenomenon simulation method for PV power generation system under the real field weather condition(SPRW), and the research and development of PV power generation system is expected to be able to analyze easily and cheaply under various conditions with considering the sort of cell, the capacity of system and the used converter system. In this paper, a PV array was simulated to confirm the availability of SPRW. And, several real weather conditions were used with various MPPT controls. (author). 6 refs., 9 figs., 3 tabs.

  15. Consequences of Reducing the Cost of PV Modules on a PV Wind Diesel Hybrid System with Limited Sizing Components

    Directory of Open Access Journals (Sweden)

    Jones S. Silva

    2012-01-01

    Full Text Available The use of renewable resources for power supply in family homes has passed the stage of utopia to became a reality, with limits set by technical and economic parameters. This paper presents the results of a project originated from the initiative of a middle-class family to achieve energy independence at home. The starting point was the concept of home with “zero energy” in which the total energy available is equal to the energy consumed. The solution devised to meet the energy demand of the residence in question is a PV wind diesel hybrid system connected to the grid, with the possibility of energy storage in batteries and in the form of heating water and the environment of the house. As a restriction, the family requested that the system would represent little impact to the lifestyle and landscape. This paper aims to assess the consequences of reductions in the cost of the PV modules on the optimization space, as conceived by the software Homer. The results show that for this system, a 50% reduction in the cost of PV modules allows all viable solutions including PV modules.

  16. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV),

    Science.gov (United States)

    Office (SETO) residential 2030 photovoltaics (PV) cost target of $0.05 per kilowatt-hour by identifying could influence system costs in key market segments. This report examines two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof

  17. Hemodynamic and ADH responses to central blood volume shifts in cardiac-denervated humans

    Science.gov (United States)

    Convertino, V. A.; Thompson, C. A.; Benjamin, B. A.; Keil, L. C.; Savin, W. M.; Gordon, E. P.; Haskell, W. L.; Schroeder, J. S.; Sandler, H.

    1990-01-01

    Hemodynamic responses and antidiuretic hormone (ADH) were measured during body position changes designed to induce blood volume shifts in ten cardiac transplant recipients to assess the contribution of cardiac and vascular volume receptors in the control of ADH secretion. Each subject underwent 15 min of a control period in the seated posture, then assumed a lying posture for 30 min at 6 deg head down tilt (HDT) followed by 20 min of seated recovery. Venous blood samples and cardiac dimensions (echocardiography) were taken at 0 and 15 min before HDT, 5, 15, and 30 min of HDT, and 5, 15, and 30 min of seated recovery. Blood samples were analyzed for hematocrit, plasma osmolality, plasma renin activity (PRA), and ADH. Resting plasma volume (PV) was measured by Evans blue dye and percent changes in PV during posture changes were calculated from changes in hematocrit. Heart rate (HR) and blood pressure (BP) were recorded every 2 min. Results indicate that cardiac volume receptors are not the only mechanism for the control of ADH release during acute blood volume shifts in man.

  18. Regional respiratory inflation and deflation pressure-volume curves determined by electrical impedance tomography.

    Science.gov (United States)

    Frerichs, I; Dargaville, P A; Rimensberger, P C

    2013-06-01

    Measurement of regional lung volume changes during a quasi-static pressure-volume (PV) manoeuvre using electrical impedance tomography (EIT) could be used to assess regional respiratory system mechanics and to determine optimal ventilator settings in individual patients. Using this approach, we studied regional respiratory system mechanics in healthy and lung-injured animals, before and after surfactant administration during inflation and deflation PV manoeuvres. The comparison of the EIT-derived regional PV curves in ventral, middle and dorsal regions of the right and left lungs showed not only different amounts of hysteresis in these regions but also marked differences among different landmark pressures calculated on the inflation and deflation limbs of the curves. Regional pressures at maximum compliance as well as the lower and upper pressures of maximum compliance change differed between the inflation and deflation and increased from ventral to dorsal regions in all lung conditions. All these pressure values increased in the injured and decreased in the surfactant treated lungs. Examination of regional respiratory system mechanics using EIT enables the assessment of spatial and temporal heterogeneities in the ventilation distribution. Characteristic landmarks on the inflation and especially on the deflation limb of regional PV curves may become useful measures for guiding mechanical ventilation.

  19. Regional respiratory inflation and deflation pressure–volume curves determined by electrical impedance tomography

    International Nuclear Information System (INIS)

    Frerichs, I; Dargaville, P A; Rimensberger, P C

    2013-01-01

    Measurement of regional lung volume changes during a quasi-static pressure–volume (PV) manoeuvre using electrical impedance tomography (EIT) could be used to assess regional respiratory system mechanics and to determine optimal ventilator settings in individual patients. Using this approach, we studied regional respiratory system mechanics in healthy and lung-injured animals, before and after surfactant administration during inflation and deflation PV manoeuvres. The comparison of the EIT-derived regional PV curves in ventral, middle and dorsal regions of the right and left lungs showed not only different amounts of hysteresis in these regions but also marked differences among different landmark pressures calculated on the inflation and deflation limbs of the curves. Regional pressures at maximum compliance as well as the lower and upper pressures of maximum compliance change differed between the inflation and deflation and increased from ventral to dorsal regions in all lung conditions. All these pressure values increased in the injured and decreased in the surfactant treated lungs. Examination of regional respiratory system mechanics using EIT enables the assessment of spatial and temporal heterogeneities in the ventilation distribution. Characteristic landmarks on the inflation and especially on the deflation limb of regional PV curves may become useful measures for guiding mechanical ventilation. (paper)

  20. Recent developments in ASSERT-PV code for subchannel thermalhydraulics

    International Nuclear Information System (INIS)

    Rao, Y.F.; Hammouda, N.

    2003-01-01

    This paper summarises recent development of ASSERT-PV, and provides examples of applications to CANDU fuel bundles in predicting flow, heat transfer and sheath temperatures. The development work is intended to improve computational and phenomenological modelling capabilities of ASSERT-PV in simulating various flow scenarios in CANDU fuel bundles. The latest version of ASSERT-PV can be used for simulations of steady state or transient, subchannel thermalhydraulics in CANDU bundles under conditions up to and including post-dryout heat transfer. (author)

  1. Multi-Input Converter with MPPT Feature for Wind-PV Power Generation System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A multi-input converter (MIC to process wind-PV power is proposed, designed, analyzed, simulated, and implemented. The MIC cannot only process solar energy but deal with wind power, of which structure is derived from forward-type DC/DC converter to step-down/up voltage for charger systems, DC distribution applications, or grid connection. The MIC comprises an upper modified double-ended forward, a lower modified double-ended forward, a common output inductor, and a DSP-based system controller. The two modified double-ended forwards can operate individually or simultaneously so as to accommodate the variation of the hybrid renewable energy under different atmospheric conditions. While the MIC operates at interleaving mode, better performance can be achieved and volume also is reduced. The proposed MIC is capable of recycling the energy stored in the leakage inductance and obtaining high step-up output voltage. In order to draw maximum power from wind turbine and PV panel, perturb-and-observe method is adopted to achieve maximum power point tracking (MPPT feature. The MIC is constructed, analyzed, simulated, and tested. Simulations and hardware measurements have demonstrated the feasibility and functionality of the proposed multi-input converter.

  2. Industrial application of PV/T solar energy systems

    International Nuclear Information System (INIS)

    Kalogirou, S.A.; Tripanagnostopoulos, Y.

    2007-01-01

    Hybrid photovoltaic/thermal (PV/T) systems consist of PV modules and heat extraction units mounted together. These systems can simultaneously provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation than plain photovoltaics. Industries show high demand of energy for both heat and electricity and the hybrid PV/T systems could be used in order to meet this requirement. In this paper the application aspects in the industry of PV/T systems with water heat extraction is presented. The systems are analyzed with TRNSYS program for three locations Nicosia, Athens and Madison that are located at different latitudes. The system comprises 300 m 2 of hybrid PV/T collectors producing both electricity and thermal energy and a 10 m 3 water storage tank. The work includes the study of an industrial process heat system operated at two load supply temperatures of 60 deg. C and 80 deg. C. The results show that the electrical production of the system, employing polycrystalline solar cells, is more than the amorphous ones but the solar thermal contribution is slightly lower. A non-hybrid PV system produces about 25% more electrical energy but the present system covers also, depending on the location, a large percentage of the thermal energy requirement of the industry considered. The economic viability of the systems is proven, as positive life cycle savings are obtained in the case of hybrid systems and the savings are increased for higher load temperature applications. Additionally, although amorphous silicon panels are much less efficient than the polycrystalline ones, better economic figures are obtained due to their lower initial cost, i.e., they have better cost/benefit ratio

  3. Grid Integration of PV Power based on PHIL testing using different Interface Algorithms

    DEFF Research Database (Denmark)

    Craciun, Bogdan-Ionut; Kerekes, Tamas; Sera, Dezso

    2013-01-01

    to be more active in grid support. Therefore, a better understanding and detailed analysis of the PV systems interaction with the grid is needed; hence power hardware in the loop (PHIL) testing involving PV power became an interesting subject to look into. To test PV systems for grid code (GC) compliance......Photovoltaic (PV) power among all renewable energies had the most accelerated growth rate in terms of installed capacity in recent years. Transmission System Operators (TSOs) changed their perspective about PV power and started to include it into their planning and operation, imposing PV systems...

  4. Lifetime Evaluation of Grid-Connected PV Inverters Considering Panel Degradation Rates and Installation Sites

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2018-01-01

    Lifetime of PV inverters is affected by the installation sites related to different solar irradiance and ambient temperature profiles (also referred to as mission profiles). In fact, the installation site also affects the degradation rate of the PV panels, and thus long-term energy production...... and reliability. Prior-art lifetime analysis in PV inverters has not yet investigated the impact of PV panel degradations. This paper thus evaluates the lifetime of PV inverters considering panel degradation rates and mission profiles. Evaluations have been carried out on PV systems installed in Denmark...... and Arizona. The results reveal that the PV panel degradation rate has a considerable impact on the PV inverter lifetime, especially in the hot climate (e.g., Arizona), where the panel degrades at a faster rate. In that case, the PV inverter lifetime prediction can be deviated by 54%, if the impact of PV...

  5. Solar Plus: A Holistic Approach to Distributed Solar PV | Solar Research |

    Science.gov (United States)

    customer economics. Illustration titled "The Solar Plus Home," showing depicting the relationship rate structures that affect the customer value of PV generation. At the same time, increasing PV . These issues have prompted the PV industry to consider new ways to optimize the customer value of

  6. Maximum power point tracking controller for PV systems using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Bahgat, A.B.G. [Cairo Univ. (Egypt). Faculty of Engineering; Helwa, N.H.; Ahmad, G.E.; El Shenawy, E.T. [National Research Center, Dokki, Cairo (Egypt). Solar Energy Dept.

    2005-07-01

    This paper presents a development and implementation of a PC-based maximum power point tracker (MPPT) for PV system using neural networks (NN). The system consists of a PV module via a MPPT supplying a dc motor that drives an air fan. The control algorithm is developed to use the artificial NN for detecting the optimal operating point under different operating conditions, then the control action gives the driving signals to the MPPT. A PC is used for data acquisition, running the control algorithm, data storage, as well as data display and analysis. The system has been implemented and tested under various operating conditions. The experimental results showed that the PV system with MPPT always tracks the peak power point of the PV module under various operating conditions. The MPPT transmits about 97% of the actual maximum power generated by the PV module. The MPPT not only increases the power from the PV module to the load, but also maintains longer operating periods for the PV system. The air velocity and the air mass flow rate of the mechanical load are increased considerably, due to the increase of the PV system power. It is also found that the increase in the output energy due to using the MPPT is about 45.2% for a clear sunny day. (Author)

  7. Manufacturing processes 2 grinding, honing, lapping

    CERN Document Server

    Klocke, Fritz

    2009-01-01

    Presents a view of the most common machining and non-machining manufacturing processes. This volume describes the characteristics of abrasive tools, their design and manufacturing, followed by the fundamentals of grinding fluids. It also discusses grinding of different materials (steel, cast iron, hard and brittle materials, nickel and titanium).

  8. Angle Resolved Performance Measurements on PV Glass and Modules

    DEFF Research Database (Denmark)

    Juutilainen, Line Tollund; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    The angular response of PV-modules has significant impact on the energy production. This is especially pronounced in BIPV where installation angles often are far from optimal. Nevertheless, a gain in energy yield may be obtained by choosing a proper glass as superstrate. In this work we present...... the concept of PV balconies as cost efficient and easy way of integrating PV into buildings. The experimental work consists of the fabrication of single cell mini modules with different glass covering, and characterizing their angular response in a custom made setup, where only the direct sunlight is used...... as a light source. As a special case we estimate the annual yield for each glass in the case of PV balconies for a specific geographical location and orientation of the module....

  9. Economic and policy analysis for solar PV systems in Indiana

    International Nuclear Information System (INIS)

    Jung, Jinho; Tyner, Wallace E.

    2014-01-01

    In recent years, the energy market in the US and globally is expanding the production of renewable energy. Solar energy for electricity is also expanding in the US. Indiana is one of the states expanding solar energy with solar photovoltaic (PV) systems. Therefore, we conduct benefit cost analysis with several uncertain input variables to determine the economics of adopting solar PV systems in Indiana based on policy instruments that could increase adoption of solar PV systems. The specific objectives are analyses of the cost distribution of solar PV systems compared with grid electricity in homes and estimating the probability that solar can be cheaper than electricity from grids under different policy combinations. We first do the analysis under current policy and then the analysis under potential policy options for a variety of scenarios. Also, the results inform government policy makers on how effective the alternative policies for encouraging solar PV systems are. The results show that current policies are important in reducing the cost of solar PV systems. However, with current policies, there is only 50–50 chance of solar being cheaper than electricity from grids. If potential policies are implemented, solar PV systems can be more economical than grid electricity. - Highlights: • We investigate the economics of solar PV systems based on policy instruments. • We do scenario analyses under different combinations of policies. • We examine the probability of solar being cheaper than grid electricity for each scenario. • With current policies, there is 50–50 chance of solar being cheaper than the grid. • With depreciation and carbon tax, solar is much more economical than the grid

  10. Continuing Developments in PV Risk Management: Strategies, Solutions, and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Lowder, T.; Mendelsohn, M.; Speer, B.; Hill, R.

    2013-02-01

    As the PV industry matures, successful risk management practices will become more imperative to ensure investor confidence, control costs, and facilitate further growth. This report discusses several key aspects of risk management during the commercial- and utility-scale project life cycle, from identification of risks, to the process of mitigating and allocating those risks among project parties, to transferring those risks through insurance. The report also explores novel techniques in PV risk management, options to offload risks onto the capital markets, and innovative insurance policies (namely warranty policies) that address risks unique to the PV sector. One of the major justifications for robust risk management in the PV industry is the cost-reduction opportunities it affords. If the PV industry can demonstrate the capability to successfully manage its risks, thereby inspiring confidence in financiers, it may be able to obtain a lower cost of capital in future transactions. A lower cost of capital translates to a lower cost of energy, which will in turn enhance PV?s competitiveness at a time when it will have to rely less on subsidies to support its market penetration.

  11. Validation of PV-RPM Code in the System Advisor Model.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Freeman, Janine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This paper describes efforts made by Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) to validate the SNL developed PV Reliability Performance Model (PV - RPM) algorithm as implemented in the NREL System Advisor Model (SAM). The PV - RPM model is a library of functions that estimates component failure and repair in a photovoltaic system over a desired simulation period. The failure and repair distributions in this paper are probabilistic representations of component failure and repair based on data collected by SNL for a PV power plant operating in Arizona. The validation effort focuses on whether the failure and repair dist ributions used in the SAM implementation result in estimated failures that match the expected failures developed in the proof - of - concept implementation. Results indicate that the SAM implementation of PV - RPM provides the same results as the proof - of - concep t implementation, indicating the algorithms were reproduced successfully.

  12. Fault Analysis and Detection in Microgrids with High PV Penetration

    Energy Technology Data Exchange (ETDEWEB)

    El Khatib, Mohamed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hernandez Alvidrez, Javier [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    In this report we focus on analyzing current-controlled PV inverters behaviour under faults in order to develop fault detection schemes for microgrids with high PV penetration. Inverter model suitable for steady state fault studies is presented and the impact of PV inverters on two protection elements is analyzed. The studied protection elements are superimposed quantities based directional element and negative sequence directional element. Additionally, several non-overcurrent fault detection schemes are discussed in this report for microgrids with high PV penetration. A detailed time-domain simulation study is presented to assess the performance of the presented fault detection schemes under different microgrid modes of operation.

  13. Photovoltaic (PV) energy in the Netherlands and Switzerland. A comparison

    International Nuclear Information System (INIS)

    Van der Loo, F.; Spiessens, P.

    1995-01-01

    The development of photovoltaic (PV) energy in Switzerland and the Netherlands is compared for a number of aspects. The Swiss have realized more PV capacity. Also the economic conditions to develop PV are better in Switzerland than in the Netherlands. In Switzerland the public support is mobilized for solar energy while in the Netherlands a social basis is created for wind energy. 3 ills., 3 tabs

  14. Micro manufacturing techniques and applications

    CERN Document Server

    Du, Ruxu; Li, Zifu

    2013-01-01

    Micro/meso-scale manufacturing has been developed in research fields of machining, forming, materials and others, but its potential to industries are yet to be fully realized. The theme of the current volume was to build a bridge joining academic research and industrial needs in micro manufacturing. Among the 12 papers selected for publication are three keynote addresses onmicro and desktop factories for micro/meso-scale manufacturing applicationsand future visions, tissue cutting mechanics and applications for needlecore biopsy and guidance, and micro-texturing onto amorphous carbonmaterials

  15. Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jin; Zhang, Yingchen; Veda, Santosh; Elgindy, Tarek; Liu, Yilu

    2017-04-11

    Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interest to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.

  16. Task 9. PV deployment in developing countries. Institutional framework and financial instruments for PV deployment in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-15

    This report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at the institutional framework and financial instruments necessary for PV deployment in developing countries. This guide describes the institutional and financial aspects that need to be addressed to ensure that a long term sustainable (and profitable) PV market is established in developing countries. The guide details main fundamental functions that need to be performed such as the agents needed to perform the functions and their differing roles within the framework, the relationships between these agents and the financial instruments available. It is stated that the majority of the aspects recommended in this guide can be adopted to two main PV deployment models: direct sales and rural electrification and development programmes. It is noted that both approaches will have to be tailored and adapted to local conditions.

  17. Reliability Assessment of Transformerless PV Inverters Considering Mission Profiles

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2015-01-01

    reliability of three transformerless inverters under a yearly mission profile (i.e., solar irradiance and ambient temperature). The mission profile is translated to device thermal loading, which is used for lifetime prediction. Compar¬ison results reveal the lifetime mismatches among the power switching......Due to the small volume and high efficiency, transformerless inverters have gained much popularity in grid-connected PV applications, where minimizing leakage current injection is mandatory. This can be achieved either by modifying the modulation schemes or adding extra power switching devices......, resulting in an uneven distribution of the power losses on the switching devices. Consequently, the device thermal loading is redis-tributed, and thus may alter the entire inverter reliability performance, especially under a long-term operation. In this consideration, this paper assesses the device...

  18. Automatic fault diagnosis in PV systems with distributed MPPT

    International Nuclear Information System (INIS)

    Solórzano, J.; Egido, M.A.

    2013-01-01

    Highlights: • An automatic failure diagnosis procedure for PV systems with DMPPT is presented. • The different failures diagnosed and their effects on the PV systems are described. • No use of irradiance and temperature sensors decreasing the cost of the system. • Voltage and current analysis to diagnose different failures. • Hot-spots, localized dirt, shading, module degradation and cable losses diagnosis. - Abstract: This work presents a novel procedure for fault diagnosis in PV systems with distributed maximum power point tracking at module level—power optimizers (DC/DC) or micro-inverters (DC/AC). Apart from the power benefits obtained when an irregular irradiance distribution is present, this type of systems permit the monitoring of the PV plant parameters at the module level: voltage and current at the working power point. With these parameters, a prototype diagnosis tool has been developed in Matlab and it has been experimentally verified in a real rooftop PV generator by applying different failures. The tool can diagnose the following failures: fixed object shading (with distance estimation), localized dirt, generalized dirt, possible hot-spots, module degradation and excessive losses in DC cables. In addition, it alerts the user of the power losses produced by each failure and classifies the failures by their severity. This system does not require the use of irradiance or temperature sensors, except for the generalized dirt failure, reducing the cost of installation, especially important in small PV systems

  19. Continuous, automated manufacturing of string ribbon Si PV modules. PVMaT Phase 5A2 Subcontract: First Annual Report, 21 May 1998--20 May 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hanoka, J.I.

    1999-11-03

    This report describes the first year of a 3-year PVMaT Phase 5A2 program. Evergreen Solar will soon be expanding into a multi-megawatt facility and the PVMaT work will be used to further the objective of a high-throughput automated production line in every aspect of PV module making from producing silicon ribbon to making a finished module. The project has four task areas for this first year: crystal growth; cell manufacturing; modules; and factory layout and automation. The vast majority of the work this first year has been in the crystal growth and cell manufacturing areas. Evergreen Solar has its own unique technology in each of these areas. In crystal growth, a key goal of this PVMaT project has been developing and deploying an improved string material. The high-temperature string materials are used to stabilize the edges of the growing silicon ribbon in the String Ribbon silicon sheet growth. The result has been one of the major successes of this first year. Significant cost reductions and yield improvements have emerged from this improved string material. In addition, some of the groundwork for automation of the String Ribbon crystal growth process has been laid and shows much promise. A method for controlling the edge meniscus height was developed, and a patent has been filed based on this discovery. In the cell manufacturing area, the focus has been on reducing the number of processing steps and on design and construction of high-speed processing equipment. The possibility of eliminating all pre-diffusion etching and going directly from growth to diffusion has been demonstrated on an R and D scale. Unique designs for high-speed drying equipment and for a high-speed contact and AR-coating application machine have been developed. In the latter case, the basic concepts underlying various aspects of the machine design have been successfully tested for viability. The integration of the different components of this machine into a smoothly working whole is now

  20. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan; Ing, Edwin

    2006-03-28

    The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or ''buy-down'' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). With the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government is poised to play a much more significant future role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, and--absent an extension (for which the solar industry has already begun lobbying)--will last for a period of two years: the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2008. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions. We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for

  1. Heritage plaza parking lots improvement project- Solar PV installation

    Energy Technology Data Exchange (ETDEWEB)

    Hooks, Todd [Agua Caliente Indian Reservation, Palm Springs, CA (United States)

    2017-03-31

    The Agua Caliente Band of Cahuilla Indians (ACBCI or the “Tribe”) installed a 79.95 kW solar photovoltaic (PV) system to offset the energy usage costs of the Tribal Education and Family Services offices located at the Tribe's Heritage Plaza office building, 90I Tahquitz Way, Palm Springs, CA, 92262 (the "Project"). The installation of the Solar PV system was part of the larger Heritage Plaza Parking Lot Improvements Project and mounted on the two southern carport shade structures. The solar PV system will offset 99% of the approximately 115,000 kWh in electricity delivered annually by Southern California Edison (SCE) to the Tribal Education and Family Services offices at Heritage Plaza, reducing their annual energy costs from approximately $22,000 annually to approximately $200. The total cost of the proposed solar PV system is $240,000.

  2. Comparative performance of PV panels of different technologies over one year of exposure: Application to a coastal Mediterranean region of Algeria

    International Nuclear Information System (INIS)

    Guenounou, A.; Malek, A.; Aillerie, M.

    2016-01-01

    Highlights: • Performances of four PV panels of various technologies are compared during one year of exposure under natural outdoor conditions. • An original platform and methodology of test allow a real-time scan of several PV panel parameters. • The technologies compared are micromorph silicon, monocrystalline silicon, amorphous silicon, polycrystalline silicon. • The performance ratio point out a difference of behavior between the four technologies over one year. • Results are directly exploitable in costal regions of Mediterranean countries. - Abstract: The aim of this contribution is to compare the performance of four PV panels of different technologies for one year of exposure under natural outdoor conditions of a coastal region in the southern shore of the Mediterranean Sea. An original platform of test, especially dedicated for this study is presented describing operations and techniques used for measurements of the pertinent experimental data and for their exploitation. The four panel technologies studied are micromorph silicon (μ-Si), monocrystalline silicon (M-Si), amorphous silicon (a-Si) and polycrystalline silicon (Poli-Si). Two types of results are analyzed and presented. The first type is straight forwardly linked to the PV panels standard data calculated experimentally from measurements recorded during one year of exposure and compared with the values provided by the manufacturers in their datasheets. The second type is related to the energy yield in which the corresponding monthly and annual performance ratios of the four PV panels is calculated in two ways, using 1 – the datasheet’s value of Power Max, and 2 – the data providing from experimental campaign. In addition to the general conclusions concerning the fundamental role of the experimental study at a natural site for a good sizing of a renewable energy production system, we extend the analysis and discussion for the specific localization case of southern coastal region of

  3. Optimum Design Of On Grid Pv System Using Tracking System

    Directory of Open Access Journals (Sweden)

    Saeed Mansour

    2015-05-01

    Full Text Available Abstract The fossil fuel is a main issue in the world due to the increase of fossil fuel cost and the depletion of the fossil fuel with continuous increasing demand on electricity. With continuous decrease of PV panels cost it is interesting to consider generation of electricity from PV system. To provide electric energy to a load in a remote area where electric grid utility is not available or connection with grid utility is available there are two approaches of photovoltaic system PV without tracking system Fixed System and PV with tracking systems. The result shows that the energy production by using PV with tracking system generates more energy in comparison with fixed panels system. However the cost per produced KWH is less in case of using fixed panels. This is the backbone in choice between two approaches of photovoltaic system. In this work a system design and cost analysis for two approaches of photovoltaic system are considered.

  4. Electrification of rural areas by solar PV

    International Nuclear Information System (INIS)

    Lovejoy, D.

    1992-01-01

    More than 2000 million people, mostly in developing countries, live in rural areas without access to grid connected power. Conventional approaches to supplying power, whether through extension of existing grids or through stand-alone 'mini-grids' based on diesel generator sets, or even on renewable energy minigrids, require large investments which are unlikely to receive priority in competition with more economically and politically attractive investments in urban areas. Domestic PV lighting and broadcast reception kits (DLKs), comprising, typically, a 30-60 W panel, an automotive battery, a charge indicator, and dc fluorescent lamps can be furnished and installed for about $500. DLKs are now used in the Dominican Republic, Kenya, Sri Lanka and many other countries. DLKs provide a minimum essential service with low overheads. Given the necessary credit facilities, they can give better service at comparable costs in comparison with kerosene lamps and dry cell powered radios. They also permit a substantial degree of local manufacture, thus saving on foreign exchange. This movement is starting in many countries on a purely commercial basis. The process could be greatly accelerated if 'seed money' in the form of revolving funds could be made available. (author). 1 fig., 11 tabs

  5. Genetic Determinants of Metabolism and Benign Prostate Enlargement: Associations with Prostate Volume.

    Directory of Open Access Journals (Sweden)

    Ayush Giri

    Full Text Available Prostate enlargement leading to clinical benign prostatic hyperplasia (BPH is associated with metabolic dysregulation and obesity. The genetic basis of this association is unclear. Our objective was to evaluate whether single nucleotide polymorphisms (SNPs previously associated with metabolic disorders are also associated with prostate volume (PV. Participants included 876 men referred for prostate biopsy and found to be prostate cancer free. PV was measured by transrectal ultrasound. Samples were genotyped using the Illumina Cardio-MetaboChip platform. Multivariable adjusted linear regression models were used to evaluate SNPs (additive coding in relation to natural-log transformed (log PV. We compared SNP-PV results from biopsy-negative men to 442 men with low-grade prostate cancer with similar levels of obesity and PV. Beta-coefficients from the discovery and replication samples were then aggregated with fixed effects inverse variance weighted meta-analysis. SNP rs11736129 (near the pseudo-gene LOC100131429 was significantly associated with log-PV (beta: 0.16, p-value 1.16x10(-8 after adjusting for multiple testing. Other noteworthy SNPs that were nominally associated (p-value < 1x10(-4 with log-PV included rs9583484 (intronic SNP in COL4A2, rs10146527 (intronic SNP in NRXN3, rs9909466 (SNP near RPL32P31, and rs2241606 (synonymous SNP in SLC12A7. We found several SNPs in metabolic loci associated with PV. Further studies are needed to confirm our results and elucidate the mechanism between these genetic loci, PV, and clinical BPH.

  6. Design and optimization of cascaded DCG based holographic elements for spectrum-splitting PV systems

    Science.gov (United States)

    Wu, Yuechen; Chrysler, Benjamin; Pelaez, Silvana Ayala; Kostuk, Raymond K.

    2017-09-01

    In this work, the technique of designing and optimizing broadband volume transmission holograms using dichromate gelatin (DCG) is summarized for solar spectrum-splitting application. Spectrum splitting photovoltaic system uses a series of single bandgap PV cells that have different spectral conversion efficiency properties to more fully utilize the solar spectrum. In such a system, one or more high performance optical filters are usually required to split the solar spectrum and efficiently send them to the corresponding PV cells. An ideal spectral filter should have a rectangular shape with sharp transition wavelengths. DCG is a near ideal holographic material for solar applications as it can achieve high refractive index modulation, low absorption and scattering properties and long-term stability to solar exposure after sealing. In this research, a methodology of designing and modeling a transmission DCG hologram using coupled wave analysis for different PV bandgap combinations is described. To achieve a broad diffraction bandwidth and sharp cut-off wavelength, a cascaded structure of multiple thick holograms is described. A search algorithm is also developed to optimize both single and two-layer cascaded holographic spectrum splitters for the best bandgap combinations of two- and three-junction SSPV systems illuminated under the AM1.5 solar spectrum. The power conversion efficiencies of the optimized systems under the AM1.5 solar spectrum are then calculated using the detailed balance method, and shows an improvement compared with tandem structure.

  7. Estimation of Maximum Allowable PV Connection to LV Residential Power Networks

    DEFF Research Database (Denmark)

    Demirok, Erhan; Sera, Dezso; Teodorescu, Remus

    2011-01-01

    Maximum photovoltaic (PV) hosting capacity of low voltage (LV) power networks is mainly restricted by either thermal limits of network components or grid voltage quality resulted from high penetration of distributed PV systems. This maximum hosting capacity may be lower than the available solar...... potential of geographic area due to power network limitations even though all rooftops are fully occupied with PV modules. Therefore, it becomes more of an issue to know what exactly limits higher PV penetration level and which solutions should be engaged efficiently such as over sizing distribution...

  8. Size optimization of stand-alone photovoltaic (PV) room air conditioners

    International Nuclear Information System (INIS)

    Chen, Chien-Wei; Zahedi, A.

    2006-01-01

    Sizing of a stand-alone PV system determines the main cost of the system. PV electricity cost is determined by the amount of solar energy received, hence the actual climate and weather conditions such as solar irradiance and ambient temperature affect the size required and cost of the system. Air conditioning demand also depends on the weather conditions. Therefore, sizing a PV powered air conditioner must consider the characteristics of local climate and temperature. In this paper, sizing procedures and special considerations for air conditioning under Melbourne's climatic conditions is presented. The reliability of various PV-battery size combinations is simulated by MATLAB. As a result, excellent system performance can be predicated.(Author)

  9. Analysis of performance and device parameters of CIGS PV modules deployed outdoors

    International Nuclear Information System (INIS)

    Radue, C.; Dyk, E.E. van; Macabebe, E.Q.

    2009-01-01

    Two 20 W copper indium gallium diselenide photovoltaic modules were subjected to a thorough indoor assessment procedure, followed by outdoor deployment at the Nelson Mandela Metropolitan University as part of an ongoing study. The initial indoor measurement of maximum power output (P MAX ) of one of the modules was considerably higher than the manufacturer's rating (E.E. van Dyk, C. Radue and A.R. Gxasheka, Thin Solid Films 515 (2007) 6196). The modules were deployed on a dual-axis solar tracker and current-voltage characteristics were obtained weekly. In addition to the normal PV parameters of short-circuit current, open-circuit voltage, P MAX , fill factor and efficiency, shunt and series resistances were also monitored. The performances of the two modules are compared and analyzed and the results presented in this paper

  10. Integrating Solar PV in Utility System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  11. Is solar PV generated electricity cheap in South Africa?

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2015-07-01

    Full Text Available This presentation reflects on photovoltaic (PV) generated electricity in South Africa, and whether it is a cheaper alternative to current generated electricity in the country. It is projected that by 2019 the installed capacity of PV could...

  12. Designing PV powered LED products - Integration of PV technology in innovative products

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; de Boer, Andries; de Winter, Arjan; Haverlag, Marco; Ossenbrink Sinke, W.; Helm, P.

    2009-01-01

    This study covers the design of innovative product concepts based on a combination of PV and LED technology. The products were developed in a project that took place in 2008 and 2009 during a cooperation of the University of Twente with Philips Lighting. It is shown that surprisingly unpredictable -

  13. Changes in superior mesenteric artery Doppler waveform during reduction of cardiac stroke volume and hypotension

    DEFF Research Database (Denmark)

    Perko, M J; Perko, Grazyna; Just, S

    1996-01-01

    the hypovolemia. Alterations in pV and pulsatility indices were closely related to changes in stroke volume, and a negative correlation was found between diastolic velocities and stroke volume. regression analysis showed no significant relation between variations in velocity parameters and blood pressure. Results...

  14. Relationship of age, prostate-specific antigen, and prostate volume in Indonesian men with benign prostatic hyperplasia.

    Science.gov (United States)

    Putra, Ida Bagus O W; Hamid, Agus R A H; Mochtar, Chaidir A; Umbas, Rainy

    2016-06-01

    To investigate the relationship between age, prostate specific antigen (PSA), and prostate volume (PV) in Indonesian men with histologically proven benign prostatic hyperplasia. Data were generated from our BPH database from June 1994 until December 2013. Subjects were men with a minimum age of 40 years with chief complaint of LUTS or urinary retention, diagnosed with BPH. All patients underwent TRUS-guided prostate biopsy. Patients with PSA level >10 ng/mL were excluded from the study to exclude the possibility of occult prostate cancer. PV was measured with TRUS. Appropriate statistical tests were employed for data analysis. In all, 1638 patients were enrolled in our study. There was a statistically significant difference in PSA (P = 0.03) and PV (P Prostate volume was significantly correlated with PSA. Even though the results were weaker, these results are consistent with results in other sets of population. The results vary between different countries and thus, ethnicities. Indonesia is a populous a sociocultural and ethnically diverse country. Therefore, aside from PSA, age, and PV, when investigating men with BPH, ethnicity may also need to be taken into account.

  15. On-line monitoring system of PV array based on internet of things technology

    Science.gov (United States)

    Li, Y. F.; Lin, P. J.; Zhou, H. F.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.; Su, F. P.

    2017-11-01

    The Internet of Things (IoT) Technology is used to inspect photovoltaic (PV) array which can greatly improve the monitoring, performance and maintenance of the PV array. In order to efficiently realize the remote monitoring of PV operating environment, an on-line monitoring system of PV array based on IoT is designed in this paper. The system includes data acquisition, data gateway and PV monitoring centre (PVMC) website. Firstly, the DSP-TMS320F28335 is applied to collect indicators of PV array using sensors, then the data are transmitted to data gateway through ZigBee network. Secondly, the data gateway receives the data from data acquisition part, obtains geographic information via GPS module, and captures the scenes around PV array via USB camera, then uploads them to PVMC website. Finally, the PVMC website based on Laravel framework receives all data from data gateway and displays them with abundant charts. Moreover, a fault diagnosis approach for PV array based on Extreme Learning Machine (ELM) is applied in PVMC. Once fault occurs, a user alert can be sent via E-mail. The designed system enables users to browse the operating conditions of PV array on PVMC website, including electrical, environmental parameters and video. Experimental results show that the presented monitoring system can efficiently real-time monitor the PV array, and the fault diagnosis approach reaches a high accuracy of 97.5%.

  16. Reconciling Consumer and Utility Objectives in the Residential Solar PV Market

    Science.gov (United States)

    Arnold, Michael R.

    Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.

  17. Valley of Death analysis for polymer PV technology; Valley of Death analyse voor polymere PV technologie

    Energy Technology Data Exchange (ETDEWEB)

    Schoots, K. [ECN Beleidsstudies, Petten (Netherlands)

    2013-12-15

    This report describes the results of a qualitative study of the barriers that actors involved in the development and commercialization of polymer solar cells, may encounter. The purpose of this socio-economic research is to identify these barriers for the (market) development of thin film polymeric PV technology and to develop strategies for them in order to overcome the constraints. The necessary data are collected from interviews with actors who are active in the development and deployment of conventional solar cells. Based on the results from this study, it is conclude that it is important for the Organic PV industry to carry out many market experiments beyond the built environment. The report provides recommendations with regard to the markets in which these experiments are most likely to succeed and which drivers should be taken into account [Dutch] Dit rapport beschrijft de resultaten van een kwalitatief onderzoek naar de barrieres die actoren, betrokken bij de ontwikkeling en marktintroductie van polymere zonnecellen, kunnen tegenkomen. Het doel van dit sociaal-economische onderzoek is deze barrieres voor de (markt)ontwikkeling van dunne film polymere PV technologie te identificeren en strategieen te ontwikkelen om ze voor te zijn of ze te overbruggen. De benodigde gegevens worden verzameld uit interviews met actoren die actief zijn in de ontwikkeling en uitrol van conventionele zonnecellen. Op basis van de resultaten uit dit onderzoek komen we tot de conclusie dat het voor de Organische PV sector belangrijk is veel marktexperimenten aan te gaan buiten de gebouwde omgeving. Het rapport geeft aanbevelingen in welke soort markten deze experimenten de meeste kans van slagen hebben en met welke drivers van marktpartijen rekening moet worden gehouden.

  18. PV-wind hybrid system performance. A new approach and a case study

    International Nuclear Information System (INIS)

    Arribas, Luis; Cano, Luis; Cruz, Ignacio; Mata, Montserrat; Llobet, Ermen

    2010-01-01

    Until now, there is no internationally accepted guideline for the measurement, data exchange and analysis of PV-Wind Hybrid Systems. As there is a need for such a tool, so as to overcome the barrier that the lack of confidence due to the absence of reliability means for the development of the market of Hybrid Systems, an effort has been made to suggest one tool for PV-Wind Hybrid Systems. The suggested guidelines presented in this work are based on the existing guidelines for PV Systems, as a PV-Wind Hybrid system can be roughly thought of as a PV System to which wind generation has been added. So, the guidelines for PV Systems are valid for the PV-Wind System, and only the part referred to wind generation should be included. This has been the process followed in this work. The proposed method is applied to a case study, the CICLOPS Project, a 5 kW PV, 7.5 kW Wind Hybrid system installed at the Isolated Wind Systems Test Site that CIEMAT owns in CEDER (Soria, Spain). This system has been fully monitored through a year and the results of the monitoring activity, characterizing the long-term performance of the system are shown in this work. (author)

  19. PV-wind hybrid system performance. A new approach and a case study

    Energy Technology Data Exchange (ETDEWEB)

    Arribas, Luis; Cano, Luis; Cruz, Ignacio [Departamento de Energias Renovables, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Mata, Montserrat; Llobet, Ermen [Ecotecnia, Roc Boronat 78, 08005 Barcelona (Spain)

    2010-01-15

    Until now, there is no internationally accepted guideline for the measurement, data exchange and analysis of PV-Wind Hybrid Systems. As there is a need for such a tool, so as to overcome the barrier that the lack of confidence due to the absence of reliability means for the development of the market of Hybrid Systems, an effort has been made to suggest one tool for PV-Wind Hybrid Systems. The suggested guidelines presented in this work are based on the existing guidelines for PV Systems, as a PV-Wind Hybrid system can be roughly thought of as a PV System to which wind generation has been added. So, the guidelines for PV Systems are valid for the PV-Wind System, and only the part referred to wind generation should be included. This has been the process followed in this work. The proposed method is applied to a case study, the CICLOPS Project, a 5 kW PV, 7.5 kW Wind Hybrid system installed at the Isolated Wind Systems Test Site that CIEMAT owns in CEDER (Soria, Spain). This system has been fully monitored through a year and the results of the monitoring activity, characterizing the long-term performance of the system are shown in this work. (author)

  20. Implementation of machine learning for high-volume manufacturing metrology challenges (Conference Presentation)

    Science.gov (United States)

    Timoney, Padraig; Kagalwala, Taher; Reis, Edward; Lazkani, Houssam; Hurley, Jonathan; Liu, Haibo; Kang, Charles; Isbester, Paul; Yellai, Naren; Shifrin, Michael; Etzioni, Yoav

    2018-03-01

    In recent years, the combination of device scaling, complex 3D device architecture and tightening process tolerances have strained the capabilities of optical metrology tools to meet process needs. Two main categories of approaches have been taken to address the evolving process needs. In the first category, new hardware configurations are developed to provide more spectral sensitivity. Most of this category of work will enable next generation optical metrology tools to try to maintain pace with next generation process needs. In the second category, new innovative algorithms have been pursued to increase the value of the existing measurement signal. These algorithms aim to boost sensitivity to the measurement parameter of interest, while reducing the impact of other factors that contribute to signal variability but are not influenced by the process of interest. This paper will evaluate the suitability of machine learning to address high volume manufacturing metrology requirements in both front end of line (FEOL) and back end of line (BEOL) sectors from advanced technology nodes. In the FEOL sector, initial feasibility has been demonstrated to predict the fin CD values from an inline measurement using machine learning. In this study, OCD spectra were acquired after an etch process that occurs earlier in the process flow than where the inline CD is measured. The fin hard mask etch process is known to impact the downstream inline CD value. Figure 1 shows the correlation of predicted CD vs downstream inline CD measurement obtained after the training of the machine learning algorithm. For BEOL, machine learning is shown to provide an additional source of information in prediction of electrical resistance from structures that are not compatible for direct copper height measurement. Figure 2 compares the trench height correlation to electrical resistance (Rs) and the correlation of predicted Rs to the e-test Rs value for a far back end of line (FBEOL) metallization level

  1. ROSA-V/LSTF vessel top head LOCA tests SB-PV-07 and SB-PV-08 with break sizes of 1.0 and 0.1% and operator recovery actions for core cooling

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Takeda, Takeshi; Nakamura, Hideo

    2010-02-01

    A series of break size parameter tests (SB-PV-07 and SB-PV-08) were conducted at the Large Scale Test Facility (LSTF) of ROSA-V Program by simulating a vessel top small break loss-of-coolant accident (SBLOCA) at a pressurized water reactor (PWR). Typical phenomena to the vessel top break LOCA and effectiveness of operator recovery actions on core cooling were studied under an assumption of total failure of high pressure injection (HPI) system. The LSTF simulates a 4-loop 3423 MWt PWR by a full-height, full-pressure and 1/48 volume scaling two-loop system. Typical phenomena of vessel top break LOCA are clarified for the cases with break sizes of 1.0 and 0.1% cold leg break equivalent. The results from a 0.5% top break LOCA test (SB-PV-02) in the early ROSA-IV Program was referred during discussion. Operator actions of HPI recovery in the 1.0% top break test and steam generator (SG) depressurization in the 0.1% top break test were initiated when temperature at core exit thermocouple (CET) reached 623 K during core boil-off. Both operator actions resulted in immediate recovery of core cooling. Based on the obtained data, several thermal-hydraulic phenomena were discussed further such as relations between vessel top head water level and steam discharge at the break, and between coolant mass inventory transient and core heat-up and quench behavior, and CET performances to detect core heat-up under influences of three-dimensional (3D) steam flows in the core and core exit. (author)

  2. Comparative Analysis and Considerations for PV Interconnection Standards in the United States and China

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-01-01

    The main objectives of this report are to evaluate China's photovoltaic (PV) interconnection standards and the U.S. counterparts and to propose recommendations for future revisions to these standards. This report references the 2013 report Comparative Study of Standards for Grid-Connected PV System in China, the U.S. and European Countries, which compares U.S., European, and China's PV grid interconnection standards; reviews various metrics for the characterization of distribution network with PV; and suggests modifications to China's PV interconnection standards and requirements. The recommendations are accompanied by assessments of four high-penetration PV grid interconnection cases in the United States to illustrate solutions implemented to resolve issues encountered at different sites. PV penetration in China and in the United States has significantly increased during the past several years, presenting comparable challenges depending on the conditions of the grid at the point of interconnection; solutions are generally unique to each interconnected PV installation or PV plant.

  3. Residential Solar PV Planning in Santiago, Chile: Incorporating the PM10 Parameter

    Directory of Open Access Journals (Sweden)

    Gustavo Cáceres

    2014-12-01

    Full Text Available This paper addresses an economic study of the installation of photovoltaic (PV solar panels for residential power generation in Santiago, Chile, based on the different parameters of a PV system, such as efficiency. As a performance indicator, the Levelized Cost of Energy (LCOE was used, which indicates the benefit of the facility vs. the current cost of electrical energy. In addition, due to a high level of airborne dusts typically associated with PM10, the effect of the dust deposition on PV panels’ surfaces and the effect on panel performance are examined. Two different scenarios are analyzed: on-grid PV plants and off-grid PV plants.

  4. Modeling of a VMJ PV array under Gaussian high intensity laser power beam condition

    Science.gov (United States)

    Eom, Jeongsook; Kim, Gunzung; Park, Yongwan

    2018-02-01

    The high intensity laser power beaming (HILPB) system is one of the most promising systems in the long-rang wireless power transfer field. The vertical multi-junction photovoltaic (VMJ PV) array converts the HILPB into electricity to power the load or charges a battery. The output power of a VMJ PV array depends mainly on irradiance values of each VMJ PV cells. For simulating an entire VMJ PV array, the irradiance profile of the Gaussian HILPB and the irradiance level of the VMJ PV cell are mathematically modeled first. The VMJ PV array is modeled as a network with dimension m*n, where m represents the number of VMJ PV cells in a column, and n represents the number of VMJ PV cells in a row. In order to validate the results obtained in modeling and simulation, a laboratory setup was developed using 55 VMJ PV array. By using the output power model of VMJ PV array, we can establish an optimal power transmission path by the receiver based on the received signal strength. When the laser beam from multiple transmitters aimed at a VMJ PV array at the same time, the received power is the sum of all energy at a VMJ PV array. The transmitter sends its power characteristics as optically coded laser pulses and powers as HILPB. Using the attenuated power model and output power model of VMJ PV array, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters.

  5. Fundamental Issues in Manufacturing Photovoltaic Modules Beyond the Current Generation of Materials

    Directory of Open Access Journals (Sweden)

    G. F. Alapatt

    2012-01-01

    Full Text Available Many methods to improve the solar cell’s efficiency beyond current generation of bulk and thin film of photovoltaic (PV devices have been reported during the last five decades. Concepts such as multiple exciton generations (MEG, carrier multiplication (CM, hot carrier extraction, and intermediate band solar cells have fundamental flaws, and there is no experimental evidence of fabricating practical higher efficiency solar cells based on the proposed concepts. To take advantages of quantum features of nanostructures for higher performance PV devices, self-assembly-based bottom-up processing techniques are not suitable for manufacturing due to inherent problems of variability, defects, reliability, and yield. For processing nanostructures, new techniques need to be invented with the features of critical dimensional control, structural homogeneity, and lower cost of ownership as compared to the processing tools used in current generations of bulk and thin-film solar cells.

  6. Scalable fabrication of perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen; Klein, Talysa R.; Kim, Dong Hoe; Yang, Mengjin; Berry, Joseph J.; van Hest, Maikel F. A. M.; Zhu, Kai

    2018-03-27

    Perovskite materials use earth-abundant elements, have low formation energies for deposition and are compatible with roll-to-roll and other high-volume manufacturing techniques. These features make perovskite solar cells (PSCs) suitable for terawatt-scale energy production with low production costs and low capital expenditure. Demonstrations of performance comparable to that of other thin-film photovoltaics (PVs) and improvements in laboratory-scale cell stability have recently made scale up of this PV technology an intense area of research focus. Here, we review recent progress and challenges in scaling up PSCs and related efforts to enable the terawatt-scale manufacturing and deployment of this PV technology. We discuss common device and module architectures, scalable deposition methods and progress in the scalable deposition of perovskite and charge-transport layers. We also provide an overview of device and module stability, module-level characterization techniques and techno-economic analyses of perovskite PV modules.

  7. Optimized statistical parametric mapping for partial-volume-corrected amyloid positron emission tomography in patients with Alzheimer's disease and Lewy body dementia

    Science.gov (United States)

    Oh, Jungsu S.; Kim, Jae Seung; Chae, Sun Young; Oh, Minyoung; Oh, Seung Jun; Cha, Seung Nam; Chang, Ho-Jong; Lee, Chong Sik; Lee, Jae Hong

    2017-03-01

    We present an optimized voxelwise statistical parametric mapping (SPM) of partial-volume (PV)-corrected positron emission tomography (PET) of 11C Pittsburgh Compound B (PiB), incorporating the anatomical precision of magnetic resonance image (MRI) and amyloid β (A β) burden-specificity of PiB PET. First, we applied region-based partial-volume correction (PVC), termed the geometric transfer matrix (GTM) method, to PiB PET, creating MRI-based lobar parcels filled with mean PiB uptakes. Then, we conducted a voxelwise PVC by multiplying the original PET by the ratio of a GTM-based PV-corrected PET to a 6-mm-smoothed PV-corrected PET. Finally, we conducted spatial normalizations of the PV-corrected PETs onto the study-specific template. As such, we increased the accuracy of the SPM normalization and the tissue specificity of SPM results. Moreover, lobar smoothing (instead of whole-brain smoothing) was applied to increase the signal-to-noise ratio in the image without degrading the tissue specificity. Thereby, we could optimize a voxelwise group comparison between subjects with high and normal A β burdens (from 10 patients with Alzheimer's disease, 30 patients with Lewy body dementia, and 9 normal controls). Our SPM framework outperformed than the conventional one in terms of the accuracy of the spatial normalization (85% of maximum likelihood tissue classification volume) and the tissue specificity (larger gray matter, and smaller cerebrospinal fluid volume fraction from the SPM results). Our SPM framework optimized the SPM of a PV-corrected A β PET in terms of anatomical precision, normalization accuracy, and tissue specificity, resulting in better detection and localization of A β burdens in patients with Alzheimer's disease and Lewy body dementia.

  8. AN EXPLORATORY STUDY OF MANUFACTURING STRATEGY OF PACKAGING PRODUCT-MANUFACTURING COMPANIES IN INDIA

    Directory of Open Access Journals (Sweden)

    Pradip P. Patil

    2012-09-01

    Full Text Available This paper presents finding of a survey on manufacturing strategy implementation (MSI adopted by the Indian packaging product manufacturing companies (IPPMC. Though the companies differ in terms of prod uct types (shape, method, content and material of packaging, conversion system, sales volume and sophistication of machinery used, they share common purpose that are used for packaging the product s . With growth in demand for consumer products, packaging f orms basis of differentiating products from competitors. The survey shows emphasis on implementation of manufacturing strategy, key decision areas, identifies competitive priorities, order winners. To get insight, three companies are selected for detailed case studies.

  9. Seasonal energy storage - PV-hydrogen systems

    Energy Technology Data Exchange (ETDEWEB)

    Leppaenen, J. [Neste Oy/NAPS (Finland)

    1998-10-01

    PV systems are widely used in remote areas e.g. in telecommunication systems. Typically lead acid batteries are used as energy storage. In northern locations seasonal storage is needed, which however is too expensive and difficult to realise with batteries. Therefore, a PV- battery system with a diesel backup is sometimes used. The disadvantages of this kind of system for very remote applications are the need of maintenance and the need to supply the fuel. To overcome these problems, it has been suggested to use hydrogen technologies to make a closed loop autonomous energy storage system

  10. POWERED LED LIGHTING SUPPLIED FROM PV CELLS

    Directory of Open Access Journals (Sweden)

    Tirshu M.

    2011-12-01

    Full Text Available The paper deals with practical realization of efficient lighting system based on LED’s of 80W total power mounted on corridor ceiling total length of which is 120m and substitutes existing traditional lighting system consisting of 29 lighting blocks with 4 fluorescent lamps each of them and summary power 2088W. Realized lighting system is supplied from two photovoltaic panels of power 170W. Generated energy by PV cells is accumulated in two accumulators of 75Ah capacity and from battery by means of specialized convertor is applied to lighting system. Additionally, paper present data measured by digital weather station (solar radiation and UV index, which is mounted near of PV cells and comparative analyze of solar energy with real energy generated by PV cells is done. Measured parameters by digital weather station are stored by computer in on-line mode.

  11. Solar PV O&M Standards and Best Practices - Existing Gaps and Improvement Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Balfour, John R. [High Performance PV, Phoenix, AZ (United States); Keating, T. J. [SunSpec Alliance, San Jose, CA (United States)

    2014-11-01

    As greater numbers of photovoltaic (PV) systems are being installed, operations & maintenance (O&M) activities will need to be performed to ensure the PV system is operating as designed over its useful lifetime. To mitigate risks to PV system availability and performance, standardized procedures for O&M activities are needed to ensure high reliability and long-term system bankability. Efforts are just getting underway to address the need for standard O&M procedures as PV gains a larger share of U.S. generation capacity. Due to the existing landscape of how and where PV is installed, including distributed generation from small and medium PV systems, as well as large, centralized utility-scale PV, O&M activities will require different levels of expertise and reporting, making standards even more important. This report summarizes recent efforts made by solar industry stakeholders to identify the existing standards and best practices applied to solar PV O&M activities, and determine the gaps that have yet to be, or are currently being addressed by industry.

  12. Performance of a PV module augmented by a plane reflector

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, G. E; Hussein, H. M. S; Mohamad, M. A [Dokki, Giza (Egypt)

    2000-07-01

    This paper presents a comparative experimental study on the performance of a PV module augmented by a south facing titled plane reflector and another identical one without reflector. The tilt angles of the two PV modules and reflector overhang are selected to be according to a previous theoretical study by the authors. The reflector tilt angle has been changed once a month so that the reflected beams from the plane reflector cover the total surface area of the PV module all days of every month during the high solar radiation period (i.e. three hours before and after solar noon). The study has been carried out on the two PV modules for a complete year under the actual atmospheric conditions of Cairo, Egypt. The measuring system used in the study comprises a data acquisition system, a computer, an electronic load and weather station. The experimental results indicate that the plane reflector enhances the yearly output energy of the PV module y about 22%. [Spanish] Este articulo presenta un estudio comparativo experimental sobre el rendimiento de un modulo de PV aumentado por un reflector plano inclinado mirando hacia el sur y otro identico sin reflector. Los angulos de inclinacion de los dos modulos y el reflector sobresaliente se seleccionan para que esten de acuerdo con un estudio teorico previo hecho por los autores. El angulo de inclinacion del reflector se cambio una vez al mes de manera que los rayos reflejados por el reflector plano cubrieran el area total de la superficie del modulo de PV todos los dias de cada mes durante el periodo de radiacion alto (o sea tres horas antes y despues del medio dia solar). El estudio ha sido llevado a cabo en dos modulos de PV durante un ano completo bajo condiciones atmosfericas reales de El Cairo, Egipto. El sistema de medicion usado en el estudio comprende un sistema de adquisicion de datos, una computadora, una memoria electronica y una estacion climatologica. Los resultados experimentales indican que el reflector plano

  13. Xanthomonas citri pv. citri pathotypes

    DEFF Research Database (Denmark)

    Di Lorenzo, Flaviana; Silipo, Alba; Gersby, Lotte Bettina Andersen

    2017-01-01

    Xanthomonas citri pv. citri is the pathogen responsible for Asiatic citrus canker, one of the most serious citrus diseases worldwide. The lipopolysaccharide (LPS) molecule has been demonstrated to be involved in X. citri pv. citri virulence. Despite enormous progress in investigations of the mole...

  14. PV inverter test setup for European efficiency, static and dynamic MPPT efficiency evaluation

    DEFF Research Database (Denmark)

    Sera, Dezso; Teodorescu, Remus; Valentini, Massimo

    2008-01-01

    This paper concerns the evaluation of performance of grid-connected PV inverters in terms of conversion efficiency, European efficiency, static and dynamic MPP efficiency. Semi-automated tests were performed in the PV laboratory of the Institute of Energy Technology at the Aalborg University...... (Denmark) on a commercial transformerless PV inverter. Thanks to the available experimental test setups, that provide the required high measuring accuracy, and the developed PV simulator, which is required for MPPT performance evaluation, PV Inverters can be pretested before being tested by accredited...

  15. Increased Age-Dependent Risk of Death Associated With lukF-PV-Positive Staphylococcus aureus Bacteremia

    DEFF Research Database (Denmark)

    Knudsen, Trine A; Skov, Robert; Petersen, Andreas

    2016-01-01

    BACKGROUND: Panton-Valentine leucocidin is a Staphylococcus aureus virulence factor encoded by lukF-PV and lukS-PV that is infrequent in S aureus bacteremia (SAB), and, therefore, little is known about risk factors and outcome of lukF-PV/lukS-PV-positive SAB. METHODS: This report is a register......-based nationwide observational cohort study. lukF-PV was detected by polymerase chain reaction. Factors associated with the presence of lukF-PV were assessed by logistic regression analysis. Adjusted 30-day hazard ratios of mortality associated with lukF-PV status were computed by Cox proportional hazards...... regression analysis. RESULTS: Of 9490 SAB cases, 129 were lukF-PV-positive (1.4%), representing 14 different clonal complexes. lukF-PV was associated with younger age, absence of comorbidity, and methicillin-resistant S aureus. In unadjusted analysis, mortality associated with lukF-PV-positive SAB...

  16. What's stopping a huge expansion of the PV market?

    International Nuclear Information System (INIS)

    Varadi, P.F.

    1998-01-01

    Over the past 25 years the terrestrial PV industry has turned into a billion-dollar global business. The necessary technology is available and substantial market growth is continuing. It has often been said that the cost of PV must come down further before the technology really takes off. However the author argues here that the dominant segments of the market are not price-sensitive and that the future explosive expansion of PV markets will need financing on a global basis, assured quality in the products, and the institution of an extensive public-awareness programme of advertising, promotion and education. (author)

  17. Atherosclerotic plaque volume and composition in symptomatic carotid arteries assessed with multidetector CT angiography; relationship with severity of stenosis and cardiovascular risk factors

    International Nuclear Information System (INIS)

    Rozie, S.; Weert, T.T. de; Monye, C. de; Homburg, P.J.; Tanghe, H.L.J.; Lugt, A. van der; Dippel, D.W.J.

    2009-01-01

    The purpose of this study was to examine the volume and the composition of atherosclerotic plaque in symptomatic carotid arteries and to investigate the relationship between these plaque features and the severity of stenosis and the presence of cardiovascular risk factors. One hundred patients with cerebrovascular symptoms underwent CT angiography. We measured plaque volume (PV) and the relative contribution of plaque components (calcifications, fibrous tissue, and lipid) in the symptomatic artery. The contribution of different components was measured as the number of voxels within defined ranges of HU values (calcification >130 HU, fibrous tissue 60-130 HU, lipid core <60 HU). Fifty-seven patients had atherosclerotic plaque in the symptomatic carotid artery. The severity of stenosis and PV were moderately correlated. Age and smoking were independently related to PV. Patients with hypercholesterolemia had significantly less lipid and more calcium in their plaques than patients without hypercholesterolemia. Other cardiovascular risk factors were not significantly related to PV or plaque composition. Luminal stenosis of the carotid artery partly reflects the amount of atherosclerotic carotid disease. Plaque volume and plaque composition are associated with cardiovascular risk factors. (orig.)

  18. Atherosclerotic plaque volume and composition in symptomatic carotid arteries assessed with multidetector CT angiography; relationship with severity of stenosis and cardiovascular risk factors

    Energy Technology Data Exchange (ETDEWEB)

    Rozie, S.; Weert, T.T. de; Monye, C. de; Homburg, P.J.; Tanghe, H.L.J.; Lugt, A. van der [Erasmus MC, University Medical Center Rotterdam, Departments of Radiology, Rotterdam (Netherlands); Dippel, D.W.J. [Erasmus MC, University Medical Center Rotterdam, Department of Neurology, PO Box 2040, Rotterdam (Netherlands)

    2009-09-15

    The purpose of this study was to examine the volume and the composition of atherosclerotic plaque in symptomatic carotid arteries and to investigate the relationship between these plaque features and the severity of stenosis and the presence of cardiovascular risk factors. One hundred patients with cerebrovascular symptoms underwent CT angiography. We measured plaque volume (PV) and the relative contribution of plaque components (calcifications, fibrous tissue, and lipid) in the symptomatic artery. The contribution of different components was measured as the number of voxels within defined ranges of HU values (calcification >130 HU, fibrous tissue 60-130 HU, lipid core <60 HU). Fifty-seven patients had atherosclerotic plaque in the symptomatic carotid artery. The severity of stenosis and PV were moderately correlated. Age and smoking were independently related to PV. Patients with hypercholesterolemia had significantly less lipid and more calcium in their plaques than patients without hypercholesterolemia. Other cardiovascular risk factors were not significantly related to PV or plaque composition. Luminal stenosis of the carotid artery partly reflects the amount of atherosclerotic carotid disease. Plaque volume and plaque composition are associated with cardiovascular risk factors. (orig.)

  19. Assessment of subchannel code ASSERT-PV for flow-distribution predictions

    International Nuclear Information System (INIS)

    Nava-Dominguez, A.; Rao, Y.F.; Waddington, G.M.

    2014-01-01

    Highlights: • Assessment of the subchannel code ASSERT-PV 3.2 for the prediction of flow distribution. • Open literature and in-house experimental data to quantify ASSERT-PV predictions. • Model changes assessed against vertical and horizontal flow experiments. • Improvement of flow-distribution predictions under CANDU-relevant conditions. - Abstract: This paper reports an assessment of the recently released subchannel code ASSERT-PV 3.2 for the prediction of flow-distribution in fuel bundles, including subchannel void fraction, quality and mass fluxes. Experimental data from open literature and from in-house tests are used to assess the flow-distribution models in ASSERT-PV 3.2. The prediction statistics using the recommended model set of ASSERT-PV 3.2 are compared to those from previous code versions. Separate-effects sensitivity studies are performed to quantify the contribution of each flow-distribution model change or enhancement to the improvement in flow-distribution prediction. The assessment demonstrates significant improvement in the prediction of flow-distribution in horizontal fuel channels containing CANDU bundles

  20. Assessment of subchannel code ASSERT-PV for flow-distribution predictions

    Energy Technology Data Exchange (ETDEWEB)

    Nava-Dominguez, A., E-mail: navadoma@aecl.ca; Rao, Y.F., E-mail: raoy@aecl.ca; Waddington, G.M., E-mail: waddingg@aecl.ca

    2014-08-15

    Highlights: • Assessment of the subchannel code ASSERT-PV 3.2 for the prediction of flow distribution. • Open literature and in-house experimental data to quantify ASSERT-PV predictions. • Model changes assessed against vertical and horizontal flow experiments. • Improvement of flow-distribution predictions under CANDU-relevant conditions. - Abstract: This paper reports an assessment of the recently released subchannel code ASSERT-PV 3.2 for the prediction of flow-distribution in fuel bundles, including subchannel void fraction, quality and mass fluxes. Experimental data from open literature and from in-house tests are used to assess the flow-distribution models in ASSERT-PV 3.2. The prediction statistics using the recommended model set of ASSERT-PV 3.2 are compared to those from previous code versions. Separate-effects sensitivity studies are performed to quantify the contribution of each flow-distribution model change or enhancement to the improvement in flow-distribution prediction. The assessment demonstrates significant improvement in the prediction of flow-distribution in horizontal fuel channels containing CANDU bundles.

  1. Numerical investigation of heat pipe-based photovoltaic–thermoelectric generator (HP-PV/TEG) hybrid system

    International Nuclear Information System (INIS)

    Makki, Adham; Omer, Siddig; Su, Yuehong; Sabir, Hisham

    2016-01-01

    Highlights: • Integration of TE generators with a heat pipe-based PV module as a hybrid system is proposed. • Numerical transient modeling based on the energy balance equations of the system was performed. • Integration of TE generators with PV module aid operating the solar cells at a steady level in harsh conditions. - Abstract: Photovoltaic (PV) cells are able to absorb about 80% of the solar spectral irradiance, however, certain percentage accounts for electricity conversion depending on the cell technology employed. The remainder energy however, can elevate the silicon junction temperature in the PV encapsulation perilously, resulting in deteriorated performance. Temperature rise at the PV cell level is addressed as one of the most critical issues that can seriously degrade and shortens the life-time of the PV cells, hence thermal management of the PV module during operation is considered essential. Hybrid PV designs which are able to simultaneously generate electrical energy and utilize the waste heat have been proven to be the most promising solution. In this study, theoretical investigation of a hybrid system comprising of thermoelectric generator integration with a heat pipe-based Photovoltaic/Thermal (PV/T) absorber is proposed and evaluated. The system presented incorporates a PV panel for direct electricity generation, a heat pipe for excessive heat absorption from the PV cells and a thermoelectric generator (TEG) performing direct heat-to-electricity conversion. A mathematical model based on the energy balance within the system is developed to evaluate the performance of the hybrid integration and the improvements associated with the thermal management of PV cells. Results are presented in terms of the overall system efficiency compared to a conventional PV panel under identical operating conditions. The integration of TEG modules with PV cells in such way aid improving the performance of the PV cells in addition to utilizing the waste

  2. Final Technical Report: Advanced Measurement and Analysis of PV Derate Factors.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burton, Patrick D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The Advanced Measurement and Analysis of PV Derate Factors project focuses on improving the accuracy and reducing the uncertainty of PV performance model predictions by addressing a common element of all PV performance models referred to as “derates”. Widespread use of “rules of thumb”, combined with significant uncertainty regarding appropriate values for these factors contribute to uncertainty in projected energy production.

  3. Review of Artificial Abrasion Test Methods for PV Module Technology

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muller, Matt T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpson, Lin J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This review is intended to identify the method or methods--and the basic details of those methods--that might be used to develop an artificial abrasion test. Methods used in the PV literature were compared with their closest implementation in existing standards. Also, meetings of the International PV Quality Assurance Task Force Task Group 12-3 (TG12-3, which is concerned with coated glass) were used to identify established test methods. Feedback from the group, which included many of the authors from the PV literature, included insights not explored within the literature itself. The combined experience and examples from the literature are intended to provide an assessment of the present industry practices and an informed path forward. Recommendations toward artificial abrasion test methods are then identified based on the experiences in the literature and feedback from the PV community. The review here is strictly focused on abrasion. Assessment methods, including optical performance (e.g., transmittance or reflectance), surface energy, and verification of chemical composition were not examined. Methods of artificially soiling PV modules or other specimens were not examined. The weathering of artificial or naturally soiled specimens (which may ultimately include combined temperature and humidity, thermal cycling and ultraviolet light) were also not examined. A sense of the purpose or application of an abrasion test method within the PV industry should, however, be evident from the literature.

  4. Competitive Manufacturing Dynamics

    DEFF Research Database (Denmark)

    Rymaszewska, Anna; Christensen, Irene; Karlsson, Christer

    to constantly improve this process in terms of time to volume, according to predefined cost and quality measures. The importance of the success of this process can lead to a significant creation of competitive advantage. This paper addresses the challenges of the manufacturing ramp-up process in the context...

  5. Dynamic response evaluation of sensorless MPPT method for hybrid PV-DFIG wind turbine system

    Directory of Open Access Journals (Sweden)

    Danvu Nguyen

    2016-01-01

    Full Text Available This research proposes a sensorless Maximum Power Point Tracking (MPPT method for a hybrid Photovoltaic-Wind system, which consists of Photovoltaic (PV system and Doubly-Fed Induction Generator (DFIG Wind Turbine. In the hybrid system, the DC/DC converter output of the PV system is directly connected to the DC-link of DFIG’s back-to-back converter. Therefore, the PV inverter and its associated circuit can be removed in this structure. Typically, the PV power is monitored by using PV current sensor and PV voltage sensor for MPPT. In this paper, the powers of converters on grid side and rotor side of DFIG are used to estimate the PV power without the PV current sensor. That can efficiently reduce the cost of the hybrid system. The detailed analysis of the sensorless MPPT method, which includes derived equations and operation response, is also presented in this paper. In addition, an overview of PV-DFIG research in literature is stated to supply comprehensive knowledge of related research.

  6. Annual Prediction Output of an RADTIRC-PV Module

    Directory of Open Access Journals (Sweden)

    Daria Freier

    2018-03-01

    Full Text Available The number of solar photovoltaic (PV installations has been increasing worldwide but the high capital cost of installation continues to be the main challenge, particularly in many developing countries. The solar concentrator, a device that focuses the sunlight onto a small area, has the potential to minimize the use of expensive PV material while maintaining the system’s performance, ultimately bringing down its overall cost. This study aims to predict the annual electrical output of a specific concentrator design called the rotationally asymmetrical dielectric totally internally reflecting concentrator (RADTIRC. The aforementioned design is assumed to be installed in Berlin/Brandenburg, Germany. First, a short review of concentrators is provided. Next, a description of the RADTIRC and the previous research that revolved around it are provided. Afterwards, the key parameters that are needed to determine the annual electrical output of the RADTIRC are explained before presenting the results of the simulations. It was found that the yearly energy yield was increased by a factor of 2.29 when the RADTIRC-PV module was used when compared with the non-concentrating PV module.

  7. The German experience with grid-connected PV-systems

    International Nuclear Information System (INIS)

    Erge, T.; Hoffmann, V.U.; Kiefer, K.

    2001-01-01

    Grid-connected photovoltaics experienced increasing attention in Germany in recent years and are expected to face a major boost at the beginning of the new millennium. Highlights like the German 100,000-Roofs-Solar-Programme, PV programmes at schools financed by utilities and governments (e.g. 'SONNEonline' by PreussenElektra, 'Sonne in der Schule' by BMWi and 'Sonne in der Schule' by Bayernwerk) and large centralised installations of MW size ('Neue Messe Munchen' by Bayernwerk and 'Energiepark Mont-Cenis' by state Nordrhein-Westfalen, Stadtwerke Herne and European Union) count for the potential of grid-connected PV. Today in Germany a typical grid-connected PV installation of 1 kW nominal power produces average annual energy yields of 700 kWh (dependent on location and system components) and shows a high operating availability. The price per kWh from PV installations is still significantly higher than the price for conventional energy, but new funding schemes and cost models (like the large increase of feed-in tariff in Germany due to the Act on Granting Priority to Renewable Energy Sources in 2000) give optimism about the future. (Author)

  8. Importance of policy for energy system transformation: Diffusion of PV technology in Japan and Germany

    International Nuclear Information System (INIS)

    Chowdhury, Sanjeeda; Sumita, Ushio; Islam, Ashraful; Bedja, Idriss

    2014-01-01

    Photovoltaic (PV) has the highest cost reduction potential among all renewable energy sources (RES). To overcome institutional barriers, developing the technology, and creating an initial market, policies are needed. Comparative case studies of Japan and German PV sector from 1990 to 2011 were developed. Japan dominated the PV industry during 1994–2004, PV market increased to 290 MW in 2005. After 2005 Japan's PV market decreased. German PV market increased from 44 MW in 2000 to 7.5 GW in 2011. The reason behind Japanese PV market decline was the unaligned energy policy and termination of incentives. This paper discusses about successful policy implementation and the impact of policy for the diffusion of PV technology. The analysis section of this paper shows how much the PV technology has been diffused during the period of 1990–2011 and finally what will make the transformation process successful. - Highlights: • We studied PV diffusion of Japan and German considering public energy policy, environmental policy and cost reduction. • This study determined that policy and incentives are responsible for cost reduction. • Japans concentration on nuclear energy more than renewables, made the PV diffusion slow. • Successful implementation of FIT helped Germany reduce PV electricity price more than grid electricity

  9. PV solar electricity: status and future

    Science.gov (United States)

    Hoffmann, Winfried

    2006-04-01

    Within the four main market segments of PV solar electricity there are already three areas competitive today. These are off-grid industrial and rural as well as consumer applications. The overall growth within the past 8 years was almost 40 % p.a. with a "normal" growth of about 18 % p.a. for the first three market segments whereas the grid connected market increased with an astonishing 63 % p.a. The different growth rates catapulted the contribution of grid connected systems in relation to the total market from about one quarter 6 years ago towards more than three quarters today. The reason for this development is basically due to industry-politically induced market support programs in the aforementioned countries. It is quite important to outline under which boundary conditions grid connected systems will be competitive without support programs like the feed in tariff system in Germany, Spain and some more to come in Europe as well as investment subsidies in Japan, US and some other countries. It will be shown that in a more and more liberalized utility market worldwide electricity produced by PV solar electricity systems will be able to compete with their generating cost against peak power prices from utilities. The point of time for this competitiveness is mainly determined by the following facts: 1. Price decrease for PV solar electricity systems leading to an equivalent decrease in the generated cost for PV produced kWh. 2. Development of a truly liberalized electricity market. 3. Degree of irradiation between times of peak power demand and delivery of PV electricity. The first topic is discussed using price experience curves. Some explanations will be given to correlate the qualitative number of 20 % price decrease for doubling cumulative worldwide sales derived from the historic price experience curve with a more quantitative analysis based on our EPIA-Roadmap (productivity increase and ongoing improvements for existing technologies as well as development

  10. User acceptance of diesel/PV hybrid system in an island community

    International Nuclear Information System (INIS)

    Phuangpornpitak, N.; Kumar, S.

    2011-01-01

    This paper presents the results of a study conducted at a rural (island) community to understand the role of PV hybrid system installed on an island. Until 2004, most islanders had installed diesel generators in their homes to generate electricity, which was directly supplied to appliances or stored in the batteries for later use. A field survey was carried out to study the user satisfaction of the PV hybrid system in the island community. The attitude of islanders to the PV hybrid system was mostly positive. The islanders can use more electricity, the supply of which can meet the demand. A comparison of pollutions before and after installation of the PV hybrid system was made along with the interviews with the users. The data show that the users are highly satisfied with the PV hybrid system which can reduce environmental impact, especially air and noise pollutions. New opportunities as a result of access to electric service include studying and reading at night that were not possible earlier. All the islanders use the PV hybrid system and more importantly, no one found that the system made their life worse as compared to the earlier state of affairs. (author)

  11. 60 kW{sub p} PV-system school centre Spalterhals Barsinghausen. Synergies in energetical retrofit of school building; 60-kW{sub p}-PV-Anlage Schulzentrum Spalterhals Barsinghausen. Synergien bei der energetischen Sanierung eines Schulgebaeudes

    Energy Technology Data Exchange (ETDEWEB)

    Blumenscheit, R.; Hettwer, C. [Stadt Barsinghausen (Germany); Diestelmeier, C.; Wiegmann, A. [Raumplan, Hannover (Germany); Decker, B.; Hennig, C.; Mack, M. [Solar Engineering Decker and Mack GmbH, Hannover (Germany)

    2004-07-01

    The completely building-integrated PV plant with a nominal power of 60.54 kW{sub p} uses synergies with constructional and energetical retrofit of a school building. The PV plant is operated by the town of Barsinghausen (30 km southwest of Hannover). The federal state of Lower Saxony gave a grant of 36,61%, the Hannover region of 12,39% to the total investment of 824.190 Euro (incl. building construction). The PV plant is divided into five units. PV modules serve as the curtain wall of heat-insulated building core (blue PV cold facade: 12.67 kW{sub p}, grey PV breastwork: 8,38 kW{sub p}). Semitransparent PV modules substitute the insulating glass shed lights of a music room (4,28 kW{sub p}) and the glass roofing of an inner court (12,17 kW{sub p} - all modules: Solarnova) giving an optimum of sun-shading and daylighting. Thin-film PV modules on plastic foils (23,04 kW{sub p} - Alwitra EVALON Solar, Unisolar amorphous Si cells) are tested as flat roof standard retrofit. The PV system has 29 string inverters mostly of SMA Sunny Boy family mounted near to the PV modules in operational rooms or in crawling cellars. The PV operator gets a reimbursement of 0,481 Euro per kWh PV energy according to EEG. The PV system is monitored in detail within 'Solaroffensive' of Lower Saxony. Visualization tableaus inform the public about actual irradiance, actual power and annual energy. (orig.) [German] Schulgebaeude und insbesondere grosse Schulzentren aus den 70er Jahren haben geeignete Dachflaechen zur Errichtung von grossen PV-Anlagen (typisch >1.000 m{sup 2}). Zugleich sind Schulen ein idealer Ort, um vor breitem Publikum (Schueler, Lehrer, Eltern) Planung, Installation und Betrieb einer PV-Anlage zu demonstrieren. In Barsinghausen, am Fusse des Deisters etwa 30 km suedwestlich von Hannover, entstand zwischen August 2001 und Maerz 2003 eine innovative PV-Modellanlage am Schulzentrum 'Am Spalterhals', die verschiedene Arten der PV-Gebaeudeintegration erprobt

  12. NREL Suite of Tools for PV and Storage Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Elgqvist, Emma M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Salasovich, James A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-03

    Many different factors such as the solar resource, technology costs and incentives, utility cost and consumption, space available, and financial parameters impact the technical and economic potential of a PV project. NREL has developed techno-economic modeling tools that can be used to evaluate PV projects at a site.

  13. Models for a stand-alone PV system[Photovoltaic

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P.; Hansen, L.H.; Bindner, H.

    2000-12-01

    This report presents a number of models for modelling and simulation of a stand-alone photovoltaic (PV) system with a battery bank verified against a system installed at Risoe National Laboratory. The work has been supported by the Danish Ministry of Energy, as a part of the activities in the Solar Energy Centre Denmark. The study is carried out at Risoe National Laboratory with the main purpose to establish a library of simple mathematical models for each individual element of a stand-alone PV system, namely solar cells, battery, controller, inverter and load. The models for PV module and battery are based on the model descriptions found in the literature. The battery model is developed at UMASS and is known as the Kinetic Battery Model (KiBaM). The other component models in the PV system are based on simple electrical knowledge. The implementation is done using Matlab/Simulink, a simulation program that provides a graphical interface for building models as modular block diagrams. The non-linear behaviour of the battery, observed in the measurements, is investigated and compared to the KiBaM model's performance. A set of linear Black box models are estimated based on the battery measurements. The performance of the best linear Black box model is compared to the KiBaM model. A validation of each of the implemented mathematical model is performed by an interactive analysis and comparison between simulation results and measurements, acquired from the stand-alone PV system at Risoe. (au)

  14. Models for a stand-alone PV system

    DEFF Research Database (Denmark)

    Hansen, A.D.; Sørensen, Poul Ejnar; Hansen, L.H.

    2001-01-01

    are based on the model descriptions found in the literature. The battery model is developed at UMASS and is known as the Kinetic Battery Model(KiBaM). The other component models in the PV system are based on simple electrical knowledge. The implementation is done using Matlab/Simulink, a simulation program......This report presents a number of models for modelling and simulation of a stand-alone photovoltaic (PV) system with a battery bank verified against a system installed at Risø National Laboratory. The work has been supported by the Danish Ministry ofEnergy, as a part of the activities in the Solar...... Energy Centre Denmark. The study is carried out at Risø National Laboratory with the main purpose to establish a library of simple mathematical models for each individual element of a stand-alone PVsystem, namely solar cells, battery, controller, inverter and load. The models for PV module and battery...

  15. Structurally designed attenuated subunit vaccines for S. aureus LukS-PV and LukF-PV confer protection in a mouse bacteremia model.

    Directory of Open Access Journals (Sweden)

    Hatice Karauzum

    Full Text Available Previous efforts towards S. aureus vaccine development have largely focused on cell surface antigens to induce opsonophagocytic killing aimed at providing sterile immunity, a concept successfully applied to other Gram-positive pathogens such as Streptococcus pneumoniae. However, these approaches have largely failed, possibly in part due to the remarkable diversity of the staphylococcal virulence factors such as secreted immunosuppressive and tissue destructive toxins. S. aureus produces several pore-forming toxins including the single subunit alpha hemolysin as well as bicomponent leukotoxins such as Panton-Valentine leukocidin (PVL, gamma hemolysins (Hlg, and LukED. Here we report the generation of highly attenuated mutants of PVL subunits LukS-PV and LukF-PV that were rationally designed, based on an octameric structural model of the toxin, to be deficient in oligomerization. The attenuated subunit vaccines were highly immunogenic and showed significant protection in a mouse model of S. aureus USA300 sepsis. Protection against sepsis was also demonstrated by passive transfer of rabbit immunoglobulin raised against LukS-PV. Antibodies to LukS-PV inhibited the homologous oligomerization of LukS-PV with LukF-PV as well heterologous oligomerization with HlgB. Importantly, immune sera from mice vaccinated with the LukS mutant not only inhibited the PMN lytic activity produced by the PVL-positive USA300 but also blocked PMN lysis induced by supernatants of PVL-negative strains suggesting a broad protective activity towards other bicomponent toxins. These findings strongly support the novel concept of an anti-virulence, toxin-based vaccine intended for prevention of clinical S. aureus invasive disease, rather than achieving sterile immunity. Such a multivalent vaccine may include attenuated leukotoxins, alpha hemolysin, and superantigens.

  16. Determining the Impact of Steady-State PV Fault Current Injections on Distribution Protection

    Energy Technology Data Exchange (ETDEWEB)

    Seuss, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grijalva, Santiago [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This report investigates the fault current contribution from a single large PV system and the impact it has on existing distribution overcurrent protection devices. Assumptions are made about the modeling of the PV system under fault to perform exhaustive steady - state fault analyses throughout distribution feeder models. Each PV interconnection location is tested to determine how the size of the PV system affects the fault current measured by each protection device. This data is then searched for logical conditions that indicate whether a protection device has operated in a manner that will cause more customer outages due to the addition of the PV system. This is referred to as a protection issue , and there are four unique types of issues that have been identified in the study. The PV system size at which any issues occur are recorded to determine the feeder's PV hosting capacity limitations due to interference with protection settings. The analysis is carried out on six feeder models. The report concludes with a discussion of the prevalence and cause of each protection issue caused by PV system fault current.

  17. NREL PV working with industry, Third quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.; Cook, G.

    1998-12-04

    This quarterly report encourages cooperative R and D by providing the US PV industry with information on activities and capabilities of the laboratories. This issue contains information on the CIS and CdTe R and D teams, an editorial by Richard King on the stand-out accomplishments of the PV Program, and an overview of the NCPV Program Review Meeting highlighting the strength of US photovoltaics.

  18. How to Estimate Demand Charge Savings from PV on Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, Pieter J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bird, Lori A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    Rooftop photovoltaic (PV) systems are compensated through retail electricity tariffs - and for commercial and industrial customers, these are typically comprised of three components: a fixed monthly charge, energy charges, and demand charges. Of these, PV's ability to reduce demand charges has traditionally been the most difficult to estimate. In this fact sheet we explain the basics of demand charges, and provide a new method that a potential customer or PV developer can use to estimate a range of potential demand charge savings for a proposed PV system. These savings can then be added to other project cash flows, in assessing the project's financial performance.

  19. Sustainable recycling technologies for Solar PV off-grid system

    Science.gov (United States)

    Uppal, Bhavesh; Tamboli, Adish; Wubhayavedantapuram, Nandan

    2017-11-01

    Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP) recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology) while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  20. EcPV2 DNA in equine genital squamous cell carcinomas and normal genital mucosa.

    Science.gov (United States)

    Bogaert, Lies; Willemsen, Anouk; Vanderstraeten, Eva; Bracho, Maria A; De Baere, Cindy; Bravo, Ignacio G; Martens, Ann

    2012-07-06

    Squamous cell carcinoma (SCC) represents the most common genital malignant tumor in horses. Similar to humans, papillomaviruses (PVs) have been proposed as etiological agents and recently Equine papillomavirus type 2 (EcPV2) has been identified in a subset of genital SCCs. The goals of this study were (1) to determine the prevalence of EcPV2 DNA in tissue samples from equine genital SCCs, penile intraepithelial neoplasia (PIN) and penile papillomas, using EcPV2-specific PCR, (2) to examine the prevalence of latent EcPV2 infection in healthy genital mucosa and (3) to determine genetic variability within EcPV2 and to disentangle phylogenetic relationships of EcPV2 among PVs. EcPV2 DNA was detected in all but one penile SCC (15/16), in all PIN lesions (8/8) and penile papillomas (4/4). Additionally, EcPV2 DNA was demonstrated in one of two metastasized lymph nodes, one contact metastasis in the mouth, two vaginal and one anal lesion. In healthy horses, EcPV2 DNA was detected in 10% (4/39) of penile swabs but in none of vulvovaginal swabs (0/20). This study confirms the presence of EcPV2 DNA in equine genital SCCs and shows its involvement in anal lesions, a lymph node and contact metastases. Latent EcPV2 presence was also shown in normal male genital mucosa. We found that different EcPV2 variants cocirculate among horses and that EcPV2 is related to the Delta+Zeta PVs and is only a very distant relative of high-risk human PVs causing genital cancer. Thus, similar viral tropism and similar malignant outcome of the infection do not imply close evolutionary relationship. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. [Blood plasma volume dynamics in monkeys during immersion].

    Science.gov (United States)

    Krotov, V P; Burkovskaia, T E; Dotsenko, M A; Gordeev, Iu V; Nosovskiĭ, A M; Chel'naia, N A

    2004-01-01

    Dynamics of blood plasma volume (PV) was studied with indirect methods (hematocrit count, hemoglobin, total protein and high-molecular protein) during 9-d immersion of monkeys Macaca mulatta. The animals were donned in waterproof suits, motor restrained in space seat liners and immersed down to the xiphisternum. Two monkeys were immersed in the bath at one time. The suits were changed every day under ketamine (10 mg/kg of body mass). There were two groups with 12 animals in each. The first group was kept in the bath 3 days and the second--9 days. Prior to the experiment, the animals had been trained to stay in the seat liner put down into the dry bath. It was shown that already two days of exposure to the hydrostatic forces (approximately 15 mm Hg) and absence of negative pressure breathing reduced PV by 18-20% on the average in all animals. Subsequent PV dynamics was individual by character; however, PV deficit persisted during 4 days of immersion in the whole group. In this period, albumin filtration was increased significantly, whereas high-molecular protein filtration was increased to a less degree. During the remaining days in immersion PV regained normal values. Ten days of readaptation (reclined positioning of monkeys brought back into cage) raised VP beyond baseline values. This phenomenon can be attributed to the necessity to provide appropriate venous return and sufficient blood supply of organs and tissues following extension of blood vessels capacity.

  2. Simulation of Power Produced by a Building Added PV System in Indonesia using virtual reality

    NARCIS (Netherlands)

    Veldhuis, A.J.; Reinders, Angelina H.M.E.

    2014-01-01

    In this study a PV system will be simulated using virtual reality software for PV system simulations -called VR4PV - to show the effectiveness of the modelling of PV systems on buildings which are placed in the tropics. The PV system used for this study has been installed in Papua, Indonesia and

  3. STAT FAQs Part 2: Lifetime of PV Panels | State, Local, and Tribal

    Science.gov (United States)

    Governments | NREL STAT FAQs Part 2: Lifetime of PV Panels STAT FAQs Part 2: Lifetime of PV Panels April 23, 2018 by Benjamin Mow The Solar Technical Assistance Team (STAT) receives many is the productive lifetime and degradation rate of solar PV panels. Question: What is the productive

  4. A Survey of State and Local PV Program Response to Financial Innovation and Disparate Federal Tax Treatment in the Residential PV Sector

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Holt, Edward [Ed Holt & Associates, Inc., Harpswell, ME (United States)

    2015-06-01

    High up-front costs and a lack of financing options have historically been the primary barriers to the adoption of photovoltaics (PV) in the residential sector. State clean energy funds, which emerged in a number of states from the restructuring of the electricity industry in the mid-to-late 1990s, have for many years attempted to overcome these barriers through PV rebate and, in some cases, loan programs. While these programs (rebate programs in particular) have been popular, the residential PV market in the United States only started to achieve significant scale in the last five years – driven in large part by an initial wave of financial innovation that led to the rise of third-party ownership.

  5. Spatio-temporal analysis of regional PV generation

    DEFF Research Database (Denmark)

    Nuño Martinez, Edgar; Cutululis, Nicolaos Antonio

    2016-01-01

    Photovoltaic (PV) power is growing in importance worldwide and hence needs to be represented in operation and planning of power system. As opposed to traditional generation technologies, it is characterized by exhibiting both a high variability and a significant spatial dependence. This paper...... presents a fundamental analysis of regional solar generation time series, aiming to potentially facilitate large-scale solar integration. It will focus on characterizing the underlying dependence structure at the system level as well as describing both statistical and temporal properties of regional PV...

  6. An Emulated PV Source Based on an Unilluminated Solar Panel and DC Power Supply

    Directory of Open Access Journals (Sweden)

    Zhongfu Zhou

    2017-12-01

    Full Text Available This paper provides a review on various PV simulator technologies as well as presents a novel equivalent photovoltaic (PV source that was constructed by using un-illuminated solar panels and a DC power supply that operates in current source mode. The constructed PV source was used for testing photovoltaic converters and various maximum power point tracking (MPPT algorithms required for capturing the maximum possible output power. The mathematical model and electrical characteristics of the constructed PV source were defined and analyzed in detail in the paper. The constructed PV source has the advantages of high bandwidth over the switching circuit based PV simulators. The constructed PV source has been used for testing various power electronics converters and various control techniques effectively in laboratory environments for researchers and university students.

  7. Methodology for assessment of characteristics of PV water pumping systems using a DC power supply; Metodologia de levantamento de caracteristicas de sistemas fotovoltaicos de bombeamento d'agua utilizando fonte de alimentacao CC

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Olga de Castro; Fraidenraich, Naum [Universidade Federal de Pernambuco (FAE/DEN/UFPE), Recife, PE (Brazil). Grupo de Fontes Alternativas de Energia. Dept. de Energia Nuclear], Emails: ocv@ufpe.br, nf@ufpe.br; Galdino, Marco Antonio [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)], E-mail: marcoag@cepel.br

    2010-07-01

    This article describes a methodology which was used to reduce the time required to perform experimental assessment of characteristic curves (flowrate vs. solar irradiance) of PV water pumping systems showing different configurations. The characteristic curves are proposed to be obtained from two other types of curves: flowrate vs. DC power - measured using a DC power supply adjusted to simulate the operation of the PV panel in the system, and DC power vs. solar irradiance - obtained through outdoors measurements using PV panels. It is demonstrated how is possible to reduce the number of days of outdoor measurements necessary for obtaining these curves when the systems under test show configurations using the same pumping heights or the same PV panels. The flowrates, thus also the daily pumped volumes, calculated using the curves obtained through this methodology are considered the upper limits of system performance. (author)

  8. New approach to exploit optimally the PV array output energy by maximizing the discharge rate of a directly-coupled photovoltaic water pumping system (DC/PVPS)

    International Nuclear Information System (INIS)

    Boutelhig, Azzedine; Hadj Arab, Amar; Hanini, Salah

    2016-01-01

    Highlights: • Mismatches on a designed d-c PV pumping system have been highlighted. • A new approach predicting the maximal discharge has been developed. • The approach has been discussed versus its linearity coefficient. • The approach effectiveness has been investigated and approved. • Theoretical and experimental obtained values have been compared and approved. - Abstract: A directly-coupled photovoltaic water pumping system (DC/PVPS) is generally designed by considering the worst month conditions on lowest daylight-hours, the maximum monthly daily required water volume and tank to store the excess water. In case of absence of hydraulic storage (water tank) or it is not enough dimensioned, the extra amount of pumped water is lost or is not reasonably used, when the system is operated on full daylight-hour. Beside that the extra amount of energy, which might be produced by the PV generator, is not exploited, when the system is operated only during a specified period-time needed to satisfy the demand. Beyond the accurate design that satisfying the end-user, a new approach has been developed as target to exploit maximally the PV array energy production, by maximizing the discharge rate of the system. The methodology consists of approaching maximally the demanded energy to the supplied energy on full operating day. Based on the demand/supply energy condition, the approach has been developed, upon the PV array and the pump performance models. The issued approach predicts the maximum delivery capacity of the system on monthly daily water volumes versus the monthly daily averages of solar irradiation, previously recorded. Its efficacy has been investigated and discussed according to the estimated and experimental values of its linearity coefficient, following the characterization tests of a designed system, carried out at our pumping test facility in Ghardaia (Algeria). The new theoretically and experimentally obtained flow-rates fit well, except

  9. Analysis of performance and device parameters of CIGS PV modules deployed outdoors

    Energy Technology Data Exchange (ETDEWEB)

    Radue, C. [Physics Department, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth, 6031 (South Africa)], E-mail: chantelle.radue@nmmu.ac.za; Dyk, E.E. van; Macabebe, E.Q. [Physics Department, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth, 6031 (South Africa)

    2009-02-02

    Two 20 W copper indium gallium diselenide photovoltaic modules were subjected to a thorough indoor assessment procedure, followed by outdoor deployment at the Nelson Mandela Metropolitan University as part of an ongoing study. The initial indoor measurement of maximum power output (P{sub MAX}) of one of the modules was considerably higher than the manufacturer's rating (E.E. van Dyk, C. Radue and A.R. Gxasheka, Thin Solid Films 515 (2007) 6196). The modules were deployed on a dual-axis solar tracker and current-voltage characteristics were obtained weekly. In addition to the normal PV parameters of short-circuit current, open-circuit voltage, P{sub MAX}, fill factor and efficiency, shunt and series resistances were also monitored. The performances of the two modules are compared and analyzed and the results presented in this paper.

  10. Smoothing out the volatility of South Africa's wind and PV energy resources

    CSIR Research Space (South Africa)

    Bofinger, S

    2015-10-01

    Full Text Available Solar PV & wind are the cheapest new-build options per kWh in South Africa. By 2020, a mix of PV, wind and flexible gas (LNG-based) costs the same as new coal, even without any value given to excess wind/PV energy. South Africa has abundant solar...

  11. Lifetime Evaluation of Grid-Connected PV Inverters Considering Panel Degradation Rates and Installation Sites

    OpenAIRE

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso; Blaabjerg, Frede

    2018-01-01

    Lifetime of PV inverters is affected by the installation sites related to different solar irradiance and ambient temperature profiles (also referred to as mission profiles). In fact, the installation site also affects the degradation rate of the PV panels, and thus long-term energy production and reliability. Prior-art lifetime analysis in PV inverters has not yet investigated the impact of PV panel degradations. This paper thus evaluates the lifetime of PV inverters considering panel degrada...

  12. Interconnecting PV on New York City's Secondary Network Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, K; Coddington, M; Burman, K; Hayter, S; Kroposki, B; Watson, and A

    2009-11-01

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and

  13. The impact of photovoltaic (PV) installations on downwind particulate matter concentrations: Results from field observations at a 550-MWAC utility-scale PV plant.

    Science.gov (United States)

    Ravikumar, Dwarakanath; Sinha, Parikhit

    2017-10-01

    With utility-scale photovoltaic (PV) projects increasingly developed in dry and dust-prone geographies with high solar insolation, there is a critical need to analyze the impacts of PV installations on the resulting particulate matter (PM) concentrations, which have environmental and health impacts. This study is the first to quantify the impact of a utility-scale PV plant on PM concentrations downwind of the project site. Background, construction, and post-construction PM 2.5 and PM 10 (PM with aerodynamic diameters construction through a wind-shielding effect. The results show that the (1) confidence intervals of the mean PM concentrations during construction overlap with or are lower than background concentrations for three of the four BAM stations; and (2) post-construction PM 2.5 and PM 10 concentrations downwind of the PV installation are significantly lower than the background concentrations at three of the four BAM stations. At the fourth BAM station, downwind post-construction PM 2.5 and PM 10 concentrations increased marginally by 5.7% and 2.6% of the 24-hr ambient air quality standards defined by the U.S. Environmental Protection Agency, respectively, when compared with background concentrations, with the PM 2.5 increase being statistically insignificant. This increase may be due to vehicular emissions from an access road near the southwest corner of the site or a drainage berm near the south station. The findings demonstrate the overall environmental benefit of downwind PM emission abatement from a utility-scale PV installation in desert conditions due to wind shielding. With PM emission reductions observed within 10 months of completion of construction, post-construction monitoring of downwind PM levels may be reduced to a 1-yr period for other projects with similar soil and weather conditions. This study is the first to analyze impact of a utility photovoltaic (PV) project on downwind particulate matter (PM) concentration in desert conditions. The PM

  14. Numerical modelling of phase-change material used for PV panels cooling

    Science.gov (United States)

    Sellami, Assia; Elotmani, Rabie; Kandoussi, Khalid; Eljouad, Mohamed; Hajjaji, Abdelowahed; Boutaous, M'Hamed

    2017-12-01

    Passive cooling of a PV solar panel using phase-change material (PCM) may play an important role in increasing efficiency of PV cells. Because it does not need a maintenance and does not release greenhouses gases, PCM seems to be a good way to decrease the among of overheating of PV cell. The aims of this paper describes a detailed multiphysical issue in order to understand the effect of PCM (RT25) in keeping PV cell temperature close to ambient. The study is focused on modeling the heat and mass transfer in a PCM domain by modifying the buoyancy term in momentum equation. Due to a phase-change and free convection, transient incompressible flow is taken into account to explain the dynamic variations of the velocity profile and viscosity distribution. With standard condition of irradiation and heat flux on both sides of the PV panel, a melt front has been tracked by the energy equation, which gives a good argument for the temperature evolution during phase-change.

  15. Current limitations of trend curve analysis for the prediction of reactor PV embrittlement

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.

    1986-02-01

    In operating light water reactor (LWR) commercial power plants, neutron radiation induces embrittlement of the pressure vessel (PV) and its support structures. As a consequence, LWR-PV integrity is a primary safety consideration. LWR-PV integrity is a significant economic consideration since the PV and its support structures are nonreplaceable power plant components and embrittlement of these components can therefore limit the effective operating lifetime of the plant

  16. PVSOFT99 - Photovoltaic (PV) System Sizing And Simulation Software

    African Journals Online (AJOL)

    A computer program (PVSOFT99) has been developed for sizing and simulation of stand-alone photovoltaic (PV) systems. Two distinct PV sizing algorithms, one based on the worst case and the other on the reliability concept, have been incorporated in the program. The reliability concept is generalized in that variation of ...

  17. Developing solar: PV solar system markets in Africa

    International Nuclear Information System (INIS)

    Asali, Karim

    2002-01-01

    Governments, NGO's and UN organisations are increasingly convinced that renewable energies not only help to solve energy problems in Africa but are indispensable in alleviating regional disparities, social problems and bridging the digital gap. Still, many years after introducing high efficiency solar PV systems the necessary breakthrough of implementing them on a mass scale is still not a reality. The author provides perspectives on developing solar PV in Africa. (Author)

  18. Clinical application of a right ventricular pressure-volume loop determined by gated blood-pool imaging and simultaneously measured right ventricular pressure

    International Nuclear Information System (INIS)

    Yasue, Takao; Watanabe, Sachiro; Sugishita, Nobuyoshi; Tanaka, Tsutomu; Yokoyama, Hideo

    1983-01-01

    The data obtained by ECG-gated radionuclide angiography were collected simultaneously with right ventricular pressure and thermal cardiac output (CO) obtained by a Swan-Ganz catheter in Scintipac 1200 (Shimazu Co) in order to create a right ventricular pressure-volume (RV P-V) loop. Subjects consisted of 15 patients with old myocardial infarction (MI group), seven with angina pectoris (AP group), six with congestive cardiomyopathy (CCM group) and five with neurocirculatory asthenia (NCA group). Right ventricular end-diastolic volume (RVEDV) was calculated as RVEDV = CO/(EF x HR) (CO = cardiac output; HR = heart rate). Systolic work (W sub(S)), diastolic work (W sub(D)) and net work (W sub(N)) were calculated from a RV P-V loop by Simpson's method. The measurements were performed before and 5 min after sublingual administration of nitroglycerin (NG) (0.3 mg). The results were as follows: 1. RV P-V loops shifted towards the left lower part of the P-V plane after sublingual administration of nitroglycerin, indicating the reduction of pressure and volume of the right ventricle. 2. Right ventricular ejection fraction (RVEF) in the MI, AP and CCM groups showed smaller values than that of the NCA group. 3. Right ventricular end-diastolic volume index (RVEDVI) showed a converse relation with RVEF. 4. Cardiac index in all groups decreased after NG and a statistical significance was seen in the MI, AP and NCA groups (p<0.05). 5. RV W sub(S), RV W sub(D) and RV W sub(N) showed no difference among each groups in the control state, and significantly decreased after NG. We conclude that the present method using RV P-V loop might be useful as a noninvasive bedside monitoring and permits the evaluation of RV function in a clinical setting

  19. Multilevel governance and deployment of solar PV panels in U.S. cities

    International Nuclear Information System (INIS)

    Li, Hui; Yi, Hongtao

    2014-01-01

    Solar photovoltaic (PV) installations have been growing rapidly in the United States over the last few years, incentivized by policies from federal, state and local governments. The complex relationships between solar policies at multiple levels of government and solar deployment are questions of importance to policy makers and scholars. Extant literature on solar policies pays less attention to the role of local governments and policies than to their federal and state counterparts. Local governments and policies play indispensable roles in the deployment of solar PVs. This paper studies the multilevel governance of solar development in the U.S. by evaluating the relative effectiveness of state and local policy tools in stimulating solar PV installations, with an emphasis on local solar policies. With a regression analysis on a national sample of 186 U.S. cities, we find that cities with local financial incentives deploy 69% more solar PV capacities than cities without such policies. We also find that cities subject to RPS requirements have 295% more solar PV capacity, compared with cities not regulated by state RPS. - Highlights: • This study evaluates state and local solar PV policies. • State RPS has positive impacts on local solar PV capacity. • Local financial incentives matter for solar PV deployment

  20. Measures for diffusion of solar PV in selected African countries

    DEFF Research Database (Denmark)

    Nygaard, Ivan; Hansen, Ulrich Elmer; Mackenzie, Gordon A.

    2017-01-01

    that governments’ strategies to promoting solar PV are moving from isolated projects towards frameworks for market development and that there are high expectations to upgrading in the PV value chain through local assembly of panels and local production of other system elements. Commonly identified measures include......This paper investigates how African governments are considering supporting and promoting the diffusion of solar PV. This issue is explored by examining so-called ‘technology action plans (TAPs)’, which were main outputs of the Technology Needs Assessment project implemented in 10 African countries...... from 2010 to 2013. The paper provides a review of three distinct but characteristic trajectories for PV market development in Kenya (private-led market for solar home systems), Morocco (utility-led fee-for service model) and Rwanda (donorled market for institutional systems). The paper finds...