WorldWideScience

Sample records for volume ptv margins

  1. WE-AB-207B-09: Margin Reduction for Planning Target Volume (PTV) in Patients with Localized Prostate Cancer: Impact On Delivered Dose and Quality of Life

    Energy Technology Data Exchange (ETDEWEB)

    Kumarasiri, A; Liu, C; Brown, S; Glide-Hurst, C; Elshaikh, M; Chetty, I; Movsas, B [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To estimate the delivered (cumulative) dose to targets and organs at risk for localized prostate cancer patients treated with reduced PTV margins and to evaluate preliminary patient reported quality-of-life (QOL). Methods: Under an IRB-approved protocol, 20 prostate cancer patients (including 11 control patients) were treated with reduced planning margins (5 mm uniform with 4 mm at prostate/rectum interface). Control patients had standard margin (10/6 mm)-based treatments. A parameter-optimized Elastix algorithm along with energy-mass mapping was used to deform and resample dose of the day onto the planning CT for each fraction to estimate the delivered dose over all fractions. QOL data were collected via Expanded Prostate cancer Index Composite (EPIC-26) questionnaires at time points pre-treatment, post-treatment, and at 2, 6, 12, 18 month follow-ups. Standardized QOL scores [range: 0–100] were determined and baseline-corrected by subtracting pre-treatment QOL data. Mean QOL differences between the margin reduced group and control group (QOLmr-QOLcontrol) were calculated for first 18 months. Results: The difference between the cumulative mean dose (Dmean) and the planned mean dose (±SD) for PTV, prostate, bladder, and rectum were −2.2±1.0, 0.3±0.5, −0.7±2.6, and −2.1±1.3 Gy respectively for the margin-reduced group, and −0.8±2.0, 0.9±1.4, - 0.7±3.1 and −1.0±2.4 Gy for the control group. Difference between the two groups was statistically insignificant (p=0.1). Standardized and baseline corrected QOLmr-QOLcontrol for EPIC domains categorized as “Urinary Incontinence”, “Urinary Irritative/Obstructive”, “Bowel”, “Sexual”, and “Hormonal” were 0.6, 12.1, 9.1, 13.3, and −0.9 for the 18 months following radiation therapy (higher values better). Delivered dose to rectum showed a weak correlation to “Bowel” domain (Pearson’s coefficient −0.24, p<0.001), while bladder dose did not correlate to Urinary Incontinence

  2. WE-AB-207B-09: Margin Reduction for Planning Target Volume (PTV) in Patients with Localized Prostate Cancer: Impact On Delivered Dose and Quality of Life

    International Nuclear Information System (INIS)

    Kumarasiri, A; Liu, C; Brown, S; Glide-Hurst, C; Elshaikh, M; Chetty, I; Movsas, B

    2016-01-01

    Purpose: To estimate the delivered (cumulative) dose to targets and organs at risk for localized prostate cancer patients treated with reduced PTV margins and to evaluate preliminary patient reported quality-of-life (QOL). Methods: Under an IRB-approved protocol, 20 prostate cancer patients (including 11 control patients) were treated with reduced planning margins (5 mm uniform with 4 mm at prostate/rectum interface). Control patients had standard margin (10/6 mm)-based treatments. A parameter-optimized Elastix algorithm along with energy-mass mapping was used to deform and resample dose of the day onto the planning CT for each fraction to estimate the delivered dose over all fractions. QOL data were collected via Expanded Prostate cancer Index Composite (EPIC-26) questionnaires at time points pre-treatment, post-treatment, and at 2, 6, 12, 18 month follow-ups. Standardized QOL scores [range: 0–100] were determined and baseline-corrected by subtracting pre-treatment QOL data. Mean QOL differences between the margin reduced group and control group (QOLmr-QOLcontrol) were calculated for first 18 months. Results: The difference between the cumulative mean dose (Dmean) and the planned mean dose (±SD) for PTV, prostate, bladder, and rectum were −2.2±1.0, 0.3±0.5, −0.7±2.6, and −2.1±1.3 Gy respectively for the margin-reduced group, and −0.8±2.0, 0.9±1.4, - 0.7±3.1 and −1.0±2.4 Gy for the control group. Difference between the two groups was statistically insignificant (p=0.1). Standardized and baseline corrected QOLmr-QOLcontrol for EPIC domains categorized as “Urinary Incontinence”, “Urinary Irritative/Obstructive”, “Bowel”, “Sexual”, and “Hormonal” were 0.6, 12.1, 9.1, 13.3, and −0.9 for the 18 months following radiation therapy (higher values better). Delivered dose to rectum showed a weak correlation to “Bowel” domain (Pearson’s coefficient −0.24, p<0.001), while bladder dose did not correlate to Urinary Incontinence

  3. Volume study pre and post-implant brachytherapy prostate for establishment of PTV margins; Estudio de volumenes pre y post-implante en braquiterapia de prostata para establecimiento de margenes del PTV

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Dominguez, M.; Carrasco Herrera, M.; Baeza Trujillo, M.; Herrador Cordoba, M.

    2011-07-01

    Treatment of prostate cancer by permanent implantation of radioactive seeds is now a good alternative to radical surgery or radiotherapy, as it provides a good tumor control while the risk is reduced by a lower complication irradiation of adjacent healthy organs. The large volume change during seed implantation occurs in the prostate of the patient, makes it important to consider margins around the organs of interest both to ensure optimal coverage and minimal tumor irradiation of healthy tissue. Analyze how the volume varies during and after implantation and establish a margin around the prostate to the practice of our hospital are the two objectives of this work.

  4. Analysis of PTV margin for IMRT and VMAT techniques in prostate cancer using IGRT

    International Nuclear Information System (INIS)

    Sandrini, E.S.; Silveira, T.B.; Vieira, D.S.; Anjos, L.E.A.; Lopez, J.C.C.; Batista, D.V.S.

    2014-01-01

    Clinical radiotherapy procedures aim at high precision. However, there are many errors sources that act during treatment preparation and execution that limit its accuracy. The use of imaged-guided radiotherapy (IGRT) increases the agreement between the planned dose and the actual dose deposited in the target, at the same time allows to evaluate the uncertainties related to the setup and a possible reduction in the planning target volume (PTV) margin. Thus the aim of this study was to determine the best PTV margin to be used in radiotherapy treatment of prostate cancer using intensity modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) techniques associated with IGRT. A total of four patients with prostate daily cone beam computed tomography (CBCT) were analyzed. Systematic and random errors were calculated statistically based on the displacements couch for 128 CBCTs. It was found that a symmetric margin of 0.75 cm from clinical treatment volume (CTV) to PTV is sufficient to encompass the uncertainties inherent to the treatment applying IGRT. Besides without that and maintaining the same tumor control probability, a symmetric margin of 1,24 cm would be necessary. This study showed that using daily image verification the setup errors are reduced, which generates a lower PTV margin. (author)

  5. Is There an Advantage in Designing Adapted, Patient-Specific PTV Margins in Intensity Modulated Proton Beam Therapy for Prostate Cancer?

    International Nuclear Information System (INIS)

    Góra, Joanna; Stock, Markus; Lütgendorf-Caucig, Carola; Georg, Dietmar

    2013-01-01

    Purpose: To investigate robust margin strategies in intensity modulated proton therapy to account for interfractional organ motion in prostate cancer. Methods and Materials: For 9 patients, one planning computed tomography (CT) scan and daily and weekly cone beam CTs (CBCTs) were acquired and coregistered. The following planning target volume (PTV) approaches were investigated: a clinical target volume (CTV) delineated on the planning CT (CTV ct ) plus 10-mm margin (PTV 10mm ); a reduced PTV (PTV Red ): CTV ct plus 5 mm in the left-right (LR) and anterior-posterior (AP) directions and 8 mm in the inferior-superior (IS) directions; and a PTV Hull method: the sum of CTV ct and CTVs from 5 CBCTs from the first week plus 3 mm in the LR and IS directions and 5 mm in the AP direction. For each approach, separate plans were calculated using a spot-scanning technique with 2 lateral fields. Results: Each approach achieved excellent target coverage. Differences were observed in volume receiving 98% of the prescribed dose (V 98% ) where PTV Hull and PTV Red results were superior to the PTV 10mm concept. The PTV Hull approach was more robust to organ motion. The V 98% for CTVs was 99.7%, whereas for PTV Red and PTV 10mm plans, V 98% was 98% and 96.1%, respectively. Doses to organs at risk were higher for PTV Hull and PTV 10mm plans than for PTV Red , but only differences between PTV 10mm and PTV Red were significant. Conclusions: In terms of organ sparing, the PTV 10mm method was inferior but not significantly different from the PTV Red and PTV Hull approaches. PTV Hull was most insensitive to target motion

  6. Convolution method and CTV-to-PTV margins for finite fractions and small systematic errors

    International Nuclear Information System (INIS)

    Gordon, J J; Siebers, J V

    2007-01-01

    The van Herk margin formula (VHMF) relies on the accuracy of the convolution method (CM) to determine clinical target volume (CTV) to planning target volume (PTV) margins. This work (1) evaluates the accuracy of the CM and VHMF as a function of the number of fractions N and other parameters, and (2) proposes an alternative margin algorithm which ensures target coverage for a wider range of parameter values. Dose coverage was evaluated for a spherical target with uniform margin, using the same simplified dose model and CTV coverage criterion as were used in development of the VHMF. Systematic and random setup errors were assumed to be normally distributed with standard deviations Σ and σ. For clinically relevant combinations of σ, Σ and N, margins were determined by requiring that 90% of treatment course simulations have a CTV minimum dose greater than or equal to the static PTV minimum dose. Simulation results were compared with the VHMF and the alternative margin algorithm. The CM and VHMF were found to be accurate for parameter values satisfying the approximate criterion: σ[1 - γN/25] 0.2, because they failed to account for the non-negligible dose variability associated with random setup errors. These criteria are applicable when σ ∼> σ P , where σ P = 0.32 cm is the standard deviation of the normal dose penumbra. (Qualitative behaviour of the CM and VHMF will remain the same, though the criteria might vary if σ P takes values other than 0.32 cm.) When σ P , dose variability due to random setup errors becomes negligible, and the CM and VHMF are valid regardless of the values of Σ and N. When σ ∼> σ P , consistent with the above criteria, it was found that the VHMF can underestimate margins for large σ, small Σ and small N. A potential consequence of this underestimate is that the CTV minimum dose can fall below its planned value in more than the prescribed 10% of treatments. The proposed alternative margin algorithm provides better margin

  7. Effect of MLC Leaf Width and PTV Margin on the Treatment Planning of Intensity-Modulated Stereotactic Radiosurgery (IMSRS) or Radiotherapy (IMSRT)

    International Nuclear Information System (INIS)

    Chang Jenghwa; Yenice, Kamil M.; Jiang Kailiu; Hunt, Margie; Narayana, Ashwatha

    2009-01-01

    We studied the effect of MLC (multileaf collimator) leaf width and PTV (planning target volume) margin on treatment planning of intensity modulated stereotactic radiosurgery (IMSRS) or radiotherapy (IMSRT). Twelve patients previously treated with IMSRS/IMSRT were retrospectively planned with 5- and 3-mm MLC leaf widths and 3- and 2-mm PTV margins using the already contoured clinical target volume and critical structures. The same beam arrangement, planning parameters, and optimization method were used in each of the 4 plans for a given patient. Each plan was normalized so that the prescription dose covered at least 99% of the PTV. Plan indices - D mean (mean dose), conformity index (CI), V 70 (volume receiving ≥ 70% of the prescription dose), and V 50 (volume receiving ≥ 50% of the prescription dose) - were calculated from the dose-volume histograms (DVHs) of the PTV, normal tissue, and organs at risk (OARs). Hypothesis testing was performed on the mean ratios of plan indices to determine the statistical significance of the relative differences. The PTV was well covered for all plans, as no significant differences were observed for D 95 , V 95 , D max , D min , and D mean of the PTV. The irradiated volume was ∼23% smaller when 2-mm instead of 3-mm PTV margin was used, but it was only reduced by ∼6% when the MLC leaf width was reduced from 5 mm to 3 mm. For normal tissue and brainstem, V 70 , V 50 , and D mean were reduced more effectively by a decrease in MLC width, while D mean of optic nerve and chiasm were more sensitive to a change in PTV margin. The DVH statistics for the PTV and normal structures from the treatment plan with 5-mm MLC and 2-mm PTV margin were equal to those with 3-mm MLC and 3-mm PTV margin. PTV margin reduction is more effective in sparing the normal tissue and OARs than a reduction in MLC leaf width. For IMSRS, where highly accurate setup and small PTV margins are routinely employed, the use of 5-mm MLC is therefore less desirable.

  8. Verification of the patient positioning for evaluation of PTV margins in radiotherapy of prostate cancer

    International Nuclear Information System (INIS)

    Frohlich, B.F.; Peron, T.M.; Scheid, A.M.; Cardoso, F.; Alves, F.; Alves, M.S.; Dias, T.M.

    2016-01-01

    The work aimed to verify the relative displacements between the patient and the isocenters of the device based on the reproducibility of positioning, and estimates a PTV margins of radiotherapy treatments for prostate cancer. The results of displacements were obtained from a sample of 30 patient and showed values in vertical, longitudinal and lateral directions -0.03 ± 0.48 cm, 0.12 ± 0.47 cm and 0.02 ± 0.53 cm, respectively. PTV margins were calculated resulting in 0.97 cm for vertical direction, 0.85 cm for longitudinal, and 0.98 cm for lateral. (author)

  9. Large-volume injection in gas chromatographic trace analysis using temperature-programmable (PTV) injectors

    NARCIS (Netherlands)

    Mol, J.G.J.; Janssen, J.G.M.; Cramers, C.A.M.G.; Brinkman, U.A.T.

    1996-01-01

    The use of programmed-temperature vaporising (PTV) injectors for large-volume injection in capillary gas chromatography is briefly reviewed. The principles and optimisation of large-volume PTV injection are discussed. Guidelines are given for selection of the PTV conditions and injection mode for

  10. Analysis of PTV margin for IMRT and VMAT techniques in prostate cancer using IGRT; Analise de margem de PTV para as tecnicas de IMRT e VMAT em cancer de prostata utilizando IGRT

    Energy Technology Data Exchange (ETDEWEB)

    Sandrini, E.S.; Silveira, T.B.; Vieira, D.S.; Anjos, L.E.A.; Lopez, J.C.C.; Batista, D.V.S., E-mail: emmilyfisica@gmail.com [Instituto Nacional de Cancer Jose de Alencar Gomes da Silva, Rio de Janeiro, RJ (Brazil)

    2014-08-15

    Clinical radiotherapy procedures aim at high precision. However, there are many errors sources that act during treatment preparation and execution that limit its accuracy. The use of imaged-guided radiotherapy (IGRT) increases the agreement between the planned dose and the actual dose deposited in the target, at the same time allows to evaluate the uncertainties related to the setup and a possible reduction in the planning target volume (PTV) margin. Thus the aim of this study was to determine the best PTV margin to be used in radiotherapy treatment of prostate cancer using intensity modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) techniques associated with IGRT. A total of four patients with prostate daily cone beam computed tomography (CBCT) were analyzed. Systematic and random errors were calculated statistically based on the displacements couch for 128 CBCTs. It was found that a symmetric margin of 0.75 cm from clinical treatment volume (CTV) to PTV is sufficient to encompass the uncertainties inherent to the treatment applying IGRT. Besides without that and maintaining the same tumor control probability, a symmetric margin of 1,24 cm would be necessary. This study showed that using daily image verification the setup errors are reduced, which generates a lower PTV margin. (author)

  11. Planning target volume (PTV) definition and its effects in the radiotherapy

    International Nuclear Information System (INIS)

    Poli, Maria Esmeralda Ramos

    2007-01-01

    Tills work intends to study the margins required to define a planning target volume (PTV) for adequate treatment of the mobile tumors such as prostate or those located in areas with less mobility as the ones in head and neck region, in the absence of daily localization imaging based. It is also intends to evaluate the impact caused by the PTV, in terms of dose, to the critical structures surrounding the PTV and its influence when inverse planning is used in the intensity-modulated radiation therapy (IMRT). Data from 387 prostate patients were analyzed retrospectively. Every patient in the study received daily pre-treatment localization with 2D ultrasound resulting in a total of 10,327 localizations, each comprising of an isocenter displacement in 3 directions: anterior-posterior (AP), right-left lateral (RL), and superior-inferior (SI). The mean displacement and standard deviation (SD) for each direction for each patient was computed from daily treatment records. The uncertainties (SD) in the target position were 4.4 mm (AP), 3.6 mm (RL), and 4.5 mm (SI). A study of the uncertainties in the daily positioning of 78 head and neck patients who used thermoplastic mask to immobilize them, evaluated with electronic portal imaging device (EPID), showed variations (SD) in the isocenter treatment position of 3.1 mm (AP), 1.5 mm (RL), and 4.5 mm (SI). By applying these shifts in an anthropomorphic phantom it was studied the dose-volume histograms resultant of the isocenter displacement in the daily treatment. The result showed the importance of putting margins in the clinical target volume to assure an adequate treatment and also showed that isocenter daily variation can cause an increase to the dose greater than the tolerance level to the critical organs. (author)

  12. How does imaging frequency and soft tissue motion affect the PTV margin size in partial breast and boost radiotherapy?

    International Nuclear Information System (INIS)

    Harris, Emma J.; Donovan, Ellen M.; Coles, Charlotte E.; Boer, Hans C.J. de; Poynter, Andrew; Rawlings, Christine; Wishart, Gordon C.; Evans, Philip M.

    2012-01-01

    Purpose: This study investigates (i) the effect of verification protocols on treatment accuracy and PTV margins for partial breast and boost breast radiotherapy with short fractionation schema (15 fractions), (ii) the effect of deformation of the excision cavity (EC) on PTV margin size, (iii) the imaging dose required to achieve specific PTV margins. Methods and materials: Verification images using implanted EC markers were studied in 36 patients. Target motion was estimated for a 15 fraction partial breast regimen using imaging protocols based on on-line and off-line motion correction strategies (No Action Level (NAL) and the extended NAL (eNAL) protocols). Target motion was used to estimate a PTV margin for each protocol. To evaluate treatment errors due to deformation of the excision cavity, individual marker positions were obtained from 11 patients. The mean clip displacement and daily variation in clip position during radiotherapy were determined and the contribution of these errors to PTV margin calculated. Published imaging dose data were used to estimate total dose for each protocol. Finally the number of images required to obtain a specific PTV margin was evaluated and hence, the relationship between PTV margins and imaging dose was investigated. Results: The PTV margin required to account for excision cavity motion, varied between 10.2 and 2.4 mm depending on the correction strategy used. Average clip movement was 0.8 mm and average variation in clip position during treatment was 0.4 mm. The contribution to PTV margin from deformation was estimated to be small, less than 0.2 mm for both off-line and on-line correction protocols. Conclusion: A boost or partial breast PTV margin of ∼10 mm, is possible with zero imaging dose and workload, however, patients receiving boost radiotherapy may benefit from a margin reduction of ∼4 mm with imaging doses from 0.4 cGy to 25 cGy using an eNAL protocol. PTV margin contributions from deformation errors are likely

  13. Comparative evaluation of CT-based and respiratory-gated PET/CT-based planning target volume (PTV) in the definition of radiation treatment planning in lung cancer: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Luca; Elisei, Federica [San Gerardo Hospital, Nuclear Medicine, Monza (Italy); Meregalli, Sofia; Niespolo, Rita [San Gerardo Hospital, Radiotherapy, Monza (Italy); Zorz, Alessandra; De Ponti, Elena; Morzenti, Sabrina; Crespi, Andrea [San Gerardo Hospital, Medical Physics, Monza (Italy); Brenna, Sarah [University of Milan-Bicocca, School of Radiation Oncology, Monza (Italy); Gardani, Gianstefano [San Gerardo Hospital, Radiotherapy, Monza (Italy); University of Milan-Bicocca, Milan (Italy); Messa, Cristina [San Gerardo Hospital, Nuclear Medicine, Monza (Italy); University of Milan-Bicocca, Tecnomed Foundation, Milan (Italy); National Research Council, Institute for Bioimaging and Molecular Physiology, Milan (Italy)

    2014-04-15

    The aim of this study was to compare planning target volume (PTV) defined on respiratory-gated positron emission tomography (PET)/CT (RG-PET/CT) to PTV based on ungated free-breathing CT and to evaluate if RG-PET/CT can be useful to personalize PTV by tailoring the target volume to the lesion motion in lung cancer patients. Thirteen lung cancer patients (six men, mean age 70.0 years, 1 small cell lung cancer, 12 non-small cell lung cancer) who were candidates for radiation therapy were prospectively enrolled and submitted to RG-PET/CT. Ungated free-breathing CT images obtained during a PET/CT study were visually contoured by the radiation oncologist to define standard clinical target volumes (CTV1). Standard PTV (PTV1) resulted from CTV1 with the addition of 1-cm expansion of margins in all directions. RG-PET/CT images were contoured by the nuclear medicine physician and radiation oncologist according to a standardized institutional protocol for contouring gated images. Each CT and PET image of the patient's respiratory cycle phases was contoured to obtain the RG-CT-based CTV (CTV2) and the RG-PET/CT-based CTV (CTV3), respectively. RG-CT-based and RG-PET/CT-based PTV (PTV2 and PTV3, respectively) were then derived from gated CTVs with a margin expansion of 7-8 mm in head to feet direction and 5 mm in anterior to posterior and left to right direction. The portions of gated PTV2 and PTV3 geometrically not encompassed in PTV1 (PTV2 out PTV1 and PTV3 out PTV1) were also calculated. Mean ± SD CTV1, CTV2 and CTV3 were 30.5 ± 33.2, 43.1 ± 43.2 and 44.8 ± 45.2 ml, respectively. CTV1 was significantly smaller than CTV2 and CTV3 (p = 0.017 and 0.009 with Student's t test, respectively). No significant difference was found between CTV2 and CTV3. Mean ± SD of PTV1, PTV2 and PTV3 were 118.7 ± 94.1, 93.8 ± 80.2 and 97.0 ± 83.9 ml, respectively. PTV1 was significantly larger than PTV2 and PTV3 (p = 0.038 and 0.043 with Student's t test, respectively). No

  14. Verification of PTV margins for IMRT prostate cancer using EPID; Verificacao das margens de PTV para IMRT de cancer de prostata utilizando EPID

    Energy Technology Data Exchange (ETDEWEB)

    Leidens, Matheus; Santos, Romulo R.; Estacio, Daniela R. [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Hospital Sao Lucas. Servico de Fisica Medica; Silva, Ana Maria Marques da, E-mail: matheus_leidens@hotmail.com [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Faculdade de Fisica

    2014-12-15

    The aim of this work is to present the results of a strategy to define the PTV margins for patients with prostate cancer treated with IMRT technique, due to geometrical uncertainties associated with the planned placement. 341 images of 31 patients in supine position, before applying the fractions, were obtained using an EPID attached to a linear accelerator, where only setup errors were studied. The displacements were analyzed in relation to the AP (antero-posterior), SI (superior-inferior) and LR (left-right) directions. The distribution pattern of systematic displacement deviation values were 0.12 cm, 0.06 cm, 0.02 cm and the standard deviation of the distribution of random deviations was 0.62 cm, 0.53 cm, and 0.24 cm in the AP, SI and LR directions, respectively. Data evaluation, according to Stroom and Heijmen’s method, suggests that PTV margins should be 0.66 cm in the AP direction, 0.49 cm in the SI direction and 0.20 cm in the LR direction. These data show a high reproducibility in the positioning of patients, given by a method for the correction of planned relative to the bony anatomy checked with the EPID position. (author)

  15. Set-up errors analyses in IMRT treatments for nasopharyngeal carcinoma to evaluate time trends, PTV and PRV margins

    Energy Technology Data Exchange (ETDEWEB)

    Mongioj, Valeria (Dept. of Medical Physics, Fondazione IRCCS Istituto Nazionale Tumori, Milan (Italy)), e-mail: valeria.mongioj@istitutotumori.mi.it; Orlandi, Ester (Dept. of Radiotherapy, Fondazione IRCCS Istituto Nazionale Tumori, Milan (Italy)); Palazzi, Mauro (Dept. of Radiotherapy, A.O. Niguarda Ca' Granda, Milan (Italy)) (and others)

    2011-01-15

    Introduction. The aims of this study were to analyze the systematic and random interfractional set-up errors during Intensity Modulated Radiation Therapy (IMRT) in 20 consecutive nasopharyngeal carcinoma (NPC) patients by means of Electronic Portal Images Device (EPID), to define appropriate Planning Target Volume (PTV) and Planning Risk Volume (PRV) margins, as well as to investigate set-up displacement trend as a function of time during fractionated RT course. Material and methods. Before EPID clinical implementation, an anthropomorphic phantom was shifted intentionally 5 mm to all directions and the EPIs were compared with the digitally reconstructed radiographs (DRRs) to test the system's capability to recognize displacements observed in clinical studies. Then, 578 clinical images were analyzed with a mean of 29 images for each patient. Results. Phantom data showed that the system was able to correct shifts with an accuracy of 1 mm. As regards clinical data, the estimated population systematic errors were 1.3 mm for left-right (L-R), 1 mm for superior-inferior (S-I) and 1.1 mm for anterior-posterior (A-P) directions, respectively. Population random errors were 1.3 mm, 1.5 mm and 1.3 mm for L-R, S-I and A-P directions, respectively. PTV margin was at least 3.4, 3 and 3.2 mm for L-R, S-I and A-P direction, respectively. PRV margins for brainstem and spinal cord were 2.3, 2 and 2.1 mm and 3.8, 3.5 and 3.2 mm for L-R, A-P and S-I directions, respectively. Set-up error displacements showed no significant changes as the therapy progressed (p>0.05), although displacements >3 mm were found more frequently when severe weight loss or tumor nodal shrinkage occurred. Discussion. These results enable us to choose margins that guarantee with sufficient accuracy the coverage of PTVs and organs at risk sparing. Collected data confirmed the need for a strict check of patient position reproducibility in case of anatomical changes

  16. Repeat CT assessed CTV variation and PTV margins for short- and long-course pre-operative RT of rectal cancer

    International Nuclear Information System (INIS)

    Nijkamp, Jasper; Swellengrebel, Maurits; Hollmann, Birgit; Jong, Rianne de; Marijnen, Corrie; Vliet-Vroegindeweij, Corine van; Triest, Baukelien van; Herk, Marcel van; Sonke, Jan-Jakob

    2012-01-01

    Purpose: To quantify the inter-fraction shape variation of the CTV in rectal-cancer patients treated with 5 × 5 (SCRT) and 25 × 2 Gy (LCRT) and derive PTV margins. Methods and materials: Thirty-three SCRT with daily repeat CT scans and 30 LCRT patients with daily scans during the first week followed by weekly scans were included. The CTV was delineated on all scans and local shape variation was calculated with respect to the planning CT. Margin estimation was done using the local shape variation to assure 95% minimum dose for at least 90% of patients. Results: Using 482 CT scans, systematic and random CTV shape variation was heterogeneous, ranging from 0.2 cm close to bony structures up to 1.0 cm SD at the upper-anterior CTV region. A significant reduction in rectal volume during LCRT resulted in an average 0.5 cm posterior shift of the upper-anterior CTV. Required margins ranged from 0.7 cm close to bony structures up to 3.1 and 2.3 cm in the upper-anterior region for SCRT and LCRT, respectively. Conclusions: Heterogeneous shape variation demands anisotropic PTV margins. Required margins were substantially larger in the anterior direction compared to current clinical margins. These larger margins were, however, based on strict delineated CTVs, resulting in smaller PTVs compared to current practice.

  17. Planning target volumes for radiotherapy: how much margin is needed?

    International Nuclear Information System (INIS)

    Antolak, John A.; Rosen, Isaac I.

    1999-01-01

    Purpose: The radiotherapy planning target volume (PTV) encloses the clinical target volume (CTV) with anisotropic margins to account for possible uncertainties in beam alignment, patient positioning, organ motion, and organ deformation. Ideally, the CTV-PTV margin should be determined solely by the magnitudes of the uncertainties involved. In practice, the clinician usually also considers doses to abutting healthy tissues when deciding on the size of the CTV-PTV margin. This study calculates the ideal size of the CTV-PTV margin when only physical position uncertainties are considered. Methods and Materials: The position of the CTV for any treatment is assumed to be described by independent Gaussian distributions in each of the three Cartesian directions. Three strategies for choosing a CTV-PTV margin are analyzed. The CTV-PTV margin can be based on: 1. the probability that the CTV is completely enclosed by the PTV; 2. the probability that the projection of the CTV in the beam's eye view (BEV) is completely enclosed by the projection of the PTV in the BEV; and 3. the probability that a point on the edge of the CTV is within the PTV. Cumulative probability distributions are derived for each of the above strategies. Results: Expansion of the CTV by 1 standard deviation (SD) in each direction results in the CTV being entirely enclosed within the PTV 24% of the time; the BEV projection of the CTV is enclosed within the BEV projection of the PTV 39% of the time; and a point on the edge of the CTV is within the PTV 84% of the time. To have the CTV enclosed entirely within the PTV 95% of the time requires a margin of 2.8 SD. For the BEV projection of the CTV to be within the BEV projection of the PTV 95% of the time requires a margin of 2.45 SD. To have any point on the surface of the CTV be within the PTV 95% of the time requires a margin of 1.65 SD. Conclusion: In the first two strategies for selecting a margin, the probability of finding the CTV within the PTV is

  18. Verification of the patient positioning for evaluation of PTV margins in radiotherapy of prostate cancer; Verificacao do posicionamento do paciente para a avaliacao das margens de PTV em radioterapia do cancer de prostata

    Energy Technology Data Exchange (ETDEWEB)

    Frohlich, B.F.; Peron, T.M.; Scheid, A.M.; Cardoso, F.; Alves, F.; Alves, M.S.; Dias, T.M. [Hospital de Clinicas de Porto Alegre, RS (Brazil)

    2016-07-01

    The work aimed to verify the relative displacements between the patient and the isocenters of the device based on the reproducibility of positioning, and estimates a PTV margins of radiotherapy treatments for prostate cancer. The results of displacements were obtained from a sample of 30 patient and showed values in vertical, longitudinal and lateral directions -0.03 ± 0.48 cm, 0.12 ± 0.47 cm and 0.02 ± 0.53 cm, respectively. PTV margins were calculated resulting in 0.97 cm for vertical direction, 0.85 cm for longitudinal, and 0.98 cm for lateral. (author)

  19. SU-E-J-30: Benchmark Image-Based TCP Calculation for Evaluation of PTV Margins for Lung SBRT Patients

    Energy Technology Data Exchange (ETDEWEB)

    Li, M [Wayne State Univeristy, Detroit, MI (United States); Chetty, I [Henry Ford Health System, Detroit, MI (United States); Zhong, H [Henry Ford Hospital System, Detroit, MI (United States)

    2014-06-01

    Purpose: Tumor control probability (TCP) calculated with accumulated radiation doses may help design appropriate treatment margins. Image registration errors, however, may compromise the calculated TCP. The purpose of this study is to develop benchmark CT images to quantify registration-induced errors in the accumulated doses and their corresponding TCP. Methods: 4DCT images were registered from end-inhale (EI) to end-exhale (EE) using a “demons” algorithm. The demons DVFs were corrected by an FEM model to get realistic deformation fields. The FEM DVFs were used to warp the EI images to create the FEM-simulated images. The two images combined with the FEM DVF formed a benchmark model. Maximum intensity projection (MIP) images, created from the EI and simulated images, were used to develop IMRT plans. Two plans with 3 and 5 mm margins were developed for each patient. With these plans, radiation doses were recalculated on the simulated images and warped back to the EI images using the FEM DVFs to get the accumulated doses. The Elastix software was used to register the FEM-simulated images to the EI images. TCPs calculated with the Elastix-accumulated doses were compared with those generated by the FEM to get the TCP error of the Elastix registrations. Results: For six lung patients, the mean Elastix registration error ranged from 0.93 to 1.98 mm. Their relative dose errors in PTV were between 0.28% and 6.8% for 3mm margin plans, and between 0.29% and 6.3% for 5mm-margin plans. As the PTV margin reduced from 5 to 3 mm, the mean TCP error of the Elastix-reconstructed doses increased from 2.0% to 2.9%, and the mean NTCP errors decreased from 1.2% to 1.1%. Conclusion: Patient-specific benchmark images can be used to evaluate the impact of registration errors on the computed TCPs, and may help select appropriate PTV margins for lung SBRT patients.

  20. SU-E-J-30: Benchmark Image-Based TCP Calculation for Evaluation of PTV Margins for Lung SBRT Patients

    International Nuclear Information System (INIS)

    Li, M; Chetty, I; Zhong, H

    2014-01-01

    Purpose: Tumor control probability (TCP) calculated with accumulated radiation doses may help design appropriate treatment margins. Image registration errors, however, may compromise the calculated TCP. The purpose of this study is to develop benchmark CT images to quantify registration-induced errors in the accumulated doses and their corresponding TCP. Methods: 4DCT images were registered from end-inhale (EI) to end-exhale (EE) using a “demons” algorithm. The demons DVFs were corrected by an FEM model to get realistic deformation fields. The FEM DVFs were used to warp the EI images to create the FEM-simulated images. The two images combined with the FEM DVF formed a benchmark model. Maximum intensity projection (MIP) images, created from the EI and simulated images, were used to develop IMRT plans. Two plans with 3 and 5 mm margins were developed for each patient. With these plans, radiation doses were recalculated on the simulated images and warped back to the EI images using the FEM DVFs to get the accumulated doses. The Elastix software was used to register the FEM-simulated images to the EI images. TCPs calculated with the Elastix-accumulated doses were compared with those generated by the FEM to get the TCP error of the Elastix registrations. Results: For six lung patients, the mean Elastix registration error ranged from 0.93 to 1.98 mm. Their relative dose errors in PTV were between 0.28% and 6.8% for 3mm margin plans, and between 0.29% and 6.3% for 5mm-margin plans. As the PTV margin reduced from 5 to 3 mm, the mean TCP error of the Elastix-reconstructed doses increased from 2.0% to 2.9%, and the mean NTCP errors decreased from 1.2% to 1.1%. Conclusion: Patient-specific benchmark images can be used to evaluate the impact of registration errors on the computed TCPs, and may help select appropriate PTV margins for lung SBRT patients

  1. Customized Computed Tomography-Based Boost Volumes in Breast-Conserving Therapy: Use of Three-Dimensional Histologic Information for Clinical Target Volume Margins

    International Nuclear Information System (INIS)

    Hanbeukers, Bianca; Borger, Jacques; Ende, Piet van den; Ent, Fred van der; Houben, Ruud; Jager, Jos; Keymeulen, Kristien; Murrer, Lars; Sastrowijoto, Suprapto; Vijver, Koen van de; Boersma, Liesbeth

    2009-01-01

    Purpose: To determine the difference in size between computed tomography (CT)-based irradiated boost volumes and simulator-based irradiated volumes in patients treated with breast-conserving therapy and to analyze whether the use of anisotropic three-dimensional clinical target volume (CTV) margins using the histologically determined free resection margins allows for a significant reduction of the CT-based boost volumes. Patients and Methods: The CT data from 49 patients were used to delineate a planning target volume (PTV) with isotropic CTV margins and to delineate a PTV sim that mimicked the PTV as delineated in the era of conventional simulation. For 17 patients, a PTV with anisotropic CTV margins was defined by applying customized three-dimensional CTV margins, according to the free excision margins in six directions. Boost treatment plans consisted of conformal portals for the CT-based PTVs and rectangular fields for the PTV sim . Results: The irradiated volume (volume receiving ≥95% of the prescribed dose [V 95 ]) for the PTV with isotropic CTV margins was 1.6 times greater than that for the PTV sim : 228 cm 3 vs. 147 cm 3 (p 95 was similar to the V 95 for the PTV sim (190 cm 3 vs. 162 cm 3 ; p = NS). The main determinant for the irradiated volume was the size of the excision cavity (p < .001), which was mainly related to the interval between surgery and the planning CT scan (p = .029). Conclusion: CT-based PTVs with isotropic margins for the CTV yield much greater irradiated volumes than fluoroscopically based PTVs. Applying individualized anisotropic CTV margins allowed for a significant reduction of the irradiated boost volume.

  2. Impact of inter- and intrafraction deviations and residual set-up errors on PTV margins. Different alignment techniques in 3D conformal prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Langsenlehner, T.; Doeller, C.; Winkler, P.; Kapp, K.S.; Galle, G.

    2013-01-01

    The aim of this work was to analyze interfraction and intrafraction deviations and residual set-up errors (RSE) after online repositioning to determine PTV margins for 3 different alignment techniques in prostate cancer radiotherapy. The present prospective study included 44 prostate cancer patients with implanted fiducials treated with three-dimensional (3D) conformal radiotherapy. Daily localization was based on skin marks followed by marker detection using kilovoltage (kV) imaging and subsequent patient repositioning. Additionally, in-treatment megavoltage (MV) images were obtained for each treatment field. In an off-line analysis of 7,273 images, interfraction prostate motion, RSE after marker-based prostate localization, prostate position during each treatment session, and the effect of treatment time on intrafraction deviations were analyzed to evaluate PTV margins. Margins accounting for interfraction deviation, RSE and intrafraction motion were 14.1, 12.9, and 15.1 mm in anterior-posterior (AP), superior-inferior (SI), and left-right (LR) direction for skin mark alignment and 9.6, 8.7, and 2.6 mm for bony structure alignment, respectively. Alignment to implanted markers required margins of 4.6, 2.8, and 2.5 mm. As margins to account for intrafraction motion increased with treatment prolongation PTV margins could be reduced to 3.9, 2.6, and 2.4 mm if treatment time was ≤ 4 min. With daily online correction and repositioning based on implanted fiducials, a significant reduction of PTV margins can be achieved. The use of an optimized workflow with faster treatment techniques such as volumetric modulated arc techniques (VMAT) could allow for a further decrease. (orig.)

  3. Boost first, eliminate systematic error, and individualize CTV to PTV margin when treating lymph nodes in high-risk prostate cancer

    International Nuclear Information System (INIS)

    Rossi, Peter J.; Schreibmann, Eduard; Jani, Ashesh B.; Master, Viraj A.; Johnstone, Peter A.S.

    2009-01-01

    Purpose: The purpose of this report is to evaluate the movement of the planning target volume (PTV) in relation to the pelvic lymph nodes (PLNs) during treatment of high-risk prostate cancer. Patients and methods: We reviewed the daily treatment course of ten consecutively treated patients with high-risk prostate cancer. PLNs were included in the initial PTV for each patient. Daily on-board imaging of gold fiducial markers implanted in the prostate was used; daily couch shifts were made as needed and recorded. We analyzed how the daily couch shifts impacted the dose delivered to the PLN. Results: A PLN clinical target volume was identified in each man using CT-based treatment planning. At treatment planning, median minimum planned dose to the PLN was 95%, maximum 101%, and mean 97%. Daily couch shifting to prostate markers degraded the dose slightly; median minimum dose to the PLN was 92%, maximum, 101%, and mean delivered, 96%. We found two cases, where daily systematic shifts resulted in an underdosing of the PLN by 9% and 29%, respectively. In other cases, daily shifts were random and led to a mean 2.2% degradation of planned to delivered PLN dose. Conclusions: We demonstrated degradation of the delivered dose to PLN PTV, which may occur if daily alignment only to the prostate is considered. To improve PLN PTV, it maybe preferable to deliver the prostate/boost treatment first, and adapt the PTV of the pelvic/nodal treatment to uncertainties documented during prostate/boost treatment

  4. SU-E-J-39: Comparison of PTV Margins Determined by In-Room Stereoscopic Image Guidance and by On-Board Cone Beam Computed Tomography Technique for Brain Radiotherapy Patients

    International Nuclear Information System (INIS)

    Ganesh, T; Paul, S; Munshi, A; Sarkar, B; Krishnankutty, S; Sathya, J; George, S; Jassal, K; Roy, S; Mohanti, B

    2014-01-01

    Purpose: Stereoscopic in room kV image guidance is a faster tool in daily monitoring of patient positioning. Our centre, for the first time in the world, has integrated such a solution from BrainLAB (ExacTrac) with Elekta's volumetric cone beam computed tomography (XVI). Using van Herk's formula, we compared the planning target volume (PTV) margins calculated by both these systems for patients treated with brain radiotherapy. Methods: For a total of 24 patients who received partial or whole brain radiotherapy, verification images were acquired for 524 treatment sessions by XVI and for 334 sessions by ExacTrac out of the total 547 sessions. Systematic and random errors were calculated in cranio-caudal, lateral and antero-posterior directions for both techniques. PTV margins were then determined using van Herk formula. Results: In the cranio-caudal direction, systematic error, random error and the calculated PTV margin were found to be 0.13 cm, 0.12 cm and 0.41 cm with XVI and 0.14 cm, 0.13 cm and 0.44 cm with ExacTrac. The corresponding values in lateral direction were 0.13 cm 0.1 cm and 0.4 cm with XVI and 0.13 cm, 0.12 cm and 0.42 cm with ExacTrac imaging. The same parameters for antero-posterior were for 0.1 cm, 0.11 cm and 0.34 cm with XVI and 0.13 cm, 0.16 cm and 0.43 cm with ExacTrac imaging. The margins estimated with the two imaging modalities were comparable within ± 1 mm limit. Conclusion: Verification of setup errors in the major axes by two independent imaging systems showed the results are comparable and within ± 1 mm. This implies that planar imaging based ExacTrac can yield equal accuracy in setup error determination as the time consuming volumetric imaging which is considered as the gold standard. Accordingly PTV margins estimated by this faster imaging technique can be confidently used in clinical setup

  5. TU-F-CAMPUS-J-01: Inference of Prostate PTV Margins in VMAT Delivery From Intra-Fraction Prostate Motion During SBRT Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Thind, K; Wong, R; Gerdes, C; Chow, T [Juravinski Cancer Centre, Hamilton, Ontario (Canada); Wong, D [McMaster University, Hamilton, Ontario (Canada)

    2015-06-15

    Purpose: To retrospectively quantify the intra-fraction prostate motion during stereotactic body radiation therapy (SBRT) treatment using CyberKnife’s target tracking system, which may provide insight into expansion margins from GTV to PTV used in gantry-based treatments. CyberKnife is equipped with an active tracking system (InTempo) that tracks the four fiducials placed in the prostate gland. The system acquires intra-fraction orthogonal kV images at 45° and 315° in a sequential fashion. Methods: A total of 38 patients treated with SBRT using CyberKnife between 2011 and 2013 were studied. Dose-regime was 36.25 Gy in 5 fractions (7.25 Gy/fraction, twice per week) as per RTOG 0938 guidelines. The CyberKnife image tracking logs for all SBRT treatments using InTempo were examined. A total of 13663 images were examined for the superior/inferior (SI), anterior/posterior (AP) and left/right (LR) translation as well as roll, pitch and yaw rotations for the target position relative to the last known model position. Results: The mean ± 2 SD of intra-fraction motion was contained within 3 mm for SI and LR and 4.5 mm for AP directions at 5 minutes into the treatment delivery. It was contained within 4 mm for SI and LR and 5 mm for AP at 10 minutes. At 15 minutes into delivery, all translations were contained within 5 mm. The mean ± 2 SD of prostate roll, pitch and yaw increased with time but were contained within 5 degree at 5, 10 and 15 minutes into treatment. Additionally, target translations and rotations were within ± 1 mm and ± 1 degree for 90% and 78% of the time. Conclusion: The organ motion component of PTV margin for 10 minute VMAT delivery is contained within 4 mm in SI and LR direction and within 5 mm in the AP direction.

  6. The need for rotational margins in intensity-modulated radiotherapy and a new method for planning target volume design

    International Nuclear Information System (INIS)

    Langer, Mark Peter; Papiez, Lech; Spirydovich, Siarhei; Thai, Van

    2005-01-01

    Purpose: The effect of rotational errors on the coverage of clinical target volumes (CTVs) is examined. A new planning target volume (PTV) construction that considers the individual paths traced by movements of the target boundary points is developed. Methods and Materials: A standard uniform margin expansion was compared with a PTV constructed from the space swept out by a concave moving target. A new method formed the PTV by aggregating the separate convex hulls taken of the positions of the individual target boundary points in a sampling of CTV displacements. Results: A 0.5-cm uniform margin adequate for translations was inadequate given CTV rotation about a fixed off-center axis. A PTV formed of the target's swept-out area was 22% smaller than needed for coverage by a uniform margin, but computationally is not readily extended to translations combined with rotations about a shifting axis. Forming instead the union of convex hulls of the boundary points in a sampling of CTV displacements represented these movements in the PTV design and retained the target's concave shape. Conclusions: Planning target volumes should accommodate target rotation. The union of convex hulls of the boundary point positions in a sampling of displacements can effectively represent multiple sources of deviations while preserving target concavities

  7. In vivo portal dosimetry for head-and-neck VMAT and lung IMRT: Linking γ-analysis with differences in dose–volume histograms of the PTV

    International Nuclear Information System (INIS)

    Rozendaal, Roel Arthur; Mijnheer, Ben J.; Herk, Marcel van; Mans, Anton

    2014-01-01

    Purpose: To relate the results of γ-analysis and dose–volume histogram (DVH) analysis of the PTV for detecting dose deviations with in vivo dosimetry for two treatment sites. Methods and materials: In vivo 3D dose distributions were reconstructed for 722 fractions of 200 head-and-neck (H and N) VMAT treatments and 183 fractions of 61 lung IMRT plans. The reconstructed and planned dose distributions in the PTV were compared using (a) the γ-distribution and (b) the differences in D2, D50 and D98 between the two dose distributions. Using pre-defined tolerance levels, all fractions were classified as deviating or not deviating by both methods. The mutual agreement, the sensitivity and the specificity of the two methods were compared. Results: For lung IMRT, the classification of the fractions was nearly identical for γ- and DVH-analyses of the PTV (94% agreement) and the sensitivity and specificity were comparable for both methods. Less agreement (80%) was found for H and N VMAT, while γ-analysis was both less sensitive and less specific. Conclusions: DVH- and γ-analyses perform nearly equal in finding dose deviations in the PTV for lung IMRT treatments; for H and N VMAT treatments, DVH-analysis is preferable. As a result of this study, a smooth transition to using DVH-analysis clinically for detecting in vivo dose deviations in the PTV is within reach

  8. Quantifying Appropriate PTV Setup Margins: Analysis of Patient Setup Fidelity and Intrafraction Motion Using Post-Treatment Megavoltage Computed Tomography Scans

    International Nuclear Information System (INIS)

    Drabik, Donata M.; MacKenzie, Marc A.; Fallone, Gino B.

    2007-01-01

    Purpose: To present a technique that can be implemented in-house to evaluate the efficacy of immobilization and image-guided setup of patients with different treatment sites on helical tomotherapy. This technique uses an analysis of alignment shifts between kilovoltage computed tomography and post-treatment megavoltage computed tomography images. The determination of the shifts calculated by the helical tomotherapy software for a given site can then be used to define appropriate planning target volume internal margins. Methods and Materials: Twelve patients underwent post-treatment megavoltage computed tomography scans on a helical tomotherapy machine to assess patient setup fidelity and net intrafraction motion. Shifts were studied for the prostate, head and neck, and glioblastoma multiforme. Analysis of these data was performed using automatic and manual registration of the kilovoltage computed tomography and post-megavoltage computed tomography images. Results: The shifts were largest for the prostate, followed by the head and neck, with glioblastoma multiforme having the smallest shifts in general. It appears that it might be more appropriate to use asymmetric planning target volume margins. Each margin value reported is equal to two standard deviations of the average shift in the given direction. Conclusion: This method could be applied using individual patient post-image scanning and combined with adaptive planning to reduce or increase the margins as appropriate

  9. 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumours: Comparison with a conventional technique using individual margins

    International Nuclear Information System (INIS)

    Hof, Holger; Rhein, Bernhard; Haering, Peter; Kopp-Schneider, Annette; Debus, Juergen; Herfarth, Klaus

    2009-01-01

    Purpose: To investigate the dosimetric benefit of integration of 4D-CT in the planning target volume (PTV) definition process compared to conventional PTV definition using individual margins in stereotactic body radiotherapy (SBRT) of lung tumours. Material and methods: Two different PTVs were defined: PTV conv consisting of the helical-CT-based clinical target volume (CTV) enlarged isotropically for each spatial direction by the individually measured amount of motion in the 4D-CT, and PTV 4D encompassing the CTVs defined in the 4D-CT phases displaying the extremes of the tumour position. Tumour motion as well as volumetric and dosimetric differences and relations of both PTVs were evaluated. Results: Volumetric examinations revealed a significant reduction of the mean PTV by 4D-CT from 57.7 to 40.7 cm 3 (31%) (p 4D in PTV conv (r = -0.69, 90% confidence limits: -0.87 and -0.34, p = 0.007). Mean lung dose (MLD) was decreased significantly by 17% (p < 0.001). Conclusions: In SBRT of lung tumours the mere use of individual margins for target volume definition cannot compensate for the additional effects that the implementation of 4D-CT phases can offer.

  10. SU-E-J-88: Margin Reduction of Level II/III Planning Target Volume for Image-Guided Simultaneous Integrated Boost Head-And-Neck Treatment

    International Nuclear Information System (INIS)

    Can, S; Neylon, J; Qi, S; Santhanam, A; Low, D

    2014-01-01

    Purpose: To investigate the feasibility of improved normal tissue sparing for head-and-neck (H'N) image-guided radiotherapy (IGRT) by employing tighter CTV-to-PTV margins for target level II/III though a GPU-based deformable image registration and dose accumulation framework. Methods: Ten H'N simultaneous integrated boost cases treated on TomoTherapy were retrospectively analyzed. Weekly kVCT scans in addition to daily MVCT scans were acquired for each patient. Reduced margin plans were generated with 0- mm margin for level II and III PTV (while 3-5 mm margin for PTV1) and compared with the standard margin plan using 3-5mm margin to all CTV1-3 (reference plan). An in-house developed GPU-based 3D image deformation tool was used to register and deform the weekly KVCTs with the planning CT and determine the delivered mean/minimum/maximum dose, dose volume histograms (DVHs), etc. Results: Compared with the reference plans, the averaged cord maximum, the right and left parotid doses reduced by 22.7 %, 16.5 %, and 9 % respectively in the reduced margin plans. The V95 for PTV2 and PTV3 were found within 2 and 5% between the reference and tighter margin plans. For the reduced margin plans, the averaged cumulative mean doses were consistent with the planned dose for PTV1, PTV2 and PTV3 within 1.5%, 1.7% and 1.4%. Similar dose variations of the delivered dose were seen for the reference and tighter margin plans. The delivered maximum and mean doses for the cord were 3.55 % and 2.37% higher than the planned doses; a 5 % higher cumulative mean dose for the parotids was also observed for the delivered dose than the planned doses in both plans. Conclusion: By imposing tighter CTV-to-PTV margins for level II and III targets for H'N irradiation, acceptable cumulative doses were achievable when coupled with weekly kVCT guidance while improving normal structure sparing

  11. Comparison of 2D and 3D algorithms for adding a margin to the gross tumor volume in the conformal radiotherapy planning of prostate cancer

    International Nuclear Information System (INIS)

    Khoo, V.S.; Bedford, J.L.; Webb, S.; Dearnaley, D.P.

    1997-01-01

    Purpose: To evaluate the adequacy of tumor volume coverage using a three dimensional (3D) margin growing algorithm compared to a two dimensional (2D) margin growing algorithm in the conformal radiotherapy planning of prostate cancer. Methods and Materials: Two gross tumor volumes (GTV) were segmented in each of ten patients with localized prostate cancer: prostate gland only (PO) and prostate with seminal vesicles (PSV). A margin of 10 mm was applied to these two groups (PO and PSV) using both the 2D and 3D margin growing algorithms. The true planning target volume (PTV) was defined as the region delineated by the 3D algorithm. Adequacy of geometric coverage of the GTV with the two algorithms was examined throughout the target volume. Discrepancies between the two margin methods were measured in the transaxial plane. Results: The 2D algorithm underestimated the PTV by 17% (range 12-20) in the PO group and by 20% (range 13-28) for the PSV group when compared to the 3D algorithm. For both the PO and PSV groups, the inferior coverage of the PTV was consistently underestimated by the 2D margin algorithm when compared to the 3D margins with a mean radial distance of 4.8 mm (range 0-10). In the central region of the prostate gland, the anterior, posterior, and lateral PTV borders were underestimated with the 2D margin in both the PO and PSV groups by a mean of 3.6 mm (range 0-9), 2.1 mm (range 0-8), and 1.8 (range 0-9) respectively. The PTV coverage of the PO group superiorly was radially underestimated by 4.5mm (range 0-14) when comparing the 2D margins to the 3D margins. For the PSV group, the junction region between the prostate and the seminal vesicles was underestimated by the 2D margin by a mean transaxial distance of 18.1 mm in the anterior PTV border (range 4-30), 7.2 mm posteriorly (range 0-20), and 3.7 mm laterally (range 0-14). The superior region of the seminal vesicles in the PSV group was also consistently underestimated with a radial discrepancy of 3.3 mm

  12. [Target volume margins for lung cancer: internal target volume/clinical target volume].

    Science.gov (United States)

    Jouin, A; Pourel, N

    2013-10-01

    The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV-GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned. Copyright © 2013. Published by Elsevier SAS.

  13. Poster - 36: Effect of Planning Target Volume Coverage on the Dose Delivered in Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, Chris; Wierzbicki, Marcin [McMaster University, Juravinski Cancer Centre (Canada)

    2016-08-15

    Purpose: In lung radiotherapy, breathing motion may be encompassed by contouring the internal target volume (ITV). Remaining uncertainties are included in a geometrical expansion to the planning target volume (PTV). In IMRT, the treatment is then optimized until a desired PTV fraction is covered by the appropriate dose. The resulting beams often carry high fluence in the PTV margin to overcome low lung density and to generate steep dose gradients. During treatment, the high density tumour can enter the PTV margin, potentially increasing target dose. Thus, planning lung IMRT with a reduced PTV dose may still achieve the desired ITV dose during treatment. Methods: A retrospective analysis was carried out with 25 IMRT plans prescribed to 63 Gy in 30 fractions. The plans were re-normalized to cover various fractions of the PTV by different isodose lines. For each case, the isocentre was moved using 125 shifts derived from all 3D combinations of 0 mm, (PTV margin - 1 mm), and PTV margin. After each shift, the dose was recomputed to approximate the delivered dose. Results and Conclusion: Our plans typically cover 95% of the PTV by 95% of the dose. Reducing the PTV covered to 94% did not significantly reduce the delivered ITV doses for (PTV margin - 1 mm) shifts. Target doses were reduced significantly for all other shifts and planning goals studied. Thus, a reduced planning goal will likely deliver the desired target dose as long as the ITV rarely enters the last mm of the PTV margin.

  14. SU-E-T-417: The Impact of Normal Tissue Constraints On PTV Dose Homogeneity for Intensity Modulated Radiotherapy (IMRT), Volume Modulated Arc Therapy (VMAT) and Tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Peng, J; McDonald, D; Ashenafi, M; Ellis, A; Vanek, K [Medical University of South Carolina, Charleston, SC (United States)

    2014-06-01

    Purpose: Complex intensity modulated arc therapy tends to spread low dose to normal tissue(NT)regions to obtain improved target conformity and homogeneity and OAR sparing.This work evaluates the trade-offs between PTV homogeneity and reduction of the maximum dose(Dmax)spread to NT while planning of IMRT,VMAT and Tomotherapy. Methods: Ten prostate patients,previously planned with step-and-shoot IMRT,were selected.To fairly evaluate how PTV homogeneity was affected by NT Dmax constraints,original IMRT DVH objectives for PTV and OARs(femoral heads,and rectal and bladder wall)applied to 2 VMAT plans in Pinnacle(V9.0), and Tomotherapy(V4.2).The only constraint difference was the NT which was defined as body contours excluding targets,OARs and dose rings.NT Dmax constraint for 1st VMAT was set to the prescription dose(Dp).For 2nd VMAT(VMAT-NT)and Tomotherapy,it was set to the Dmax achieved in IMRT(~70-80% of Dp).All NT constraints were set to the lowest priority.Three common homogeneity indices(HI),RTOG-HI=Dmax/Dp,moderated-HI=D95%/D5% and complex-HI=(D2%-D98%)/Dp*100 were calculated. Results: All modalities with similar dosimetric endpoints for PTV and OARs.The complex-HI shows the most variability of indices,with average values of 5.9,4.9,9.3 and 6.1 for IMRT,VMAT,VMAT-NT and Tomotherapy,respectively.VMAT provided the best PTV homogeneity without compromising any OAR/NT sparing.Both VMAT-NT and Tomotherapy,planned with more restrictive NT constraints,showed reduced homogeneity,with VMAT-NT showing the worst homogeneity(P<0.0001)for all HI.Tomotherapy gave the lowest NT Dmax,with slightly decreased homogeneity compared to VMAT. Finally, there was no significant difference in NT Dmax or Dmean between VMAT and VMAT-NT. Conclusion: PTV HI is highly dependent on permitted NT constraints. Results demonstrated that VMAT-NT with more restrictive NT constraints does not reduce Dmax NT,but significantly receives higher Dmax and worse target homogeneity.Therefore, it is critical

  15. The planning target volume margins detected by cone-beam CT in head and neck cancer patients treated by image-guided intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Liu Jun; Chen Hong; Zhang Guoqiao; Chen Fei; Zhang Li

    2011-01-01

    Objective: To determine the planning target volume margins of head and neck cancers treated by image guided radiotherapy (IGRT). Methods: 464 sets cone beam computed tomography (CBCT) images before setup correction and 126 sets CBCT images after correction were obtained from 51 head and neck cancer patients treated by IGRT in our department. The systematic and random errors were evaluated by either online or offline correction through registering the CBCT images to the planning CT. The data was divided into 3 groups according to the online correction times. Results: The isocenter shift were 0.37 mm ± 2.37 mm, -0.43 mm ± 2.30 mm and 0.47 mm ± 2.65 mm in right-left (RL), anterior-posterior (AP) and superior-inferior (SI) directions respectively before correction, and it reduced to 0.08 mm ± 0.68 mm, -0.03 mm ± 0.74 mm and 0.03 mm ± 0.80 mm when evaluated by 126 sets corrected CBCT images. The planning target volume (PTV) margin from clinical target volume (CTV) before correction were: 6.41 mm, 6.15 mm and 7.10 mm based on two parameter model, and it reduced to 1.78 mm, 1.80 mm and 1.97 mm after correction. The PTV margins were 3.8 mm, 3.8 mm, 4.0 mm; 4.0 mm, 4.0 mm, 5.0 mm and 5.4 mm, 5.2 mm, 6.1 mm in RL, AP and SI respectively when online-correction times were more than 15 times, 11-15 times, 5-10 times. Conclusions: CBCT-based on online correction reduce the PTV margin for head and neck cancers treated by IGRT and ensure more precise dose delivery and less normal tissue complications. (authors)

  16. Evaluation of margining algorithms in commercial treatment planning systems

    International Nuclear Information System (INIS)

    Pooler, Alistair M.; Mayles, Helen M.; Naismith, Olivia F.; Sage, John P.; Dearnaley, David P.

    2008-01-01

    Introduction: During commissioning of the Pinnacle (Philips) treatment planning system (TPS) the margining algorithm was investigated and was found to produce larger PTVs than Plato (Nucletron) for identical GTVs. Subsequent comparison of PTV volumes resulting from the QA outlining exercise for the CHHIP (Conventional or Hypofractionated High Dose IMRT for Prostate Ca.) trial confirmed that there were differences in TPS's margining algorithms. Margining and the clinical impact of the different PTVs in seven different planning and virtual simulation systems (Pinnacle, Plato, Prosoma (MedCom), Eclipse (7.3 and 7.5) (Varian), MasterPlan (Nucletron), Xio (CMS) and Advantage Windows (AW) (GE)) is investigated, and a simple test for 3D margining consistency is proposed. Methods: Using each TPS, two different sets of prostate GTVs on 2.5 mm and 5 mm slices were margined according to the CHHIP protocol to produce PTV3 (prostate + 5 mm/0 mm post), PTV2 (PTV3 + 5 mm) and PTV1 (prostate and seminal vesicles + 10 mm). GTVs and PTVs were imported into Pinnacle for volume calculation. DVHs for 5 mm slice plans, created using the smallest PTVs, were recalculated on the largest PTV dataset and vice versa. Since adding a margin of 50 mm to a structure should give the same result as adding five margins of 10 mm, this was tested for each TPS (consistency test) using an octahedron as the GTV and CT datasets with 2.5 mm and 5 mm slices. Results: The CHHIP PTV3 and PTV1 volumes had a standard deviation, across the seven systems, of 5% and PTV2 (margined twice) 9%, on the 5 mm slices. For 2.5 mm slices the standard deviations were 4% and 6%. The ratio of the Pinnacle and the Eclipse 7.3 PTV2 volumes was 1.25. Rectal doses were significantly increased when encompassing Pinnacle PTVs (V 50 42.8%), compared to Eclipse 7.3 PTVs (V 50 = 36.4%). Conversely, fields that adequately treated an Eclipse 7.3 PTV2 were inadequate for a Pinnacle PTV2. AW and Plato PTV volumes were the most consistent

  17. Design of planning target volume margin using an active breathing control and Varian image-guided radiotherapy (IGRT) system in unresectable liver tumor

    International Nuclear Information System (INIS)

    Yue Jinbo; Yu Jinming; Liu Jing; Liu Tonghai; Yin Yong; Shi Xuetao; Song Jinlong

    2007-01-01

    Objective: To define the planning target volume(PTV) margin with an active breathing control (ABC) and the Varian image-guided radiotherapy (IGRT) system. Methods: Thirteen patients with liver cancer were treated with radiotherapy from May 2006 to September 2006. Prior to radiotherapy, all patients had undergone transarterial chemoembolization (TACE) by infusing a mixture of iodized oil contrast medium and chemotherapeutic agents, kV fluoroscopy was used to measure the potential motion of lipiodol spot positions during ABC breath-holds. ABC was used for planning CT scan and radiation delivery, with the breath held at the same phase of the respiratory cycle (near end-exhalation). Cone beam CT (CBCT) was taken using Varian IGRT system, which was then compared online with planning CT using a 3 D-3 D matching tool. Analysis relied on lipiodol spots on planning CT and CBCT manually. The treatment table was moved to produce acceptable setup before treatment delivery. Repeated CBCT image and another analysis were obtained after irradiation. Results: No motion of the intrahepatic tumor was observed on fluoroscopy during ABC breath-holds. The estimated required PTV margins, calculated according to the Stroom formula, were 4.4 mm, 5.3 mm and 7.8 mm in the x, y and z axis directions before radiotherapy. The corresponding parameters were 2.5m, 2.6 mm and 3.9 mm after radiotherapy. Conclusions: We have adopted a PTV margin of 5 mm, 6 mm and 8 mm in the x, y and z axis directions with ABC, and 3,3 and 4 mm with ABC and on-line kilovoltage CBCT. (authors)

  18. What margins should be added to the clinical target volume in radiotherapy treatment planning of lung cancer?

    International Nuclear Information System (INIS)

    Ekberg, L.; Wittgren, L.; Holmberg, O.

    1995-01-01

    When defining the planning target volume (PTV) in radiotherapy treatment planning, it is vital to add geometrical margins of normal tissue around the clinical target volume (CTV). This is to ensure that the whole CTV will receive the planned absorbed dose taking into account both set-up deviations and target movements as well as other geometrical variations in the treatment chain. The problem is our limited knowledge of how large these margins should be. To assess the size of needed margins around the CTV in conformal radiotherapy of lung cancer, electronic portal imaging was employed in 232 irradiation field set-ups of 14 patients. This was done in order to quantify the uncertainty in the execution of treatment considering patient movement and set-up displacements. For an estimation of the added geometrical variation from target movement during irradiation, fluoroscopy was used at the simulation of the irradiation fields. The set-up study showed an average systematic deviation for all individual fields of 3.1 mm and an average maximal systematic deviation (in either transversal or craniocaudal direction) of 4.8 mm. The random errors can be described by an average standard deviation of 2.8 mm for all fields in either direction. Major gradual displacements as a function of time was also detected in one of the patients. CTV-movements of several millimetres during respiration could be observed. It was also seen that heartbeats could add to CTV-movements during irradiation with an equal magnitude. The combined effect of these factors are considered when making an overall estimation of margins that should be added to the CTV

  19. Comparison of 2D and 3D algorithms for adding a margin to the gross tumor volume in the conformal radiotherapy planning of prostate cancer

    International Nuclear Information System (INIS)

    Khoo, Vincent S.; Bedford, James L.; Webb, Steve; Dearnaley, David P.

    1998-01-01

    Purpose: To evaluate the adequacy of tumor volume coverage using a three-dimensional (3D) margin-growing algorithm compared to a two-dimensional (2D) margin-growing algorithm in the conformal radiotherapy planning of prostate cancer. Methods and Materials: Two gross tumor volumes (GTV) were segmented in each of 10 patients with localized prostate cancer; prostate gland only (PO) and prostate with seminal vesicles (PSV). A predetermined margin of 10 mm was applied to these two groups (PO and PSV) using both 2D and 3D margin-growing algorithms. The 2D algorithm added a transaxial margin to each GTV slice, whereas the 3D algorithm added a volumetric margin all around the GTV. The true planning target volume (PTV) was defined as the region delineated by the 3D algorithm. The adequacy of geometric coverage of the GTV by the two algorithms was examined in a series of transaxial planes throughout the target volume. Results: The 2D margin-growing algorithm underestimated the PTV by 17% (range 12-20) in the PO group and by 20% (range 13-28) for the PSV group when compared to the 3D-margin algorithm. For the PO group, the mean transaxial difference between the 2D and 3D algorithm was 3.8 mm inferiorly (range 0-20), 1.8 mm centrally (range 0-9), and 4.4 mm superiorly (range 0-22). Considering all of these regions, the mean discrepancy anteriorly was 5.1 mm (range 0-22), posteriorly 2.2 (range 0-20), right border 2.8 mm (range 0-14), and left border 3.1 mm (range 0-12). For the PSV group, the mean discrepancy in the inferior region was 3.8 mm (range 0-20), central region of the prostate was 1.8 mm ( range 0-9), the junction region of the prostate and the seminal vesicles was 5.5 mm (range 0-30), and the superior region of the seminal vesicles was 4.2 mm (range 0-55). When the different borders were considered in the PSV group, the mean discrepancies for the anterior, posterior, right, and left borders were 6.4 mm (range 0-55), 2.5 mm (range 0-20), 2.6 mm (range 0-14), and 3

  20. Margins for treatment planning of proton therapy

    International Nuclear Information System (INIS)

    Thomas, Simon J

    2006-01-01

    For protons and other charged particles, the effect of set-up errors on the position of isodoses is considerably less in the direction of the incident beam than it is laterally. Therefore, the margins required between the clinical target volume (CTV) and planning target volume (PTV) can be less in the direction of the incident beam than laterally. Margins have been calculated for a typical head plan and a typical prostate plan, for a single field, a parallel opposed and a four-field arrangement of protons, and compared with margins calculated for photons, assuming identical geometrical uncertainties for each modality. In the head plan, where internal motion was assumed negligible, the CTV-PTV margin reduced from approximately 10 mm to 3 mm in the axial direction for the single field and parallel opposed plans. For a prostate plan, where internal motion cannot be ignored, the corresponding reduction in margin was from 11 mm to 7 mm. The planning organ at risk (PRV) margin in the axial direction reduced from 6 mm to 2 mm for the head plan, and from 7 mm to 4 mm for the prostate plan. No reduction was seen on the other axes, or for any axis of the four-field plans. Owing to the shape of proton dose distributions, there are many clinical cases in which good dose distributions can be obtained with one or two fields. When this is done, it is possible to use smaller PTV and PRV margins. This has the potential to convert untreatable cases, in which the PTV and PRV overlap, into cases with a gap between PTV and PRV of adequate size for treatment planning

  1. Transcranial sonography: integration into target volume definition for glioblastoma multiforme

    International Nuclear Information System (INIS)

    Vordermark, Dirk; Becker, Georg; Flentje, Michael; Richter, Susanne; Goerttler-Krauspe, Irene; Koelbl, Oliver

    2000-01-01

    Purpose: Recent studies indicate that transcranial sonography (TCS) reliably displays the extension of malignant brain tumors. The effect of integrating TCS into radiotherapy planning for glioblastoma multiforme (GBM) was investigated herein. Methods and Materials: Thirteen patients subtotally resected for GBM underwent TCS during radiotherapy planning and were conventionally treated (54 to 60 Gy). Gross tumor volumes (GTVs) and stereotactic boost planning target volumes (PTVs, 3-mm margin) were created, based on contrast enhancement on computed tomography (CT) only (PTV CT ) or the combined CT and TCS information (PTV CT+TCS ). Noncoplonar conformal treatment plans for both PTVs were compared. Tumor progression patterns and preoperative magnetic resonance imaging (MRI) were related to both PTVs. Results: A sufficient temporal bone window for TCS was present in 11 of 13 patients. GTVs as defined by TCS were considerably larger than the respective CT volumes: Of the composite GTV CT+TCS (median volume 42 ml), 23%, 13%, and 66% (medians) were covered by the overlap of both methods, CT only and TCS only, respectively. Median sizes of PTV CT and PTV CT+TCS were 34 and 74 ml, respectively. Addition of TCS to CT information led to a median increase of the volume irradiated within the 80% isodose by 32 ml (median factor 1.51). PTV CT+TCS volume was at median 24% of a 'conventional' MRI(T2)-based PTV. Of eight progressions analyzed, three and six occurred inside the 80% isodose of the plans for PTV CT and for PTV CT+TCS , respectively. Conclusion: Addition of TCS tumor volume to the contrast-enhancing CT volume in postoperative radiotherapy planning for GBM increases the treated volume by a median factor of 1.5. Since a high frequency of marginal recurrences is reported from dose-escalation trials of this disease, TCS may complement established methods in PTV definition

  2. Image-guided radiotherapy of bladder cancer: bladder volume variation and its relation to margins

    DEFF Research Database (Denmark)

    Muren, Ludvig; Redpath, Anthony Thomas; Lord, Hannah

    2007-01-01

    : The correlation between the relative bladder volume (RBV, defined as repeat scan volume/planning scan volume) and the margins required to account for internal motion was first studied using a series of 20 bladder cancer patients with weekly repeat CT scanning during treatment. Both conformal RT (CRT) and IGRT......BACKGROUND AND PURPOSE: To control and account for bladder motion is a major challenge in radiotherapy (RT) of bladder cancer. This study investigates the relation between bladder volume variation and margins in conformal and image-guided RT (IGRT) for this disease. MATERIALS AND METHODS...... these patients were given fluid intake restrictions on alternating weeks during treatment. RESULTS: IGRT gave the strongest correlation between the RBV and margin size (R(2)=0.75; p10mm were required in only 1% of the situations when the RBV1, whereas isotropic margins >10...

  3. Cone Beam CT Imaging Analysis of Interfractional Variations in Bladder Volume and Position During Radiotherapy for Bladder Cancer

    International Nuclear Information System (INIS)

    Yee, Don; Parliament, Matthew; Rathee, Satyapal; Ghosh, Sunita; Ko, Lawrence; Murray, Brad

    2010-01-01

    Purpose: To quantify daily bladder size and position variations during bladder cancer radiotherapy. Methods and Materials: Ten bladder cancer patients underwent daily cone beam CT (CBCT) imaging of the bladder during radiotherapy. Bladder and planning target volumes (bladder/PTV) from CBCT and planning CT scans were compared with respect to bladder center-of-mass shifts in the x (lateral), y (anterior-posterior), and z (superior-inferior) coordinates, bladder/PTV size, bladder/PTV margin positions, overlapping areas, and mutually exclusive regions. Results: A total of 262 CBCT images were obtained from 10 bladder cancer patients. Bladder center of mass shifted most in the y coordinate (mean, -0.32 cm). The anterior bladder wall shifted the most (mean, -0.58 cm). Mean ratios of CBCT-derived bladder and PTV volumes to planning CT-derived counterparts were 0.83 and 0.88. The mean CBCT-derived bladder volume (± standard deviation [SD]) outside the planning CT counterpart was 29.24 cm 3 (SD, 29.71 cm 3 ). The mean planning CT-derived bladder volume outside the CBCT counterpart was 47.74 cm 3 (SD, 21.64 cm 3 ). The mean CBCT PTV outside the planning CT-derived PTV was 47.35 cm 3 (SD, 36.51 cm 3 ). The mean planning CT-derived PTV outside the CBCT-derived PTV was 93.16 cm 3 (SD, 50.21). The mean CBCT-derived bladder volume outside the planning PTV was 2.41 cm 3 (SD, 3.97 cm 3 ). CBCT bladder/ PTV volumes significantly differed from planning CT counterparts (p = 0.047). Conclusions: Significant variations in bladder and PTV volume and position occurred in patients in this trial.

  4. Pattern of Failure After Limited Margin Radiotherapy and Temozolomide for Glioblastoma

    International Nuclear Information System (INIS)

    McDonald, Mark W.; Shu, Hui-Kuo G.; Curran, Walter J.; Crocker, Ian R.

    2011-01-01

    Purpose: To evaluate the pattern of failure after limited margin radiotherapy for glioblastoma. Methods and Materials: We analyzed 62 consecutive patients with newly diagnosed glioblastoma treated between 2006 and 2008 with standard fractionation to a total dose of 60Gy with concurrent temozolomide (97%) or arsenic trioxide (3%). The initial clinical target volume included postoperative T2 abnormality with a median margin of 0.7cm. The boost clinical target volume included residual T1-enhancing tumor and resection cavity with a median margin of 0.5cm. Planning target volumes added a 0.3- or 0.5-cm margin to clinical target volumes. The total boost planning target volume (PTV boost ) margin was 1cm or less in 92% of patients. The volume of recurrent tumor (new T1 enhancement) was categorized by the percent within the 60-Gy isodose line as central (>95%), infield (81-95%), marginal (20-80%), or distant ( boost with a 2.5-cm margin were created for each patient. Results: With a median follow-up of 12 months, radiographic tumor progression developed in 43 of 62 patients. Imaging was available for analysis in 41: 38 (93%) had central or infield failure, 2 (5%) had marginal failure, and 1 (2%) had distant failure relative to the 60-Gy isodose line. The treated PTV boost (median, 140cm 3 ) was, on average, 70% less than the PTV boost with a 2.5-cm margin (median, 477cm 3 ) (p boost margin of 1cm or less did not appear to increase the risk of marginal and/or distant tumor failures compared with other published series. With careful radiation planning and delivery, it appears that treatment margins for glioblastoma can be reduced.

  5. Conventional margins not sufficient for post-prostatectomy prostate bed coverage: An analysis of 477 cone-beam computed tomography scans

    International Nuclear Information System (INIS)

    Gill, Suki; Isiah, Rajesh; Adams, Rohan; Dang, Kim; Siva, Shankar; Tai, Keen Hun; Kron, Tomas; Foroudi, Farshad

    2014-01-01

    Purpose: To study prostate bed deformation, and compare coverage by 5 mm and 10 mm posterior expansion PTV margins. Method: Fifty patients who completed post-prostatectomy radiotherapy had two expansion margins applied to the planning CT CTV: PTV10 (10 mm isometrically) and PTV5 (5 mm posteriorly, 10 mm all other directions). The CTV was then contoured on 477 pre-treatment CBCTs, and PTV5 and PTV10 coverage of each CBCT-CTVs was assessed. The maximum distance from the planning CT CTV to the combined CTV of all CBCTs including the planning CT CTV was measured for the superior part of the prostate bed, and the inferior part of the prostate bed, for every patient. Results: The mean difference between largest and smallest CBCT-CTVs per patient was 18.7 cm 3 (range 6.3–34.2 cm 3 ). Out of 477 CBCTs, there were 43 anterior geometric geographical misses for either PTV with a mean volume of 2.25 cm 3 (range 0.01–18.88 cm 3 ). For PTV10, there were 26 posterior geometric geographical misses with a mean volume of 1.37 cm 3 (0.01–11.02 cm 3 ). For PTV5, there were 46 posterior geometric geographical misses with a mean volume of 3.22 cm 3 (0.01–19.82 cm 3 ). The maximum edge-to-edge distance for the superior prostate bed was anterior 19 mm, posterior 16 mm, left and right 7 mm. The maximum edge-to-edge distance for the inferior prostate bed was anterior 4 mm, posterior 12 mm, left and right 7 mm. Conclusion: This study supports differential margins for the superior and inferior portions of the prostate bed. Because of the large deformation of CTV volume seen, adaptive radiotherapy solutions should be investigated further

  6. SU-F-J-132: Evaluation of CTV-To-PTV Expansion for Whole Breast Radiotherapy

    International Nuclear Information System (INIS)

    Burgdorf, B; Freedman, G; Teo, B

    2016-01-01

    Purpose: The current standard CTV-to-PTV expansion for whole breast radiotherapy (WBRT) is 7mm, as recommended by RTOG-1005.This expansion is derived from the uncertainty due to patient positioning (±5mm) and respiratory motion (±5mm). We evaluated the expansion needed for respiratory motion uncertainty using 4DCT. After determining the appropriate expansion margins, RT plans were generated to evaluate the reduction in heart and lung dose. Methods: 4DCT images were acquired during treatment simulation and retrospectively analyzed for 34 WBRT patients. Breast CTVs were contoured on the maximum inhale and exhale phase. Breast CTV displacement was measured in the L-R, A-P, and SUP-INF directions using rigid registration between phase images. Averaging over the 34 patients, we determined the margin due to respiratory motion. Plans were generated for 10 left-sided cases comparing the new expansion with the 7mm PTV expansion. Results: The results for respiratory motion uncertainty are shown in Table 1. Drawing on previous work by White et al at Princess Margaret Hospital (1) (see supporting document for reference) which studied the uncertainty due to patient positioning, we concluded that, in total, a 5mm expansion was sufficient. The results for our suggested PTV margin are shown in Table 2, combining the patient positioning results from White et al with our respiratory motion results. The planning results demonstrating the heart and lung dose differences in the 5mm CTV-to-PTV expanded plan compared to the 7mm plan are shown in Table 3. Conclusion: Our work evaluating the expansion needed for respiratory motion along with previous work evaluating the expansion needed for setup uncertainty shows that a CTV-to-PTV expansion of 5mm is acceptable and conservative. By reducing the PTV expansion, significant dose reduction to the heart and lung are achievable.

  7. Geographic miss of lung tumours due to respiratory motion: a comparison of 3D vs 4D PET/CT defined target volumes

    International Nuclear Information System (INIS)

    Callahan, Jason; Kron, Tomas; Siva, Shankar; Simoens, Nathalie; Edgar, Amanda; Everitt, Sarah; Schneider, Michal E; Hicks, Rodney J

    2014-01-01

    PET/CT scans acquired in the radiotherapy treatment position are typically performed without compensating for respiratory motion. The purpose of this study was to investigate geographic miss of lung tumours due to respiratory motion for target volumes defined on a standard 3D-PET/CT. 29 patients staged for pulmonary malignancy who completed both a 3D-PET/CT and 4D-PET/CT were included. A 3D-Gross Tumour Volume (GTV) was defined on the standard whole body PET/CT scan. Subsequently a 4D-GTV was defined on a 4D-PET/CT MIP. A 5 mm, 10 mm, 15 mm symmetrical and 15×10 mm asymmetrical Planning Target Volume (PTV) was created by expanding the 3D-GTV and 4D-GTV’s. A 3D conformal plan was generated and calculated to cover the 3D-PTV. The 3D plan was transferred to the 4D-PTV and analysed for geographic miss. Three types of miss were measured. Type 1: any part of the 4D-GTV outside the 3D-PTV. Type 2: any part of the 4D-PTV outside the 3D-PTV. Type 3: any part of the 4D-PTV receiving less than 95% of the prescribed dose. The lesion motion was measured to look at the association between lesion motion and geographic miss. When a standard 15 mm or asymmetrical PTV margin was used there were 1/29 (3%) Type 1 misses. This increased 7/29 (24%) for the 10 mm margin and 23/29 (79%) for a 5 mm margin. All patients for all margins had a Type 2 geographic miss. There was a Type 3 miss in 25 out of 29 cases in the 5, 10, and 15 mm PTV margin groups. The asymmetrical margin had one additional Type 3 miss. Pearson analysis showed a correlation (p < 0.01) between lesion motion and the severity of the different types of geographic miss. Without any form of motion suppression, the current standard of a 3D- PET/CT and 15 mm PTV margin employed for lung lesions has an increasing risk of significant geographic miss when tumour motion increases. Use of smaller asymmetric margins in the cranio-caudal direction does not comprise tumour coverage. Reducing PTV margins for volumes defined on 3D

  8. Comparison of planning target volumes based on three-dimensional and four-dimensional CT imaging of thoracic esophageal cancer

    Directory of Open Access Journals (Sweden)

    Wang W

    2016-08-01

    Full Text Available Wei Wang, Jianbin Li, Yingjie Zhang, Qian Shao, Min Xu, Tingyong Fan, Jinzhi Wang Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong, People’s Republic of China Background and purpose: To investigate the definition of planning target volumes (PTVs based on four-dimensional computed tomography (4DCT compared with conventional PTV definition and PTV definition using asymmetrical margins for thoracic primary esophageal cancer. Materials and methods: Forty-three patients with esophageal cancer underwent 3DCT and 4DCT simulation scans during free breathing. The motions of primary tumors located in the proximal (group A, middle (group B, and distal (group C thoracic esophagus were obtained from the 4DCT scans. PTV3D was defined on 3DCT using the tumor motion measured based on 4DCT, PTV conventional (PTVconv was defined on 3DCT by adding a 1.0 cm margin to the clinical target volume, and PTV4D was defined as the union of the target volumes contoured on the ten phases of the 4DCT images. The centroid positions, volumetric differences, and dice similarity coefficients were evaluated for all PTVs. Results: The median centroid shifts between PTV3D and PTV4D and between PTVconv and PTV4D in all three dimensions were <0.3 cm for the three groups. The median size ratios of PTV4D to PTV3D were 0.80, 0.88, and 0.71, and PTV4D to PTVconv were 0.67, 0.73, and 0.76 (χ2=–3.18, –2.98, and –3.06; P=0.001, 0.003, and 0.002 for groups A, B, and C, respectively. The dice similarity coefficients were 0.87, 0.90, and 0.81 between PTV4D and PTV3D and 0.80, 0.84, and 0.83 between PTV4D and PTVconv (χ2=–3.18, –2.98, and –3.06; P=0.001, 0.003, and 0.002 for groups A, B, and C, respectively. The difference between the degree of inclusion of PTV4D in PTV3D and that of PTV4D in PTVconv was <2% for all groups. Compared with PTVconv, the amount of irradiated normal tissue

  9. Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements

    International Nuclear Information System (INIS)

    Toloui, Mostafa; Mallery, Kevin; Hong, Jiarong

    2017-01-01

    Three-dimensional (3D) particle image velocimetry (PIV) and particle tracking velocimetry (PTV) provide the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. In this study, we present our latest developments on minimizing these challenges, which enables high-fidelity DIH-PTV implementation to larger sampling volumes with significantly higher particle seeding densities suitable for wall-bounded turbulent flow measurements. The improvements include: (1) adjustable window thresholding; (2) multi-pass 3D tracking; (3) automatic wall localization; and (4) continuity-based out-of-plane velocity component computation. The accuracy of the proposed DIH-PTV method is validated with conventional 2D PIV and double-view holographic PTV measurements in smooth-wall turbulent channel flow experiments. The capability of the technique in characterization of wall-bounded turbulence is further demonstrated through its application to flow measurements for smooth- and rough-wall turbulent channel flows. In these experiments, 3D velocity fields are measured within sampling volumes of 14.7  ×  50.0  ×  14.4 mm 3 (covering the entire depth of the channel) with a velocity resolution of  <1.1 mm/vector. Overall, the presented DIH-PTV method and

  10. Extracranial stereotactic radiotherapy: Evaluation of PTV coverage and dose conformity

    International Nuclear Information System (INIS)

    Haedinger, U.; Thiele, W.; Wulf, J.

    2002-01-01

    During the past few years the concept of cranial sterotactic radiotherapy has been successfully extended to extracranial tumoral targets. In our department, hypofractionated treatment of tumours in lung, liver, abdomen, and pelvis is performed in the Stereotactic Body Frame (ELEKTA Instrument AB) since 1997. We present the evaluation of 63 consecutively treated targets (22 lung, 21 liver, 20 abdomen/pelvis) in 58 patients with respect to dose coverage of the planning target volume (PTV) as well as conformity of the dose distribution. The mean PTV coverage was found to be 96.3%±2.3% (lung), 95.0%±4.5% (liver), and 92.1%±5.2% (abdomen/pelvis). For the so-called conformation number we obtained values of 0.73±0.09 (lung), 0.77±0.10 (liver), and 0.70±0.08 (abdomen/pelvis). The results show that highly conformal treatment techniques can be applied also in extracranial stereotactic radiotherapy. This is primarily due to the relatively simple geometrical shape of most of the targets. Especially lung and liver targets turned out to be approximately spherically/cylindrically shaped, so that the dose distribution can be easily tailored by rotational fields. (orig.) [de

  11. Preliminary study of the internal margin of the gross tumor volume in thoracic esophageal cancer

    International Nuclear Information System (INIS)

    Li, Jiancheng; Pan, Jianji; Wang, Linhua; Zhao, Yunhui; Liu, Di; Chen, Cheng; Zhang, He Ping; Wang, Xiaoliang

    2012-01-01

    Purpose. - To measure the displacement of the tumor of the gross tumor volume (GTV) of thoracic esophageal cancer in the calm states of end-inspiration and end-expiration for determining the internal margin of the GTV (IGTV). Methods. - Twenty-two patients with thoracic esophageal cancer who were unable to undergo surgery were identified in our hospital. The patients received radiotherapy. By using 16-slice spiral computed tomography (CT), we acquired the calm states of end-inspiration and end-expiration. The displacement and volume changes in tumor target volume were measured, and the changes were analyzed to determine if these were associated with the tidal volume and the location and length of the target volume V. In the end, we analyzed the displacement of tumor target volume and calculated the internal margin of the GTV by empirical formula. Results. - The average tidal volume was 463.6 ml. The average GTV at end-inspiration was 33.3 ml and at end-expiration was 33.35 ml. Three was not any significant between two groups (T -0.034, P > 0.05). The IGTV (X-axis direction) was 3.09 mm for the right sector and 4.08 mm for the left border; the IGTV (Z-axis direction) was 3.96 mm for the anterior border and 2.83 mm for the posterior border; and the IGTV (Y-axis direction) was 7.31 mm for the upper boundary (head direction) and 10.16 mm for the lower boundary (feet direction). The motion of the GTV showed no significant correlation with the tidal volume of patients and the length of the tumor, but in relation to the tumor location, the displacement of the lower thoracic and the middle thoracic target volumes occurred in the direction of the anterior and right, which were not significantly different (T = 0.859, 0.229, P > 0.05) The significant differences were observed for the other directions (P < 0.05). Conclusions. - Because of respiratory and organ movements, the displacement of the tumor target volume was different in all directions. Therefore, we recommend that

  12. Radical prostatectomy and positive surgical margins: tumor volume and Gleason score predicts cancer outcome

    International Nuclear Information System (INIS)

    La Roca, Ricardo L.R. Felts de; Fonseca, Francisco Paula da; Cunha, Isabela Werneck da; Bezerra, Stephania Martins

    2013-01-01

    Introduction: positive surgical margins (PSMs) are common adverse factors to predict the outcome of a patient submitted to radical prostatectomy (PR). However, not all of these men will follow with biochemical (BCR) or clinical (CR) recurrence. Relationship between PSMs with these recurrent events has to be correlated with other clinicopathological findings in order to recognize more aggressive tumors in order to recommend complementary treatment to these selected patients. Materials and methods: we retrospectively reviewed the outcome of 228 patients submitted to open retropubic RP between March 1991 and June 2008, where 161 had and 67 did not have PSMs. Minimum follow-up time was considered 2 years after surgery. BCR was considered when PSA ≥ 0.2 ng/ml. CR was determined when clinical evidence of tumor appeared. Chi-square test was used to correlate clinical and pathologic variables with PSMs. The estimated 5-year risk of BCR and CR in presence of PSMs was determined using the Kaplan-Meier method and compared to log-rank tests. Results: from the total of 228 patients, 161 (71%) had PSMs, while 67 (29%) had negative surgical margins (NSMs). Prostatic circumferential margin was the most common (43.4%) site. Univariate analysis showed statistically significant (p < 0.001) associations between the presence of PSMs and BCR, but not with CR (p = 0.06). Among 161 patients with PSMs, 61 (37.8%) presented BCR, while 100 (62.8%) did not. Predicting progression-free survival for 5 years, BCR was correlated with pathological stage; Gleason score; pre-treatment PSA; tumor volume in specimen; capsular and perineural invasion; presence and number of PSMs. RC correlated only with angiolymphatic invasion and Gleason score. Considering univariate analyses the clinicopathological factors predicting BCR for 5 years, results statistically significant links with prostate weight; pre-treatment PSA; Gleason score; pathological stage; tumor volume; PSMs; capsular and perineural

  13. Radical prostatectomy and positive surgical margins: tumor volume and Gleason score predicts cancer outcome

    Energy Technology Data Exchange (ETDEWEB)

    La Roca, Ricardo L.R. Felts de, E-mail: Ricardo@delarocaurologia.com.br [Hospital do Cancer A.C. Camargo, Sao Paulo, SP (Brazil); Fonseca, Francisco Paula da, E-mail: fpf@uol.com.br [Hospital do Cancer A.C. Camargo, Sao Paulo, SP (Brazil). Divisao de Urologia. Dept. de Cirurgia Pelvica; Cunha, Isabela Werneck da; Bezerra, Stephania Martins, E-mail: iwerneck@gmail.com, E-mail: stephaniab@gmail.com [Hospital do Cancer A.C. Camargo, Sao Paulo, SP (Brazil). Dept. de Patologia

    2013-07-01

    Introduction: positive surgical margins (PSMs) are common adverse factors to predict the outcome of a patient submitted to radical prostatectomy (PR). However, not all of these men will follow with biochemical (BCR) or clinical (CR) recurrence. Relationship between PSMs with these recurrent events has to be correlated with other clinicopathological findings in order to recognize more aggressive tumors in order to recommend complementary treatment to these selected patients. Materials and methods: we retrospectively reviewed the outcome of 228 patients submitted to open retropubic RP between March 1991 and June 2008, where 161 had and 67 did not have PSMs. Minimum follow-up time was considered 2 years after surgery. BCR was considered when PSA {>=} 0.2 ng/ml. CR was determined when clinical evidence of tumor appeared. Chi-square test was used to correlate clinical and pathologic variables with PSMs. The estimated 5-year risk of BCR and CR in presence of PSMs was determined using the Kaplan-Meier method and compared to log-rank tests. Results: from the total of 228 patients, 161 (71%) had PSMs, while 67 (29%) had negative surgical margins (NSMs). Prostatic circumferential margin was the most common (43.4%) site. Univariate analysis showed statistically significant (p < 0.001) associations between the presence of PSMs and BCR, but not with CR (p = 0.06). Among 161 patients with PSMs, 61 (37.8%) presented BCR, while 100 (62.8%) did not. Predicting progression-free survival for 5 years, BCR was correlated with pathological stage; Gleason score; pre-treatment PSA; tumor volume in specimen; capsular and perineural invasion; presence and number of PSMs. RC correlated only with angiolymphatic invasion and Gleason score. Considering univariate analyses the clinicopathological factors predicting BCR for 5 years, results statistically significant links with prostate weight; pre-treatment PSA; Gleason score; pathological stage; tumor volume; PSMs; capsular and perineural

  14. Optimized Planning Target Volume for Intact Cervical Cancer

    International Nuclear Information System (INIS)

    Khan, Alvin; Jensen, Lindsay G.; Sun Shuai; Song, William Y.; Yashar, Catheryn M.; Mundt, Arno J.; Zhang Fuquan; Jiang, Steve B.; Mell, Loren K.

    2012-01-01

    Purpose: To model interfraction clinical target volume (CTV) variation in patients with intact cervical cancer and design a planning target volume (PTV) that minimizes normal tissue dose while maximizing CTV coverage. Methods and Materials: We analyzed 50 patients undergoing external-beam radiotherapy for intact cervical cancer using daily online cone-beam computed tomography (CBCT). The CBCTs (n = 972) for each patient were rigidly registered to the planning CT. The CTV was delineated on the planning CT (CTV 0 ) and the set of CBCTs ({CTV 1 –CTV 25 }). Manual (n = 98) and automated (n = 668) landmarks were placed over the surface of CTV 0 with reference to defined anatomic structures. Normal vectors were extended from each landmark, and the minimum length required for a given probability of encompassing CTV 1 –CTV 25 was computed. The resulting expansions were used to generate an optimized PTV. Results: The mean (SD; range) normal vector length to ensure 95% coverage was 4.3 mm (2.7 mm; 1–16 mm). The uniform expansion required to ensure 95% probability of CTV coverage was 13 mm. An anisotropic margin of 20 mm anteriorly and posteriorly and 10 mm superiorly, inferiorly, and laterally also would have ensured a 95% probability of CTV coverage. The volume of the 95% optimized PTV (1470 cm 3 ) was significantly lower than both the anisotropic PTV (2220 cm 3 ) and the uniformly expanded PTV (2110 cm 3 ) (p 0 , 5–10 mm along the interfaces of CTV 0 with the bladder and rectum, and 10–14 mm along the anterior surface of CTV 0 at the level of the uterus. Conclusion: Optimizing PTV definition according to surface landmarking resulted in a high probability of CTV coverage with reduced PTV volumes. Our results provide data justifying planning margins to use in practice and clinical trials.

  15. The Influence of Hospital Volume on Circumferential Resection Margin Involvement: Results of the Dutch Surgical Colorectal Audit

    NARCIS (Netherlands)

    Gietelink, Lieke; Henneman, Daniel; van Leersum, Nicoline J.; de Noo, Mirre; Manusama, Eric; Tanis, Pieter J.; Tollenaar, Rob A. E. M.; Wouters, Michel W. J. M.

    2016-01-01

    This population-based study evaluates the association between hospital volume and CRM (circumferential resection margin) involvement, adjusted for other confounders, in rectal cancer surgery. A low hospital volume ( <20 cases/year) was independently associated with a higher risk of CRM involvement

  16. Comparison of Tomo-PIV and 3D-PTV for microfluidic flows

    International Nuclear Information System (INIS)

    Kim, Hyoungsoo; Westerweel, Jerry; Elsinga, Gerrit E

    2013-01-01

    Two 3D-3C velocimetry techniques for micro-scale measurements are compared: tomographic particle image velocimetry (Tomo-PIV) and 3D particle-tracking velocimetry (3D-PTV). Both methods are applied to experimental data from a confined shear-driven liquid droplet over a moving surface. The droplet has 200 μm height and 2 mm diameter. Micro 3D-PTV and Tomo-PIV are used to obtain the tracer particle distribution and the flow velocity field for the same set of images. It is shown that the reconstructed particle distributions are distinctly different, where Tomo-PIV returns a nearly uniform distribution over the height of the volume, as expected, and PTV reveals a clear peak in the particle distribution near the plane of focus. In Tomo-PIV, however, the reconstructed particle peak intensity decreases in proportion to the distance from the plane of focus. Due to the differences in particle distributions, the measured flow velocities are also different. In particular, we observe Tomo-PIV to be in closer agreement with mass conservation. Furthermore, the random noise level is found to increase with distance to the plane of focus at a higher rate for 3D-PTV as compared to Tomo-PIV. Thus, for a given noise threshold value, the latter method can measure reliably over a thicker volume. (paper)

  17. Characterization of jellyfish turning using 3D-PTV

    Science.gov (United States)

    Xu, Nicole; Dabiri, John

    2017-11-01

    Aurelia aurita are oblate, radially symmetric jellyfish that consist of a gelatinous bell and subumbrellar muscle ring, which contracts to provide motive force. Swimming is typically modeled as a purely vertical motion; however, asymmetric activations of swim pacemakers (sensory organs that innervate the muscle at eight locations around the bell margin) result in turning and more complicated swim behaviors. More recent studies have examined flow fields around turning jellyfish, but the input/output relationship between locomotive controls and swim trajectories is unclear. To address this, bell kinematics for both straight swimming and turning are obtained using 3D particle tracking velocimetry (3D-PTV) by injecting biocompatible elastomer tags into the bell, illuminating the tank with ultraviolet light, and tracking the resulting fluorescent particles in a multi-camera setup. By understanding these kinematics in both natural and externally controlled free-swimming animals, we can connect neuromuscular control mechanisms to existing flow measurements of jellyfish turning for applications in designing more energy efficient biohybrid robots and underwater vehicles. NSF GRFP.

  18. Individualized margins in 3D conformal radiotherapy planning for lung cancer: analysis of physiological movements and their dosimetric impacts.

    Science.gov (United States)

    Germain, François; Beaulieu, Luc; Fortin, André

    2008-01-01

    In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generate individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage.

  19. Individualized Margins in 3D Conformal Radiotherapy Planning for Lung Cancer: Analysis of Physiological Movements and Their Dosimetric Impacts

    International Nuclear Information System (INIS)

    Germain, Francois; Beaulieu, Luc; Fortin, Andre

    2008-01-01

    In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generate individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage

  20. SU-E-J-75: Importance of 4DCT for Target Volume Definition in Stereotactic Lung Radiotherapy

    International Nuclear Information System (INIS)

    Goksel, E; Cone, D; Kucucuk, H; Senkesen, O; Yilmaz, M; Aslay, I; Tezcanli, E; Garipagaoglu, M; Sengoz, M

    2014-01-01

    Purpose: We aimed to investigate the importance of 4DCT for lung tumors treated with SBRT and whether maximum intensity projection (MIP) and free breathing (FB) images can compansate for tumor movement. Methods: Six patients with primary lung cancer and 2 patients with lung metastasis with a median age of 69.5 (42–86) were included. Patients were positioned supine on a vacuum bag. In addition to FB planning CT images, 4DCT images were obtained at 3 mm intervals using Varian RPM system with (Siemens Somatom Sensetion 64). MIP series were reconstructed using 4DCT images. PTV-FB and PTV-MIP (GTV+5mm) volumes were contoured using FB and MIP series, respectively. GTVs were defined on each of eight different breathing phase images and were merged to create the ITV. PTV-4D was generated with a 5 mm margin to ITV. PTV-MIP and PTV-4D contours were copied to FB CT series and treatment plans for PTV-MIP and PTV-FB were generated using RapidArc (2 partial arc) technique in Eclipse (version 11, AAA algorithm). The prescription dose was 5600cGy in 7 fractions. ITV volumes receiving prescription dose (%) and V95 for ITV were calculated for each treatment plan. Results: The mean PTV-4B, PTV-MIP and PTV-FB volumes were 23.2 cc, 15.4cc ve 11cc respectively. Median volume of ITV receiving the prescription dose was 34.6% (16.4–70 %) and median V95 dose for ITV was 1699cGy (232cGy-5117cGy) in the plan optimized for PTV-FB as the reference. When the plan was optimized for PTV-MIP, median ITV volume receiving the prescription dose was 67.15% (26–86%) and median V95 dose for ITV was 4231cGy (1735cGy-5290cGy). Conclusion: Images used in lung SBRT are critical for treatment quality; FB and MIP images did not compensate target movement, therefore 4DCT images should be obtained for all patients undergoing lung SBRT or the safety margins should be adjusted

  1. SU-E-J-35: Using CBCT as the Alternative Method of Assessing ITV Volume

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Y; Turian, J; Templeton, A; Redler, G; Chu, J [Rush University Medical Center, Chicago, IL (United States)

    2015-06-15

    Purpose To study the accuracy of Internal Target Volumes (ITVs) created on cone beam CT (CBCT) by comparing the visible target volume on CBCT to volumes (GTV, ITV, and PTV) outlined on free breathing (FB) CT and 4DCT. Methods A Quasar Cylindrical Motion Phantom with a 3cm diameter ball (14.14 cc) embedded within a cork insert was set up to simulate respiratory motion with a period of 4 seconds and amplitude of 2cm superioinferiorly and 1cm anterioposteriorly. FBCT and 4DCT images were acquired. A PTV-4D was created on the 4DCT by applying a uniform margin of 5mm to the ITV-CT. PTV-FB was created by applying a margin of the motion range plus 5mm, i.e. total of 1.5cm laterally and 2.5cm superioinferiorly to the GTV outlined on the FBCT. A dynamic conformal arc was planned to treat the PTV-FB with 1mm margin. A CBCT was acquired before the treatment, on which the target was delineated. During the treatment, the position of the target was monitored using the EPID in cine mode. Results ITV-CBCT and ITV-CT were measured to be 56.6 and 62.7cc, respectively, with a Dice Coefficient (DC) of 0.94 and disagreement in center of mass (COM) of 0.59 mm. On the other hand, GTV-FB was 11.47cc, 19% less than the known volume of the ball. PTV-FB and PTV-4D were 149 and 116 cc, with a DC of 0.71. Part of the ITV-CT was not enclosed by the PTV-FB despite the large margin. The cine EPID images have confirmed geometrical misses of the target. Similar under-coverage was observed in one clinical case and captured by the CBCT, where the implanted fiducials moved outside PTV-FB. Conclusion ITV-CBCT is in good agreement with ITV-CT. When 4DCT was not available, CBCT can be an effective alternative in determining and verifying the PTV margin.

  2. The Influence of Hospital Volume on Circumferential Resection Margin Involvement: Results of the Dutch Surgical Colorectal Audit.

    Science.gov (United States)

    Gietelink, Lieke; Henneman, Daniel; van Leersum, Nicoline J; de Noo, Mirre; Manusama, Eric; Tanis, Pieter J; Tollenaar, Rob A E M; Wouters, Michel W J M

    2016-04-01

    This population-based study evaluates the association between hospital volume and CRM (circumferential resection margin) involvement, adjusted for other confounders, in rectal cancer surgery. A low hospital volume (risk of CRM involvement (odds ratio=1.54; 95% CI: 1.12-2.11). To evaluate the association between hospital volume and CRM (circumferential resection margin) involvement in rectal cancer surgery. To guarantee the quality of surgical treatment of rectal cancer, the Association of Surgeons of the Netherlands has stated a minimal annual volume standard of 20 procedures per hospital. The influence of hospital volume has been examined for different outcome variables in rectal cancer surgery. Its influence on the pathological outcome (CRM) however remains unclear. As long-term outcomes are best predicted by the CRM status, this parameter is of essential importance in the debate on the justification of minimal volume standards in rectal cancer surgery. Data from the Dutch Surgical Colorectal Audit (2011-2012) were used. Hospital volume was divided into 3 groups, and baseline characteristics were described. The influence of hospital volume on CRM involvement was analyzed, in a multivariate model, between low- and high-volume hospitals, according to the minimal volume standards. This study included 5161 patients. CRM was recorded in 86% of patients. CRM involvement was 11% in low-volume group versus 7.7% and 7.9% in the medium- and high-volume group (P≤0.001). After adjustment for relevant confounders, the influence of hospital volume on CRM involvement was still significant odds ratio (OR) = 1.54; 95% CI: 1.12-2.11). The outcomes of this pooled analysis support minimal volume standards in rectal cancer surgery. Low hospital volume was independently associated with a higher risk of CRM involvement (OR = 1.54; 95% CI: 1.12-2.11).

  3. Dense velocity reconstruction from tomographic PTV with material derivatives

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio

    2016-09-01

    A method is proposed to reconstruct the instantaneous velocity field from time-resolved volumetric particle tracking velocimetry (PTV, e.g., 3D-PTV, tomographic PTV and Shake-the-Box), employing both the instantaneous velocity and the velocity material derivative of the sparse tracer particles. The constraint to the measured temporal derivative of the PTV particle tracks improves the consistency of the reconstructed velocity field. The method is christened as pouring time into space, as it leverages temporal information to increase the spatial resolution of volumetric PTV measurements. This approach becomes relevant in cases where the spatial resolution is limited by the seeding concentration. The method solves an optimization problem to find the vorticity and velocity fields that minimize a cost function, which includes next to instantaneous velocity, also the velocity material derivative. The velocity and its material derivative are related through the vorticity transport equation, and the cost function is minimized using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. The procedure is assessed numerically with a simulated PTV experiment in a turbulent boundary layer from a direct numerical simulation (DNS). The experimental validation considers a tomographic particle image velocimetry (PIV) experiment in a similar turbulent boundary layer and the additional case of a jet flow. The proposed technique (`vortex-in-cell plus', VIC+) is compared to tomographic PIV analysis (3D iterative cross-correlation), PTV interpolation methods (linear and adaptive Gaussian windowing) and to vortex-in-cell (VIC) interpolation without the material derivative. A visible increase in resolved details in the turbulent structures is obtained with the VIC+ approach, both in numerical simulations and experiments. This results in a more accurate determination of the turbulent stresses distribution in turbulent boundary layer investigations. Data from a jet

  4. SU-E-T-551: PTV Is the Worst-Case of CTV in Photon Therapy

    International Nuclear Information System (INIS)

    Harrington, D; Liu, W; Park, P; Mohan, R

    2014-01-01

    Purpose: To examine the supposition of the static dose cloud and adequacy of the planning target volume (PTV) dose distribution as the worst-case representation of clinical target volume (CTV) dose distribution for photon therapy in head and neck (H and N) plans. Methods: Five diverse H and N plans clinically delivered at our institution were selected. Isocenter for each plan was shifted positively and negatively in the three cardinal directions by a displacement equal to the PTV expansion on the CTV (3 mm) for a total of six shifted plans per original plan. The perturbed plan dose was recalculated in Eclipse (AAA v11.0.30) using the same, fixed fluence map as the original plan. The dose distributions for all plans were exported from the treatment planning system to determine the worst-case CTV dose distributions for each nominal plan. Two worst-case distributions, cold and hot, were defined by selecting the minimum or maximum dose per voxel from all the perturbed plans. The resulting dose volume histograms (DVH) were examined to evaluate the worst-case CTV and nominal PTV dose distributions. Results: Inspection demonstrates that the CTV DVH in the nominal dose distribution is indeed bounded by the CTV DVHs in the worst-case dose distributions. Furthermore, comparison of the D95% for the worst-case (cold) CTV and nominal PTV distributions by Pearson's chi-square test shows excellent agreement for all plans. Conclusion: The assumption that the nominal dose distribution for PTV represents the worst-case dose distribution for CTV appears valid for the five plans under examination. Although the worst-case dose distributions are unphysical since the dose per voxel is chosen independently, the cold worst-case distribution serves as a lower bound for the worst-case possible CTV coverage. Minor discrepancies between the nominal PTV dose distribution and worst-case CTV dose distribution are expected since the dose cloud is not strictly static. This research was

  5. Evaluation of target coverage and margins adequacy during CyberKnife Lung Optimized Treatment.

    Science.gov (United States)

    Ricotti, Rosalinda; Seregni, Matteo; Ciardo, Delia; Vigorito, Sabrina; Rondi, Elena; Piperno, Gaia; Ferrari, Annamaria; Zerella, Maria Alessia; Arculeo, Simona; Francia, Claudia Maria; Sibio, Daniela; Cattani, Federica; De Marinis, Filippo; Spaggiari, Lorenzo; Orecchia, Roberto; Riboldi, Marco; Baroni, Guido; Jereczek-Fossa, Barbara Alicja

    2018-04-01

    Evaluation of target coverage and verification of safety margins, in motion management strategies implemented by Lung Optimized Treatment (LOT) module in CyberKnife system. Three fiducial-less motion management strategies provided by LOT can be selected according to tumor visibility in the X ray images acquired during treatment. In 2-view modality the tumor is visible in both X ray images and full motion tracking is performed. In 1-view modality the tumor is visible in a single X ray image, therefore, motion tracking is combined with an internal target volume (ITV)-based margin expansion. In 0-view modality the lesion is not visible, consequently the treatment relies entirely on an ITV-based approach. Data from 30 patients treated in 2-view modality were selected providing information on the three-dimensional tumor motion in correspondence to each X ray image. Treatments in 1-view and 0-view modalities were simulated by processing log files and planning volumes. Planning target volume (PTV) margins were defined according to the tracking modality: end-exhale clinical target volume (CTV) + 3 mm in 2-view and ITV + 5 mm in 0-view. In the 1-view scenario, the ITV encompasses only tumor motion along the non-visible direction. Then, non-uniform ITV to PTV margins were applied: 3 mm and 5 mm in the visible and non-visible direction, respectively. We defined the coverage of each voxel of the CTV as the percentage of X ray images where such voxel was included in the PTV. In 2-view modality coverage was calculated as the intersection between the CTV centred on the imaged target position and the PTV centred on the predicted target position, as recorded in log files. In 1-view modality, coverage was calculated as the intersection between the CTV centred on the imaged target position and the PTV centred on the projected predictor data. In 0-view modality coverage was calculated as the intersection between the CTV centred on the imaged target position and the non

  6. Dynamic Target Definition: A novel approach for PTV definition in ion beam therapy

    International Nuclear Information System (INIS)

    Cabal, Gonzalo A.; Jäkel, Oliver

    2013-01-01

    Purpose: To present a beam arrangement specific approach for PTV definition in ion beam therapy. Materials and methods: By means of a Monte Carlo error propagation analysis a criteria is formulated to assess whether a voxel is safely treated. Based on this a non-isotropical expansion rule is proposed aiming to minimize the impact of uncertainties on the dose delivered. Results: The method is exemplified in two cases: a Head and Neck case and a Prostate case. In both cases the modality used is proton beam irradiation and the sources of uncertainties taken into account are positioning (set up) errors and range uncertainties. It is shown how different beam arrangements have an impact on plan robustness which leads to different target expansions necessary to assure a predefined level of plan robustness. The relevance of appropriate beam angle arrangements as a way to minimize uncertainties is demonstrated. Conclusions: A novel method for PTV definition in on beam therapy is presented. The method show promising results by improving the probability of correct dose CTV coverage while reducing the size of the PTV volume. In a clinical scenario this translates into an enhanced tumor control probability while reducing the volume of healthy tissue being irradiated

  7. Radiotherapy margin design with particular consideration of high curvature CTVs

    International Nuclear Information System (INIS)

    Herschtal, Alan; Kron, Tomas; Fox, Chris

    2009-01-01

    In applying 3D conformal radiation therapy to a tumor clinical target volume (CTV), a margin is added around the CTV to account for any sources of error in the application of treatment which may result in misalignment between the CTV and the dose distribution actually delivered. The volume enclosed within the CTV plus the margin is known as the PTV, or planning target volume. The larger the errors are anticipated to be, the wider the margin will need to be to accommodate those errors. Based on the approach of van Herk et al. [''The probability of correct target dosage: Dose-population histograms for deriving treatment margins in radiotherapy,'' Int. J. Radiat. Oncol. Biol., Phys. 47(4), 1121-1135 (2000)] this paper develops the mathematical theory behind the calculation of the margin width required to ensure that the entire CTV receives sufficiently high dose with sufficiently high probability. The margin recipe developed not only considers the magnitude of the errors but also includes a term to adjust for curved CTV surfaces. In doing so, the accuracy of the margin recipe is enhanced yet remains mathematically concise enough to be readily implemented in the clinical setting. The results are particularly relevant for clinical situations in which the uncertainties in treatment are large relative to the size of the CTV.

  8. PTV dose prescription strategies for SBRT of metastatic liver tumours

    International Nuclear Information System (INIS)

    Pooter, Jacco A. de; Wunderink, Wouter; Mendez Romero, Alejandra; Storchi, Pascal R.M.; Heijmen, Ben J.M.

    2007-01-01

    Purpose: Recently we have demonstrated that our in-house developed algorithm for automated plan generation for fully non-coplanar SBRT of liver patients (designated Cycle) yields plans that are superior to conventionally generated plans of experienced dosimetrists. Here we use Cycle in the comparison of plans with prescription isodoses of 65% or 80% of the isocentre dose. Methods: Plans were generated using CT-data of 15 previously treated patients. For each patient, both for the 65%- and the 80% strategy, Cycle was used to generate a plan with the maximum isocentre dose, D isoc , while strictly obeying a set of hard constraints for the organs at risk (OAR). Plans for the two strategies were compared using D isoc , D PTV,99% (the minimum dose delivered to 99% of the PTV), and the generalised equivalent uniform dose, gEUD PTV (a), for several values of the parameter a. Moreover, for the OARs, the distance to the constraint values was analysed. Results: The 65% strategy resulted in treatment plans with a higher D isoc (average 17.6%, range 7.6-31.1%) than the 80% strategy, at the cost of a somewhat lower D PTV,99% (average -2.0%, range -9.6% to 9.3%). On average, voxels with a dose in the 65% strategy, lower than the minimum PTV dose in the 80% strategy, were within 0.2 cm from the PTV surface. For a ≥ -10, the 65% strategy yielded on average a significantly (P PTV (a) than the 80% strategy, whereas for highly negative a-values the 80% approach was slightly better, although not significantly. Large variations between patients were observed. Generally, for the OAR the approach to the constraint levels was similar for the two strategies. Conclusion: On average, PTV dose delivery is superior with the 65% strategy. However, apart from the isocentre dose, for each applied PTV dose parameter at least one patient would have been better off with the 80% dose prescription strategy

  9. Oceanography: 1998 Paris Meeting Abstracts: Coastal and Marginal Seas. Volume 11, Number 2

    National Research Council Canada - National Science Library

    Rhodes, Judith

    1998-01-01

    This grant supported a successful international multidisciplinary scientific meeting addressing the topic "Coastal and Marginal Seas," hosted by The Oceanography Society and UNESCO's Intergovernmental...

  10. Impact of organ shape variations on margin concepts for cervix cancer ART.

    Science.gov (United States)

    Seppenwoolde, Yvette; Stock, Markus; Buschmann, Martin; Georg, Dietmar; Bauer-Novotny, Kwei-Yuang; Pötter, Richard; Georg, Petra

    2016-09-01

    Target and organ movement motivate adaptive radiotherapy for cervix cancer patients. We investigated the dosimetric impact of margin concepts with different levels of complexity on both organ at risk (OAR) sparing and PTV coverage. Weekly CT and daily CBCT scans were delineated for 10 patients. The dosimetric impact of organ shape variations were evaluated for four (isotropic) margin concepts: two static PTVs (PTV 6mm and PTV 15mm ), a PTV based on ITV of the planning CT and CBCTs of the first treatment week (PTV ART ITV ) and an adaptive PTV based on a library approach (PTV ART Library ). Using static concepts, OAR doses increased with large margins, while smaller margins compromised target coverage. ART PTVs resulted in comparable target coverage and better sparing of bladder (V40Gy: 15% and 7% less), rectum (V40Gy: 18 and 6cc less) and bowel (V40Gy: 106 and 15cc less) compared to PTV 15mm . Target coverage evaluation showed that for elective fields a static 5mm margin sufficed. PTV ART Library achieved the best dosimetric results. However when weighing clinical benefit against workload, ITV margins based on repetitive movement evaluation during the first week also provide improvements over static margin concepts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Experimental validation of the van Herk margin formula for lung radiation therapy

    International Nuclear Information System (INIS)

    Ecclestone, Gillian; Heath, Emily; Bissonnette, Jean-Pierre

    2013-01-01

    Purpose: To validate the van Herk margin formula for lung radiation therapy using realistic dose calculation algorithms and respiratory motion modeling. The robustness of the margin formula against variations in lesion size, peak-to-peak motion amplitude, tissue density, treatment technique, and plan conformity was assessed, along with the margin formula assumption of a homogeneous dose distribution with perfect plan conformity.Methods: 3DCRT and IMRT lung treatment plans were generated within the ORBIT treatment planning platform (RaySearch Laboratories, Sweden) on 4DCT datasets of virtual phantoms. Random and systematic respiratory motion induced errors were simulated using deformable registration and dose accumulation tools available within ORBIT for simulated cases of varying lesion sizes, peak-to-peak motion amplitudes, tissue densities, and plan conformities. A detailed comparison between the margin formula dose profile model, the planned dose profiles, and penumbra widths was also conducted to test the assumptions of the margin formula. Finally, a correction to account for imperfect plan conformity was tested as well as a novel application of the margin formula that accounts for the patient-specific motion trajectory.Results: The van Herk margin formula ensured full clinical target volume coverage for all 3DCRT and IMRT plans of all conformities with the exception of small lesions in soft tissue. No dosimetric trends with respect to plan technique or lesion size were observed for the systematic and random error simulations. However, accumulated plans showed that plan conformity decreased with increasing tumor motion amplitude. When comparing dose profiles assumed in the margin formula model to the treatment plans, discrepancies in the low dose regions were observed for the random and systematic error simulations. However, the margin formula respected, in all experiments, the 95% dose coverage required for planning target volume (PTV) margin derivation, as

  12. MO-D-213-04: The Proximity to the Skin of PTV Affects PTV Coverage and Skin Dose for TomoTherapy

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T; Higgins, P; Watanabe, Y [University of Minnesota, Minneapolis, MN (United States)

    2015-06-15

    Purpose: The proximity to the skin surface of the PTV for the patients with skin disease could be a concern in terms of the PTV coverage and actual surface dose (SD). IMRT optimization algorithms increase the beam intensity close to the skin in order to compensate for lack of scattering material, leading to enhanced SD but potential hot spots. This study aims to investigate the effect of PTV proximity to the skin on planning and measured SD Methods: All measurements were done for 6 MV X-ray beam of Helical TomoTherapy. An anthropomorphic phantom was scanned in a CT simulator in a routine manner with thermoplastic mask immobilization. PTVs were created with varying distances to the skin of 0 mm -(PTV1), 1 mm- (PTV2), 2 mm-(PTV3) and 3 mm-(PTV4). Also, a 5 mm bolus was used with PTV1 (PTV5). All planning constraints were kept the same in all studies (hard constraint: 95% of the prescription dose covered 95% of the PTV). Gafchromic film (EBT3) was placed under the mask on the phantom surface, and the resulting dose was estimated using RIT software. Results: Optimizing the dose using different PTVs lead to average planned target doses of 10.8, 10.3, 10.2, 10.3 and 10.0 Gy, with maximum doses 12.2, 11.2, 11.1, 11.1 and 10.0 Gy for PTV1, PTV2, PTV3, PTV4 and PTV5, respectively. EBT3 measurements indicated a significant decrease of SD with skin distance by 12.7% (PTV1), 21.9% (PTV2), 24.8% (PTV3) and 28.4% (PTV4) comparing to prescription dose. Placement of a 5 mm bolus on the phantom surface resulted in a SD close to prescribed (+0.5%). Conclusion: This work provides a clear demonstration of the relationship between the skin dose and the PTV to the skin distance. The results indicate the necessity of a bolus even for TomoTherapy when high skin dose is required.

  13. MO-D-213-04: The Proximity to the Skin of PTV Affects PTV Coverage and Skin Dose for TomoTherapy

    International Nuclear Information System (INIS)

    Reynolds, T; Higgins, P; Watanabe, Y

    2015-01-01

    Purpose: The proximity to the skin surface of the PTV for the patients with skin disease could be a concern in terms of the PTV coverage and actual surface dose (SD). IMRT optimization algorithms increase the beam intensity close to the skin in order to compensate for lack of scattering material, leading to enhanced SD but potential hot spots. This study aims to investigate the effect of PTV proximity to the skin on planning and measured SD Methods: All measurements were done for 6 MV X-ray beam of Helical TomoTherapy. An anthropomorphic phantom was scanned in a CT simulator in a routine manner with thermoplastic mask immobilization. PTVs were created with varying distances to the skin of 0 mm -(PTV1), 1 mm- (PTV2), 2 mm-(PTV3) and 3 mm-(PTV4). Also, a 5 mm bolus was used with PTV1 (PTV5). All planning constraints were kept the same in all studies (hard constraint: 95% of the prescription dose covered 95% of the PTV). Gafchromic film (EBT3) was placed under the mask on the phantom surface, and the resulting dose was estimated using RIT software. Results: Optimizing the dose using different PTVs lead to average planned target doses of 10.8, 10.3, 10.2, 10.3 and 10.0 Gy, with maximum doses 12.2, 11.2, 11.1, 11.1 and 10.0 Gy for PTV1, PTV2, PTV3, PTV4 and PTV5, respectively. EBT3 measurements indicated a significant decrease of SD with skin distance by 12.7% (PTV1), 21.9% (PTV2), 24.8% (PTV3) and 28.4% (PTV4) comparing to prescription dose. Placement of a 5 mm bolus on the phantom surface resulted in a SD close to prescribed (+0.5%). Conclusion: This work provides a clear demonstration of the relationship between the skin dose and the PTV to the skin distance. The results indicate the necessity of a bolus even for TomoTherapy when high skin dose is required

  14. Definition of internal target volume and domestric study for hepatocellular carcinoma using four-dimensional CT

    International Nuclear Information System (INIS)

    Xi Mian; Liu Mengzhong; Deng Xiaowu; Zhang Li; Huang Xiaoyan; Cai Ling

    2009-01-01

    Objective: To define individualized internal target volume (ITV) for hepatocellular carcinoma using four-dimensional (4D) CT, and to compare the differences in target volume definition and dose distribution among 3D, 4D and respiratory-gated plans. Methods: 4DCT scanning was obtained for 12 patients with hepatocellular. Gross tumor volume (GTV), clinical target volume (CTV) and normal tissues were contoured on all 10 respiratory phases of 4DCT images. The 3D, 4D and gated treatment plans were prepared for each patient using three different planning target volumes (PTVs): 1) PTV 3D was derived from a single CTV plus conventional margins; 2) PTV 4D was derived from ITV 4D , which encompassed all 10 CTVs plus setup margins (SMs); 3) PT Gating was derived from ITV Gating , which encompassed 3 CTVs within gating-window at end-expiration plus SMs. The PTV volume and dose distribution were compared among different plans. Results: The PTV3D was the largest in all 12 patients, but still missed partial target volume in 5 patients when comparing with PTV4D. Both the 4D plans and the gated plans spared more normal tissues than the 3D plans, especially the liver. Without increasing normal tissue dose, the 4D plans allowed for increasing the calculated dose from (50.8 ± 2.0) Gy (3D plans) to (54.7 ± 3.3) Gy, and the gated plans could further increase the dose to (58.0 ± 3.9) Gy. Conclusions: The 4DCT-based plans can ensure optimal target coverage with less irradiation of normal tissues and allow dose escalation when compared with 3D plans. Respiratory gated radiotherapy can further reduce the target volumes to spare more surrounding tissues, especially for patients with large extent of respiratory mobility. (authors)

  15. A spreadsheet to determine the volume ratio for target and breast in partial breast irradiation

    International Nuclear Information System (INIS)

    Kron, T.; Willis, D.; Miller, J.; Hubbard, P.; Oliver, M.; Chua, B.

    2009-01-01

    Full text: The technical feasibility of Partial Breast Irradiation (PBI) using external beam radiotherapy depends on the ratio between the evaluation planning target volume (PTV e val) and the whole breast volume (PBI volume ratio = PVR). We aimed to develop a simple method to determine PVR using measurements performed at the time of the planning CT scan. A PVR calculation tool was developed using a Microsoft Excel spreadsheet to determine the PTV from three orthogonal dimensions of the seroma cavity and a given margin on the CT scans. The breast volume is estimated from the separation and breast height in five equally spaced CT slices. The PTV e val and whole breast volume were determined for 29 patients from two centres using the spreadsheet calculation tool and compared to volumes delineated on computerised treatment planning systems. Both the PTV e val and whole breast volumes were underestimated by approximately 25% using the spreadsheet. The resulting PVRs were 1.05 +/- 0.35 (mean +/- 1 S D) times larger than the ones determined from planning. Estimations of the PVR using the calculation tool were achievable in around 5 minutes at the time of CT scanning and allow a prompt decision on the suitability of the patients for PBI.

  16. Optimizing Collimator Margins for Isotoxically Dose-Escalated Conformal Radiation Therapy of Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Samantha, E-mail: Samantha.warren@oncology.ox.ac.uk [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom); Panettieri, Vanessa [William Buckland Radiotherapy Centre, Alfred Hospital, Commercial Road, Melbourne (Australia); Panakis, Niki; Bates, Nicholas [Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom); Lester, Jason F. [Velindre Cancer Centre, Velindre Road, Whitchurch, Cardiff (United Kingdom); Jain, Pooja [Clatterbridge Cancer Centre, Clatterbridge Road, Wirral (United Kingdom); Landau, David B. [Department of Radiotherapy, Guy' s and St. Thomas' NHS Foundation Trust, London (United Kingdom); Nahum, Alan E.; Mayles, W. Philip M. [Clatterbridge Cancer Centre, Clatterbridge Road, Wirral (United Kingdom); Fenwick, John D. [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom)

    2014-04-01

    Purpose: Isotoxic dose escalation schedules such as IDEAL-CRT [isotoxic dose escalation and acceleration in lung cancer chemoradiation therapy] (ISRCTN12155469) individualize doses prescribed to lung tumors, generating a fixed modeled risk of radiation pneumonitis. Because the beam penumbra is broadened in lung, the choice of collimator margin is an important element of the optimization of isotoxic conformal radiation therapy for lung cancer. Methods and Materials: Twelve patients with stage I-III non-small cell lung cancer (NSCLC) were replanned retrospectively using a range of collimator margins. For each plan, the prescribed dose was calculated according to the IDEAL-CRT isotoxic prescription method, and the absolute dose (D{sub 99}) delivered to 99% of the planning target volume (PTV) was determined. Results: Reducing the multileaf collimator margin from the widely used 7 mm to a value of 2 mm produced gains of 2.1 to 15.6 Gy in absolute PTV D{sub 99}, with a mean gain ± 1 standard error of the mean of 6.2 ± 1.1 Gy (2-sided P<.001). Conclusions: For NSCLC patients treated with conformal radiation therapy and an isotoxic dose prescription, absolute doses in the PTV may be increased by using smaller collimator margins, reductions in relative coverage being offset by increases in prescribed dose.

  17. Micro ionization chamber dosimetry in IMRT verification: Clinical implications of dosimetric errors in the PTV

    International Nuclear Information System (INIS)

    Sanchez-Doblado, Francisco; Capote, Roberto; Rosello, Joan V.; Leal, Antonio; Lagares, Juan I.; Arrans, Rafael; Hartmann, Guenther H.

    2005-01-01

    Background and purpose: Absolute dose measurements for Intensity Modulated Radiotherapy (IMRT) beamlets is difficult due to the lack of lateral electron equilibrium. Recently we found that the absolute dosimetry in the penumbra region of the IMRT beamlet, can suffer from significant errors (Capote et al., Med Phys 31 (2004) 2416-2422). This work has the goal to estimate the error made when measuring the Planning Target Volume's (PTV) absolute dose by a micro ion chamber (μIC) in typical IMRT treatment. The dose error comes from the assumption that the dosimetric parameters determining the absolute dose are the same as for the reference conditions. Materials and Methods: Two IMRT treatment plans for common prostate carcinoma case, derived by forward and inverse optimisation, were considered. Detailed geometrical simulation of the μIC and the dose verification set-up was performed. The Monte Carlo (MC) simulation allows us to calculate the delivered dose to water and the dose delivered to the active volume of the ion chamber. However, the measured dose in water is usually derived from chamber readings assuming reference conditions. The MC simulation provides needed correction factors for ion chamber dosimetry in non reference conditions. Results: Dose calculations were carried out for some representative beamlets, a combination of segments and for the delivered IMRT treatments. We observe that the largest dose errors (i.e. the largest correction factors) correspond to the smaller contribution of the corresponding IMRT beamlets to the total dose delivered in the ionization chamber within PTV. Conclusion: The clinical impact of the calculated dose error in PTV measured dose was found to be negligible for studied IMRT treatments

  18. Extraction of data from margin calculations in prostate radiotherapy from a commercial record and verify system

    International Nuclear Information System (INIS)

    Fox, C.; Kron, T.; Fisher, R.; Tai, K.H.; Thompson, A.; Owen, R.

    2008-01-01

    Full text: Radiation therapy is a widely prescribed and effective modality for the treatment of prostate cancer.1 3 Radiation therapy relies on precise targeting of the treatment site to deliver the required dose to the tumour while sparing critical organs nearby. To achieve this, it is necessary to allow for the effects of organ and patient motion, both during and between treatment fractions. In the treatment planning process, a margin is added to the clinical target volume (CTV) to create the planning target volume (PTV) to allow for targeting uncertainties which Iare dominated by these movements.4 5 Deciding the appropriate margin size is important since an excessively large margin will result in increased damage to adjacent normal tissues while an undersized margin will leave parts of the target underdosed. With the marked improvement in technology available with new treatment machines, remote online setup correction using high quality kilovoltage images has become straightforward and widely available. Used together with implanted radio-opaque markers, remote online setup correction allows direct targeting of the prostate organ, and significant reduction in the effects of interfraction motion.6 1 1 The introduction of this technology into a therapy department makes a reduction of CTV to PTV margin size possible. There are many published works dealing with margin size calculation for prostate treatment planning. The best known and most widely cited work is that of van Herk which modelled the prostate using simple geometry to calculate a minimum dose coverage probability.13 The outcome of this modelling was a simple and easily understood formula with just the patient group random and systematic setup errors used to calculate margin size. To apply such margin recipes, the patient group's random and systematic error performance must be well known, which requires the collection of a substantial quantity of data. The aim of the project described here was to collect

  19. Quantifying motion for pancreatic radiotherapy margin calculation

    International Nuclear Information System (INIS)

    Whitfield, Gillian; Jain, Pooja; Green, Melanie; Watkins, Gillian; Henry, Ann; Stratford, Julie; Amer, Ali; Marchant, Thomas; Moore, Christopher; Price, Patricia

    2012-01-01

    Background and purpose: Pancreatic radiotherapy (RT) is limited by uncertain target motion. We quantified 3D patient/organ motion during pancreatic RT and calculated required treatment margins. Materials and methods: Cone-beam computed tomography (CBCT) and orthogonal fluoroscopy images were acquired post-RT delivery from 13 patients with locally advanced pancreatic cancer. Bony setup errors were calculated from CBCT. Inter- and intra-fraction fiducial (clip/seed/stent) motion was determined from CBCT projections and orthogonal fluoroscopy. Results: Using an off-line CBCT correction protocol, systematic (random) setup errors were 2.4 (3.2), 2.0 (1.7) and 3.2 (3.6) mm laterally (left–right), vertically (anterior–posterior) and longitudinally (cranio-caudal), respectively. Fiducial motion varied substantially. Random inter-fractional changes in mean fiducial position were 2.0, 1.6 and 2.6 mm; 95% of intra-fractional peak-to-peak fiducial motion was up to 6.7, 10.1 and 20.6 mm, respectively. Calculated clinical to planning target volume (CTV–PTV) margins were 1.4 cm laterally, 1.4 cm vertically and 3.0 cm longitudinally for 3D conformal RT, reduced to 0.9, 1.0 and 1.8 cm, respectively, if using 4D planning and online setup correction. Conclusions: Commonly used CTV–PTV margins may inadequately account for target motion during pancreatic RT. Our results indicate better immobilisation, individualised allowance for respiratory motion, online setup error correction and 4D planning would improve targeting.

  20. Recommendations on the use of marginal base course materials in low volume roads in South Africa

    CSIR Research Space (South Africa)

    Paige-Green, P

    2009-06-04

    Full Text Available have required intermittent maintenance during their lives, they have clearly shown that current materials standards may be too conservative for affordable low volume roads. The study has shown that good drainage and construction quality are the primary...

  1. SU-E-T-642: PTV Is the Voxel-Wise Worst-Case of CTV in Prostate Photon Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, D; Schild, S; Wong, W; Vora, S; Liu, W [Mayo Clinic Arizona, Phoenix, AZ (United States)

    2015-06-15

    Purpose: To examine the adequacy of the planning target volume (PTV) dose distribution as the worst-case representation of clinical target volume (CTV) dose distribution in prostate volumetric-modulated arc therapy (VMAT) plans. Methods: Ten intact prostate cancer cases treated by VMAT at our institution were randomly selected. Isocenter was shifted in the three cardinal directions by a displacement equal to the PTV expansion on the CTV (±3 mm) for a total of six shifted plans per original plan. Rotationally-perturbed plans were generated with a couch rotation of ±1° to simulate patient yaw. The eight perturbed dose distributions were recalculated in the treatment planning system using the same, fixed fluence map as the original plan. The voxel-wise worst-case CTV dose distribution was constructed from the minimum value per voxel from the eight perturbed doses. The resulting dose volume histograms (DVH) were evaluated for statistical correlation between the worst-case CTV and nominal PTV dose distributions based on D95% by Wilcoxon signed-rank test with significance level p ≤ 0.05. Results: Inspection demonstrates the PTV DVH in the nominal dose distribution is bounded by the CTV DVH in the worst-case dose distribution. Comparison of D95% for the two dose distributions by Wilcoxon signed-rank test gives p = 0.131. Therefore the null hypothesis cannot be rejected since the difference in median values is not statistically significant. Conclusion: The assumption that the nominal dose distribution for PTV represents the worst-case dose distribution for CTV appears valid for the ten plans under examination. Although the worst-case dose distribution is unphysical since the dose per voxel is chosen independently, it serves as a lower bound for the possible CTV coverage. Furthermore, this is consistent with the unphysical nature of the PTV. Minor discrepancies between the two dose distributions are expected since the dose cloud is not strictly static. Funding Support

  2. SU-E-T-642: PTV Is the Voxel-Wise Worst-Case of CTV in Prostate Photon Therapy

    International Nuclear Information System (INIS)

    Harrington, D; Schild, S; Wong, W; Vora, S; Liu, W

    2015-01-01

    Purpose: To examine the adequacy of the planning target volume (PTV) dose distribution as the worst-case representation of clinical target volume (CTV) dose distribution in prostate volumetric-modulated arc therapy (VMAT) plans. Methods: Ten intact prostate cancer cases treated by VMAT at our institution were randomly selected. Isocenter was shifted in the three cardinal directions by a displacement equal to the PTV expansion on the CTV (±3 mm) for a total of six shifted plans per original plan. Rotationally-perturbed plans were generated with a couch rotation of ±1° to simulate patient yaw. The eight perturbed dose distributions were recalculated in the treatment planning system using the same, fixed fluence map as the original plan. The voxel-wise worst-case CTV dose distribution was constructed from the minimum value per voxel from the eight perturbed doses. The resulting dose volume histograms (DVH) were evaluated for statistical correlation between the worst-case CTV and nominal PTV dose distributions based on D95% by Wilcoxon signed-rank test with significance level p ≤ 0.05. Results: Inspection demonstrates the PTV DVH in the nominal dose distribution is bounded by the CTV DVH in the worst-case dose distribution. Comparison of D95% for the two dose distributions by Wilcoxon signed-rank test gives p = 0.131. Therefore the null hypothesis cannot be rejected since the difference in median values is not statistically significant. Conclusion: The assumption that the nominal dose distribution for PTV represents the worst-case dose distribution for CTV appears valid for the ten plans under examination. Although the worst-case dose distribution is unphysical since the dose per voxel is chosen independently, it serves as a lower bound for the possible CTV coverage. Furthermore, this is consistent with the unphysical nature of the PTV. Minor discrepancies between the two dose distributions are expected since the dose cloud is not strictly static. Funding Support

  3. Planning Target Margin Calculations for Prostate Radiotherapy Based on Intrafraction and Interfraction Motion Using Four Localization Methods

    International Nuclear Information System (INIS)

    Beltran, Chris; Herman, Michael G.; Davis, Brian J.

    2008-01-01

    Purpose: To determine planning target volume (PTV) margins for prostate radiotherapy based on the internal margin (IM) (intrafractional motion) and the setup margin (SM) (interfractional motion) for four daily localization methods: skin marks (tattoo), pelvic bony anatomy (bone), intraprostatic gold seeds using a 5-mm action threshold, and using no threshold. Methods and Materials: Forty prostate cancer patients were treated with external radiotherapy according to an online localization protocol using four intraprostatic gold seeds and electronic portal images (EPIs). Daily localization and treatment EPIs were obtained. These data allowed inter- and intrafractional analysis of prostate motion. The SM for the four daily localization methods and the IM were determined. Results: A total of 1532 fractions were analyzed. Tattoo localization requires a SM of 6.8 mm left-right (LR), 7.2 mm inferior-superior (IS), and 9.8 mm anterior-posterior (AP). Bone localization requires 3.1, 8.9, and 10.7 mm, respectively. The 5-mm threshold localization requires 4.0, 3.9, and 3.7 mm. No threshold localization requires 3.4, 3.2, and 3.2 mm. The intrafractional prostate motion requires an IM of 2.4 mm LR, 3.4 mm IS and AP. The PTV margin using the 5-mm threshold, including interobserver uncertainty, IM, and SM, is 4.8 mm LR, 5.4 mm IS, and 5.2 mm AP. Conclusions: Localization based on EPI with implanted gold seeds allows a large PTV margin reduction when compared with tattoo localization. Except for the LR direction, bony anatomy localization does not decrease the margins compared with tattoo localization. Intrafractional prostate motion is a limiting factor on margin reduction

  4. Individualized planning target volumes for intrafraction motion during hypofractionated intensity-modulated radiotherapy boost for prostate cancer

    International Nuclear Information System (INIS)

    Cheung, Patrick; Sixel, Katharina; Morton, Gerard; Loblaw, D. Andrew; Tirona, Romeo; Pang, Geordi; Choo, Richard; Szumacher, Ewa; DeBoer, Gerrit; Pignol, Jean-Philippe

    2005-01-01

    Purpose: The objective of the study was to access toxicities of delivering a hypofractionated intensity-modulated radiotherapy (IMRT) boost with individualized intrafraction planning target volume (PTV) margins and daily online correction for prostate position. Methods and materials: Phase I involved delivering 42 Gy in 21 fractions using three-dimensional conformal radiotherapy, followed by a Phase II IMRT boost of 30 Gy in 10 fractions. Digital fluoroscopy was used to measure respiratory-induced motion of implanted fiducial markers within the prostate. Electronic portal images were taken of fiducial marker positions before and after each fraction of radiotherapy during the first 9 days of treatment to calculate intrafraction motion. A uniform 10-mm PTV margin was used for the first phase of treatment. PTV margins for Phase II were patient-specific and were calculated from the respiratory and intrafraction motion data obtained from Phase I. The IMRT boost was delivered with daily online correction of fiducial marker position. Acute toxicity was measured using National Cancer Institute Common Toxicity Criteria, version 2.0. Results: In 33 patients who had completed treatment, the average PTV margin used during the hypofractionated IMRT boost was 3 mm in the lateral direction, 3 mm in the superior-inferior direction, and 4 mm in the anteroposterior direction. No patients developed acute Grade 3 rectal toxicity. Three patients developed acute Grade 3 urinary frequency and urgency. Conclusions: PTV margins can be reduced significantly with daily online correction of prostate position. Delivering a hypofractionated boost with this high-precision IMRT technique resulted in acceptable acute toxicity

  5. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    Science.gov (United States)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  6. Prostate cancer treated with image-guided helical TomoTherapy {sup registered} and image-guided LINAC-IMRT. Correlation between high-dose bladder volume, margin reduction, and genitourinary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Drozdz, Sonia; Wendt, Thomas G. [University Hospital Jena, Friedrich-Schiller-University Jena, Department of Radiation Oncology, Jena (Germany); Schwedas, Michael; Salz, Henning [University Hospital Jena, Friedrich-Schiller-University Jena, Department of Radiation Oncology, Section of Medical Physics, Jena (Germany); Foller, Susan [University Hospital Jena, Friedrich-Schiller-University Jena, Department of Urology, Jena (Germany)

    2016-04-15

    We compared different image-guidance (IG) strategies for prostate cancer with high-precision IG intensity-modulated radiation therapy (IMRT) using TomoTherapy {sup registered} (Accuray Inc., Madison, WI, USA) and linear accelerator (LINAC)-IMRT and their impact on planning target volume (PTV) margin reduction. Follow-up data showed reduced bladder toxicity in TomoTherapy patients compared to LINAC-IMRT. The purpose of this study was to quantify whether the treatment delivery technique and decreased margins affect reductions in bladder toxicity. Setup corrections from 30 patients treated with helical TomoTherapy and 30 treated with a LINAC were analyzed. These data were used to simulate three IG protocols based on setup error correction and a limited number of imaging sessions. For all patients, gastrointestinal (GI) and genitourinary (GU) toxicity was documented and correlated with the treatment delivery technique. For fiducial marker (FM)-based RT, a margin reduction of up to 3.1, 3.0, and 4.8 mm in the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) directions, respectively, could be achieved with calculation of a setup correction from the first three fractions and IG every second day. Although the bladder volume was treated with mean doses of 35 Gy in the TomoTherapy group vs. 22 Gy in the LINAC group, we observed less GU toxicity after TomoTherapy. Intraprostate FMs allow for small safety margins, help decrease imaging frequency after setup correction, and minimize the dose to bladder and rectum, resulting in lower GU toxicity. In addition, IMRT delivered with TomoTherapy helps to avoid hotspots in the bladder neck, a critical anatomic structure associated with post-RT urinary toxicity. (orig.) [German] Wir haben im Rahmen der Prostatakarzinombehandlung verschiedene bildgefuehrte (IG) Strategien der hochpraezisen intensitaetsmodulierten Radiotherapie (IMRT) unter Einsatz der Tomotherapie (TomoTherapy {sup registered}, Accuray Inc., Madison

  7. Sparing Healthy Tissue and Increasing Tumor Dose Using Bayesian Modeling of Geometric Uncertainties for Planning Target Volume Personalization

    International Nuclear Information System (INIS)

    Herschtal, Alan; Te Marvelde, Luc; Mengersen, Kerrie; Foroudi, Farshad; Eade, Thomas; Pham, Daniel; Caine, Hannah; Kron, Tomas

    2015-01-01

    Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predict future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes

  8. Sparing Healthy Tissue and Increasing Tumor Dose Using Bayesian Modeling of Geometric Uncertainties for Planning Target Volume Personalization

    Energy Technology Data Exchange (ETDEWEB)

    Herschtal, Alan, E-mail: Alan.Herschtal@petermac.org [Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne (Australia); Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne (Australia); Te Marvelde, Luc [Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne (Australia); Mengersen, Kerrie [School of Mathematical Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane (Australia); Foroudi, Farshad [Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne (Australia); The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne (Australia); Eade, Thomas [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St. Leonards, Sydney (Australia); Northern Clinical School, University of Sydney (Australia); Pham, Daniel [Department of Radiation Therapy, Peter MacCallum Cancer Centre, Melbourne (Australia); Caine, Hannah [Northern Sydney Cancer Centre, Radiation Oncology Department, Royal North Shore Hospital, St. Leonards, Sydney (Australia); Kron, Tomas [The Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne (Australia); Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne (Australia)

    2015-06-01

    Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predict future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes.

  9. On probabilistically defined margins in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Papiez, Lech; Langer, Mark [Department of Radiation Oncology, Indiana University, Indianapolis, IN (United States)

    2006-08-21

    Margins about a target volume subject to external beam radiation therapy are designed to assure that the target volume of tissue to be sterilized by treatment is adequately covered by a lethal dose. Thus, margins are meant to guarantee that all potential variation in tumour position relative to beams allows the tumour to stay within the margin. Variation in tumour position can be broken into two types of dislocations, reducible and irreducible. Reducible variations in tumour position are those that can be accommodated with the use of modern image-guided techniques that derive parameters for compensating motions of patient bodies and/or motions of beams relative to patient bodies. Irreducible variations in tumour position are those random dislocations of a target that are related to errors intrinsic in the design and performance limitations of the software and hardware, as well as limitations of human perception and decision making. Thus, margins in the era of image-guided treatments will need to accommodate only random errors residual in patient setup accuracy (after image-guided setup corrections) and in the accuracy of systems designed to track moving and deforming tissues of the targeted regions of the patient's body. Therefore, construction of these margins will have to be based on purely statistical data. The characteristics of these data have to be determined through the central limit theorem and Gaussian properties of limiting error distributions. In this paper, we show how statistically determined margins are to be designed in the general case of correlated distributions of position errors in three-dimensional space. In particular, we show how the minimal margins for a given level of statistical confidence are found. Then, how they are to be used to determine geometrically minimal PTV that provides coverage of GTV at the assumed level of statistical confidence. Our results generalize earlier recommendations for statistical, central limit theorem

  10. On probabilistically defined margins in radiation therapy

    International Nuclear Information System (INIS)

    Papiez, Lech; Langer, Mark

    2006-01-01

    Margins about a target volume subject to external beam radiation therapy are designed to assure that the target volume of tissue to be sterilized by treatment is adequately covered by a lethal dose. Thus, margins are meant to guarantee that all potential variation in tumour position relative to beams allows the tumour to stay within the margin. Variation in tumour position can be broken into two types of dislocations, reducible and irreducible. Reducible variations in tumour position are those that can be accommodated with the use of modern image-guided techniques that derive parameters for compensating motions of patient bodies and/or motions of beams relative to patient bodies. Irreducible variations in tumour position are those random dislocations of a target that are related to errors intrinsic in the design and performance limitations of the software and hardware, as well as limitations of human perception and decision making. Thus, margins in the era of image-guided treatments will need to accommodate only random errors residual in patient setup accuracy (after image-guided setup corrections) and in the accuracy of systems designed to track moving and deforming tissues of the targeted regions of the patient's body. Therefore, construction of these margins will have to be based on purely statistical data. The characteristics of these data have to be determined through the central limit theorem and Gaussian properties of limiting error distributions. In this paper, we show how statistically determined margins are to be designed in the general case of correlated distributions of position errors in three-dimensional space. In particular, we show how the minimal margins for a given level of statistical confidence are found. Then, how they are to be used to determine geometrically minimal PTV that provides coverage of GTV at the assumed level of statistical confidence. Our results generalize earlier recommendations for statistical, central limit theorem

  11. How does knowledge of three-dimensional excision margins following breast conservation surgery impact upon clinical target volume definition for partial-breast radiotherapy?

    International Nuclear Information System (INIS)

    Kirby, Anna M.; Evans, Philip M.; Nerurkar, Ashutosh Y.; Desai, Saral S.; Krupa, Jaroslaw; Devalia, Haresh; Rovere, Guidubaldo Querci della; Harris, Emma J.; Kyriakidou, Julia; Yarnold, John R.

    2010-01-01

    Background and purpose: To compare partial-breast clinical target volumes generated using a standard 15 mm margin (CTV standard ) with those generated using three-dimensional surgical excision margins (CTV tailored30 ) in women who have undergone wide local excision (WLE) for breast cancer. Material and methods: Thirty-five women underwent WLE with placement of clips in the anterior, deep and coronal excision cavity walls. Distances from tumour to each of six margins were measured microscopically. Tumour bed was defined on kV-CT images using clips. CTV standard was generated by adding a uniform three-dimensional 15 mm margin, and CTV tailored30 was generated by adding 30 mm minus the excision margin in three-dimensions. Concordance between CTV standard and CTV tailored30 was quantified using conformity (CoI), geographical-miss (GMI) and normal-tissue (NTI) indices. An external-beam partial-breast irradiation (PBI) plan was generated to cover 95% of CTV standard with the 95% isodose. Percentage-volume coverage of CTV tailored30 by the 95% isodose was measured. Results: Median (range) coronal, superficial and deep excision margins were 15.0 (0.5-76.0) mm, 4.0 (0.0-60.0) mm and 4.0 (0.5-35.0) mm, respectively. Median CoI, GMI and NTI were 0.62, 0.16 and 0.20, respectively. Median coverage of CTV tailored30 by the PBI-plan was 97.7% (range 84.9-100.0%). CTV tailored30 was inadequately covered by the 95% isodose in 4/29 cases. In three cases, the excision margin in the direction of inadequate coverage was ≤2 mm. Conclusions: CTVs based on 3D excision margin data are discordant with those defined using a standard uniform 15 mm TB-CTV margin. In women with narrow excision margins, the standard TB-CTV margin could result in a geographical miss. Therefore, wider TB-CTV margins should be considered where re-excision does not occur.

  12. Evaluation of different set-up error corrections on dose-volume metrics in prostate IMRT using CBCT images

    International Nuclear Information System (INIS)

    Hirose, Yoshinori; Tomita, Tsuneyuki; Kitsuda, Kenji; Notogawa, Takuya; Miki, Katsuhito; Nakamura, Mitsuhiro; Nakamura, Kiyonao; Ishigaki, Takashi

    2014-01-01

    We investigated the effect of different set-up error corrections on dose-volume metrics in intensity-modulated radiotherapy (IMRT) for prostate cancer under different planning target volume (PTV) margin settings using cone-beam computed tomography (CBCT) images. A total of 30 consecutive patients who underwent IMRT for prostate cancer were retrospectively analysed, and 7-14 CBCT datasets were acquired per patient. Interfractional variations in dose-volume metrics were evaluated under six different set-up error corrections, including tattoo, bony anatomy, and four different target matching groups. Set-up errors were incorporated into planning the isocenter position, and dose distributions were recalculated on CBCT images. These processes were repeated under two different PTV margin settings. In the on-line bony anatomy matching groups, systematic error (Σ) was 0.3 mm, 1.4 mm, and 0.3 mm in the left-right, anterior-posterior (AP), and superior-inferior directions, respectively. Σ in three successive off-line target matchings was finally comparable with that in the on-line bony anatomy matching in the AP direction. Although doses to the rectum and bladder wall were reduced for a small PTV margin, averaged reductions in the volume receiving 100% of the prescription dose from planning were within 2.5% under all PTV margin settings for all correction groups, with the exception of the tattoo set-up error correction only (≥ 5.0%). Analysis of variance showed no significant difference between on-line bony anatomy matching and target matching. While variations between the planned and delivered doses were smallest when target matching was applied, the use of bony anatomy matching still ensured the planned doses. (author)

  13. TU-C-17A-06: Evaluating IMRT Plan Deliverability Via PTV Shape and MLC Motion

    International Nuclear Information System (INIS)

    McGurk, R; Smith, VA; Price, M

    2014-01-01

    Purpose: For step-and-shoot intensity-modulated radiation therapy (IMRT) plans, the dosimetry and deliverability can be affected by the number and shape of the segments used. Thus, plan deliverability is likely related to target volume and shape. We investigated whether the sphericity of target volumes and the previously proposed Modulation Complexity Score (MCS) could be used together to improve the detection of IMRT fields that failed quality assurance (QA). Methods: 526 and 353 IMRT fields from 32 prostate and 28 head-and-neck (H'N) patients, respectively, were analyzed. MCS was used to quantify the complexity of multi-leaf collimator shapes and motion patterns for each field. Sphericity was calculated using the surface area and volume of each patient’s planning target volume (PTV). Logistic regression models with MCS-alone or MCS and sphericity terms were fit to PlanUNC IMRT pass/fail results (5% dose difference, 4mm distance-to-agreement criteria) using SAS 9.3 (Cary, NC). Model concordance, discordance and area under the curve (AUC) were used to quantify model accuracy. Results: Mean (±1 standard deviation) MCS for prostate and H'N were 0.58(±0.15) and 0.40 (±0.14), respectively. Mean sphericity scores were 0.75(±0.05) for prostate and 0.63 (±0.12) for H'N. Both metrics were significantly different between treatment locations (p<0.01, Wilcoxon Rank Sum Test) indicating greater complexity in shape and variations for H'N PTVs. For prostate, concordance, discordance and AUC using MCS alone were 80.8%, 18.7% and 0.811. Including sphericity in the model improved these to 81.7%, 17.7% and 0.820. For H'N, the original concordance, discordance and AUC were of 72.9%, 26.9% and 0.729. Including sphericity into the model improved these metrics to 76.5%, 23.2% and 0.729. Conclusion: Sphericity provides a quantitative measure of PTV shape. While improvement in IMRT QA failure detection was modest for both prostate and H'N plans

  14. Hybrid PIV-PTV technique for measuring blood flow in rat mesenteric vessels.

    Science.gov (United States)

    Ha, Hojin; Nam, Kweon-Ho; Lee, Sang Joon

    2012-11-01

    The micro-particle tracking velocimetry (μ-PTV) technique is used to obtain the velocity fields of blood flow in the microvasculature under in vivo conditions because it can provide the blood velocity distribution in microvessels with high spatial resolution. The in vivo μ-PTV technique usually requires a few to tens of seconds to obtain a whole velocity profile across the vessel diameter because of the limited number density of tracer particles under in vivo conditions. Thus, the μ-PTV technique alone is limited in measuring unsteady blood flows that fluctuate irregularly due to the heart beating and muscle movement in surrounding tissues. In this study, a new hybrid PIV-PTV technique was established by combining PTV and particle image velocimetry (PIV) techniques to resolve the drawbacks of the μ-PTV method in measuring blood flow in microvessels under in vivo conditions. Images of red blood cells (RBCs) and fluorescent particles in rat mesenteric vessels were obtained simultaneously. Temporal variations of the centerline blood velocity were monitored using a fast Fourier transform-based cross-correlation PIV method. The fluorescence particle images were analyzed using the μ-PTV technique to extract the spatial distribution of the velocity vectors. Data from the μ-PTV and PIV methods were combined to obtain a better estimate of the velocity profile in actual blood flow. This technique will be useful in investigating hemodynamics in microcirculation by measuring unsteady irregular blood flows more accurately. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Methods for Reducing Normal Tissue Complication Probabilities in Oropharyngeal Cancer: Dose Reduction or Planning Target Volume Elimination

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, Stuart E.; Eisbruch, Avraham; Vineberg, Karen; Lee, Jae; Lee, Choonik; Matuszak, Martha M.; Ten Haken, Randall K.; Brock, Kristy K., E-mail: kbrock@med.umich.edu

    2016-11-01

    Purpose: Strategies to reduce the toxicities of head and neck radiation (ie, dysphagia [difficulty swallowing] and xerostomia [dry mouth]) are currently underway. However, the predicted benefit of dose and planning target volume (PTV) reduction strategies is unknown. The purpose of the present study was to compare the normal tissue complication probabilities (NTCP) for swallowing and salivary structures in standard plans (70 Gy [P70]), dose-reduced plans (60 Gy [P60]), and plans eliminating the PTV margin. Methods and Materials: A total of 38 oropharyngeal cancer (OPC) plans were analyzed. Standard organ-sparing volumetric modulated arc therapy plans (P70) were created and then modified by eliminating the PTVs and treating the clinical tumor volumes (CTVs) only (C70) or maintaining the PTV but reducing the dose to 60 Gy (P60). NTCP dose models for the pharyngeal constrictors, glottis/supraglottic larynx, parotid glands (PGs), and submandibular glands (SMGs) were analyzed. The minimal clinically important benefit was defined as a mean change in NTCP of >5%. The P70 NTCP thresholds and overlap percentages of the organs at risk with the PTVs (56-59 Gy, vPTV{sub 56}) were evaluated to identify the predictors for NTCP improvement. Results: With the P60 plans, only the ipsilateral PG (iPG) benefited (23.9% vs 16.2%; P<.01). With the C70 plans, only the iPG (23.9% vs 17.5%; P<.01) and contralateral SMG (cSMG) (NTCP 32.1% vs 22.9%; P<.01) benefited. An iPG NTCP threshold of 20% and 30% predicted NTCP benefits for the P60 and C70 plans, respectively (P<.001). A cSMG NTCP threshold of 30% predicted for an NTCP benefit with the C70 plans (P<.001). Furthermore, for the iPG, a vPTV{sub 56} >13% predicted benefit with P60 (P<.001) and C70 (P=.002). For the cSMG, a vPTV{sub 56} >22% predicted benefit with C70 (P<.01). Conclusions: PTV elimination and dose-reduction lowered the NTCP of the iPG, and PTV elimination lowered the NTCP of the cSMG. NTCP thresholds and the

  16. Optimal beam margins in linac-based VMAT stereotactic ablative body radiotherapy: a Pareto front analysis for liver metastases.

    Science.gov (United States)

    Cilla, Savino; Ianiro, Anna; Deodato, Francesco; Macchia, Gabriella; Digesù, Cinzia; Valentini, Vincenzo; Morganti, Alessio G

    2017-11-27

    We explored the Pareto fronts mathematical strategy to determine the optimal block margin and prescription isodose for stereotactic body radiotherapy (SBRT) treatments of liver metastases using the volumetric-modulated arc therapy (VMAT) technique. Three targets (planning target volumes [PTVs] = 20, 55, and 101 cc) were selected. A single fraction dose of 26 Gy was prescribed (prescription dose [PD]). VMAT plans were generated for 3 different beam energies. Pareto fronts based on (1) different multileaf collimator (MLC) block margin around PTV and (2) different prescription isodose lines (IDL) were produced. For each block margin, the greatest IDL fulfilling the criteria (95% of PTV reached 100%) was considered as providing the optimal clinical plan for PTV coverage. Liver D mean , V7Gy, and V12Gy were used against the PTV coverage to generate the fronts. Gradient indexes (GI and mGI), homogeneity index (HI), and healthy liver irradiation in terms of D mean , V7Gy, and V12Gy were calculated to compare different plans. In addition, each target was also optimized with a full-inverse planning engine to obtain a direct comparison with anatomy-based treatment planning system (TPS) results. About 900 plans were calculated to generate the fronts. GI and mGI show a U-shaped behavior as a function of beam margin with minimal values obtained with a +1 mm MLC margin. For these plans, the IDL ranges from 74% to 86%. GI and mGI show also a V-shaped behavior with respect to HI index, with minimum values at 1 mm for all metrics, independent of tumor dimensions and beam energy. Full-inversed optimized plans reported worse results with respect to Pareto plans. In conclusion, Pareto fronts provide a rigorous strategy to choose clinical optimal plans in SBRT treatments. We show that a 1-mm MLC block margin provides the best results with regard to healthy liver tissue irradiation and steepness of dose fallout. Copyright © 2017 American Association of Medical Dosimetrists

  17. Integrating respiratory-gated PET-based target volume delineation in liver SBRT planning, a pilot study

    International Nuclear Information System (INIS)

    Riou, Olivier; Thariat, Juliette; Serrano, Benjamin; Azria, David; Paulmier, Benoit; Villeneuve, Remy; Fenoglietto, Pascal; Artenie, Antonella; Ortholan, Cécile; Faraggi, Marc

    2014-01-01

    To assess the feasibility and benefit of integrating four-dimensional (4D) Positron Emission Tomography (PET) – computed tomography (CT) for liver stereotactic body radiation therapy (SBRT) planning. 8 patients with 14 metastases were accrued in the study. They all underwent a non-gated PET and a 4D PET centered on the liver. The same CT scan was used for attenuation correction, registration, and considered the planning CT for SBRT planning. Six PET phases were reconstructed for each 4D PET. By applying an individualized threshold to the 4D PET, a Biological Internal Target Volume (BITV) was generated for each lesion. A gated Planning Target Volume (PTVg) was created by adding 3 mm to account for set-up margins. This volume was compared to a manual Planning Target Volume (PTV) delineated with the help of a semi-automatic Biological Target Volume (BTV) obtained from the non-gated exam. A 5 mm radial and a 10 mm craniocaudal margins were applied to account for tumor motion and set-up margins to create the PTV. One undiagnosed liver metastasis was discovered thanks to the 4D PET. The semi-automatic BTV were significantly smaller than the BITV (p = 0.0031). However, after applying adapted margins, 4D PET allowed a statistically significant decrease in the PTVg as compared to the PTV (p = 0.0052). In comparison to non-gated PET, 4D PET may better define the respiratory movements of liver targets and improve SBRT planning for liver metastases. Furthermore, non respiratory-gated PET exams can both misdiagnose liver metastases and underestimate the real internal target volumes

  18. SU-E-P-40: Dosimetric Characteristics of Field Aperture Margin Design in Stereotactic Body Radiation Therapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J

    2015-06-15

    Purpose: To characterize the dosimetric effects of field aperture margin design in Stereotactic Body Radiation Therapy (SBRT). Methods: Three artificial spherical PTVs, with diameter of 10mm, 20mm and 30mm, were created on CT images of a human body thoracic phantom. Seven non-coplanar isocentric fields were used for treatment planning. For each PTV, treatment plans with margins 0mm, 1mm, 2mm and 3mm were planned. Dosimetric comparison among plans was done considering the following parameters: prescribed isodose line for target coverage, maximum dose, mean dose as well as dose spillages of V80, V50, and V20. Results: Corresponding to aperture margins of 0mm, 1mm,2m and 3mm used in the treatment planning, the percentage of isodose line chosen for dose prescription increases from 65% to 93% for 10mm PTV, 70% to 92% for 20mm PTV, and 75% to 92% for 30mm PTV. The maximum dose decrease accordingly from 155.7% to 109.5% for 10mm PTV, 145% to 111.6% for 20mm PTV, 137% to 112.2% for 30mm PTV. The mean dose decrease from 138.% to 104.4% for 10mm PTV, 122.8% to 106.1% for 20mm PTV, 121.3% to 106% for 30mm PTV. Dose spillages (mm3) increase (V80−2.6 to 4.02, V50−4.55 to 9.3, V20–87.86 to 101.71) for 10 mm PTV, (V80−6.78 to 9.89, V50–13.46 to 20.4, V20-119.16 to 219.1) for 20 mm PTV, (V80–22.01 to 28.59, V50–41.56 to 52.66, V20-532.71 to 551.84) for 30 mm PTV. Conclusion: In SBRT treatment planning, tight field aperture margin requires prescribing dose to lower isodose line that leading to higher dose inhomogeneity and higher mean dose to PTV. Loose margin allows prescribing dose to higher isodose line, therefore improves the dose homogeneity. However, it increases dose spillages. Clinician could try different margins according to the PTV size and location of surrounding critical organs to optimize the dose delivered to the patient.

  19. Target volume definition for external beam partial breast radiotherapy: Clinical, pathological and technical studies informing current approaches

    International Nuclear Information System (INIS)

    Kirby, Anna M.; Coles, Charlotte E.; Yarnold, John R.

    2010-01-01

    Partial breast irradiation (PBI) is currently under investigation in several phase III trials and, following a recent consensus statement, its use off-study may increase despite ongoing uncertainty regarding optimal target volume definition. We review the clinical, pathological and technical evidence for target volume definition in external beam partial breast irradiation (EB-PBI). The optimal method of tumour bed (TB) delineation requires X-ray CT imaging of implanted excision cavity wall markers. The definition of clinical target volume (CTV) as TB plus concentric 15 mm margins is based on the anatomical distribution of multifocal and multicentric disease around the primary tumour in mastectomy specimens, and the clinical locations of local tumour relapse (LR) after breast conservation surgery. If the majority of LR originate from foci of residual invasive and/or intraduct disease in the vicinity of the TB after complete microscopic resection, CTV margin logically takes account of the position of primary tumour within the surgical resection specimen. The uncertain significance of independent primary tumours as sources of preventable LR, and of wound healing responses in stimulating LR, increases the difficulties in defining optimal CTV. These uncertainties may resolve after long-term follow-up of current PBI trials. By contrast, a commonly used 10 mm clinical to planning target volume (PTV) margin has a stronger evidence base, although departmental set-up errors need to be confirmed locally. A CTV-PTV margin >10 mm may be required in women with larger breasts and/or large seromas, whilst the role of image-guided radiotherapy with or without TB markers in reducing CTV-PTV margins needs to be explored.

  20. Calculating radiotherapy margins based on Bayesian modelling of patient specific random errors

    International Nuclear Information System (INIS)

    Herschtal, A; Te Marvelde, L; Mengersen, K; Foroudi, F; Ball, D; Devereux, T; Pham, D; Greer, P B; Pichler, P; Eade, T; Kneebone, A; Bell, L; Caine, H; Hindson, B; Kron, T; Hosseinifard, Z

    2015-01-01

    Collected real-life clinical target volume (CTV) displacement data show that some patients undergoing external beam radiotherapy (EBRT) demonstrate significantly more fraction-to-fraction variability in their displacement (‘random error’) than others. This contrasts with the common assumption made by historical recipes for margin estimation for EBRT, that the random error is constant across patients. In this work we present statistical models of CTV displacements in which random errors are characterised by an inverse gamma (IG) distribution in order to assess the impact of random error variability on CTV-to-PTV margin widths, for eight real world patient cohorts from four institutions, and for different sites of malignancy. We considered a variety of clinical treatment requirements and penumbral widths. The eight cohorts consisted of a total of 874 patients and 27 391 treatment sessions. Compared to a traditional margin recipe that assumes constant random errors across patients, for a typical 4 mm penumbral width, the IG based margin model mandates that in order to satisfy the common clinical requirement that 90% of patients receive at least 95% of prescribed RT dose to the entire CTV, margins be increased by a median of 10% (range over the eight cohorts −19% to +35%). This substantially reduces the proportion of patients for whom margins are too small to satisfy clinical requirements. (paper)

  1. Determining optimal clinical target volume margins in head-and-neck cancer based on microscopic extracapsular extension of metastatic neck nodes

    International Nuclear Information System (INIS)

    Apisarnthanarax, Smith; Elliott, Danielle D.; El-Naggar, Adel K.; Asper, Joshua A. P.A.; Blanco, Angel; Ang, K. Kian; Garden, Adam S.; Morrison, William H.; Rosenthal, David; Weber, Randal S.; Chao, K.S. Clifford

    2006-01-01

    Purpose: To determine the optimal clinical target volume margins around the gross nodal tumor volume in head-and-neck cancer by assessing microscopic tumor extension beyond cervical lymph node capsules. Methods and Materials: Histologic sections of 96 dissected cervical lymph nodes with extracapsular extension (ECE) from 48 patients with head-and-neck squamous cell carcinoma were examined. The maximum linear distance from the external capsule border to the farthest extent of the tumor or tumoral reaction was measured. The trends of ECE as a function of the distance from the capsule and lymph node size were analyzed. Results: The median diameter of all lymph nodes was 11.0 mm (range: 3.0-30.0 mm). The mean and median ECE extent was 2.2 mm and 1.6 mm, respectively (range: 0.4-9.0 mm). The ECE was <5 mm from the capsule in 96% of the nodes. As the distance from the capsule increased, the probability of tumor extension declined. No significant difference between the extent of ECE and lymph node size was observed. Conclusion: For N1 nodes that are at high risk for ECE but not grossly infiltrating musculature, 1 cm clinical target volume margins around the nodal gross tumor volume are recommended to cover microscopic nodal extension in head-and-neck cancer

  2. Disease Control After Reduced Volume Conformal and Intensity Modulated Radiation Therapy for Childhood Craniopharyngioma

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [St Jude Children' s Research Hospital, Radiological Sciences, Memphis, Tennessee (United States); Kun, Larry E.; Hua, Chia-Ho [St Jude Children' s Research Hospital, Radiological Sciences, Memphis, Tennessee (United States); Wu, Shengjie; Xiong, Xiaoping [St Jude Children' s Research Hospital, Biostatistics, Memphis, Tennessee (United States); Sanford, Robert A.; Boop, Frederick A. [Semmes Murphey Neurologic and Spine Institute, Neurosurgery, Memphis, Tennessee (United States)

    2013-03-15

    Purpose: To estimate the rate of disease control after conformal radiation therapy using reduced clinical target volume (CTV) margins and to determine factors that predict for tumor progression. Methods and Materials: Eighty-eight children (median age, 8.5 years; range, 3.2-17.6 years) received conformal or intensity modulated radiation therapy between 1998 and 2009. The study group included those prospectively treated from 1998 to 2003, using a 10-mm CTV, defined as the margin surrounding the solid and cystic tumor targeted to receive the prescription dose of 54 Gy. The CTV margin was subsequently reduced after 2003, yielding 2 groups of patients: those treated with a CTV margin greater than 5 mm (n=26) and those treated with a CTV margin less than or equal to 5 mm (n=62). Disease progression was estimated on the basis of additional variables including sex, race, extent of resection, tumor interventions, target volume margins, and frequency of weekly surveillance magnetic resonance (MR) imaging during radiation therapy. Median follow-up was 5 years. Results: There was no difference between progression-free survival rates based on CTV margins (>5 mm vs ≤5 mm) at 5 years (88.1% ± 6.3% vs 96.2% ± 4.4% [P=.6386]). There were no differences based on planning target volume (PTV) margins (or combined CTV plus PTV margins). The PTV was systematically reduced from 5 to 3 mm during the time period of the study. Factors predictive of superior progression-free survival included Caucasian race (P=.0175), no requirement for cerebrospinal fluid shunting (P=.0066), and number of surveillance imaging studies during treatment (P=.0216). Patients whose treatment protocol included a higher number of weekly surveillance MR imaging evaluations had a lower rate of tumor progression. Conclusions: These results suggest that targeted volume reductions for radiation therapy using smaller margins are feasible and safe but require careful monitoring. We are currently investigating

  3. Limitations of the planning organ at risk volume (PRV) concept.

    Science.gov (United States)

    Stroom, Joep C; Heijmen, Ben J M

    2006-09-01

    Previously, we determined a planning target volume (PTV) margin recipe for geometrical errors in radiotherapy equal to M(T) = 2 Sigma + 0.7 sigma, with Sigma and sigma standard deviations describing systematic and random errors, respectively. In this paper, we investigated margins for organs at risk (OAR), yielding the so-called planning organ at risk volume (PRV). For critical organs with a maximum dose (D(max)) constraint, we calculated margins such that D(max) in the PRV is equal to the motion averaged D(max) in the (moving) clinical target volume (CTV). We studied margins for the spinal cord in 10 head-and-neck cases and 10 lung cases, each with two different clinical plans. For critical organs with a dose-volume constraint, we also investigated whether a margin recipe was feasible. For the 20 spinal cords considered, the average margin recipe found was: M(R) = 1.6 Sigma + 0.2 sigma with variations for systematic and random errors of 1.2 Sigma to 1.8 Sigma and -0.2 sigma to 0.6 sigma, respectively. The variations were due to differences in shape and position of the dose distributions with respect to the cords. The recipe also depended significantly on the volume definition of D(max). For critical organs with a dose-volume constraint, the PRV concept appears even less useful because a margin around, e.g., the rectum changes the volume in such a manner that dose-volume constraints stop making sense. The concept of PRV for planning of radiotherapy is of limited use. Therefore, alternative ways should be developed to include geometric uncertainties of OARs in radiotherapy planning.

  4. Evaluation of the setup margins for cone beam computed tomography–guided cranial radiosurgery: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Calvo Ortega, Juan Francisco, E-mail: jfcdrr@yahoo.es [Department of Radiation Oncology, Hospital Quirón, Barcelona (Spain); Wunderink, Wouter [Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam (Netherlands); Delgado, David; Moragues, Sandra; Pozo, Miquel; Casals, Joan [Department of Radiation Oncology, Hospital Quirón, Barcelona (Spain)

    2016-10-01

    The aim of this study is to evaluate the setup margins from the clinical target volume (CTV) to planning target volume (PTV) for cranial stereotactic radiosurgery (SRS) treatments guided by cone beam computed tomography (CBCT). We designed an end-to-end (E2E) test using a skull phantom with an embedded 6mm tungsten ball (target). A noncoplanar plan was computed (E2E plan) to irradiate the target. The CBCT-guided positioning of the skull phantom on the linac was performed. Megavoltage portal images were acquired after 15 independent deliveries of the E2E plan. The displacement 2-dimensional (2D) vector between the centers of the square field and the ball target on each portal image was used to quantify the isocenter accuracy. Geometrical margins on each patient's direction (left-right or LR, anterior-posterior or AP, superior-inferior or SI) were calculated. Dosimetric validation of the margins was performed in 5 real SRS cases: 3-dimesional (3D) isocenter deviations were mimicked, and changes in CTV dose coverage and organs-at-risk (OARs) dosage were analyzed. The CTV-PTV margins of 1.1 mm in LR direction, and 0.7 mm in AP and SI directions were derived from the E2E tests. The dosimetric analysis revealed that a 1-mm uniform margin was sufficient to ensure the CTV dose coverage, without compromising the OAR dose tolerances. The effect of isocenter uncertainty has been estimated to be 1 mm in our CBCT-guided SRS approach.

  5. Outcomes and Patterns of Failure for Grade 2 Meningioma Treated With Reduced-Margin Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Press, Robert H. [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Prabhu, Roshan S., E-mail: roshansprabhu@gmail.com [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Appin, Christina L.; Brat, Daniel J. [Department of Pathology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Shu, Hui-Kuo G. [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Hadjipanayis, Constantinos; Olson, Jeffrey J.; Oyesiku, Nelson M. [Department of Neurosurgery, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Curran, Walter J.; Crocker, Ian [Department of Radiation Oncology, Emory University, Atlanta, Georgia (United States); Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)

    2014-04-01

    Purpose: The purpose of this study was to evaluate intracranial control and patterns of local recurrence (LR) for grade 2 meningiomas treated with intensity modulated radiation therapy (IMRT) with limited total margin expansions of ≤1 cm. Methods and Materials: We reviewed records of patients with a neuropathological diagnosis of grade 2 meningioma who underwent IMRT at our institution between 2002 and 2012. Actuarial rates were determined by the Kaplan-Meier method from the end of RT. LR was defined as in-field if ≥90% of the recurrence was within the prescription isodose, out-of-field (marginal) if ≥90% was outside of the prescription isodose, and both if neither criterion was met. Results: Between 2002 and 2012, a total of 54 consecutive patients underwent IMRT for grade 2 meningioma. Eight of these patients had total initial margins >1 cm and were excluded, leaving 46 patients for analysis. The median imaging follow-up period was 26.2 months (range, 7-107 months). The median dose for fractionated IMRT was 59.4 Gy (range, 49.2-61.2 Gy). Median clinical target volume (CTV), planning target volume (PTV), and total margin expansion were 0.5 cm, 0.3 cm, and 0.8 cm, respectively. LR occurred in 8 patients (17%), with 2-year and 3-year actuarial local control (LC) of 92% and 74%, respectively. Six of 8 patients (85%) had a known pattern of failure. Five patients (83%) had in-field LR; no patients had marginal LR; and 1 patient (17%) had both. Conclusions: The use of IMRT to treat grade 2 meningiomas with total initial margins (CTV + PTV) ≤1 cm did not appear to compromise outcomes or increase marginal failures compared with other modern retrospective series. Of the 46 patients who had margins ≤1 cm, none experienced marginal failure only. These results demonstrate efficacy and low risk of marginal failure after IMRT treatment of grade 2 meningiomas with reduced margins, warranting study within a prospective clinical trial.

  6. An IGRT margin concept for pelvic lymph nodes in high-risk prostate cancer

    International Nuclear Information System (INIS)

    Groher, M.; Kopp, P.; Deutschmann, H.; Sedlmayer, F.; Wolf, Frank; Drerup, M.

    2017-01-01

    Gold-marker-based image-guided radiation therapy (IGRT) of the prostate allows to correct for inter- and intrafraction motion and therefore to safely reduce margins for the prostate planning target volume (PTV). However, pelvic PTVs, when coadministered in a single plan (registered to gold markers [GM]), require reassessment of the margin concept since prostate movement is independent from the pelvic bony anatomy to which the lymphatics are usually referenced to. We have therefore revisited prostate translational movement relative to the bony anatomy to obtain adequate margins for the pelvic PTVs compensating mismatch resulting from referencing pelvic target volumes to GMs in the prostate. Prostate movement was analyzed in a set of 28 patients (25 fractions each, totaling in 684 fractions) and the required margins calculated for the pelvic PTVs according to Van Herk's margin formula M = 2.5 Σ + 1.64 (σ ' -σ p ). The overall mean prostate movement relative to bony anatomy was 0.9 ± 3.1, 0.6 ± 3.4, and 0.0 ± 0.7 mm in anterior/posterior (A/P), inferior/superior (I/S) and left/right (L/R) direction, respectively. Calculated margins to compensate for the resulting mismatch to bony anatomy were 9/9/2 mm in A/P, I/S, and L/R direction and 10/11/6 mm if an additional residual error of 2 mm was assumed. GM-based IGRT for pelvic PTVs is feasible if margins are adapted accordingly. Margins could be reduced further if systematic errors which are introduced during the planning CT were eliminated. (orig.) [de

  7. Defining internal target volume (ITV) for hepatocellular carcinoma using four-dimensional CT

    International Nuclear Information System (INIS)

    X, Mian; Liu Mengzhong; Deng Xiaowu; Zhang Li; Huang Xiaoyan; Liu Hui; Li Qiaoqiao; Hu Yonghong; Cai Ling; Cui Nianji

    2007-01-01

    Background and purpose: To define individualized internal target volume (ITV) for hepatocellular carcinoma using four-dimensional computed tomography (4DCT). Materials and methods: Gross tumor volumes (GTVs) and clinical target volumes (CTVs) were contoured on all 10 respiratory phases of 4DCT scans in 10 patients with hepatocellular carcinoma. The 3D and 4D treatment plans were performed for each patient using two different planning target volumes (PTVs): (1) PTV 3D was derived from a single CTV plus conventional margins; (2) PTV 4D was derived from ITV 4D , which encompassed all 10 CTVs plus setup margins (SMs). The volumes of PTVs and dose distribution were compared between the two plans. Results: The average PTV volume of the 4D plans (328.4 ± 152.2 cm 3 ) was less than 3D plans (407.0 ± 165.6 cm 3 ). The 4D plans spared more surrounding normal tissues than 3D plans, especially normal liver. Compared with 3D plans, the mean dose to normal liver (MDTNL) decreased from 22.7 to 20.3 Gy. Without increasing the normal tissue complication probability (NTCP), the 4D plans allowed for increasing the calculated dose from 50.4 ± 1.3 to 54.2 ± 2.6 Gy, an average increase of 7.5% (range 4.0-16.0%). Conclusions: The conventional 3D plans can result in geometric miss and include excess normal tissues. The 4DCT-based plans can reduce the target volumes to spare more normal tissues and allow dose escalation compared with 3D plans

  8. The relationship between the bladder volume and optimal treatment planning in definitive radiotherapy for localized prostate cancer

    International Nuclear Information System (INIS)

    Nakamura, Naoki; Sekiguchi, Kenji; Akahane, Keiko; Shikama, Naoto; Takahashi, Osamu; Hama, Yukihiro; Nakagawa, Keiichi

    2012-01-01

    Background and purpose: There is no current consensus regarding the optimal bladder volumes in definitive radiotherapy for localized prostate cancer. The aim of this study was to clarify the relationship between the bladder volume and optimal treatment planning in radiotherapy for localized prostate cancer. Material and methods: Two hundred and forty-three patients underwent definitive radiotherapy with helical tomotherapy for intermediate- and high-risk localized prostate cancer. The prescribed dose defined as 95 % of the planning target volume (PTV) receiving 100 % of the prescription dose was 76 Gy in 38 fractions. The clinical target volume (CTV) was defined as the prostate with a 5-mm margin and 2 cm of the proximal seminal vesicle. The PTV was defined as the CTV with a 5-mm margin. Treatment plans were optimized to satisfy the dose constraints defined by in-house protocols for PTV and organs at risk (rectum wall, bladder wall, sigmoid colon and small intestine). If all dose constraints were satisfied, the plan was defined as an optimal plan (OP). Results: An OP was achieved with 203 patients (84%). Mean bladder volume (± 1 SD) was 266 ml (± 130 ml) among those with an OP and 214 ml (±130 ml) among those without an OP (p = 0.02). Logistic regression analysis also showed that bladder volumes below 150 ml decreased the possibility of achieving an OP. However, the percentage of patients with an OP showed a plateau effect at bladder volumes above 150 ml. Conclusions. Bladder volume is a significant factor affecting OP rates. However, our results suggest that bladder volumes exceeding 150 ml may not help meet planning dose constraints

  9. The incidence of inclusion of the sigmoid colon and small bowel in the planning target volume in radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Meerleer, G.O. de; Vakaet, L.; Neve, W.J. de; Villeirs, G.M.; Delrue, L.J.

    2004-01-01

    Background and purpose: in radiotherapy for prostate cancer, the rectum is considered the dose-limiting organ. The incidence of overlap between the sigmoid colon and/or small bowel and the planning target volume (PTV) as well as the dose to sigmoid colon and small bowel were investigated. Patients and methods: the CT data of 75 prostate cancer patients were analyzed. The clinical target volume (CTV) consisted of prostate and seminal vesicles. The PTV was defined as a three-dimensional expansion of the CTV with a 10-mm margin in craniocaudal and a 7-mm margin in the other directions. All patients were planned to a mean CTV dose of at least 76 Gy. Minimum CTV dose was set at 70 Gy. Dose inhomogeneity within the CTV was kept between 12% and 17%. Sigmoid colon was defined upward from the level where the rectum turned in a transverse plane. Contrast-filled small bowel was contoured on all slices where it was visible. The presence of sigmoid colon and/or small bowel in close vicinity to or overlapping with the PTV was recorded. For each case, the dose to the sigmoid colon and small bowel was calculated. Results: the PTV was found to overlap with the sigmoid colon in 60% and with the small bowel in 19% of the cases. In these patients, mean maximum dose to the sigmoid colon was 76.2 Gy (5th-95th percentile: 70.0-80.7 Gy). Mean maximum dose to the small bowel was 74.9 Gy (5th-95th percentile: 68.0-80.0 Gy). Conclusion: when systematically investigating the anatomic position of sigmoid colon and small bowel in patients accepted for prostate irradiation, parts of both organs were often observed in close vicinity to the PTV. Apart from the rectum, these organs may be dose-limiting in prostate radiotherapy. (orig.)

  10. The incidence of inclusion of the sigmoid colon and small bowel in the planning target volume in radiotherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meerleer, G.O. de; Vakaet, L.; Neve, W.J. de [Dept. of Radiation Oncology, Gent Univ. Hospital, Gent (Belgium); Villeirs, G.M.; Delrue, L.J. [Dept. of Radiology, Gent Univ. Hospital, Gent (Belgium)

    2004-09-01

    Background and purpose: in radiotherapy for prostate cancer, the rectum is considered the dose-limiting organ. The incidence of overlap between the sigmoid colon and/or small bowel and the planning target volume (PTV) as well as the dose to sigmoid colon and small bowel were investigated. Patients and methods: the CT data of 75 prostate cancer patients were analyzed. The clinical target volume (CTV) consisted of prostate and seminal vesicles. The PTV was defined as a three-dimensional expansion of the CTV with a 10-mm margin in craniocaudal and a 7-mm margin in the other directions. All patients were planned to a mean CTV dose of at least 76 Gy. Minimum CTV dose was set at 70 Gy. Dose inhomogeneity within the CTV was kept between 12% and 17%. Sigmoid colon was defined upward from the level where the rectum turned in a transverse plane. Contrast-filled small bowel was contoured on all slices where it was visible. The presence of sigmoid colon and/or small bowel in close vicinity to or overlapping with the PTV was recorded. For each case, the dose to the sigmoid colon and small bowel was calculated. Results: the PTV was found to overlap with the sigmoid colon in 60% and with the small bowel in 19% of the cases. In these patients, mean maximum dose to the sigmoid colon was 76.2 Gy (5th-95th percentile: 70.0-80.7 Gy). Mean maximum dose to the small bowel was 74.9 Gy (5th-95th percentile: 68.0-80.0 Gy). Conclusion: when systematically investigating the anatomic position of sigmoid colon and small bowel in patients accepted for prostate irradiation, parts of both organs were often observed in close vicinity to the PTV. Apart from the rectum, these organs may be dose-limiting in prostate radiotherapy. (orig.)

  11. A critical evaluation of the planning target volume for 3-d conformal radiotherapy of prostate cancer

    International Nuclear Information System (INIS)

    Tinger, Alfred; Michalski, Jeff M.; Cheng, Abel; Low, Daniel A.; Zhu, Ron; Bosch, Walter R.; Purdy, James A.; Perez, Carlos A.

    1996-01-01

    Purpose: The goal was to determine an adequate planning target volume (PTV) margin for three-dimensional conformal radiotherapy (3D CRT) of prostate cancer. The uncertainty in the internal positions of the prostate and seminal vesicles and the uncertainty in the treatment set-ups for a single group of patients was measured. Methods: Weekly computed tomography (CT) scans of the pelvis (n=38) and daily electronic portal images (n=1225) were reviewed for six patients who received seven-field 3D CRT for prostate cancer. The weekly CT scans were registered in three dimensions to the original treatment planning CT scan using commercially available software. This registration permitted measurement of the motion in the center-of-volume (COV) of the prostate and seminal vesicles throughout the course of therapy. The daily portal images (PI) were registered to the corresponding simulation films to measure the set-up displacement for each of the seven fields. The field displacements were then entered into a matrix program which calculated the isocenter displacement by a least squares method. The uncertainty in the internal positions of the prostate and seminal vesicles (standard deviation of the motions) was added to the uncertainty in the set-up (standard deviation of the isocenter displacements) in quadrature to arrive at a total uncertainty. Positive directions were defined in the left, anterior, and superior directions. A discussion of an adequate PTV was based on these results. Results: The mean magnitude of motion for the COV of the prostate ± the standard deviation was 0 ± 1 mm in the left-right (LR) direction, 0.5 ± 2.8 mm in the anterior-posterior (AP) direction, and 0.5 ± 3.5 mm in the superior-inferior (SI) direction. The mean magnitude of motion for the COV of the seminal vesicles ± the standard deviation was -0.3 ± 1.5 mm in the LR, 0.6 ± 4.1 mm in the AP, and 0.7 ± 2.3 mm in the SI directions, respectively. For all patients the mean isocenter

  12. SU-F-R-47: Quantitative Shape Relationship Analysis of PTV Modification for Critical Anatomy Sparing and Its Impact On Pathologic Response for Neoadjuvant Stereotactic Radiotherapy for Pancreatic Cancer

    International Nuclear Information System (INIS)

    Cheng, Z; Rosati, L; Chen, L; Robertson, S; Moore, J; Peng, L; Mian, O; Narang, A; Hacker-Prietz, A; Herman, J; McNutt, T

    2016-01-01

    Purpose: Stereotactic body radiation therapy (SBRT) may be used to increase surgery candidacy in borderline resectable (BRPC) and locally advanced (LAPC) pancreatic cancer. However, the planning target volume (PTV) may need to be limited to avoid toxicity when the gross tumor volume (GTV) is anatomically involved with surrounding critical structures. Our study aims to characterize the coverage of GTV and investigate the association between modified PTV and pathologic (pCR) or near pathologic (npCR) complete response rates determined from the surgical specimen. Methods: Patients treated with neoadjuvant pancreas SBRT followed by surgery from 2010–2015 were selected from Oncospace. Overlap volume histogram (OVH) analysis was performed to determine the extent of compromise of the PTV from both the GTV and a standard target (GTV+3mm). Subsequently, normalized overlap volume (%) was calculated for: (1) GTV-PTV, and (2) GTV+3mm expansion-PTV. A logistic regression model was used to identify the association between the overlap ratios and ≥ npCR(pCR/npCR) stratified by active breathing control (ABC) versus free-breathing status. Results: Eighty-one (BRPC: n=42, LAPC: n=39) patients were available for analysis. Nearly 40% (31/81) had ≥npCR and 75% (61/81) were able to complete ABC. Mean coverage of the GTV-PTV was 92.6% (range, 59.9%–100%, SD = 8.68) and coverage of the GTV+3mm expansion-PTV was 85. 2% (range, 59.9% −100.0%, SD= 8.67). Among the patients with ABC, every 10% increase in GTV coverage doubled the odds to have ≥npCR (OR = 1.82, p=0.06). Coverage of GTV+3mm expansion was not associated with ≥npCR regardless of ABC status. Conclusion: Preferential sparing of critical anatomy over GTV-PTV coverage with ABC management suggests worse ≥npCR rates for neoadjuvant SBRT in BRPC and LAPC. Limiting the GTV and GTV+3mm expansion in free-breathing patients was not associated with pathologic response perhaps due to larger GTV definitions as a result of motion

  13. SU-F-R-47: Quantitative Shape Relationship Analysis of PTV Modification for Critical Anatomy Sparing and Its Impact On Pathologic Response for Neoadjuvant Stereotactic Radiotherapy for Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Z; Rosati, L; Chen, L; Robertson, S; Moore, J; Peng, L; Mian, O; Narang, A; Hacker-Prietz, A; Herman, J; McNutt, T [Johns Hopkins University, Baltimore, MD (United States)

    2016-06-15

    Purpose: Stereotactic body radiation therapy (SBRT) may be used to increase surgery candidacy in borderline resectable (BRPC) and locally advanced (LAPC) pancreatic cancer. However, the planning target volume (PTV) may need to be limited to avoid toxicity when the gross tumor volume (GTV) is anatomically involved with surrounding critical structures. Our study aims to characterize the coverage of GTV and investigate the association between modified PTV and pathologic (pCR) or near pathologic (npCR) complete response rates determined from the surgical specimen. Methods: Patients treated with neoadjuvant pancreas SBRT followed by surgery from 2010–2015 were selected from Oncospace. Overlap volume histogram (OVH) analysis was performed to determine the extent of compromise of the PTV from both the GTV and a standard target (GTV+3mm). Subsequently, normalized overlap volume (%) was calculated for: (1) GTV-PTV, and (2) GTV+3mm expansion-PTV. A logistic regression model was used to identify the association between the overlap ratios and ≥ npCR(pCR/npCR) stratified by active breathing control (ABC) versus free-breathing status. Results: Eighty-one (BRPC: n=42, LAPC: n=39) patients were available for analysis. Nearly 40% (31/81) had ≥npCR and 75% (61/81) were able to complete ABC. Mean coverage of the GTV-PTV was 92.6% (range, 59.9%–100%, SD = 8.68) and coverage of the GTV+3mm expansion-PTV was 85. 2% (range, 59.9% −100.0%, SD= 8.67). Among the patients with ABC, every 10% increase in GTV coverage doubled the odds to have ≥npCR (OR = 1.82, p=0.06). Coverage of GTV+3mm expansion was not associated with ≥npCR regardless of ABC status. Conclusion: Preferential sparing of critical anatomy over GTV-PTV coverage with ABC management suggests worse ≥npCR rates for neoadjuvant SBRT in BRPC and LAPC. Limiting the GTV and GTV+3mm expansion in free-breathing patients was not associated with pathologic response perhaps due to larger GTV definitions as a result of motion

  14. 3D-PTV around Operational Wind Turbines

    Science.gov (United States)

    Brownstein, Ian; Dabiri, John

    2016-11-01

    Laboratory studies and numerical simulations of wind turbines are typically constrained in how they can inform operational turbine behavior. Laboratory experiments are usually unable to match both pertinent parameters of full-scale wind turbines, the Reynolds number (Re) and tip speed ratio, using scaled-down models. Additionally, numerical simulations of the flow around wind turbines are constrained by the large domain size and high Re that need to be simulated. When these simulations are preformed, turbine geometry is typically simplified resulting in flow structures near the rotor not being well resolved. In order to bypass these limitations, a quantitative flow visualization method was developed to take in situ measurements of the flow around wind turbines at the Field Laboratory for Optimized Wind Energy (FLOWE) in Lancaster, CA. The apparatus constructed was able to seed an approximately 9m x 9m x 5m volume in the wake of the turbine using artificial snow. Quantitative measurements were obtained by tracking the evolution of the artificial snow using a four camera setup. The methodology for calibrating and collecting data, as well as preliminary results detailing the flow around a 2kW vertical-axis wind turbine (VAWT), will be presented.

  15. Evaluation of two intracavitary high-dose-rate brachytherapy devices for irradiating additional and irregularly shaped volumes of breast tissue

    International Nuclear Information System (INIS)

    Lu, Sharon M.; Scanderbeg, Daniel J.; Barna, Patrick; Yashar, William; Yashar, Catheryn

    2012-01-01

    The SAVI and Contura breast brachytherapy applicators represent 2 recent advancements in brachytherapy technology that have expanded the number of women eligible for accelerated partial breast irradiation in the treatment of early-stage breast cancer. Early clinical experience with these 2 single-entry, multichannel high-dose-rate brachytherapy devices confirms their ease of use and dosimetric versatility. However, current clinical guidelines for SAVI and Contura brachytherapy may result in a smaller or less optimal volume of treated tissue compared with traditional interstitial brachytherapy. This study evaluates the feasibility of using the SAVI and Contura to irradiate larger and irregularly shaped target volumes, approaching what is treatable with the interstitial technique. To investigate whether additional tissue can be treated, 17 patients treated with the SAVI and 3 with the Contura were selected. For each patient, the planning target volume (PTV) was modified to extend 1.1 cm, 1.3 cm, and 1.5 cm beyond the tumor bed cavity. To evaluate dose conformance to an irregularly shaped target volume, 9 patients treated with the SAVI and 3 with the Contura were selected from the original 20 patients. The following asymmetric PTV margin combinations were assessed for each patient: 1.5/0.3, 1.3/0.3, and 1.1/0.3 cm. For all patients, treatment planning was performed, adopting the National Surgical Adjuvant Breast and Bowel Project guidelines, and dosimetric comparisons were made. The 6–1 and 8–1 SAVI devices can theoretically treat a maximal tissue margin of 1.5 cm and an asymmetric PTV with margins ranging from 0.3 to 1.5 cm. The 10–1 SAVI and Contura can treat a maximal margin of 1.3 cm and 1.1 cm, respectively, and asymmetric PTV with margins ranging from 0.3–1.3 cm. Compared with the Contura, the SAVI demonstrated greater dosimetric flexibility. Risk of developing excessive hot spots increased with the size of the SAVI device. Both the SAVI and Contura

  16. Study of the seroma volume changes in the patients who underwent Accelerated Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Son, Sang Jun; Mun, Jun Ki; Seo, Seok Jin; Lee, Je Hee [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2016-06-15

    By analyzing seroma volume changes in the patients who underwent Partial breast radiation therapy after breast conserving surgery, we try to contribute to the improvement of radiotherapy effect. Enrolled 20 patients who underwent partial breast radiation therapy by ViewRay MRIdian System were subject. After seeking for the size of the removed sample in the patients during surgery and obtained seroma volume changes on a weekly basis. On the Basis of acquired volume, it was compared with age, term from start of the first treatment after surgery, BMI (body mass index) and the extracted sample size during surgery. And using the ViewRay MRIdian RTP System, the figure was analyzed by PTV(=seroma volume + margin) to obtain a specific volume of the Partial breast radiation therapy. The changes of seroma volume from MR simulation to the first treatment (a week) is 0~5% in 8, 5~10% in 3, 10 to 15% in 2, and 20% or more in 5 people. Two patients(A, B patient) among subjects showed the biggest change. The A patient's 100% of the prescribed dose volume is 213.08 cc, PTV is 181.93 cc, seroma volume is 15.3 cc in initial plan. However, while seroma volume decreased 65.36% to 5.3 cc, 100% of the prescribed dose volume was reduced to 3.4% to 102.43 cc and PTV also did 43.6% to 102.54 cc. In the case of the B patient, seroma volume decreased 42.57% from 20.2 cc to 11.6 cc. Because of that, 100% of the prescribed dose volume decreased 8.1% and PTV also did to 40%. As the period between the first therapy and surgery is shorter, the patient is elder and the size of sample is smaller than 100 cc, the change grow bigger. It is desirable to establish an adaptive plan according to each patient's changes of seroma volume through continuous observation. Because partial breast patients is more sensitive than WBRT patients about dose conformity in accordance with the volume change.

  17. Study of the seroma volume changes in the patients who underwent Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Kim, Dae Ho; Son, Sang Jun; Mun, Jun Ki; Seo, Seok Jin; Lee, Je Hee

    2016-01-01

    By analyzing seroma volume changes in the patients who underwent Partial breast radiation therapy after breast conserving surgery, we try to contribute to the improvement of radiotherapy effect. Enrolled 20 patients who underwent partial breast radiation therapy by ViewRay MRIdian System were subject. After seeking for the size of the removed sample in the patients during surgery and obtained seroma volume changes on a weekly basis. On the Basis of acquired volume, it was compared with age, term from start of the first treatment after surgery, BMI (body mass index) and the extracted sample size during surgery. And using the ViewRay MRIdian RTP System, the figure was analyzed by PTV(=seroma volume + margin) to obtain a specific volume of the Partial breast radiation therapy. The changes of seroma volume from MR simulation to the first treatment (a week) is 0~5% in 8, 5~10% in 3, 10 to 15% in 2, and 20% or more in 5 people. Two patients(A, B patient) among subjects showed the biggest change. The A patient's 100% of the prescribed dose volume is 213.08 cc, PTV is 181.93 cc, seroma volume is 15.3 cc in initial plan. However, while seroma volume decreased 65.36% to 5.3 cc, 100% of the prescribed dose volume was reduced to 3.4% to 102.43 cc and PTV also did 43.6% to 102.54 cc. In the case of the B patient, seroma volume decreased 42.57% from 20.2 cc to 11.6 cc. Because of that, 100% of the prescribed dose volume decreased 8.1% and PTV also did to 40%. As the period between the first therapy and surgery is shorter, the patient is elder and the size of sample is smaller than 100 cc, the change grow bigger. It is desirable to establish an adaptive plan according to each patient's changes of seroma volume through continuous observation. Because partial breast patients is more sensitive than WBRT patients about dose conformity in accordance with the volume change

  18. The application of a 3D-PTV algorithm to a mixed convection flow

    NARCIS (Netherlands)

    Kieft, R.N.; Schreel, K.R.A.M.; Plas, van der G.A.J.; Rindt, C.C.M.

    2002-01-01

    A 3D particle-tracking velocimetry (PTV) algorithm is applied to the wake flow behind a heated cylinder. The method is tested in advance with respect to its accuracy and performance. In the accuracy tests, its capability to locate particles in 3D space is tested. It appears that the algorithm can

  19. SU-F-J-24: Setup Uncertainty and Margin of the ExacTrac 6D Image Guide System for Patients with Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S; Oh, S; Yea, J; Park, J [Yeungnam University Medical Center, Daegu, Daegu (Korea, Republic of)

    2016-06-15

    Purpose: This study evaluated the setup uncertainties for brain sites when using BrainLAB’s ExacTrac X-ray 6D system for daily pretreatment to determine the optimal planning target volume (PTV) margin. Methods: Between August 2012 and April 2015, 28 patients with brain tumors were treated by daily image-guided radiotherapy using the BrainLAB ExacTrac 6D image guidance system of the Novalis-Tx linear accelerator. DUONTM (Orfit Industries, Wijnegem, Belgium) masks were used to fix the head. The radiotherapy was fractionated into 27–33 treatments. In total, 844 image verifications were performed for 28 patients and used for the analysis. The setup corrections along with the systematic and random errors were analyzed for six degrees of freedom in the translational (lateral, longitudinal, and vertical) and rotational (pitch, roll, and yaw) dimensions. Results: Optimal PTV margins were calculated based on van Herk et al.’s [margin recipe = 2.5∑ + 0.7σ − 3 mm] and Stroom et al.’s [margin recipe = 2∑ + 0.7σ] formulas. The systematic errors (∑) were 0.72, 1.57, and 0.97 mm in the lateral, longitudinal, and vertical translational dimensions, respectively, and 0.72°, 0.87°, and 0.83° in the pitch, roll, and yaw rotational dimensions, respectively. The random errors (σ) were 0.31, 0.46, and 0.54 mm in the lateral, longitudinal, and vertical rotational dimensions, respectively, and 0.28°, 0.24°, and 0.31° in the pitch, roll, and yaw rotational dimensions, respectively. According to van Herk et al.’s and Stroom et al.’s recipes, the recommended lateral PTV margins were 0.97 and 1.66 mm, respectively; the longitudinal margins were 1.26 and 3.47 mm, respectively; and the vertical margins were 0.21 and 2.31 mm, respectively. Conclusion: Therefore, daily setup verifications using the BrainLAB ExacTrac 6D image guide system are very useful for evaluating the setup uncertainties and determining the setup margin.∑σ.

  20. A predictive model to guide management of the overlap region between target volume and organs at risk in prostate cancer volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Malcolm D.; Lee, Jennifer C.; Einaiem, Sara; Guirguis, Adel; Ikoro, N. C.; Ashamalla Hani [Dept. of Radiation Oncology, New York Methodist Hospital, Brooklyn (United States)

    2013-12-15

    The goal of this study is to determine whether the magnitude of overlap between planning target volume (PTV) and rectum (Rectum{sub overlap}) or PTV and bladder (Bladder{sub overlap}) in prostate cancer volumetric-modulated arc therapy (VMAT) is predictive of the dose-volume relationships achieved after optimization, and to identify predictive equations and cutoff values using these overlap volumes beyond which the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) dose-volume constraints are unlikely to be met. Fifty-seven patients with prostate cancer underwent VMAT planning using identical optimization conditions and normalization. The PTV (for the 50.4 Gy primary plan and 30.6 Gy boost plan) included 5 to 10 mm margins around the prostate and seminal vesicles. Pearson correlations, linear regression analyses, and receiver operating characteristic (ROC) curves were used to correlate the percentage overlap with dose-volume parameters. The percentage Rectum{sub overlap} and Bladder{sub overlap} correlated with sparing of that organ but minimally impacted other dose-volume parameters, predicted the primary plan rectum V{sub 45} and bladder V{sub 50} with R{sup 2} = 0.78 and R{sup 2} = 0.83, respectively, and predicted the boost plan rectum V{sub 30} and bladder V{sub 30} with R{sup 2} = 0.53 and R{sup 2} = 0.81, respectively. The optimal cutoff value of boost Rectumoverlap to predict rectum V75 >15% was 3.5% (sensitivity 100%, specificity 94%, p < 0.01), and the optimal cutoff value of boost Bladder{sub overlap} to predict bladder V{sub 80} >10% was 5.0% (sensitivity 83%, specificity 100%, p < 0.01). The degree of overlap between PTV and bladder or rectum can be used to accurately guide physicians on the use of interventions to limit the extent of the overlap region prior to optimization.

  1. A predictive model to guide management of the overlap region between target volume and organs at risk in prostate cancer volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Mattes, Malcolm D.; Lee, Jennifer C.; Einaiem, Sara; Guirguis, Adel; Ikoro, N. C.; Ashamalla Hani

    2013-01-01

    The goal of this study is to determine whether the magnitude of overlap between planning target volume (PTV) and rectum (Rectum overlap ) or PTV and bladder (Bladder overlap ) in prostate cancer volumetric-modulated arc therapy (VMAT) is predictive of the dose-volume relationships achieved after optimization, and to identify predictive equations and cutoff values using these overlap volumes beyond which the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) dose-volume constraints are unlikely to be met. Fifty-seven patients with prostate cancer underwent VMAT planning using identical optimization conditions and normalization. The PTV (for the 50.4 Gy primary plan and 30.6 Gy boost plan) included 5 to 10 mm margins around the prostate and seminal vesicles. Pearson correlations, linear regression analyses, and receiver operating characteristic (ROC) curves were used to correlate the percentage overlap with dose-volume parameters. The percentage Rectum overlap and Bladder overlap correlated with sparing of that organ but minimally impacted other dose-volume parameters, predicted the primary plan rectum V 45 and bladder V 50 with R 2 = 0.78 and R 2 = 0.83, respectively, and predicted the boost plan rectum V 30 and bladder V 30 with R 2 = 0.53 and R 2 = 0.81, respectively. The optimal cutoff value of boost Rectumoverlap to predict rectum V75 >15% was 3.5% (sensitivity 100%, specificity 94%, p overlap to predict bladder V 80 >10% was 5.0% (sensitivity 83%, specificity 100%, p < 0.01). The degree of overlap between PTV and bladder or rectum can be used to accurately guide physicians on the use of interventions to limit the extent of the overlap region prior to optimization.

  2. Clipping of tumour resection margins allows accurate target volume delineation in head and neck cancer adjuvant radiation therapy

    International Nuclear Information System (INIS)

    Bittermann, Gido; Wiedenmann, Nicole; Bunea, Andrei; Schwarz, Steffen J.; Grosu, Anca-L.; Schmelzeisen, Rainer; Metzger, Marc C.

    2015-01-01

    Background: Accurate tumour bed localisation is a key requirement for adjuvant radiotherapy. A new procedure is described for head and neck cancer treatment that improves tumour bed localisation using titanium clips. Materials and methods: Following complete local excision of the primary tumour, the tumour bed was marked with titanium clips. Preoperative gross target volume (GTV) and postoperative tumour bed were examined and the distances between the centres of gravity were evaluated. Results: 49 patients with squamous cell carcinoma of the oral cavity were prospectively enrolled in this study. All patients underwent tumour resection, neck lymph node dissection and defect reconstruction in one stage. During surgery, 7–49 clips were placed in the resection cavity. Surgical clip insertion was successful in 88% (n = 43). Clip identification and tumour bed delineation was successful in all 43 patients. The overall distance between the centres of gravity of the preoperative tumour extension to the tumour bed was 0.9 cm. A significant relationship between the preoperative tumour extension and the postoperative tumour bed volume could be demonstrated. Conclusion: We demonstrate a precise delineation of the former tumour cavity. Improvements in tumour bed delineation allow an increase of accuracy for adjuvant treatment

  3. Three independent one-dimensional margins for single-fraction frameless stereotactic radiosurgery brain cases using CBCT

    International Nuclear Information System (INIS)

    Zhang, Qinghui; Chan, Maria F.; Burman, Chandra; Song, Yulin; Zhang, Mutian

    2013-01-01

    Purpose: Setting a proper margin is crucial for not only delivering the required radiation dose to a target volume, but also reducing the unnecessary radiation to the adjacent organs at risk. This study investigated the independent one-dimensional symmetric and asymmetric margins between the clinical target volume (CTV) and the planning target volume (PTV) for linac-based single-fraction frameless stereotactic radiosurgery (SRS).Methods: The authors assumed a Dirac delta function for the systematic error of a specific machine and a Gaussian function for the residual setup errors. Margin formulas were then derived in details to arrive at a suitable CTV-to-PTV margin for single-fraction frameless SRS. Such a margin ensured that the CTV would receive the prescribed dose in 95% of the patients. To validate our margin formalism, the authors retrospectively analyzed nine patients who were previously treated with noncoplanar conformal beams. Cone-beam computed tomography (CBCT) was used in the patient setup. The isocenter shifts between the CBCT and linac were measured for a Varian Trilogy linear accelerator for three months. For each plan, the authors shifted the isocenter of the plan in each direction by ±3 mm simultaneously to simulate the worst setup scenario. Subsequently, the asymptotic behavior of the CTV V 80% for each patient was studied as the setup error approached the CTV-PTV margin.Results: The authors found that the proper margin for single-fraction frameless SRS cases with brain cancer was about 3 mm for the machine investigated in this study. The isocenter shifts between the CBCT and the linac remained almost constant over a period of three months for this specific machine. This confirmed our assumption that the machine systematic error distribution could be approximated as a delta function. This definition is especially relevant to a single-fraction treatment. The prescribed dose coverage for all the patients investigated was 96.1%± 5.5% with an extreme

  4. A physics-enabled flow restoration algorithm for sparse PIV and PTV measurements

    Science.gov (United States)

    Vlasenko, Andrey; Steele, Edward C. C.; Nimmo-Smith, W. Alex M.

    2015-06-01

    The gaps and noise present in particle image velocimetry (PIV) and particle tracking velocimetry (PTV) measurements affect the accuracy of the data collected. Existing algorithms developed for the restoration of such data are only applicable to experimental measurements collected under well-prepared laboratory conditions (i.e. where the pattern of the velocity flow field is known), and the distribution, size and type of gaps and noise may be controlled by the laboratory set-up. However, in many cases, such as PIV and PTV measurements of arbitrarily turbid coastal waters, the arrangement of such conditions is not possible. When the size of gaps or the level of noise in these experimental measurements become too large, their successful restoration with existing algorithms becomes questionable. Here, we outline a new physics-enabled flow restoration algorithm (PEFRA), specially designed for the restoration of such velocity data. Implemented as a ‘black box’ algorithm, where no user-background in fluid dynamics is necessary, the physical structure of the flow in gappy or noisy data is able to be restored in accordance with its hydrodynamical basis. The use of this is not dependent on types of flow, types of gaps or noise in measurements. The algorithm will operate on any data time-series containing a sequence of velocity flow fields recorded by PIV or PTV. Tests with numerical flow fields established that this method is able to successfully restore corrupted PIV and PTV measurements with different levels of sparsity and noise. This assessment of the algorithm performance is extended with an example application to in situ submersible 3D-PTV measurements collected in the bottom boundary layer of the coastal ocean, where the naturally-occurring plankton and suspended sediments used as tracers causes an increase in the noise level that, without such denoising, will contaminate the measurements.

  5. A physics-enabled flow restoration algorithm for sparse PIV and PTV measurements

    International Nuclear Information System (INIS)

    Vlasenko, Andrey; Steele, Edward C C; Nimmo-Smith, W Alex M

    2015-01-01

    The gaps and noise present in particle image velocimetry (PIV) and particle tracking velocimetry (PTV) measurements affect the accuracy of the data collected. Existing algorithms developed for the restoration of such data are only applicable to experimental measurements collected under well-prepared laboratory conditions (i.e. where the pattern of the velocity flow field is known), and the distribution, size and type of gaps and noise may be controlled by the laboratory set-up. However, in many cases, such as PIV and PTV measurements of arbitrarily turbid coastal waters, the arrangement of such conditions is not possible. When the size of gaps or the level of noise in these experimental measurements become too large, their successful restoration with existing algorithms becomes questionable. Here, we outline a new physics-enabled flow restoration algorithm (PEFRA), specially designed for the restoration of such velocity data. Implemented as a ‘black box’ algorithm, where no user-background in fluid dynamics is necessary, the physical structure of the flow in gappy or noisy data is able to be restored in accordance with its hydrodynamical basis. The use of this is not dependent on types of flow, types of gaps or noise in measurements. The algorithm will operate on any data time-series containing a sequence of velocity flow fields recorded by PIV or PTV. Tests with numerical flow fields established that this method is able to successfully restore corrupted PIV and PTV measurements with different levels of sparsity and noise. This assessment of the algorithm performance is extended with an example application to in situ submersible 3D-PTV measurements collected in the bottom boundary layer of the coastal ocean, where the naturally-occurring plankton and suspended sediments used as tracers causes an increase in the noise level that, without such denoising, will contaminate the measurements. (paper)

  6. High-Frequency Jet Ventilation for Complete Target Immobilization and Reduction of Planning Target Volume in Stereotactic High Single-Dose Irradiation of Stage I Non-Small Cell Lung Cancer and Lung Metastases

    International Nuclear Information System (INIS)

    Fritz, Peter; Kraus, Hans-Joerg; Muehlnickel, Werner; Sassmann, Volker; Hering, Werner; Strauch, Konstantin

    2010-01-01

    Purpose: To demonstrate the feasibility of complete target immobilization by means of high-frequency jet ventilation (HFJV); and to show that the saving of planning target volume (PTV) on the stereotactic body radiation therapy (SBRT) under HFJV, compared with SBRT with respiratory motion, can be predicted with reliable accuracy by computed tomography (CT) scans at peak inspiration phase. Methods and Materials: A comparison regarding different methods for defining the PTV was carried out in 22 patients with tumors that clearly moved with respiration. A movement span of the gross tumor volume (GTV) was defined by fusing respiration-correlated CT scans. The PTV enclosed the GTV positions with a safety margin throughout the breathing cycle. To create a PTV from CT scans acquired under HFJV, the same margins were drawn around the immobilized target. In addition, peak inspiration phase CT images (PIP-CTs) were used to approximate a target immobilized by HFJV. Results: The resulting HFJV-PTVs were between 11.6% and 45.4% smaller than the baseline values calculated as respiration-correlated CT-PTVs (median volume reduction, 25.4%). Tentative planning by means of PIP-CT PTVs predicted that in 19 of 22 patients, use of HFJV would lead to a reduction in volume of ≥20%. Using this threshold yielded a positive predictive value of 0.89, as well as a sensitivity of 0.94 and a specificity of 0.5. Conclusions: In all patients, SBRT under HFJV provided a reliable immobilization of the GTVs and achieved a reduction in PTVs, regardless of patient compliance. Tentative planning facilitated the selection of patients who could better undergo radiation in respiratory standstill, both with greater accuracy and lung protection.

  7. Computationally efficient storage of 3D particle intensity and position data for use in 3D PIV and 3D PTV

    International Nuclear Information System (INIS)

    Atkinson, C; Buchmann, N A; Soria, J

    2013-01-01

    Three-dimensional (3D) volumetric velocity measurement techniques, such as tomographic or holographic particle image velocimetry (PIV), rely upon the computationally intensive formation, storage and localized interrogation of multiple 3D particle intensity fields. Calculation of a single velocity field typically requires the extraction of particle intensities into tens of thousands of 3D sub-volumes or discrete particle clusters, the processing of which can significantly affect the performance of 3D cross-correlation based PIV and 3D particle tracking velocimetry (PTV). In this paper, a series of popular and customized volumetric data formats are presented and investigated using synthetic particle volumes and experimental data arising from tomographic PIV measurements of a turbulent boundary layer. Results show that the use of a sub-grid ordered non-zero intensity format with a sub-grid size of 16 × 16 × 16 points provides the best performance for cross-correlation based PIV analysis, while a particle clustered non-zero intensity format provides the best format for PTV applications. In practical tomographic PIV measurements the sub-grid ordered non-zero intensity format offered a 29% improvement in reconstruction times, while providing a 93% reduction in volume data requirements and a 28% overall improvement in cross-correlation based velocity analysis and validation times. (paper)

  8. Image-Guided Radiotherapy via Daily Online Cone-Beam CT Substantially Reduces Margin Requirements for Stereotactic Lung Radiotherapy

    International Nuclear Information System (INIS)

    Grills, Inga S.; Hugo, Geoffrey; Kestin, Larry L.; Galerani, Ana Paula; Chao, K. Kenneth; Wloch, Jennifer; Yan Di

    2008-01-01

    Purpose: To determine treatment accuracy and margins for stereotactic lung radiotherapy with and without cone-beam CT (CBCT) image guidance. Methods and Materials: Acquired for the study were 308 CBCT of 24 patients with solitary peripheral lung tumors treated with stereotactic radiotherapy. Patients were immobilized in a stereotactic body frame (SBF) or alpha-cradle and treated with image guidance using daily CBCT. Four (T1) or five (T2/metastatic) 12-Gy fractions were prescribed to the planning target volume (PTV) edge. The PTV margin was ≥5 mm depending on a pretreatment estimate of tumor excursion. Initial daily setup was according to SBF coordinates or tattoos for alpha-cradle cases. A CBCT was performed and registered to the planning CT using soft tissue registration of the target. The initial setup error/precorrection position, was recorded for the superior-inferior, anterior-posterior, and medial-lateral directions. The couch was adjusted to correct the tumor positional error. A second CBCT verified tumor position after correction. Patients were treated in the corrected position after the residual errors were ≤2 mm. A final CBCT after treatment assessed intrafraction tumor displacement. Results: The precorrection systematic (Σ) and random errors (σ) for the population ranged from 2-3 mm for SBF and 2-6 mm for alpha-cradle patients; postcorrection errors ranged from 0.4-1.0 mm. Calculated population margins were 9 to 13 mm (SBF) and 10-14 mm (cradle) precorrection, 1-2 mm (SBF), and 2-3 mm (cradle) postcorrection, and 2-4 mm (SBF) and 2-5 mm (cradle) posttreatment. Conclusions: Setup for stereotactic lung radiotherapy using a SBF or alpha-cradle alone is suboptimal. CBCT image guidance significantly improves target positioning and substantially reduces required target margins and normal tissue irradiation

  9. Validation of simple quantification methods for 18F FP CIT PET Using Automatic Delineation of volumes of interest based on statistical probabilistic anatomical mapping and isocontour margin setting

    International Nuclear Information System (INIS)

    Kim, Yong Il; Im, Hyung Jun; Paeng, Jin Chul; Lee, Jae Sung; Eo, Jae Seon; Kim, Dong Hyun; Kim, Euishin E.; Kang, Keon Wook; Chung, June Key; Lee Dong Soo

    2012-01-01

    18 F FP CIT positron emission tomography (PET) is an effective imaging for dopamine transporters. In usual clinical practice, 18 F FP CIT PET is analyzed visually or quantified using manual delineation of a volume of interest (VOI) fir the stratum. in this study, we suggested and validated two simple quantitative methods based on automatic VOI delineation using statistical probabilistic anatomical mapping (SPAM) and isocontour margin setting. Seventy five 18 F FP CIT images acquired in routine clinical practice were used for this study. A study-specific image template was made and the subject images were normalized to the template. afterwards, uptakes in the striatal regions and cerebellum were quantified using probabilistic VOI based on SPAM. A quantitative parameter, Q SPAM, was calculated to simulate binding potential. additionally, the functional volume of each striatal region and its uptake were measured in automatically delineated VOI using isocontour margin setting. Uptake volume product(Q UVP) was calculated for each striatal region. Q SPAMa nd Q UVPw as calculated for each visual grading and the influence of cerebral atrophy on the measurements was tested. Image analyses were successful in all the cases. Both the Q SPAMa nd Q UVPw ere significantly different according to visual grading (0.001). The agreements of Q UVPa nd Q SPAMw ith visual grading were slight to fair for the caudate nucleus (K= 0.421 and 0.291, respectively) and good to prefect to the putamen (K=0.663 and 0.607, respectively). Also, Q SPAMa nd Q UVPh ad a significant correlation with each other (0.001). Cerebral atrophy made a significant difference in Q SPAMa nd Q UVPo f the caudate nuclei regions with decreased 18 F FP CIT uptake. Simple quantitative measurements of Q SPAMa nd Q UVPs howed acceptable agreement with visual grad-ing. although Q SPAMi n some group may be influenced by cerebral atrophy, these simple methods are expected to be effective in the quantitative analysis of F FP

  10. An IGRT margin concept for pelvic lymph nodes in high-risk prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Groher, M.; Kopp, P.; Deutschmann, H.; Sedlmayer, F.; Wolf, Frank [Paracelsus Medical University of Salzburg, Department of Radiation Oncology, St. Johanns-Spital, Salzburg (Austria); Drerup, M. [Paracelsus Medical University of Salzburg, Department of Urology, St. Johanns-Spital, Salzburg (Austria)

    2017-09-15

    Gold-marker-based image-guided radiation therapy (IGRT) of the prostate allows to correct for inter- and intrafraction motion and therefore to safely reduce margins for the prostate planning target volume (PTV). However, pelvic PTVs, when coadministered in a single plan (registered to gold markers [GM]), require reassessment of the margin concept since prostate movement is independent from the pelvic bony anatomy to which the lymphatics are usually referenced to. We have therefore revisited prostate translational movement relative to the bony anatomy to obtain adequate margins for the pelvic PTVs compensating mismatch resulting from referencing pelvic target volumes to GMs in the prostate. Prostate movement was analyzed in a set of 28 patients (25 fractions each, totaling in 684 fractions) and the required margins calculated for the pelvic PTVs according to Van Herk's margin formula M = 2.5 Σ + 1.64 (σ{sup '}-σ{sub p}). The overall mean prostate movement relative to bony anatomy was 0.9 ± 3.1, 0.6 ± 3.4, and 0.0 ± 0.7 mm in anterior/posterior (A/P), inferior/superior (I/S) and left/right (L/R) direction, respectively. Calculated margins to compensate for the resulting mismatch to bony anatomy were 9/9/2 mm in A/P, I/S, and L/R direction and 10/11/6 mm if an additional residual error of 2 mm was assumed. GM-based IGRT for pelvic PTVs is feasible if margins are adapted accordingly. Margins could be reduced further if systematic errors which are introduced during the planning CT were eliminated. (orig.) [German] Eine Goldmarker-(GM-)basierte, bildgefuehrte Radiotherapie der Prostata ermoeglicht inter- und intrafraktionelle Bewegungen auszugleichen und somit Sicherheitsraender der Planungszielvolumina (PTV) zu minimieren. Dies gilt jedoch nicht fuer Zielvolumina des pelvinen Lymphabflusses, wenn diese im Rahmen eines simultan integrierten Boost-Konzepts im selben Plan verabreicht werden. Da Bewegungen der Prostata und des Lymphabflusses unabhaengig

  11. Differences in absorbed doses at risk organs and target tumoral of planning(PTV) in lung treatments using two algorithms of different calculations

    International Nuclear Information System (INIS)

    Uruena Llinares, A.; Santos Rubio, A.; Luis Simon, F. J.; Sanchez Carmona, G.; Herrador Cordoba, M.

    2006-01-01

    The objective of this paper is to compare, in thirty treatments for lung cancer,the absorbed doses at risk organs and target volumes obtained between the two used algorithms of calculation of our treatment planning system Oncentra Masterplan, that is, Pencil Beams vs Collapsed Cone. For it we use a set of measured indicators (D1 and D99 of tumor volume, V20 of lung, homogeneity index defined as (D5-D95)/D prescribed, and others). Analysing the dta, making a descriptor analysis of the results, and applying the non parametric test of the ranks with sign of Wilcoxon we find that the use of Pencil Beam algorithm underestimates the dose in the zone of the PTV including regions of low density as well as the values of maximum dose in spine cord. So, we conclude that in those treatments in which the spine dose is near the maximum permissible limit or those in which the PTV it includes a zone with pulmonary tissue must be used the Collapse Cone algorithm systematically and in any case an analysis must become to choose between time and precision in the calculation for both algorithms. (Authors)

  12. IMRT: Improvement in treatment planning efficiency using NTCP calculation independent of the dose-volume-histogram

    International Nuclear Information System (INIS)

    Grigorov, Grigor N.; Chow, James C.L.; Grigorov, Lenko; Jiang, Runqing; Barnett, Rob B.

    2006-01-01

    The normal tissue complication probability (NTCP) is a predictor of radiobiological effect for organs at risk (OAR). The calculation of the NTCP is based on the dose-volume-histogram (DVH) which is generated by the treatment planning system after calculation of the 3D dose distribution. Including the NTCP in the objective function for intensity modulated radiation therapy (IMRT) plan optimization would make the planning more effective in reducing the postradiation effects. However, doing so would lengthen the total planning time. The purpose of this work is to establish a method for NTCP determination, independent of a DVH calculation, as a quality assurance check and also as a mean of improving the treatment planning efficiency. In the study, the CTs of ten randomly selected prostate patients were used. IMRT optimization was performed with a PINNACLE3 V 6.2b planning system, using planning target volume (PTV) with margins in the range of 2 to 10 mm. The DVH control points of the PTV and OAR were adapted from the prescriptions of Radiation Therapy Oncology Group protocol P-0126 for an escalated prescribed dose of 82 Gy. This paper presents a new model for the determination of the rectal NTCP ( R NTCP). The method uses a special function, named GVN (from Gy, Volume, NTCP), which describes the R NTCP if 1 cm 3 of the volume of intersection of the PTV and rectum (R int ) is irradiated uniformly by a dose of 1 Gy. The function was 'geometrically' normalized using a prostate-prostate ratio (PPR) of the patients' prostates. A correction of the R NTCP for different prescribed doses, ranging from 70 to 82 Gy, was employed in our model. The argument of the normalized function is the R int , and parameters are the prescribed dose, prostate volume, PTV margin, and PPR. The R NTCPs of another group of patients were calculated by the new method and the resulting difference was <±5% in comparison to the NTCP calculated by the PINNACLE3 software where Kutcher's dose

  13. High precision conformal radiotherapy employing conservative margins in childhood benign and low-grade brain tumours

    International Nuclear Information System (INIS)

    Jalali, Rakesh; Budrukkar, Ashwini; Sarin, Rajiv; Sharma, Dayananda S.

    2005-01-01

    Background and purpose: To report local control and follow up outcome data of high precision conformal radiotherapy in childhood brain tumours. Materials and methods: Between December 1999 and December 2002, 26 children (17 boys and 9 girls, median age 11.5 years) with incompletely excised or recurrent benign and low-grade brain tumours [13 craniopharyngiomas, 11 low-grade gliomas (LGG) and 2 others] were treated with three-dimensional (3D) conformal radiotherapy (CRT) (12 patients) and stereotactic conformal radiotherapy (SCRT) (14 patients). Gross tumour volume (GTV) included neuro-imaging based visible tumour and/or resected tumour bed. Clinical target volume (CTV) consisted of GTV + 5 mm margin and planning target volume (PTV) consisted of additional 5 mm margin for CRT and 2 mm for SCRT. Treatment was delivered with 3-9 conformal fixed fields to a median dose of 54 Gy/30 fractions. Results: The actuarial 2 and 3 year disease free and overall survival was 96 and 100%, respectively (median follow up: 25 months, range 12-47 months). Radiological follow up available in 25 patients revealed complete response in 1, partial regression in 10, stable disease in 13 and progression in 1 patient (within the CTV). One patient with craniopharyngioma on a routine imaging revealed a mild asymptomatic cyst enlargement, which resolved with conservative management. A patient with chiasmatic glioma developed cystic degeneration and hydrocephalus 9 months after SCRT requiring cyst drainage and placement of a ventriculoperitoneal shunt. Conclusion: High-precision conformal techniques delivering irradiation to a computer generated target volume employing 7-10 mm 3D margins beyond the visible tumour and/or resected tumour bed appear to be safe in children with incompletely resected or recurrent benign and low-grade brain tumours, based on these data

  14. SU-F-T-590: Modeling PTV Dose Fall-Off for Cervical Cancer SBRT Treatment Planning Using VMAT and Step-And-Shoot IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, A Brito; Cohen, D; Eng, T; Gutierrez, A [University of Texas Health Science Center San Antonio, San Antonio, TX (United States)

    2016-06-15

    Purpose: Due to the high dose per fraction in SBRT, dose conformity and dose fall-off are critical. In patients with cervical cancer, rapid dose fall-off is particularly important to limit dose to the nearby rectum, small bowel, and bladder. This study compares the target volume dose fall-off for two radiation delivery techniques, fixed-field IMRT & VMAT, using non-coplanar beam geometries. Further comparisons are made between 6 and 10MV photon beam energies. Methods: Eleven (n=11) patients were planned in Pinnacle3 v9.10 with a NovalisTx (HD120 MLC) machine model using 6 and 10 MV photons. The following three techniques were used: (1) IMRT (10 non-coplanar beams) (2) Dual, coplanar 360° VMAT arcs (4° spacing), and (3) Triple, non-coplanar VMAT arcs (1 full arc and dual partial arcs). All plans were normalized such that 98% of the PTV received at least 28Gy/4Fx. Dose was calculated using a 2.0mm isotropic dose grid. To assess dose fall-off, twenty concentric 2mm thick rings were created around the PTV. The maximum dose in each ring was recorded and the data was fitted to model dose fall-off. A separate analysis was performed by separating target volumes into small (0–50cc), medium (51–80cc), and large (81–110cc). Results: Triple, non-coplanar VMAT arcs showed the best dose fall-off for all patients evaluated. All fitted regressions had an R{sup 2}≥0.99. At 10mm from the PTV edge, 10 MV VMAT3-arc had an absolute improvement in dose fall-off of 3.8% and 6.9% over IMRT and VMAT2-arc, respectively. At 30mm, 10 MV VMAT3-arc had an absolute improvement of 12.0% and 7.0% over IMRT and VMAT2-arc, respectively. Faster dose fall-off was observed for small volumes as opposed to medium and large ones—9.6% at 20mm. Conclusion: Triple, non-coplanar VMAT arcs offer the sharpest dose fall-off for cervical SBRT plans. This improvement is most pronounced when treating smaller target volumes.

  15. Risk factors for radiation pneumonitis after stereotactic radiation therapy for lung tumours: clinical usefulness of the planning target volume to total lung volume ratio.

    Science.gov (United States)

    Ueyama, Tomoko; Arimura, Takeshi; Takumi, Koji; Nakamura, Fumihiko; Higashi, Ryutaro; Ito, Soichiro; Fukukura, Yoshihiko; Umanodan, Tomokazu; Nakajo, Masanori; Koriyama, Chihaya; Yoshiura, Takashi

    2018-06-01

    To identify risk factors for symptomatic radiation pneumonitis (RP) after stereotactic radiation therapy (SRT) for lung tumours. We retrospectively evaluated 68 lung tumours in 63 patients treated with SRT between 2011 and 2015. RP was graded according to the National Cancer Institute-Common Terminology Criteria for Adverse Events version 4.0. SRT was delivered at 7.0-12.0 Gy per each fraction, once daily, to a total of 48-64 Gy (median, 50 Gy). Univariate analysis was performed to assess patient- and treatment-related factors, including age, sex, smoking index (SI), pulmonary function, tumour location, serum Krebs von den Lungen-6 value (KL-6), dose-volume metrics (V5, V10, V20, V30, V40 and VS5), homogeneity index of the planning target volume (PTV), PTV dose, mean lung dose (MLD), contralateral MLD and V2, PTV volume, lung volume and the PTV/lung volume ratio (PTV/Lung). Performance of PTV/Lung in predicting symptomatic RP was also analysed using receiver operating characteristic (ROC) analysis. The median follow-up period was 21 months. 10 of 63 patients (15.9%) developed symptomatic RP after SRT. On univariate analysis, V10, V20, PTV volume and PTV/Lung were significantly associated with occurrence of RP  ≥Grade 2. ROC curves indicated that symptomatic RP could be predicted using PTV/Lung [area under curve (AUC): 0.88, confidence interval (CI: 0.78-0.95), cut-off value: 1.09, sensitivity: 90.0% and specificity: 72.4%]. PTV/Lung is a good predictor of symptomatic RP after SRT. Advances in knowledge: The cases with high PTV/Lung should be carefully monitored with caution for the occurrence of RP after SRT.

  16. Does Motion Assessment With 4-Dimensional Computed Tomographic Imaging for Non–Small Cell Lung Cancer Radiotherapy Improve Target Volume Coverage?

    Directory of Open Access Journals (Sweden)

    Naseer Ahmed

    2017-03-01

    Full Text Available Introduction: Modern radiotherapy with 4-dimensional computed tomographic (4D-CT image acquisition for non–small cell lung cancer (NSCLC captures respiratory-mediated tumor motion to provide more accurate target delineation. This study compares conventional 3-dimensional (3D conformal radiotherapy (3DCRT plans generated with standard helical free-breathing CT (FBCT with plans generated on 4D-CT contoured volumes to determine whether target volume coverage is affected. Materials and methods: Fifteen patients with stage I to IV NSCLC were enrolled in the study. Free-breathing CT and 4D-CT data sets were acquired at the same simulation session and with the same immobilization. Gross tumor volume (GTV for primary and/or nodal disease was contoured on FBCT (GTV_3D. The 3DCRT plans were obtained, and the patients were treated according to our institution’s standard protocol using FBCT imaging. Gross tumor volume was contoured on 4D-CT for primary and/or nodal disease on all 10 respiratory phases and merged to create internal gross tumor volume (IGTV_4D. Clinical target volume margin was 5 mm in both plans, whereas planning tumor volume (PTV expansion was 1 cm axially and 1.5 cm superior/inferior for FBCT-based plans to incorporate setup errors and an estimate of respiratory-mediated tumor motion vs 8 mm isotropic margin for setup error only in all 4D-CT plans. The 3DCRT plans generated from the FBCT scan were copied on the 4D-CT data set with the same beam parameters. GTV_3D, IGTV_4D, PTV, and dose volume histogram from both data sets were analyzed and compared. Dice coefficient evaluated PTV similarity between FBCT and 4D-CT data sets. Results: In total, 14 of the 15 patients were analyzed. One patient was excluded as there was no measurable GTV. Mean GTV_3D was 115.3 cm 3 and mean IGTV_4D was 152.5 cm 3 ( P = .001. Mean PTV_3D was 530.0 cm 3 and PTV_4D was 499.8 cm 3 ( P = .40. Both gross primary and nodal disease analyzed separately were larger

  17. Marginal Matter

    Science.gov (United States)

    van Hecke, Martin

    2013-03-01

    All around us, things are falling apart. The foam on our cappuccinos appears solid, but gentle stirring irreversibly changes its shape. Skin, a biological fiber network, is firm when you pinch it, but soft under light touch. Sand mimics a solid when we walk on the beach but a liquid when we pour it out of our shoes. Crucially, a marginal point separates the rigid or jammed state from the mechanical vacuum (freely flowing) state - at their marginal points, soft materials are neither solid nor liquid. Here I will show how the marginal point gives birth to a third sector of soft matter physics: intrinsically nonlinear mechanics. I will illustrate this with shock waves in weakly compressed granular media, the nonlinear rheology of foams, and the nonlinear mechanics of weakly connected elastic networks.

  18. SU-E-J-79: Internal Tumor Volume Motion and Volume Size Assessment Using 4D CT Lung Data

    Energy Technology Data Exchange (ETDEWEB)

    Jurkovic, I [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States); Stathakis, S; Li, Y; Patel, A; Vincent, J; Papanikolaou, N; Mavroidis, P [Cancer Therapy and Research Center University of Texas Health Sciences Center at San Antonio, San Antonio, TX (United States)

    2014-06-01

    Purpose: To assess internal tumor volume change through breathing cycle and associated tumor motion using the 4DCT data. Methods: Respiration induced volume change through breathing cycle and associated motion was analyzed for nine patients that were scanned during the different respiratory phases. The examined datasets were the maximum and average intensity projections (MIP and AIP) and the 10 phases of the respiratory cycle. The internal target volume (ITV) was delineated on each of the phases and the planning target volume (PTV) was then created by adding setup margins to the ITV. Tumor motion through the phases was assessed using the acquired 4DCT dataset, which was then used to determine if the margins used for the ITV creation successfully encompassed the tumor in three dimensions. Results: Results showed that GTV motion along the superior inferior axes was the largest in all the cases independent of the tumor location and/or size or the use of abdomen compression. The extent of the tumor motion was found to be connected with the size of the GTV. The smallest GTVs exhibited largest motion vector independent of the tumor location. The motion vector size varied through the phases depending on the tumor size and location and it was smallest for phases 20 and 30. The smaller the volume of the delineated GTV, the greater its volume difference through the different respiratory phases was. The average GTV volume change was largest for the phases 60 and 70. Conclusion: Even if GTV is delineated using both AIP and MIP datasets, its motion extent will exceed the used margins especially for the very small GTV volumes. When the GTV size is less than 10 cc it is recommended to use fusion of the GTVs through all the phases to create the planning ITV.

  19. Difference in the Set-up Margin between 2D Conventional and 3D CT Based Planning in Patients with Early Breast Cancer

    International Nuclear Information System (INIS)

    Jo, Sun Mi; Chun, Mi Sun; Kim, Mi Hwa; Oh, Young Taek; Noh, O Kyu; Kang, Seung Hee

    2010-01-01

    Simulation using computed tomography (CT) is now widely available for radiation treatment planning for breast cancer. It is an important tool to help define the tumor target and normal tissue based on anatomical features of an individual patient. In Korea, most patients have small sized breasts and the purpose of this study was to review the margin of treatment field between conventional two-dimensional (2D) planning and CT based three-dimensional (3D) planning in patients with small breasts. Twenty-five consecutive patients with early breast cancer undergoing breast conservation therapy were selected. All patients underwent 3D CT based planning with a conventional breast tangential field design. In 2D planning, the treatment field margins were determined by palpation of the breast parenchyma (In general, the superior: base of the clavicle, medial: midline, lateral: mid - axillary line, and inferior margin: 2 m below the inflamammary fold). In 3D planning, the clinical target volume (CTV) ought to comprise all glandular breast tissue, and the PTV was obtained by adding a 3D margin of 1 cm around the CTV except in the skin direction. The difference in the treatment field margin and equivalent field size between 2D and 3D planning were evaluated. The association between radiation field margins and factors such as body mass index, menopause status, and bra size was determined. Lung volume and heart volume were examined on the basis of the prescribed breast radiation dose and 3D dose distribution. The margins of the treatment field were smaller in the 3D planning except for two patients. The superior margin was especially variable (average, 2.5 cm; range, -2.5 to 4.5 cm; SD, 1.85). The margin of these targets did not vary equally across BMI class, menopause status, or bra size. The average irradiated lung volume was significantly lower for 3D planning. The average irradiated heart volume did not decrease significantly. The use of 3D CT based planning reduced the

  20. Difference in the Set-up Margin between 2D Conventional and 3D CT Based Planning in Patients with Early Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sun Mi; Chun, Mi Sun; Kim, Mi Hwa; Oh, Young Taek; Noh, O Kyu [Ajou University School of Medicine, Seoul (Korea, Republic of); Kang, Seung Hee [Inje University, Ilsan Paik Hospital, Ilsan (Korea, Republic of)

    2010-11-15

    Simulation using computed tomography (CT) is now widely available for radiation treatment planning for breast cancer. It is an important tool to help define the tumor target and normal tissue based on anatomical features of an individual patient. In Korea, most patients have small sized breasts and the purpose of this study was to review the margin of treatment field between conventional two-dimensional (2D) planning and CT based three-dimensional (3D) planning in patients with small breasts. Twenty-five consecutive patients with early breast cancer undergoing breast conservation therapy were selected. All patients underwent 3D CT based planning with a conventional breast tangential field design. In 2D planning, the treatment field margins were determined by palpation of the breast parenchyma (In general, the superior: base of the clavicle, medial: midline, lateral: mid - axillary line, and inferior margin: 2 m below the inflamammary fold). In 3D planning, the clinical target volume (CTV) ought to comprise all glandular breast tissue, and the PTV was obtained by adding a 3D margin of 1 cm around the CTV except in the skin direction. The difference in the treatment field margin and equivalent field size between 2D and 3D planning were evaluated. The association between radiation field margins and factors such as body mass index, menopause status, and bra size was determined. Lung volume and heart volume were examined on the basis of the prescribed breast radiation dose and 3D dose distribution. The margins of the treatment field were smaller in the 3D planning except for two patients. The superior margin was especially variable (average, 2.5 cm; range, -2.5 to 4.5 cm; SD, 1.85). The margin of these targets did not vary equally across BMI class, menopause status, or bra size. The average irradiated lung volume was significantly lower for 3D planning. The average irradiated heart volume did not decrease significantly. The use of 3D CT based planning reduced the

  1. Differences in absorbed doses at risk organs and target tumoral of planning(PTV) in lung treatments using two algorithms of different calculations; Diferencias en las dosis absorbidas en organos de riesgo y volumen tumoral de planificacion (PTV) en tratamientos de pulmon usando dos algoritmos de calculo diferentes: pencil beam y collpased cone

    Energy Technology Data Exchange (ETDEWEB)

    Uruena Llinares, A.; Santos Rubio, A.; Luis Simon, F. J.; Sanchez Carmona, G.; Herrador Cordoba, M.

    2006-07-01

    The objective of this paper is to compare, in thirty treatments for lung cancer,the absorbed doses at risk organs and target volumes obtained between the two used algorithms of calculation of our treatment planning system Oncentra Masterplan, that is, Pencil Beams vs Collapsed Cone. For it we use a set of measured indicators (D1 and D99 of tumor volume, V20 of lung, homogeneity index defined as (D5-D95)/D prescribed, and others). Analysing the dta, making a descriptor analysis of the results, and applying the non parametric test of the ranks with sign of Wilcoxon we find that the use of Pencil Beam algorithm underestimates the dose in the zone of the PTV including regions of low density as well as the values of maximum dose in spine cord. So, we conclude that in those treatments in which the spine dose is near the maximum permissible limit or those in which the PTV it includes a zone with pulmonary tissue must be used the Collapse Cone algorithm systematically and in any case an analysis must become to choose between time and precision in the calculation for both algorithms. (Authors)

  2. Relapse patterns after radiochemotherapy of glioblastoma with FET PET-guided boost irradiation and simulation to optimize radiation target volume

    International Nuclear Information System (INIS)

    Piroth, Marc D.; Galldiks, Norbert; Pinkawa, Michael; Holy, Richard; Stoffels, Gabriele; Ermert, Johannes; Mottaghy, Felix M.; Shah, N. Jon; Langen, Karl-Josef; Eble, Michael J.

    2016-01-01

    O-(2-18 F-fluoroethyl)-L-tyrosine-(FET)-PET may be helpful to improve the definition of radiation target volumes in glioblastomas compared with MRI. We analyzed the relapse patterns in FET-PET after a FET- and MRI-based integrated-boost intensity-modulated radiotherapy (IMRT) of glioblastomas to perform an optimized target volume definition. A relapse pattern analysis was performed in 13 glioblastoma patients treated with radiochemotherapy within a prospective phase-II-study between 2008 and 2009. Radiotherapy was performed as an integrated-boost intensity-modulated radiotherapy (IB-IMRT). The prescribed dose was 72 Gy for the boost target volume, based on baseline FET-PET (FET-1) and 60 Gy for the MRI-based (MRI-1) standard target volume. The single doses were 2.4 and 2.0 Gy, respectively. Location and volume of recurrent tumors in FET-2 and MRI-2 were analyzed related to initial tumor, detected in baseline FET-1. Variable target volumes were created theoretically based on FET-1 to optimally cover recurrent tumor. The tumor volume overlap in FET and MRI was poor both at baseline (median 12 %; range 0–32) and at time of recurrence (13 %; 0–100). Recurrent tumor volume in FET-2 was localized to 39 % (12–91) in the initial tumor volume (FET-1). Over the time a shrinking (mean 12 (5–26) ml) and shifting (mean 6 (1–10 mm) of the resection cavity was seen. A simulated target volume based on active tumor in FET-1 with an additional safety margin of 7 mm around the FET-1 volume covered recurrent FET tumor volume (FET-2) significantly better than a corresponding target volume based on contrast enhancement in MRI-1 with a same safety margin of 7 mm (100 % (54–100) versus 85 % (0–100); p < 0.01). A simulated planning target volume (PTV), based on FET-1 and additional 7 mm margin plus 5 mm margin for setup-uncertainties was significantly smaller than the conventional, MR-based PTV applied in this study (median 160 (112–297) ml versus 231 (117–386) ml, p < 0

  3. Dosimetric and motion analysis of margin-intensive therapy by stereotactic ablative radiotherapy for resectable pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Heinzerling John H

    2011-10-01

    Full Text Available Abstract Background The retroperitoneal margin is a common site of positive surgical margins in patients with resectable pancreatic cancer. Preoperative margin-intensive therapy (MIT involves delivery of a single high dose of ablative radiotherapy (30 Gy focused on this surgically inaccessible margin, utilizing stereotactic techniques in an effort to reduce local failure following surgery. In this study, we investigated the motion of regional organs at risk (OAR utilizing 4DCT, evaluated the dosimetric effects of abdominal compression (AC to reduce regional motion, and compared various planning techniques to optimize MIT. Methods 10 patients were evaluated with 4DCT scans. All 10 patients had scans using AC and seven of the 10 patients had scans both with and without AC. The peak respiratory abdominal organ and major vessel centroid excursion was measured. A "sub-GTV" region was defined by a radiation oncologist and surgical oncologist encompassing the retroperitoneal margin typically lateral and posterior to the superior mesenteric artery (SMA, and a 3-5 mm margin was added to constitute the PTV. Identical 3D non-coplanar SABR (3DSABR plans were designed for the average compression and non-compression scans. Compression scans were planned with 3DSABR, coplanar IMRT (IMRT, and Cyberknife (CK planning techniques. Dose volume analysis was undertaken for various endpoints, comparing OAR doses with and without AC and for different planning methods. Results The mean PTV size was 20.2 cm3. Regional vessel motion of the SMA, celiac trunk, and renal vessels was small ( 5 mm, so AC has been used in all patients enrolled thus far. AC did not significantly increase OAR dose including the stomach and traverse colon. There were several statistically significant differences in the doses to OARs as a function of the type of planning modality used. Conclusions AC does not significantly reduce the limited motion of structures in close proximity to the MIT target

  4. IMPLEMENTATION OF INCIDENT DETECTION ALGORITHM BASED ON FUZZY LOGIC IN PTV VISSIM

    Directory of Open Access Journals (Sweden)

    Andrey Borisovich Nikolaev

    2017-05-01

    Full Text Available Traffic incident management is a major challenge in the management of movement, requiring constant attention and significant investment, as well as fast and accurate solutions in order to re-establish normal traffic conditions. Automatic control methods are becoming an important factor for the reduction of traffic congestion caused by an arising incident. In this paper, the algorithm of automatic detection incident based on fuzzy logic is implemented in the software PTV VISSIM. 9 different types of tests were conducted on the two lane road section segment with changing traffic conditions: the location of the road accident, loading of traffic. The main conclusion of the research is that the proposed algorithm for the incidents detection demonstrates good performance in the time of detection and false alarms

  5. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Chen Qing; Yin, Fang-Fang; Movsas, Benjamin

    2006-01-01

    Background and purpose: To develop and evaluate a technique and procedure of using gated-CT images in combination with PET image to determine the internal target volume (ITV), which could reduce the planning target volume (PTV) with adequate target coverage. Patients and methods: A skin marker-based gating system connected to a regular single slice CT scanner was used for this study. A motion phantom with adjustable motion amplitude was used to evaluate the CT gating system. Specifically, objects of various sizes/shapes, considered as virtual tumors, were placed on the phantom to evaluate the number of phases of gated images required to determine the ITV while taking into account tumor size, shape and motion. A procedure of using gated-CT and PET images to define ITV for patients was developed and was tested in patients enrolled in an IRB approved protocol. Results: The CT gating system was capable of removing motion artifacts for target motion as large as 3-cm when it was gated at optimal phases. A phantom study showed that two gated-CT scans at the end of expiration and the end of inspiration would be sufficient to determine the ITV for tumor motion less than 1-cm, and another mid-phase scan would be required for tumors with 2-cm motion, especially for small tumors. For patients, the ITV encompassing visible tumors in all sets of gated-CT and regular spiral CT images seemed to be consistent with the target volume determined from PET images. PTV expanded from the ITV with a setup uncertainty margin had less volume than PTVs from spiral CT images with a 10-mm generalized margin or an individualized margin determined at fluoroscopy. Conclusions: A technique of determining the ITV using gated-CT images was developed and was clinically implemented successfully for fractionated stereotactic lung radiotherapy

  6. Clinical variability of target volume description and treatment plans in conformal radiotherapy in muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Logue, John P; Sharrock, Carole L; Cowan, Richard A.; Read, Graham; Marrs, Julie; Mott, David

    1996-01-01

    Purpose/Objective: The delineation of tumor and the production of a treatment plan to encompass this is the prime step in radiotherapy planning. Conformal radiotherapy is developing rapidly and although plentiful research has addressed the implementation of the radiotherapy prescription, scant attention has been made to the fundamental step of production, by the clinician, of an appropriate target volume. As part of an ongoing randomized trial of conformal radiotherapy, in bladder cancer, we have therefore assessed the interphysician variability of radiologists and radiation oncologists (RO) in assessing Gross Tumor Volume(GTV) (ICRU 50) and the adherence of the radiation oncologists to the study protocol of producing a Planning Target Volume (PTV). Materials and Methods: Four patients with T3 carcinoma of bladder who had been entered into the trial were identified. The clinical details, MR scans and CT scans were made available. Eight RO and 3 dedicated diagnostic oncology radiologists were invited to directly outline the GTV onto CT images on a planning computer consul. The RO in addition created a PTV following the trial protocol of 15mm margin around the GTV. Three RO sub-specialized in Urological radiotherapy; all RO had completed training. Volumes were produced, for each clinician, and comparison of these volumes and their isocenters were analyzed. In addition the margins allowed were measured and compared. Results: There was a maximum variation ratio (largest to smallest volume outlined) of the GTV in the four cases of 1.74 among radiologists and 3.74 among oncologists. There was a significant difference (p=0.01) in mean GTV between RO and the radiologists. The mean GTV of the RO exceeded the radiologists by a factor of 1.29 with a mean difference of 13.4 cm 3 The between observer variance within speciality comprised only 9.9% of the total variance in the data having accounted for case and observers speciality. The variation ratio in PTV among oncologists

  7. Validation of Simple Quantification Methods for (18)F-FP-CIT PET Using Automatic Delineation of Volumes of Interest Based on Statistical Probabilistic Anatomical Mapping and Isocontour Margin Setting.

    Science.gov (United States)

    Kim, Yong-Il; Im, Hyung-Jun; Paeng, Jin Chul; Lee, Jae Sung; Eo, Jae Seon; Kim, Dong Hyun; Kim, Euishin E; Kang, Keon Wook; Chung, June-Key; Lee, Dong Soo

    2012-12-01

    (18)F-FP-CIT positron emission tomography (PET) is an effective imaging for dopamine transporters. In usual clinical practice, (18)F-FP-CIT PET is analyzed visually or quantified using manual delineation of a volume of interest (VOI) for the striatum. In this study, we suggested and validated two simple quantitative methods based on automatic VOI delineation using statistical probabilistic anatomical mapping (SPAM) and isocontour margin setting. Seventy-five (18)F-FP-CIT PET images acquired in routine clinical practice were used for this study. A study-specific image template was made and the subject images were normalized to the template. Afterwards, uptakes in the striatal regions and cerebellum were quantified using probabilistic VOI based on SPAM. A quantitative parameter, QSPAM, was calculated to simulate binding potential. Additionally, the functional volume of each striatal region and its uptake were measured in automatically delineated VOI using isocontour margin setting. Uptake-volume product (QUVP) was calculated for each striatal region. QSPAM and QUVP were compared with visual grading and the influence of cerebral atrophy on the measurements was tested. Image analyses were successful in all the cases. Both the QSPAM and QUVP were significantly different according to visual grading (P Simple quantitative measurements of QSPAM and QUVP showed acceptable agreement with visual grading. Although QSPAM in some group may be influenced by cerebral atrophy, these simple methods are expected to be effective in the quantitative analysis of (18)F-FP-CIT PET in usual clinical practice.

  8. Sensitivity of postplanning target and OAR coverage estimates to dosimetric margin distribution sampling parameters.

    Science.gov (United States)

    Xu, Huijun; Gordon, J James; Siebers, Jeffrey V

    2011-02-01

    A dosimetric margin (DM) is the margin in a specified direction between a structure and a specified isodose surface, corresponding to a prescription or tolerance dose. The dosimetric margin distribution (DMD) is the distribution of DMs over all directions. Given a geometric uncertainty model, representing inter- or intrafraction setup uncertainties or internal organ motion, the DMD can be used to calculate coverage Q, which is the probability that a realized target or organ-at-risk (OAR) dose metric D, exceeds the corresponding prescription or tolerance dose. Postplanning coverage evaluation quantifies the percentage of uncertainties for which target and OAR structures meet their intended dose constraints. The goal of the present work is to evaluate coverage probabilities for 28 prostate treatment plans to determine DMD sampling parameters that ensure adequate accuracy for postplanning coverage estimates. Normally distributed interfraction setup uncertainties were applied to 28 plans for localized prostate cancer, with prescribed dose of 79.2 Gy and 10 mm clinical target volume to planning target volume (CTV-to-PTV) margins. Using angular or isotropic sampling techniques, dosimetric margins were determined for the CTV, bladder and rectum, assuming shift invariance of the dose distribution. For angular sampling, DMDs were sampled at fixed angular intervals w (e.g., w = 1 degree, 2 degrees, 5 degrees, 10 degrees, 20 degrees). Isotropic samples were uniformly distributed on the unit sphere resulting in variable angular increments, but were calculated for the same number of sampling directions as angular DMDs, and accordingly characterized by the effective angular increment omega eff. In each direction, the DM was calculated by moving the structure in radial steps of size delta (=0.1, 0.2, 0.5, 1 mm) until the specified isodose was crossed. Coverage estimation accuracy deltaQ was quantified as a function of the sampling parameters omega or omega eff and delta. The

  9. Geometrical uncertainty margins in 3D conformal radiotherapy in the pediatric age group

    International Nuclear Information System (INIS)

    Eldebawy, E.; Attalla, E.; Eldesoky, I.; Zaghloul, M.S.

    2011-01-01

    To evaluate set-up variation of pediatric patients undergoing 3D conformal radiotherapy (3DCRT) using electronic portal image device (EPID), in an effort to evaluate the adequacy of the planning target volume (PTV) margin employed for the 3DCRT treatment of pediatric patients. Materials and methods: Set-up data was collected from 48 pediatric patients treated with 3D CRT-for head and neck (31 patients), abdomino-pelvic (9 patients) and chest (8 patients) sites during the period between September 2008 and February 2009. A total of 358 images obtained by EPID were analyzed. The mean (M) and standard deviation (SD) for systematic and random errors were calculated and the results were analyzed. Results: All images were studied in anterior and lateral portals. The systematic errors along longitudinal, lateral and vertical directions in all patients showed an M equal to 1.9,1.6, and 1.6 mm with SD of 1.8,1.4, and 1.8 mm, respectively; (head and neck cases: M equal to 1.5,1.2, and 1.6 mm with SD 1.4,1.2, and 1.8 mm; chest cases: M equal to 2.5,1.8, and 0.8 mm with SD 2.7,1.7, and 1.2 mm, abdomen-pelvic cases: M equal to 2.9,2.8 and 2.3 mm with SD 1.6,1.2, and 2.3 mm). Similarly, the random errors for all patients showed SD of 1.9,1.6, and 1.8 mm, respectively (head and neck cases: SD 1.7,1.3, and 1.5 mm; chest cases: SD 1.2,1.9, and 2.5 mm; abdomino-pelvic cases SD 2.5, 2, and 2.4 mm, respectively). Using Van Herk's formula the suggested (PTV) margin around the clinical target volume (CTV) of 5.5 mm appears to be adequate. Conclusion: The ranges of set-up errors are site specific and depends on many factors

  10. Visualization of grid-generated turbulence in He II using PTV

    Science.gov (United States)

    Mastracci, B.; Guo, W.

    2017-12-01

    Due to its low viscosity, cryogenic He II has potential use for simulating large-scale, high Reynolds number turbulent flow in a compact and efficient apparatus. To realize this potential, the behavior of the fluid in the simplest cases, such as turbulence generated by flow past a mesh grid, must be well understood. We have designed, constructed, and commissioned an apparatus to visualize the evolution of turbulence in the wake of a mesh grid towed through He II. Visualization is accomplished using the particle tracking velocimetry (PTV) technique, where μm-sized tracer particles are introduced to the flow, illuminated with a planar laser sheet, and recorded by a scientific imaging camera; the particles move with the fluid, and tracking their motion with a computer algorithm results in a complete map of the turbulent velocity field in the imaging region. In our experiment, this region is inside a carefully designed He II filled cast acrylic channel measuring approximately 16 × 16 × 330 mm. One of three different grids, which have mesh numbers M = 3, 3.75, or 5 mm, can be attached to the pulling system which moves it through the channel with constant velocity up to 600 mm/s. The consequent motion of the solidified deuterium tracer particles is used to investigate the energy statistics, effective kinematic viscosity, and quantized vortex dynamics in turbulent He II.

  11. Mode transition in bubbly Taylor-Couette flow measured by PTV

    International Nuclear Information System (INIS)

    Yoshida, K; Tasaka, Y; Murai, Y; Takeda, T

    2009-01-01

    The drag acting to the inner cylinder in Taylor-Couette flow system can be reduced by bubble injection. In this research, relationship between drag reduction and change of vortical structure in a Taylor-Couette flow is investigated by Particle Tracking Velocimetry (PTV). The velocity vector field in the r-z cross section and the bubble concentration in the front view (z-θ plane) are measured. This paper describes the change of vortical structures with bubbles, and the mode transition that is sensitively affected by the bubbles is discussed. The bubbles accumulate in the three parts relative to vortex position by the interaction between bubbles and vortices. The status of bubble's distribution is different depending on position. This difference affects mode transition as its trigger significantly. The presence of bubbles affects the transition from toroidal mode to spiral mode but does not induce the transition from spiral mode to toroidal mode. Further we found that Taylor vortex bifurcates and a pair of vortices coalesces when the flow switches between spiral mode and toroidal mode.

  12. Individualized determination of lower margin in pelvic radiation field after low anterior resection for rectal cancer resulted in equivalent local control and radiation volume reduction compared with traditional method

    International Nuclear Information System (INIS)

    Park, Suk Won; Ahn, Yong Chan; Huh, Seung Jae; Chun, Ho Kyung; Kang, Won Ki; Kim, Dae Yong; Lim, Do Hoon; Noh, Young Ju; Lee, Jung Eun

    2000-01-01

    When determining the lower margin of post-operative pelvic radiation therapy field according to the traditional method (recommended by Gunderson), the organs located in the low pelvic cavity and the perineum are vulnerable to unnecessary radiation. This study evaluated the effect of individualized determination of the lower margin at 2 cm to 3 cm below the anastomotic site on the failure patterns. Authors included 88 patients with modified Astler-Coller (MAC) stages from B2 through C3, who received low anterior resection and post-operative pelvic radiation therapy from Sept. 1994 to May 1998 at Samsung Medical Center, Sungkyunkwan University. The numbers of male and female patients were 44 and 44, and the median age was 57 years (range: 32-81 years). Three field technique (posterior-anterior and bilateral portals) by 6, 10, 15 MY X-rays was used to deliver 4,500 cGy to the whole pelvis followed by 600 cGy's small field boost to the tumor bed over 5.5 weeks. Sixteen patients received radiation therapy by traditional field margin determination, and the lower margin was set either at the low margin of the obturator foramen or at 2 cm to 3 cm below the anastomotic site, whichever is lower. In 72 patients, the lower margin was set at 2 cm to 3 cm below the anastomotic site, irrespectively of the obturator foramen, by which the reduction of radiation volume was possible in 55 patients (76%). Authors evaluated and compared survival, local control, and disease-free survival rates of these two groups. The median follow-up period was 27 months (range: 7-58 months). MAC stages were B2 in 32 (36%) , B3 in 2 (2%), C1 in 2 (2%), C2 in 50 (57%), and C3 in 2 (2%) patients, respectively. The entire patients' overall survival rates at 2 and 4 years were 94% and 68%, respectively, and disease-free survival rates at 2 and 4 years were 86% and 58%, respectively. The first failure sites were local only in 4, distant only in 14, and combined local and distant in 1 patient, respectively

  13. Optimal Patient Positioning (Prone Versus Supine) for VMAT in Gynecologic Cancer: A Dosimetric Study on the Effect of Different Margins

    Energy Technology Data Exchange (ETDEWEB)

    Heijkoop, Sabrina T., E-mail: s.heijkoop@erasmusmc.nl [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Westerveld, Henrike; Bijker, Nina [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands); Feije, Raphael; Sharfo, Abdul W. [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Wieringen, Niek van [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands); Mens, Jan Willem M. [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Stalpers, Lukas J.A. [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands); Hoogeman, Mischa S. [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands)

    2016-10-01

    Purpose/Objective: It is unknown whether the historically found dosimetric advantages of treating gynecologic cancer with the patient in a prone position with use of a small-bowel displacement device (belly-board) remain when volumetric arc therapy (VMAT) is used and whether these advantages depend on the necessary margin between clinical target volume (CTV) and planning target volume (PTV). The aim of this study is to determine the best patient position (prone or supine) in terms of sparing organs at risk (OAR) for various CTV-to-PTV margins and VMAT dose delivery. Methods and Materials: In an institutional review board—approved study, 26 patients with gynecologic cancer scheduled for primary (9) or postoperative (17) radiation therapy were scanned in a prone position on a belly-board and in a supine position on the same day. The primary tumor CTV, nodal CTV, bladder, bowel, and rectum were delineated on both scans. The PTVs were created each with a different margin for the primary tumor and nodal CTV. The VMAT plans were generated with our in-house system for automated treatment planning. For all margin combinations, the supine and prone plans were compared with consideration of all OAR dose-volume parameters but with highest priority given to bowel cavity V{sub 45Gy} (cm{sup 3}). Results: For both groups, the prone position reduced the bowel cavity V{sub 45Gy}, in particular for nodal margins ≥10 mm (ΔV{sub 45Gy} = 23.9 ± 10.6 cm{sup 3}). However, for smaller margins, the advantage was much less pronounced (ΔV{sub 45Gy} = 6.5 ± 3.0 cm{sup 3}) and did not reach statistical significance. The rectum mean dose (D{sub mean}) was significantly lower (ΔD{sub mean} = 2.5 ± 0.3 Gy) in the prone position for both patient groups and for all margins, and the bladder D{sub mean} was significantly lower in the supine position (ΔD{sub mean} = 2.6 ± 0.4 Gy) only for the postoperative group. The advantage of the prone position was not present if it

  14. A comparative study of set up variations and bowel volumes in supine versus prone positions of patients treated with external beam radiation for carcinoma rectum.

    Science.gov (United States)

    Rajeev, K R; Menon, Smrithy S; Beena, K; Holla, Raghavendra; Kumar, R Rajaneesh; Dinesh, M

    2014-01-01

    A prospective study was undertaken to evaluate the influence of patient positioning on the set up variations to determine the planning target volume (PTV) margins and to evaluate the clinical relevance volume assessment of the small bowel (SB) within the irradiated volume. During the period of months from December 2011 to April 2012, a computed tomography (CT) scan was done either in supine position or in prone position using a belly board (BB) for 20 consecutive patients. All the patients had histologically proven rectal cancer and received either post- or pre-operative pelvic irradiation. Using a three-dimensional planning system, the dose-volume histogram for SB was defined in each axial CT slice. Total dose was 46-50 Gy (2 Gy/fraction), delivered using the 4-field box technique. The set up variation of the study group was assessed from the data received from the electronic portal imaging device in the linear accelerator. The shift along X, Y, and Z directions were noted. Both systematic and random errors were calculated and using both these values the PTV margin was calculated. The systematic errors of patients treated in the supine position were 0.87 (X-mm), 0.66 (Y-mm), 1.6 (Z-mm) and in the prone position were 1.3 (X-mm), 0.59 (Y-mm), 1.17 (Z-mm). The random errors of patients treated in the supine positions were 1.81 (X-mm), 1.73 (Y-mm), 1.83 (Z-mm) and in prone position were 2.02 (X-mm), 1.21 (Y-mm), 3.05 (Z-mm). The calculated PTV margins in the supine position were 3.45 (X-mm), 2.87 (Y-mm), 5.31 (Z-mm) and in the prone position were 4.91 (X-mm), 2.32 (Y-mm), 5.08 (Z-mm). The mean volume of the peritoneal cavity was 648.65 cm 3 in the prone position and 1197.37 cm 3 in the supine position. The prone position using BB device was more effective in reducing irradiated SB volume in rectal cancer patients. There were no significant variations in the daily set up for patients treated in both supine and prone positions.

  15. How many fish in a tank? Constructing an automated fish counting system by using PTV analysis

    Science.gov (United States)

    Abe, S.; Takagi, T.; Takehara, K.; Kimura, N.; Hiraishi, T.; Komeyama, K.; Torisawa, S.; Asaumi, S.

    2017-02-01

    Because escape from a net cage and mortality are constant problems in fish farming, health control and management of facilities are important in aquaculture. In particular, the development of an accurate fish counting system has been strongly desired for the Pacific Bluefin tuna farming industry owing to the high market value of these fish. The current fish counting method, which involves human counting, results in poor accuracy; moreover, the method is cumbersome because the aquaculture net cage is so large that fish can only be counted when they move to another net cage. Therefore, we have developed an automated fish counting system by applying particle tracking velocimetry (PTV) analysis to a shoal of swimming fish inside a net cage. In essence, we treated the swimming fish as tracer particles and estimated the number of fish by analyzing the corresponding motion vectors. The proposed fish counting system comprises two main components: image processing and motion analysis, where the image-processing component abstracts the foreground and the motion analysis component traces the individual's motion. In this study, we developed a Region Extraction and Centroid Computation (RECC) method and a Kalman filter and Chi-square (KC) test for the two main components. To evaluate the efficiency of our method, we constructed a closed system, placed an underwater video camera with a spherical curved lens at the bottom of the tank, and recorded a 360° view of a swimming school of Japanese rice fish (Oryzias latipes). Our study showed that almost all fish could be abstracted by the RECC method and the motion vectors could be calculated by the KC test. The recognition rate was approximately 90% when more than 180 individuals were observed within the frame of the video camera. These results suggest that the presented method has potential application as a fish counting system for industrial aquaculture.

  16. Subject positioning in the BOD POD® only marginally affects measurement of body volume and estimation of percent body fat in young adult men.

    Directory of Open Access Journals (Sweden)

    Maarten W Peeters

    Full Text Available INTRODUCTION: The aim of the study was to evaluate whether subject positioning would affect the measurement of raw body volume, thoracic gas volume, corrected body volume and the resulting percent body fat as assessed by air displacement plethysmography (ADP. METHODS: Twenty-five young adult men (20.7±1.1 y, BMI = 22.5±1.4 kg/m(2 were measured using the BOD POD® system using a measured thoracic gas volume sitting in a 'forward bent' position and sitting up in a straight position in random order. RESULTS: Raw body volume was 58±124 ml (p<0.05 higher in the 'straight' position compared to the 'bent' position. The mean difference in measured thoracic gas volume (bent-straight = -71±211 ml was not statistically significant. Corrected body volume and percent body fat in the bent position consequently were on average 86±122 ml (p<0.05 and 0.5±0.7% (p<0.05 lower than in the straight position respectively. CONCLUSION: Although the differences reached statistical significance, absolute differences are rather small. Subject positioning should be viewed as a factor that may contribute to between-test variability and hence contribute to (inprecision in detecting small individual changes in body composition, rather than a potential source of systematic bias. It therefore may be advisable to pay attention to standardizing subject positioning when tracking small changes in PF are of interest. The cause of the differences is shown not to be related to changes in the volume of isothermal air in the lungs. It is hypothesized and calculated that the observed direction and magnitude of these differences may arise from the surface area artifact which does not take into account that a subject in the bent position exposes more skin to the air in the device therefore potentially creating a larger underestimation of the actual body volume due to the isothermal effect of air close to the skin.

  17. Utilization of cone-beam CT for offline evaluation of target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment.

    Science.gov (United States)

    Paluska, Petr; Hanus, Josef; Sefrova, Jana; Rouskova, Lucie; Grepl, Jakub; Jansa, Jan; Kasaova, Linda; Hodek, Miroslav; Zouhar, Milan; Vosmik, Milan; Petera, Jiri

    2012-01-01

    To assess target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment and to assess possibility of safety margin reduction. Implementation of IGRT should influence safety margins. Utilization of cone-beam CT provides current 3D anatomic information directly in irradiation position. Such information enables reconstruction of the actual dose distribution. Seventeen prostate patients were treated with daily bony anatomy image-guidance. Cone-beam CT (CBCT) scans were acquired once a week immediately after bony anatomy alignment. After the prostate, seminal vesicles, rectum and bladder were contoured, the delivered dose distribution was reconstructed. Target dose coverage was evaluated by the proportion of the CTV encompassed by the 95% isodose. Original plans employed a 1 cm safety margin. Alternative plans assuming a smaller 7 mm margin between CTV and PTV were evaluated in the same way. Rectal and bladder volumes were compared with the initial ones. Rectal and bladder volumes irradiated with doses higher than 75 Gy, 70 Gy, 60 Gy, 50 Gy and 40 Gy were analyzed. In 12% of reconstructed plans the prostate coverage was not sufficient. The prostate underdosage was observed in 5 patients. Coverage of seminal vesicles was not satisfactory in 3% of plans. Most of the target underdosage corresponded to excessive rectal or bladder filling. Evaluation of alternative plans assuming a smaller 7 mm margin revealed 22% and 11% of plans where prostate and seminal vesicles coverage, respectively, was compromised. These were distributed over 8 and 7 patients, respectively. Sufficient dose coverage of target volumes was not achieved for all patients. Reducing of safety margin is not acceptable. Initial rectal and bladder volumes cannot be considered representative for subsequent treatment.

  18. A PTV method based on ultrasound imaging and feature tracking in a low-concentration sediment-laden flow

    Science.gov (United States)

    Ma, Zhimin; Hu, Wenbin; Zhao, Xiaohong; Tao, Weiliang

    2018-02-01

    This study aims to provide a particle tracking velocimetry (PTV) method based on ultrasound imaging and feature-tracking in a low-concentration sediment-laden flow. A phased array probe is used to generate a 2D ultrasound image at different times. Then, the feature points are extracted to be tracked instead of the centroids of the particle image. In order to better identify the corresponding feature point, each feature is described by an oriented angle and its location. Then, a statistical interpolation procedure is used to yield the displacement vector on the desired grid point. Finally a correction procedure is adopted because the ultrasound image is sequentially acquired line by line through the field of view. A simple test experiment was carried out to evaluate the performance. The ultrasound PTV system was applied to a sediment-laden flow with a low concentration of 1‰, and the speed was up to 10 cm s-1. In comparison to optical particle image velocimetry (PIV), ultrasound imaging does not have a limitation in optical access. The feature-tracking method does not have a binarisation and segmentation procedure, which can result in overlapping particles or a serious loss of particle data. The feature-tracking algorithm improves the peak locking effect and measurement accuracy. Thus, the ultrasound PTV algorithm is a feasible alternative and is significantly more robust against gradients than the correlation-based PIV algorithms in a low-concentration sediment-laden fluid.

  19. Target volume determination in radiotherapy for non-small-cell lung cancer-facts and questions

    International Nuclear Information System (INIS)

    Kepka, L.; Bujko, K.

    2003-01-01

    Although the precise target volume definition in conformal radiotherapy is required by ICRU Report 50 and 62, this task in radiotherapy for non-small-cell lung cancer (NSCLC) is often controversial and strict accordance with ICRU requirements is hard to achieve. The Gross Tumour Volume (GTV) definition depends mainly on the imaging method used. We discuss the use of new imaging modalities, like PET, in GTV definition. The Clinical Target Volume (CTV) definition remains a separate, and still unresolved problem, especially in the part concerning the Elective Nodal Irradiation (ENI). Nowadays, there is no unified attitude among radiation oncologists regarding the necessity and extent of ENI. The common use of combined treatment modalities and the tendency to dose escalation, both increasing the potential toxicity, result in the more frequent use of involved-fields techniques. Problems relating to margins during Planning Target Volume (PTV) of lung cancer irradiation are also discussed. Another issue is the Interclinician variability in target volumes definition, especially when there is data indicating that the GTV, as defined by 3 D-treatment planning in NSCLC radiotherapy, may be highly prognostic for survival. We postulate that special attention should be paid to detailed precision of target volume determination in departmental and trial protocols. Careful analysis of patterns of failures from ongoing protocols will enable us to formulate the guidelines for target volume definition in radiotherapy for lung cancer. (author)

  20. Examining Margin Reduction and Its Impact on Dose Distribution for Prostate Cancer Patients Undergoing Daily Cone-Beam Computed Tomography

    International Nuclear Information System (INIS)

    Hammoud, Rabih; Patel, Samir H.; Pradhan, Deepak; Kim, Jinkoo; Guan, Harrison; Li Shidong; Movsas, Benjamin

    2008-01-01

    Purpose: To examine the dosimetric impact of margin reduction and quantify residual error after three-dimensional (3D) image registration using daily cone-beam computed tomography (CBCT) for prostate cancer patients. Methods and Materials: One hundred forty CBCTs from 5 prostate cancer patients were examined. Two intensity-modulated radiotherapy plans were generated on CT simulation on the basis of two planning target volume (PTV) margins: 10 mm all around the prostate and seminal vesicles except 6 mm posteriorly (10/6) and 5 mm all around except 3 mm posteriorly (5/3). Daily CBCT using the Varian On-Board Imaging System was acquired. The 10/6 and 5/3 simulation plans were overlaid onto each CBCT, and each CBCT plan was calculated. To examine residual error, PlanCT/CBCT intensity-based 3D image registration was performed for prostate localization using center of mass and maximal border displacement. Results: Prostate coverage was within 2% between the 10/6 and 5/3 plans. Seminal vesicle coverage was reduced with the 5/3 plan compared with the 10/6 plan, with coverage difference within 7%. The 5/3 plan allowed 30-50% sparing of bladder and rectal high-dose regions. For residual error quantification, center of mass data show that 99%, 93%, and 96% of observations fall within 3 mm in the left-right, anterior-posterior, and superior-inferior directions, respectively. Maximal border displacement observations range from 79% to 99%, within 5 mm for all directions. Conclusion: Cone-beam CT dosimetrically validated a 10/6 margin when soft-tissue localization is not used. Intensity-based 3D image registration has the potential to improve target localization and to provide guidelines for margin definition

  1. Craniocaudal Safety Margin Calculation Based on Interfractional Changes in Tumor Motion in Lung SBRT Assessed With an EPID in Cine Mode

    International Nuclear Information System (INIS)

    Ueda, Yoshihiro; Miyazaki, Masayoshi; Nishiyama, Kinji; Suzuki, Osamu; Tsujii, Katsutomo; Miyagi, Ken

    2012-01-01

    Purpose: To evaluate setup error and interfractional changes in tumor motion magnitude using an electric portal imaging device in cine mode (EPID cine) during the course of stereotactic body radiation therapy (SBRT) for non–small-cell lung cancer (NSCLC) and to calculate margins to compensate for these variations. Materials and Methods: Subjects were 28 patients with Stage I NSCLC who underwent SBRT. Respiratory-correlated four-dimensional computed tomography (4D-CT) at simulation was binned into 10 respiratory phases, which provided average intensity projection CT data sets (AIP). On 4D-CT, peak-to-peak motion of the tumor (M-4DCT) in the craniocaudal direction was assessed and the tumor center (mean tumor position [MTP]) of the AIP (MTP-4DCT) was determined. At treatment, the tumor on cone beam CT was registered to that on AIP for patient setup. During three sessions of irradiation, peak-to-peak motion of the tumor (M-cine) and the mean tumor position (MTP-cine) were obtained using EPID cine and in-house software. Based on changes in tumor motion magnitude (∆M) and patient setup error (∆MTP), defined as differences between M-4DCT and M-cine and between MTP-4DCT and MTP-cine, a margin to compensate for these variations was calculated with Stroom’s formula. Results: The means (±standard deviation: SD) of M-4DCT and M-cine were 3.1 (±3.4) and 4.0 (±3.6) mm, respectively. The means (±SD) of ∆M and ∆MTP were 0.9 (±1.3) and 0.2 (±2.4) mm, respectively. Internal target volume-planning target volume (ITV-PTV) margins to compensate for ∆M, ∆MTP, and both combined were 3.7, 5.2, and 6.4 mm, respectively. Conclusion: EPID cine is a useful modality for assessing interfractional variations of tumor motion. The ITV-PTV margins to compensate for these variations can be calculated.

  2. The role of the laparoscopy on circumferential resection margin positivity in patients with rectal cancer: long-term outcomes at a single high-volume institution.

    Science.gov (United States)

    Dural, Ahmet C; Keskin, Metin; Balik, Emre; Akici, Murat; Kunduz, Enver; Yamaner, Sumer; Asoglu, Oktar; Gulluoglu, Mine; Bugra, Dursun

    2015-04-01

    The aim of this study was to evaluate the influence of laparoscopic rectal cancer surgery on circumferential resection margin (CRM) involvement. The data from 579 consecutive patients who underwent laparoscopic or open resection of rectal cancer from October 2002 to August 2008 were analyzed retrospectively. The primary endpoint was CRM status. The secondary endpoints were morbidity, local recurrence rate, overall survival, and disease-free survival. Laparoscopic resections were performed in 266 patients (46%), and the remainder of the patients underwent open resection. The rates of CRM involvement were similar between the laparoscopic and open groups (5.6% vs. 5.4%). The perioperative morbidity rates between the 2 groups were not significantly different (P=0.2). The incidence of local recurrence for the CRM-negative group was 8.4% (8.3% laparoscopic vs. 8.45% open; P=0.99), whereas the local recurrence rate was 34.3% for the CRM-positive group. The local recurrence rate was 20% for the CRM-positive patients in the laparoscopic group and 47% for the CRM-positive patients in the open group (PCRM status. CRM positivity was correlated with both 5-year survival and the 5-year disease-free survival rate (P=0.009 and P=0.001, respectively). We did not observe any significant differences in morbidity, local recurrence, or overall or disease-free survival rates between the overall laparoscopic and open resection groups. Laparoscopic surgery for rectal cancer is associated with similar complication rates, CRM involvement status, and long-term outcomes as those associated with open surgery but with the advantages of minimally invasive surgery. Although laparoscopic surgery might necessitate more advanced technical skills, similar long-term oncological results can be obtained with this technique.

  3. Aspects of marginal expenditures in energy sector

    International Nuclear Information System (INIS)

    Stojchev, D.; Kynev, K.

    1994-01-01

    Technical and economical problems of marginal analysis methodology, its application procedure in energy sector and marginal expenditures determination are outlined. A comparative characteristics of the application is made for different periods of time. The differences in calculation of the marginal expenditures and prices are discussed. The operational costs, investments and inflation are analyzed. The mechanism of application of this approach in different planing horizon is outlined. The role of the change in the costs in time, the time unit, volume, the scope of application, etc. are determined. The areas of transition from one to other form of marginal expenditures are shown. 4 refs. (orig.)

  4. Assessment of three-dimensional setup errors in image-guided pelvic radiotherapy for uterine and cervical cancer using kilovoltage cone-beam computed tomography and its effect on planning target volume margins.

    Science.gov (United States)

    Patni, Nidhi; Burela, Nagarjuna; Pasricha, Rajesh; Goyal, Jaishree; Soni, Tej Prakash; Kumar, T Senthil; Natarajan, T

    2017-01-01

    To achieve the best possible therapeutic ratio using high-precision techniques (image-guided radiation therapy/volumetric modulated arc therapy [IGRT/VMAT]) of external beam radiation therapy in cases of carcinoma cervix using kilovoltage cone-beam computed tomography (kV-CBCT). One hundred and five patients of gynecological malignancies who were treated with IGRT (IGRT/VMAT) were included in the study. CBCT was done once a week for intensity-modulated radiation therapy and daily in IGRT/VMAT. These images were registered with the planning CT scan images and translational errors were applied and recorded. In all, 2078 CBCT images were studied. The margins of planning target volume were calculated from the variations in the setup. The setup variation was 5.8, 10.3, and 5.6 mm in anteroposterior, superoinferior, and mediolateral direction. This allowed adequate dose delivery to the clinical target volume and the sparing of organ at risks. Daily kV-CBCT is a satisfactory method of accurate patient positioning in treating gynecological cancers with high-precision techniques. This resulted in avoiding geographic miss.

  5. Quantitative assessment of inter-observer variability in target volume delineation on stereotactic radiotherapy treatment for pituitary adenoma and meningioma near optic tract

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Ogita, Mikio; Yamashita, Koichi; Kotsuma, Tadayuki; Shiomi, Hiroya; Tsubokura, Takuji; Kodani, Naohiro; Nishimura, Takuya; Aibe, Norihiro; Udono, Hiroki; Nishikata, Manabu; Baba, Yoshimi

    2011-01-01

    To assess inter-observer variability in delineating target volume and organs at risk in benign tumor adjacent to optic tract as a quality assurance exercise. We quantitatively analyzed 21 plans made by 11 clinicians in seven CyberKnife centers. The clinicians were provided with a raw data set (pituitary adenoma and meningioma) including clinical information, and were asked to delineate the lesions and create a treatment plan. Their contouring and plans (10 adenoma and 11 meningioma plans), were then compared. In addition, we estimated the influence of differences in contouring by superimposing the respective contours onto a default plan. The median planning target volume (PTV) and the ratio of the largest to the smallest contoured volume were 9.22 cm 3 (range, 7.17 - 14.3 cm 3 ) and 1.99 for pituitary adenoma, and 6.86 cm 3 (range 6.05 - 14.6 cm 3 ) and 2.41 for meningioma. PTV volume was 10.1 ± 1.74 cm 3 for group 1 with a margin of 1 -2 mm around the CTV (n = 3) and 9.28 ± 1.8 cm 3 (p = 0.51) for group 2 with no margin (n = 7) in pituitary adenoma. In meningioma, group 1 showed larger PTV volume (10.1 ± 3.26 cm 3 ) than group 2 (6.91 ± 0.7 cm 3 , p = 0.03). All submitted plan keep the irradiated dose to optic tract within the range of 50 Gy (equivalent total doses in 2 Gy fractionation). However, contours superimposed onto the dose distribution of the default plan indicated that an excessive dose 23.64 Gy (up to 268% of the default plan) in pituitary adenoma and 24.84 Gy (131% of the default plan) in meningioma to the optic nerve in the contours from different contouring. Quality assurance revealed inter-observer variability in contour delineation and their influences on planning for pituitary adenoma and meningioma near optic tract

  6. SU-E-J-164: Estimation of DVH Variation for PTV Due to Interfraction Organ Motion in Prostate VMAT Using Gaussian Error Function

    International Nuclear Information System (INIS)

    Lewis, C; Jiang, R; Chow, J

    2015-01-01

    Purpose: We developed a method to predict the change of DVH for PTV due to interfraction organ motion in prostate VMAT without repeating the CT scan and treatment planning. The method is based on a pre-calculated patient database with DVH curves of PTV modelled by the Gaussian error function (GEF). Methods: For a group of 30 patients with different prostate sizes, their VMAT plans were recalculated by shifting their PTVs 1 cm with 10 increments in the anterior-posterior, left-right and superior-inferior directions. The DVH curve of PTV in each replan was then fitted by the GEF to determine parameters describing the shape of curve. Information of parameters, varying with the DVH change due to prostate motion for different prostate sizes, was analyzed and stored in a database of a program written by MATLAB. Results: To predict a new DVH for PTV due to prostate interfraction motion, prostate size and shift distance with direction were input to the program. Parameters modelling the DVH for PTV were determined based on the pre-calculated patient dataset. From the new parameters, DVH curves of PTVs with and without considering the prostate motion were plotted for comparison. The program was verified with different prostate cases involving interfraction prostate shifts and replans. Conclusion: Variation of DVH for PTV in prostate VMAT can be predicted using a pre-calculated patient database with DVH curve fitting. The computing time is fast because CT rescan and replan are not required. This quick DVH estimation can help radiation staff to determine if the changed PTV coverage due to prostate shift is tolerable in the treatment. However, it should be noted that the program can only consider prostate interfraction motions along three axes, and is restricted to prostate VMAT plan using the same plan script in the treatment planning system

  7. Daily online localization using implanted fiducial markers and its impact on planning target volume for carcinoma prostate.

    Science.gov (United States)

    Khosa, Robin; Nangia, Sapna; Chufal, Kundan S; Ghosh, D; Kaul, Rakesh; Sharma, Lalit

    2010-01-01

    Aim of the study was to assess prostate motion on daily basis with respect to setup and to compare the shifts based on bony anatomy and gold fiducial markers. Gold fiducial markers were inserted in prostate under U/S guidance and daily portal images were taken and compared with digitally reconstructed images, both using bony landmarks and fiducial markers as reference. A dose of 2 MU was given for two orthogonal images daily. The mean and standard deviation of displacement using gold seeds and bone were calculated. Systematic and random errors were generated. The planning target volume (PTV) was calculated using the Van Herk formula. A total of 180 portal images from 10 patients were studied. The mean displacement along x, y and z axes was 1.67 mm, 3.58 mm, and 1.76 mm using fiducial markers and 2.12 mm, 3.47 mm, and 2.09 mm using bony landmarks, respectively. The mean internal organ motion was 1.23 mm (+1.45), 3.11 mm (+2.69 mm); and 1.87 mm (+1.67 mm) along x, y and z axes, respectively. The PTV to account for prostate motion if daily matching was not done was 4.64 mm, 10.41 mm and 4.40 mm along lateral, superoinferior, and anteroposterior directions, respectively. If bony landmarks were used for daily matching, margins of 3.61 mm, 7.31 mm, and 4.72 mm in lateral, superoinferior, and anteroposterior directions should be added to the clinical target volume. Daily alignment using gold fiducial markers is an effective method of localizing prostate displacement. It provides the option of reducing margins, thus limiting normal tissue toxicity and allowing the possibility of dose escalation for better long-term control.

  8. Infrared and millimeter waves v.14 millimeter components and techniques, pt.V

    CERN Document Server

    Button, Kenneth J

    1985-01-01

    Infrared and Millimeter Waves, Volume 14: Millimeter Components and Techniques, Part V is concerned with millimeter-wave guided propagation and integrated circuits. In addition to millimeter-wave planar integrated circuits and subsystems, this book covers transducer configurations and integrated-circuit techniques, antenna arrays, optoelectronic devices, and tunable gyrotrons. Millimeter-wave gallium arsenide (GaAs) IMPATT diodes are also discussed. This monograph is comprised of six chapters and begins with a description of millimeter-wave integrated-circuit transducers, focusing on vario

  9. Target volume definition in conformal radiotherapy for prostate cancer: quality assurance in the MRC RT-01 trial

    International Nuclear Information System (INIS)

    Seddon, B.S.; Wilson, J.; Khoo, V.; Dearnaley, D.; Bidmead, M.

    2000-01-01

    Prior to randomization of patients into the UK Medical Research Council multicentre randomized trial (RT-01) of conformal radiotherapy (CFRT) in prostate cancer, clinicians at participating centres were required to complete a quality assurance (QA) clinical planning exercise to enable an investigation of inter-observer variability in gross target volume (GTV) and normal structure outlining. Thirteen participating centres and two investigators completed the clinical planning exercise of three practice planning cases. Clinicians were asked to draw outlines of the GTV, rectum and bladder on hard-copy computerized tomography (CT) films of the pelvis, which were transferred onto the Cadplan computer planning system by a single investigator. Centre, inferior and superior CT levels of GTV, rectum and bladder were noted, and volume calculations performed. Planning target volumes (PTV) were generated using automatic volume expansion of GTVs by a 1 cm margin. Anterior, right and left lateral beam eye views (BEV) of the PTVs were generated. Using a common central point, the BEV PTVs were superimposed for each beam direction of each case. Radial PTV variation was investigated by measurement of a novel parameter, termed the radial line measurement variation (RLMV). GTV central slice and length were defined with reasonable consistency. The RLMV analysis showed that the main part of the prostate gland, bladder and inferior rectum were outlined with good consistency among clinicians. However, the outlining of the prostatic apex, superior aspect of the prostate projecting into the bladder, seminal vesicles, the base of seminal vesicles and superior rectum were more variable. This exercise has demonstrated adequate consistency of GTV definition. The RLMV method of analysis indicates particular regions of clinician uncertainty. Appropriate feedback has been given to all participating clinicians, and the final RT-01 trial protocol has been modified to accommodate these findings

  10. A strategy for the use of image-guided radiotherapy (IGRT) on linear accelerators and its impact on treatment margins for prostate cancer patients

    International Nuclear Information System (INIS)

    Nairz, Olaf; Deutschmann, Heinz; Zehentmayr, Franz; Sedlmayer, Felix; Paracelsus Medical University Salzburg; Merz, Florian; Kopp, Peter; Schoeller, Helmut; Wurstbauer, Karl; Kametriser, Gerhard

    2008-01-01

    In external beam radiotherapy of prostate cancer, the consideration of various systematic error types leads to wide treatment margins compromising normal tissue tolerance. We investigated if systematic set-up errors can be reduced by a set of initial image-guided radiotherapy (IGRT) sessions. 27 patients received daily IGRT resulting in a set of 882 cone-beam computed tomographies (CBCTs). After matching to bony structures, we analyzed the dimensions of remaining systematic errors from zero up to six initial IGRT sessions and aimed at a restriction of daily IGRT for 10% of all patients. For threshold definition, we determined the standard deviations (SD) of the shift corrections and selected patients out of this range for daily image guidance. To calculate total treatment margins, we demanded for a cumulative clinical target volume (CTV) coverage of at least 95% of the specified dose in 90% of all patients. The gain of accuracy was largest during the first three IGRTs. In order to match precision and workload criteria, thresholds for the SD of the corrections of 3.5 mm, 2.0 mm and 4.5 mm in the left-right (L-R), cranial-caudal (C-C), and anterior-posterior (A-P) direction, respectively, were identified. Including all other error types, the total margins added to the CTV amounted to 8.6 mm in L-R, 10.4 mm in C-C, and 14.4 mm in A-P direction. Only initially performed IGRT might be helpful for eliminating gross systematic errors especially after virtual simulation. However, even with daily IGRT performance, a substantial PTV margin reduction is only achievable by matching internal markers instead of bony anatomical structures. (orig.)

  11. Convexity and Marginal Vectors

    NARCIS (Netherlands)

    van Velzen, S.; Hamers, H.J.M.; Norde, H.W.

    2002-01-01

    In this paper we construct sets of marginal vectors of a TU game with the property that if the marginal vectors from these sets are core elements, then the game is convex.This approach leads to new upperbounds on the number of marginal vectors needed to characterize convexity.An other result is that

  12. "We call ourselves marginalized"

    DEFF Research Database (Denmark)

    Jørgensen, Nanna Jordt

    2014-01-01

    of the people we refer to as marginalized. In this paper, I discuss how young secondary school graduates from a pastoralist community in Kenya use and negotiate indigeneity, marginal identity, and experiences of marginalization in social navigations aimed at broadening their current and future opportunities. I...

  13. SU-F-T-254: Dose Volume Histogram (DVH) Analysis of Breath Hold Vs Free Breathing Techniques for Esophageal Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Badkul, R; Doke, K; Pokhrel, D; Aguilera, N; Lominska, C [University of Kansas Medical Center, Kansas City, KS (United States)

    2016-06-15

    Purpose: Lung and heart doses and associated toxicity are of concern in radiotherapy for esophageal cancer. This study evaluates the dosimetry of deep-inspiration-breath-hold (DIBH) technique as compared to freebreathing( FB) using 3D-conformal treatment(3D-CRT) of esophageal cancer. Methods: Eight patients were planned with FB and DIBH CT scans. DIBH scans were acquired using Varian RPM system. FB and DIBH CTs were contoured per RTOG-1010 to create the planning target volume(PTV) as well as organs at risk volumes(OAR). Two sets of gross target volumes(GTV) with 5cm length were contoured for each patient: proximal at the level of the carina and distal at the level of gastroesophageal junction and were enlarged with appropriate margin to generate Clinical Target Volume and PTV. 3D-CRT plans were created on Eclipse planning system for 45Gy to cover 95% of PTV in 25 fractions for both proximal and distal tumors on FB and DIBH scans. For distal tumors celiac nodes were covered electively. DVH parameters for lung and heart OARs were generated and analyzed. Results: All DIBH DVH parameters were normalized to FB plan values. Average of heart-mean and heart-V40 was 0.70 and 0.66 for proximal lesions. For distal lesions ratios were 1.21 and 2.22 respectively. For DIBH total lung volume increased by 2.43 times versus FB scan. Average of lung-mean, V30, V20, V10, V5 are 0.82, 0.92, 0.76, 0.77 and 0.79 for proximal lesions and 1.17,0.66,0.87,0.93 and 1.03 for distal lesions. Heart doses were lower for breath-hold proximal lesions but higher for distal lesions as compared to free-breathing plans. Lung doses were lower for both proximal and distal breath-hold lesions except mean lung dose and V5 for distal lesions. Conclusion: This study showed improvement of OAR doses for esophageal lesions at mid-thoracic level utilizing DIBH vs FB technique but did not show consistent OAR sparing with DIBH for distal lesions.

  14. SU-F-T-254: Dose Volume Histogram (DVH) Analysis of Breath Hold Vs Free Breathing Techniques for Esophageal Tumors

    International Nuclear Information System (INIS)

    Badkul, R; Doke, K; Pokhrel, D; Aguilera, N; Lominska, C

    2016-01-01

    Purpose: Lung and heart doses and associated toxicity are of concern in radiotherapy for esophageal cancer. This study evaluates the dosimetry of deep-inspiration-breath-hold (DIBH) technique as compared to freebreathing( FB) using 3D-conformal treatment(3D-CRT) of esophageal cancer. Methods: Eight patients were planned with FB and DIBH CT scans. DIBH scans were acquired using Varian RPM system. FB and DIBH CTs were contoured per RTOG-1010 to create the planning target volume(PTV) as well as organs at risk volumes(OAR). Two sets of gross target volumes(GTV) with 5cm length were contoured for each patient: proximal at the level of the carina and distal at the level of gastroesophageal junction and were enlarged with appropriate margin to generate Clinical Target Volume and PTV. 3D-CRT plans were created on Eclipse planning system for 45Gy to cover 95% of PTV in 25 fractions for both proximal and distal tumors on FB and DIBH scans. For distal tumors celiac nodes were covered electively. DVH parameters for lung and heart OARs were generated and analyzed. Results: All DIBH DVH parameters were normalized to FB plan values. Average of heart-mean and heart-V40 was 0.70 and 0.66 for proximal lesions. For distal lesions ratios were 1.21 and 2.22 respectively. For DIBH total lung volume increased by 2.43 times versus FB scan. Average of lung-mean, V30, V20, V10, V5 are 0.82, 0.92, 0.76, 0.77 and 0.79 for proximal lesions and 1.17,0.66,0.87,0.93 and 1.03 for distal lesions. Heart doses were lower for breath-hold proximal lesions but higher for distal lesions as compared to free-breathing plans. Lung doses were lower for both proximal and distal breath-hold lesions except mean lung dose and V5 for distal lesions. Conclusion: This study showed improvement of OAR doses for esophageal lesions at mid-thoracic level utilizing DIBH vs FB technique but did not show consistent OAR sparing with DIBH for distal lesions.

  15. Determination of 3-MCPD by GC-MS/MS with PTV-LV injector used for a survey of Spanish foodstuffs.

    Science.gov (United States)

    León, Nuria; Yusà, Vicent; Pardo, Olga; Pastor, Agustín

    2008-05-15

    3-Monochloropropane-1,2-diol (3-MCPD) is the most common chemical contaminant of the group of chloropropanols. It can occur in foods and food ingredients at low levels as a result of processing, migration from packaging materials during storage and domestic cooking. A sensitive method for determination of 3-MCPD in foodstuffs using programmable temperature vaporization (PTV) with large-volume injection (LVI) gas chromatography (GC) with tandem mass spectrometry detection (MS/MS) has been developed and optimized. The optimization of the injection and detection parameters was carried out using statistical experimental design. A Plackett-Burman design was used to estimate the influence of resonance excitation voltage (REV), isolation time (IT), excitation time (ET), ion source temperature (IST), and electron energy (EE) on the analytical response in the ion trap mass spectrometer (ITMS). Only REV was found to have a statically significant effect. On the other hand, a central composite design was used to optimize the settings of injection temperature (T(inlet)), vaporization temperature (T(vap)), vaporization time (t(vap)) and flow (Flow). The optimized method has an instrumental limit of detection (signal-to-noise ratio 3:1) of 0.044 ng mL(-1). From Valencian, Spain, supermarkets 94 samples of foods were surveyed for 3-MCPD. Using the optimized method levels higher than the limit established for soy sauce by the European Union were found in some samples. The estimated daily intake of 3-MCPD throughout the investigated foodstuffs for adults and children was found about 0.005 and 0.01%, respectively, of the established provisional tolerable daily intake.

  16. PTV VISSIM SIMULATION SOFTWARE USE FOR PROFESSIONALS IN «TRANSPORT TECHNOLOGIES» AND «AUTOMOBILE TRANSPORT» SPECIALTIES TRAINING

    Directory of Open Access Journals (Sweden)

    Volodymyr O. Sistuk

    2016-05-01

    Full Text Available The prospect of training quality improving of bachelors and masters in «Automobile transport» and «Transport technologies» specialties was considered, basing on the use of simulation software in the educational process. A review of the software products market was prepared, with the result of the component PTV VISSIM pre-selection. The simulation model of a real crossroad was developed to demonstrate its capabilities. Based on the analysis of application functions aptness to the city transport network complex objects simulation requirements, the expediency of the solution use during vocational certificate credit courses of students of Transport Faculty of Kryvyi Rih National University was grounded.

  17. Refining margins and prospects

    International Nuclear Information System (INIS)

    Baudouin, C.; Favennec, J.P.

    1997-01-01

    Refining margins throughout the world have remained low in 1996. In Europe, in spite of an improvement, particularly during the last few weeks, they are still not high enough to finance new investments. Although the demand for petroleum products is increasing, experts are still sceptical about any rapid recovery due to prevailing overcapacity and to continuing capacity growth. After a historical review of margins and an analysis of margins by regions, we analyse refining over-capacities in Europe and the unbalances between production and demand. Then we discuss the current situation concerning barriers to the rationalization, agreements between oil companies, and the consequences on the future of refining capacities and margins. (author)

  18. Marginalization of the Youth

    DEFF Research Database (Denmark)

    Jensen, Niels Rosendal

    2009-01-01

    The article is based on a key note speach in Bielefeld on the subject "welfare state and marginalized youth", focusing upon the high ambition of expanding schooling in Denmark from 9 to 12 years. The unintended effect may be a new kind of marginalization.......The article is based on a key note speach in Bielefeld on the subject "welfare state and marginalized youth", focusing upon the high ambition of expanding schooling in Denmark from 9 to 12 years. The unintended effect may be a new kind of marginalization....

  19. SU-F-J-130: Margin Determination for Hypofractionated Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Geady, C [Ryerson University (Canada); Keller, B; Hahn, E; Vesprini, D; Soliman, H; Lee, J [University of Toronto, Sunnybrook Health Sciences Center, Toronto, Ontario (Canada); Ruschin, M; McCann, C [University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Makhani, N; Bosnic, S [Sunnybrook Health Sciences Center, Toronto, Ontario (Canada)

    2016-06-15

    Purpose: To determine the Planning Target Volume (PTV) margin for Hypofractionated Partial Breast Irradiation (HPBI) using the van Herk formalism (M=2.5∑+0.7σ). HPBI is a novel technique intended to provide local control in breast cancer patients not eligible for surgical resection, using 40 Gy in 5 fractions prescribed to the gross disease. Methods: Setup uncertainties were quantified through retrospective analysis of cone-beam computed tomography (CBCT) data sets, collected prior to (prefraction) and after (postfraction) treatment delivery. During simulation and treatment, patients were immobilized using a wing board and an evacuated bag. Prefraction CBCT was rigidly registered to planning 4-dimensional computed tomography (4DCT) using the chest wall and tumor, and translational couch shifts were applied as needed. This clinical workflow was faithfully reproduced in Pinnacle (Philips Medical Systems) to yield residual setup and intrafractional error through translational shifts and rigid registrations (ribs and sternum) of prefraction CBCT to 4DCT and postfraction CBCT to prefraction CBCT, respectively. All ten patients included in this investigation were medically inoperable; the median age was 84 (range, 52–100) years. Results: Systematic (and random) setup uncertainties (in mm) detected for the left-right, craniocaudal and anteroposterior directions were 0.4 (1.5), 0.8 (1.8) and 0.4 (1.0); net uncertainty was determined to be 0.7 (1.5). Rotations >2° in any axis occurred on 8/72 (11.1%) registrations. Conclusion: Preliminary results suggest a non-uniform setup margin (in mm) of 2.2, 3.3 and 1.7 for the left-right, craniocaudal and anteroposterior directions is required for HPBI, given its immobilization techniques and online setup verification protocol. This investigation is ongoing, though published results from similar studies are consistent with the above findings. Determination of margins in breast radiotherapy is a paradigm shift, but a necessary

  20. Impact of the frequency of online verifications on the patient set-up accuracy and set-up margins

    Directory of Open Access Journals (Sweden)

    Mohamed Adel

    2011-08-01

    Full Text Available Abstract Purpose The purpose of the study was to evaluate the patient set-up error of different anatomical sites, to estimate the effect of different frequencies of online verifications on the patient set-up accuracy, and to calculate margins to accommodate for the patient set-up error (ICRU set-up margin, SM. Methods and materials Alignment data of 148 patients treated with inversed planned intensity modulated radiotherapy (IMRT or three-dimensional conformal radiotherapy (3D-CRT of the head and neck (n = 31, chest (n = 72, abdomen (n = 15, and pelvis (n = 30 were evaluated. The patient set-up accuracy was assessed using orthogonal megavoltage electronic portal images of 2328 fractions of 173 planning target volumes (PTV. In 25 patients, two PTVs were analyzed where the PTVs were located in different anatomical sites and treated in two different radiotherapy courses. The patient set-up error and the corresponding SM were retrospectively determined assuming no online verification, online verification once a week and online verification every other day. Results The SM could be effectively reduced with increasing frequency of online verifications. However, a significant frequency of relevant set-up errors remained even after online verification every other day. For example, residual set-up errors larger than 5 mm were observed on average in 18% to 27% of all fractions of patients treated in the chest, abdomen and pelvis, and in 10% of fractions of patients treated in the head and neck after online verification every other day. Conclusion In patients where high set-up accuracy is desired, daily online verification is highly recommended.

  1. Impact of the frequency of online verifications on the patient set-up accuracy and set-up margins

    International Nuclear Information System (INIS)

    Rudat, Volker; Hammoud, Mohamed; Pillay, Yogin; Alaradi, Abdul Aziz; Mohamed, Adel; Altuwaijri, Saleh

    2011-01-01

    The purpose of the study was to evaluate the patient set-up error of different anatomical sites, to estimate the effect of different frequencies of online verifications on the patient set-up accuracy, and to calculate margins to accommodate for the patient set-up error (ICRU set-up margin, SM). Alignment data of 148 patients treated with inversed planned intensity modulated radiotherapy (IMRT) or three-dimensional conformal radiotherapy (3D-CRT) of the head and neck (n = 31), chest (n = 72), abdomen (n = 15), and pelvis (n = 30) were evaluated. The patient set-up accuracy was assessed using orthogonal megavoltage electronic portal images of 2328 fractions of 173 planning target volumes (PTV). In 25 patients, two PTVs were analyzed where the PTVs were located in different anatomical sites and treated in two different radiotherapy courses. The patient set-up error and the corresponding SM were retrospectively determined assuming no online verification, online verification once a week and online verification every other day. The SM could be effectively reduced with increasing frequency of online verifications. However, a significant frequency of relevant set-up errors remained even after online verification every other day. For example, residual set-up errors larger than 5 mm were observed on average in 18% to 27% of all fractions of patients treated in the chest, abdomen and pelvis, and in 10% of fractions of patients treated in the head and neck after online verification every other day. In patients where high set-up accuracy is desired, daily online verification is highly recommended

  2. On marginal regeneration

    NARCIS (Netherlands)

    Stein, H.N.

    1991-01-01

    On applying the marginal regeneration concept to the drainage of free liquid films, problems are encountered: the films do not show a "neck" of minimum thickness at the film/border transition; and the causes of the direction dependence of the marginal regeneration are unclear. Both problems can be

  3. Indian Ocean margins

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A

    in the latter two areas. Some of these fluxes are expected to be substantial in the case of Indonesian continental margins and probably also across the eastern coasts of Africa not covered in this chapter. However, a dearth of information makes these margins...

  4. Matthew and marginality

    Directory of Open Access Journals (Sweden)

    Denis C. Duling

    1995-12-01

    Full Text Available This article explores marginality theory as it was first proposed in  the social sciences, that is related to persons caught between two competing cultures (Park; Stonequist, and, then, as it was developed in sociology as related to the poor (Germani and in anthropology as it was related to involuntary marginality and voluntary marginality (Victor Turner. It then examines a (normative scheme' in antiquity that creates involuntary marginality at the macrosocial level, namely, Lenski's social stratification model in an agrarian society, and indicates how Matthean language might fit with a sample inventory  of socioreligious roles. Next, it examines some (normative schemes' in  antiquity for voluntary margi-nality at the microsocial level, namely, groups, and examines how the Matthean gospel would fit based on indications of factions and leaders. The article ,shows that the author of the Gospel of Matthew has an ideology of (voluntary marginality', but his gospel includes some hope for (involuntary  marginals' in  the  real world, though it is somewhat tempered. It also suggests that the writer of the Gospel is a (marginal man', especially in the sense defined by the early theorists (Park; Stone-quist.

  5. Fixing soft margins

    NARCIS (Netherlands)

    P. Kofman (Paul); A. Vaal, de (Albert); C.G. de Vries (Casper)

    1993-01-01

    textabstractNon-parametric tolerance limits are employed to calculate soft margins such as advocated in Williamson's target zone proposal. In particular, the tradeoff between softness and zone width is quantified. This may be helpful in choosing appropriate margins. Furthermore, it offers

  6. Treatment simulations with a statistical deformable motion model to evaluate margins for multiple targets in radiotherapy for high-risk prostate cancer

    International Nuclear Information System (INIS)

    Thörnqvist, Sara; Hysing, Liv B.; Zolnay, Andras G.; Söhn, Matthias; Hoogeman, Mischa S.; Muren, Ludvig P.; Bentzen, Lise; Heijmen, Ben J.M.

    2013-01-01

    Background and purpose: Deformation and correlated target motion remain challenges for margin recipes in radiotherapy (RT). This study presents a statistical deformable motion model for multiple targets and applies it to margin evaluations for locally advanced prostate cancer i.e. RT of the prostate (CTV-p), seminal vesicles (CTV-sv) and pelvic lymph nodes (CTV-ln). Material and methods: The 19 patients included in this study, all had 7–10 repeat CT-scans available that were rigidly aligned with the planning CT-scan using intra-prostatic implanted markers, followed by deformable registrations. The displacement vectors from the deformable registrations were used to create patient-specific statistical motion models. The models were applied in treatment simulations to determine probabilities for adequate target coverage, e.g. by establishing distributions of the accumulated dose to 99% of the target volumes (D 99 ) for various CTV–PTV expansions in the planning-CTs. Results: The method allowed for estimation of the expected accumulated dose and its variance of different DVH parameters for each patient. Simulations of inter-fractional motion resulted in 7, 10, and 18 patients with an average D 99 >95% of the prescribed dose for CTV-p expansions of 3 mm, 4 mm and 5 mm, respectively. For CTV-sv and CTV-ln, expansions of 3 mm, 5 mm and 7 mm resulted in 1, 11 and 15 vs. 8, 18 and 18 patients respectively with an average D 99 >95% of the prescription. Conclusions: Treatment simulations of target motion revealed large individual differences in accumulated dose mainly for CTV-sv, demanding the largest margins whereas those required for CTV-p and CTV-ln were comparable

  7. Three-dimensional flow measurement of a water flow in a sphere-packed pipe by digital holographic PTV

    Energy Technology Data Exchange (ETDEWEB)

    Satake, Shin-ichi, E-mail: satake@te.noda.tus.ac.jp [Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Aoyagi, Yusuke [Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Unno, Noriyuki [Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Yuki, Kazuhisa [Department of Mechanical Engineering, Tokyo University of Science, Yamaguchi, Daigaku-dori 1-1-1, Sanyo-Onoda, Yamaguchi 756-0884 (Japan); Seki, Yohji; Enoeda, Mikio [Japan Atomic Energy Agency, Blanket Technology Group, 801-1 Mukoyama, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2015-10-15

    A water cooled ceramic breeder for ITER and DEMO of a nuclear fusion reactor plays a significant role in the design of a blanket module. Pebbles of a ceramic tritium breeder are packed in a container of the blanket. Investigation of the flow behavior is necessary in an actual environment of a facility where pressure drop takes place under a complex flow such as in case of the container for the pebble bed. For the development of a facility, it is necessary to be able to monitor fluid motion of a basic flow such as a sphere-packed pipe (SPP). In the present study, to discern the complex flow structures in SPP, digital holographic PTV visualization is carried out by a refractive index-matching method using a water employed as a working fluid. The water is chosen to be able to adjust its refractive index to match to that of the MEXFLON pebble with an index of 1.33. Hologram fringe images of particles behind the spheres can be observed, and the particles’ positions can be reconstructed by a digital hologram. Consequently, 3-D velocity-fields around the spheres are obtained by the reconstructed particles’ positions. The velocity between pebbles is found to be convergence and divergence regions in the SPP.

  8. Margin to CTV in simultaneous irradiation of treatment volumes attache to various anatomical frameworks: The paradigm of the CA. Of prostate in high risk with indication of lymph node irradiation

    International Nuclear Information System (INIS)

    Sanz Freire, C. J.; Perez Echaguen, S.; Collado chamorro, P.; Diaz Pascual, V.; Vazquez Galinanes, A.; Ossola Lentati, G. A.

    2013-01-01

    The triple objective of this work is: 1 check the effect on the positioning of the GGPP of corrections on the position of the prostate in simultaneous irradiation guided through daily image and its relationship with the filling of rectum and bladder 2. check if employees standard margins for CTV GGPP are valid for this technique 3 calculate the necessary extension of the margin to 2. is not verified. (Author)

  9. EGSNRC Monte Carlo study of the effect of photon energy and field margin in phantoms simulating small lung lesions

    International Nuclear Information System (INIS)

    Osei, E.K.; Darko, J.; Mosseri, A.; Jezioranski, J.

    2003-01-01

    The dose distribution in small lung tumors (coin lesions) is affected by the combined effects of reduced attenuation of photons and extended range of electrons in lung. The increased range of electrons in low-density tissues can lead to loss of field flatness and increased penumbra width, especially at high energies. The EGSNRC Monte Carlo code, together with DOSXYZNRC, a three-dimensional voxel dose calculation module has been used to study the characteristics of the penumbra in the region of the target-lung interfaces for various radiation beam energies, lung densities, target-field edge distances, target size, and depth. The Monte Carlo model was validated by film measurements made in acrylic (simulating a tumor) imbedded in cork (simulating the lung). Beam profiles that are deemed to be acceptable are defined as those in which no point within the planning target volume (target volume plus 1 cm margin) received less than 95% of the dose prescribed to the center of the target. For parallel opposed beams and 2 cm cube target size, 6 MV photons produce superior dose distribution with respect to penumbra at the lateral, anterior, and posterior surfaces and midplane of the simulated target, with a target-field edge distance of 2.5 cm. A lesser target-field edge distance of 2.0 cm is required for 4 MV photons to produce acceptable dose distribution. To achieve equivalent dose distribution with 10 and 18 MV photons, a target-field edge distance of 3.0 and 3.5 cm, respectively, is required. For a simulated target size of 4 cm cube, a target-field edge distance of 2, 2.5, and 3 cm is required for 6, 10, and 18 MV photons, respectively, to yield acceptable PTV coverage. The effect, which is predominant in determining the target dose, depends on the beam energy, target-field edge distance, lung density, and the depth and size of the target

  10. Refining margins: recent trends

    International Nuclear Information System (INIS)

    Baudoin, C.; Favennec, J.P.

    1999-01-01

    Despite a business environment that was globally mediocre due primarily to the Asian crisis and to a mild winter in the northern hemisphere, the signs of improvement noted in the refining activity in 1996 were borne out in 1997. But the situation is not yet satisfactory in this sector: the low return on invested capital and the financing of environmental protection expenditure are giving cause for concern. In 1998, the drop in crude oil prices and the concomitant fall in petroleum product prices was ultimately rather favorable to margins. Two elements tended to put a damper on this relative optimism. First of all, margins continue to be extremely volatile and, secondly, the worsening of the economic and financial crisis observed during the summer made for a sharp decline in margins in all geographic regions, especially Asia. Since the beginning of 1999, refining margins are weak and utilization rates of refining capacities have decreased. (authors)

  11. Analysis of target volume motion followed by induced abdominal compression in tomotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Oh, Jeong Hun; Jung, Geon A; Jung, Won Seok; Jo, Jung Young; Kim, Gi Chul; Choi, Tae Kyu

    2014-01-01

    To evaluate the changes of the motion of abdominal cavity between interfraction and intrafraction by using abdominal compression for reducing abdominal motion. 60 MVCT images were obtained before and after tomotherapy from 10 prostate cancer patients over the whole radiotherapy period. Shift values ( X -lateral Y -longitudinal Z -vertical and Roll ) were measured and from it, the correlation of between interfraction set up change and intrafraction target motion was analyzed when applying abdominal compression. The motion changes of interfraction were X- average 0.65±2.32mm, Y-average 1.41±4.83mm, Z-average 0.73± 0.52mm and Roll-average 0.96±0.21mm. The motion changes of intrafraction were X-average 0.15±0.44mm, Y-average 0.13 ±0.44mm, Z-average 0.24±0.64mm and Roll- average 0.1±0.9mm. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of V 20 , V 10 , V 5 of Lung show bo certain trend. Abdominal compression can minimize the motion of internal organs and patients. So it is considered to be able to get more ideal dose volume without damage of normal structures from generating margin in small in producing PTV

  12. SOCIAL MARGINALIZATION AND HEALTH

    Directory of Open Access Journals (Sweden)

    Marjana Bogdanović

    2007-04-01

    Full Text Available The 20th century was characterized by special improvement in health. The aim of WHO’s policy EQUITY IN HEALTH is to enable equal accessibility and equal high quality of health care for all citizens. More or less some social groups have stayed out of many social systems even out of health care system in the condition of social marginalization. Phenomenon of social marginalization is characterized by dynamics. Marginalized persons have lack of control over their life and available resources. Social marginalization stands for a stroke on health and makes the health status worse. Low socio-economic level dramatically influences people’s health status, therefore, poverty and illness work together. Characteristic marginalized groups are: Roma people, people with AIDS, prisoners, persons with development disorders, persons with mental health disorders, refugees, homosexual people, delinquents, prostitutes, drug consumers, homeless…There is a mutual responsibility of community and marginalized individuals in trying to resolve the problem. Health and other problems could be solved only by multisector approach to well-designed programs.

  13. Pickering seismic safety margin

    International Nuclear Information System (INIS)

    Ghobarah, A.; Heidebrecht, A.C.; Tso, W.K.

    1992-06-01

    A study was conducted to recommend a methodology for the seismic safety margin review of existing Canadian CANDU nuclear generating stations such as Pickering A. The purpose of the seismic safety margin review is to determine whether the nuclear plant has sufficient seismic safety margin over its design basis to assure plant safety. In this review process, it is possible to identify the weak links which might limit the seismic performance of critical structures, systems and components. The proposed methodology is a modification the EPRI (Electric Power Research Institute) approach. The methodology includes: the characterization of the site margin earthquake, the definition of the performance criteria for the elements of a success path, and the determination of the seismic withstand capacity. It is proposed that the margin earthquake be established on the basis of using historical records and the regional seismo-tectonic and site specific evaluations. The ability of the components and systems to withstand the margin earthquake is determined by database comparisons, inspection, analysis or testing. An implementation plan for the application of the methodology to the Pickering A NGS is prepared

  14. SU-F-J-17: Patient Localization Using MRI-Guided Soft Tissue for Head-And-Neck Radiotherapy: Indication for Margin Reduction and Its Feasibility

    International Nuclear Information System (INIS)

    Qi, X; Yang, Y; Jack, N; Santhanam, A; Yang, L; Chen, A; Low, D

    2016-01-01

    Purpose: On-board MRI provides superior soft-tissue contrast, allowing patient alignment using tumor or nearby critical structures. This study aims to study H&N MRI-guided IGRT to analyze inter-fraction patient setup variations using soft-tissue targets and design appropriate CTV-to-PTV margin and clinical implication. Methods: 282 MR images for 10 H&N IMRT patients treated on a ViewRay system were retrospectively analyzed. Patients were immobilized using a thermoplastic mask on a customized headrest fitted in a radiofrequency coil and positioned to soft-tissue targets. The inter-fraction patient displacements were recorded to compute the PTV margins using the recipe: 2.5∑+0.7σ. New IMRT plans optimized on the revised PTVs were generated to evaluate the delivered dose distributions. An in-house dose deformation registration tool was used to assess the resulting dosimetric consequences when margin adaption is performed based on weekly MR images. The cumulative doses were compared to the reduced margin plans for targets and critical structures. Results: The inter-fraction displacements (and standard deviations), ∑ and σ were tabulated for MRI and compared to kVCBCT. The computed CTV-to-PTV margin was 3.5mm for soft-tissue based registration. There were minimal differences between the planned and delivered doses when comparing clinical and the PTV reduced margin plans: the paired t-tests yielded p=0.38 and 0.66 between the planned and delivered doses for the adapted margin plans for the maximum cord and mean parotid dose, respectively. Target V95 received comparable doses as planned for the reduced margin plans. Conclusion: The 0.35T MRI offers acceptable soft-tissue contrast and good spatial resolution for patient alignment and target visualization. Better tumor conspicuity from MRI allows soft-tissue based alignments with potentially improved accuracy, suggesting a benefit of margin reduction for H&N radiotherapy. The reduced margin plans (i.e., 2 mm) resulted

  15. A patient-specific planning target volume used in 'plan of the day' adaptation for interfractional motion mitigation

    International Nuclear Information System (INIS)

    Chen, Wenjing; Gemmel, Alexander; Rietzel, Eike

    2013-01-01

    We propose a patient-specific planning target volume (PTV) to deal with interfractional variations, and test its feasibility in a retrospective treatment-planning study. Instead of using one planning image only, multiple scans are taken on different days. The target and organs at risk (OARs) are delineated on each images. The proposed PTV is generated from a union of those target contours on the planning images, excluding voxels of the OARs, and is denoted the PTV 'GP-OAR' (global prostate-organs at risk). The study is performed using 'plan of the day' adaptive workflow, which selects a daily plan from a library of plans based on a similarity comparison between the daily scan and planning images. The daily plans optimized for GP-OAR volumes are compared with those optimized for PTVs generated from a single prostate contour (PTV SP). Four CT serials of prostate cancer patient datasets are included in the test, and in total 28 fractions are simulated. The results show that the daily chosen GP-OAR plans provide excellent target coverage, with V95 values of the prostate mostly >95%. In addition, dose delivered to the OARs as calculated from applying daily chosen GP-OAR plans is slightly increased but comparable to that calculated from applying daily SP plans. In general, the PTV GP-OARs are able to cover possible target variations while keeping dose delivered to the OARs at a similar level to that of the PTV SPs. (author)

  16. Marginal kidney donor

    Directory of Open Access Journals (Sweden)

    Ganesh Gopalakrishnan

    2007-01-01

    Full Text Available Renal transplantation is the treatment of choice for a medically eligible patient with end stage renal disease. The number of renal transplants has increased rapidly over the last two decades. However, the demand for organs has increased even more. This disparity between the availability of organs and waitlisted patients for transplants has forced many transplant centers across the world to use marginal kidneys and donors. We performed a Medline search to establish the current status of marginal kidney donors in the world. Transplant programs using marginal deceased renal grafts is well established. The focus is now on efforts to improve their results. Utilization of non-heart-beating donors is still in a plateau phase and comprises a minor percentage of deceased donations. The main concern is primary non-function of the renal graft apart from legal and ethical issues. Transplants with living donors outnumbered cadaveric transplants at many centers in the last decade. There has been an increased use of marginal living kidney donors with some acceptable medical risks. Our primary concern is the safety of the living donor. There is not enough scientific data available to quantify the risks involved for such donation. The definition of marginal living donor is still not clear and there are no uniform recommendations. The decision must be tailored to each donor who in turn should be actively involved at all levels of the decision-making process. In the current circumstances, our responsibility is very crucial in making decisions for either accepting or rejecting a marginal living donor.

  17. From Borders to Margins

    DEFF Research Database (Denmark)

    Parker, Noel

    2009-01-01

    of entities that are ever open to identity shifts.  The concept of the margin possesses a much wider reach than borders, and focuses continual attention on the meetings and interactions between a range of indeterminate entities whose interactions may determine both themselves and the types of entity...... upon Deleuze's philosophy to set out an ontology in which the continual reformulation of entities in play in ‘post-international' society can be grasped.  This entails a strategic shift from speaking about the ‘borders' between sovereign states to referring instead to the ‘margins' between a plethora...

  18. Interfractional variation in bladder volume and its impact on cervical cancer radiotherapy: Clinical significance of portable bladder scanner

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huanli; Jin, Fu; Yang, Dingyi; Wang, Ying; Li, Chao; Guo, Mingfang; Ran, Xueqi; Liu, Xianfeng; Zhou, Qi; Wu, Yongzhong, E-mail: jfazj@126.com [Department of Radiation Oncology, Chongqing Cancer Institute, No. 181, Han Yu Road, Chongqing 400030 (China)

    2016-07-15

    but had little or no effect in the anterior–posterior and right–left directions. Based on the collected data, the target displacement in the SI direction was reduced from 2.0 to 0.4 mm, while the CTV-to-PTV (CTV: clinical target volume; PTV: planning target volume) margin in the SI direction was reduced from 11.1 to 6.4 mm. The BV increased by 3.7 ± 1.0 ml/min (range, 1.7–4.7 ml/min), which depended on the amount of water ingested by the patient (R = 0.96, P < 0.05). No correlation was found between the rate of urinary inflow and the patient’s body mass. The authors were able to reduce the workload of measuring by using individual patient information including the patient’s age, the water-drinking amount, time at which water-drinking began, and patient’s diet. Conclusions: Changes in the BV have an influence on the RT of cervical cancer. A consistent and reproducible BV is acquired by using a portable BS, whereby the target displacement and CTV-to-PTV margin can be both reduced in the SI direction.

  19. Biological modelling of fuzzy target volumes in 3D radiotherapy

    International Nuclear Information System (INIS)

    Levegruen, S.; Kampen, M. van; Waschek, T.; Engenhart, R.; Schlegel, W.

    1995-01-01

    Purpose/Objective: The outcome of each radiotherapy depends critically on the optimal choice of the target volume. The goal of the radiotherapist is to include all tumor spread at the same time as saving as much healthy tissue as possible. Even when the information of all imaging modalities is combined, the diagnostic techniques are not sensitive and specific enough to visualize all microscopic tumor cell spread. Due to this lack of information there is room for different interpretations concerning the extend of the target volume, leading to a fuzzy target volume. The aim of this work is to develop a model to score different target volume boundaries within the region of diagnostic uncertainty in terms of tumor control probability (TCP) and normal tissue complication probabilities (NTCP). Materials and Methods: In order to assess the region of diagnostic uncertainty, the radiotherapist defines interactively a minimal planning target volume that absolutely must be irradiated according to the diagnostic information available and a maximal planning target volume outside which no tumor cell spread is expected. For the NTCP calculation we use the Lyman 4 parameter model to estimate the response of an organ at risk to a uniform partial volume irradiation. The TCP calculation is based on the Poisson model of cell killing. The TCP estimation depends not only on volume, dose, clonogenic cell density and the α parameter of the linear quadratic model but also on the probability to find clonogenic cells in the considered volume. Inside the minimal PTV this probability is 1, outside the maximal PTV it is 0. Therefore all voxels inside the minimal PTV are assigned the value of 1 with respect to the target volume, all voxels outside the maximal PTV the value of 0. For voxels in the region of uncertainty in between, a 3D linear interpolation is performed. Here we assume the probability to follow the interpolated values. Starting with the minimal PTV, the expected gain in TCP and

  20. Splenic marginal zone lymphoma.

    Science.gov (United States)

    Piris, Miguel A; Onaindía, Arantza; Mollejo, Manuela

    Splenic marginal zone lymphoma (SMZL) is an indolent small B-cell lymphoma involving the spleen and bone marrow characterized by a micronodular tumoral infiltration that replaces the preexisting lymphoid follicles and shows marginal zone differentiation as a distinctive finding. SMZL cases are characterized by prominent splenomegaly and bone marrow and peripheral blood infiltration. Cells in peripheral blood show a villous cytology. Bone marrow and peripheral blood characteristic features usually allow a diagnosis of SMZL to be performed. Mutational spectrum of SMZL identifies specific findings, such as 7q loss and NOTCH2 and KLF2 mutations, both genes related with marginal zone differentiation. There is a striking clinical variability in SMZL cases, dependent of the tumoral load and performance status. Specific molecular markers such as 7q loss, p53 loss/mutation, NOTCH2 and KLF2 mutations have been found to be associated with the clinical variability. Distinction from Monoclonal B-cell lymphocytosis with marginal zone phenotype is still an open issue that requires identification of precise and specific thresholds with clinical meaning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Komorbiditet ved marginal parodontitis

    DEFF Research Database (Denmark)

    Holmstrup, Palle; Damgaard, Christian; Olsen, Ingar

    2017-01-01

    Nærværende artikel præsenterer en oversigt over den foreliggende væsentligste viden om sammenhængen mellem marginal parodontitis og en række medicinske sygdomme, herunder hjerte-kar-sygdomme, diabetes mellitus, reumatoid arthritis, osteoporose, Parkinsons sygdom, Alzheimers sygdom, psoriasis og...

  2. Marginally Deformed Starobinsky Gravity

    DEFF Research Database (Denmark)

    Codello, A.; Joergensen, J.; Sannino, Francesco

    2015-01-01

    We show that quantum-induced marginal deformations of the Starobinsky gravitational action of the form $R^{2(1 -\\alpha)}$, with $R$ the Ricci scalar and $\\alpha$ a positive parameter, smaller than one half, can account for the recent experimental observations by BICEP2 of primordial tensor modes....

  3. Deep continental margin reflectors

    Science.gov (United States)

    Ewing, J.; Heirtzler, J.; Purdy, M.; Klitgord, Kim D.

    1985-01-01

    In contrast to the rarity of such observations a decade ago, seismic reflecting and refracting horizons are now being observed to Moho depths under continental shelves in a number of places. These observations provide knowledge of the entire crustal thickness from the shoreline to the oceanic crust on passive margins and supplement Consortium for Continental Reflection Profiling (COCORP)-type measurements on land.

  4. Marginalization and School Nursing

    Science.gov (United States)

    Smith, Julia Ann

    2004-01-01

    The concept of marginalization was first analyzed by nursing researchers Hall, Stevens, and Meleis. Although nursing literature frequently refers to this concept when addressing "at risk" groups such as the homeless, gays and lesbians, and those infected with HIV/AIDS, the concept can also be applied to nursing. Analysis of current school nursing…

  5. Weekly Volume and Dosimetric Changes During Chemoradiotherapy With Intensity-Modulated Radiation Therapy for Head and Neck Cancer: A Prospective Observational Study

    Energy Technology Data Exchange (ETDEWEB)

    Bhide, Shreerang A [Institute of Cancer Research, 237 Fulham Road, London SW6 6JB (United Kingdom); Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom); Davies, Mark; Burke, Kevin; McNair, Helen A; Hansen, Vibeke [Department of Radiation Oncology, Royal Marsden NHS Foundation Trust Hospital, London and Sutton (United Kingdom); Barbachano, Y [Department of Statistics, Royal Marsden NHS Foundation Trust Hospital, London and Sutton (United Kingdom); El-Hariry, I A [Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom); Newbold, Kate [Department of Radiation Oncology, Royal Marsden NHS Foundation Trust Hospital, London and Sutton (United Kingdom); Harrington, Kevin J [Institute of Cancer Research, 237 Fulham Road, London SW6 6JB (United Kingdom); Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom); Nutting, Christopher M., E-mail: chris.nutting@rmh.nhs.u [Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom)

    2010-04-15

    Purpose: The aim of this study was to investigate prospectively the weekly volume changes in the target volumes and organs at risk and the resulting dosimetric changes during induction chemotherapy followed by chemoradiotherapy with intensity-modulated radiation therapy (C-IMRT) for head-and-neck cancer patients. Methods and Materials: Patients receiving C-IMRT for head-and-neck cancer had repeat CT scans at weeks 2, 3, 4, and 5 during radiotherapy. The volume changes of clinical target volume 1 (CTV1) and CTV2 and the resulting dosimetric changes to planning target volume 1 (PTV1) and PTV2 and the organs at risk were measured. Results: The most significant volume differences were seen at week 2 for CTV1 and CTV2. The reductions in the volumes of CTV1 and CTV2 at week 2 were 3.2% and 10%, respectively (p = 0.003 and p < 0.001). The volume changes resulted in a significant reduction in the minimum dose to PTV1 and PTV2 (2 Gy, p = 0.002, and 3.9 Gy, p = 0.03, respectively) and an increased dose range across PTV1 and PTV2 (2.5 Gy, p < 0.001, and 5.1 Gy, p = 0.008, respectively). There was a 15% reduction in the parotid volumes by week 2 (p < 0.001) and 31% by week 4 (p < 0.001). There was a statistically significant increase in the mean dose to the ipsilateral parotid only at week 4 (2.7 Gy, p = 0.006). The parotid glands shifted medially by an average of 2.3 mm (p < 0.001) by week 4. Conclusion: The most significant volumetric changes and dosimetric alterations in the tumor volumes and organs at risk during a course of C-IMRT occur by week 2 of radiotherapy. Further adaptive radiotherapy with replanning, if appropriate, is recommended.

  6. Middlemen Margins and Globalization

    OpenAIRE

    Pranab Bardhan; Dilip Mookherjee; Masatoshi Tsumagari

    2013-01-01

    We develop a theory of trading middlemen or entrepreneurs who perform financing, quality supervision and marketing roles for goods produced by suppliers or workers. Brand-name reputations are necessary to overcome product quality moral hazard problems; middlemen margins represent reputational incentive rents. We develop a two sector North-South model of competitive equilibrium, with endogenous sorting of agents with heterogenous entrepreneurial abilities into sectors and occupations. The Sout...

  7. Containment safety margins

    International Nuclear Information System (INIS)

    Von Riesemann, W.A.

    1980-01-01

    Objective of the Containment Safety Margins program is the development and verification of methodologies which are capable of reliably predicting the ultimate load-carrying capability of light water reactor containment structures under accident and severe environments. The program was initiated in June 1980 at Sandia and this paper addresses the first phase of the program which is essentially a planning effort. Brief comments are made about the second phase, which will involve testing of containment models

  8. Marginalized Youth. An Introduction.

    OpenAIRE

    Kessl, Fabian; Otto, Hans-Uwe

    2009-01-01

    The life conduct of marginalized groups has become subject to increasing levels of risk in advanced capitalist societies. In particular, children and young people are confronted with the harsh consequences of a “new poverty” in the contemporary era. The demographic complexion of today’s poverty is youthful, as a number of government reports have once again documented in recent years in Australia, Germany, France, Great Britain, the US or Scandinavian countries. Key youth studies have shown a ...

  9. Prostate and seminal vesicle volume based consideration of prostate cancer patients for treatment with 3D-conformal or intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Reddy, Nandanuri M. S.; Nori, Dattatreyudu; Chang, Hyesook; Lange, Christopher S.; Ravi, Akkamma

    2010-01-01

    Purpose: The purpose of this article was to determine the suitability of the prostate and seminal vesicle volumes as factors to consider patients for treatment with image-guided 3D-conformal radiation therapy (3D-CRT) or intensity-modulated radiation therapy (IMRT), using common dosimetry parameters as comparison tools. Methods: Dosimetry of 3D and IMRT plans for 48 patients was compared. Volumes of prostate, SV, rectum, and bladder, and prescriptions were the same for both plans. For both 3D and IMRT plans, expansion margins to prostate+SV (CTV) and prostate were 0.5 cm posterior and superior and 1 cm in other dimensions to create PTV and CDPTV, respectively. Six-field 3D plans were prepared retrospectively. For 3D plans, an additional 0.5 cm margin was added to PTV and CDPTV. Prescription for both 3D and IMRT plans was the same: 45 Gy to CTV followed by a 36 Gy boost to prostate. Dosimetry parameters common to 3D and IMRT plans were used for comparison: Mean doses to prostate, CDPTV, SV, rectum, bladder, and femurs; percent volume of rectum and bladder receiving 30 (V30), 50 (V50), and 70 Gy (V70), dose to 30% of rectum and bladder, minimum and maximum point dose to CDPTV, and prescription dose covering 95% of CDPTV (D95). Results: When the data for all patients were combined, mean dose to prostate and CDPTV was higher with 3D than IMRT plans (P 0.2). On average, among all cases, the minimum point dose was less for 3D-CRT plans and the maximum point dose was greater for 3D-CRT than for IMRT (P 0.1). V30 was less (P 0.2), and V70 was more (P 0.2). Mean dose to femurs was more with 3D than IMRT plans (P 3 (39/48), respectively (P 3 , respectively, would be suitable for 3D-CRT. Patients with prostate and prostate+SV volumes >65 and 85 cm 3 , respectively, might get benefit from IMRT.

  10. Split-Volume Treatment Planning of Multiple Consecutive Vertebral Body Metastases for Cyberknife Image-Guided Robotic Radiosurgery

    International Nuclear Information System (INIS)

    Sahgal, Arjun; Chuang, Cynthia; Larson, David; Huang, Kim; Petti, Paula; Weinstein, Phil; Ma Lijun

    2008-01-01

    Cyberknife treatment planning of multiple consecutive vertebral body metastases is challenging due to large target volumes adjacent to critical normal tissues. A split-volume treatment planning technique was developed to improve the treatment plan quality of such lesions. Treatment plans were generated for 1 to 5 consecutive thoracic vertebral bodies (CVBM) prescribing a total dose of 24 Gy in 3 fractions. The planning target volume (PTV) consisted of the entire vertebral body(ies). Treatment plans were generated considering both the de novo clinical scenario (no prior radiation), imposing a dose limit of 8 Gy to 1 cc of spinal cord, and the retreatment scenario (prior radiation) with a dose limit of 3 Gy to 1 cc of spinal cord. The split-volume planning technique was compared with the standard full-volume technique only for targets ranging from 2 to 5 CVBM in length. The primary endpoint was to obtain best PTV coverage by the 24 Gy prescription isodose line. A total of 18 treatment plans were generated (10 standard and 8 split-volume). PTV coverage by the 24-Gy isodose line worsened consistently as the number of CVBM increased for both the de novo and retreatment scenario. Split-volume planning was achieved by introducing a 0.5-cm gap, splitting the standard full-volume PTV into 2 equal length PTVs. In every case, split-volume planning resulted in improved PTV coverage by the 24-Gy isodose line ranging from 4% to 12% for the de novo scenario and, 8% to 17% for the retreatment scenario. We did not observe a significant trend for increased monitor units required, or higher doses to spinal cord or esophagus, with split-volume planning. Split-volume treatment planning significantly improves Cyberknife treatment plan quality for CVBM, as compared to the standard technique. This technique may be of particular importance in clinical situations where stringent spinal cord dose limits are required

  11. SU-F-J-68: Deformable Dose Accumulation for Voxel-Based Dose Tracking of PTV Cold Spots for Adaptive Radiotherapy of the Head and Neck

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C; Chetty, I; Mao, W; Kumarasiri, A; Zhong, H; Brown, S; Siddiqui, F [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To utilize deformable dose accumulation (DDA) to determine how cold spots within the PTV change over the course of fractionated head and neck (H&N) radiotherapy. Methods: Voxel-based dose was tracked using a DDA platform. The DDA process consisted of B-spline-based deformable image registration (DIR) and dose accumulation between planning CT’s and daily cone-beam CT’s for 10 H&N cancer patients. Cold spots within the PTV (regions receiving less than the prescription, 70 Gy) were contoured on the cumulative dose distribution. These cold spots were mapped to each fraction, starting from the first fraction to determine how they changed. Spatial correlation between cold spot regions over each fraction, relative to the last fraction, was computed using the Jaccard index Jk (Mk,N), where N is the cold spot within the PTV at the end of the treatment, and Mk the same region for fraction k. Results: Figure 1 shows good spatial correlation between cold spots, and highlights expansion of the cold spot region over the course of treatment, as a result of setup uncertainties, and anatomical changes. Figure 2 shows a plot of Jk versus fraction number k averaged over 10 patients. This confirms the good spatial correlation between cold spots over the course of treatment. On average, Jk reaches ∼90% at fraction 22, suggesting that possible intervention (e.g. reoptimization) may mitigate the cold spot region. The cold spot, D99, averaged over 10 patients corresponded to a dose of ∼65 Gy, relative to the prescription dose of 70 Gy. Conclusion: DDA-based tracking provides spatial dose information, which can be used to monitor dose in different regions of the treatment plan, thereby enabling appropriate mid-treatment interventions. This work is supported in part by Varian Medical Systems, Palo Alto, CA.

  12. Immediately loaded mini dental implants as overdenture retainers: 1-Year cohort study of implant stability and peri-implant marginal bone level.

    Science.gov (United States)

    Šćepanović, Miodrag; Todorović, Aleksandar; Marković, Aleksa; Patrnogić, Vesna; Miličić, Biljana; Moufti, Adel M; Mišić, Tijana

    2015-05-01

    This 1-year cohort study investigated stability and peri-implant marginal bone level of immediately loaded mini dental implants used to retain overdentures. Each of 30 edentulous patients received 4 mini dental implants (1.8 mm × 13 mm) in the interforaminal mandibular region. The implants were immediately loaded with pre-made overdentures. Outcome measures included implant stability and bone resorption. Implant stability was measured using the Periotest Classic(®) device immediately after placement and on the 3rd and 6th weeks and the 4th, 6th and 12th months postoperatively. The peri-implant marginal bone level (PIBL) was evaluated at the implant's mesial and distal sides from the polished platform to the marginal crest. Radiographs were taken using a tailored film holder to reproducibly position the X-ray tube at the 6th week, 4th and 12th months postoperatively. The primary stability (Periotest value, PTV) measured -0.27 ± 3.41 on a scale of -8 to + 50 (lower PTV reflects higher stability). The secondary stability decreased significantly until week 6 (mean PTV = 7.61 ± 7.05) then increased significantly reaching (PTV = 6.17 ± 6.15) at 12 months. The mean PIBL measured -0.40 mm after 1 year of functional loading, with no statistically significant differences at the various follow-ups (p = 0.218). Mini dental implants placed into the interforaminal region could achieve a favorable primary stability for immediate loading. The follow-up Periotest values fluctuated, apparently reflecting the dynamics of bone remodeling, with the implants remaining clinically stable (98.3%) after 1 year of function. The 1-year bone resorption around immediately loaded MDIs is within the clinically acceptable range for standard implants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Adaptive radiotherapy in muscle invasive urinary bladder cancer - An effective method to reduce the irradiated bowel volume

    International Nuclear Information System (INIS)

    Tuomikoski, Laura; Collan, Juhani; Keyrilaeinen, Jani; Visapaeae, Harri; Saarilahti, Kauko; Tenhunen, Mikko

    2011-01-01

    Background and purpose: To evaluate the benefits of adaptive radiotherapy for bladder cancer in decreasing irradiation of small bowel. Material and methods: Five patients with muscle invasive bladder cancer received adaptive radiotherapy to a total dose of 55.8-65 Gy with daily cone-beam computed tomography scanning. The whole bladder was treated to 45-50.4 Gy, followed by a partial bladder boost. The plan of the day was chosen from 3 to 4 pre-planned treatment plans according to the visible extent of bladder wall in cone-beam computed tomography images. Dose volume histograms for intestinal cavity volumes were constructed and compared with corresponding histograms calculated for conventional non-adaptive radiotherapy with single treatment plan of 2 cm CTV-PTV margins. CTV dose coverage in adaptive treatment technique was compared with CTV dose coverage in conventional radiotherapy. Results: The average volume of intestinal cavity receiving ≥45 Gy was reduced from 335 ± 106 cm 3 to 180 ± 113 cm 3 (1SD). The maximum volume of intestinal cavity spared at 45 Gy on a single patient was 240 cm 3 , while the minimum volume was 65 cm 3 . The corresponding reduction in average intestinal cavity volume receiving ≥45 Gy calculated for the whole bladder treatment only was 66 ± 36 cm 3 . CTV dose coverage was improved on two out of five patients and decreased on three patients. Conclusions: Adaptive radiotherapy considerably reduces dose to the small bowel, while maintaining the dose coverage of CTV at similar level when compared to the conventional treatment technique.

  14. Effect of serum testosterone and percent tumor volume on extra-prostatic extension and biochemical recurrence after laparoscopic radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Eu Chang Hwang

    2016-01-01

    Full Text Available Several studies have revealed that the preoperative serum testosterone and percent tumor volume (PTV predict extra-prostatic extension (EPE and biochemical recurrence (BCR after radical prostatectomy. This study investigated the prognostic significance of serum testosterone and PTV in relation to EPE and BCR after laparoscopic radical prostatectomy (LRP. We reviewed 520 patients who underwent LRP between 2004 and 2012. PTV was determined as the sum of all visually estimated tumor foci in every section. BCR was defined as two consecutive increases in the postoperative prostate-specific antigen (PSA >0.2 ng ml−1 . The threshold for serum total testosterone was 3.0 ng ml−1 . Multivariate logistic regression was used to define the effect of variables on the risk of EPE and BCR. A low serum testosterone (<3.0 ng ml−1 was associated with a high serum PSA, Gleason score, positive core percentage of the prostate biopsy, PTV, and all pathological variables. On multivariate analysis, similar to previous studies, the serum PSA, biopsy positive core percentage, Gleason score, and pathological variables predicted EPE and BCR. In addition, low serum testosterone (<3.0 ng ml−1 , adjusted OR, 8.52; 95% CI, 5.04-14.4, P= 0.001 predicted EPE and PTV (adjusted OR, 1.02; 95% CI, 1.01-1.05, P= 0.046 predicted BCR. In addition to previous predictors of EPE and BCR, low serum testosterone and PTV are valuable predictors of EPE and BCR after LRP.

  15. Re-irradiation after gross total resection of recurrent glioblastoma. Spatial pattern of recurrence and a review of the literature as a basis for target volume definition

    Energy Technology Data Exchange (ETDEWEB)

    Straube, Christoph; Elpula, Greeshma [Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Gempt, Jens; Gerhardt, Julia; Meyer, Bernhard [Technische Universitaet Muenchen (TUM), Department of Neurosurgery, Klinikum rechts der Isar, Muenchen (Germany); Bette, Stefanie; Zimmer, Claus [Technische Universitaet Muenchen (TUM), Department of Neuroradiology, Klinikum rechts der Isar, Muenchen (Germany); Schmidt-Graf, Friederike [Technische Universitaet Muenchen (TUM), Department of Neurology, Klinikum rechts der Isar, Muenchen (Germany); Combs, Stephanie E. [Technische Universitaet Muenchen (TUM), Department of Radiation Oncology, Klinikum rechts der Isar, Muenchen (Germany); Helmholtz Zentrum Muenchen, Institute for Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Oberschleissheim (Germany)

    2017-11-15

    Currently, patients with gross total resection (GTR) of recurrent glioblastoma (rGBM) undergo adjuvant chemotherapy or are followed up until progression. Re-irradiation, as one of the most effective treatments in macroscopic rGBM, is withheld in this situation, as uncertainties about the pattern of re-recurrence, the target volume, and also the efficacy of early re-irradiation after GTR exist. Imaging and clinical data from 26 consecutive patients with GTR of rGBM were analyzed. The spatial pattern of recurrences was analyzed according to the RANO-HGG criteria (''response assessment in neuro-oncology criteria for high-grade gliomas''). Progression-free (PFS) and overall survival (OS) were analyzed by the Kaplan-Meier method. Furthermore, a systematic review was performed in PubMed. All but 4 patients underwent adjuvant chemotherapy after GTR. Progression was diagnosed in 20 of 26 patients and 70% of recurrent tumors occurred adjacent to the resection cavity. The median extension beyond the edge of the resection cavity was 20 mm. Median PFS was 6 months; OS was 12.8 months. We propose a target volume containing the resection cavity and every contrast enhancing lesion as the gross tumor volume (GTV), a spherical margin of 5-10 mm to generate the clinical target volume (CTV), and a margin of 1-3 mm to generate the planning target volume (PTV). Re-irradiation of this volume is deemed to be safe and likely to prolong PFS. Re-irradiation is worth considering also after GTR, as the volumes that need to be treated are limited and re-irradiation has already proven to be a safe treatment option in general. The strategy of early re-irradiation is currently being tested within the GlioCave/NOA 17/Aro 2016/03 trial. (orig.) [German] Patienten mit einem rezidivierten Glioblastom (rGBM) werden, wenn eine komplette Resektion (GTR) des makroskopischen Rezidivs durchgefuehrt wurde, aktuell meist systemisch adjuvant behandelt oder einer engmaschigen Nachsorge

  16. Comparison between dose values specified at the ICRU reference point and the mean dose to the planning target volume

    International Nuclear Information System (INIS)

    Kukoowicz, Pawel F.; Mijnheer, Bernard J.

    1997-01-01

    Background and purpose: To compare dose values specified at the reference point, as recommended by the International Commission on Radiation Units and Measurements, ICRU, and the mean dose to the planning target volume, PTV. Material and methods: CT-based dose calculations were performed with a 3-D treatment planning system for 6 series of patients treated for bladder, brain, breast, lung, oropharynx and parotid gland tumour. All patients were arbitrarily chosen from a set of previously treated patients irradiated with a two- or three-field technique using customised blocks. Appropriate wedge angles and beam weights were chosen to make the dose distribution as homogeneous as possible. Results: The dose at the ICRU reference point was generally higher than the mean dose to the PTV. The difference between the ICRU reference dose and the mean dose to the PTV for an individual patient was less than 3% in 88% of cases and less than 2% in 72% of the cases. The differences were larger in those patients where the dose distribution is significantly influenced by the presence of lungs or air gaps. For each series of patients the mean difference between the ICRU reference dose and the mean dose to the PTV was calculated. The difference between these two values never exceeded 2%. Because not all planning systems are able to calculate the mean dose to the PTV, the concept of the mean central dose, the mean of the dose values at the centre of the PTV in each CT slice, has been introduced. The mean central dose was also calculated for the same patients and was closer to the mean dose to the PTV than the ICRU reference dose. Conclusion: The mean dose to the PTV is well estimated by either the ICRU reference dose or the mean central dose for a variety of treatment techniques for common types of cancer

  17. Laboratory investigation of the distribution of travel distance and rest period of sediment particles from PTV data

    Science.gov (United States)

    Ferreira, Rui M. L.; Antico, Federica

    2016-04-01

    We analyze paths of sediment particles on cohesionless granular bet subjected to a turbulent open-channel flow. The key objective is to provide further insights on particle dispersion including resting times. Hence, we focus on the spatial and temporal scale identified by Nikora et al. (2002) as the global range, defined as the particle path composed of many intermediate range paths, i.e with several "starts" and "stops". This requires the calculation of the probability distribution functions of particle travel distances and of rest periods. The experimental work was performed at the Hydraulics Laboratory of IST-UL in a 12.5 m long, 0.405 m wide glass-walled flume recirculating water and sediment through independent circuits. The granular bed was a 4.0 m long and 2.5 cm deep reach filled with 5 mm diameter glass beads packed (with some vibration) to a void fraction of 0.356, typical of random packing. Upstream the mobile bed reach the bed was composed of glued particles to ensure the development of a boundary layer with the same roughness. Laboratory tests were run under conditions of weak beadload transport with Shields parameter (θ) in the range 0.007 to 0.030, Froude numbers (Fr) between 0.630 and 0.950 and boundary Reynolds number (Re_ast) in the range 130 to 300. White-coated particles with 5.0 mm diameter were introduced in the flow 3 m upstream the mobile bed reach. Particle motion was registered from above using a high-speed camera AVT Bonito CL-400 with resolution set to 2320 × 1000 px2 and frame rate of 170 fps. The field of view recorded was 77.0 cm long and 38.0 cm wide, covering almost all the width of the flume. The maximum duration of the runs was 20 min, during which more than 500 particle paths, including resting times, were registered. The video footage was subjected to a PTV (Particle Tracking Velocimetry) developed for the problem at hand. The algorithm includes the application of Gaussian filters and thresholding operations to identify the

  18. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    International Nuclear Information System (INIS)

    Ravindra, M.K.; Hardy, G.S.; Hashimoto, P.S.; Griffin, M.J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants

  19. Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ravindra, M. K.; Hardy, G. S.; Hashimoto, P. S.; Griffin, M. J.

    1987-03-01

    This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

  20. Marginal Models for Categorial Data

    NARCIS (Netherlands)

    Bergsma, W.P.; Rudas, T.

    2002-01-01

    Statistical models defined by imposing restrictions on marginal distributions of contingency tables have received considerable attention recently. This paper introduces a general definition of marginal log-linear parameters and describes conditions for a marginal log-linear parameter to be a smooth

  1. Masculinity at the margins

    DEFF Research Database (Denmark)

    Jensen, Sune Qvotrup

    2010-01-01

    and other types of material. Taking the concepts of othering, intersectionality and marginality as point of departure the article analyses how these young men experience othering and how they react to it. One type of reaction, described as stylization, relies on accentuating the latently positive symbolic...... of critique although in a masculinist way. These reactions to othering represent a challenge to researchers interested in intersectionality and gender, because gender is reproduced as a hierarchical form of social differentiation at the same time as racism is both reproduced and resisted....

  2. Optimization of Large Volume Injection for Improved Detection of Polycyclic Aromatic Hydrocarbons (PAH) in Mussels

    DEFF Research Database (Denmark)

    Duedahl-Olesen, Lene; Ghorbani, Faranak

    2008-01-01

    Detection of PAH of six benzene rings is somewhat troublesome and lowering the limits of detection (LODs) for these compounds in food is necessary. For this purpose, we optimized a Programmable-Temperature-Vaporisation (PTV) injection with Large Volume Injection (LVI) with regard to the GC-MS det...

  3. Target volume delineation for head and neck cancer intensity-modulated radiotherapy; Delineation des volumes cibles des cancers des voies aerodigestives superieures en radiotherapie conformationnelle avec modulation d'intensite

    Energy Technology Data Exchange (ETDEWEB)

    Lapeyre, M.; Toledano, I.; Bourry, N. [Departement de radiotherapie, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Bailly, C. [Unite de radiodiagnostic, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Cachin, F. [Unite de medecine nucleaire, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France)

    2011-10-15

    This article describes the determination and the delineation of the target volumes for head-and-neck cancers treated with intensity-modulated radiotherapy (IMRT). The delineation of the clinical target volumes (CTV) on the computerized tomography scanner (CT scan) requires a rigorous methodology due to the complexity of head-and-neck anatomy. The clinical examination with a sketch of pretreatment tumour extension, the surgical and pathological reports and the adequate images (CT scan, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography) are necessary for the delineation. The target volumes depend on the overall strategy: sequential IMRT or simultaneous integrated boost-IMRT (SIB-IMRT). The concept of selectivity of the potential subclinical disease near the primary tumor and the selection of neck nodal targets are described according to the recommendations and the literature. The planing target volume (PTV), mainly reflecting setup errors (random and systematic), results from a uniform 4-5 mm expansion around the CTV. We propose the successive delineation of: (1) the gross volume tumour (GTV); (2) the 'high risk' CTV1 around the GTV or including the postoperative tumour bed in case of positive margins or nodal extra-capsular spread (65-70 Gy in 30-35 fractions); (3) the CTV2 'intermediate risk' around the CTV1 for SIB-IMRT (59-63 Gy in 30-35 fractions); (4) the 'low-risk' CTV3 (54-56 Gy in 30-35 fractions); (5) the PTVs. (authors)

  4. Dose-volume analysis of predictors for chronic rectal toxicity after treatment of prostate cancer with adaptive image-guided radiotherapy

    International Nuclear Information System (INIS)

    Vargas, Carlos; Martinez, Alvaro; Kestin, Larry L.; Yan Di; Grills, Inga; Brabbins, Donald S.; Lockman, David M.; Liang Jian; Gustafson, Gary S.; Chen, Peter Y.; Vicini, Frank A.; Wong, John W.

    2005-01-01

    Purpose We analyzed our experience treating localized prostate cancer with image-guided off-line correction with adaptive high-dose radiotherapy (ART) in our Phase II dose escalation study to identify factors predictive of chronic rectal toxicity. Materials and Methods From 1999-2002, 331 patients with clinical stage T1-T3N0M0 prostate cancer were prospectively treated in our Phase II 3D conformal dose escalation ART study to a median dose of 75.6 Gy (range, 63.0-79.2 Gy), minimum dose to confidence limited-planning target volume (cl-PTV) in 1.8 Gy fractions (median isocenter dose = 79.7 Gy). Seventy-four patients (22%) also received neoadjuvant/adjuvant androgen deprivation therapy. A patient-specific cl-PTV was constructed using 5 computed tomography scans and 4 sets of electronic portal images by applying an adaptive process to assure target accuracy and minimize PTV margin. For each case, the rectum (rectal solid) was contoured from the sacroiliac joints or rectosigmoid junction (whichever was higher) to the anal verge or ischial tuberosities (whichever was lower), with a median volume of 81.2 cc. The rectal wall was defined using the rectal solid with an individualized 3-mm wall thickness (median volume = 29.8 cc). Rectal wall dose-volume histogram was used to determine the prescribed dose. Toxicity was quantified using the National Cancer Institute Common Toxicity Criteria 2.0. Multiple dose-volume endpoints were evaluated for their association with chronic rectal toxicity. Results Median follow-up was 1.6 years. Thirty-four patients (crude rate 10.3%) experienced Grade 2 chronic rectal toxicity at a median interval of 1.1 years. Nine patients (crude rate = 2.7%) experienced Grade ≥3 chronic rectal toxicity (1 was Grade 4) at a median interval of 1.2 years. The 3-year rates of Grade ≥2 and Grade ≥3 chronic rectal toxicity were 20% and 4%, respectively. Acute toxicity predicted for chronic: Acute Grade 2-3 rectal toxicity (p 40% respectively. The volume

  5. ICRU reference dose in an era of intensity-modulated radiation therapy clinical trials: Correlation with planning target volume mean dose and suitability for intensity-modulated radiation therapy dose prescription

    International Nuclear Information System (INIS)

    Yaparpalvi, Ravindra; Hong, Linda; Mah, Dennis; Shen Jin; Mutyala, Subhakar; Spierer, Marnee; Garg, Madhur; Guha, Chandan; Kalnicki, Shalom

    2008-01-01

    Background and Purpose: IMRT clinical trials lack dose prescription and specification standards similar to ICRU standards for two- and three-dimensional external beam planning. In this study, we analyzed dose distributions for patients whose treatment plans incorporated IMRT, and compared the dose determined at the ICRU reference point to the PTV doses determined from dose-volume histograms. Additionally, we evaluated if ICRU reference type single-point dose prescriptions are suitable for IMRT dose prescriptions. Materials and methods: For this study, IMRT plans of 117 patients treated at our institution were randomly selected and analyzed. The treatment plans were clinically applied to the following disease sites: abdominal (11), anal (10), brain (11), gynecological (15), head and neck (25), lung (15), male pelvis (10) and prostate (20). The ICRU reference point was located in each treatment plan following ICRU Report 50 guidelines. The reference point was placed in the central part of the PTV and at or near the isocenter. In each case, the dose was calculated and recorded to this point. For each patient - volume and dose (PTV, PTV mean, median and modal) information was extracted from the planned dose-volume histogram. Results: The ICRU reference dose vs PTV mean dose relationship in IMRT exhibited a weak positive association (Pearson correlation coefficient 0.63). In approximately 65% of the cases studied, dose at the ICRU reference point was greater than the corresponding PTV mean dose. The dose difference between ICRU reference and PTV mean doses was ≤2% in approximately 79% of the cases studied (average 1.21% (±1.55), range -4% to +4%). Paired t-test analyses showed that the ICRU reference doses and PTV median doses were statistically similar (p = 0.42). The magnitude of PTV did not influence the difference between ICRU reference and PTV mean doses. Conclusions: The general relationship between ICRU reference and PTV mean doses in IMRT is similar to that

  6. A Politics of Marginability

    DEFF Research Database (Denmark)

    Pallesen, Cecil Marie

    2015-01-01

    always been contested and to some extent vulnerable. However, the Indian communities are strong socially and economically, and the vast majority of its people have great international networks and several potential plans or strategies for the future, should the political climate in Tanzania become......In the end of the 19th century, Indians began settling in East Africa. Most of them left Gujarat because of drought and famine, and they were in search for business opportunities and a more comfortable life. Within the following decades, many of them went from being small-scale entrepreneurs to big...... hostile towards them. I argue that this migrant group is unique being marginalized and strong at the same time, and I explain this uniqueness by several features in the Indian migrants’ cultural and religious background, in colonial and post-colonial Tanzania, and in the Indians’ role as middlemen between...

  7. Distribution of Functional Liver Volume in Hepatocellular Carcinoma Patients with Portal Vein Tumor Thrombus in the 1st Branch and Main Trunk Using Single Photon Emission Computed Tomography—Application to Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Akira Ikoma

    2011-10-01

    Full Text Available Purpose: To analyze the distribution of functional liver volume (FLV in the margin volume (MV surrounding hepatocellular carcinoma (HCC with portal vein tumor thrombus (PVTT before radiation therapy (RT and to verify the safety of single photon emission computed tomography-based three-dimensional conformal radiotherapy (SPECT-B3DCRT by exploring the relation of FLV in MV to radiation-induced liver disease (RILD. Methods and Materials: Clinical target volume (CTV included main tumor and PVTT, and planning target volume (PTV included CTV with a 10 mm margin. MV was defined as PTV–CTV. FLV ratio in MV was calculated as FLV in MV/MV × 100 (%. The two high-dose beams were planned to irradiate FLV as little as possible. Fifty-seven cases of HCC (26/57, 46%; Child–Pugh grade B with PVTT underwent SPECT-B3DCRT which targeted the CTV to a total dose of 45 Gy/18 fractions. The destructive ratio was defined as radiation induced dysfunctional volume/FLV × 100 (%. Results: We observed a significant negative correlation between FLV ratio in MV and CTV (p < 0.001. Three cases with CTVs of 287, 587 and 1184 cm3 experienced transient RILD. The FLV ratio in MV was highest in patients with RILD: nine patients with CTV of 200–300 cm3, three with CTV of 500–600 cm3, and two with CTV of 1100–1200 cm3. The destructive ratio yielded a mean value of 24.2 ± 1.5%. Conclusions: Radiation planning that takes into account the distribution of FLV appears to result in the least possible RILD.

  8. Investigation of the flow structure in thin polymer films using 3D µPTV enhanced by GPU

    Science.gov (United States)

    Cavadini, Philipp; Weinhold, Hannes; Tönsmann, Max; Chilingaryan, Suren; Kopmann, Andreas; Lewkowicz, Alexander; Miao, Chuan; Scharfer, Philip; Schabel, Wilhelm

    2018-04-01

    To understand the effects of inhomogeneous drying on the quality of polymer coatings, an experimental setup to resolve the occurring flow field throughout the drying film has been developed. Deconvolution microscopy is used to analyze the flow field in 3D and time. Since the dimension of the spatial component in the direction of the line-of-sight is limited compared to the lateral components, a multi-focal approach is used. Here, the beam of light is equally distributed on up to five cameras using cubic beam splitters. Adding a meniscus lens between each pair of camera and beam splitter and setting different distances between each camera and its meniscus lens creates multi-focality and allows one to increase the depth of the observed volume. Resolving the spatial component in the line-of-sight direction is based on analyzing the point spread function. The analysis of the PSF is computational expensive and introduces a high complexity compared to traditional particle image velocimetry approaches. A new algorithm tailored to the parallel computing architecture of recent graphics processing units has been developed. The algorithm is able to process typical images in less than a second and has further potential to realize online analysis in the future. As a prove of principle, the flow fields occurring in thin polymer solutions drying at ambient conditions and at boundary conditions that force inhomogeneous drying are presented.

  9. Dose and volume specification for reporting NCT. An ICRU-IAEA initiative

    International Nuclear Information System (INIS)

    Wambersie, A.; Gahbauer, R.A.; Whitmore, G.; Levin, C.V.

    2000-01-01

    The present recommendations result from of an ICRU-IAEA initiative for harmonization of reporting NCT (Neutron Capture Therapy). As stated by the ISNCT, harmonization of reporting is required to understand what has actually been done and interpret the clinical results on the basis of reliable information. Prescription of a treatment remains the responsibility of the radiation oncologist in charge of the patient. Complete oncological data should be reported, including Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) as well as Planning Target Volume (PTV), Treated Volume and Organs/Structures at Risk. A reference point for reporting dose should be selected in the central part of the PTV/CTV. At each point of interest, the four components contributing to the absorbed dose and the weighting factors applied to take account of the RBE (Relative Biological Effectiveness) differences should be specified. (author)

  10. Workers' marginal costs of commuting

    DEFF Research Database (Denmark)

    van Ommeren, Jos; Fosgerau, Mogens

    2009-01-01

    This paper applies a dynamic search model to estimate workers' marginal costs of commuting, including monetary and time costs. Using data on workers' job search activity as well as moving behaviour, for the Netherlands, we provide evidence that, on average, workers' marginal costs of one hour...

  11. Margin improvement initiatives: realistic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P.K.; Paquette, S. [Royal Military College of Canada, Chemistry and Chemical Engineering Dept., Kingston, ON (Canada); Cunning, T.A. [Department of National Defence, Ottawa, ON (Canada); French, C.; Bonin, H.W. [Royal Military College of Canada, Chemistry and Chemical Engineering Dept., Kingston, ON (Canada); Pandey, M. [Univ. of Waterloo, Waterloo, ON (Canada); Murchie, M. [Cameco Fuel Manufacturing, Port Hope, ON (Canada)

    2014-07-01

    With reactor core aging, safety margins are particularly tight. Two realistic and practical approaches are proposed here to recover margins. The first project is related to the use of a small amount of neutron absorbers in CANDU Natural Uranium (NU) fuel bundles. Preliminary results indicate that the fuelling transient and subsequent reactivity peak can be lowered to improve the reactor's operating margins, with minimal impact on burnup when less than 1000 mg of absorbers is added to a fuel bundle. The second project involves the statistical analysis of fuel manufacturing data to demonstrate safety margins. Probability distributions are fitted to actual fuel manufacturing datasets provided by Cameco Fuel Manufacturing, Inc. They are used to generate input for ELESTRES and ELOCA. It is found that the fuel response distributions are far below industrial failure limits, implying that margin exists in the current fuel design. (author)

  12. A methodology to determine margins by EPID measurements of patient setup variation and motion as applied to immobilization devices

    International Nuclear Information System (INIS)

    Prisciandaro, Joann I.; Frechette, Christina M.; Herman, Michael G.; Brown, Paul D.; Garces, Yolanda I.; Foote, Robert L.

    2004-01-01

    Assessment of clinic and site specific margins are essential for the effective use of three-dimensional and intensity modulated radiation therapy. An electronic portal imaging device (EPID) based methodology is introduced which allows individual and population based CTV-to-PTV margins to be determined and compared with traditional margins prescribed during treatment. This method was applied to a patient cohort receiving external beam head and neck radiotherapy under an IRB approved protocol. Although the full study involved the use of an EPID-based method to assess the impact of (1) simulation technique (2) immobilization, and (3) surgical intervention on inter- and intrafraction variations of individual and population-based CTV-to-PTV margins, the focus of the paper is on the technique. As an illustration, the methodology is utilized to examine the influence of two immobilization devices, the UON TM thermoplastic mask and the Type-S TM head/neck shoulder immobilization system on margins. Daily through port images were acquired for selected fields for each patient with an EPID. To analyze these images, simulation films or digitally reconstructed radiographs (DRR's) were imported into the EPID software. Up to five anatomical landmarks were identified and outlined by the clinician and up to three of these structures were matched for each reference image. Once the individual based errors were quantified, the patient results were grouped into populations by matched anatomical structures and immobilization device. The variation within the subgroup was quantified by calculating the systematic and random errors (Σ sub and σ sub ). Individual patient margins were approximated as 1.65 times the individual-based random error and ranged from 1.1 to 6.3 mm (A-P) and 1.1 to 12.3 mm (S-I) for fields matched on skull and cervical structures, and 1.7 to 10.2 mm (L-R) and 2.0 to 13.8 mm (S-I) for supraclavicular fields. Population-based margins ranging from 5.1 to 6.6 mm (A

  13. Patterns of failure for glioblastoma multiforme following limited-margin radiation and concurrent temozolomide

    International Nuclear Information System (INIS)

    Gebhardt, Brian J; Dobelbower, Michael C; Ennis, William H; Bag, Asim K; Markert, James M; Fiveash, John B

    2014-01-01

    To analyze patterns of failure in patients with glioblastoma multiforme (GBM) treated with limited-margin radiation therapy and concurrent temozolomide. We hypothesize that patients treated with margins in accordance with Adult Brain Tumor Consortium guidelines (ABTC) will demonstrate patterns of failure consistent with previous series of patients treated with 2–3 cm margins. A retrospective review was performed of patients treated at the University of Alabama at Birmingham for GBM between 2000 and 2011. Ninety-five patients with biopsy-proven disease and documented disease progression after treatment were analyzed. The initial planning target volume includes the T1-enhancing tumor and surrounding edema plus a 1 cm margin. The boost planning target volume includes the T1-enhancing tumor plus a 1 cm margin. The tumors were classified as in-field, marginal, or distant if greater than 80%, 20-80%, or less than 20% of the recurrent volume fell within the 95% isodose line, respectively. The median progression-free survival from the time of diagnosis to documented failure was 8 months (range 3–46). Of the 95 documented recurrences, 77 patients (81%) had an in-field component of treatment failure, 6 (6%) had a marginal component, and 27 (28%) had a distant component. Sixty-three patients (66%) demonstrated in-field only recurrence. The low rate of marginal recurrence suggests that wider margins would have little impact on the pattern of failure, validating the use of limited margins in accordance ABTC guidelines

  14. Oral antioxidant therapy for marginal dry eye.

    Science.gov (United States)

    Blades, K J; Patel, S; Aidoo, K E

    2001-07-01

    To assess the efficacy of an orally administered antioxidant dietary supplement for managing marginal dry eye. A prospective, randomised, placebo controlled trial with cross-over. Eye Clinic, Department of Vision Sciences, Glasgow Caledonian University. Forty marginal dry eye sufferers composed of 30 females and 10 males (median age 53 y; range 38-69 y). Baseline assessments were made of tear volume sufficiency (thread test), tear quality (stability), ocular surface status (conjunctival impression cytology) and dry eye symptoms (questionnaire). Each subject was administered courses of active treatment, placebo and no treatment, in random order for 1 month each and results compared to baseline. Tear stability and ocular surface status were significantly improved following active treatment (Ptreatment (P>0.05). Absolute increase in tear stability correlated with absolute change in goblet cell population density. Tear volume was not improved following any treatment period and dry eye symptom responses were subject to placebo effect. Oral antioxidants improved both tear stability and conjunctival health, although it is not yet understood whether increased ocular surface health mediates increased tear stability or vice versa. This study was supported by a PhD scholarship funded by the Department of Vision Sciences, Glasgow Caledonian University, Scotland. Antioxidant supplements and placebos were kindly donated by Vitabiotics.

  15. Realistic respiratory motion margins for external beam partial breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Leigh; Quirk, Sarah [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Smith, Wendy L., E-mail: wendy.smith@albertahealthservices.ca [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Department of Oncology, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2015-09-15

    described. It was found that the currently used respiratory margin of 5 mm in partial breast irradiation may be overly conservative for many 3DCRT PBI patients. Amplitude alone was found to be insufficient to determine patient-specific margins: individual respiratory trace shape and baseline drift both contributed to the dosimetric target coverage. With respiratory coaching, individualized respiratory margins smaller than the full extent of motion could reduce planning target volumes while ensuring adequate coverage under respiratory motion.

  16. Realistic respiratory motion margins for external beam partial breast irradiation

    International Nuclear Information System (INIS)

    Conroy, Leigh; Quirk, Sarah; Smith, Wendy L.

    2015-01-01

    described. It was found that the currently used respiratory margin of 5 mm in partial breast irradiation may be overly conservative for many 3DCRT PBI patients. Amplitude alone was found to be insufficient to determine patient-specific margins: individual respiratory trace shape and baseline drift both contributed to the dosimetric target coverage. With respiratory coaching, individualized respiratory margins smaller than the full extent of motion could reduce planning target volumes while ensuring adequate coverage under respiratory motion

  17. Origins of saline fluids at convergent margins

    Science.gov (United States)

    Martin, Jonathan B.; Kastner, Miriam; Egeberg, Per Kr.

    The compositions of pore and venting fluids at convergent margins differ from seawater values, reflecting mixing and diagenesis. Most significantly, the concentration of Cl-, assumed to be a conservative ion, differs from its seawater value. Chloride concentrations could be elevated by four processes, although two, the formation of gas hydrate and ion filtration by clay membranes, are insignificant in forming saline fluids at convergent margins. During the formation of gas hydrate, the resulting Cl--rich fluids, estimated to contain an average excess of ˜140 mM Cl- over seawater value, probably would be flushed from the sediment when the pore fluids vent to seawater. Ion filtration by clay membranes requires compaction pressures typical of >2 km burial depths. Even at these depths, the efficiency of ion filtration will be negligible because (1) fluids will flow through fractures, thereby bypassing clay membranes, (2) concentrations of clay minerals are diluted by other phases, and (3) during burial, smectite converts to illite, which has little capacity for ion filtration. A third process, mixing with subaerially evaporated seawater, elevates Cl- concentrations to 1043 mM in forearc basins along the Peru margin. Evaporation of seawater, however, will be important only in limited geographic regions that are characterized by enclosed basins, arid climates, and permeable sediments. At the New Hebrides and Izu-Bonin margins, Cl- concentrations are elevated to a maximum of 1241 mM. The process responsible for this increase is the alteration of volcanic ash to hydrous clay and zeolite minerals. Mass balance calculations, based on the decrease in δ18O values to -9.5‰ (SMOW), suggest that the Cl- concentrations could increase solely from the formation of smectite in a closed system. The diagenesis of volcanic ash also alters the concentrations of most dissolved species in addition to Cl-. Depending on the volume of this altered fluid, it could influence seawater

  18. Atlantic continental margin of the United States

    Science.gov (United States)

    Grow, John A.; Sheridan, Robert E.; Palmer, A.R.

    1982-01-01

    The objective of this Decade of North American Geology (D-NAG) volume will be to focus on the Mesozoic and Cenozoic evolution of the U.S. Atlantic continental margin, including the onshore coastal plain, related onshore Triassic-Jurassic rift grabens, and the offshore basins and platforms. Following multiple compressional tectonic episodes between Africa and North America during the Paleozoic Era that formed the Appalachian Mountains, the Mesozoic and Cenozoic Eras were dominated by tensional tectonic processes that separated Africa and North America. Extensional rifting during Triassic and Early Jurassic times resulted in numerous tensional grabens both onshore and offshore, which filled with nonmarine continental red beds, lacustrine deposits, and volcanic flows and debris. The final stage of this breakup between Africa and North America occurred beneath the present outer continental shelf and continental slope during Early or Middle Jurassic time when sea-floor spreading began to form new oceanic crust and lithosophere between the two continents as they drifted apart. Postrift subsidence of the marginal basins continued in response to cooling of the lithosphere and sedimentary loading.Geophysical surveys and oil-exploration drilling along the U.S. Atlantic continental margin during the past 5 years are beginning to answer many questions concerning its deep structure and stratigraphy and how it evolved during the rifting and early sea-floor-spreading stages of the separation of this region from Africa. Earlier geophysical studies of the U.S. continental margin used marine refraction and submarine gravity measurements. Single-channel seismic-reflection, marine magnetic, aeromagnetic, and continuous gravity measurements became available during the 1960s.

  19. The Sociolinguistics of Place and Belonging : Perspectives from the Margins

    NARCIS (Netherlands)

    Cornips, L.; de Rooij, V.

    2018-01-01

    This volume shows the relevance of the concepts of ‘place’ and ‘belonging’ for understanding the dynamics of identification through language. It also opens up a new terrain for sociolinguistic and linguistic anthropological study, namely the margins. Rural, as well as urbanized areas that are seen

  20. Pricing hospital care: Global budgets and marginal pricing strategies.

    Science.gov (United States)

    Sutherland, Jason M

    2015-08-01

    The Canadian province of British Columbia (BC) is adding financial incentives to increase the volume of surgeries provided by hospitals using a marginal pricing approach. The objective of this study is to calculate marginal costs of surgeries based on assumptions regarding hospitals' availability of labor and equipment. This study is based on observational clinical, administrative and financial data generated by hospitals. Hospital inpatient and outpatient discharge summaries from the province are linked with detailed activity-based costing information, stratified by assigned case mix categorizations. To reflect a range of operating constraints governing hospitals' ability to increase their volume of surgeries, a number of scenarios are proposed. Under these scenarios, estimated marginal costs are calculated and compared to prices being offered as incentives to hospitals. Existing data can be used to support alternative strategies for pricing hospital care. Prices for inpatient surgeries do not generate positive margins under a range of operating scenarios. Hip and knee surgeries generate surpluses for hospitals even under the most costly labor conditions and are expected to generate additional volume. In health systems that wish to fine-tune financial incentives, setting prices that create incentives for additional volume should reflect knowledge of hospitals' underlying cost structures. Possible implications of mis-pricing include no response to the incentives or uneven increases in supply. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Volume arc therapy of gynaecological tumours: target volume coverage improvement without dose increase for critical organs; Arctherapie volumique des tumeurs gynecologiques: amelioration de la couverture du volume cible sans augmentation de la dose aux organes critiques

    Energy Technology Data Exchange (ETDEWEB)

    Ducteil, A.; Kerr, C.; Idri, K.; Fenoglietto, P.; Vieillot, S.; Ailleres, N.; Dubois, J.B.; Azria, D. [CRLC Val-d' Aurelle, Montpellier (France)

    2011-10-15

    The authors report the assessment of the application of conventional intensity-modulated conformational radiotherapy (IMRT) and volume arc-therapy (RapidArc) for the treatment of cervical cancers, with respect to conventional radiotherapy. Dosimetric plans associated with each of these techniques have been compared. Dose-volume histograms of these three plans have also been compared for the previsional target volume (PTV), organs at risk, and sane tissue. IMCT techniques are equivalent in terms of sparing of organs at risk, and improve target volume coverage with respect to conventional radiotherapy. Arc-therapy reduces significantly treatment duration. Short communication

  2. SU-G-BRA-04: Simulation of Errors in Maximal Intensity Projection (MIP)-Based Lung Tumor Internal Target Volumes (ITV) Using Real-Time 2D MRI and Deformable Image Registration Based Lung Tumor Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D; Kishan, A; Santhanam, A; Min, Y; O’Connell, D; Lamb, J; Cao, M; Agazaryan, N; Yang, Y; Lee, P; Low, D [University of California, Los Angeles, Ca (United States)

    2016-06-15

    Purpose: To evaluate the effect of inter- and intra-fractional tumor motion on the error in four-dimensional computed tomography (4DCT) maximal intensity projection (MIP)–based lung tumor internal target volumes (ITV), using deformable image registration of real-time 2D-sagital cine-mode MRI acquired during lung SBRT treatments. Methods: Five lung tumor patients underwent free breathing SBRT treatment on the ViewRay, with dose prescribed to PTV (4DCT MIP-based ITV+3–6mm margin). Sagittal slice cine-MR images (3.5×3.5mm pixels) were acquired through the center of the tumor at 4 frames per second throughout the treatments (3–4 fractions of 21–32 minutes duration). Tumor GTVs were contoured on the first frame of the cine and tracked throughout the treatment using off-line optical-flow based deformable registration implemented on a GPU cluster. Pseudo-4DCT MIP-based ITVs were generated from MIPs of the deformed GTV contours limited to short segments of image data. All possible pseudo-4DCT MIP-based ITV volumes were generated with 1s resolution and compared to the ITV volume of the entire treatment course. Varying pseudo-4DCT durations from 10-50s were analyzed. Results: Tumors were covered in their entirety by PTV in the patients analysed here. However, pseudo-4DCT based ITV volumes were observed that were as small as 29% of the entire treatment-ITV, depending on breathing irregularity and the duration of pseudo-4DCT. With an increase in duration of pseudo-4DCT from 10–50s the minimum volume acquired from 95% of all pseudo-4DCTs increased from 62%–81% of the treatment ITV. Conclusion: A 4DCT MIP-based ITV offers a ‘snap-shot’ of breathing motion for the brief period of time the tumor is imaged on a specific day. Real time MRI over prolonged periods of time and over multiple treatment fractions shows that the accuracy of this snap-shot varies according to inter- and intra-fractional tumor motion. Further work is required to investigate the dosimetric

  3. SU-G-BRA-04: Simulation of Errors in Maximal Intensity Projection (MIP)-Based Lung Tumor Internal Target Volumes (ITV) Using Real-Time 2D MRI and Deformable Image Registration Based Lung Tumor Tracking

    International Nuclear Information System (INIS)

    Thomas, D; Kishan, A; Santhanam, A; Min, Y; O’Connell, D; Lamb, J; Cao, M; Agazaryan, N; Yang, Y; Lee, P; Low, D

    2016-01-01

    Purpose: To evaluate the effect of inter- and intra-fractional tumor motion on the error in four-dimensional computed tomography (4DCT) maximal intensity projection (MIP)–based lung tumor internal target volumes (ITV), using deformable image registration of real-time 2D-sagital cine-mode MRI acquired during lung SBRT treatments. Methods: Five lung tumor patients underwent free breathing SBRT treatment on the ViewRay, with dose prescribed to PTV (4DCT MIP-based ITV+3–6mm margin). Sagittal slice cine-MR images (3.5×3.5mm pixels) were acquired through the center of the tumor at 4 frames per second throughout the treatments (3–4 fractions of 21–32 minutes duration). Tumor GTVs were contoured on the first frame of the cine and tracked throughout the treatment using off-line optical-flow based deformable registration implemented on a GPU cluster. Pseudo-4DCT MIP-based ITVs were generated from MIPs of the deformed GTV contours limited to short segments of image data. All possible pseudo-4DCT MIP-based ITV volumes were generated with 1s resolution and compared to the ITV volume of the entire treatment course. Varying pseudo-4DCT durations from 10-50s were analyzed. Results: Tumors were covered in their entirety by PTV in the patients analysed here. However, pseudo-4DCT based ITV volumes were observed that were as small as 29% of the entire treatment-ITV, depending on breathing irregularity and the duration of pseudo-4DCT. With an increase in duration of pseudo-4DCT from 10–50s the minimum volume acquired from 95% of all pseudo-4DCTs increased from 62%–81% of the treatment ITV. Conclusion: A 4DCT MIP-based ITV offers a ‘snap-shot’ of breathing motion for the brief period of time the tumor is imaged on a specific day. Real time MRI over prolonged periods of time and over multiple treatment fractions shows that the accuracy of this snap-shot varies according to inter- and intra-fractional tumor motion. Further work is required to investigate the dosimetric

  4. Learning Convex Inference of Marginals

    OpenAIRE

    Domke, Justin

    2012-01-01

    Graphical models trained using maximum likelihood are a common tool for probabilistic inference of marginal distributions. However, this approach suffers difficulties when either the inference process or the model is approximate. In this paper, the inference process is first defined to be the minimization of a convex function, inspired by free energy approximations. Learning is then done directly in terms of the performance of the inference process at univariate marginal prediction. The main ...

  5. Steel Industry Marginal Opportunity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2005-09-01

    The Steel Industry Marginal Opportunity Analysis (PDF 347 KB) identifies opportunities for developing advanced technologies and estimates both the necessary funding and the potential payoff. This analysis determines what portion of the energy bandwidth can be captured through the adoption of state-of-the-art technology and practices. R&D opportunities for addressing the remainder of the bandwidth are characterized and plotted on a marginal opportunity curve.

  6. Volume definition system for treatment planning

    International Nuclear Information System (INIS)

    Alakuijala, Jyrki; Pekkarinen, Ari; Puurunen, Harri

    1997-01-01

    Purpose: Volume definition is a difficult and time consuming task in 3D treatment planning. We have studied a systems approach for constructing an efficient and reliable set of tools for volume definition. Our intent is to automate body outline, air cavities and bone volume definition and accelerate definition of other anatomical structures. An additional focus is on assisting in definition of CTV and PTV. The primary goals of this work are to cut down the time used in contouring and to improve the accuracy of volume definition. Methods: We used the following tool categories: manual, semi-automatic, automatic, structure management, target volume definition, and visualization tools. The manual tools include mouse contouring tools with contour editing possibilities and painting tools with a scaleable circular brush and an intelligent brush. The intelligent brush adapts its shape to CT value boundaries. The semi-automatic tools consist of edge point chaining, classical 3D region growing of single segment and competitive volume growing of multiple segments. We tuned the volume growing function to take into account both local and global region image values, local volume homogeneity, and distance. Heuristic seeding followed with competitive volume growing finds the body outline, couch and air automatically. The structure management tool stores ICD-O coded structures in a database. The codes have predefined volume growing parameters and thus are able to accommodate the volume growing dissimilarity function for different volume types. The target definition tools include elliptical 3D automargin for CTV to PTV transformation and target volume interpolation and extrapolation by distance transform. Both the CTV and the PTV can overlap with anatomical structures. Visualization tools show the volumes as contours or color wash overlaid on an image and displays voxel rendering or translucent triangle mesh rendering in 3D. Results: The competitive volume growing speeds up the

  7. Prostate and seminal vesicle volume based consideration of prostate cancer patients for treatment with 3D-conformal or intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Nandanuri M. S.; Nori, Dattatreyudu; Chang, Hyesook; Lange, Christopher S.; Ravi, Akkamma [Department of Radiation Oncology, New York Hospital Queens, Flushing, New York 11355 (United States); Department of Radiation Oncology, State University of New York Downstate Medical Center, Brooklyn, New York 11203 (United States); Department of Radiation Oncology, New York Hospital Queens, Flushing, New York 11355 (United States)

    2010-07-15

    Purpose: The purpose of this article was to determine the suitability of the prostate and seminal vesicle volumes as factors to consider patients for treatment with image-guided 3D-conformal radiation therapy (3D-CRT) or intensity-modulated radiation therapy (IMRT), using common dosimetry parameters as comparison tools. Methods: Dosimetry of 3D and IMRT plans for 48 patients was compared. Volumes of prostate, SV, rectum, and bladder, and prescriptions were the same for both plans. For both 3D and IMRT plans, expansion margins to prostate+SV (CTV) and prostate were 0.5 cm posterior and superior and 1 cm in other dimensions to create PTV and CDPTV, respectively. Six-field 3D plans were prepared retrospectively. For 3D plans, an additional 0.5 cm margin was added to PTV and CDPTV. Prescription for both 3D and IMRT plans was the same: 45 Gy to CTV followed by a 36 Gy boost to prostate. Dosimetry parameters common to 3D and IMRT plans were used for comparison: Mean doses to prostate, CDPTV, SV, rectum, bladder, and femurs; percent volume of rectum and bladder receiving 30 (V30), 50 (V50), and 70 Gy (V70), dose to 30% of rectum and bladder, minimum and maximum point dose to CDPTV, and prescription dose covering 95% of CDPTV (D95). Results: When the data for all patients were combined, mean dose to prostate and CDPTV was higher with 3D than IMRT plans (P<0.01). Mean D95 to CDPTV was the same for 3D and IMRT plans (P>0.2). On average, among all cases, the minimum point dose was less for 3D-CRT plans and the maximum point dose was greater for 3D-CRT than for IMRT (P<0.01). Mean dose to 30% rectum with 3D and IMRT plans was comparable (P>0.1). V30 was less (P<0.01), V50 was the same (P>0.2), and V70 was more (P<0.01) for rectum with 3D than IMRT plans. Mean dose to bladder was less with 3D than IMRT plans (P<0.01). V30 for bladder with 3D plans was less than that of IMRT plans (P<0.01). V50 and V70 for 3D plans were the same for 3D and IMRT plans (P>0.2). Mean dose to femurs

  8. Comparison of doses according to change of bladder volume in treatment of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kyung Tae [Dept. of Radiologic Technology, Dongnam Health University, Suwon (Korea, Republic of); Min, Jung Whan [Dept. of Radiological Technology, Shingu University, Seongnam (Korea, Republic of)

    2017-09-15

    In the case of radiation therapy for prostate cancer, a balloon infused with a certain amount of air through the anus is used to reduce rectal dose. Because of the reason, radiation therapy for prostate cancer has acquired CBCT for daily image induction. In order to maintain the anatomical structure most similar to the first CT taken before treatment, it is pretreated, but it can not be said to be perfectly consistent. In two actual treatment regimens, the volume of the bladder was measured as 45.82 cc and 63.43 cc, and the equivalent diameter was 4.4 cm and 4.9 cm. As a result of this study, the mean volume of the bladder was estimated to be 56.2 cc, 105.6 cc by 20 CBCT. The mean dose of CBCT was 1.74% and the mean Bladder mean dose was 96.67%. In case B, PTV mean dose was 4.31%, Bladder mean Dose was estimated to be 97.35%. The changes in the volume of the bladder resulted in changes in the dose of PTV and bladder. The correlation coefficient of bladder dose according to the change of bladder volume showed linearity of mean dose R2= -0.94. The correlation coefficient of the PTV dose according to the volume change of the bladder showed linearity of mean dose R2= 0.04. It was found that the dose change of PTV was larger than that of bladder according to the change of bladder volume.

  9. Difference in target definition using three different methods to include respiratory motion in radiotherapy of lung cancer.

    Science.gov (United States)

    Sloth Møller, Ditte; Knap, Marianne Marquard; Nyeng, Tine Bisballe; Khalil, Azza Ahmed; Holt, Marianne Ingerslev; Kandi, Maria; Hoffmann, Lone

    2017-11-01

    Minimizing the planning target volume (PTV) while ensuring sufficient target coverage during the entire respiratory cycle is essential for free-breathing radiotherapy of lung cancer. Different methods are used to incorporate the respiratory motion into the PTV. Fifteen patients were analyzed. Respiration can be included in the target delineation process creating a respiratory GTV, denoted iGTV. Alternatively, the respiratory amplitude (A) can be measured based on the 4D-CT and A can be incorporated in the margin expansion. The GTV expanded by A yielded GTV + resp, which was compared to iGTV in terms of overlap. Three methods for PTV generation were compared. PTV del (delineated iGTV expanded to CTV plus PTV margin), PTV σ (GTV expanded to CTV and A was included as a random uncertainty in the CTV to PTV margin) and PTV ∑ (GTV expanded to CTV, succeeded by CTV linear expansion by A to CTV + resp, which was finally expanded to PTV ∑ ). Deformation of tumor and lymph nodes during respiration resulted in volume changes between the respiratory phases. The overlap between iGTV and GTV + resp showed that on average 7% of iGTV was outside the GTV + resp implying that GTV + resp did not capture the tumor during the full deformable respiration cycle. A comparison of the PTV volumes showed that PTV σ was smallest and PTV Σ largest for all patients. PTV σ was in mean 14% (31 cm 3 ) smaller than PTV del , while PTV del was 7% (20 cm 3 ) smaller than PTV Σ . PTV σ yields the smallest volumes but does not ensure coverage of tumor during the full respiratory motion due to tumor deformation. Incorporating the respiratory motion in the delineation (PTV del ) takes into account the entire respiratory cycle including deformation, but at the cost, however, of larger treatment volumes. PTV Σ should not be used, since it incorporates the disadvantages of both PTV del and PTV σ .

  10. Volcanic passive margins: another way to break up continents.

    Science.gov (United States)

    Geoffroy, L; Burov, E B; Werner, P

    2015-10-07

    Two major types of passive margins are recognized, i.e. volcanic and non-volcanic, without proposing distinctive mechanisms for their formation. Volcanic passive margins are associated with the extrusion and intrusion of large volumes of magma, predominantly mafic, and represent distinctive features of Larges Igneous Provinces, in which regional fissural volcanism predates localized syn-magmatic break-up of the lithosphere. In contrast with non-volcanic margins, continentward-dipping detachment faults accommodate crustal necking at both conjugate volcanic margins. These faults root on a two-layer deformed ductile crust that appears to be partly of igneous nature. This lower crust is exhumed up to the bottom of the syn-extension extrusives at the outer parts of the margin. Our numerical modelling suggests that strengthening of deep continental crust during early magmatic stages provokes a divergent flow of the ductile lithosphere away from a central continental block, which becomes thinner with time due to the flow-induced mechanical erosion acting at its base. Crustal-scale faults dipping continentward are rooted over this flowing material, thus isolating micro-continents within the future oceanic domain. Pure-shear type deformation affects the bulk lithosphere at VPMs until continental breakup, and the geometry of the margin is closely related to the dynamics of an active and melting mantle.

  11. Evaluation of motion management strategies based on required margins

    International Nuclear Information System (INIS)

    Sawkey, D; Svatos, M; Zankowski, C

    2012-01-01

    Strategies for delivering radiation to a moving lesion each require a margin to compensate for uncertainties in treatment. These motion margins have been determined here by separating the total uncertainty into components. Probability density functions for the individual sources of uncertainty were calculated for ten motion traces obtained from the literature. Motion margins required to compensate for the center of mass motion of the clinical treatment volume were found by convolving the individual sources of uncertainty. For measurements of position at a frequency of 33 Hz, system latency was the dominant source of positional uncertainty. Averaged over the ten motion traces, the motion margin for tracking with a latency of 200 ms was 4.6 mm. Gating with a duty cycle of 33% required a mean motion margin of 3.2–3.4 mm, and tracking with a latency of 100 ms required a motion margin of 3.1 mm. Feasible reductions in the effects of the sources of uncertainty, for example by using a simple prediction algorithm to anticipate the lesion position at the end of the latency period, resulted in a mean motion margin of 1.7 mm for tracking with a latency of 100 ms, 2.4 mm for tracking with a latency of 200 ms, and 2.1–2.2 mm for the gating strategies with duty cycles of 33%. A crossover tracking latency of 150 ms was found, below which tracking strategies could take advantage of narrower motion margins than gating strategies. The methods described here provide a means to guide selection of a motion management strategy for a given patient. (paper)

  12. Dosimetric Advantages of Midventilation Compared With Internal Target Volume for Radiation Therapy of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lens, Eelco, E-mail: e.lens@amc.uva.nl; Horst, Astrid van der; Versteijne, Eva; Tienhoven, Geertjan van; Bel, Arjan

    2015-07-01

    Purpose: The midventilation (midV) approach can be used to take respiratory-induced pancreatic tumor motion into account during radiation therapy. In this study, the dosimetric consequences for organs at risk and tumor coverage of using a midV approach compared with using an internal target volume (ITV) were investigated. Methods and Materials: For each of the 18 patients, 2 treatment plans (25 × 2.0 Gy) were created, 1 using an ITV and 1 using a midV approach. The midV dose distribution was blurred using the respiratory-induced motion from 4-dimensional computed tomography. The resulting planning target volume (PTV) coverage for this blurred dose distribution was analyzed; PTV coverage was required to be at least V{sub 95%} >98%. In addition, the change in PTV size and the changes in V{sub 10Gy}, V{sub 20Gy}, V{sub 30Gy}, V{sub 40Gy}, D{sub mean} and D{sub 2cc} for the stomach and for the duodenum were analyzed; differences were tested for significance using the Wilcoxon signed-rank test. Results: Using a midV approach resulted in sufficient target coverage. A highly significant PTV size reduction of 13.9% (P<.001) was observed. Also, all dose parameters for the stomach and duodenum, except the D{sub 2cc} of the duodenum, improved significantly (P≤.002). Conclusions: By using the midV approach to account for respiratory-induced tumor motion, a significant PTV reduction and significant dose reductions to the stomach and to the duodenum can be achieved when irradiating pancreatic tumors.

  13. Dosimetric Advantages of Midventilation Compared With Internal Target Volume for Radiation Therapy of Pancreatic Cancer

    International Nuclear Information System (INIS)

    Lens, Eelco; Horst, Astrid van der; Versteijne, Eva; Tienhoven, Geertjan van; Bel, Arjan

    2015-01-01

    Purpose: The midventilation (midV) approach can be used to take respiratory-induced pancreatic tumor motion into account during radiation therapy. In this study, the dosimetric consequences for organs at risk and tumor coverage of using a midV approach compared with using an internal target volume (ITV) were investigated. Methods and Materials: For each of the 18 patients, 2 treatment plans (25 × 2.0 Gy) were created, 1 using an ITV and 1 using a midV approach. The midV dose distribution was blurred using the respiratory-induced motion from 4-dimensional computed tomography. The resulting planning target volume (PTV) coverage for this blurred dose distribution was analyzed; PTV coverage was required to be at least V 95% >98%. In addition, the change in PTV size and the changes in V 10Gy , V 20Gy , V 30Gy , V 40Gy , D mean and D 2cc for the stomach and for the duodenum were analyzed; differences were tested for significance using the Wilcoxon signed-rank test. Results: Using a midV approach resulted in sufficient target coverage. A highly significant PTV size reduction of 13.9% (P<.001) was observed. Also, all dose parameters for the stomach and duodenum, except the D 2cc of the duodenum, improved significantly (P≤.002). Conclusions: By using the midV approach to account for respiratory-induced tumor motion, a significant PTV reduction and significant dose reductions to the stomach and to the duodenum can be achieved when irradiating pancreatic tumors

  14. Tip-leakage cavitation in the clearance of a 2D hydrofoil with fillets: high-speed visualization and PIV/PTV measurements

    Science.gov (United States)

    Zapryagaev, Ivan I.; Timoshevskiy, Mikhail V.; Pervunin, Konstantin S.

    2017-09-01

    Tip-clearance cavitation is one of the most aggressive forms of cavitation as it can cause surface erosion of hydraulic machinery elements and, as a result, their fatigue damage and disturb designed operating conditions. At present, the literature lacks for detailed experimental data on the inception and development of this type of cavitation at various flow conditions. In the paper, a tip-leakage cavitation occurring in the clearance between an end face of a 2D hydrofoil (a scaled-down model of guide vanes (GV) of a Francis turbine) and a transparent wall of the test section was studied. The experiments were carried out for different cavitating regimes on the cavitation number and two attack angles of 3° and 9°, with the gap size (tip clearance width) varied in the range from 0.4 to 0.8 mm. In order to determine the cavitation inception conditions and investigate the dynamics of the tip-leakage cavitation, a high-speed visualization was applied. A modified PIV/PTV technique with a diverging laser beam instead of a laser light sheet was used to measure the mean velocity distributions within the gap. It was shown that the cavitation pattern on the suction side of the GV model impacts the dynamics of the leakage flow in the gap but does not affect the sheet cavity formed close to the foil leading edge in the clearance as well as its size and dynamics. When the gap size is increased, the tip-leakage cavitation initiates at higher cavitation numbers or, in other words, conditions for the cavitation occurrence become more favorable.

  15. The Marginal Source of Finance

    OpenAIRE

    Lindhe, Tobias

    2002-01-01

    This paper addresses the ongoingdebate on which view of equity, traditional or new, that best describes firm behavior. According to the traditional view, the marginal source of finance is new equity, whereas under to the new view, marginal financing comes from retained earnings. In the theoretical part, we set up a model where the firm faces a cost of adjusting the dividend level because of an aggravated free cash flow problem. The existence of such a cost - which has been used in arguing the...

  16. Impact of Millimeter-Level Margins on Peripheral Normal Brain Sparing for Gamma Knife Radiosurgery

    International Nuclear Information System (INIS)

    Ma, Lijun; Sahgal, Arjun; Larson, David A.; Pinnaduwage, Dilini; Fogh, Shannon; Barani, Igor; Nakamura, Jean; McDermott, Michael; Sneed, Penny

    2014-01-01

    Purpose: To investigate how millimeter-level margins beyond the gross tumor volume (GTV) impact peripheral normal brain tissue sparing for Gamma Knife radiosurgery. Methods and Materials: A mathematical formula was derived to predict the peripheral isodose volume, such as the 12-Gy isodose volume, with increasing margins by millimeters. The empirical parameters of the formula were derived from a cohort of brain tumor and surgical tumor resection cavity cases (n=15) treated with the Gamma Knife Perfexion. This was done by first adding margins from 0.5 to 3.0 mm to each individual target and then creating for each expanded target a series of treatment plans of nearly identical quality as the original plan. Finally, the formula was integrated with a published logistic regression model to estimate the treatment-induced complication rate for stereotactic radiosurgery when millimeter-level margins are added. Results: Confirmatory correlation between the nominal target radius (ie, R T ) and commonly used maximum target size was found for the studied cases, except for a few outliers. The peripheral isodose volume such as the 12-Gy volume was found to increase exponentially with increasing Δ/R T , where Δ is the margin size. Such a curve fitted the data (logarithmic regression, R 2 >0.99), and the 12-Gy isodose volume was shown to increase steeply with a 0.5- to 3.0-mm margin applied to a target. For example, a 2-mm margin on average resulted in an increase of 55% ± 16% in the 12-Gy volume; this corresponded to an increase in the symptomatic necrosis rate of 6% to 25%, depending on the Δ/R T values for the target. Conclusions: Millimeter-level margins beyond the GTV significantly impact peripheral normal brain sparing and should be applied with caution. Our model provides a rapid estimate of such an effect, particularly for large and/or irregularly shaped targets

  17. Characterizing Convexity of Games using Marginal Vectors

    NARCIS (Netherlands)

    van Velzen, S.; Hamers, H.J.M.; Norde, H.W.

    2003-01-01

    In this paper we study the relation between convexity of TU games and marginal vectors.We show that if specfic marginal vectors are core elements, then the game is convex.We characterize sets of marginal vectors satisfying this property, and we derive the formula for the minimum number of marginal

  18. Marginality and Variability in Esperanto.

    Science.gov (United States)

    Brent, Edmund

    This paper discusses Esperanto as a planned language and refutes three myths connected to it, namely, that Esperanto is achronical, atopical, and apragmatic. The focus here is on a synchronic analysis. Synchronic variability is studied with reference to the structuralist determination of "marginality" and the dynamic linguistic…

  19. Texas curve margin of safety.

    Science.gov (United States)

    2013-01-01

    This software can be used to assist with the assessment of margin of safety for a horizontal curve. It is intended for use by engineers and technicians responsible for safety analysis or management of rural highway pavement or traffic control devices...

  20. Ethnographies of marginality [Review article

    NARCIS (Netherlands)

    Beuving, J.J.

    2016-01-01

    Africanist discourse today displays a strong, widespread and growing sense of optimism about Africa's economic future. After decades of decline and stagnation in which Africa found itself reduced to the margins of the global economic stage, upbeat Afro-optimism seems fully justified. One only needs

  1. Profit margins in Japanese retailing

    NARCIS (Netherlands)

    J.C.A. Potjes; A.R. Thurik (Roy)

    1993-01-01

    textabstractUsing a rich data source, we explain differences and developments in profit margins of medium-sized stores in Japan. We conclude that the protected environment enables the retailer to pass on all operating costs to the customers and to obtain a relatively high basic income. High service

  2. Pushing the Margins of Responsibility

    DEFF Research Database (Denmark)

    Santoni de Sio, Filippo; Di Nucci, Ezio

    2018-01-01

    David Shoemaker has claimed that a binary approach to moral responsibility leaves out something important, namely instances of marginal agency, cases where agents seem to be eligible for some responsibility responses but not others. In this paper we endorse and extend Shoemaker’s approach by pres...

  3. Comparison of investigator-delineated gross tumor volumes and quality assurance in pancreatic cancer: Analysis of the pretrial benchmark case for the SCALOP trial.

    Science.gov (United States)

    Fokas, Emmanouil; Clifford, Charlotte; Spezi, Emiliano; Joseph, George; Branagan, Jennifer; Hurt, Chris; Nixon, Lisette; Abrams, Ross; Staffurth, John; Mukherjee, Somnath

    2015-12-01

    To evaluate the variation in investigator-delineated volumes and assess plans from the radiotherapy trial quality assurance (RTTQA) program of SCALOP, a phase II trial in locally advanced pancreatic cancer. Participating investigators (n=25) outlined a pre-trial benchmark case as per RT protocol, and the accuracy of investigators' GTV (iGTV) and PTV (iPTV) was evaluated, against the trials team-defined gold standard GTV (gsGTV) and PTV (gsPTV), using both qualitative and geometric analyses. The median Jaccard Conformity Index (JCI) and Geographical Miss Index (GMI) were calculated. Participating RT centers also submitted a radiotherapy plan for this benchmark case, which was centrally reviewed against protocol-defined constraints. Twenty-five investigator-defined contours were evaluated. The median JCI and GMI of iGTVs were 0.57 (IQR: 0.51-0.65) and 0.26 (IQR: 0.15-0.40). For iPTVs, these were 0.75 (IQR: 0.71-0.79) and 0.14 (IQR: 0.11-0.22) respectively. Qualitative analysis showed largest variation at the tumor edges and failure to recognize a peri-pancreatic lymph node. There were no major protocol deviations in RT planning, but three minor PTV coverage deviations were identified. . SCALOP demonstrated considerable variation in iGTV delineation. RTTQA workshops and real-time central review of delineations are needed in future trials. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Contributions to knowledge of the continental margin of Uruguay. Uruguayan continental margin: Physiographic and seismic analysis

    International Nuclear Information System (INIS)

    Preciozzi, F

    2014-01-01

    This work is about the kind of continental margins such as a )Atlantic type passive margins which can be hard or soft b) An active or Pacific margins that because of the very frequent earthquakes develop a morphology dominated by tectonic processes. The Uruguayan continental margin belongs to a soft Atlantic margin

  5. Margins for geometric uncertainty around organs at risk in radiotherapy

    International Nuclear Information System (INIS)

    McKenzie, Alan; Herk, Marcel van; Mijnheer, Ben

    2002-01-01

    Background and purpose: ICRU Report 62 suggests drawing margins around organs at risk (ORs) to produce planning organ at risk volumes (PRVs) to account for geometric uncertainty in the radiotherapy treatment process. This paper proposes an algorithm for drawing such margins, and compares the recommended margin widths with examples from clinical practice and discusses the limitations of the approach. Method: The use of the PRV defined in this way is that, despite the geometric uncertainties, the dose calculated within the PRV by the treatment planning system can be used to represent the dose in the OR with a certain confidence level. A suitable level is where, in the majority of cases (90%), the dose-volume histogram of the PRV will not under-represent the high-dose components in the OR. In order to provide guidelines on how to do this in clinical practice, this paper distinguishes types of OR in terms of the tolerance doses relative to the prescription dose and suggests appropriate margins for serial-structure and parallel-structure ORs. Results: In some instances of large and parallel ORs, the clinician may judge that the complication risk in omitting a margin is acceptable. Otherwise, for all types of OR, systematic, treatment preparation uncertainties may be accommodated by an OR→PRV margin width of 1.3Σ. Here, Σ is the standard deviation of the combined systematic (treatment preparation) uncertainties. In the case of serial ORs or small, parallel ORs, the effects of blurring caused by daily treatment execution errors (set-up and organ motion) should be taken into account. Near a region of high dose, blurring tends to shift the isodoses away from the unblurred edge as shown on the treatment planning system by an amount that may be represented by 0.5σ. This margin may be used either to increase or to decrease the margin already calculated for systematic uncertainties, depending upon the size of the tolerance dose relative to the detailed planned dose

  6. Margins related to equipment design

    International Nuclear Information System (INIS)

    Devos, J.

    1994-01-01

    Safety margins related to design of reactor equipment are defined according to safety regulations. Advanced best estimate methods are proposed including some examples which were computed and compared to experimental results. Best estimate methods require greater computation effort and more material data but give better variable accuracy and need careful experimental validation. Simplified methods compared to the previous are less sensitive to material data, sometimes are more accurate but very long to elaborate

  7. Indigenous women's voices: marginalization and health.

    Science.gov (United States)

    Dodgson, Joan E; Struthers, Roxanne

    2005-10-01

    Marginalization may affect health care delivery. Ways in which indigenous women experienced marginalization were examined. Data from 57 indigenous women (18 to 65 years) were analyzed for themes. Three themes emerged: historical trauma as lived marginalization, biculturalism experienced as marginalization, and interacting within a complex health care system. Experienced marginalization reflected participants' unique perspective and were congruent with previous research. It is necessary for health care providers to assess the detrimental impact of marginalization on the health status of individuals and/or communities.

  8. An optimisation algorithm for determination of treatment margins around moving and deformable targets

    International Nuclear Information System (INIS)

    Redpath, Anthony Thomas; Muren, Ludvig Paul

    2005-01-01

    Purpose: Determining treatment margins for inter-fractional motion of moving and deformable clinical target volumes (CTVs) remains a major challenge. This paper describes and applies an optimisation algorithm designed to derive such margins. Material and methods: The algorithm works by expanding the CTV, as determined from a pre-treatment or planning scan, to enclose the CTV positions observed during treatment. CTV positions during treatment may be obtained using, for example, repeat CT scanning and/or repeat electronic portal imaging (EPI). The algorithm can be applied to both individual patients and to a set of patients. The margins derived will minimise the excess volume outside the envelope that encloses all observed CTV positions (the CTV envelope). Initially, margins are set such that the envelope is more than adequately covered when the planning CTV is expanded. The algorithm uses an iterative method where the margins are sampled randomly and are then either increased or decreased randomly. The algorithm is tested on a set of 19 bladder cancer patients that underwent weekly repeat CT scanning and EPI throughout their treatment course. Results: From repeated runs on individual patients, the algorithm produces margins within a range of ±2 mm that lie among the best results found with an exhaustive search approach, and that agree within 3 mm with margins determined by a manual approach on the same data. The algorithm could be used to determine margins to cover any specified geometrical uncertainty, and allows for the determination of reduced margins by relaxing the coverage criteria, for example disregarding extreme CTV positions, or an arbitrarily selected volume fraction of the CTV envelope, and/or patients with extreme geometrical uncertainties. Conclusion: An optimisation approach to margin determination is found to give reproducible results within the accuracy required. The major advantage with this algorithm is that it is completely empirical, and it is

  9. Marginalism, quasi-marginalism and critical phenomena in micellar solutions

    International Nuclear Information System (INIS)

    Reatto, L.

    1986-01-01

    The observed nonuniversal critical behaviour of some micellar solutions is interpreted in terms of quasi-marginalism, i.e. the presence of a coupling which scales with an exponent very close to the spatial dimensionality. This can give rise to a preasymptotic region with varying effective critical exponents with a final crossover to the Ising ones. The reduced crossover temperature is estimated to be below 10 -6 . The exponents β and γ measured in C 12 e 5 are in good agreement with the scaling law expected to hold for the effective exponents. The model considered by Shnidman is found unable to explain the nonuniversal critical behaviour

  10. Megavoltage conebeam CT cine as final verification of treatment plan in lung stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Kudithipudi, Vijay; Gayou, Olivier; Colonias, Athanasios

    2016-01-01

    To analyse the clinical impact of megavoltage conebeam computed tomography (MV-CBCT) cine on internal target volume (ITV) coverage in lung stereotactic body radiotherapy (SBRT). One hundred and six patients received lung SBRT. All underwent 4D computed tomography simulation followed by treatment via image guided 3D conformal or intensity modulated radiation. Prior to SBRT, all patients underwent MV-CBCT cine, in which raw projections are displayed as beam's-eye-view fluoroscopic series with the planning target volume (PTV) projected onto each image, enabling verification of tumour motion relative to the PTV and assessment of adequacy of treatment margin. Megavoltage conebeam computed tomography cine was completed 1–2 days prior to SBRT. Four patients (3.8%) had insufficient ITV coverage inferiorly at cine review. All four plans were changed by adding 5 mm on the PTV margin inferiorly. The mean change in PTV volumes was 3.9 cubic centimetres (cc) (range 1.85–6.32 cc). Repeat cine was performed after plan modification to ensure adequate PTV coverage in the modified plans. PTV margin was adequate in the majority of patients with this technique. MV-CBCT cine did show insufficient coverage in a small subset of patients. Insufficient PTV margins may be a function of 4D CT simulation inadequacies or deficiencies in visualizing the ITV inferior border in the full-inhale phase. MV-CBCT cine is a valuable tool for final verification of PTV margins.

  11. Reliabilityy and operating margins of LWR fuels

    International Nuclear Information System (INIS)

    Strasser, A.A.; Lindquist, K.O.

    1977-01-01

    The margins to fuel thermal operating limits under normal and accident conditions are key to plant operating flexibility and impact on availability and capacity factor. Fuel performance problems that do not result in clad breach, can reduce these margins. However, most have or can be solved with design changes. Regulatory changes have been major factors in eroding these margins. Various methods for regaining the margins are discussed

  12. Highly Conformal Craniospinal Radiotherapy Techniques Can Underdose the Cranial Clinical Target Volume if Leptomeningeal Extension through Skull Base Exit Foramina is not Contoured.

    Science.gov (United States)

    Noble, D J; Ajithkumar, T; Lambert, J; Gleeson, I; Williams, M V; Jefferies, S J

    2017-07-01

    Craniospinal irradiation (CSI) remains a crucial treatment for patients with medulloblastoma. There is uncertainty about how to manage meningeal surfaces and cerebrospinal fluid (CSF) that follows cranial nerves exiting skull base foramina. The purpose of this study was to assess plan quality and dose coverage of posterior cranial fossa foramina with both photon and proton therapy. We analysed the radiotherapy plans of seven patients treated with CSI for medulloblastoma and primitive neuro-ectodermal tumours and three with ependymoma (total n = 10). Four had been treated with a field-based technique and six with TomoTherapy™. The internal acoustic meatus (IAM), jugular foramen (JF) and hypoglossal canal (HC) were contoured and added to the original treatment clinical target volume (Plan_CTV) to create a Test_CTV. This was grown to a test planning target volume (Test_PTV) for comparison with a Plan_PTV. Using Plan_CTV and Plan_PTV, proton plans were generated for all 10 cases. The following dosimetry data were recorded: conformity (dice similarity coefficient) and homogeneity index (D 2  - D 98 /D 50 ) as well as median and maximum dose (D 2% ) to Plan_PTV, V 95% and minimum dose (D 99.9% ) to Plan_CTV and Test_CTV and Plan_PTV and Test_PTV, V 95% and minimum dose (D 98% ) to foramina PTVs. Proton and TomoTherapy™ plans were more conformal (0.87, 0.86) and homogeneous (0.07, 0.04) than field-photon plans (0.79, 0.17). However, field-photon plans covered the IAM, JF and HC PTVs better than proton plans (P = 0.002, 0.004, 0.003, respectively). TomoTherapy™ plans covered the IAM and JF better than proton plans (P = 0.000, 0.002, respectively) but the result for the HC was not significant. Adding foramen CTVs/PTVs made no difference for field plans. The mean D min dropped 3.4% from Plan_PTV to Test_PTV for TomoTherapy™ (not significant) and 14.8% for protons (P = 0.001). Highly conformal CSI techniques may underdose meninges and CSF in the dural

  13. Silenced, Silence, Silent: Motherhood in the Margins

    Science.gov (United States)

    Carpenter, Lorelei; Austin, Helena

    2007-01-01

    This project explores the experiences of women who mother children with ADHD. The authors use the metaphor of the text and the margin. The text is the "motherhood myth" that describes a particular sort of "good" mothering. The margin is the space beyond that text. This marginal space is inhabited by some or all of the mothers they spoke with, some…

  14. 12 CFR 220.4 - Margin account.

    Science.gov (United States)

    2010-01-01

    ... Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM CREDIT BY... securities. The required margin on a net long or net short commitment in a when-issued security is the margin...) Interest charged on credit maintained in the margin account; (ii) Premiums on securities borrowed in...

  15. Margin to CTV in simultaneous irradiation of treatment volumes attache to various anatomical frameworks: The paradigm of the CA. Of prostate in high risk with indication of lymph node irradiation; Margen al CTV en irradiacion simultanea de volumenes de tratamiento adscritos a distintos marcos anatomicos: El paradigma del CA. de prostata de alto riesgo con indicacion de irradiacion ganglionar

    Energy Technology Data Exchange (ETDEWEB)

    Sanz Freire, C. J.; Perez Echaguen, S.; Collado chamorro, P.; Diaz Pascual, V.; Vazquez Galinanes, A.; Ossola Lentati, G. A.

    2013-07-01

    The triple objective of this work is: 1 check the effect on the positioning of the GGPP of corrections on the position of the prostate in simultaneous irradiation guided through daily image and its relationship with the filling of rectum and bladder 2. check if employees standard margins for CTV GGPP are valid for this technique 3 calculate the necessary extension of the margin to 2. is not verified. (Author)

  16. Safety margins in deterministic safety analysis

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    The concept of safety margins has acquired certain prominence in the attempts to demonstrate quantitatively the level of the nuclear power plant safety by means of deterministic analysis, especially when considering impacts from plant ageing and discovery issues. A number of international or industry publications exist that discuss various applications and interpretations of safety margins. The objective of this presentation is to bring together and examine in some detail, from the regulatory point of view, the safety margins that relate to deterministic safety analysis. In this paper, definitions of various safety margins are presented and discussed along with the regulatory expectations for them. Interrelationships of analysis input and output parameters with corresponding limits are explored. It is shown that the overall safety margin is composed of several components each having different origins and potential uses; in particular, margins associated with analysis output parameters are contrasted with margins linked to the analysis input. While these are separate, it is possible to influence output margins through the analysis input, and analysis method. Preserving safety margins is tantamount to maintaining safety. At the same time, efficiency of operation requires optimization of safety margins taking into account various technical and regulatory considerations. For this, basic definitions and rules for safety margins must be first established. (author)

  17. Anisotropic Margin Expansions in 6 Anatomic Directions for Oropharyngeal Image Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Yock, Adam D.; Garden, Adam S.; Court, Laurence E.; Beadle, Beth M.; Zhang, Lifei; Dong, Lei

    2013-01-01

    Purpose: The purpose of this work was to determine the expansions in 6 anatomic directions that produced optimal margins considering nonrigid setup errors and tissue deformation for patients receiving image-guided radiation therapy (IGRT) of the oropharynx. Methods and Materials: For 20 patients who had received IGRT to the head and neck, we deformably registered each patient's daily images acquired with a computed tomography (CT)-on-rails system to his or her planning CT. By use of the resulting vector fields, the positions of volume elements within the clinical target volume (CTV) (target voxels) or within a 1-cm shell surrounding the CTV (normal tissue voxels) on the planning CT were identified on each daily CT. We generated a total of 15,625 margins by dilating the CTV by 1, 2, 3, 4, or 5 mm in the posterior, anterior, lateral, medial, inferior, and superior directions. The optimal margins were those that minimized the relative volume of normal tissue voxels positioned within the margin while satisfying 1 of 4 geometric target coverage criteria and 1 of 3 population criteria. Results: Each pair of geometric target coverage and population criteria resulted in a unique, anisotropic, optimal margin. The optimal margin expansions ranged in magnitude from 1 to 5 mm depending on the anatomic direction of the expansion and on the geometric target coverage and population criteria. Typically, the expansions were largest in the medial direction, were smallest in the lateral direction, and increased with the demand of the criteria. The anisotropic margin resulting from the optimal set of expansions always included less normal tissue than did any isotropic margin that satisfied the same pair of criteria. Conclusions: We demonstrated the potential of anisotropic margins to reduce normal tissue exposure without compromising target coverage in IGRT to the head and neck

  18. Controlling marginally detached divertor plasmas

    Science.gov (United States)

    Eldon, D.; Kolemen, E.; Barton, J. L.; Briesemeister, A. R.; Humphreys, D. A.; Leonard, A. W.; Maingi, R.; Makowski, M. A.; McLean, A. G.; Moser, A. L.; Stangeby, P. C.

    2017-06-01

    A new control system at DIII-D has stabilized the inter-ELM detached divertor plasma state for H-mode in close proximity to the threshold for reattachment, thus demonstrating the ability to maintain detachment with minimal gas puffing. When the same control system was instead ordered to hold the plasma at the threshold (here defined as T e  =  5 eV near the divertor target plate), the resulting T e profiles separated into two groups with one group consistent with marginal detachment, and the other with marginal attachment. The plasma dithers between the attached and detached states when the control system attempts to hold at the threshold. The control system is upgraded from the one described in Kolemen et al (2015 J. Nucl. Mater. 463 1186) and it handles ELMing plasmas by using real time D α measurements to remove during-ELM slices from real time T e measurements derived from divertor Thomson scattering. The difference between measured and requested inter-ELM T e is passed to a PID (proportional-integral-derivative) controller to determine gas puff commands. While some degree of detachment is essential for the health of ITER’s divertor, more deeply detached plasmas have greater radiative losses and, at the extreme, confinement degradation, making it desirable to limit detachment to the minimum level needed to protect the target plate (Kolemen et al 2015 J. Nucl. Mater. 463 1186). However, the observed bifurcation in plasma conditions at the outer strike point with the ion B   ×  \

  19. An assessment of interfractional uterine and cervical motion: Implications for radiotherapy target volume definition in gynaecological cancer

    International Nuclear Information System (INIS)

    Taylor, Alexandra; Powell, Melanie E.B.

    2008-01-01

    Purpose: To assess interfractional movement of the uterus and cervix in patients with gynaecological cancer to aid selection of the internal margin for radiotherapy target volumes. Methods and materials: Thirty-three patients with gynaecological cancer had an MRI scan performed on two consecutive days. The two sets of T2-weighted axial images were co-registered, and the uterus and cervix outlined on each scan. Points were identified on the anterior uterine body (Point U), posterior cervix (Point C) and upper vagina (Point V). The displacement of each point in the antero-posterior (AP), supero-inferior (SI) and lateral directions between the two scans was measured. The changes in point position and uterine body angle were correlated with bladder volume and rectal diameter. Results: The mean difference (±1SD) in Point U position was 7 mm (±9.0) in the AP direction, 7.1 mm (±6.8) SI and 0.8 mm (±1.3) laterally. Mean Point C displacement was 4.1 mm (±4.4) SI, 2.7 mm (±2.8) AP, 0.3 (±0.8) laterally, and Point V was 2.6 mm (±3.0) AP and 0.3 mm (±1.0) laterally. There was correlation for uterine SI movement in relation to bladder filling, and for cervical and vaginal AP movement in relation to rectal filling. Conclusion: Large movements of the uterus can occur, particularly in the superior-inferior and anterior-posterior directions, but cervical displacement is less marked. Rectal filling may affect cervical position, while bladder filling has more impact on uterine body position, highlighting the need for specific instructions on bladder and rectal filling for treatment. We propose an asymmetrical margin with CTV-PTV expansion of the uterus, cervix and upper vagina of 15 mm AP, 15 mm SI and 7 mm laterally and expansion of the nodal regions and parametria by 7 mm in all directions

  20. Frequency Distribution of Second Solid Cancer Locations in Relation to the Irradiated Volume Among 115 Patients Treated for Childhood Cancer

    International Nuclear Information System (INIS)

    Diallo, Ibrahima; Haddy, Nadia; Adjadj, Elisabeth; Samand, Akhtar; Quiniou, Eric; Chavaudra, Jean; Alziar, Iannis; Perret, Nathalie; Guerin, Sylvie; Lefkopoulos, Dimitri; Vathaire, Florent de

    2009-01-01

    Purpose: To provide better estimates of the frequency distribution of second malignant neoplasm (SMN) sites in relation to previous irradiated volumes, and better estimates of the doses delivered to these sites during radiotherapy (RT) of the first malignant neoplasm (FMN). Methods and Materials: The study focused on 115 patients who developed a solid SMN among a cohort of 4581 individuals. The homemade software package Dos E G was used to estimate the radiation doses delivered to SMN sites during RT of the FMN. Three-dimensional geometry was used to evaluate the distances between the irradiated volume, for RT delivered to each FMN, and the site of the subsequent SMN. Results: The spatial distribution of SMN relative to the irradiated volumes in our cohort was as follows: 12% in the central area of the irradiated volume, which corresponds to the planning target volume (PTV), 66% in the beam-bordering region (i.e., the area surrounding the PTV), and 22% in regions located more than 5 cm from the irradiated volume. At the SMN site, all dose levels ranging from almost zero to >75 Gy were represented. A peak SMN frequency of approximately 31% was identified in volumes that received <2.5 Gy. Conclusion: A greater volume of tissues receives low or intermediate doses in regions bordering the irradiated volume with modern multiple-beam RT arrangements. These results should be considered for risk-benefit evaluations of RT.

  1. The Role of Seminal Vesicle Motion in Target Margin Assessment for Online Image-Guided Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Liang Jian; Wu Qiuwen; Yan Di

    2009-01-01

    Purpose: For patients with intermediate- and high-risk prostate cancer, the seminal vesicles (SVs) are included in the clinical target volume (CTV). The purposes of this study are to investigate interfraction motion characteristics of the SVs and determine proper margins for online computed tomography image guidance. Methods and Materials: Twenty-four patients, each with 16 daily helical computed tomography scans, were included in this study. A binary image mask was used for image registration to determine daily organ motion. Two online image-guided radiotherapy strategies (prostate only and prostate + SVs) were simulated in a hypofractionated scheme. Three margin designs were studied for both three-dimensional conformal radiotherapy and intensity-modulated radiotherapy (IMRT). In prostate-only guidance, Margin A was uniformly applied to the whole CTV, and Margin B was applied to the SVs with a fixed 3-mm prostate margin. In prostate plus SV guidance, Margin C was uniformly applied to the CTV. The minimum margins were sought to satisfy the criterion that minimum cumulative CTV dose be more than those of the planning target volume in the plan for greater than 95% of patients. Results: The prostate and SVs move significantly more in the anterior-posterior and superior-inferior than right-left directions. The anterior-posterior motion of the prostate and SVs correlated (R 2 = 0.7). The SVs move significantly more than the prostate. The minimum margins found were 2.5 mm for three-dimensional conformal radiotherapy and 4.5, 4.5, and 3.0 mm for Margins A, B, and C for IMRT, respectively. Margins for IMRT were larger, but the irradiated volume and doses to critical structures were smaller. Minimum margins of 4.5 mm to the SVs and 3 mm to the prostate are recommended for IMRT with prostate-only guidance. Conclusions: The SVs move independently from the prostate gland, and additional margins are necessary for image-guided radiotherapy

  2. Marginal cost application in the power industry

    International Nuclear Information System (INIS)

    Twardy, L.; Rusak, H.

    1994-01-01

    Two kind of marginal costs, the short-run and the long-run, are defined. The former are applied in conditions when the load increase is not accompanied neither by the increase of the transmission capacity not the installed capacity while the latter assume new investments to expand the power system. The long-run marginal costs be used to forecast optimized development of the system. They contain two main components: the marginal costs of capacity and the marginal costs of energy. When the long-run marginal costs are calculated, each component is considered for particular voltage levels, seasons of the year, hours of the day - selected depending on the system reliability factor as well as on its load level. In the market economy countries the long-run marginal costs can be used for setting up the electric energy tariffs. (author). 7 refs, 11 figs

  3. Tectonic signatures on active margins

    Science.gov (United States)

    Hogarth, Leah Jolynn

    High-resolution Compressed High-Intensity Radar Pulse (CHIRP) surveys offshore of La Jolla in southern California and the Eel River in northern California provide the opportunity to investigate the role of tectonics in the formation of stratigraphic architecture and margin morphology. Both study sites are characterized by shore-parallel tectonic deformation, which is largely observed in the structure of the prominent angular unconformity interpreted as the transgressive surface. Based on stratal geometry and acoustic character, we identify three sedimentary sequences offshore of La Jolla: an acoustically laminated estuarine unit deposited during early transgression, an infilling or "healing-phase" unit formed during the transgression, and an upper transparent unit. The estuarine unit is confined to the canyon edges in what may have been embayments during the last sea-level rise. The healing-phase unit appears to infill rough areas on the transgressive surface that may be related to relict fault structures. The upper transparent unit is largely controlled by long-wavelength tectonic deformation due to the Rose Canyon Fault. This unit is also characterized by a mid-shelf (˜40 m water depth) thickness high, which is likely a result of hydrodynamic forces and sediment grain size. On the Eel margin, we observe three distinct facies: a seaward-thinning unit truncated by the transgressive surface, a healing-phase unit confined to the edges of a broad structural high, and a highly laminated upper unit. The seaward-thinning wedge of sediment below the transgressive surface is marked by a number of channels that we interpret as distributary channels based on their morphology. Regional divergence of the sequence boundary and transgressive surface with up to ˜8 m of sediment preserved across the interfluves suggests the formation of subaerial accommodation during the lowstand. The healing-phase, much like that in southern California, appears to infill rough areas in the

  4. The marginal costs of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Tol, R.S.J.

    1999-01-01

    Estimates of the marginal costs of greenhouse gas emissions are on important input to the decision how much society would want to spend on greenhouse gas emission reduction. Marginal cost estimates in the literature range between $5 and $25 per ton of carbon. Using similar assumptions, the FUND model finds marginal costs of $9--23/tC, depending on the discount rate. If the aggregation of impacts over countries accounts for inequalities in income distribution or for risk aversion, marginal costs would rise by about a factor of 3. Marginal costs per region are an order of magnitude smaller than global marginal costs. The ratios between the marginal costs of CO 2 and those of CH 4 and N 2 O are roughly equal to the global warming potentials of these gases. The uncertainty about the marginal costs is large and right-skewed. The expected value of the marginal costs lies about 35% above the best guess, the 95-percentile about 250%

  5. On the evaluation of marginal expected shortfall

    DEFF Research Database (Denmark)

    Caporin, Massimiliano; Santucci de Magistris, Paolo

    2012-01-01

    In the analysis of systemic risk, Marginal Expected Shortfall may be considered to evaluate the marginal impact of a single stock on the market Expected Shortfall. These quantities are generally computed using log-returns, in particular when there is also a focus on returns conditional distribution....... In this case, the market log-return is only approximately equal to the weighed sum of equities log-returns. We show that the approximation error is large during turbulent market phases, with a subsequent impact on Marginal Expected Shortfall. We then suggest how to improve the evaluation of Marginal Expected...

  6. Assessment of seismic margin calculation methods

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.

    1989-03-01

    Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs

  7. Regional Marginal Abatement Cost Curves for NOx

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data underlying the figures included in the manuscript "Marginal abatement cost curve for NOx incorporating controls, renewable electricity, energy efficiency and...

  8. [Resection margins in conservative breast cancer surgery].

    Science.gov (United States)

    Medina Fernández, Francisco Javier; Ayllón Terán, María Dolores; Lombardo Galera, María Sagrario; Rioja Torres, Pilar; Bascuñana Estudillo, Guillermo; Rufián Peña, Sebastián

    2013-01-01

    Conservative breast cancer surgery is facing a new problem: the potential tumour involvement of resection margins. This eventuality has been closely and negatively associated with disease-free survival. Various factors may influence the likelihood of margins being affected, mostly related to the characteristics of the tumour, patient or surgical technique. In the last decade, many studies have attempted to find predictive factors for margin involvement. However, it is currently the new techniques used in the study of margins and tumour localisation that are significantly reducing reoperations in conservative breast cancer surgery. Copyright © 2012 AEC. Published by Elsevier Espana. All rights reserved.

  9. Gas-processing profit margin series begins in OGJ

    International Nuclear Information System (INIS)

    Kovacs, K.J.

    1991-01-01

    This paper reports on the bases and methods employed by the WK (Wright, Killen and Co, Houston) profit-margin indicator for U.S. gas-processing plants. Additionally, this article reviews the historical profitability of the gas-processing industry and key factors affecting these trends. Texas was selected as the most representative for the industry, reflecting the wide spectrum of gas-processing plants. The profit performance of Texas' gas plants is of special significance because of the large number of plants and high volume of NGL production in the region

  10. Marginal cost pricing of electricity

    International Nuclear Information System (INIS)

    Edsbaecker, G.

    1980-01-01

    The discipline is economics and the phenomenon is the power system. The purpose of this system is to produce, transmit and consume electricity in such a way that the sum of consumers and suppliers surplus in maximized. This is accomplished by the means of marginal cost pricing. The concepts of the power system and the relations prevailing between and among them are picked out, defined and analyzed in the frames of economic theory and operations research. Methods are developed aiming at efficient prices so that the short run function of the power system is managed in such a way that the sum of conumers and suppliers surplus is maximized within the framwork of this system, i.e. value of service of the power system is maximized. The task of developing such methods is accomplished subject to mixed production resources, transmission losses, periodic demand and also when there is lack of information concerning future and cost conditions. The main results are methods which take to account the conditions stated above. Methods not only allowing for traditional cost minimizing but also for maximation of value of service including a process of reaching optimum by gradual adaption when demand and cost curves are not known in advance. (author)

  11. Sequentially delivered boost plans are superior to simultaneously delivered plans in head and neck cancer when the boost volume is located further away from the parotid glands

    International Nuclear Information System (INIS)

    Lamers-Kuijper, Emmy; Heemsbergen, Wilma; Mourik, Anke van; Rasch, Coen

    2011-01-01

    Purpose: To find parameters that predict which head and neck patients benefit from a sequentially delivered boost treatment plan compared to a simultaneously delivered plan, with the aim to spare the salivary glands. Methods and materials: We evaluated 50 recently treated head and neck cancer patients. Apart from the clinical plan with a sequentially (SEQ) given boost using an Intensity Modulated Radiotherapy Technique (IMRT), a simultaneous integrated boost (SIB) technique plan was constructed with the same beam set-up. The mean dose to the parotid glands was calculated and compared. The elective nodal areas were bilateral in all cases, with a boost on either one side or both sides of the neck. Results: When the parotid gland volume and the Planning Target Volume (PTV) for the boost overlap there is on average a lower dose to the parotid gland with a SIB technique (-1.2 Gy), which is, however, not significant (p = 0.08). For all parotid glands with no boost PTV overlap, there is a benefit from a SEQ technique compared to a SIB technique for the gland evaluated (on average a 2.5 Gy lower dose to the parotid gland, p < 0.001). When the distance between gland and PTV is 0-1 cm, this difference is on average 0.8 Gy, for 1-2 cm distance 2.9 Gy and for glands with a distance greater than 2 cm, 3.3 Gy. When the lymph nodes on the evaluated side are also included in the boost PTV, however, this relationship between the distance and the gain of a SEQ seems less clear. Conclusions: A sequentially delivered boost technique results in a better treatment plan for most cases, compared to a simultaneous integrated boost IMRT technique, if the boost PTV is more than 1 cm away from at least one parotid gland.

  12. Categorical marginal models: quite extensive package for the estimation of marginal models for categorical data

    OpenAIRE

    Wicher Bergsma; Andries van der Ark

    2015-01-01

    A package accompanying the book Marginal Models for Dependent, Clustered, and Longitudinal Categorical Data by Bergsma, Croon, & Hagenaars, 2009. It’s purpose is fitting and testing of marginal models.

  13. P08.52 Proton therapy re-Irradiation in large-volume recurrent glioblastoma.

    Science.gov (United States)

    Amelio, D.; Widesott, L.; Vennarini, S.; Fellin, F.; Maines, F.; Righetto, R.; Lorentini, S.; Farace, P.; Schwarz, M.; Amichetti, M.

    2016-01-01

    Abstract Purpose: To report preliminary results of re-irradiation with proton therapy (PT) in large-volume recurrent glioblastoma (rGBM). Matherial/Methods: Between January and December 2015 ten patients (pts) with rGBM were re-irradiated with PT. All pts were previously treated with photon radiotherapy (60 Gy) with concomitant and adjuvant TMZ for 1–20 cycles (median, 7). Seven pts were re-irradiated at first relapse/progression. Four patients were re-irradiated after partial tumor resection. Median age and Karnofsky performance status at re-irradiation were 57 years (range, 41–68) and 80%, (range, 70–100), respectively. Median time between prior radiotherapy and PT was 9 months (range, 5–24). Target definition was based on CT, MR, and 18F-DOPA PET imaging. GTV included any area of contrast enhancement after contrast medium administration plus any pathological PET uptake regions. CTV was generated by adding to GTV a 3-mm uniform margin manually corrected in proximity of anatomical barriers. CTV was expanded by 4 mm to create PTV. Median PTV volume was 90 cc (range, 46–231). All pts received 36 GyRBE in 18 fractions. Four pts also received concomitant temozolomide (75 mg/m2/die, 7 days/week). All pts were treated with active beam scanning PT using 2–3 fields with single field optimization technique. Results: All pts completed the treatment without breaks. Registered acute side effects (according to Common Terminology Criteria for Adverse Events version 4.0 - CTCAE) include grade 1–2 skin erythema, alopecia, fatigue, conjunctivitis, concentration impairment, dysphasia, and headache. There were no grade 3 or higher toxicities. One patient developed grade 1 neutropenia. Five pts started PT under steroids (2–7 mg/daily); two of them reduced the dose during PT, while three kept the same steroids dose. None of remaining pts needed steroids therapy. Registered late side effects (according to CTCAE version 4.0) include grade 1–2 alopecia, fatigue

  14. Technical specification improvement through safety margin considerations

    International Nuclear Information System (INIS)

    Howard, R.C.; Jansen, R.L.

    1986-01-01

    Westinghouse has developed an approach for utilizing safety analysis margin considerations to improve plant operability through technical specification revision. This approach relies on the identification and use of parameter interrelations and sensitivities to identify acceptable operating envelopes. This paper summarizes technical specification activities to date and presents the use of safety margin considerations as another viable method to obtain technical specification improvement

  15. The homogeneous marginal utility of income assumption

    NARCIS (Netherlands)

    Demuynck, T.

    2015-01-01

    We develop a test to verify if every agent from a population of heterogeneous consumers has the same marginal utility of income function. This homogeneous marginal utility of income assumption is often (implicitly) used in applied demand studies because it has nice aggregation properties and

  16. Values and marginal preferences in international business

    NARCIS (Netherlands)

    Maseland, Robbert; van Hoorn, Andre

    2010-01-01

    In a recent paper in this journal, Maseland and van Hoorn argued that values surveys tend to conflate values and marginal preferences. This assertion has been challenged by Brewer and Venaik, who claim that the wording of most survey items does not suggest that these elicit marginal preferences.

  17. Exactly marginal deformations from exceptional generalised geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, Anthony [Merton College, University of Oxford,Merton Street, Oxford, OX1 4JD (United Kingdom); Mathematical Institute, University of Oxford,Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Gabella, Maxime [Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States); Graña, Mariana [Institut de Physique Théorique, CEA/Saclay,91191 Gif-sur-Yvette (France); Petrini, Michela [Sorbonne Université, UPMC Paris 05, UMR 7589, LPTHE,75005 Paris (France); Waldram, Daniel [Department of Physics, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2017-01-27

    We apply exceptional generalised geometry to the study of exactly marginal deformations of N=1 SCFTs that are dual to generic AdS{sub 5} flux backgrounds in type IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are parametrised by the space of chiral primary operators of conformal dimension three, while exactly marginal deformations correspond to quotienting this space by the complexified global symmetry group. We show how the supergravity analysis gives a geometric interpretation of the gauge theory results. The marginal deformations arise from deformations of generalised structures that solve moment maps for the generalised diffeomorphism group and have the correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the only symmetry of the background, all marginal deformations are exactly marginal. If the background possesses extra isometries, there are obstructions that come from fixed points of the moment maps. The exactly marginal deformations are then given by a further quotient by these extra isometries. Our analysis holds for any N=2 AdS{sub 5} flux background. Focussing on the particular case of type IIB Sasaki-Einstein backgrounds we recover the result that marginal deformations correspond to perturbing the solution by three-form flux at first order. In various explicit examples, we show that our expression for the three-form flux matches those in the literature and the obstruction conditions match the one-loop beta functions of the dual SCFT.

  18. Steep microbial boundstone-dominated plaform margins

    NARCIS (Netherlands)

    Kenter, J.A.M.; Harris, P.M.; Della Porta, G.P.

    2005-01-01

    Seaward progradation of several kilometers has been documented mostly for leeward margin low-angle carbonate slope systems with a dominant platform top sediment source. However, steep and high-relief margins fronting deep basins can also prograde and as such are somewhat perplexing. Characteristics

  19. Margin Requirements and Equity Option Returns

    DEFF Research Database (Denmark)

    Hitzemann, Steffen; Hofmann, Michael; Uhrig-Homburg, Marliese

    In equity option markets, traders face margin requirements both for the options themselves and for hedging-related positions in the underlying stock market. We show that these requirements carry a significant margin premium in the cross-section of equity option returns. The sign of the margin...... premium depends on demand pressure: If end-users are on the long side of the market, option returns decrease with margins, while they increase otherwise. Our results are statistically and economically significant and robust to different margin specifications and various control variables. We explain our...... findings by a model of funding-constrained derivatives dealers that require compensation for satisfying end-users’ option demand....

  20. Margin Requirements and Equity Option Returns

    DEFF Research Database (Denmark)

    Hitzemann, Steffen; Hofmann, Michael; Uhrig-Homburg, Marliese

    In equity option markets, traders face margin requirements both for the options themselves and for hedging-related positions in the underlying stock market. We show that these requirements carry a significant "margin premium" in the cross-section of equity option returns. The sign of the margin...... premium depends on demand pressure: If end-users are on the long side of the market, option returns decrease with margins, while they increase otherwise. Our results are statistically and economically significant and robust to different margin specifications and various control variables. We explain our...... findings by a model of funding-constrained derivatives dealers that require compensation for satisfying end-users’ option demand....

  1. MARGINS: Toward a novel science plan

    Science.gov (United States)

    Mutter, John C.

    A science plan to study continental margins has been in the works for the past 3 years, with almost 200 Earth scientists from a wide variety of disciplines gathering at meetings and workshops. Most geological hazards and resources are found at continental margins, yet our understanding of the processes that shape the margins is meager.In formulating this MARGINS research initiative, fundamental issues concerning our understanding of basic Earth-forming processes have arisen. It is clear that a business-as-usual approach will not solve the class of problems defined by the MARGINS program; the solutions demand approaches different from those used in the past. In many cases, a different class of experiment will be required, one that is well beyond the capability of individual principle investigators to undertake on their own. In most cases, broadly based interdisciplinary studies will be needed.

  2. Magmatic development of the outer Vøring Margin

    Science.gov (United States)

    Breivik, Asbjorn; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst; Murai, Yoshio

    2013-04-01

    The Vøring Plateau off mid-Norway is a volcanic passive margin, located north of the East Jan Mayen Fracture Zone (EJMFZ). Large volumes of magmatic rocks were emplaced during Early Eocene margin formation. In 2003, an ocean bottom seismometer survey was acquired on the Vøring and Lofoten margins. One profile crosses from the Vøring Plateau to the Vøring Spur, an oceanic plateau north of the EJMFZ. The P-wave data were modeled by ray-tracing in a 2D velocity model of the crust. The process behind the excess magmatism can be estimated by comparing seismic velocity (VP) with igneous thickness (H). This profile and two other profiles farther north show a positive H-VP correlation, consistent with a hot mantle reservoir of finite extent under the margin at breakup. However, during the first two million years, magma production appears to be augmented by a secondary process. By 51-51.5 Ma melting may be caused by elevated mantle temperature alone. Seismic stratigraphy around the Vøring Spur shows at least two inversion events, with the main episode tentatively in the Upper Miocene, apparently through igneous growth to create the up to 15 km crustal thickness. The H-VP correlation of the spur is low, indicating constant and moderate-degree mantle melting not tied to the breakup magmatism. The admittance function between bathymetry and free-air gravity shows that the high is near local isostatic equilibrium, discounting that compressional flexure at the EJMFZ shaped the high. We also find no evidence for the proposed Early Eocene triple junction in the area.

  3. Removal of 230Th and 231Pa at ocean margins

    International Nuclear Information System (INIS)

    Anderson, R.F.; Bacon, M.P.; Brewer, P.G.

    1983-01-01

    Uranium, thorium and protactinium isotopes were measured in particulate matter collected by sediment traps deployed in the Panama Basin and by in-situ filtration of large volumes of seawater in the Panama and Guatemala Basins. Concentrations of dissolved Th and Pa isotopes were determined by extraction onto MnO 2 adsorbers placed in line behind the filters in the in-situ pumping systems. Concentrations of dissolved 230 Th and 231 Pa in the Panama and Guatemala Basins are lower than in the open ocean, whereas dissolved 230 Th/ 231 Pa ratios are equal to, or slightly greater than, ratios in the open ocean. Particulate 230 Th/ 231 Pa ratios in the sediment trap samples ranged from 4 to 8, in contrast to ratios of 30 or more at the open ocean sites previously studied. Particles collected by filtration in the Panama Basin and nearest to the continental margin in the Guatemala Basin contained 230 Th/ 231 Pa ratios similar to the ratios in the sediment trap samples. The ratios increased with distance away from the continent. Suspended particles near the margin show no preference for adsorption of Th or Pa and therefore must be chemically different from particles in the open ocean, which show a strong preference for adsorption of Th. Ocean margins, as typified by the Panama and Guatemala Basins, are preferential sinks for 231 Pa relative to 230 Th. Furthermore, the margins are sinks for 230 Th and, to a greater extent, 231 Pa transported by horizontal mixing from the open ocean. (orig.)

  4. Re-appraisal of the Magma-rich versus Magma-poor Paradigm at Rifted Margins: consequences for breakup processes

    Science.gov (United States)

    Tugend, J.; Gillard, M.; Manatschal, G.; Nirrengarten, M.; Harkin, C. J.; Epin, M. E.; Sauter, D.; Autin, J.; Kusznir, N. J.; McDermott, K.

    2017-12-01

    Rifted margins are often classified based on their magmatic budget only. Magma-rich margins are commonly considered to have excess decompression melting at lithospheric breakup compared with steady state seafloor spreading while magma-poor margins have suppressed melting. New observations derived from high quality geophysical data sets and drill-hole data have revealed the diversity of rifted margin architecture and variable distribution of magmatism. Recent studies suggest, however, that rifted margins have more complex and polyphase tectono-magmatic evolutions than previously assumed and cannot be characterized based on the observed volume of magma alone. We compare the magmatic budget related to lithospheric breakup along two high-resolution long-offset deep reflection seismic profiles across the SE-Indian (magma-poor) and Uruguayan (magma-rich) rifted margins. Resolving the volume of magmatic additions is difficult. Interpretations are non-unique and several of them appear plausible for each case involving variable magmatic volumes and mechanisms to achieve lithospheric breakup. A supposedly 'magma-poor' rifted margin (SE-India) may show a 'magma-rich' lithospheric breakup whereas a 'magma-rich' rifted margin (Uruguay) does not necessarily show excess magmatism at lithospheric breakup compared with steady-state seafloor spreading. This questions the paradigm that rifted margins can be subdivided in either magma-poor or magma-rich margins. The Uruguayan and other magma-rich rifted margins appear characterized by an early onset of decompression melting relative to crustal breakup. For the converse, where the onset of decompression melting is late compared with the timing of crustal breakup, mantle exhumation can occur (e.g. SE-India). Our work highlights the difficulty in determining a magmatic budget at rifted margins based on seismic reflection data alone, showing the limitations of margin classification based solely on magmatic volumes. The timing of

  5. Side@Ways : mobile margins and the dynamics of communication in Africa

    NARCIS (Netherlands)

    Bruijn, de M.E.; Nyamnjoh, F.; Brinkman, I.

    2013-01-01

    This edited volume focuses on mobile phone use in specific African communities, namely those that have a long history of mobility and are regarded as marginal in the national economic, social and/or political context. It was in such regions that the most intensive dynamics were expected to be seen

  6. Large planning target volume in whole abdomen radiation therapy in ovarian cancers - a comparison between volumetric arc and fixed beam based intensity modulation in ovarian cancers: a comparison between volumetric arc and fixed beam based intensity modulation

    International Nuclear Information System (INIS)

    Krishnan, Jayapalan; Rao, Suresh; Hedge, Sanath; Shambhavi

    2013-01-01

    Aim of this study is to assess dosimetric characteristics of multiple iso-centre volumetric-modulated arc therapy for the treatment of a large PTV in whole abdomen and ovarian cancers and in comparison with IMRT. Two patients with Epithelial Ovarian Cancer (EOC) underwent CT-simulation in supine position with vacuum cushion and acquired CT-image with 3 mm slice thickness. IMRT and VMAT plans were generated with multiple isocenter using Eclipse Planning System (V10.0.39) for (6 MV photon) Varian UNIQUE Performance Linac equipped with a Millennium-120 MLC and optimised with Progressive Resolution optimizer (PRO3) for prescription 36 Gy to the whole abdomen (PTV W AR) and 45 Gy with daily fraction of 1.8 Gy to the pelvis and pelvic nodes (PTV P elvis) with Simultaneous Integrated Boost and calculated with AAA algorithm in 2.5 mm grid resolution. Mean, V 95% , V 90% , V 107% and uniformity number (Uniformity was defined as US-95%=D5%-D95%/D mean ) was calculated for Planning Target Volumes (PTVs). Organs at Risk (OAR's) were analysed statistically in terms of dose and volume. MU and delivery time were compared. Pre-treatment quality assurance was scored with Gamma Agreement Index (GAl) with 3% and 3 mm thresholds with EPID as well as corresponding Dynalog files were generated and analysed. Feasibility and deliverability of VMAT plans showed to be a solution for the treatment planning and delivery for a large PTV volume (PTV-WAR) treatments, surrounded by critical structures such as liver, spinal canal, and kidneys, offering good dosimetric features with significant logistic improvements compared to IMRT. VMAT combines the advantages of faster delivery and lower number of monitor units (MU). It would help to reduce potential risk of secondary malignancy. VMAT(RapidArc) showed to be a solution to WAR treatments offering good dosimetric features with significant logistic improvements compared to IMRT

  7. Effect of Margin Designs on the Marginal Adaptation of Zirconia Copings.

    Science.gov (United States)

    Habib, Syed Rashid; Al Ajmi, Mohammed Ginan; Al Dhafyan, Mohammed; Jomah, Abdulrehman; Abualsaud, Haytham; Almashali, Mazen

    2017-09-01

    The aim of this in vitro study was to investigate the effect of Shoulder versus Chamfer margin design on the marginal adaptation of zirconia (Zr) copings. 40 extracted molar teeth were mounted in resin and prepared for zirconia crowns with two margin preparation designs (20=Shoulder and 20=Chamfer). The copings were manufactured by Cercon® (DeguDent GmbH, Germany) using the CAD/CAM system for each tooth. They were tried on each tooth, cemented, thermocycled, re-embedded in resin and were subsequently cross sectioned centrally into two equal mesial and distal halves. They were examined under electron microscope at 200 X magnification and the measurements were recorded at 5 predetermined points in micrometers (µm). The o verall mean marginal gap for the two groups was found to be 206.98+42.78µm with Shoulder margin design (Marginal Gap=199.50+40.72µm) having better adaptation compared to Chamfer (Marginal Gap=214.46+44.85µm). The independent-samples t-test showed a statistically non-significant difference (p=.113) between the means of marginal gap for Shoulder and Chamfer margin designs and the measurements were recorded at 5 predetermined points for the two groups. The Chamfer margin design appeared to offer the same adaptation results as the Shoulder margin design.

  8. Marginal and happy? The need for uniqueness predicts the adjustment of marginal immigrants.

    Science.gov (United States)

    Debrosse, Régine; de la Sablonnière, Roxane; Rossignac-Milon, Maya

    2015-12-01

    Marginalization is often presented as the strategy associated with the worst adjustment for immigrants. This study identifies a critical variable that buffers marginal immigrants from the negative effects of marginalization on adjustment: The need for uniqueness. In three studies, we surveyed immigrants recruited on university campuses (n = 119, n = 116) and in the field (n = 61). Among marginal immigrants, a higher need for uniqueness predicted higher self-esteem (Study 1), affect (Study 2), and life satisfaction (Study 3), and marginally higher happiness (Study 2) and self-esteem (Study 3). No relationship between the need for uniqueness and adjustment was found among non-marginal immigrants. The adaptive value of the need for uniqueness for marginal immigrants is discussed. © 2015 The British Psychological Society.

  9. Geomorphic response of a continental margin to tectonic and eustatic variations, the Levant margin during the Messinian Salinity Crisis

    Science.gov (United States)

    Ben Moshe, Liran; Ben-Avraham, Zvi; Enzel, Yehouda; Uri, Schattner

    2017-04-01

    During the Messinian Salinity Crisis (MSC, 5.97±0.01-5.33 Ma) the Mediterranean Levant margin experienced major eustatic and sedimentary cycles as well as tectonic motion along the nearby Dead Sea fault plate boundary. New structures formed along this margin with morphology responding to these changes. Our study focuses on changes in this morphology across the margin. It is based on interpretation of three 3D seismic reflection volumes from offshore Israel. Multi-attribute analysis aided the extraction of key reflectors. Morphologic analysis of these data quantified interacting eustasy, sedimentation, and tectonics. Late Messinian morphologic domains include: (a) continental shelf; (b) 'Delta' anticline, forming a ridge diagonal to the strike of the margin; (c) southward dipping 'Hadera' valley, separating between (a) and (b); (d) 'Delta Gap' - a water gap crossing perpendicular to the anticline axis, exhibiting a sinuous thalweg; (e) continental slope. Drainage across the margin developed in several stages. Remains of turbidite flows crossing the margin down-slope were spotted across the 'Delta' anticline. These flows accumulated with the MSC evaporate sequence and prior to the anticline folding. Rising of the anticline, above the then bathymetry, either blocked or diverted the turbidites. That rising also defined the Hadera valley. In-situ evaporates, covering the valley floor, are, in turn covered by a fan-delta at the distal end of the valley. The fan-delta complex contains eroded evaporites and Lago-Mare fauna. Its top is truncated by dendritic fluvial channels that drained towards the Delta Gap. The Delta Gap was carved through the Delta ridge in a morphological and structural transition zone. We propose that during the first stages of the MSC (5.97±0.01-5.59 ma) destabilization of the continental slope due to oscillating sea level produced gravity currents that flowed through the pre-existing Delta anticline. Subsequent folding of the Delta anticline

  10. Feasibility of omitting clinical target volume for limited-disease small cell lung cancer treated with chemotherapy and intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Cai, Shuhua; Shi, Anhui; Yu, Rong; Zhu, Guangying

    2014-01-01

    To analyze the feasibility of omitting clinical target volume (CTV) for limited small cell lung cancer treated with chemotherapy and intensity modulated radiotherapy. 89 patients were treated from January 1, 2008 to August 31, 2011, 54 cases were irradiated with target volume without CTV, and 35 cases were irradiated with CTV. Both arms were irradiated post chemotherapy tumor extent and omitted elective nodal irradiation; dose prescription was 95% PTV56-63 Gy/28-35 F/5.6-7 weeks. In the arm without CTV and arm with CTV, the local relapse rates were 16.7% and 17.1% (p = 0.586) respectively. In the arm without CTV, of the 9 patients with local relapse, 6 recurred in-field, 2 recurred in margin, 1 recurred out of field. In the arm with CTV, of the 6 patients with local relapse, 4 recurred in-field, 1 recurred in margin, 1 recurred out of field. The distant metastases rates were 42.6% and 51.4% (p = 0.274) respectively. Grade 3-4 hematological toxicity and radiation esophagitis had no statistically significant, but grade 3-4 radiation pneumonia was observed in only 7.4% in the arm without CTV, compared 22.9% in the arm with CTV (p = 0.040). The median survival in the arm without CTV had not reached, compared with 38 months in the with CTV arm. The l- years, 2- years, 3- years survival rates of the arm without CTV and the arm with CTV were 81.0%, 66.2%, 61.5% and 88.6%, 61.7%, 56.6% (p = 0.517). The multivariate analysis indicated that the distant metastases (p = 0.000) and PCI factor (p = 0.004) were significantly related to overall survival. Target delineation omitting CTV for limited-disease small cell lung cancer received IMRT was feasible. The distant metastases and PCI factor were significantly related to overall survival

  11. Validity of PRV margins around lung and heart during left breast irradiation

    International Nuclear Information System (INIS)

    Stefanovski, Zoran

    2010-01-01

    Planning organ at risk volumes (PRV) has a minor use in radiotherapy treatment planning. During left breast irradiation two critical volumes are of special importance the lung and the heart. The aim of this study was to evaluate the changes in volume doses after adding appropriate margins around these organs at risk and compare them with the effect that the systematic positioning error has on the volume doses. Methods: Treatment plans for 44 patients with left breast cancer were analyzed. Two changes for each plan were made, and dose-volume histogram values for hearts and lungs volumes were recorded. In the first case margins of 5 mm to hearts and lungs were added. Volumes that were enclosed by 30% isodose for hearts and volumes that were enclosed by 20% isodose of lungs were recorded. In the second case plans were made with a systematic error of 5 mm employed, depicting a translation of isocenter posterior and to the right. In this second case, monitor units were taken from the original plan. The critical volumes for hearts and lungs were recorded as in the first case. Results: Our policy for breast cancer irradiation demands that the lung volume receiving 20 Gy should be kept under 25% of the whole left-lung volume, and no more than 10% of the heart volume should receive more than 30 Gy. The first case simulation showed that 23% of the patients have a heart overdose while 11% of them have a lung overdose according to the criteria above. Simulation of the second kind showed that the systematic error in isocenter positioning of 5 mm gives bigger a volume of the heart (in average 0.69% of heart volume) to be enclosed in critical isodose than in PRV case. For the lung the situation was opposite; namely in PRV case the lung volume that is encompassed with critical isodose is greater (in average 1.47% of lung volume) than in a case of displaced isocenter. Conclusions: Adding PRV margins around the heart and the lung does not give straightforward and unambiguous result

  12. Spectrum estimation method based on marginal spectrum

    International Nuclear Information System (INIS)

    Cai Jianhua; Hu Weiwen; Wang Xianchun

    2011-01-01

    FFT method can not meet the basic requirements of power spectrum for non-stationary signal and short signal. A new spectrum estimation method based on marginal spectrum from Hilbert-Huang transform (HHT) was proposed. The procession of obtaining marginal spectrum in HHT method was given and the linear property of marginal spectrum was demonstrated. Compared with the FFT method, the physical meaning and the frequency resolution of marginal spectrum were further analyzed. Then the Hilbert spectrum estimation algorithm was discussed in detail, and the simulation results were given at last. The theory and simulation shows that under the condition of short data signal and non-stationary signal, the frequency resolution and estimation precision of HHT method is better than that of FFT method. (authors)

  13. Methylation patterns in marginal zone lymphoma.

    Science.gov (United States)

    Arribas, Alberto J; Bertoni, Francesco

    Promoter DNA methylation is a major regulator of gene expression and transcription. The identification of methylation changes is important for understanding disease pathogenesis, for identifying prognostic markers and can drive novel therapeutic approaches. In this review we summarize the current knowledge regarding DNA methylation in MALT lymphoma, splenic marginal zone lymphoma, nodal marginal zone lymphoma. Despite important differences in the study design for different publications and the existence of a sole large and genome-wide methylation study for splenic marginal zone lymphoma, it is clear that DNA methylation plays an important role in marginal zone lymphomas, in which it contributes to the inactivation of tumor suppressors but also to the expression of genes sustaining tumor cell survival and proliferation. Existing preclinical data provide the rationale to target the methylation machinery in these disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Pathology of nodal marginal zone lymphomas.

    Science.gov (United States)

    Pileri, Stefano; Ponzoni, Maurilio

    Nodal marginal zone B cell lymphomas (NMZLs) are a rare group of lymphoid disorders part of the spectrum of marginal zone B-cell lymphomas, which encompass splenic marginal one B-cell lymphoma (SMZL) and extra nodal marginal zone of B-cell lymphoma (EMZL), often of MALT-type. Two clinicopathological forms of NMZL are recognized: adult-type and pediatric-type, respectively. NMZLs show overlapping features with other types of MZ, but distinctive features as well. In this review, we will focus on the salient distinguishing features of NMZL mostly under morphological/immunophenotypical/molecular perspectives in views of the recent acquisitions and forthcoming updated 2016 WHO classification of lymphoid malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Policy Implementation, Role Conflict and Marginalization

    African Journals Online (AJOL)

    Prince Acheampong

    governance, their role has been politically, administratively, and financially ... of marginalization of the Traditional Systems in terms of legal, financial and ..... the President as the Chief Executive Officer of the district is another controlling factor.

  16. Limitations of ''margin'' in qualification tests

    International Nuclear Information System (INIS)

    Clough, R.L.; Gillen, K.T.

    1984-01-01

    We have carried out investigations of polymer radiation degradation behaviors which have brought to light a number of reasons why this concept of margin can break down. First of all, we have found that dose-rate effects vary greatly in magnitude. Thus, based on high dose-rate testing, poor materials with large dose-rate effects may be selected over better materials with small effects. Also, in certain cases, material properties have been found to level out (as with PVC) or reverse trend (as with buna-n) at high doses, so that ''margin'' may be ineffective, misleading, or counterproductive. For Viton, the material properties were found to change in opposite directions at high and low dose rates, making ''margin'' inappropriate. The underlying problem with the concept of ''margin'' is that differences in aging conditions can lead to fundamental differences in degradation mechanisms

  17. Mental Depreciation and Marginal Decision Making

    Science.gov (United States)

    Heath; Fennema

    1996-11-01

    We propose that individuals practice "mental depreciation," that is, they implicitly spread the fixed costs of their expenses over time or use. Two studies explore how people spread fixed costs on durable goods. A third study shows that depreciation can lead to two distinct errors in marginal decisions: First, people sometimes invest too much effort to get their money's worth from an expense (e.g., they may use a product a lot to spread the fixed expense across more uses). Second, people sometimes invest too little effort to get their money's worth: When people add a portion of the fixed cost to the current costs, their perceived marginal (i.e., incremental) costs exceed their true marginal costs. In response, they may stop investing because their perceived costs surpass the marginal benefits they are receiving. The latter effect is supported by two field studies that explore real board plan decisions by university students.

  18. Marketing margins and agricultural technology in Mozambique

    DEFF Research Database (Denmark)

    Arndt, Channing; Jensen, Henning Tarp; Robinson, Sherman

    2000-01-01

    of improved agricultural technology and lower marketing margins yield welfare gains across the economy. In addition, a combined scenario reveals significant synergy effects, as gains exceed the sum of gains from the individual scenarios. Relative welfare improvements are higher for poor rural households......Improvements in agricultural productivity and reductions in marketing costs in Mozambique are analysed using a computable general equilibrium (CGE) model. The model incorporates detailed marketing margins and separates household demand for marketed and home-produced goods. Individual simulations...

  19. Time Safety Margin: Theory and Practice

    Science.gov (United States)

    2016-09-01

    Air Education and Training Command Handbook 99-107, T-38 Road to Wings, Randolph Air Force Base, Texas, July 2013. 65 This page was intentionally left...412TW-TIH-16-01 TIME SAFETY MARGIN: THEORY AND PRACTICE WILLIAM R. GRAY, III Chief Test Pilot USAF Test Pilot School SEPTEMBER 2016... Safety Margin: The01y and Practice) was submitted by the Commander, 4 I 2th Test Wing, Edwards AFB, Ca lifornia 93524-6843. Foreign announcement and

  20. In silico particle margination in blood flow

    OpenAIRE

    Müller, Kathrin

    2015-01-01

    A profound knowledge of margination, the migration of blood components to the vessel wall in blood flow, is required in order to understand the genesis of various diseases, as e.g., cardiovascular diseases or bleeding disorders. Margination of particles is a pre-condition for potential adhesion. Adhesion to the vessel wall is required for platelets, the protein von Willebrand factor (VWF), but also for drug and imaging agent carriers in order to perform their particular tasks. In the haemosta...

  1. Professional Commitment and Professional Marginalism in Teachers

    Directory of Open Access Journals (Sweden)

    Kalashnikov A.I.

    2017-11-01

    Full Text Available The article reviews teachers' attitudes towards the teaching profession which can be expressed both in professional commitment and in professional marginalism. The dominance of professional marginalism could affect destructively the students as well as the teacher’s personality, hence the issues related to the content of personal position of a marginal and the rate of marginalism among teachers. It was suggested that marginalism could be revealed in the study of professional commitment. The study involved 81 teachers of Sverdlovsk secondary schools aged 21—60 years with work experience ranging from 1 month to 39 years. The Professional Commitment Questionnaire was used as the study technique. The results showed that negative emotional attitude towards the profession and reluctance to leave the profession were grouped as a separate factor. The dispersion factor was 12,5%. The factor loadings ranged from 0.42 to 0.84. The study proved that professional marginalism in teachers includes dissatisfaction with work, feelings of resentment against profession and an unwillingness to leave the profession.

  2. NRC Seismic Design Margins Program Plan

    International Nuclear Information System (INIS)

    Cummings, G.E.; Johnson, J.J.; Budnitz, R.J.

    1985-08-01

    Recent studies estimate that seismically induced core melt comes mainly from earthquakes in the peak ground acceleration range from 2 to 4 times the safe shutdown earthquake (SSE) acceleration used in plant design. However, from the licensing perspective of the US Nuclear Regulatory Commission, there is a continuing need for consideration of the inherent quantitative seismic margins because of, among other things, the changing perceptions of the seismic hazard. This paper discusses a Seismic Design Margins Program Plan, developed under the auspices of the US NRC, that provides the technical basis for assessing the significance of design margins in terms of overall plant safety. The Plan will also identify potential weaknesses that might have to be addressed, and will recommend technical methods for assessing margins at existing plants. For the purposes of this program, a general definition of seismic design margin is expressed in terms of how much larger that the design basis earthquake an earthquake must be to compromise plant safety. In this context, margin needs to be determined at the plant, system/function, structure, and component levels. 14 refs., 1 fig

  3. A quantitative analysis of transtensional margin width

    Science.gov (United States)

    Jeanniot, Ludovic; Buiter, Susanne J. H.

    2018-06-01

    Continental rifted margins show variations between a few hundred to almost a thousand kilometres in their conjugated widths from the relatively undisturbed continent to the oceanic crust. Analogue and numerical modelling results suggest that the conjugated width of rifted margins may have a relationship to their obliquity of divergence, with narrower margins occurring for higher obliquity. We here test this prediction by analysing the obliquity and rift width for 26 segments of transtensional conjugate rifted margins in the Atlantic and Indian Oceans. We use the plate reconstruction software GPlates (http://www.gplates.org) for different plate rotation models to estimate the direction and magnitude of rifting from the initial phases of continental rifting until breakup. Our rift width corresponds to the distance between the onshore maximum topography and the last identified continental crust. We find a weak positive correlation between the obliquity of rifting and rift width. Highly oblique margins are narrower than orthogonal margins, as expected from analogue and numerical models. We find no relationships between rift obliquities and rift duration nor the presence or absence of Large Igneous Provinces (LIPs).

  4. Diffusion tensor imaging for target volume definition in glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Berberat, Jatta; Remonda, Luca [Cantonal Hospital, Department of Neuro-radiology, Aarau (Switzerland); McNamara, Jane; Rogers, Susanne [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); Bodis, Stephan [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); University Hospital, Department of Radiation Oncology, Zurich (Switzerland)

    2014-10-15

    Diffusion tensor imaging (DTI) is an MR-based technique that may better detect the peritumoural region than MRI. Our aim was to explore the feasibility of using DTI for target volume delineation in glioblastoma patients. MR tensor tracts and maps of the isotropic (p) and anisotropic (q) components of water diffusion were coregistered with CT in 13 glioblastoma patients. An in-house image processing program was used to analyse water diffusion in each voxel of interest in the region of the tumour. Tumour infiltration was mapped according to validated criteria and contralateral normal brain was used as an internal control. A clinical target volume (CTV) was generated based on the T{sub 1}-weighted image obtained using contrast agent (T{sub 1Gd}), tractography and the infiltration map. This was compared to a conventional T{sub 2}-weighted CTV (T{sub 2}-w CTV). Definition of a diffusion-based CTV that included the adjacent white matter tracts proved highly feasible. A statistically significant difference was detected between the DTI-CTV and T{sub 2}-w CTV volumes (p < 0.005, t = 3.480). As the DTI-CTVs were smaller than the T{sub 2}-w CTVs (tumour plus peritumoural oedema), the pq maps were not simply detecting oedema. Compared to the clinical planning target volume (PTV), the DTI-PTV showed a trend towards volume reduction. These diffusion-based volumes were smaller than conventional volumes, yet still included sites of tumour recurrence. Extending the CTV along the abnormal tensor tracts in order to preserve coverage of the likely routes of dissemination, whilst sparing uninvolved brain, is a rational approach to individualising radiotherapy planning for glioblastoma patients. (orig.) [German] Die Diffusions-Tensor-Bildgebung (DTI) ist eine MR-Technik, die dank der Erfassung des peritumoralen Bereichs eine Verbesserung bezueglich MRI bringt. Unser Ziel war die Pruefung der Machbarkeit der Verwendung der DTI fuer die Zielvolumenabgrenzung fuer Patienten mit

  5. Research on the margin of futures markets and the policy spillover effect

    Institute of Scientific and Technical Information of China (English)

    Difang Wan; Yang Yang; Dong Fang; Guang Yang

    2011-01-01

    Purpose-The purpose of this paper is to investigate whether the change of margin in Chinese futures markets has policy spillover effects.Design/methodology/approach-The paper constructs a model based on Harzmark and on Chng,taking Chinese futures markets status quo as a single species and restrictions on foreign investment into consideration,introduces the assumptions of spillover effect of speculators,then obtains investor's demand function.Subsequently,the effects of Shanghai Futures Exchange's 11 instances of margin changing are analyzed.Findings-The paper finds that in the Chinese futures market,margin changing has impact on the open interest (OI) and the speculator spillover effect is validated.Research limitations/implications-The irrational behavior of investors in markets is not taken into account in the model and data about spillover speculators were not directly available.Originality/value-The paper usefully analyzes the effects of the Shanghai Futures Exchange's 11 instances of margin changing from 2000 to 2007 and examines the actual effects of margin-changing policy,in the views of OI,trading volume and the externality,the results showing that margin changing has impact on investor structure and validates the existence of the assumed speculator spillover effect.

  6. Persistently better treatment planning results of intensity-modulated (IMRT) over conformal radiotherapy (3D-CRT) in prostate cancer patients with significant variation of clinical target volume and/or organs-at-risk

    International Nuclear Information System (INIS)

    Fenoglietto, Pascal; Laliberte, Benoit; Allaw, Ali; Ailleres, Norbert; Idri, Katia; Hay, Meng Huor; Moscardo, Carmen Llacer; Gourgou, Sophie; Dubois, Jean-Bernard; Azria, David

    2008-01-01

    Purpose: To compare the dose coverage of planning and clinical target volume (PTV, CTV), and organs-at-risk (OAR) between intensity-modulated (3D-IMRT) and conventional conformal radiotherapy (3D-CRT) before and after internal organ variation in prostate cancer. Methods and materials: We selected 10 patients with clinically significant interfraction volume changes. Patients were treated with 3D-IMRT to 80 Gy (minimum PTV dose of 76 Gy, excluding rectum). Fictitious, equivalent 3D-CRT plans (80 Gy at isocenter, with 95% isodose (76 Gy) coverage of PTV, with rectal blocking above 76 Gy) were generated using the same planning CT data set ('CT planning'). The plans were then also applied to a verification CT scan ('CT verify') obtained at a different moment. PTV, CTV, and OAR dose coverage were compared using non-parametric tests statistics for V95, V90 (% of the volume receiving ≥95 or 90% of the dose) and D50 (dose to 50% of the volume). Results: Mean V95 of the PTV for 'CT planning' was 94.3% (range, 88-99) vs 89.1% (range, 84-94.5) for 3D-IMRT and 3D-CRT (p = 0.005), respectively. Mean V95 of the CTV for 'CT verify' was 97% for both 3D-IMRT and 3D-CRT. Mean D50 of the rectum for 'CT planning' was 26.8 Gy (range, 22-35) vs 43.5 Gy (range, 33.5-50.5) for 3D-IMRT and 3D-CRT (p = 0.0002), respectively. For 'CT verify', this D50 was 31.1 Gy (range, 16.5-44) vs 44.2 Gy (range, 34-55) for 3D-IMRT and 3D-CRT (p = 0.006), respectively. V95 of the rectum was 0% for both plans for 'CT planning', and 2.3% (3D-IMRT) vs 2.1% (3D-CRT) for 'CT verify' (p = non-sig.). Conclusion: Dose coverage of the PTV and OAR was better with 3D-IMRT for each patient and remained so after internal volume changes

  7. Population and patient-specific target margins for 4D adaptive radiotherapy to account for intra- and inter-fraction variation in lung tumour position

    International Nuclear Information System (INIS)

    Hugo, Geoffrey D; Di Yan; Jian Liang

    2007-01-01

    In this work, five 4D image-guidance strategies (two population, an offline adaptive and two online strategies) were evaluated that compensated for both inter- and intra-fraction variability such as changes to the baseline tumour position and respiratory pattern. None of the strategies required active motion compensation such as gating or tracking; all strategies simulated a free-breathing-based treatment technique. Online kilovoltage fluoroscopy was acquired for eight patients with lung tumours, and used to construct inter- and intra-fraction tumour position variability models. Planning was performed on a mid-ventilation image acquired from a respiration-correlated CT scan. The blurring effect of tumour position variability was included in the dose calculation by convolution. CTV to PTV margins were calculated for variability in the cranio-caudal direction. A population margin of 9.0 ± 0.7 mm was required to account for setup error and respiration in the study population without the use of image-guidance. The greatest mean margin reduction was introduced by the offline adaptive strategy. A daily online correction strategy produced a small reduction (1.6 mm) in the mean margin from the offline strategy. Adaptively correcting for an inter-fraction change in the respiratory pattern had little effect on margin size due to most patients having only small daily changes in the respiratory pattern. A daily online correction strategy would be useful for patients who exhibit large variations in the daily mean tumour position, while an offline adaptive strategy is more applicable to patients with less variation

  8. Reconstructing Rodinia by Fitting Neoproterozoic Continental Margins

    Science.gov (United States)

    Stewart, John H.

    2009-01-01

    Reconstructions of Phanerozoic tectonic plates can be closely constrained by lithologic correlations across conjugate margins by paleontologic information, by correlation of orogenic belts, by paleomagnetic location of continents, and by ocean floor magmatic stripes. In contrast, Proterozoic reconstructions are hindered by the lack of some of these tools or the lack of their precision. To overcome some of these difficulties, this report focuses on a different method of reconstruction, namely the use of the shape of continents to assemble the supercontinent of Rodinia, much like a jigsaw puzzle. Compared to the vast amount of information available for Phanerozoic systems, such a limited approach for Proterozoic rocks, may seem suspect. However, using the assembly of the southern continents (South America, Africa, India, Arabia, Antarctica, and Australia) as an example, a very tight fit of the continents is apparent and illustrates the power of the jigsaw puzzle method. This report focuses on Neoproterozoic rocks, which are shown on two new detailed geologic maps that constitute the backbone of the study. The report also describes the Neoproterozoic, but younger or older rocks are not discussed or not discussed in detail. The Neoproterozoic continents and continental margins are identified based on the distribution of continental-margin sedimentary and magmatic rocks that define the break-up margins of Rodinia. These Neoproterozoic continental exposures, as well as critical Neo- and Meso-Neoproterozoic tectonic features shown on the two new map compilations, are used to reconstruct the Mesoproterozoic supercontinent of Rodinia. This approach differs from the common approach of using fold belts to define structural features deemed important in the Rodinian reconstruction. Fold belts are difficult to date, and many are significantly younger than the time frame considered here (1,200 to 850 Ma). Identifying Neoproterozoic continental margins, which are primarily

  9. Three-dimensional and topographic relationships between the orbital margins with reference to assessment of eyeball protrusion.

    Science.gov (United States)

    Shin, Kang-Jae; Lee, Shin-Hyo; Koh, Ki-Seok; Song, Wu-Chul

    2017-03-01

    This study investigated the topographic relationships among the eyeball and four orbital margins with the aim of identifying the correlation between orbital geometry and eyeball protrusion in Koreans. Three-dimensional (3D) volume rendering of the face was performed using serial computed-tomography images of 141 Koreans, and several landmarks on the bony orbit and the cornea were directly marked on the 3D volumes. The anterior-posterior distances from the apex of the cornea to each orbital margin and between the orbital margins were measured in both eyes. The distances from the apex of the cornea to the superior, medial, inferior, and lateral orbital margins were 5.8, 5.8, 12.0, and 17.9 mm, respectively. Differences between sides were observed in all of the orbital margins, and the distances from the apex of the cornea to the superior and inferior orbital margins were significantly greater in females than in males. The anterior-posterior distance between the superior and inferior orbital margins did not differ significantly between males (6.3 mm) and females (6.2 mm). The data obtained in this study will be useful when developing practical guidelines applicable to forensic facial reconstruction and orbitofacial surgeries.

  10. Ferritin associates with marginal band microtubules

    International Nuclear Information System (INIS)

    Infante, Anthony A.; Infante, Dzintra; Chan, M.-C.; How, P.-C.; Kutschera, Waltraud; Linhartova, Irena; Muellner, Ernst W.; Wiche, Gerhard; Propst, Friedrich

    2007-01-01

    We characterized chicken erythrocyte and human platelet ferritin by biochemical studies and immunofluorescence. Erythrocyte ferritin was found to be a homopolymer of H-ferritin subunits, resistant to proteinase K digestion, heat stable, and contained iron. In mature chicken erythrocytes and human platelets, ferritin was localized at the marginal band, a ring-shaped peripheral microtubule bundle, and displayed properties of bona fide microtubule-associated proteins such as tau. Red blood cell ferritin association with the marginal band was confirmed by temperature-induced disassembly-reassembly of microtubules. During erythrocyte differentiation, ferritin co-localized with coalescing microtubules during marginal band formation. In addition, ferritin was found in the nuclei of mature erythrocytes, but was not detectable in those of bone marrow erythrocyte precursors. These results suggest that ferritin has a function in marginal band formation and possibly in protection of the marginal band from damaging effects of reactive oxygen species by sequestering iron in the mature erythrocyte. Moreover, our data suggest that ferritin and syncolin, a previously identified erythrocyte microtubule-associated protein, are identical. Nuclear ferritin might contribute to transcriptional silencing or, alternatively, constitute a ferritin reservoir

  11. Risk insights from seismic margin reviews

    International Nuclear Information System (INIS)

    Budnitz, R.J.

    1990-01-01

    This paper discusses the information that has been derived from the three seismic-margin reviews conducted so far, and the information that is potentially available from using the seismic-margin method more generally. There are two different methodologies for conducting seismic margin reviews of nuclear power plants, one developed under NRC sponsorship and one developed under sponsorship of the Electric Power Research Institute. Both methodologies will be covered in this paper. The paper begins with a summary of the steps necessary to complete a margin review, and will then outline the key technical difficulties that need to be addressed. After this introduction, the paper covers the safety and operational insights derived from the three seismic-margin reviews already completed: the NRC-sponsored review at Maine Yankee; the EPRI-sponsored review at Catawba; and the joint EPRI/NRC/utility effort at Hatch. The emphasis is on engineering insights, with attention to the aspects of the reviews that are easiest to perform and that provide the most readily available insights

  12. Carfilzomib With or Without Rituximab in the Treatment of Waldenstrom Macroglobulinemia or Marginal Zone Lymphoma

    Science.gov (United States)

    2018-02-05

    Marginal Zone Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Waldenstrom Macroglobulinemia; Refractory Marginal Zone Lymphoma; Refractory Waldenstrom Macroglobulinemia; Waldenstrom Macroglobulinemia

  13. Fission product margin in burnup credit analyses

    International Nuclear Information System (INIS)

    Finck, P.J.; Stenberg, C.G.

    1998-01-01

    The US Department of Energy (DOE) is currently working toward the licensing of a methodology for using actinide-only burnup credit for the transportation of spent nuclear fuel (SNF). Important margins are built into this methodology. By using comparisons with a representative experimental database to determine bias factors, the methodology ensures that actinide concentrations and worths are estimated conservatively; furthermore, the negative net reactivity of certain actinides and all fission products (FPs) is not taken into account, thus providing additional margin. A future step of DOE's effort might aim at establishing an actinide and FP burnup credit methodology. The objective of this work is to establish the uncertainty to be applied to the total FP worth in SNF. This will serve two ends. First, it will support the current actinide-only methodology by demonstrating the margin available from FPs. Second, it will identify the major contributions to the uncertainty and help set priorities for future work

  14. Refining prices and margins in 1998

    International Nuclear Information System (INIS)

    Favennec, J.P.; Baudoin, C.

    1999-01-01

    Despite a business environment that was globally mediocre due primarily to the Asian crisis and to a mild winter in the northern hemisphere, the signs of improvement noted in the refining activity in 1996 were borne out in 1997. But the situation is not yet satisfactory in this sector: the low return on invested capital and the financing of environmental protection expenditure are giving cause for concern. In 1998, the drop in crude oil prices and the concomitant fall in petroleum product prices was ultimately rather favorable to margins. Two elements tended to put a damper on this relative optimism. First of all, margins continue to be extremely volatile and, secondly, the worsening of the economic and financial crisis observed during the summer made for a sharp decline in margins in all geographic regions, especially Asia

  15. Digital Margins : How spatially and socially marginalized communities deal with digital exclusion

    NARCIS (Netherlands)

    Salemink, Koen

    2016-01-01

    The increasing importance of the Internet as a means of communication has transformed economies and societies. For spatially and socially marginalized communities, this transformation has resulted in digital exclusion and further marginalization. This book presents a study of two kinds of

  16. Modification of prostate implants based on postimplant treatment margin assessment.

    Science.gov (United States)

    Mueller, Amy; Wallner, Kent; Merrick, Gregory; Courveau, Jacques; Sutlief, Steven; Butler, Wayne; Gong, Lixin; Cho, Paul

    2002-12-01

    To quantify the extent of additional source placement needed to perfect an implant after execution by standard techniques, assuming that uniform 5 mm treatment margins (TMs) is the criteria for perfection. Ten consecutive, unselected patients treated with 1-125 brachytherapy were studied. Source placement is planned just inside or outside of the prostatic margin, to achieve a minimum 5 mm TM and a central dose of 150%-200% of the prescription dose. The preimplant prostate volumes ranged from 24 to 85 cc (median: 35 cc). The number of sources implanted ranged from 48 to 102 (median: 63). Axial CT images were acquired within 2 h postoperatively for postimplant dosimetry. After completion of standard dosimetric calculations, the TMs were measured and tabulated at 45 degrees intervals around the prostate periphery at 0.0, 1.0, 2.0, and 3.0 cm planes. Sources were then added to the periphery to bring the TMs to a minimum of 5 mm at each measured TM, resulting in a modified implant. All margin modifications were done manually, without the aid of automated software. Patients' original (unmodified) D90s ranged from 111% to 154%, with a median of 116%. The original V100s ranged from 94% to 99%, with a median of 96%. No patient required placement of additional sources to meet a minimum D90 of 90% or a minimum V100 of 80%. In contrast, patients required from 7 to 17 additional sources (median: 11) to achieve minimum 5 mm TMs around the entire prostatic periphery. Additional sources equaled from 12% to 24% of the initial number of sources placed (median: 17%). By adding sufficient peripheral sources to bring the TMs to a minimum 5 mm, patients' average V100 increased from 96% to 100%, and the average D90 increased from 124% to 160% of prescription dose. In the course of achieving a minimum 5 mm TM, the average treatment margin for all patients combined increased from 5.5 to 9.9 mm. The number of sources needed to bring the TMs to a minimum 5 mm was loosely correlated with the

  17. Modification of prostate implants based on postimplant treatment margin assessment

    International Nuclear Information System (INIS)

    Mueller, Amy; Wallner, Kent; Merrick, Gregory; Couriveau, Jacques; Sutlief, Steven; Butler, Wayne; Gong, Lixin; Cho, Paul

    2002-01-01

    Purpose: To quantify the extent of additional source placement needed to perfect an implant after execution by standard techniques, assuming that uniform 5 mm treatment margins (TMs) is the criteria for perfection. Materials and Methods: Ten consecutive, unselected patients treated with I-125 brachytherapy were studied. Source placement is planned just inside or outside of the prostatic margin, to achieve a minimum 5 mm TM and a central dose of 150%-200% of the prescription dose. The preimplant prostate volumes ranged from 24 to 85 cc (median: 35 cc). The number of sources implanted ranged from 48 to 102 (median: 63). Axial CT images were acquired within 2 h postoperatively for postimplant dosimetry. After completion of standard dosimetric calculations, the TMs were measured and tabulated at 45 deg. intervals around the prostate periphery at 0.0, 1.0, 2.0, and 3.0 cm planes. Sources were then added to the periphery to bring the TMs to a minimum of 5 mm at each measured TM, resulting in a modified implant. All margin modifications were done manually, without the aid of automated software. Results: Patients' original (unmodified) D90s ranged from 111% to 154%, with a median of 116%. The original V100s ranged from 94% to 99%, with a median of 96%. No patient required placement of additional sources to meet a minimum D90 of 90% or a minimum V100 of 80%. In contrast, patients required from 7 to 17 additional sources (median: 11) to achieve minimum 5 mm TMs around the entire prostatic periphery. Additional sources equaled from 12% to 24% of the initial number of sources placed (median: 17%). By adding sufficient peripheral sources to bring the TMs to a minimum 5 mm, patients' average V100 increased from 96% to 100%, and the average D90 increased from 124% to 160% of prescription dose. In the course of achieving a minimum 5 mm TM, the average treatment margin for all patients combined increased from 5.5 to 9.9 mm. The number of sources needed to bring the TMs to a minimum

  18. Proposal of a post-prostatectomy clinical target volume based on pre-operative MRI: volumetric and dosimetric comparison to the RTOG guidelines

    International Nuclear Information System (INIS)

    Croke, Jennifer; Maclean, Jillian; Nyiri, Balazs; Li, Yan; Malone, Kyle; Avruch, Leonard; Kayser, Cathleen; Malone, Shawn

    2014-01-01

    Recurrence rates following radiotherapy for prostate cancer in the post-operative adjuvant or salvage setting remain substantial. Previous work from our institution demonstrated that published prostate bed CTV guidelines frequently do not cover the pre-operative MRI defined prostate. Inadequate target delineation may contribute to the high recurrence rates, but increasing target volumes may increase dose to organs at risk. We propose guidelines for delineating post-prostatectomy target volumes based upon an individual’s co-registered pre-operative MRI. MRI-based CTVs and PTVs were compared to those created using the RTOG guidelines in 30 patients. Contours were analysed in terms of absolute volume, intersection volume (Jaccard Index) and the ability to meet the RADICALS and QUANTEC rectal and bladder constraints (tomotherapy IMRT plans with PTV coverage of V98% ≥98%). CTV MRI was a mean of 18.6% larger than CTV RTOG: CTV MRI mean 138 cc (range 72.3 - 222.2 cc), CTV RTOG mean 116.3 cc (range 62.1 - 176.6 cc), (p < 0.0001). The difference in mean PTV was only 4.6%: PTV MRI mean 386.9 cc (range 254.4 – 551.2), PTV RTOG mean 370 cc (range 232.3 - 501.6) (p = 0.05). The mean Jaccard Index representing intersection volume between CTVs was 0.72 and 0.84 for PTVs. Both criteria had a similar ability to meet rectal and bladder constraints. Rectal DVH: 77% of CTV RTOG cases passed all RADICALS criteria and 37% all QUANTEC criteria; versus 73% and 40% for CTV MRI (p = 1.0 for both). Bladder DVH; 47% of CTV RTOG cases passed all RADICALS criteria and 67% all QUANTEC criteria, versus 57% and 60% for CTV MRI (p = 0.61for RADICALS, p = 0.79 for QUANTEC). CTV MRI spares more of the lower anterior bladder wall than CTV RTOG but increases coverage of the superior lateral bladder walls. CTV contours based upon the patient’s co-registered pre-operative MRI in the post-prostatectomy setting may improve coverage of the individual’s prostate bed without substantially increasing

  19. Deregulated model and locational marginal pricing

    International Nuclear Information System (INIS)

    Sood, Yog Raj; Padhy, N.P.; Gupta, H.O.

    2007-01-01

    This paper presents a generalized optimal model that dispatches the pool in combination with privately negotiated bilateral and multilateral contracts while maximizing social benefit has been proposed. This model determines the locational marginal pricing (LMP) based on marginal cost theory. It also determines the size of non-firm transactions as well as pool demand and generations. Both firms as well as non-firm transactions are considered in this model. The proposed model has been applied to IEEE-30 bus test system. In this test system different types of transactions are added for analysis of the proposed model. (author)

  20. Seismic safety margins research program overview

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Smith, P.D.

    1978-01-01

    A multiyear seismic research program has been initiated at the Lawrence Livermore Laboratory. This program, the Seismic Safety Margins Research Program (SSMRP) is funded by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The program is designed to develop a probabilistic systems methodology for determining the seismic safety margins of nuclear power plants. Phase I, extending some 22 months, began in July 1978 at a funding level of approximately $4.3 million. Here we present an overview of the SSMRP. Included are discussions on the program objective, the approach to meet the program goal and objectives, end products, the probabilistic systems methodology, and planned activities for Phase I

  1. Slope failure of chalk channel margins

    DEFF Research Database (Denmark)

    Gale, A.; Anderskouv, Kresten; Surlyk, Finn

    2015-01-01

    provide evidence for recurring margin collapse of a long-lived Campanian channel. Compressionally deformed and thrust chalk hardgrounds are correlated to thicker, non-cemented chalk beds that form a broad, gentle anticline. These chalks represent a slump complex with a roll-over anticline of expanded, non......-cemented chalk in the head region and a culmination of condensed hardgrounds in the toe region. Observations strongly suggest that the slumping represents collapse of a channel margin. Farther northwards, the contemporaneous succession shows evidence of small-scale penecontemporaneous normal faulting towards...

  2. Evaluation of thermal margin for HANARO core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol; Chae, Hee Taek; Kim Heon Il; Lim, I. C.; Lee, C. S.; Kim, H

    1999-08-01

    During the commissioning and the start-up of the HANARO, various design parameters were confirmed and measured. For safer operation of HANARO and resolution of the CHF penalty issue which is one of unresolved licensing problems, thermal margins for normal and transient conditions were re-evaluated reflecting the commissioning and the start-up test results and the design modifications during operation. The re-evaluation shows that the HANARO meets the design criteria for ONB margin and fuel centerline temperature under normal condition. For upset condition, it also satisfies the safety limits for CHFR and fuel centerline temperature. (Author). 11 refs., 13 tabs., 4 figs.

  3. Measurement of the $\\mathrm{B}_{s}^{0}$ meson nuclear modification factor in PbPb collisions at $\\sqrt{\\smash[b]{s_{_{\\mathrm{NN}}}}} = 5.02\\,\\mathrm{Te\\hspace{-1pt}V}$

    CERN Document Server

    CMS Collaboration

    2018-01-01

    The production cross sections of $\\mathrm{B}_{s}^{0}$ mesons and charge conjugates are measured in pp and PbPb collisions via the exclusive decay channel $\\mathrm{B}_{s}^{0}\\to\\mathrm{J}\\hspace{-1pt}/\\hspace{-1pt}\\psi\\hspace{2pt}\\phi\\to\\mu^{+}\\mu^{-}\\mathrm{K}^{+}\\mathrm{K}^{-}$ at a center-of-mass energy $\\sqrt{\\smash[b]{s_{_{\\mathrm{NN}}}}} = 5.02\\,\\mathrm{Te\\hspace{-1pt}V}$ per nucleon pair and within the rapidity range ($|y|<2.4$) using the CMS detector at the LHC. The proton-proton (pp) measurement is performed as a function of transverse momentum of the $\\mathrm{B}_{s}^{0}$ meson in the range of 7 to 50$\\hspace{2pt}\\mathrm{Ge\\hspace{-1pt}V}\\hspace{-2pt}/\\hspace{-1pt}c$ and is compared to the predictions of next-to-leading order perturbative calculations. $\\mathrm{B}_{s}^{0}$ production yield in PbPb collisions is measured in two $p_{\\mathrm{T}}$ intervals, 7 to 15 and 15 to 50$\\hspace{2pt}\\mathrm{Ge\\hspace{-1pt}V}\\hspace{-2pt}/\\hspace{-1pt}c$, and compared to the pp production yield in the same kinem...

  4. Rectification of Image Velocity Results (RIVeR): A simple and user-friendly toolbox for large scale water surface Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV)

    Science.gov (United States)

    Patalano, Antoine; García, Carlos Marcelo; Rodríguez, Andrés

    2017-12-01

    LSPIV (Large Scale Particle Image Velocimetry) and LSPTV (Large Scale Particle Tracking Velocimetry) are used as relatively low-cost and non-intrusive techniques for water-surface velocity analysis and flow discharge measurements in rivers or large-scale hydraulic models. This paper describes a methodology based on state-of-the-art tools (for example, that apply classical PIV/PTV analysis) resulting in large-scale surface-flow characterization according to the first operational version of the RIVeR (Rectification of Image Velocity Results). RIVeR is developed in Matlab and is designed to be user-friendly. RIVeR processes large-scale water-surface characterization such as velocity fields or individual trajectories of floating tracers. This work describes the wide range of application of the techniques for comparing measured surface flows in hydraulic physical models to flow discharge estimates for a wide range of flow events in rivers (for example, low and high flows).

  5. Dosimetry of parotid glands in IMRT plan of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lian Jiancheng; Yu Xinsheng; Jiang Guoliang

    2007-01-01

    Objective: To evaluate the effect of different intensity-modulated radiation therapy (IMRT) plan on the dosimetry of parotid in patients with nasopharyngeal carcinoma. Methods: Under the same constraints and objections, the IMRT plan of nasopharyngeal carcinoma with sparing unilateral parotid and the IMRT plan added plan tumor volume (PTV) margin for parotid gland was investigated. Results: Between conventional IMRT plan and the IMRT plan spared unilateral parotid, their target coverage, homogeneity index and conformal index of PTV 70 is similar. On PTV 60 , D min in the plan of sparing one parotid gland was more than that in normal IMRT plan (P 95 in the plan of sparing one parotid gland have improved (P 50%VOL and D mean of parotid gland were similar between the two plans. Between conventional IMRT plan and the IMRT plan added 2 or 3 mm margin for parotid gland, their target coverage, homogeneity index and conformal index of PTV 70 is similar. D min , D mean and D 95 of PTV 60 have decreased tendency from normal IMRT plan to 2 mm margin plan to 3 mm margin plan. D max of brainstem and spine cord have increased tendency from normal IMRT plan to 2 mm margin plan to 3 mm margin plan. Conclusions: The IMRT plan of nasopharyngeal carcinoma with sparing unilateral parotid may be adopted not to protect both two parotids, while PTV margin for parotid added as parotid move. (authors)

  6. Utilize target motion to cover clinical target volume (ctv) - a novel and practical treatment planning approach to manage respiratory motion

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Kong Fengming; Ryu, Samuel; Chetty, Indrin J.; Movsas, Benjamin

    2008-01-01

    Purpose: To use probability density function (PDF) to model motion effects and incorporate this information into treatment planning for lung cancers. Material and methods: PDFs were calculated from the respiratory motion traces of 10 patients. Motion effects were evaluated by convolving static dose distributions with various PDFs. Based on a differential dose prescription with relatively lower dose to the clinical target volume (CTV) than to the gross tumor volume (GTV), two approaches were proposed to incorporate PDFs into treatment planning. The first approach uses the GTV-based internal target volume (ITV) as the planning target volume (PTV) to ensure full dose to the GTV, and utilizes the motion-induced dose gradient to cover the CTV. The second approach employs an inhomogeneous static dose distribution within a minimized PTV to best match the prescription dose gradient. Results: Motion effects on dose distributions were minimal in the anterior-posterior (AP) and lateral directions: a 10-mm motion only induced about 3% of dose reduction in the peripheral target region. The motion effect was remarkable in the cranial-caudal direction. It varied with the motion amplitude, but tended to be similar for various respiratory patterns. For the first approach, a 10-15 mm motion would adequately cover the CTV (presumed to be 60-70% of the GTV dose) without employing the CTV in planning. For motions 15-mm. An example of inhomogeneous static dose distribution in a reduced PTV was given, and it showed significant dose reduction in the normal tissue without compromising target coverage. Conclusions: Respiratory motion-induced dose gradient can be utilized to cover the CTV and minimize the lung dose without the need for more sophisticated technologies

  7. Cone Beam Computed Tomography-Derived Adaptive Radiotherapy for Radical Treatment of Esophageal Cancer

    International Nuclear Information System (INIS)

    Hawkins, Maria A.; Brooks, Corrinne; Hansen, Vibeke N.; Aitken, Alexandra; Tait, Diana M.

    2010-01-01

    Purpose: To investigate the potential for reduction in normal tissue irradiation by creating a patient specific planning target volume (PTV) using cone beam computed tomography (CBCT) imaging acquired in the first week of radiotherapy for patients receiving radical radiotherapy. Methods and materials: Patients receiving radical RT for carcinoma of the esophagus were investigated. The PTV is defined as CTV(tumor, nodes) plus esophagus outlined 3 to 5 cm cranio-caudally and a 1.5-cm circumferential margin is added (clinical plan). Prefraction CBCT are acquired on Days 1 to 4, then weekly. No correction for setup error made. The images are imported into the planning system. The tumor and esophagus for the length of the PTV are contoured on each CBCT and 5 mm margin is added. A composite volume (PTV1) is created using Week 1 composite CBCT volumes. The same process is repeated using CBCT Week 2 to 6 (PTV2). A new plan is created using PTV1 (adaptive plan). The coverage of the 95% isodose of PTV1 is evaluated on PTV2. Dose-volume histograms (DVH) for lungs, heart, and cord for two plans are compared. Results: A total of 139 CBCT for 14 cases were analyzed. For the adaptive plan the coverage of the 95% prescription isodose for PTV1 = 95.6% ± 4% and the PTV2 = 96.8% ± 4.1% (t test, 0.19). Lungs V20 (15.6 Gy vs. 10.2 Gy) and heart mean dose (26.9 Gy vs. 20.7 Gy) were significantly smaller for the adaptive plan. Conclusions: A reduced planning volume can be constructed within the first week of treatment using CBCT. A single plan modification can be performed within the second week of treatment with considerable reduction in organ at risk dose.

  8. The stability margin on EAST tokamak

    International Nuclear Information System (INIS)

    Jin-Ping, Qian; Bao-Nian, Wan; Biao, Shen; Bing-Jia, Xiao; Walker, M.L.; Humphreys, D.A.

    2009-01-01

    The experimental advanced superconducting tokamak (EAST) is the first full superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. Its poloidal coils are relatively far from the plasma due to the necessary thermal isolation from the superconducting magnets, which leads to relatively weaker coupling between plasma and poloidal field. This may cause more difficulties in controlling the vertical instability by using the poloidal coils. The measured growth rates of vertical stability are compared with theoretical calculations, based on a rigid plasma model. Poloidal beta and internal inductance are varied to investigate their effects on the stability margin by changing the values of parameters α n and γ n (Howl et al 1992 Phys. Fluids B 4 1724), with plasma shape fixed to be a configuration with k = 1.9 and δ = 0.5. A number of ways of studying the stability margin are investigated. Among them, changing the values of parameters κ and l i is shown to be the most effective way to increase the stability margin. Finally, a guideline of stability margin M s (κ, l i , A) to a new discharge scenario showing whether plasmas can be stabilized is also presented in this paper

  9. Fedme og risiko for marginal parodontitis

    DEFF Research Database (Denmark)

    Kongstad, Johanne; Keller, Amélie Cléo; Rohde, Jeanett Friis

    2017-01-01

    Oversigtsartiklen, der er af narrativ karakter, beskriver sammenhængen mellem overvægt/ fedme og marginal parodontitis. Artiklen er baseret på et udvalg af nyere engelsksproget litteratur og motiveres af den øgede forekomst af overvægtige og fede i befolkningen. Desuden er det afgørende, at tandl......Oversigtsartiklen, der er af narrativ karakter, beskriver sammenhængen mellem overvægt/ fedme og marginal parodontitis. Artiklen er baseret på et udvalg af nyere engelsksproget litteratur og motiveres af den øgede forekomst af overvægtige og fede i befolkningen. Desuden er det afgørende......, at tandlæger forholder sig kritisk til systemiske tilstandes mulige konsekvens for udvikling, forværring og behandling af marginal parodontitis. Der nævnes forskellige mål for fedme, hvor body mass index (BMI) og taljeomkreds er de mest anvendte. Problematikken vedrørende tidligere studiers anvendelse af...... forskellige kriterier for marginal parodontitis berøres. Litteraturgennemgangen tager udgangspunkt i de biologiske mekanismer, der udløses i fedtvæv ved overvægt/fedme og medfører en kronisk inflammatorisk tilstand med frigivelse af bl.a. adipokiner. Epidemiologiske tværsnitsog longitudinelle studier af...

  10. Second Language Learners' Use of Marginal Glosses

    Science.gov (United States)

    O'Donnell, Mary E.

    2012-01-01

    The use of marginal reading glosses by 18 second language (L2) learners is examined through a quantitative and qualitative analysis of audiotaped think-aloud protocols. How these readers interact with the glosses is identified and divided into five categories or gloss interactions. Examples from each are presented. The primary research question…

  11. Large margin image set representation and classification

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-07-06

    In this paper, we propose a novel image set representation and classification method by maximizing the margin of image sets. The margin of an image set is defined as the difference of the distance to its nearest image set from different classes and the distance to its nearest image set of the same class. By modeling the image sets by using both their image samples and their affine hull models, and maximizing the margins of the images sets, the image set representation parameter learning problem is formulated as an minimization problem, which is further optimized by an expectation - maximization (EM) strategy with accelerated proximal gradient (APG) optimization in an iterative algorithm. To classify a given test image set, we assign it to the class which could provide the largest margin. Experiments on two applications of video-sequence-based face recognition demonstrate that the proposed method significantly outperforms state-of-the-art image set classification methods in terms of both effectiveness and efficiency.

  12. RISK-INFORMED SAFETY MARGIN CHARACTERIZATION

    International Nuclear Information System (INIS)

    Dinh, Nam; Szilard, Ronaldo

    2009-01-01

    The concept of safety margins has served as a fundamental principle in the design and operation of commercial nuclear power plants (NPPs). Defined as the minimum distance between a system's 'loading' and its 'capacity', plant design and operation is predicated on ensuring an adequate safety margin for safety-significant parameters (e.g., fuel cladding temperature, containment pressure, etc.) is provided over the spectrum of anticipated plant operating, transient and accident conditions. To meet the anticipated challenges associated with extending the operational lifetimes of the current fleet of operating NPPs, the United States Department of Energy (USDOE), the Idaho National Laboratory (INL) and the Electric Power Research Institute (EPRI) have developed a collaboration to conduct coordinated research to identify and address the technological challenges and opportunities that likely would affect the safe and economic operation of the existing NPP fleet over the postulated long-term time horizons. In this paper we describe a framework for developing and implementing a Risk-Informed Safety Margin Characterization (RISMC) approach to evaluate and manage changes in plant safety margins over long time horizons

  13. Early math intervention for marginalized students

    DEFF Research Database (Denmark)

    Overgaard, Steffen; Tonnesen, Pia Beck

    2016-01-01

    This study is one of more substudies in the project Early Math Intervention for Marginalized Students (TMTM2014). The paper presents the initial process of this substudy that will be carried out fall 2015. In the TMTM2014 project, 80 teachers, who completed a one week course in the idea of TMTM...

  14. Mundhulens mikroflora hos patienter med marginal parodontitis

    DEFF Research Database (Denmark)

    Larsen, Tove; Fiehn, Nils-Erik

    2011-01-01

    Viden om marginal parodontitis’ mikrobiologi tog for alvor fart for ca. 40 år siden. Den tidlige viden var baseret på mikroskopiske og dyrkningsmæssige undersøgelser af den subgingivale plak. Anvendelsen af de nyere molekylærbiologiske metoder har betydet, at vor viden om de ætiologiske faktorer ...

  15. Large margin image set representation and classification

    KAUST Repository

    Wang, Jim Jing-Yan; Alzahrani, Majed A.; Gao, Xin

    2014-01-01

    In this paper, we propose a novel image set representation and classification method by maximizing the margin of image sets. The margin of an image set is defined as the difference of the distance to its nearest image set from different classes and the distance to its nearest image set of the same class. By modeling the image sets by using both their image samples and their affine hull models, and maximizing the margins of the images sets, the image set representation parameter learning problem is formulated as an minimization problem, which is further optimized by an expectation - maximization (EM) strategy with accelerated proximal gradient (APG) optimization in an iterative algorithm. To classify a given test image set, we assign it to the class which could provide the largest margin. Experiments on two applications of video-sequence-based face recognition demonstrate that the proposed method significantly outperforms state-of-the-art image set classification methods in terms of both effectiveness and efficiency.

  16. 17 CFR 31.18 - Margin calls.

    Science.gov (United States)

    2010-04-01

    ... transaction merchant is unable to effect personal contact with a leverage customer, a telegram sent to the....18 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION LEVERAGE TRANSACTIONS § 31.18 Margin calls. (a) No leverage transaction merchant shall liquidate a leverage contract because of...

  17. Thinking on the Margin: A Classroom Experiment

    Science.gov (United States)

    Bangs, Joann

    2009-01-01

    One of the most important concepts being taught in principles classes is the idea of "thinking on the margin." It can also be one of the most difficult to get across. One of the most telling examples, according to this author, comes in trying to get students to learn the profit maximizing condition for perfectly competitive firms. She…

  18. The Seismicity of Two Hyperextended Margins

    Science.gov (United States)

    Redfield, Tim; Terje Osmundsen, Per

    2013-04-01

    A seismic belt marks the outermost edge of Scandinavia's proximal margin, inboard of and roughly parallel to the Taper Break. A similar near- to onshore seismic belt runs along its inner edge, roughly parallel to and outboard of the asymmetric, seaward-facing escarpment. The belts converge at both the northern and southern ends of Scandinavia, where crustal taper is sharp and the proximal margin is narrow. Very few seismic events have been recorded on the intervening, gently-tapering Trøndelag Platform. Norway's distribution of seismicity is systematically ordered with respect to 1) the structural templates of high-beta extension that shaped the thinning gradient during Late Jurassic or Early Cretaceous time, and 2) the topographically resurgent Cretaceous-Cenozoic "accommodation phase" family of escarpments that approximate the innermost limit of crustal thinning [See Redfield and Osmundsen (2012) for diagrams, definitions, discussion, and supporting citations.] Landwards from the belt of earthquake epicenters that mark the Taper Break the crust consistently thickens, and large fault arrays tend to sole out at mid crustal levels. Towards the sea the crystalline continental crust is hyperextended, pervasively faulted, and generally very thin. Also, faulting and serpentinization may have affected the uppermost parts of the distal margin's lithospheric mantle. Such contrasting structural conditions may generate a contrasting stiffness: for a given stress, more strain can be accommodated in the distal margin than in the less faulted proximal margin. By way of comparison, inboard of the Taper Break on the gently-tapered Trøndelag Platform, faulting was not penetrative. There, similar structural conditions prevail and proximal margin seismicity is negligible. Because stress concentration can occur where material properties undergo significant contrast, the necking zone may constitute a natural localization point for post-thinning phase earthquakes. In Scandinavia

  19. CRBRP structural and thermal margin beyond the design base

    International Nuclear Information System (INIS)

    Strawbridge, L.E.

    1979-01-01

    Prudent margins beyond the design base have been included in the design of Clinch River Breeder Reactor Plant to further reduce the risk to the public from highly improbable occurrences. These margins include Structural Margin Beyond the Design Base to address the energetics aspects and Thermal Margin Beyond the Design Base to address the longer term thermal and radiological consequences. The assessments that led to the specification of these margins are described, along with the experimental support for those assessments. 8 refs

  20. Consideration of margins for hypo fractionated radiotherapy

    International Nuclear Information System (INIS)

    Herschtal, A.; Foroudi, F.; Kron, T.

    2010-01-01

    Full text: Geographical misses of the tumour are of concern in radiotherapy and are typically accommodated by introducing margins around the target. However, there is a trade-off between ensuring the target receives sufficient dose and minimising the dose to surrounding normal structures. Several methods of determining margin width have been developed with the most commonly used one proposed by M. VanHerk (VanHerk UROBP 52: 1407, 2002). VanHerk's model sets margins to achieve 95% of dose coverage for the target in 90% of patients. However, this model was derived assuming an infinite number of fractions. The aim of the present work is to estimate the modifications necessary to the model if a finite number of fractions are given. Software simulations were used to determine the true probability of a patient achieving 95% target coverage if different fraction numbers are used for a given margin width. Model parameters were informed by a large data set recently acquired at our institution using daily image guidance for prostate cancer patients with implanted fiducial markers. Assuming a 3 mm penumbral width it was found that using the VanHerk model only 74 or 54% of patients receive 95% of the prescription dose if 20 or 6 fractions are given, respectively. The steep dose gradients afforded by IMRT are likely to make consideration of the effects of hypofractionation more important. It is necessary to increase the margins around the target to ensure adequate tumour coverage if hypofractionated radiotherapy is to be used for cancer treatment. (author)

  1. Is it necessary to plan with safety margins for actively scanned proton therapy?

    Science.gov (United States)

    Albertini, F.; Hug, E. B.; Lomax, A. J.

    2011-07-01

    In radiation therapy, a plan is robust if the calculated and the delivered dose are in agreement, even in the case of different uncertainties. The current practice is to use safety margins, expanding the clinical target volume sufficiently enough to account for treatment uncertainties. This, however, might not be ideal for proton therapy and in particular when using intensity modulated proton therapy (IMPT) plans as degradation in the dose conformity could also be found in the middle of the target resulting from misalignments of highly in-field dose gradients. Single field uniform dose (SFUD) and IMPT plans have been calculated for different anatomical sites and the need for margins has been assessed by analyzing plan robustness to set-up and range uncertainties. We found that the use of safety margins is a good way to improve plan robustness for SFUD and IMPT plans with low in-field dose gradients but not necessarily for highly modulated IMPT plans for which only a marginal improvement in plan robustness could be detected through the definition of a planning target volume.

  2. The value of breast lumpectomy margin assessment as a predictor of residual tumor burden

    International Nuclear Information System (INIS)

    Wazer, David E.; Schmidt-Ullrich, Rupert K.; Schmid, Christopher H.; Ruthazer, Robin; Kramer, Bradley; Safaii, Homa; Graham, Roger

    1997-01-01

    Purpose: Margin assessment is commonly used as a guide to the relative aggressiveness of therapy for breast conserving treatment (BCT), though its value as a predictor of the presence, type, or extent of residual tumor has not been conclusively studied. Controversy continues to exist as to what constitutes a margin that is 'positive', 'close', or 'negative'. We attempt to address these issues through an analysis of re-excision specimens. Patients and Methods: As part of an institutional prospective practice approach for BCT, 265 cases with AJCC Stage I/II carcinoma with an initial excision margin that was ≤2 mm or indeterminate were subjected to re-excision. The probability of residual tumor (+RE) was evaluated with respect to tumor size, histopathologic subtype, relative closeness of the measured margin, the extent of margin positivity graded as focal, minimal, moderate, or extensive, and the extent of specimen processing as reflected in the number of cut sections per specimen volume (S:V ratio). The amount of residual tumor was graded as microscopic, small, medium, or large. The histopathologic subtype of tumor in the re-excision specimen was classified as having an invasive component (ICa) or pure DCIS (DCIS). Results: The primary excision margin was positive, >0≤1 mm, 1.1-2 mm, and indeterminate in 60%, 18%, 5%, and 17%, respectively. The predominant histopathologies in the initial excision specimens were invasive ductal (IDC) (50%) and tumors with an extensive intraductal component (EIC) (43%). The histopathology of the initial excision specimen was highly predictive of the histopathology of tumor found on re-excision, as residual DCIS was found in 60% of +RE specimens with initial histopathology of EIC compared to 26% for IDC (p 0.001). Neither the extent of margin positivity nor the extent of tumor in the re-excision were significantly related to the initial histopathologic subtype; however, a +RE was seen in 59% of EIC, 43% of IDC, and 32% of invasive

  3. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    Science.gov (United States)

    Nelson, C. H.; Gutiérrez Pastor, J.; Goldfinger, C.; Escutia, C.

    2012-11-01

    We summarize the importance of great earthquakes (Mw ≳ 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1) radiometric dating (14C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The H method provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia) or very close (San Andreas) to the early window for another great earthquake. On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs) are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km) than on passive margins (~1000 km). The great earthquakes along the Cascadia and northern California margins cause seismic strengthening of the sediment, which

  4. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    Directory of Open Access Journals (Sweden)

    C. H. Nelson

    2012-11-01

    Full Text Available We summarize the importance of great earthquakes (Mw ≳ 8 for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1 radiometric dating (14C method, and (2 relative dating, using hemipelagic sediment thickness and sedimentation rates (H method. The H method provides (1 the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2 the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia or very close (San Andreas to the early window for another great earthquake.

    On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km than on passive margins (~1000 km. The great earthquakes along the Cascadia and northern California margins

  5. A sea ice model for the marginal ice zone with an application to the Greenland Sea

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Coon, Max D.

    2004-01-01

    A model is presented that describes the formation, transport, and desalinization of frazil and pancake ice as it is formed in marginal seas. This model uses as input the total ice concentration evaluated from Special Sensor Microwave Imager and wind speed and direction. The model calculates...... the areal concentration, thickness, volume concentration, and salinity of frazil ice as well as the areal concentration, thickness, and salinity of pancakes. A simple parameterization for the Odden region of the Greenland Sea is presented. The model is run for the winter of 1996-1997. There are direct...... observations of the thickness and salinity of pancakes and the volume concentration of frazil ice to compare with the model. The model results compare very well with the measured data. This new ice model can be tuned to work in marginal seas elsewhere to calculate ice thickness, motion, and brine rejection...

  6. Risk Factors Associated With Circumferential Resection Margin Positivity in Rectal Cancer: A Binational Registry Study.

    Science.gov (United States)

    Warrier, Satish K; Kong, Joseph Cherng; Guerra, Glen R; Chittleborough, Timothy J; Naik, Arun; Ramsay, Robert G; Lynch, A Craig; Heriot, Alexander G

    2018-04-01

    Rectal cancer outcomes have improved with the adoption of a multidisciplinary model of care. However, there is a spectrum of quality when viewed from a national perspective, as highlighted by the Consortium for Optimizing the Treatment of Rectal Cancer data on rectal cancer care in the United States. The aim of this study was to assess and identify predictors of circumferential resection margin involvement for rectal cancer across Australasia. A retrospective study from a prospectively maintained binational colorectal cancer database was interrogated. This study is based on a binational colorectal cancer audit database. Clinical information on all consecutive resected rectal cancer cases recorded in the registry from 2007 to 2016 was retrieved, collated, and analyzed. The primary outcome measure was positive circumferential resection margin, measured as a resection margin ≤1 mm. A total of 3367 patients were included, with 261 (7.5%) having a positive circumferential resection margin. After adjusting for hospital and surgeon volume, hierarchical logistic regression analysis identified a 6-variable model encompassing the independent predictors, including urgent operation, abdominoperineal resection, open technique, low rectal cancer, T3 to T4, and N1 to N2. The accuracy of the model was 92.3%, with an receiver operating characteristic of 0.783 (p risk associated with circumferential resection margin positivity ranged from risk factors) to 43% (6 risk factors). This study was limited by the lack of recorded long-term outcomes associated with circumferential resection margin positivity. The rate of circumferential resection margin involvement in patients undergoing rectal cancer resection in Australasia is low and is influenced by a number of factors. Risk stratification of outcome is important with the increasing demand for publicly accessible quality data. See Video Abstract at http://links.lww.com/DCR/A512.

  7. Hippocampal sparing radiotherapy for pediatric medulloblastoma: impact of treatment margins and treatment technique.

    Science.gov (United States)

    Brodin, N Patrik; Munck af Rosenschöld, Per; Blomstrand, Malin; Kiil-Berthlesen, Anne; Hollensen, Christian; Vogelius, Ivan R; Lannering, Birgitta; Bentzen, Søren M; Björk-Eriksson, Thomas

    2014-04-01

    We investigated how varying the treatment margin and applying hippocampal sparing and proton therapy impact the risk of neurocognitive impairment in pediatric medulloblastoma patients compared with current standard 3D conformal radiotherapy. We included 17 pediatric medulloblastoma patients to represent the variability in tumor location relative to the hippocampal region. Treatment plans were generated using 3D conformal radiotherapy, hippocampal sparing intensity-modulated radiotherapy, and spot-scanned proton therapy, using 3 different treatment margins for the conformal tumor boost. Neurocognitive impairment risk was estimated based on dose-response models from pediatric CNS malignancy survivors and compared among different margins and treatment techniques. Mean hippocampal dose and corresponding risk of cognitive impairment were decreased with decreasing treatment margins (P < .05). The largest risk reduction, however, was seen when applying hippocampal sparing proton therapy-the estimated risk of impaired task efficiency (95% confidence interval) was 92% (66%-98%), 81% (51%-95%), and 50% (30%-70%) for 3D conformal radiotherapy, intensity-modulated radiotherapy, and proton therapy, respectively, for the smallest boost margin and 98% (78%-100%), 90% (60%-98%), and 70% (39%-90%) if boosting the whole posterior fossa. Also, the distance between the closest point of the planning target volume and the center of the hippocampus can be used to predict mean hippocampal dose for a given treatment technique. We estimate a considerable clinical benefit of hippocampal sparing radiotherapy. In choosing treatment margins, the tradeoff between margin size and risk of neurocognitive impairment quantified here should be considered.

  8. Seaward dipping reflectors along the SW continental margin of India: Evidence for volcanic passive margin

    Digital Repository Service at National Institute of Oceanography (India)

    Ajay, K.K.; Chaubey, A.K.; Krishna, K.S.; Rao, D.G.; Sar, D.

    Multi-channel seismic reflection profiles across the southwest continental margin of India (SWCMI) show presence of westerly dipping seismic reflectors beneath sedimentary strata along the western flank of the Laccadive Ridge-northernmost part...

  9. Conference Report: The New Discovery of Margins: Theory-Based Excursions in Marginal Social Fields

    Directory of Open Access Journals (Sweden)

    Babette Kirchner

    2014-05-01

    Full Text Available At this year's spring conference of the Sociology of Knowledge Section of the German Sociological Association, a diverse range of theoretical concepts and multiple empirical insights into different marginal social fields were presented. As in everyday life, drawing a line between center and margin can be seen as an important challenge that must equally be faced in sociology. The socially constructed borderline appears to be highly variable. Therefore it has to be delineated or fixed somehow. The construction of margins is necessary for society in general and smaller social groupings alike to confirm one's own "normal" identity, or one's own membership on the fringes. The different contributions exemplify what was established at the beginning of the conference: Namely that society and its margins are defined differently according to the empirical as well as conceptual focus. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1402148

  10. Decoding the Margins: What Can the Fractal Geometry of Basaltic Flow Margins Tell Us?

    Science.gov (United States)

    Schaefer, E. I.; Hamilton, C.; Neish, C.; Beard, S. P.; Bramson, A. M.; Sori, M.; Rader, E. L.

    2016-12-01

    Studying lava flows on other planetary bodies is essential to characterizing eruption styles and constraining the bodies' thermal evolution. Although planetary basaltic flows are common, many key features are not resolvable in orbital imagery. We are thus developing a technique to characterize basaltic flow type, sub-meter roughness, and sediment mantling from these data. We will present the results from upcoming fieldwork at Craters of the Moon National Monument and Preserve with FINESSE (August) and at Hawai'i Volcanoes National Park (September). We build on earlier work that showed that basaltic flow margins are approximately fractal [Bruno et al., 1992; Gaonac'h et al., 1992] and that their fractal dimensions (D) have distinct `a`ā and pāhoehoe ranges under simple conditions [Bruno et al., 1994]. Using a differential GPS rover, we have recently shown that the margin of Iceland's 2014 Holuhraun flow exhibits near-perfect (R2=0.9998) fractality for ≥24 km across dm to km scales [Schaefer et al., 2016]. This finding suggests that a fractal-based technique has significant potential to characterize flows at sub-resolution scales. We are simultaneously seeking to understand how margin fractality can be modified. A preliminary result for an `a'ā flow in Hawaii's Ka'ū Desert suggests that although aeolian mantling obscures the original flow margin, the apparent margin (i.e., sediment-lava interface) remains fractal [Schaefer et al., 2015]. Further, the apparent margin's D is likely significantly modified from that of the original margin. Other factors that we are exploring include erosion, transitional flow types, and topographic confinement. We will also rigorously test the intriguing possibility that margin D correlates with the sub-meter Hurst exponent H of the flow surface, a common metric of roughness scaling [e.g., Shepard et al., 2001]. This hypothesis is based on geometric arguments [Turcotte, 1997] and is qualitatively consistent with all results so far.

  11. Conference Report: The New Discovery of Margins: Theory-Based Excursions in Marginal Social Fields

    OpenAIRE

    Kirchner, Babette; Lorenzen, Jule-Marie; Striffler, Christine

    2014-01-01

    At this year's spring conference of the Sociology of Knowledge Section of the German Sociological Association, a diverse range of theoretical concepts and multiple empirical insights into different marginal social fields were presented. As in everyday life, drawing a line between center and margin can be seen as an important challenge that must equally be faced in sociology. The socially constructed borderline appears to be highly variable. Therefore it has to be delineated or fixed somehow. ...

  12. SU-E-T-762: Toward Volume-Based Independent Dose Verification as Secondary Check

    International Nuclear Information System (INIS)

    Tachibana, H; Tachibana, R

    2015-01-01

    Purpose: Lung SBRT plan has been shifted to volume prescription technique. However, point dose agreement is still verified using independent dose verification at the secondary check. The volume dose verification is more affected by inhomogeneous correction rather than point dose verification currently used as the check. A feasibility study for volume dose verification was conducted in lung SBRT plan. Methods: Six SBRT plans were collected in our institute. Two dose distributions with / without inhomogeneous correction were generated using Adaptive Convolve (AC) in Pinnacle3. Simple MU Analysis (SMU, Triangle Product, Ishikawa, JP) was used as the independent dose verification software program, in which a modified Clarkson-based algorithm was implemented and radiological path length was computed using CT images independently to the treatment planning system. The agreement in point dose and mean dose between the AC with / without the correction and the SMU were assessed. Results: In the point dose evaluation for the center of the GTV, the difference shows the systematic shift (4.5% ± 1.9 %) in comparison of the AC with the inhomogeneous correction, on the other hands, there was good agreement of 0.2 ± 0.9% between the SMU and the AC without the correction. In the volume evaluation, there were significant differences in mean dose for not only PTV (14.2 ± 5.1 %) but also GTV (8.0 ± 5.1 %) compared to the AC with the correction. Without the correction, the SMU showed good agreement for GTV (1.5 ± 0.9%) as well as PTV (0.9% ± 1.0%). Conclusion: The volume evaluation for secondary check may be possible in homogenous region. However, the volume including the inhomogeneous media would make larger discrepancy. Dose calculation algorithm for independent verification needs to be modified to take into account the inhomogeneous correction

  13. SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y; Yu, J; Xiao, Y [Thomas Jefferson University Hospital, Philadelphia, PA (United States)

    2015-06-15

    Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematical model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant.

  14. SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume

    International Nuclear Information System (INIS)

    Gong, Y; Yu, J; Xiao, Y

    2015-01-01

    Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematical model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant

  15. The marginal band system in nymphalid butterfly wings.

    Science.gov (United States)

    Taira, Wataru; Kinjo, Seira; Otaki, Joji M

    2015-01-01

    Butterfly wing color patterns are highly complex and diverse, but they are believed to be derived from the nymphalid groundplan, which is composed of several color pattern systems. Among these pattern systems, the marginal band system, including marginal and submarginal bands, has rarely been studied. Here, we examined the color pattern diversity of the marginal band system among nymphalid butterflies. Marginal and submarginal bands are usually expressed as a pair of linear bands aligned with the wing margin. However, a submarginal band can be expressed as a broken band, an elongated oval, or a single dot. The marginal focus, usually a white dot at the middle of a wing compartment along the wing edge, corresponds to the pupal edge spot, one of the pupal cuticle spots that signify the locations of color pattern organizing centers. A marginal band can be expressed as a semicircle, an elongated oval, or a pair of eyespot-like structures, which suggest the organizing activity of the marginal focus. Physical damage at the pupal edge spot leads to distal dislocation of the submarginal band in Junonia almana and in Vanessa indica, suggesting that the marginal focus functions as an organizing center for the marginal band system. Taken together, we conclude that the marginal band system is developmentally equivalent to other symmetry systems. Additionally, the marginal band is likely a core element and the submarginal band a paracore element of the marginal band system, and both bands are primarily specified by the marginal focus organizing center.

  16. The stability margin of elongated plasmas

    International Nuclear Information System (INIS)

    Portone, Alfredo

    2005-01-01

    Passive stabilization is a key feature in tokamak design since it indicates the efficiency of the metallic structures to 'oppose' plasma displacements. As far as plasma vertical displacement modes are concerned, usually their passive stabilization is characterized in terms of two main indices, namely the instability growth time and the stability margin. In this study-after recalling the governing equations-we extend the definition of the stability margin given in the literature (Lazarus E. et al 1990 Nucl. Fusion 30 111, Albanese R. et al 1990 IEEE Trans. Magn. 26, Kameari A. et al 1985 Nucl. Eng. Des./Fusion 365-73) for the rigid body displacement model to the non-rigid plasma model. Numerical examples are also given for the reduced task objectives/reduced cost ITER design

  17. Passive target tracking using marginalized particle filter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A marginalized particle filtering(MPF)approach is proposed for target tracking under the background of passive measurement.Essentially,the MPF is a combination of particle filtering technique and Kalman filter.By making full use of marginalization,the distributions of the tractable linear part of the total state variables are updated analytically using Kalman filter,and only the lower-dimensional nonlinear state variable needs to be dealt with using particle filter.Simulation studies are performed on an illustrative example,and the results show that the MPF method leads to a significant reduction of the tracking errors when compared with the direct particle implementation.Real data test results also validate the effectiveness of the presented method.

  18. Jatropha potential on marginal land in Ethiopia

    DEFF Research Database (Denmark)

    Wendimu, Mengistu Assefa

    narrative. But both the availability and suitability of “marginal” land for commercial level jatropha production is not well understood/examined, especially in Africa. Using a case study of large-scale jatropha plantation in Ethiopia, this paper examines the process of land identification for jatropha....... The increasing trend of land acquisition for biofuels has led to the widespread debate about food versus biofuel because of the perceived competition for land and water. To avoid the food versus fuel debate, the use of “marginal” land for biofuel feedstock production (jatropha) has emerged as a dominant...... investments, and the agronomic performance of large-scale jatropha plantation on so-called marginal land. Although it has been argued that jatropha can be grown well on marginal land without irrigation, and thus does not compete for land and water or displace food production from agricultural land, this study...

  19. Distributions with given marginals and statistical modelling

    CERN Document Server

    Fortiana, Josep; Rodriguez-Lallena, José

    2002-01-01

    This book contains a selection of the papers presented at the meeting `Distributions with given marginals and statistical modelling', held in Barcelona (Spain), July 17-20, 2000. In 24 chapters, this book covers topics such as the theory of copulas and quasi-copulas, the theory and compatibility of distributions, models for survival distributions and other well-known distributions, time series, categorical models, definition and estimation of measures of dependence, monotonicity and stochastic ordering, shape and separability of distributions, hidden truncation models, diagonal families, orthogonal expansions, tests of independence, and goodness of fit assessment. These topics share the use and properties of distributions with given marginals, this being the fourth specialised text on this theme. The innovative aspect of the book is the inclusion of statistical aspects such as modelling, Bayesian statistics, estimation, and tests.

  20. Marginal Loss Calculations for the DCOPF

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, Brent [Federal Energy Regulatory Commission, Washington, DC (United States); Johns Hopkins Univ., Baltimore, MD (United States); O' Neill, Richard P. [Federal Energy Regulatory Commission, Washington, DC (United States); Castillo, Andrea R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-05

    The purpose of this paper is to explain some aspects of including a marginal line loss approximation in the DCOPF. The DCOPF optimizes electric generator dispatch using simplified power flow physics. Since the standard assumptions in the DCOPF include a lossless network, a number of modifications have to be added to the model. Calculating marginal losses allows the DCOPF to optimize the location of power generation, so that generators that are closer to demand centers are relatively cheaper than remote generation. The problem formulations discussed in this paper will simplify many aspects of practical electric dispatch implementations in use today, but will include sufficient detail to demonstrate a few points with regard to the handling of losses.

  1. The rifted margin of Saudi Arabia

    Science.gov (United States)

    McClain, J. S.; Orcutt, J. A.

    The structure of rifted continental margins has always been of great scientific interest, and now, with dwindling economic oil deposits, these complex geological features assume practical importance as well. The ocean-continent transition is, by definition, laterally heterogeneous and likely to be extremely complicated. The southernmost shotpoints (4, 5, and 6) in the U.S. Geological Survey seismic refraction profile in the Kingdom of Saudi Arabia lie within a transition region and thus provide a testing ground for methods that treat wave propagation in laterally heterogeneous media. This portion of the profile runs from the Farasan Islands in the Red Sea across the coast line and the Hijaz-Asir escarpment into the Hijaz-Asir tectonic province. Because the southernmost shotpoint is within the margin of the Saudi sub-continent, the full transition region is not sampled. Furthermore, such an experiment is precluded by the narrowness of the purely oceanic portion of the Red Sea.

  2. Systems considerations in seismic margin evaluations

    International Nuclear Information System (INIS)

    Buttermer, D.R.

    1987-01-01

    Increasing knowledge in the geoscience field has led to the understanding that, although highly unlikely, it is possible for a nuclear power plant to be subjected to earthquake ground motion greater than that for which the plant was designed. While it is recognized that there are conservatisms inherent in current design practices, interest has developed in evaluating the seismic risk of operating plants. Several plant-specific seismic probabilistic risk assessments (SPRA) have been completed to address questions related to the seismic risk of a plant. The results from such SPRAs are quite informative, but such studies may entail a considerable amount of expensive analysis of large portions of the plant. As an alternative to an SPRA, it may be more practical to select an earthquake level above the design basis for which plant survivability is to be demonstrated. The principal question to be addressed in a seismic margin evaluation is: At what ground motion levels does one have a high confidence that the probability of seismically induced core damage is sufficiently low? In a seismic margin evaluation, an earthquake level is selected (based on site-specific geoscience considerations) for which a stable, long-term safe shutdown condition is to be demonstrated. This prespecified earthquake level is commonly referred to as the seismic margin earthquake (SME). The Electric Power Research Institute is currently supporting a research project to develop procedures for use by the utilities to allow them to perform nuclear plant seismic margin evaluations. This paper describes the systems-related aspects of these procedures

  3. Marginal longitudinal semiparametric regression via penalized splines

    KAUST Repository

    Al Kadiri, M.

    2010-08-01

    We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models.

  4. Marginal longitudinal semiparametric regression via penalized splines

    KAUST Repository

    Al Kadiri, M.; Carroll, R.J.; Wand, M.P.

    2010-01-01

    We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models.

  5. PENDIDIKAN ALTERNATIF UNTUK PEREMPUAN MARGINAL DI PEDESAAN

    Directory of Open Access Journals (Sweden)

    Ratnawati Tahir

    2011-11-01

    Full Text Available Abstract: Alternative Education for Marginalized Women in Rural Areas. The study aims to find alter­native forms of education for marginalized women, the process of forming study groups and gender based learning process that serves the center of the development of education, leadership and a source of economic empowerment. The study uses qualitative methods, involving a group of women who have attended an al­ternative education. Researchers and informants from community leaders. The results showed that the form of alternative education is a method of adult education or andragogy. Study groups consisted of basic literacy and functional literacy. The learning process begins with the sharing of learning, reflection on life experience and role play method. The result is 65% of participants have increased the ability of reading, writing and numeracy, and understanding of the issues of women who have confidence in the decision making of households and communities. Abstrak: Pendidikan Alternatif untuk Perempuan Marginal di Pedesaan. Penelitian ini bertujuan mengetahui bentuk pendidikan alternatif untuk perempuan marginal, proses pembentukan kelompok belajar, dan proses pembelajaran berperspektif gender yang berfungsi menjadi pusat pengembangan pendidikan, kepemimpinan, dan sumber penguatan ekonomi. Penelitian menggunakan metode kualitatif, mengambil satu kelompok perempuan yang telah mengikuti pendidikan alternatif. Informan terdiri atas tokoh masyarakat, seperti Kepala Desa, Ketua RT/RW, dan ibu rumah tangga. Hasil penelitian menunjukkan bahwa bentuk pembelajaran pendidikan alternatif adalah metode pendidikan orang dewasa atau andragogy. Pembentukan kelompok belajar terdiri atas; kelompok baca tulis dan keaksaraan fungsional. Proses pembe­lajaran dimulai dengan sharing pembelajaran, refleksi pengalaman hidup, dan metode role play. Hasilnya 65% peserta pembelajaran mengalami peningkatan kemampuan membaca, menulis, dan berhitung, serta pema

  6. Marginal microfiltration in amalgam restorations. Review

    OpenAIRE

    Lahoud Salem, Víctor

    2014-01-01

    The present articule is review references from phenomenon of microfiltration in restorations with amalgam and yours consecuents in changes of color in the interface tooth-restorations, margin deterioted , sensitivity dentinarea postoperate, caries secondary and pulp inflamation. Besides naming the mechanicals for to reduce microfiltration, and yours effects for use of sealers dentinaries representation for the varnish cavitys and adhesive systens Conclusive indicate wath the amalgam is the ma...

  7. Work culture and migrant women's welfare marginalization

    OpenAIRE

    Psimmenos, Iordanis

    2007-01-01

    Central to this paper is the relationship between work and welfare marginalization ofmigrant women domestic workers. Based upon the findings of a recent (2005-2007)research study on Albanian and Ukrainian domestic workers’ access to socialinsurance, medical and children’s care (i.e. nurseries, kindergartens), the paper claimsthat welfare barriers are constituted around lack of resources, discriminations as well asconditions and values at work.At the highest level of generality, paid domestic ...

  8. PREDICTIVE METHODS FOR STABILITY MARGIN IN BWR

    OpenAIRE

    MELARA SAN ROMÁN, JOSÉ

    2016-01-01

    [EN] Power and flow oscillations in a BWR are very undesirable. One of the major concerns is to ensure, during power oscillations, compliance with GDC 10 and 12. GDC 10 requires that the reactor core be designed with appropriate margin to assure that specified acceptable fuel design limits will not be exceeded during any condition of normal operation, including the effects of anticipated operational occurrences. GDC 12 requires assurance that power oscillations which can result in conditions ...

  9. Quantification and Assessment of Interfraction Setup Errors Based on Cone Beam CT and Determination of Safety Margins for Radiotherapy.

    Directory of Open Access Journals (Sweden)

    Macarena Cubillos Mesías

    Full Text Available To quantify interfraction patient setup-errors for radiotherapy based on cone-beam computed tomography and suggest safety margins accordingly.Positioning vectors of pre-treatment cone-beam computed tomography for different treatment sites were collected (n = 9504. For each patient group the total average and standard deviation were calculated and the overall mean, systematic and random errors as well as safety margins were determined.The systematic (and random errors in the superior-inferior, left-right and anterior-posterior directions were: for prostate, 2.5(3.0, 2.6(3.9 and 2.9(3.9mm; for prostate bed, 1.7(2.0, 2.2(3.6 and 2.6(3.1mm; for cervix, 2.8(3.4, 2.3(4.6 and 3.2(3.9mm; for rectum, 1.6(3.1, 2.1(2.9 and 2.5(3.8mm; for anal, 1.7(3.7, 2.1(5.1 and 2.5(4.8mm; for head and neck, 1.9(2.3, 1.4(2.0 and 1.7(2.2mm; for brain, 1.0(1.5, 1.1(1.4 and 1.0(1.1mm; and for mediastinum, 3.3(4.6, 2.6(3.7 and 3.5(4.0mm. The CTV-to-PTV margins had the smallest value for brain (3.6, 3.7 and 3.3mm and the largest for mediastinum (11.5, 9.1 and 11.6mm. For pelvic treatments the means (and standard deviations were 7.3 (1.6, 8.5 (0.8 and 9.6 (0.8mm.Systematic and random setup-errors were smaller than 5mm. The largest errors were found for organs with higher motion probability. The suggested safety margins were comparable to published values in previous but often smaller studies.

  10. On marginally resolved objects in optical interferometry

    Science.gov (United States)

    Lachaume, R.

    2003-03-01

    With the present and soon-to-be breakthrough of optical interferometry, countless objects shall be within reach of interferometers; yet, most of them are expected to remain only marginally resolved with hectometric baselines. In this paper, we tackle the problem of deriving the properties of a marginally resolved object from its optical visibilities. We show that they depend on the moments of flux distribution of the object: centre, mean angular size, asymmetry, and curtosis. We also point out that the visibility amplitude is a second-order phenomenon, whereas the phase is a combination of a first-order term, giving the location of the photocentre, and a third-order term, more difficult to detect than the visibility amplitude, giving an asymmetry coefficient of the object. We then demonstrate that optical visibilities are not a good model constraint while the object stays marginally resolved, unless observations are carried out at different wavelengths. Finally, we show an application of this formalism to circumstellar discs.

  11. Ocean Margins Programs, Phase I research summaries

    Energy Technology Data Exchange (ETDEWEB)

    Verity, P. [ed.

    1994-08-01

    During FY 1992, the DOE restructured its regional coastal-ocean programs into a new Ocean Margins Program (OMP), to: Quantify the ecological and biogeochemical processes and mechanisms that affect the cycling, flux, and storage of carbon and other biogenic elements at the land/ocean interface; Define ocean-margin sources and sinks in global biogeochemical cycles, and; Determine whether continental shelves are quantitatively significant in removing carbon dioxide from the atmosphere and isolating it via burial in sediments or export to the interior ocean. Currently, the DOE Ocean Margins Program supports more than 70 principal and co-principal investigators, spanning more than 30 academic institutions. Research funded by the OMP amounted to about $6.9M in FY 1994. This document is a collection of abstracts summarizing the component projects of Phase I of the OMP. This phase included both research and technology development, and comprised projects of both two and three years duration. The attached abstracts describe the goals, methods, measurement scales, strengths and limitations, and status of each project, and level of support. Keywords are provided to index the various projects. The names, addresses, affiliations, and major areas of expertise of the investigators are provided in appendices.

  12. Maximum Margin Clustering of Hyperspectral Data

    Science.gov (United States)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2013-09-01

    In recent decades, large margin methods such as Support Vector Machines (SVMs) are supposed to be the state-of-the-art of supervised learning methods for classification of hyperspectral data. However, the results of these algorithms mainly depend on the quality and quantity of available training data. To tackle down the problems associated with the training data, the researcher put effort into extending the capability of large margin algorithms for unsupervised learning. One of the recent proposed algorithms is Maximum Margin Clustering (MMC). The MMC is an unsupervised SVMs algorithm that simultaneously estimates both the labels and the hyperplane parameters. Nevertheless, the optimization of the MMC algorithm is a non-convex problem. Most of the existing MMC methods rely on the reformulating and the relaxing of the non-convex optimization problem as semi-definite programs (SDP), which are computationally very expensive and only can handle small data sets. Moreover, most of these algorithms are two-class classification, which cannot be used for classification of remotely sensed data. In this paper, a new MMC algorithm is used that solve the original non-convex problem using Alternative Optimization method. This algorithm is also extended for multi-class classification and its performance is evaluated. The results of the proposed algorithm show that the algorithm has acceptable results for hyperspectral data clustering.

  13. Pricing district heating by marginal cost

    International Nuclear Information System (INIS)

    Difs, Kristina; Trygg, Louise

    2009-01-01

    A vital measure for industries when redirecting the energy systems towards sustainability is conversion from electricity to district heating (DH). This conversion can be achieved for example, by replacing electrical heating with DH and compression cooling with heat-driven absorption cooling. Conversion to DH must, however, always be an economically attractive choice for an industry. In this paper the effects for industries and the local DH supplier are analysed when pricing DH by marginal cost in combination with industrial energy efficiency measures. Energy audits have shown that the analysed industries can reduce their annual electricity use by 30% and increase the use of DH by 56%. When marginal costs are applied as DH tariffs and the industrial energy efficiency measures are implemented, the industrial energy costs can be reduced by 17%. When implementing the industrial energy efficiency measures and also considering a utility investment in the local energy system, the local DH supplier has a potential to reduce the total energy system cost by 1.6 million EUR. Global carbon dioxide emissions can be reduced by 25,000 tonnes if the industrial energy efficiency measures are implemented and when coal-condensing power is assumed to be the marginal electricity source

  14. Marginalized Student Access to Technology Education

    Science.gov (United States)

    Kurtcu, Wanda M.

    The purpose of this paper is to investigate how a teacher can disrupt an established curriculum that continues the cycle of inequity of access to science, technology, engineering, and math (STEM) curriculum by students in alternative education. For this paper, I will focus on the technology components of the STEM curriculum. Technology in the United States, if not the world economy, is developing at a rapid pace. Many areas of day to day living, from applying for a job to checking one's bank account online, involve a component of science and technology. The 'gap' in technology education is emphasized between the 'haves and have-nots', which is delineated along socio-economic lines. Marginalized students in alternative education programs use this equipment for little else than remedial programs and credit recovery. This level of inequity further widens in alternative education programs and affects the achievement of marginalized students in credit recovery or alternative education classes instead of participation technology classes. For the purposes of this paper I focus on how can I decrease the inequity of student access to 21st century technology education in an alternative education program by addressing the established curriculum of the program and modifying structural barriers of marginalized student access to a technology focused curriculum.

  15. Brachytherapy dose-volume histogram computations using optimized stratified sampling methods

    International Nuclear Information System (INIS)

    Karouzakis, K.; Lahanas, M.; Milickovic, N.; Giannouli, S.; Baltas, D.; Zamboglou, N.

    2002-01-01

    A stratified sampling method for the efficient repeated computation of dose-volume histograms (DVHs) in brachytherapy is presented as used for anatomy based brachytherapy optimization methods. The aim of the method is to reduce the number of sampling points required for the calculation of DVHs for the body and the PTV. From the DVHs are derived the quantities such as Conformity Index COIN and COIN integrals. This is achieved by using partial uniform distributed sampling points with a density in each region obtained from a survey of the gradients or the variance of the dose distribution in these regions. The shape of the sampling regions is adapted to the patient anatomy and the shape and size of the implant. For the application of this method a single preprocessing step is necessary which requires only a few seconds. Ten clinical implants were used to study the appropriate number of sampling points, given a required accuracy for quantities such as cumulative DVHs, COIN indices and COIN integrals. We found that DVHs of very large tissue volumes surrounding the PTV, and also COIN distributions, can be obtained using a factor of 5-10 times smaller the number of sampling points in comparison with uniform distributed points

  16. Perforated marginal ulcers after laparoscopic gastric bypass.

    Science.gov (United States)

    Felix, Edward L; Kettelle, John; Mobley, Elijah; Swartz, Daniel

    2008-10-01

    Perforated marginal ulcer (PMU) after laparoscopic Roux-en-Y gastric bypass (LRYGB) is a serious complication, but its incidence and etiology have rarely been investigated. Therefore, a retrospective review of all patients undergoing LRYGB at the authors' center was conducted to determine the incidence of PMU and whether any causative factors were present. A prospectively kept database of all patients at the authors' bariatric center was retrospectively reviewed. The complete records of patients with a PMU were examined individually for accuracy and analyzed for treatment, outcome, and possible underlying causes of the marginal perforation. Between April 1999 and August 2007, 1% of the patients (35/3,430) undergoing laparoscopic gastric bypass experienced one or more perforated marginal ulcers 3 to 70 months (median, 18 months) after LRYGB. The patients with and without perforation were not significantly different in terms of mean age (37 vs 41 years), weight (286 vs 287 lb), body mass index (BMI) (46 vs 47), or female gender (89% vs 83%). Of the patients with perforations, 2 (6%) were taking steroids, 10 (29%) were receiving nonsteroidal antiinflammatory drugs (NSAIDs) at the time of the perforation, 18 (51%) were actively smoking, and 6 of the smokers also were taking NSAIDs. Eleven of the patients (31%) who perforated did not have at least one of these possible risk factors, but 4 (36%) of the 11 patients in this group had been treated after bypass for a marginal ulcer. Only 7 (20%) of the 35 patients who had laparoscopic bypass, or 7 (0.2%) in the entire group of 3,430 patients, perforated without any warning. There were no deaths, but three patients reperforated. The incidence of a marginal ulcer perforating after LRYGB was significant (>1%) and appeared to be related to smoking or the use of NSAIDs or steroids. Because only 0.2% of all patients acutely perforated without some risk factor or warning, long-term ulcer prophylaxis or treatment may be necessary

  17. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours - A study using flexible surface coils

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Merina [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Schmidt, Maria [Cancer Research UK Clinical Magnetic Resonance Group, Royal Marsden NHS Foundation Trust, Surrey (United Kingdom); Sohaib, Aslam [Department of Radiology, Royal Marsden NHS Foundation Trust, London (United Kingdom); Kong, Christine; Burke, Kevin [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Richardson, Cheryl; Usher, Marianne [Cancer Research UK Clinical Magnetic Resonance Group, Royal Marsden NHS Foundation Trust, Surrey (United Kingdom); Brennan, Sinead [Department of Radiotherapy, St. James' s Hospital, Dublin (Ireland); Riddell, Angela [Department of Radiology, Royal Marsden NHS Foundation Trust, London (United Kingdom); Davies, Mark; Newbold, Kate [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Harrington, Kevin J; Nutting, Christopher M [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Institute of Cancer Research, London (United Kingdom)

    2010-02-15

    Introduction: Magnetic resonance imaging (MRI) provides superior diagnostic accuracy over computed tomography (CT) in oropharyngeal tumours. Precise delineation of the gross tumour volume (GTV) is mandatory in radiotherapy planning when a GTV boost is required. CT volume definition in this regard is poor. We studied the feasibility of using flexible surface (flex-L) coils to obtain MR images for MR-CT fusion to assess the benefit of MRI over CT alone in planning base of tongue tumours. Methods: Eight patients underwent CT and MRI radiotherapy planning scans with an immobilisation device. Distortion-corrected T1-weighted post-contrast MR scans were fused to contrast-enhanced planning CT scans. GTV, clinical target and planning target volumes (CTV, PTV) and organs at risk (OAR) were delineated on CT, then on MRI with blinding to the CT images. The volumetric and spatial differences between MRI and CT volumes for GTV, CTV, PTV and OAR were compared. MR image distortions due to field inhomogeneity and non-linear gradients were corrected and the need for such correction was evaluated. Results: The mean primary GTV was larger on MRI (22.2 vs. 9.5 cm{sup 3}, p = 0.05) than CT. The mean primary and nodal GTV (i.e. BOT and macroscopic nodes) was significantly larger on MRI (27.2 vs. 14.4 cm{sup 3}, p = 0.05). The volume overlap index (VOI) between MRI and CT for the primary was 0.34 suggesting that MRI depicts parts of the primary tumour not detected by CT. There was no significant difference in volume delineation between MR and CT for CTV, PTV, nodal CTV and nodal PTV. MRI volumes for brainstem and spinal cord were significantly smaller due to improved organ definition (p = 0.002). Susceptibility and gradient-related distortions were not found to be clinically significant. Conclusion: MRI improves the definition of tongue base tumours and neurological structures. The use of MRI is recommended for GTV dose-escalation techniques to provide precise depiction of GTV and

  18. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours - A study using flexible surface coils

    International Nuclear Information System (INIS)

    Ahmed, Merina; Schmidt, Maria; Sohaib, Aslam; Kong, Christine; Burke, Kevin; Richardson, Cheryl; Usher, Marianne; Brennan, Sinead; Riddell, Angela; Davies, Mark; Newbold, Kate; Harrington, Kevin J.; Nutting, Christopher M.

    2010-01-01

    Introduction: Magnetic resonance imaging (MRI) provides superior diagnostic accuracy over computed tomography (CT) in oropharyngeal tumours. Precise delineation of the gross tumour volume (GTV) is mandatory in radiotherapy planning when a GTV boost is required. CT volume definition in this regard is poor. We studied the feasibility of using flexible surface (flex-L) coils to obtain MR images for MR-CT fusion to assess the benefit of MRI over CT alone in planning base of tongue tumours. Methods: Eight patients underwent CT and MRI radiotherapy planning scans with an immobilisation device. Distortion-corrected T1-weighted post-contrast MR scans were fused to contrast-enhanced planning CT scans. GTV, clinical target and planning target volumes (CTV, PTV) and organs at risk (OAR) were delineated on CT, then on MRI with blinding to the CT images. The volumetric and spatial differences between MRI and CT volumes for GTV, CTV, PTV and OAR were compared. MR image distortions due to field inhomogeneity and non-linear gradients were corrected and the need for such correction was evaluated. Results: The mean primary GTV was larger on MRI (22.2 vs. 9.5 cm 3 , p = 0.05) than CT. The mean primary and nodal GTV (i.e. BOT and macroscopic nodes) was significantly larger on MRI (27.2 vs. 14.4 cm 3 , p = 0.05). The volume overlap index (VOI) between MRI and CT for the primary was 0.34 suggesting that MRI depicts parts of the primary tumour not detected by CT. There was no significant difference in volume delineation between MR and CT for CTV, PTV, nodal CTV and nodal PTV. MRI volumes for brainstem and spinal cord were significantly smaller due to improved organ definition (p = 0.002). Susceptibility and gradient-related distortions were not found to be clinically significant. Conclusion: MRI improves the definition of tongue base tumours and neurological structures. The use of MRI is recommended for GTV dose-escalation techniques to provide precise depiction of GTV and improved

  19. Dosimetric comparison of stereotactic body radiotherapy using 4D CT and multiphase CT images for treatment planning of lung cancer: Evaluation of the impact on daily dose coverage

    International Nuclear Information System (INIS)

    Wang Lu; Hayes, Shelly; Paskalev, Kamen; Jin Lihui; Buyyounouski, Mark K.; Ma, Charlie C.-M.; Feigenberg, Steve

    2009-01-01

    Purpose: To investigate the dosimetric impact of using 4D CT and multiphase (helical) CT images for treatment planning target definition and the daily target coverage in hypofractionated stereotactic body radiotherapy (SBRT) of lung cancer. Materials and methods: For 10 consecutive patients treated with SBRT, a set of 4D CT images and three sets of multiphase helical CT scans, taken during free-breathing, end-inspiration and end-expiration breath-hold, were obtained. Three separate planning target volumes (PTVs) were created from these image sets. A PTV 4D was created from the maximum intensity projection (MIP) reconstructed 4D images by adding a 3 mm margin to the internal target volume (ITV). A PTV 3CT was created by generating ITV from gross target volumes (GTVs) contoured from the three multiphase images. Finally, a third conventional PTV (denoted PTV conv ) was created by adding 5 mm in the axial direction and 10 mm in the longitudinal direction to the GTV (in this work, GTV = CTV = clinical target volume) generated from free-breathing helical CT scans. Treatment planning was performed based on PTV 4D (denoted as Plan-1), and the plan was adopted for PTV 3CT and PTV conv to form Plan-2 and Plan-3, respectively, by superimposing 'Plan-1' onto the helical free-breathing CT data set using modified beam apertures that conformed to either PTV 3CT or PTV conv . We first studied the impact of PTV design on treatment planning by evaluating the dosimetry of the three PTVs under the three plans, respectively. Then we examined the effect of the PTV designs on the daily target coverage by utilizing pre-treatment localization CT (CT-on-rails) images for daily GTV contouring and dose recalculation. The changes in the dose parameters of D 95 and D 99 (the dose received by 95% and 99% of the target volume, respectively), and the V p (the volume receiving the prescription dose) of the daily GTVs were compared under the three plans before and after setup error correction

  20. Megavoltage conebeam CT cine as final verification of treatment plan in lung stereotactic body radiotherapy.

    Science.gov (United States)

    Kudithipudi, Vijay; Gayou, Olivier; Colonias, Athanasios

    2016-06-01

    To analyse the clinical impact of megavoltage conebeam computed tomography (MV-CBCT) cine on internal target volume (ITV) coverage in lung stereotactic body radiotherapy (SBRT). One hundred and six patients received lung SBRT. All underwent 4D computed tomography simulation followed by treatment via image guided 3D conformal or intensity modulated radiation. Prior to SBRT, all patients underwent MV-CBCT cine, in which raw projections are displayed as beam's-eye-view fluoroscopic series with the planning target volume (PTV) projected onto each image, enabling verification of tumour motion relative to the PTV and assessment of adequacy of treatment margin. Megavoltage conebeam computed tomography cine was completed 1-2 days prior to SBRT. Four patients (3.8%) had insufficient ITV coverage inferiorly at cine review. All four plans were changed by adding 5 mm on the PTV margin inferiorly. The mean change in PTV volumes was 3.9 cubic centimetres (cc) (range 1.85-6.32 cc). Repeat cine was performed after plan modification to ensure adequate PTV coverage in the modified plans. PTV margin was adequate in the majority of patients with this technique. MV-CBCT cine did show insufficient coverage in a small subset of patients. Insufficient PTV margins may be a function of 4D CT simulation inadequacies or deficiencies in visualizing the ITV inferior border in the full-inhale phase. MV-CBCT cine is a valuable tool for final verification of PTV margins. © 2016 The Royal Australian and New Zealand College of Radiologists.

  1. Prostate bed target interfractional motion using RTOG consensus definitions and daily CT on rails. Does target motion differ between superior and inferior portions of the clinical target volume

    International Nuclear Information System (INIS)

    Verma, Vivek; Zhou, Sumin; Enke, Charles A.; Wahl, Andrew O.; Chen, Shifeng

    2017-01-01

    Using high-quality CT-on-rails imaging, the daily motion of the prostate bed clinical target volume (PB-CTV) based on consensus Radiation Therapy Oncology Group (RTOG) definitions (instead of surgical clips/fiducials) was studied. It was assessed whether PB motion in the superior portion of PB-CTV (SUP-CTV) differed from the inferior PB-CTV (INF-CTV). Eight pT2-3bN0-1M0 patients underwent postprostatectomy intensity-modulated radiotherapy, totaling 300 fractions. INF-CTV and SUP-CTV were defined as PB-CTV located inferior and superior to the superior border of the pubic symphysis, respectively. Daily pretreatment CT-on-rails images were compared to the planning CT in the left-right (LR), superoinferior (SI), and anteroposterior (AP) directions. Two parameters were defined: ''total PB-CTV motion'' represented total shifts from skin tattoos to RTOG-defined anatomic areas; ''PB-CTV target motion'' (performed for both SUP-CTV and INF-CTV) represented shifts from bone to RTOG-defined anatomic areas (i. e., subtracting shifts from skin tattoos to bone). Mean (± standard deviation, SD) total PB-CTV motion was -1.5 (± 6.0), 1.3 (± 4.5), and 3.7 (± 5.7) mm in LR, SI, and AP directions, respectively. Mean (± SD) PB-CTV target motion was 0.2 (±1.4), 0.3 (±2.4), and 0 (±3.1) mm in the LR, SI, and AP directions, respectively. Mean (± SD) INF-CTV target motion was 0.1 (± 2.8), 0.5 (± 2.2), and 0.2 (± 2.5) mm, and SUP-CTV target motion was 0.3 (± 1.8), 0.5 (± 2.3), and 0 (± 5.0) mm in LR, SI, and AP directions, respectively. No statistically significant differences between INF-CTV and SUP-CTV motion were present in any direction. There are no statistically apparent motion differences between SUP-CTV and INF-CTV. Current uniform planning target volume (PTV) margins are adequate to cover both portions of the CTV. (orig.) [de

  2. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    Science.gov (United States)

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  3. Margination of Stiffened Red Blood Cells Regulated By Vessel Geometry.

    Science.gov (United States)

    Chen, Yuanyuan; Li, Donghai; Li, Yongjian; Wan, Jiandi; Li, Jiang; Chen, Haosheng

    2017-11-10

    Margination of stiffened red blood cells has been implicated in many vascular diseases. Here, we report the margination of stiffened RBCs in vivo, and reveal the crucial role of the vessel geometry in the margination by calculations when the blood is seen as viscoelastic fluid. The vessel-geometry-regulated margination is then confirmed by in vitro experiments in microfluidic devices, and it establishes new insights to cell sorting technology and artificial blood vessel fabrication.

  4. Marginal and Interaction Effects in Ordered Response Models

    OpenAIRE

    Debdulal Mallick

    2009-01-01

    In discrete choice models the marginal effect of a variable of interest that is interacted with another variable differs from the marginal effect of a variable that is not interacted with any variable. The magnitude of the interaction effect is also not equal to the marginal effect of the interaction term. I present consistent estimators of both marginal and interaction effects in ordered response models. This procedure is general and can easily be extended to other discrete choice models. I ...

  5. Dose Escalated Liver Stereotactic Body Radiation Therapy at the Mean Respiratory Position

    International Nuclear Information System (INIS)

    Velec, Michael; Moseley, Joanne L.; Dawson, Laura A.; Brock, Kristy K.

    2014-01-01

    Purpose: The dosimetric impact of dose probability based planning target volume (PTV) margins for liver cancer patients receiving stereotactic body radiation therapy (SBRT) was compared with standard PTV based on the internal target volume (ITV). Plan robustness was evaluated by accumulating the treatment dose to ensure delivery of the intended plan. Methods and Materials: Twenty patients planned on exhale CT for 27 to 50 Gy in 6 fractions using an ITV-based PTV and treated free-breathing were retrospectively evaluated. Isotoxic, dose escalated plans were created on midposition computed tomography (CT), representing the mean breathing position, using a dose probability PTV. The delivered doses were accumulated using biomechanical deformable registration of the daily cone beam CT based on liver targeting at the exhale or mean breathing position, for the exhale and midposition CT plans, respectively. Results: The dose probability PTVs were on average 38% smaller than the ITV-based PTV, enabling an average ± standard deviation increase in the planned dose to 95% of the PTV of 4.0 ± 2.8 Gy (9 ± 5%) on the midposition CT (P<.01). For both plans, the delivered minimum gross tumor volume (GTV) doses were greater than the planned nominal prescribed dose in all 20 patients and greater than the planned dose to 95% of the PTV in 18 (90%) patients. Nine patients (45%) had 1 or more GTVs with a delivered minimum dose more than 5 Gy higher with the midposition CT plan using dose probability PTV, compared with the delivered dose with the exhale CT plan using ITV-based PTV. Conclusions: For isotoxic liver SBRT planned and delivered at the mean respiratory, reduced dose probability PTV enables a mean escalation of 4 Gy (9%) in 6 fractions over ITV-based PTV. This may potentially improve local control without increasing the risk of tumor underdosing

  6. Principals' Perceived Supervisory Behaviors Regarding Marginal Teachers in Two States

    Science.gov (United States)

    Range, Bret; Hewitt, Paul; Young, Suzie

    2014-01-01

    This descriptive study used an online survey to determine how principals in two states viewed the supervision of marginal teachers. Principals ranked their own evaluation of the teacher as the most important factor when identifying marginal teachers and relied on informal methods to diagnose marginal teaching. Female principals rated a majority of…

  7. Comparison of investigator-delineated gross tumour volumes and quality assurance in pancreatic cancer: Analysis of the on-trial cases for the SCALOP trial.

    Science.gov (United States)

    Fokas, Emmanouil; Spezi, Emiliano; Patel, Neel; Hurt, Chris; Nixon, Lisette; Chu, Kwun-Ye; Staffurth, John; Abrams, Ross; Mukherjee, Somnath

    2016-08-01

    We performed a retrospective central review of tumour outlines in patients undergoing radiotherapy in the SCALOP trial. The planning CT scans were reviewed retrospectively by a central review team, and the accuracy of investigators' GTV (iGTV) and PTV (iPTV) was compared to the trials team-defined gold standard (gsGTV and gsPTV) using the Jaccard Conformity Index (JCI) and Geographical Miss Index (GMI). The prognostic value of JCI and GMI was also assessed. The RT plans were also reviewed against protocol-defined constraints. 60 patients with diagnostic-quality planning scans were included. The median whole volume JCI for GTV was 0.64 (IQR: 0.43-0.82), and the median GMI was 0.11 (IQR: 0.05-0.22). For PTVs, the median JCI and GMI were 0.80 (IQR: 0.71-0.88) and 0.04 (IQR: 0.02-0.12) respectively. Tumour was completely missed in 1 patient, and⩾50% of the tumour was missed in 3. Patients with JCI for GTV⩾0.7 had 7.12 (95% CIs: 1.83-27.67, p=0.005) higher odds of progressing by 9months in multivariate analysis. Major deviations in RT planning were noted in 4.5% of cases. Radiotherapy workshops and real-time central review of contours are required in RT trials of pancreatic cancer. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. Water pollution screening by large-volume injection of aqueous samples and application to GC/MS analysis of a river Elbe sample

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S.; Efer, J.; Engewald, W. [Leipzig Univ. (Germany). Inst. fuer Analytische Chemie

    1997-03-01

    The large-volume sampling of aqueous samples in a programmed temperature vaporizer (PTV) injector was used successfully for the target and non-target analysis of real samples. In this still rarely applied method, e.g., 1 mL of the water sample to be analyzed is slowly injected direct into the PTV. The vaporized water is eliminated through the split vent. The analytes are concentrated onto an adsorbent inside the insert and subsequently thermally desorbed. The capability of the method is demonstrated using a sample from the river Elbe. By means of coupling this method with a mass selective detector in SIM mode (target analysis) the method allows the determination of pollutants in the concentration range up to 0.01 {mu}g/L. Furthermore, PTV enrichment is an effective and time-saving method for non-target analysis in SCAN mode. In a sample from the river Elbe over 20 compounds were identified. (orig.) With 3 figs., 2 tabs.

  9. Recommendations for CTV margins in radiotherapy planning for non melanoma skin cancer.

    Science.gov (United States)

    Khan, Luluel; Choo, Richard; Breen, Dale; Assaad, Dalal; Fialkov, Jefferey; Antonyshyn, Oleh; McKenzie, David; Woo, Tony; Zhang, Liying; Barnes, Elizabeth

    2012-08-01

    To provide practice guidelines for delineating clinical target volume (CTV) for radiotherapy planning of non melanoma (NMSC) skin cancers. A prospective, single arm, study. Preoperatively, a radiation oncologist outlined the boundary of a gross lesion, and drew 5-mm incremental marks in four directions from the delineated border. Under local anesthesia, the lesion was excised, and resection margins were assessed microscopically by frozen section. Once resection margins were clear, the microscopic tumor extent was calculated using the presurgical incremental markings as references. A potential relationship between the distance of microscopic tumor extension and other variables was analyzed. A total of 159 lesions in 150 consecutive patients, selected for surgical excision with frozen section assisted assessment of resection margins, were accrued. The distance of microscopic tumor extension beyond a gross lesion varied from 1mm to 15 mm, with a mean of 5.3mm. The microscopic tumor extent was positively correlated with the size of gross lesion, histology and number of surgical attempts required to obtain a clear margin. To provide a 95% or greater chance of covering microscopic disease we make the following recommendations for CTV margins; 10mm for BCC less than 2 cm, 13 mm for BCC greater than 2 cm, 11 mm for SCC less than 2 cm, and 14 mm for SCC greater than 2 cm. Tumors greater than 2 cm and SCC histology required larger margins to adequately cover the microscopic extent of disease. This information is crucial in radiation planning of NMSC. Clinicians should be cautioned, as these guidelines may not offer optimum treatment for patients with extremely large or small lesions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Recommendations for CTV margins in radiotherapy planning for non melanoma skin cancer

    International Nuclear Information System (INIS)

    Khan, Luluel; Choo, Richard; Breen, Dale; Assaad, Dalal; Fialkov, Jefferey; Antonyshyn, Oleh; McKenzie, David; Woo, Tony; Zhang Liying; Barnes, Elizabeth

    2012-01-01

    Purpose: To provide practice guidelines for delineating clinical target volume (CTV) for radiotherapy planning of non melanoma (NMSC) skin cancers. Methods and materials: A prospective, single arm, study. Preoperatively, a radiation oncologist outlined the boundary of a gross lesion, and drew 5-mm incremental marks in four directions from the delineated border. Under local anesthesia, the lesion was excised, and resection margins were assessed microscopically by frozen section. Once resection margins were clear, the microscopic tumor extent was calculated using the presurgical incremental markings as references. A potential relationship between the distance of microscopic tumor extension and other variables was analyzed. Results: A total of 159 lesions in 150 consecutive patients, selected for surgical excision with frozen section assisted assessment of resection margins, were accrued. The distance of microscopic tumor extension beyond a gross lesion varied from 1 mm to 15 mm, with a mean of 5.3 mm. The microscopic tumor extent was positively correlated with the size of gross lesion, histology and number of surgical attempts required to obtain a clear margin. To provide a 95% or greater chance of covering microscopic disease we make the following recommendations for CTV margins; 10 mm for BCC less than 2 cm, 13 mm for BCC greater than 2 cm, 11 mm for SCC less than 2 cm, and 14 mm for SCC greater than 2 cm. Conclusions: Tumors greater than 2 cm and SCC histology required larger margins to adequately cover the microscopic extent of disease. This information is crucial in radiation planning of NMSC. Clinicians should be cautioned, as these guidelines may not offer optimum treatment for patients with extremely large or small lesions.

  11. Do Robotic Surgical Systems Improve Profit Margins? A Cross-Sectional Analysis of California Hospitals.

    Science.gov (United States)

    Shih, Ya-Chen Tina; Shen, Chan; Hu, Jim C

    2017-09-01

    The aim of this study was to examine the association between ownership of robotic surgical systems and hospital profit margins. This study used hospital annual utilization data, annual financial data, and discharge data for year 2011 from the California Office of Statewide Health Planning and Development. We first performed bivariate analysis to compare mean profit margin by hospital and market characteristics and to examine whether these characteristics differed between hospitals that had one or more robotic surgical systems in 2011 and those that did not. We applied the t test and the F test to compare mean profit margin between two groups and among three or more groups, respectively. We then conducted multilevel logistic regression to determine the association between ownership of robotic surgical systems and having a positive profit margin after controlling for other hospital and market characteristics and accounting for possible correlation among hospitals located within the same market. The study sample included 167 California hospitals with valid financial information. Hospitals with robotic surgical systems tended to report more favorable profit margins. However, multilevel logistic regression showed that this relationship (an association, not causality) became only marginally significant (odds ratio [OR] = 6.2; P = 0.053) after controlling for other hospital characteristics, such as ownership type, teaching status, bed size, and surgical volumes, and market characteristics, such as total number of robotic surgical systems owned by other hospitals in the same market area. As robotic surgical systems become widely disseminated, hospital decision makers should carefully evaluate the financial and clinical implications before making a capital investment in this technology. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. Deep Structures of The Angola Margin

    Science.gov (United States)

    Moulin, M.; Contrucci, I.; Olivet, J.-L.; Aslanian, D.; Géli, L.; Sibuet, J.-C.

    1 Ifremer Centre de Brest, DRO/Géosciences Marines, B.P. 70, 29280 Plouzané cedex (France) mmoulin@ifremer.fr/Fax : 33 2 98 22 45 49 2 Université de Bretagne Occidentale, Institut Universitaire Europeen de la Mer, Place Nicolas Copernic, 29280 Plouzane (France) 3 Total Fina Elf, DGEP/GSR/PN -GEOLOGIE, 2,place de la Coupole-La Defense 6, 92078 Paris la Defense Cedex Deep reflection and refraction seismic data were collected in April 2000 on the West African margin, offshore Angola, within the framework of the Zaiango Joint Project, conducted by Ifremer and Total Fina Elf Production. Vertical multichannel reflection seismic data generated by a « single-bubble » air gun array array (Avedik et al., 1993) were recorded on a 4.5 km long, digital streamer, while refraction and wide angle reflection seismic data were acquired on OBSs (Ocean Bottom Seismometers). Despite the complexity of the margin (5 s TWT of sediment, salt tectonics), the combination of seismic reflection and refraction methods results in an image and a velocity model of the ground structures below the Aptian salt layer. Three large seismic units appear in the reflection seismic section from the deep part on the margin under the base of salt. The upper seismic unit is layered with reflectors parallel to the base of the salt ; it represents unstructured sediments, filling a basin. The middle unit is seismically transparent. The lower unit is characterized by highly energetic reflectors. According to the OBS refraction data, these two units correspond to the continental crust and the base of the high energetic unit corresponds to the Moho. The margin appears to be divided in 3 domains, from east to west : i) a domain with an unthinned, 30 km thick, continental crust ; ii) a domain located between the hinge line and the foot of the continental slope, where the crust thins sharply, from 30 km to less than 7 km, this domain is underlain by an anormal layer with velocities comprising between 7,2 and 7

  13. The marginal cost of public funds

    DEFF Research Database (Denmark)

    Kleven, Henrik Jacobsen; Kreiner, Claus Thustrup

    2006-01-01

    This paper extends the theory and measurement of the marginal cost of public funds (MCF) to account for labor force participation responses. Our work is motivated by the emerging consensus in the empirical literature that extensive (participation) responses are more important than intensive (hours...... of work) responses. In the modelling of extensive responses, we argue that it is crucial to account for the presence of non-convexities created by fixed work costs. In a non-convex framework, tax and transfer reforms give rise to discrete participation responses generating first-order effects...

  14. Intacs for early pellucid marginal degeneration.

    Science.gov (United States)

    Kymionis, George D; Aslanides, Ioannis M; Siganos, Charalambos S; Pallikaris, Ioannis G

    2004-01-01

    A 42-year-old man had Intacs (Addition Technology Inc.) implantation for early pellucid marginal degeneration (PMD). Two Intacs segments (0.45 mm thickness) were inserted uneventfully in the fashion typically used for low myopia correction (nasal-temporal). Eleven months after the procedure, the uncorrected visual acuity was 20/200, compared with counting fingers preoperatively, while the best spectacle-corrected visual acuity improved to 20/25 from 20/50. Corneal topographic pattern also improved. Although the results are encouraging, concern still exists regarding the long-term effect of this approach for the management of patients with PMD.

  15. TENNESSEE WILLIAMS E O TEATRO MARGINAL GAY

    Directory of Open Access Journals (Sweden)

    Adriana Falqueto Lemos

    2014-06-01

    Full Text Available The work developed in this text aims to read the dramatist Tennnessee Williams in a play in two scenes “E Contar Tristes Histórias das Mortes das Bonecas” which was published in Brazil in the book “Mister Paradise e outras peças em um ato” (2011. The intention is to reflect upon one of his recurring themes, the marginalization. In order to perform the analysis, the theoretical support was grounded in “Literatura e Sociedade” by Antonio Candido (2006, concerning the participation of society and authorship in a piece of literature.

  16. TENNESSEE WILLIAMS E O TEATRO MARGINAL GAY

    Directory of Open Access Journals (Sweden)

    Adriana Falqueto Lemos

    2014-09-01

    Full Text Available The work developed in this text aims to read the dramatist Tennnessee Williams in a play in two scenes “E Contar Tristes Histórias das Mortes das Bonecas” which was published in Brazil in the book “Mister Paradise e outras peças em um ato” (2011. The intention is to reflect upon one of his recurring themes, the marginalization. In order to perform the analysis, the theoretical support was grounded in “Literatura e Sociedade” by Antonio Candido (2006, concerning the participation of society and authorship in a piece of literature.

  17. Absenteeism, efficiency wages, and marginal taxes

    OpenAIRE

    Dale-Olsen, Harald

    2013-01-01

    In this paper, I test the argument that increased taxes on earnings correspond to increased incentives to shirk, thus causing an increase in the rate of worker absenteeism. After fixed job effects are taken into account, panel register data on prime-age Norwegian males who work full-time show that a higher marginal net-of-earnings-tax rate reduces the rate of absenteeism. When the net-of-tax rate is increased by 1.0 percent, absenteeism decreases by 0.3−0.5 percent. Injury-related absences ar...

  18. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust

    Science.gov (United States)

    von Huene, Roland E.; Scholl, D. W.

    1991-01-01

    subducted beneath the frontal accretionary body and its active buttress. In rounded figures the contemporary rate of solid-volume sediment subduction at convergent ocean margins (???43,500 km) is calculated to be 1.5 km3/yr. Correcting type 1 margins for high rates of terrigenous seafloor sedimentation during the past 30 m.y. or so sets the long-term rate of sediment subduction at 1.0 km3/yr. The bulk of the subducted material is derived directly or indirectly from continental denudation. Interstitial water currently expulsed from accreted and deeply subducted sediment and recycled to the ocean basins is estimated at 0.9 km3/yr. The thinning and truncation caused by subduction erosion of the margin's framework rock and overlying sedimentary deposits have been demonstrated at many convergent margins but only off northern Japan, central Peru, and northern Chile has sufficient information been collected to determine average or long-term rates, which range from 25 to 50 km3/m.y. per kilometer of margin. A conservative long-term rate applicable to many sectors of convergent margins is 30 km3/km/m.y. If applied to the length of type 2 margins, subduction erosion removes and transports approximately 0.6 km3/yr of upper plate material to greater depths. At various places, subduction erosion also affects sectors of type 1 margins bordered by small- to medium-sized accretionary prisms (for example, Japan and Peru), thus increasing the global rate by possibly 0.5 km3/yr to a total of 1.1 km3/yr. Little information is available to assess subduction erosion at margins bordered by large accretionary prisms. Mass balance calculations allow assessments to be made of the amount of subducted sediment that bypasses the prism and underthrusts the margin's rock framework. This subcrustally subducted sediment is estimated at 0.7 km3/yr. Combined with the range of terrestrial matter removed from the margin's rock framework by subduction erosion, the global volume of subcrustally subducted materia

  19. A dose-volume comparison of prostate cancer (PC) radiotherapy (RT) techniques for penile-structures (PNS) - a neglected critical organ in PC RT

    International Nuclear Information System (INIS)

    Dabrowski, Jolanta; Myrianthopoulos, Leon; Nguyen, Ai; Chen, George; Vijayakumar, Srinivasan

    1996-01-01

    Purpose/Objective: Three-dimensional conformal RT(3DCRT) is revolutionizing the use of RT in PC. Rectum and bladder, and in some studies femoral heads are included as critical structures (CS) in comparing rival plans in 3DCRT. Although RT-induced impotence is a major complication of conventional RT, with 30-50% incidence, to date no study has included PNS as a CS. This study is an attempt to remedy this deficiency in the 3DCRT planning in PC. Materials and Methods: After immobilization with Aquaplast, computed-tomography (CT) scans were obtained in supine treatment position from top of lumbar-3 vertebra to lesser-trochanter of the femora with 5-8mm slice-thicknesses; IV contrast was used in all patients. Prostate, seminal vesicles (GTV), and CSs were outlined, including PNS. Corpora cavernosa and bulbous spongiosum together were identified as PNS. Appropriate margins for CTV and PTV were used; total margin to the block from GTV was 2cm. Tumor-minimum doses were prescribed to the 100% isodose line. Dose-volume histograms (DVHs) were obtained to compare three different techniques: 1. Conventional 4 field box technique (4FC) with equal weighting; 2. Six field (2 laterals and 4 obliques [45 degrees from midline] (6FO), with 50% dose delivery from the laterals; and 3. Four equally weighted, non-axial fields [2 laterals and 2 inferior anterior obliques at 45 degree couch and gantry rotations] (4FN). Results: A total of 12 patients are included in the study. The mean and range of percentage volume of PNS receiving more than 30, 60, and 90% of the prescribed dose are shown in the table below: Box plots, such as the example shown above, were used to compare techniques overall. The 6-field coplanar technique treated the least PNS volume beyond a given dose, followed by 4FC and 4FN techniques. The order of least to maximum percent of PNS treated in most individual patients also followed the same trend. In the majority, 6FO and 4FN delivered relatively comparable doses to

  20. SU-E-T-170: Characterization of the Location, Extent, and Proximity to Critical Structures of Target Volumes Provides Detail for Improved Outcome Predictions Among Pancreatic Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Z; Moore, J; Rosati, L; Mian, O; Narang, A; Herman, J; McNutt, T [Johns Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose: In radiotherapy, size, location and proximity of the target to critical structures influence treatment decisions. It has been shown that proximity of the target predicts dosimetric sparing of critical structures. In addition to dosimetry, precise location of disease has further implications such as tumor invasion, or proximity to major arteries that inhibit surgery. Knowledge of which patients can be converted to surgical candidates by radiation may have high impact on future treat/no-treat decisions. We propose a method to improve our characterization of the location of pancreatic cancer and treatment volume extent with respect to nearby arteries with the goal of developing features to improve clinical predictions and decisions. Methods: Oncospace is a local learning health system that systematically captures clinical outcomes and all aspects of radiotherapy treatment plans, including overlap volume histograms (OVH) – a measure of spatial relationships between two structures. Minimum and maximum distances of PTV and OARs based on OVH, PTV volume, anatomic location by ICD-9 code, and surgical outcome were queried. Normalized distance to center from the left and right kidney was calculated to indicate tumor location and laterality. Distance to critical arteries (celiac, superior mesenteric, common hepatic) is validated by surgical status (borderline resectable, locally advanced converted to resectable). Results: There were 205 pancreas stereotactic body radiotherapy patients treated from 2009–2015 queried. Location/laterality of tumor based on kidney OVH show strong trends between location by OVH and by ICD-9. Compared to the locally advanced group, the borderline resectable group showed larger geometrical distance from critical arteries (p=0.03). Conclusion: Our platform enabled analysis of shape/size-location relationships. These data suggest that PTV volume and attention to distance between PTVs and surrounding OARs and major arteries may be

  1. SU-E-T-170: Characterization of the Location, Extent, and Proximity to Critical Structures of Target Volumes Provides Detail for Improved Outcome Predictions Among Pancreatic Cancer Patients

    International Nuclear Information System (INIS)

    Cheng, Z; Moore, J; Rosati, L; Mian, O; Narang, A; Herman, J; McNutt, T

    2015-01-01

    Purpose: In radiotherapy, size, location and proximity of the target to critical structures influence treatment decisions. It has been shown that proximity of the target predicts dosimetric sparing of critical structures. In addition to dosimetry, precise location of disease has further implications such as tumor invasion, or proximity to major arteries that inhibit surgery. Knowledge of which patients can be converted to surgical candidates by radiation may have high impact on future treat/no-treat decisions. We propose a method to improve our characterization of the location of pancreatic cancer and treatment volume extent with respect to nearby arteries with the goal of developing features to improve clinical predictions and decisions. Methods: Oncospace is a local learning health system that systematically captures clinical outcomes and all aspects of radiotherapy treatment plans, including overlap volume histograms (OVH) – a measure of spatial relationships between two structures. Minimum and maximum distances of PTV and OARs based on OVH, PTV volume, anatomic location by ICD-9 code, and surgical outcome were queried. Normalized distance to center from the left and right kidney was calculated to indicate tumor location and laterality. Distance to critical arteries (celiac, superior mesenteric, common hepatic) is validated by surgical status (borderline resectable, locally advanced converted to resectable). Results: There were 205 pancreas stereotactic body radiotherapy patients treated from 2009–2015 queried. Location/laterality of tumor based on kidney OVH show strong trends between location by OVH and by ICD-9. Compared to the locally advanced group, the borderline resectable group showed larger geometrical distance from critical arteries (p=0.03). Conclusion: Our platform enabled analysis of shape/size-location relationships. These data suggest that PTV volume and attention to distance between PTVs and surrounding OARs and major arteries may be

  2. Potential dosimetric benefits of adaptive tumor tracking over the internal target volume concept for stereotactic body radiation therapy of pancreatic cancer.

    Science.gov (United States)

    Karava, Konstantina; Ehrbar, Stefanie; Riesterer, Oliver; Roesch, Johannes; Glatz, Stefan; Klöck, Stephan; Guckenberger, Matthias; Tanadini-Lang, Stephanie

    2017-11-09

    Radiotherapy for pancreatic cancer has two major challenges: (I) the tumor is adjacent to several critical organs and, (II) the mobility of both, the tumor and its surrounding organs at risk (OARs). A treatment planning study simulating stereotactic body radiation therapy (SBRT) for pancreatic tumors with both the internal target volume (ITV) concept and the tumor tracking approach was performed. The two respiratory motion-management techniques were compared in terms of doses to the target volume and organs at risk. Two volumetric-modulated arc therapy (VMAT) treatment plans (5 × 5 Gy) were created for each of the 12 previously treated pancreatic cancer patients, one using the ITV concept and one the tumor tracking approach. To better evaluate the overall dose delivered to the moving tumor volume, 4D dose calculations were performed on four-dimensional computed tomography (4DCT) scans. The resulting planning target volume (PTV) size for each technique was analyzed. Target and OAR dose parameters were reported and analyzed for both 3D and 4D dose calculation. Tumor motion ranged from 1.3 to 11.2 mm. Tracking led to a reduction of PTV size (max. 39.2%) accompanied with significant better tumor coverage (p<0.05, paired Wilcoxon signed rank test) both in 3D and 4D dose calculations and improved organ at risk sparing. Especially for duodenum, stomach and liver, the mean dose was significantly reduced (p<0.05) with tracking for 3D and 4D dose calculations. By using an adaptive tumor tracking approach for respiratory-induced pancreatic motion management, a significant reduction in PTV size can be achieved, which subsequently facilitates treatment planning, and improves organ dose sparing. The dosimetric benefit of tumor tracking is organ and patient-specific.

  3. Adaptive radiotherapy for invasive bladder cancer: A feasibility study

    International Nuclear Information System (INIS)

    Pos, Floris J.; Hulshof, Maarten; Lebesque, Joos; Lotz, Heidi; Tienhoven, Geertjan van; Moonen, Luc; Remeijer, Peter

    2006-01-01

    Purpose: To evaluate the feasibility of adaptive radiotherapy (ART) in combination with a partial bladder irradiation. Methods and Materials: Twenty-one patients with solitary T1-T4 N0M0 bladder cancer were treated to the bladder tumor + 2 cm margin planning target volume (PTV CONV ). During the first treatment week, five daily computed tomography (CT) scans were made immediately before or after treatment. In the second week, a volume was constructed encompassing the gross tumor volumes (GTVs) on the planning scan and the five CT scans (GTV ART ). The GTV ART was expanded with a 1 cm margin for the construction of a PTV ART . Starting in the third week, patients were treated to PTV ART . Repeat CT scans were used to evaluate treatment accuracy. Results: On 5 of 91 repeat CT scans (5%), the GTV was not adequately covered by the PTV ART . On treatment planning, there was only one scan in which the GTV was not adequately covered by the 95% isodose. On average, the treatment volumes were reduced by 40% when comparing PTV ART with PTV CONV (p < 0.0001). Conclusion: The adaptive strategy for bladder cancer is an effective way to deal with treatment errors caused by variations in bladder tumor position and leads to a substantial reduction in treatment volumes

  4. Adaptive radiotherapy for invasive bladder cancer: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Pos, Floris J [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Hulshof, Maarten [Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Lebesque, Joos [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Lotz, Heidi [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Tienhoven, Geertjan van [Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam (Netherlands); Moonen, Luc [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Remeijer, Peter [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2006-03-01

    Purpose: To evaluate the feasibility of adaptive radiotherapy (ART) in combination with a partial bladder irradiation. Methods and Materials: Twenty-one patients with solitary T1-T4 N0M0 bladder cancer were treated to the bladder tumor + 2 cm margin planning target volume (PTV{sub CONV}). During the first treatment week, five daily computed tomography (CT) scans were made immediately before or after treatment. In the second week, a volume was constructed encompassing the gross tumor volumes (GTVs) on the planning scan and the five CT scans (GTV{sub ART}). The GTV{sub ART} was expanded with a 1 cm margin for the construction of a PTV{sub ART}. Starting in the third week, patients were treated to PTV{sub ART}. Repeat CT scans were used to evaluate treatment accuracy. Results: On 5 of 91 repeat CT scans (5%), the GTV was not adequately covered by the PTV{sub ART}. On treatment planning, there was only one scan in which the GTV was not adequately covered by the 95% isodose. On average, the treatment volumes were reduced by 40% when comparing PTV{sub ART} with PTV{sub CONV} (p < 0.0001). Conclusion: The adaptive strategy for bladder cancer is an effective way to deal with treatment errors caused by variations in bladder tumor position and leads to a substantial reduction in treatment volumes.

  5. HISTOPATHOLOGY OF MARGINAL SUPERFICIAL PERIODONTIUM AT MENOPAUSE

    Directory of Open Access Journals (Sweden)

    A. Georgescu

    2012-03-01

    Full Text Available Premises: Sexual hormones may affect the general health condition of women, as early as puberty, continuing during pregnancy and also after menopause. Variations of the hormonal levels may cause different – either local or general – pathological modifications. Sexual hormones may also affect periodontal status, favourizing gingival inflammations and reducing periodontal resistance to the action of the bacterial plaque. Scope: Establishment of the correlations between the debut or the manifestation of menopause and the modifications produced in the superficial periodontium. Materials and method: Clinical and paraclinical investigations were performed on female patients with ages between 45 and 66 years, involving macroscopic, microscopic and radiological recording of the aspect of the superificial periodontium (gingiva. Results: Analysis of the histological sections evidenced atrophic and involutive modifications in the marginal superficial periodontium of female patients at menopause. Conclusions: Sexual hormones intervene in the histological equilibrium of the marginal superficial periodontium, influencing the periodontal health status, which explains the correlation between the subjective symptomatology specific to menopause and the histopatological aspect at epithelial level.

  6. Disparities at the intersection of marginalized groups

    Science.gov (United States)

    Jackson, John W.; Williams, David R.; VanderWeele, Tyler J.

    2016-01-01

    Mental health disparities exist across several dimensions of social inequality, including race/ethnicity, socioeconomic status and gender. Most investigations of health disparities focus on one dimension. Recent calls by researchers argue for studying persons who are marginalized in multiple ways, often from the perspective of intersectionality, a theoretical framework applied to qualitative studies in law, sociology, and psychology. Quantitative adaptations are emerging but there is little guidance as to what measures or methods are helpful. Here, we consider the concept of a joint disparity and its composition, show that this approach can illuminate how outcomes are patterned for social groups that are marginalized across multiple axes of social inequality, and compare the insights gained with that of other measures of additive interaction. We apply these methods to a cohort of males from the National Longitudinal Survey of Youth, examining disparities for black males with low early life SES vs. white males with high early life SES across several outcomes that predict mental health, including unemployment, wages, and incarceration. We report striking disparities in each outcome, but show that the contribution of race, SES, and their intersection varies. PMID:27531592

  7. On recent developments in marginal separation theory.

    Science.gov (United States)

    Braun, S; Scheichl, S

    2014-07-28

    Thin aerofoils are prone to localized flow separation at their leading edge if subjected to moderate angles of attack α. Although 'laminar separation bubbles' at first do not significantly alter the aerofoil performance, they tend to 'burst' if α is increased further or if perturbations acting upon the flow reach a certain intensity. This then either leads to global flow separation (stall) or triggers the laminar-turbulent transition process within the boundary layer flow. This paper addresses the asymptotic analysis of the early stages of the latter phenomenon in the limit as the characteristic Reynolds number [Formula: see text], commonly referred to as marginal separation theory. A new approach based on the adjoint operator method is presented that enables the fundamental similarity laws of marginal separation theory to be derived and the analysis to be extended to higher order. Special emphasis is placed on the breakdown of the flow description, i.e. the formation of finite-time singularities (a manifestation of the bursting process), and on its resolution being based on asymptotic arguments. The passage to the subsequent triple-deck stage is described in detail, which is a prerequisite for carrying out a future numerical treatment of this stage in a proper way. Moreover, a composite asymptotic model is developed in order for the inherent ill-posedness of the Cauchy problems associated with the current flow description to be resolved.

  8. Characterizing entanglement with global and marginal entropic measures

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Illuminati, Fabrizio; De Siena, Silvio

    2003-01-01

    We qualify the entanglement of arbitrary mixed states of bipartite quantum systems by comparing global and marginal mixednesses quantified by different entropic measures. For systems of two qubits we discriminate the class of maximally entangled states with fixed marginal mixednesses, and determine an analytical upper bound relating the entanglement of formation to the marginal linear entropies. This result partially generalizes to mixed states the quantification of entanglement with marginal mixednesses holding for pure states. We identify a class of entangled states that, for fixed marginals, are globally more mixed than product states when measured by the linear entropy. Such states cannot be discriminated by the majorization criterion

  9. Task Group on Safety Margins Action Plan (SMAP). Safety Margins Action Plan - Final Report

    International Nuclear Information System (INIS)

    Hrehor, Miroslav; Gavrilas, Mirela; Belac, Josef; Sairanen, Risto; Bruna, Giovanni; Reocreux, Michel; Touboul, Francoise; Krzykacz-Hausmann, B.; Park, Jong Seuk; Prosek, Andrej; Hortal, Javier; Sandervaag, Odbjoern; Zimmerman, Martin

    2007-01-01

    The international nuclear community has expressed concern that some changes in existing plants could challenge safety margins while fulfilling all the regulatory requirements. In 1998, NEA published a report by the Committee on Nuclear Regulatory Activities on Future Nuclear Regulatory Challenges. The report recognized 'Safety margins during more exacting operating modes' as a technical issue with potential regulatory impact. Examples of plant changes that can cause such exacting operating modes include power up-rates, life extension or increased fuel burnup. In addition, the community recognized that the cumulative effects of simultaneous changes in a plant could be larger than the accumulation of the individual effects of each change. In response to these concerns, CSNI constituted the safety margins action plan (SMAP) task group with the following objectives: 'To agree on a framework for integrated assessments of the changes to the overall safety of the plant as a result of simultaneous changes in plant operation / condition; To develop a CSNI document which can be used by member countries to assess the effect of plant change on the overall safety of the plant; To share information and experience.' The two approaches to safety analysis, deterministic and probabilistic, use different methods and have been developed mostly independently of each other. This makes it difficult to assure consistency between them. As the trend to use information on risk (where the term risk means results of the PSA/PRA analysis) to support regulatory decisions is growing in many countries, it is necessary to develop a method of evaluating safety margin sufficiency that is applicable to both approaches and, whenever possible, integrated in a consistent way. Chapter 2 elaborates on the traditional view of safety margins and the means by which they are currently treated in deterministic analyses. This chapter also discusses the technical basis for safety limits as they are used today

  10. Continent-Ocean Interactions Within East Asian Marginal Seas

    Science.gov (United States)

    Clift, Peter; Kuhnt, Wolfgang; Wang, Pinxian; Hayes, Dennis

    The study of the complex interactions between continents and oceans has become a leading area for 21st century earth cience. In this volume, continent—ocean interactions in tectonics, arc-continent collision, sedimentology, and climatic volution within the East Asian Marginal Seas take precedence. Links between oceanic and continental climate, the sedimentology of coastal and shelf areas, and the links between deformation of continental and oceanic lithosphere are also discussed. As an introduction to the science presented throughout the volume, Wang discusses many of the possible interactions between the tectonic evolution of Asia and both regional and global climate. He speculates that uplift of central Asia in the Pliocene may have triggered the formation of many of the major rivers that drain north through Siberia into the Arctic Ocean. He also argues that it is the delivery of this fresh water that allows the formation of sea ice in that area and triggered the start of Northern Hemispheric glaciation. This may be one of the most dramatic ways in which Asia has shaped the Earth's climate and represents an alternative to the other competing models that have previously emphasized the role of oceanic gateway closure in Central America. Moreover, his proposal for major uplift of at least part of Tibet and Mongolia as late as the Pliocene, based on the history of drainage evolution in Siberia, supports recent data from the southern Tarim Basin and from the Qilian Shan and Qaidam and Jiuxi Basins in northeast Tibet that indicate surface uplift at that time. Constraining the timing and patterns of Tibetan surface uplift is crucial to testing competing models for strain accommodation in Asia following India—Asia collision.

  11. External beam radiotherapy of localized prostatic adenocarcinoma. Evaluation of conformal therapy, field number and target margins

    International Nuclear Information System (INIS)

    Lennernaes, B.; Rikner, G.; Letocha, H.; Nilsson, S.

    1995-01-01

    The purpose of the present study was to identify factors of importance in the planning of external beam radiotherapy of prostatic adenocarcinoma. Seven patients with urogenital cancers were planned for external radiotherapy of the prostate. Four different techniques were used, viz. a 4-field box technique and four-, five- or six-field conformal therapy set-ups combined with three different margins (1-3 cm). The evaluations were based on the doses delivered to the rectum and the urinary bladder. A normal tissue complication probability (NTCP) was calculated for each plan using Lyman's dose volume reduction method. The most important factors that resulted in a decrease of the dose delivered to the rectum and the bladder were the use of conformal therapy and smaller margins. Conformal therapy seemed more important for the dose distribution in the urinary bladder. Five- and six-field set-ups were not significantly better than those with four fields. NTCP calculations were in accordance with the evaluation of the dose volume histograms. To conclude, four-field conformal therapy utilizing reduced margins improves the dose distribution to the rectum and the urinary bladder in the radiotherapy of prostatic adenocarcinoma. (orig.)

  12. Specification of volume and dose in radiotherapy

    International Nuclear Information System (INIS)

    Levernes, S.

    1997-01-01

    As a result of a questionnaire about dose and volume specifications in radiotherapy in the Nordic countries, a group has been set up to propose common recommendations for these countries. The proposal is partly based on ICRU 50, but with major extensions. These extensions fall into three areas: patient geometry, treatment geometry, and dose specifications. For patient geometry and set-up one need alignment markings and anatomical reference points, the latter can be divided into internal and external reference points. These points are necessary to get relationships between coordinate systems related to patient and to treatment unit. For treatment geometry the main volume will be an anatomical target volume which just encompass the clinical target volume with all its variations and movements. This anatomical volume are the most suitable volume for prescription, optimization and reporting dose. A set-up margin should be added to the beam periphery in beams-eye-view to get the minimum size and shape of the beam. For dose specification the most important parameter for homogeneous dose distributions is the arithmetic mean of dose to the anatomical target volume together with its standard deviation. In addition the dose to the ICRU reference point should be reported for intercomparison, together with minimum and maximum doses or dose volume histograms for the anatomical target volume. (author)

  13. Talking (and Not Talking) about Race, Social Class and Dis/Ability: Working Margin to Margin

    Science.gov (United States)

    Ferri, Beth A.; Connor, David J.

    2014-01-01

    In this article we examine some of the omnipresent yet unacknowledged discourses of social and economic disadvantage and dis/ability within schools in the US. First, we document ways that social class, race, and dis/ability function within schools to further disadvantage and exclude already marginalized students. Next, we show how particular ways…

  14. Evaluation of marginal and internal adaptation of hybrid and nanoceramic systems with microcomputed tomography: An in vitro study.

    Science.gov (United States)

    Yildirim, Güler; Uzun, Ismail H; Keles, Ali

    2017-08-01

    The accuracy of recently introduced chairside computer-aided design and computer-aided manufacturing (CAD-CAM) blocks is not well established, and marginal integrity and internal adaptation are not known. The purpose of this in vitro study was to evaluate the marginal and internal adaptation of hybrid and nanoceramics using microcomputed tomography (μ-CT). The marginal and internal adaptation of 3 polymer-infiltrated ceramic-network (PICN) materials (Vita Enamic [VE]; Lava Ultimate [LU]; Vita Suprinity [VS]) were compared with lithium disilicate (IPS e.max.CAD, IPS). Ninety-six specimens (48 dies and 48 crowns) were prepared (n=12 each group) using a chairside CAD-CAM system. The restorations were scanned with μ-CT, with 160 measurements made for each crown, and used in 2-dimensional (2D) analysis. The marginal adaptation of marginal discrepancy (MD), absolute marginal discrepancy (AMD), internal adaptation of shoulder area (SA), axial space (AS), and occlusal space (OS) were compared using appropriate statistical analysis methods (α=.05). Cement volumes were compared using 3D analysis. The IPS blocks showed higher MD (130 μm), AMD (156 μm), SA (111 μm) (P.05). IPS had the largest cement space at 18 mm 3 (Pmarginal and internal adaptation values were within a clinically acceptable range for all 3 hybrids and nanoceramics tested. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Informing practice regarding marginalization: the application of the Koci Marginality Index.

    Science.gov (United States)

    Koci, Anne Floyd; McFarlane, Judith; Nava, Angeles; Gilroy, Heidi; Maddoux, John

    2012-12-01

    The 49th World Health Assembly of the World Health Organization (WHO) declared violence as the leading worldwide public health problem with a focus on the increase in the incidence of injuries to women. Violence against women is an international epidemic with specific instruments required to measure the impact on women's functioning. This article describes the application of the Koci Marginality Index (KMI), a 5-item scale to measure marginality, to the baseline data of a seven-year prospective study of 300 abused women: 150 first time users of a shelter and 150 first time applicants for a protection order from the justice system. Validity and reliability of the Koci Marginality Index and its usefulness for best clinical practice and for policy decisions for abused women's health are discussed. The 49th World Health Assembly of the World Health Organization (WHO) declared violence as the leading worldwide public health problem and focused on the increase in the incidence of injuries to women (Krug et al., 2002 ). Violence against women in the form of intimate partner violence (IPV) is costly in terms of dollars and health. In the United States in 2003, estimated costs of IPV approached $8.3 billion (Centers for Disease Control and Prevention [CDC], 2011). Outcomes related to severity of IPV vary but in 2003 victims suffering severe IPV lost nearly 8 million days of paid work, and greater than 5 million days of household productivity annually (CDC, 2011). Besides the evident financial cost of IPV, research confirms that exposure to IPV impacts a woman's health immediately and in the long-term (Breiding, Black, & Ryan, 2008 ; Campbell, 2002 ; CDC, 2011). Such sequela adversely affect the health of women and may increase their marginalization, a concept akin to isolation that may further increase negative effects on health outcomes. Immigrant women are at high risk for IPV (Erez, 2002 ) and those without documentation are at higher risk for marginalization (Montalvo

  16. A new model for the development of the active Afar volcanic margin

    Science.gov (United States)

    Pik, Raphaël; Stab, Martin; Bellahsen, Nicolas; Leroy, Sylvie