WorldWideScience

Sample records for volume percent hydrogen

  1. Hydrogen distribution in a containment with a high-velocity hydrogen-steam source

    International Nuclear Information System (INIS)

    Bloom, G.R.; Muhlestein, L.D.; Postma, A.K.; Claybrook, S.W.

    1982-09-01

    Hydrogen mixing and distribution tests are reported for a modeled high velocity hydrogen-steam release from a postulated small pipe break or release from a pressurizer relief tank rupture disk into the lower compartment of an Ice Condenser Plant. The tests, which in most cases used helium as a simulant for hydrogen, demonstrated that the lower compartment gas was well mixed for both hydrogen release conditions used. The gas concentration differences between any spatial locations were less than 3 volume percent during the hydrogen/steam release period and were reduced to less than 0.5 volume percent within 20 minutes after termination of the hydrogen source. The high velocity hydrogen/steam jet provided the dominant mixing mechanism; however, natural convection and forced air recirculation played important roles in providing a well mixed atmosphere following termination of the hydrogen source. 5 figures, 4 tables

  2. An experimental investigation of the rate of hydrogen absorption in zirconium-2.5 wt percent niobium from steam/hydrogen mixtures at elevated temperatures

    International Nuclear Information System (INIS)

    Langman, V.J.

    1984-08-01

    The test specifications for an experimental program to study the rate of hydrogen absorption in zirconium-2.5 weight percent niobium pressure tube material from steam/hydrogen mixtures at elevated temperatures are discussed

  3. Residual volume on land and when immersed in water: effect on percent body fat.

    Science.gov (United States)

    Demura, Shinichi; Yamaji, Shunsuke; Kitabayashi, Tamotsu

    2006-08-01

    There is a large residual volume (RV) error when assessing percent body fat by means of hydrostatic weighing. It has generally been measured before hydrostatic weighing. However, an individual's maximal exhalations on land and in the water may not be identical. The aims of this study were to compare residual volumes and vital capacities on land and when immersed to the neck in water, and to examine the influence of the measurement error on percent body fat. The participants were 20 healthy Japanese males and 20 healthy Japanese females. To assess the influence of the RV error on percent body fat in both conditions and to evaluate the cross-validity of the prediction equation, another 20 males and 20 females were measured using hydrostatic weighing. Residual volume was measured on land and in the water using a nitrogen wash-out technique based on an open-circuit approach. In water, residual volume was measured with the participant sitting on a chair while the whole body, except the head, was submerged . The trial-to-trial reliabilities of residual volume in both conditions were very good (intraclass correlation coefficient > 0.98). Although residual volume measured under the two conditions did not agree completely, they showed a high correlation (males: 0.880; females: 0.853; P body fat computed using residual volume measured in both conditions was very good for both sexes (males: r = 0.902; females: r = 0.869, P body fat: -3.4 to 2.2% for males; -6.3 to 4.4% for females). We conclude that if these errors are of no importance, residual volume measured on land can be used when assessing body composition.

  4. The effect of baking soda/hydrogen peroxide dentifrice (Mentadent) and a 0.12 percent chlorhexidine gluconate mouthrinse (Peridex) in reducing gingival bleeding.

    Science.gov (United States)

    Taller, S H

    1993-01-01

    The purpose of this study was to determine the effectiveness of a baking soda/hydrogen peroxide dentifrice, Mentadent, and a 0.12 percent chlorhexidine gluconate mouthrinse, Peridex, in reducing gingival bleeding. Forty subjects were divided into three groups; the baking soda group, the chlorhexidine group and the control group. All groups received oral hygiene instruction and brushed and flossed three times per day. Bleeding point scores were evaluated at baseline and at five weeks. The baking soda/hydrogen peroxide group used the supplied dentifrice as their sole toothpaste. The 0.12 percent chlorhexidine group used the mouthrinse twice per day. The control group performed oral hygiene as instructed. At five weeks, the 0.12 percent chlorhexidine mouthrinse significantly reduced gingival bleeding. The dentifrice and control groups revealed no statistically significant reductions. The results indicate that the 0.12 percent chlorhexidine mouthrinse is useful in improving oral health, whereas the baking soda/hydrogen peroxide dentifrice offered no advantages to conventional oral hygiene.

  5. Partial molar volumes of hydrogen and deuterium in niobium, vanadium, and tantalum

    International Nuclear Information System (INIS)

    Peterson, D.T.; Herro, H.M.

    1983-01-01

    The partial molar volumes of hydrogen and deuterium were measured in vanadium, niobium, and tantalum by a differential pressure technique. One-half of an electrolytically charged sample plat was compressed between hardened steel blocks in a hydraulic press. The activity of hydrogen in the hig pressure region was raised and caused hydrogen to diffuse into the low pressure region. The partia molar volume was calculated from the ratio of the hydrogen concentrations in the high and low pressure regions of the sample. Small isotope effects were found in the partial molar volume. Hydrogen had the larger volume in niobium and tantalum, but the reverse was true in vanadium

  6. Common-Pressure-Vessel Nickel-Hydrogen Battery Development

    OpenAIRE

    Otzinger, Burton; Wheeler, James

    1991-01-01

    The dual-cell, common-pressure vessel, nickel-hydrogen configuration has recently emerged as an option for small satellite nickel-hydrogen battery application. An important incentive is that the dual-cell, CPV configured battery presents a 30 percent reduction in volume and nearly 50 percent reduction in mounting footprint, when compared with an equivalent battery of individual pressure- vessel (IPV) cells. In addition energy density and cost benefits are significant. Eagle-Picher Industries ...

  7. Partial molar volumes of hydrogen and deuterium in niobium and vanadium

    International Nuclear Information System (INIS)

    Herro, H.M.

    1979-01-01

    Lattice dilation studies and direct pressure experiments gave comparable values for the partial molar volumes of hydrogen and deuterium in niobium and vanadium. Small isotope effects in the partial molar volume of hydrogen were measured in both metals by the differential isotope method. Hydrogen had a larger partial molar volume than deuterium in niobium, but the reverse was true in vanadium. The isotope effect measured in niobium can be represented as being due to the larger amplitude of vibration of the hydrogen atom than the deuterium atom in the metal lattice. Since hydrogen has a larger mean displacement from the equilibrium position than does deuterium, the average force hydrogen exerts on the metal atoms is greater than the force deuterium exerts. The isotope effect in vanadium is likely a result of anharmonic effects in the lattice and local vibrational modes

  8. Tranexamic Acid Reduced the Percent of Total Blood Volume Lost During Adolescent Idiopathic Scoliosis Surgery.

    Science.gov (United States)

    Jones, Kristen E; Butler, Elissa K; Barrack, Tara; Ledonio, Charles T; Forte, Mary L; Cohn, Claudia S; Polly, David W

    2017-01-01

    Multilevel posterior spine fusion is associated with significant intraoperative blood loss. Tranexamic acid is an antifibrinolytic agent that reduces intraoperative blood loss. The goal of this study was to compare the percent of total blood volume lost during posterior spinal fusion (PSF) with or without tranexamic acid in patients with adolescent idiopathic scoliosis (AIS). Thirty-six AIS patients underwent PSF in 2011-2014; the last half (n=18) received intraoperative tranexamic acid. We retrieved relevant demographic, hematologic, intraoperative and outcomes information from medical records. The primary outcome was the percent of total blood volume lost, calculated from estimates of intraoperative blood loss (numerator) and estimated total blood volume per patient (denominator, via Nadler's equations). Unadjusted outcomes were compared using standard statistical tests. Tranexamic acid and no-tranexamic acid groups were similar (all p>0.05) in mean age (16.1 vs. 15.2 years), sex (89% vs. 83% female), body mass index (22.2 vs. 20.2 kg/m2), preoperative hemoglobin (13.9 vs. 13.9 g/dl), mean spinal levels fused (10.5 vs. 9.6), osteotomies (1.6 vs. 0.9) and operative duration (6.1 hours, both). The percent of total blood volume lost (TBVL) was significantly lower in the tranexamic acid-treated vs. no-tranexamic acid group (median 8.23% vs. 14.30%, p = 0.032); percent TBVL per level fused was significantly lower with tranexamic acid than without it (1.1% vs. 1.8%, p=0.048). Estimated blood loss (milliliters) was similar across groups. Tranexamic acid significantly reduced the percentage of total blood volume lost versus no tranexamic acid in AIS patients who underwent PSF using a standardized blood loss measure.Level of Evidence: 3. Institutional Review Board status: This medical record chart review (minimal risk) study was approved by the University of Minnesota Institutional Review Board.

  9. Effects of solution volume on hydrogen production by pulsed spark discharge in ethanol solution

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Y. B.; Sun, B., E-mail: sunb88@dlmu.edu.cn; Zhu, X. M.; Yan, Z. Y.; Liu, H.; Liu, Y. J. [College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China)

    2016-07-15

    Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogen production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.

  10. Estimation of the volume and percent uptake of the liver and spleen by SPECT

    International Nuclear Information System (INIS)

    Yamagata, Atushi

    1988-01-01

    The volume and percent uptake of the liver and spleen were estimated with single photon emission computed tomography (SPECT) using 99m Tc-phytate. Clinical usefulness of these parameters was evaluated by comparison with other liver function tests in 87 patients including 25 normal controls, 24 liver cirrhosis and 16 other chronic liver diseases. SPECT images were obtained by Maxi Camera 400T. Cut-off level for reconstruction of images and relationship between counts and activity (mCi) were obtained from phantom studies. Volumes estimated using SPECT and computed tomography were compared in 16 patients. Results obtained were as follows. 1) Optimal cut-off level for measurement of volumes for the liver was 37 % and for the spleen was 42 %. 2) Correlation between organ volumes estimated with CT and SPECT was good (r = 0.92 for the liver and r = 0.96 for the spleen), although volumes measured with SPECT were larger than those with CT. 3) Significant differences of percent uptake were observed between normal controls and liver cirrhosis. 4) Better correlation between spleen volumes and uptake was recognized in cases without liver cirrhosis than in cases with liver cirrhosis. The spleen uptake in liver cirrhosis was higher than those in others in comparison with the volume. 5) The liver/spleen ratio of 99m Tc-phytae uptake could most clearly differentiate liver cirrhosis from others. 6) Negative correlation was observed between liver volume or uptake and ICG (R 15 ). Estimation of volume and uptake of the liver and spleen could be a useful procedure to assess liver function, probably related with effective hepatic blood flow in liver cirrhosis. (author)

  11. Mixing of radiolytic hydrogen generated within a containment compartment following a LOCA

    International Nuclear Information System (INIS)

    Willcutt, G.J.E. Jr.; Gido, R.G.

    1978-07-01

    The objective of this work was to determine hydrogen concentration variations with position and time in a closed containment compartment with radiolytic hydrogen generation in the water on the compartment floor following a Loss-of-Coolant-Accident (LOCA). One application is to determine the potential difference between the compartment maximum hydrogen concentration and a hydrogen detector reading, due to the detector location. Three possible mechanisms for hydrogen transport in the compartment were investigated: (1) molecular diffusion, (2) possible bubble formation and motion, and (3) natural convection flows. A base case cubic compartment with 6.55-m (21.5-ft) height was analyzed. Parameter studies were used to determine the sensitivity of results to compartment size, hydrogen generation rates, diffusion coefficients, and the temperature difference between the floor and the ceiling and walls of the compartment. Diffusion modeling indicates that if no other mixing mechanism is present for the base case, the maximum hydrogen volume percent (vol percent) concentration difference between the compartment floor and ceiling will be 4.8 percent. It will be 24.5 days before the maximum concentration difference is less than 0.5 percent. Bubbles do not appear to be a potential source of hydrogen pocketing in a containment compartment. Compartment natural convection circulation rates for a 2.8 K (5 0 F) temperature difference between the floor and the ceiling and walls are estimated to be at least the equivalent of 1 compartment volume per hour and probably in the range of 4 to 9 compartment volumes per hour. Related natural convection studies indicate there will be turbulent mixing in the compartment for a 2.8 K (5 0 F) temperature difference between the floor and the ceiling and walls

  12. A review of nickel hydrogen battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Smithrick, J.J.; Odonnell, P.M.

    1995-05-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market.

  13. A review of nickel hydrogen battery technology

    Science.gov (United States)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  14. High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsburg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L.; Sato, K.; Kinoshita, M.

    1994-08-01

    The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments

  15. Proceedings of the 1995 U.S. DOE hydrogen program review. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The 1995 US DOE Hydrogen Program Review was held April 18-21, 1995 in Coral Gables, FL. Volume II of the Proceedings contains 8 papers presented under the subject of hydrogen storage and 17 papers presented on hydrogen production. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  16. Oxygen from Hydrogen Peroxide. A Safe Molar Volume-Molar Mass Experiment.

    Science.gov (United States)

    Bedenbaugh, John H.; And Others

    1988-01-01

    Describes a molar volume-molar mass experiment for use in general chemistry laboratories. Gives background technical information, procedures for the titration of aqueous hydrogen peroxide with standard potassium permanganate and catalytic decomposition of hydrogen peroxide to produce oxygen, and a discussion of the results obtained in three…

  17. Proceedings of the 1996 U.S. DOE hydrogen program review. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The 29 papers contained in Volume 1 are related to systems analysis and hydrogen production. Papers in the systems analysis section discuss utility markets, comparison of hydrogen with other alternative fuels, hydrogen vehicles, renewable hydrogen production, storage, and detection, and hydrogen storage systems development. Hydrogen production methods include the use of algae, photosynthesis, glucose dehydrogenase, syngas, photoelectrochemical reactions, photovoltaics, water electrolysis, solar photochemical reactions, pyrolysis, catalytic steam reforming, municipal solid wastes, thermocatalytic cracking of natural gas, and plasma reformers. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  18. Measurement of percent hydrogen in the mechanical vacuum pump gas stream during BWR startup

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    All U.S BWRs use a Mechanical Vacuum Pump (MVP) to establish condenser vacuum during start-ups, normally from the initial heat-up to the point where sufficient reactor steam pressure and flow is available to place the Steam Jet Air Ejector (SJAE) and off-gas treatment system in service. MVP operation is restricted to <5% power and gas stream concentrations of <4% H 2 , the lower flammability limit (LFL) for hydrogen/air mixtures. For a particular plant startup prior to hydrogen injection for hydrogen water chemistry (HWC), the MVP %H 2 would depend on the air in-leakage rate, the H 2 gas generation rate from radiolysis and the gas/steam transport rate from the reactor vessel to the main condenser. The radiolysis rate at low power, which is not precisely known and has not been modeled for the BWR, is normally assumed to increase in proportion to thermal power. Two thirds of the radiolytic gas by volume would be H 2 and one third O 2 . The MVP is not equipped with %H 2 sampling and measurement capability, and many MVP systems include no flow measurement. No U.S plant or literature data on MVP %H 2 were found. The industry-first Early Hydrogen Water Chemistry (EHWC) demonstration at the Peach Bottom 3 nuclear power plant involved hydrogen gas injection into the reactor vessel during startup while the MVP was in service. To support the EHWC project, it was necessary to collect baseline MVP %H 2 data during a startup without hydrogen injection and to monitor MVP %H 2 during the startup with EHWC. The MVP system had no normal sample point, but included test taps in the suction and discharge piping. A sampling method and apparatus was invented (EPRI patent pending), designed, built and applied to obtain %H 2 measurements in the MVP gas stream. The apparatus allowed a gas sample stream to be taken from either the suction (vacuum) or discharge side of the MVP. The gas sample stream was preconditioned to remove moisture (the MVP uses water as a liquid compressant), flowed to

  19. Proceedings of the 1995 U.S. DOE hydrogen program review, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document containes reports from the proceedings of the 1995 U.S. DOE hydrogen program review. Reports are organized under the topics of systems analysis, utilization, storage, and production. This volume, Volume I, contains the reports concerned with systems analysis and utilization. Individual reports were processed separately for the DOE data bases.

  20. Determination of percent calcium carbonate in calcium chromate

    International Nuclear Information System (INIS)

    Middleton, H.W.

    1979-01-01

    The precision, accuracy and reliability of the macro-combustion method is superior to the Knorr alkalimetric method, and it is faster. It also significantly reduces the calcium chromate waste accrual problem. The macro-combustion method has been adopted as the official method for determination of percent calcium carbonate in thermal battery grade anhydrous calcium chromate and percent calcium carbonate in quicklime used in the production of calcium chromate. The apparatus and procedure can be used to measure the percent carbonate in inorganic materials other than calcium chromate. With simple modifications in the basic apparatus and procedure, the percent carbon and hydrogen can be measured in many organic material, including polymers and polymeric formulations. 5 figures, 5 tables

  1. Multiple cell CPV nickel-hydrogen battery

    Science.gov (United States)

    Jones, Ken R.; Zagrodnik, Jeffrey P.

    1991-01-01

    Johnson Controls, Inc. has developed a multiple cell CPV nickel hydrogen battery that offers significant weight, volume, and cost advantages for aerospace applications. The baseline design was successfully demonstrated through the testing of a 26-cell prototype, which completed over 7000 44 percent depth-of-discharge low earth orbit cycles. Prototype designs using both nominal 5 and 10 inch diameter vessels are currently being developed for a variety of customers and applications.

  2. U.S. Department of Energy Hydrogen Storage Cost Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Law, Karen; Rosenfeld, Jeffrey; Han, Vickie; Chan, Michael; Chiang, Helena; Leonard, Jon

    2013-03-11

    The overall objective of this project is to conduct cost analyses and estimate costs for on- and off-board hydrogen storage technologies under development by the U.S. Department of Energy (DOE) on a consistent, independent basis. This can help guide DOE and stakeholders toward the most-promising research, development and commercialization pathways for hydrogen-fueled vehicles. A specific focus of the project is to estimate hydrogen storage system cost in high-volume production scenarios relative to the DOE target that was in place when this cost analysis was initiated. This report and its results reflect work conducted by TIAX between 2004 and 2012, including recent refinements and updates. The report provides a system-level evaluation of costs and performance for four broad categories of on-board hydrogen storage: (1) reversible on-board metal hydrides (e.g., magnesium hydride, sodium alanate); (2) regenerable off-board chemical hydrogen storage materials(e.g., hydrolysis of sodium borohydride, ammonia borane); (3) high surface area sorbents (e.g., carbon-based materials); and 4) advanced physical storage (e.g., 700-bar compressed, cryo-compressed and liquid hydrogen). Additionally, the off-board efficiency and processing costs of several hydrogen storage systems were evaluated and reported, including: (1) liquid carrier, (2) sodium borohydride, (3) ammonia borane, and (4) magnesium hydride. TIAX applied a bottom-up costing methodology customized to analyze and quantify the processes used in the manufacture of hydrogen storage systems. This methodology, used in conjunction with ® software and other tools, developed costs for all major tank components, balance-of-tank, tank assembly, and system assembly. Based on this methodology, the figure below shows the projected on-board high-volume factory costs of the various analyzed hydrogen storage systems, as designed. Reductions in the key cost drivers may bring hydrogen storage system costs closer to this DOE target

  3. Experimental heat capacity of solid hydrogen as a function of molar volume

    International Nuclear Information System (INIS)

    Krause, J.K.

    1978-01-01

    Constant volume heat capacity measurements have been made on six solid hydrogen samples with low orthohydrogen concentrations. The measurements extend from approximately 1.5 K to the melting line, with molar volumes ranging from 22.787 cm 3 /mole to 16.193 cm 3 /mole. Although clustering of the ortho molecules was observed, the low temperature heat capacity anomaly due to the orthohydrogen pairs could be described quite well by the assumption of a fixed distribution. The data were corrected to obtain a lattice heat capacity which on extrapolation to T = 0 yielded Debye temperatures and a volume dependent Grueneisen parameter. A modified Mie-Grueneisen approximation was used to define a volume and temperature dependent Grueneisen parameter which was used to calculate the equation of state, P(V,T), and isothermal bulk modulus, B/sub T/(V,T), for the six isochores. An extrapolation of the equation of state to T = 0 and P = 0 by two different methods yields a molar volume which, when compared with other determinations, gives a recommended value of 23.20 +- 0.05 cm 3 /mole. A rapid increase in the conversion rate of orthohydrogen to parahydrogen was observed at approximately theta/sub o/12. The molar volumes along the melting curve also have been determined directly for the first time in this volume range. These results have been used to show that a low temperature Lindemann melting relation is only approximately valid for solid hydrogen to 50 K

  4. JUSTIFICATION FOR A LIMIT OF 15 PERCENT HYDROGEN IN A 55-GALLON DRUM

    International Nuclear Information System (INIS)

    MARUSICH, R.M.

    2007-01-01

    The concentration of 15% hydrogen in air in a waste drum is used as the concentration at which the drum remains intact in the case of a deflagration. The following describes what could happen to the drum if 15% hydrogen or more in air were ignited. Table 2 of the Savannah River report WSRC-TR-90-165 ''TRU Drum Hydrogen Explosion Tests'' provides the results of tests performed in 55-gallon drums filled with hydrogen and air mixtures. The hydrogen-air mixtures were ignited by a hot-wire igniter. The results of the tests are shown in Table 1. They concluded that drums can withstand deflagration involving hydrogen concentration up to 15% hydrogen. Testing was performed at Idaho Falls and documented in a letter from RH Beers, Waste Technology Programs Division, EG and G Idaho, to CP Gertz, Radioactive Waste Technology Branch, DOE dated Sept. 29, 1983. In these tests, 55-gallon drums were filled with hydrogen-air mixtures which were ignited. The results in Table 2.2 showed that ignition for drums containing 11% and 14% hydrogen, the drum lid remained on the drum. Ignition in drum with 30% hydrogen resulted in lid loss. It is concluded from the results of these two tests that, for uncorroded drums, a 15% hydrogen in air mixture will not result in loss of drum integrity (i.e., lid remains on, walls remain intact). The drum walls however, may be thinned due to corrosion. The effect of the deflagration on thinner walls is assessed next. Assume a 15% hydrogen in air mixture exists in a drum. The pressure assuming adiabatic isochoric complete combustion (AICC) conditions is 69 psig (using the same deflagration pressure calculation method as in HNF-19492, ''Revised Hydrogen Deflagration Analysis which got 82 psig for 20% hydrogen in air)

  5. Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Onwudili, Jude A.; Williams, Paul T. [Energy and Resources Research Institute, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2009-07-15

    The role of sodium hydroxide as a promoter of hydrogen gas production during the hydrothermal gasification of glucose and other biomass samples has been investigated. Experiments were carried out in a batch reactor with glucose and also in the presence of the alkali from 200 C, 2 MPa to 450 C, 34 MPa at constant water loading. Without sodium hydroxide, glucose decomposed to produce mainly carbon dioxide, water, char and tar. Furfural, its derivatives and reaction products dominated the ethyl acetate extract of the water (organic fraction) at lower reaction conditions. This indicated that the dehydration of glucose to yield these products was unfavourable to hydrogen gas production. In the presence of sodium hydroxide however, glucose initially decomposed to form mostly alkylated and hydroxylated carbonyl compounds, whose further decomposition yielded hydrogen gas. It was observed that at 350 C, 21.5 MPa, half of the optimum hydrogen gas yield had formed and at 450 C, 34 MPa, more than 80 volume percent of the gaseous effluent was hydrogen gas, while the balance was hydrocarbon gases, mostly methane ({>=}10 volume percent). Other biomass samples were also comparably reacted at the optimum conditions observed for glucose. The rate of hydrogen production for the biomass samples was in the following order; glucose > cellulose, starch, rice straw > potato > rice husk. (author)

  6. Future hydrogen markets for large-scale hydrogen production systems

    International Nuclear Information System (INIS)

    Forsberg, Charles W.

    2007-01-01

    The cost of delivered hydrogen includes production, storage, and distribution. For equal production costs, large users (>10 6 m 3 /day) will favor high-volume centralized hydrogen production technologies to avoid collection costs for hydrogen from widely distributed sources. Potential hydrogen markets were examined to identify and characterize those markets that will favor large-scale hydrogen production technologies. The two high-volume centralized hydrogen production technologies are nuclear energy and fossil energy with carbon dioxide sequestration. The potential markets for these technologies are: (1) production of liquid fuels (gasoline, diesel and jet) including liquid fuels with no net greenhouse gas emissions and (2) peak electricity production. The development of high-volume centralized hydrogen production technologies requires an understanding of the markets to (1) define hydrogen production requirements (purity, pressure, volumes, need for co-product oxygen, etc.); (2) define and develop technologies to use the hydrogen, and (3) create the industrial partnerships to commercialize such technologies. (author)

  7. Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study

    Institute of Scientific and Technical Information of China (English)

    ZHANG JianBin; ZHANG PengYan; MA Kai; HAN Fang; CHEN GuoHua; WEI XiongHui

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures, The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume, which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×106 (volume ratio) in the gas phase. Meanwhile, FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration, respectively. Furthermore, the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  8. Hydrogen bonding interactions between ethylene glycol and water:density,excess molar volume,and spectral study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures. The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume,which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×10?6 (volume ratio) in the gas phase. Meanwhile,FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration,respectively. Furthermore,the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  9. Proceedings of the 1998 U.S. DOE Hydrogen Program Review: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    This document contains technical progress reports on 42 research projects funded by the DOE Hydrogen Program in Fiscal Year 1998, in support of its mission to make hydrogen a cost-effective energy carrier for utility, building, and transportation applications. Each year, the Program conducts a rigorous review of its portfolio of projects, utilizing teams of experts to provide vital feedback on the progress of research. These proceedings serve as an important technology reference for the DOE Hydrogen Program. The papers in Volume 2 are arranged under the following topical sections: Storage and separation systems; Thermal systems; and Transportation systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. Internal hydrogen embrittlement of gamma-stabilized uranium alloys

    International Nuclear Information System (INIS)

    Powell, G.L.; Koger, J.W.; Bennett, R.K.; Williamson, A.L.; Hemperly, V.C.

    1976-01-01

    Relationships between the tensile ductility and fracture characteristics of as-quenched, gamma-stabilized uranium alloys (uranium--10 wt percent molybdenum, uranium--8.5 wt percent niobium, uranium--10 wt percent niobium, and uranium--7.5 wt percent niobium--2.5 wt percent zirconium), the hydrogen content of the tensile specimens, and the hydrogen gas pressure during the annealing at 850 0 C of the tensile test blanks prior to quenching were established. For these alloys, the tensile ductility decreases only slightly with increasing hydrogen content up to a critical hydrogen concentration above which the tensile ductility drops to nearly zero. The only alloy not displaying this sharp drop in tensile ductility was U--7.5 Nb--2.5 Zr, probably because sufficiently high hydrogen contents could not be achieved under our experimental arrangements. The critical hydrogen content for ductility loss increased with increasing hydrogen solubility in the alloy. Fracture surfaces produced by internal hydrogen embrittlement do not resemble those produced by stress corrosion cracking (SCC) in aqueous environments containing chloride ions. 8 figs

  11. Catalyzed borohydrides for hydrogen storage

    Science.gov (United States)

    Au, Ming [Augusta, GA

    2012-02-28

    A hydrogen storage material and process is provided in which alkali borohydride materials are created which contain effective amounts of catalyst(s) which include transition metal oxides, halides, and chlorides of titanium, zirconium, tin, and combinations of the various catalysts. When the catalysts are added to an alkali borodydride such as a lithium borohydride, the initial hydrogen release point of the resulting mixture is substantially lowered. Additionally, the hydrogen storage material may be rehydrided with weight percent values of hydrogen at least about 9 percent.

  12. A review of nickel hydrogen battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Smithrick, J.J.; O`Donnell, P.M. [NASA Lewis Research Center, Cleveland, OH (United States)

    1995-12-31

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (>30,000 cycles), the current cycle life of 4,000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft.

  13. Multiple cell common pressure vessel nickel hydrogen battery

    Science.gov (United States)

    Zagrodnik, Jeffrey P.; Jones, Kenneth R.

    1991-01-01

    A multiple cell common pressure vessel (CPV) nickel hydrogen battery was developed that offers significant weight, volume, cost, and interfacing advantages over the conventional individual pressure vessel (IPV) nickel hydrogen configuration that is currently used for aerospace applications. The baseline CPV design was successfully demonstrated though the testing of a 26 cell prototype, which completed over 7,000 44 percent depth of discharge LEO cycles. Two-cell boilerplate batteries have now exceeded 12,500 LEO cycles in ongoing laboratory tests. CPV batteries using both nominal 5 and 10 inch diameter vessels are currently available. The flexibility of the design allows these diameters to provide a broad capability for a variety of space applications.

  14. Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Gillespie, Andrew [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Stalla, David [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Dohnke, Elmar [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics

    2017-02-20

    The purpose of the project “Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage” is the development of materials that store hydrogen (H2) by adsorption in quantities and at conditions that outperform current compressed-gas H2 storage systems for electric power generation from hydrogen fuel cells (HFCs). Prominent areas of interest for HFCs are light-duty vehicles (“hydrogen cars”) and replacement of batteries with HFC systems in a wide spectrum of applications, ranging from forklifts to unmanned areal vehicles to portable power sources. State-of-the-art compressed H2 tanks operate at pressures between 350 and 700 bar at ambient temperature and store 3-4 percent of H2 by weight (wt%) and less than 25 grams of H2 per liter (g/L) of tank volume. Thus, the purpose of the project is to engineer adsorbents that achieve storage capacities better than compressed H2 at pressures less than 350 bar. Adsorption holds H2 molecules as a high-density film on the surface of a solid at low pressure, by virtue of attractive surface-gas interactions. At a given pressure, the density of the adsorbed film is the higher the stronger the binding of the molecules to the surface is (high binding energies). Thus, critical for high storage capacities are high surface areas, high binding energies, and low void fractions (high void fractions, such as in interstitial space between adsorbent particles, “waste” storage volume by holding hydrogen as non-adsorbed gas). Coexistence of high surface area and low void fraction makes the ideal adsorbent a nanoporous monolith, with pores wide enough to hold high-density hydrogen films, narrow enough to minimize storage as non-adsorbed gas, and thin walls between pores to minimize the volume occupied by solid instead of hydrogen. A monolith can be machined to fit into a rectangular tank (low pressure, conformable tank), cylindrical tank

  15. Development of Automotive Liquid Hydrogen Storage Systems

    Science.gov (United States)

    Krainz, G.; Bartlok, G.; Bodner, P.; Casapicola, P.; Doeller, Ch.; Hofmeister, F.; Neubacher, E.; Zieger, A.

    2004-06-01

    Liquid hydrogen (LH2) takes up less storage volume than gas but requires cryogenic vessels. State-of-the-art applications for passenger vehicles consist of double-wall cylindrical tanks that hold a hydrogen storage mass of up to 10 kg. The preferred shell material of the tanks is stainless steel, since it is very resistant against hydrogen brittleness and shows negligible hydrogen permeation. Therefore, the weight of the whole tank system including valves and heat exchanger is more than 100 kg. The space between the inner and outer vessel is mainly used for thermal super-insulation purposes. Several layers of insulation foils and high vacuums of 10-3 Pa reduce the heat entry. The support structures, which keep the inner tank in position to the outer tank, are made of materials with low thermal conductivity, e.g. glass or carbon fiber reinforced plastics. The remaining heat in-leak leads to a boil-off rate of 1 to 3 percent per day. Active cooling systems to increase the stand-by time before evaporation losses occur are being studied. Currently, the production of several liquid hydrogen tanks that fulfill the draft of regulations of the European Integrated Hydrogen Project (EIHP) is being prepared. New concepts of lightweight liquid hydrogen storage tanks will be investigated.

  16. Vibrational excitation in a hydrogen volume source

    International Nuclear Information System (INIS)

    Eenshuistra, P.J.

    1989-01-01

    In this thesis the complex of processes which determines the D - or H - density in a volume source, a hydrogen discharge, is studied. D - beams are of interest for driving the current of a fusion plasma in a TOKAMAK. Densities of vibrationally excited molecules, of H atoms, and of metastable hydrogen molecules were determined using Resonance-Enhanced MultiPhoton Ionization (REMPI). An experiment in which vibrationally highly excited molecules are formed by recombination of atoms in a cold metal surface, is described. The production and destruction of vibrationally excited molecules and atoms in the discharge is discussed. The vibrational distribution for 3≤ν≤5 (ν = vibrational quantumnumber) is strongly super-thermal. This effect is more apparent at higher discharge current and lower gas pressure. The analysis with a model based on rate equations, which molecules are predominantly produced by primary electron excitation of hydrogen molecules and deexcited upon one wall collision. The atom production is compatible with dissociation of molecules by primary electrons, dissociation of molecules on the filaments, and collisions between positive ions and electrons. The electrons are predominantly destroyed by recombination on the walls. Finally the production and destruction of H - in the discharge are discussed. The density of H - in the plasma, the electron density and temperature were determined. H - extraction was measured. The ratio of the extracted H - current and the H - density in the plasma gives an indication of the drift velocity of H - in the plasma. This velocity determines the emittance of the extracted beam. It was found that the H - velocity scales with the square root of the electron temperature. The measured H - densities are compatible with a qualitative model in which dissociative attachment of plasma electrons to vibrationally excited molecules is the most important process. (author). 136 refs.; 39 figs.; 10 tabs

  17. Hydrogen - the fuel of the future

    International Nuclear Information System (INIS)

    Schoenwiesner, R.; Prosnan, J.

    2003-01-01

    Experts see hydrogen as the best possible long-term solution of the transport problem. Hydrogen as the fuel of the future should increase the competition amongst fuel suppliers and at the same time decrease the dependence of developed countries on oil import. Hydrogen can be produced from renewable sources - biomass, water, wind or solar energy. Hydrogen can be used as power source of mobile phones, computers, printers, television sets or even whole buildings. Hydrogen can be used as fuel for traditional combustion engines of cars but the system of mixing with air would have to be adjusted. For instance car producers like BMW or Hyundai have already started tests with hydrogen engines. These would then be much 'cleaner' then the traditional engines using diesel, petrol or natural gas. But rather then using hydrogen in traditional engines the experts consider fuel cells more perspective. According to company Shell Hydrogen first transformers would produce hydrogen using natural gas or other traditional fuels but this should decrease the volume of green-house-gasses by about 50 percent. In the opinion of company Shell the use of fuel cells would represent the most effective way of using minerals. Shell currently operates hydrogen filling stations on Island and in Tokyo, recently has opened a new one in Luxembourg and by the end of this month another one should open in Amsterdam. These plans are connected to a project of city busses run in cooperation of European Union and car producer Daimler Chrysler. (Authors)

  18. Subject positioning in the BOD POD® only marginally affects measurement of body volume and estimation of percent body fat in young adult men.

    Directory of Open Access Journals (Sweden)

    Maarten W Peeters

    Full Text Available INTRODUCTION: The aim of the study was to evaluate whether subject positioning would affect the measurement of raw body volume, thoracic gas volume, corrected body volume and the resulting percent body fat as assessed by air displacement plethysmography (ADP. METHODS: Twenty-five young adult men (20.7±1.1 y, BMI = 22.5±1.4 kg/m(2 were measured using the BOD POD® system using a measured thoracic gas volume sitting in a 'forward bent' position and sitting up in a straight position in random order. RESULTS: Raw body volume was 58±124 ml (p<0.05 higher in the 'straight' position compared to the 'bent' position. The mean difference in measured thoracic gas volume (bent-straight = -71±211 ml was not statistically significant. Corrected body volume and percent body fat in the bent position consequently were on average 86±122 ml (p<0.05 and 0.5±0.7% (p<0.05 lower than in the straight position respectively. CONCLUSION: Although the differences reached statistical significance, absolute differences are rather small. Subject positioning should be viewed as a factor that may contribute to between-test variability and hence contribute to (inprecision in detecting small individual changes in body composition, rather than a potential source of systematic bias. It therefore may be advisable to pay attention to standardizing subject positioning when tracking small changes in PF are of interest. The cause of the differences is shown not to be related to changes in the volume of isothermal air in the lungs. It is hypothesized and calculated that the observed direction and magnitude of these differences may arise from the surface area artifact which does not take into account that a subject in the bent position exposes more skin to the air in the device therefore potentially creating a larger underestimation of the actual body volume due to the isothermal effect of air close to the skin.

  19. Effect of cesium seeding on hydrogen negative ion volume production

    International Nuclear Information System (INIS)

    Bacal, M.; Balghiti-Sube, F. El; Elizarov, L. I.; Tontegode, A. J.

    1998-01-01

    The effect of cesium vapor partial pressure on the plasma parameters has been studied in the dc hybrid negative ion source ''CAMEMBERT III.'' The cesium vapor pressure was varied up to 10 -5 Torr and was determined by a surface ionization gauge in the absence of the discharge. The negative ion relative density measured by laser photodetachment in the center of the plasma extraction region increases by a factor of four when the plasma is seeded with cesium. However the plasma density and the electron temperature (determined using a cylindrical electrostatic probe) are reduced by the cesium seeding. As a result, the negative ion density goes up by a factor of two at the lowest hydrogen pressure studied. The velocity of the directed negative ion flow to the plasma electrode, determined from two-laser beam photodetachment experiments, appears to be affected by the cesium seeding. The variation of the extracted negative ion and electron currents versus the plasma electrode bias will also be reported for pure hydrogen and cesium seeded plasmas. The cesium seeding leads to a dramatic reduction of the electron component, which is consistent with the reduced electron density and temperature. The negative ion current is enhanced and a goes through a maximum at plasma electrode bias lower than 1 V. These observations lead to the conclusion that the enhancement of pure volume production occurs in this type of plasma. Possible mechanisms for this type of volume process will be discussed

  20. NASA Lewis advanced IPV nickel-hydrogen technology

    Science.gov (United States)

    Smithrick, John J.; Britton, Doris L.

    1993-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts. Some of the advancements are as follows: to use 26 percent potassium hydroxide electrolyte to improve cycle life and performance, to modify the state of the art cell design to eliminate identified failure modes and further improve cycle life, and to develop a lightweight nickel electrode to reduce battery mass, hence reduce launch and/or increase satellite payload. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 accelerated LEO cycles at 80 percent DOD compared to 3,500 cycles for cells containing 31 percent KOH. Results of the boiler plate cell tests have been validated at NWSC, Crane, Indiana. Forty-eight ampere-hour flight cells containing 26 and 31 percent KOH have undergone real time LEO cycle life testing at an 80 percent DOD, 10 C. The three cells containing 26 percent KOH failed on the average at cycle 19,500. The three cells containing 31 percent KOH failed on the average at cycle 6,400. Validation testing of NASA Lewis 125 Ah advanced design IPV nickel-hydrogen flight cells is also being conducted at NWSC, Crane, Indiana under a NASA Lewis contract. This consists of characterization, storage, and cycle life testing. There was no capacity degradation after 52 days of storage with the cells in the discharged state, on open circuit, 0 C, and a hydrogen pressure of 14.5 psia. The catalyzed wall wick cells have been cycled for over 22,694 cycles with no cell failures in the continuing test. All three of the non-catalyzed wall wick cells failed (cycles 9,588; 13,900; and 20,575). Cycle life test results of the Fibrex nickel electrode has demonstrated the feasibility of an improved nickel electrode giving a higher specific energy nickel-hydrogen cell. A nickel-hydrogen boiler plate cell using an 80

  1. Dependence of hydrogen arcjet operation on electrode geometry

    Science.gov (United States)

    Pencil, Eric J.; Sankovic, John M.; Sarmiento, Charles J.; Hamley, John A.

    1992-01-01

    The dependence of 2kW hydrogen arcjet performance on cathode to anode electrode spacing was evaluated at specific impulses of 900 and 1000 s. Less than 2 absolute percent change in efficiency was measured for the spacings tested which did not repeat the 14 absolute percent variation reported in earlier work with similar electrode designs. A different nozzle configuration was used to quantify the variation in hydrogen arcjet performance over an extended range of electrode spacing. Electrode gap variation resulted in less than 3 absolute percent change in efficiency. These null results suggested that electrode spacing is decoupled from hydrogen arcjet ignition. The dependence of breakdown voltage on mass flow rate and electrode agreed with Paschen curves for hydrogen. Preliminary characterization of the dependence of hydrogen arcjet ignition on rates of pulse repetition and pulse voltage rise were also included for comparison with previous results obtained using simulated hydrazine.

  2. Dependence of hydrogen arcjet operation on electrode geometry

    Science.gov (United States)

    Pencil, Eric J.; Sankovic, John M.; Sarmiento, Charles J.; Hamley, John A.

    1992-01-01

    The dependence of 2 kW hydrogen arcjet performance on cathode to anode electrode spacing was evaluated at specific impulses of 900 and 1000 s. Less than 2 absolute percent change in efficiency was measured for the spacings tested which did not repeat the 14 absolute percent variation reported in earlier work with similar electrode designs. A different nozzle configuration was used to quantify the variation in hydrogen arcjet performance over an extended range of electrode spacing. Electrode gap variation resulted in less than 3 absolute percent change in efficiency. These null results suggested that electrode spacing is decoupled from hydrogen arcjet performance considerations over the ranges tested. Initial studies were conducted on hydrogen arcjet ignition. The dependence of breakdown voltage on mass flow rate and hydrogen arcjet ignition on rates of pulse repetition and pulse voltage rise were also included for comparison with previous results obtained using simulated hydrazine.

  3. KOH concentration effect on the cycle life of nickel-hydrogen cells. 4: Results of failure analyse

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1989-01-01

    Effects of KOH concentrations on failure modes and mechanisms of nickel-hydrogen cells were studied using long cycled boiler plate cells containing electrolytes of various KOH concentrations ranging 21 to 36 percent. Life of these cells were up to 40,000 cycles in an accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. An interim life test results were reported earlier in J. Power Sources, 22, 213-220, 1988. The results of final life test, end-of-life cell performance, and teardown analyses are discussed. These teardown analyses included visual observations, measurements of nickel electrode capacity in an electrolyte-flooded cell, dimensional changes of cell components, SEM studies on cell cross section, BET surface area and pore volume distribution in cycled nickel electrodes, and chemical analyses. Cycle life of a nickel-hydrogen cell was improved tremendously as KOH concentration was decreased from 36 to 31 percent and from 31 to 26 percent while effect of further concentration decrease was complicated as described in our earlier report. Failure mode of high concentration (31 to 36 percent) cells was gradual capacity decrease, while that of low concentration (21 to 26 percent) cells was mainly formation of a soft short. Long cycled (25,000 to 40,000 cycles) nickel electrodes were expanded more than 50 percent of the initial value, but no correlation was found between this expansion and measured capacity. All electrodes cycled in low concentration (21 to 26 percent) cells had higher capacity than those cycled in high concentration (31 to 36 percent) cells.

  4. Determination of the Molar Volume of Hydrogen from the Metal-Acid Reaction: An Experimental Alternative.

    Science.gov (United States)

    de Berg, Kevin; Chapman, Ken

    1996-01-01

    Describes an alternative technique for determining the molar volume of hydrogen from the metal-acid reaction in which the metal sample is encased in a specially prepared cage and a pipette filler is used to fill an inverted burette with water. Eliminates some difficulties encountered with the conventional technique. (JRH)

  5. Molar excess volumes of liquid hydrogen and neon mixtures from path integral simulation

    International Nuclear Information System (INIS)

    Challa, S.R.; Johnson, J.K.

    1999-01-01

    Volumetric properties of liquid mixtures of neon and hydrogen have been calculated using path integral hybrid Monte Carlo simulations. Realistic potentials have been used for the three interactions involved. Molar volumes and excess volumes of these mixtures have been evaluated for various compositions at 29 and 31.14 K, and 30 atm. Significant quantum effects are observed in molar volumes. Quantum simulations agree well with experimental molar volumes. Calculated excess volumes agree qualitatively with experimental values. However, contrary to the existing understanding that large positive deviations from ideal mixtures are caused due to quantum effects in Ne - H 2 mixtures, both classical as well as quantum simulations predict the large positive deviations from ideal mixtures. Further investigations using two other Ne - H 2 potentials of Lennard - Jones (LJ) type show that excess volumes are very sensitive to the cross-interaction potential. We conclude that the cross-interaction potential employed in our simulations is accurate for volumetric properties. This potential is more repulsive compared to the two LJ potentials tested, which have been obtained by two different combining rules. This repulsion and a comparatively lower potential well depth can explain the positive deviations from ideal mixing. copyright 1999 American Institute of Physics

  6. Hydrogen Oxidation on Gas Diffusion Electrodes for Phosphoric Acid Fuel Cells in the Presence of Carbon Monoxide and Oxygen

    DEFF Research Database (Denmark)

    Gang, Xiao; Li, Qingfeng; Hjuler, Hans Aage

    1995-01-01

    Hydrogen oxidation has been studied on a carbon-supported platinum gas diffusion electrode in a phosphoric acidelectrolyte in the presence of carbon monoxide and oxygen in the feed gas. The poisoning effect of carbon monoxide presentin the feed gas was measured in the temperature range from 80...... to 150°C. It was found that throughout the temperaturerange, the potential loss due to the CO poisoning can be reduced to a great extent by the injection of small amounts ofgaseous oxygen into the hydrogen gas containing carbon monoxide. By adding 5 volume percent (v/o) oxygen, an almost...

  7. Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data

    Science.gov (United States)

    Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen

    1990-01-01

    The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.

  8. Hydrogenation of Estonian oil shale and shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Kogerman, P N; Kopwillem, J

    1932-01-01

    Kukersite was heated in an atmosphere of hydrogen, nitrogen, or water in three series of experiments. Shale samples were heated at 370/sup 0/ to 410/sup 0/C for 2 to 3/sup 1///sub 2/ hours in the presence of 106 to 287 kg/sq cm pressure of water, nitrogen, or hydrogen. In some experiments 5 percent of iron oxide was added to the shale. The amount of kerogen liquefied by hydrogenation was not greater than the amount of liquid products obtained by ordinary distillation. On hydrogenation, kukersite absorbed 1.8 weight-percent of hydrogen. Almost no hydrogenation took place below the decomposition point of kerogen, and the lighter decomposition products were mainly hydrogenated. Hydrogenation of the shale prevented coke formation. Heating kukersite or its crude oil at temperatures of 400/sup 0/ to 410/sup 0/C under 250 kg/sq cm hydrogen pressure produced paraffinic and naphthenic oils of lower boiling points. At higher temperatures and after long-continued heating, the formation of aromatic hydrocarbons was observed.

  9. Matter power spectrum and the challenge of percent accuracy

    International Nuclear Information System (INIS)

    Schneider, Aurel; Teyssier, Romain; Potter, Doug; Stadel, Joachim; Reed, Darren S.; Onions, Julian; Pearce, Frazer R.; Smith, Robert E.; Springel, Volker; Scoccimarro, Roman

    2016-01-01

    Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the precision of present-day N -body methods, identifying main potential error sources from the set-up of initial conditions to the measurement of the final power spectrum. We directly compare three widely used N -body codes, Ramses, Pkdgrav3, and Gadget3 which represent three main discretisation techniques: the particle-mesh method, the tree method, and a hybrid combination of the two. For standard run parameters, the codes agree to within one percent at k ≤1 h Mpc −1 and to within three percent at k ≤10 h Mpc −1 . We also consider the bispectrum and show that the reduced bispectra agree at the sub-percent level for k ≤ 2 h Mpc −1 . In a second step, we quantify potential errors due to initial conditions, box size, and resolution using an extended suite of simulations performed with our fastest code Pkdgrav3. We demonstrate that the simulation box size should not be smaller than L =0.5 h −1 Gpc to avoid systematic finite-volume effects (while much larger boxes are required to beat down the statistical sample variance). Furthermore, a maximum particle mass of M p =10 9 h −1 M ⊙ is required to conservatively obtain one percent precision of the matter power spectrum. As a consequence, numerical simulations covering large survey volumes of upcoming missions such as DES, LSST, and Euclid will need more than a trillion particles to reproduce clustering properties at the targeted accuracy.

  10. A comparison of methods of determining the 100 percent survival of preserved red cells

    International Nuclear Information System (INIS)

    Valeri, C.R.; Pivacek, L.E.; Ouellet, R.; Gray, A.

    1984-01-01

    Studies were done to compare three methods to determine the 100 percent survival value from which to estimate the 24-hour posttransfusion survival of preserved red cells. The following methods using small aliquots of 51 Cr-labeled autologous preserved red cells were evaluated: First, the 125 I-albumin method, which is an indirect measurement of the recipient's red cell volume derived from the plasma volume measured using 125 I-labeled albumin and the total body hematocrit. Second, the body surface area method (BSA) in which the recipient's red cell volume is derived from a body surface area nomogram. Third, an extrapolation method, which extrapolates to zero time the radioactivity associated with the red cells in the recipient's circulation from 10 to 20 or 15 to 30 minutes after transfusion. The three methods gave similar results in all studies in which less than 20 percent of the transfused red cells were nonviable (24-hour posttransfusion survival values of between 80-100%), but not when more than 20 percent of the red cells were nonviable. When 21 to 35 percent of the transfused red cells were nonviable (24-hour posttransfusion survivals of 65 to 79%), values with the 125 I-albumin method and the body surface area method were about 5 percent lower (p less than 0.001) than values with the extrapolation method. When greater than 35 percent of the red cells were nonviable (24-hour posttransfusion survival values of less than 65%), values with the 125 I-albumin method and the body surface area method were about 10 percent lower (p less than 0.001) than those obtained by the extrapolation method

  11. Low temperature heat capacity of lutetium and lutetium hydrogen alloys

    International Nuclear Information System (INIS)

    Thome, D.K.

    1977-10-01

    The heat capacity of high purity electrotransport refined lutetium was measured between 1 and 20 0 K. Results for theta/sub D/ were in excellent agreement with theta values determined from elastic constant measurements. The heat capacity of a series of lutetium-hydrogen solid solution alloys was determined and results showed an increase in γ from 8.2 to about 11.3 mJ/g-atom-K 2 for hydrogen content increasing from zero to about one atomic percent. Above one percent hydrogen γ decreased with increasing hydrogen contents. The C/T data showed an increase with temperature decreasing below about 2.5 0 K for samples with 0.1 to 1.5 atomic percent hydrogen. This accounts for a large amount of scatter in theta/sub D/ versus hydrogen content in this range. The heat capacity of a bulk sample of lutetium dihydride was measured between 1 and 20 0 K and showed a large increase in theta/sub D/ and a large decrease in γ compared to pure lutetium

  12. 21 CFR 573.530 - Hydrogenated corn syrup.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrogenated corn syrup. 573.530 Section 573.530... Additive Listing § 573.530 Hydrogenated corn syrup. (a) Identity. The product is produced by hydrogenation of corn syrup over a nickel catalyst. (b) Specifications. The product contains 70 percent...

  13. Hydrogen embrittlement due to hydrogen-inclusion interactions

    International Nuclear Information System (INIS)

    Yu, H.Y.; Li, J.C.M.

    1976-01-01

    Plastic flow around inclusions creates elastic misfit which attracts hydrogen towards the regions of positive dilatation. Upon decohesion of the inclusion-matrix interface, the excess hydrogen escapes into the void and can produce sufficient pressure to cause void growth by plastic deformation. This mechanism of hydrogen embrittlement can be used to understand the increase of ductility with temperature, the decrease of ductility with hydrogen content, and the increase of ductility with the ultimate strength of the matrix. An examination of the effect of the shape of spheroid inclusion reveals that rods are more susceptible to hydrogen embrittlement than disks. The size of the inclusion is unimportant while the volume fraction of inclusions plays the usual role

  14. Manifestation of hydrogen bonds of aqueous ethanol solutions in the Raman scattering spectra

    International Nuclear Information System (INIS)

    Dolenko, T A; Burikov, S A; Patsaeva, S V; Yuzhakov, V I

    2011-01-01

    Spectra of Raman scattering of light by aqueous ethanol solutions in the range of concentrations from pure water to 96% alcohol are studied. For water, 25%, and 40% solutions of ethanol in water, as well as for 96% alcohol the Raman spectra are measured at temperatures from the freezing point to nearly the boiling point. The changes in the shape of the stretching OH band are interpreted in terms of strengthening or weakening of hydrogen bonds between the molecules in the solution. The strongest hydrogen bonding of hydroxyl groups is observed at the ethanol content from 20 to 25 volume percent, which is explained by formation of ethanol hydrates of a definite type at the mentioned concentrations of alcohol. This is confirmed by means of the method of multivariate curve resolution, used to analyse the Raman spectra of aqueous ethanol solutions. With growing temperature the weakening of hydrogen bonding occurs in all studied systems, which consists in reducing the number of OH groups, linked by strong hydrogen bonds. (laser applications and other problems in quantum electronics)

  15. Age-specific association between percent body fat and pulmonary ...

    African Journals Online (AJOL)

    This study describes the association between percent body fat and pulmonary function among apparently normal twenty male children tidal volume aged 4 years and twenty male children aged 10 years in Ogbomoso. The mean functional residual capacity of the lung in male children aged 10 years was significantly higher ...

  16. Transient shielded liquid hydrogen containers

    International Nuclear Information System (INIS)

    Varghese, A.P.; Herring, R.H.

    1990-01-01

    The storage of hydrogen in the liquid phase has been limited in duration due to the thermal performance constraints of conventional Liquid Hydrogen containers available. Conventional Liquid Hydrogen containers lose hydrogen because of their relatively high heat leak and variations in usage pattern of hydrogen due to shutdowns. Local regulations also discourage venting of hydrogen. Long term storage of Liquid Hydrogen without product loss was usually accomplished using Liquid Nitrogen sacrificial shields. This paper reports on a new low heat leak container developed and patented that will extend the storage time of liquid hydrogen by five hundred percent. The principle of operation of the Transient Shields which makes the extraordinary performance of this container feasible is described in this paper. Also covered are the impact of this new container on present applications of hydrogen and the new opportunities afforded to Liquid hydrogen in the world hydrogen market

  17. Matter power spectrum and the challenge of percent accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Aurel; Teyssier, Romain; Potter, Doug; Stadel, Joachim; Reed, Darren S. [Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Onions, Julian; Pearce, Frazer R. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Smith, Robert E. [Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH (United Kingdom); Springel, Volker [Heidelberger Institut für Theoretische Studien, 69118 Heidelberg (Germany); Scoccimarro, Roman, E-mail: aurel@physik.uzh.ch, E-mail: teyssier@physik.uzh.ch, E-mail: dpotter@physik.uzh.ch, E-mail: stadel@physik.uzh.ch, E-mail: julian.onions@nottingham.ac.uk, E-mail: reed@physik.uzh.ch, E-mail: r.e.smith@sussex.ac.uk, E-mail: volker.springel@h-its.org, E-mail: Frazer.Pearce@nottingham.ac.uk, E-mail: rs123@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, NY 10003, New York (United States)

    2016-04-01

    Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the precision of present-day N -body methods, identifying main potential error sources from the set-up of initial conditions to the measurement of the final power spectrum. We directly compare three widely used N -body codes, Ramses, Pkdgrav3, and Gadget3 which represent three main discretisation techniques: the particle-mesh method, the tree method, and a hybrid combination of the two. For standard run parameters, the codes agree to within one percent at k ≤1 h Mpc{sup −1} and to within three percent at k ≤10 h Mpc{sup −1}. We also consider the bispectrum and show that the reduced bispectra agree at the sub-percent level for k ≤ 2 h Mpc{sup −1}. In a second step, we quantify potential errors due to initial conditions, box size, and resolution using an extended suite of simulations performed with our fastest code Pkdgrav3. We demonstrate that the simulation box size should not be smaller than L =0.5 h {sup −1}Gpc to avoid systematic finite-volume effects (while much larger boxes are required to beat down the statistical sample variance). Furthermore, a maximum particle mass of M {sub p}=10{sup 9} h {sup −1}M{sub ⊙} is required to conservatively obtain one percent precision of the matter power spectrum. As a consequence, numerical simulations covering large survey volumes of upcoming missions such as DES, LSST, and Euclid will need more than a trillion particles to reproduce clustering properties at the targeted accuracy.

  18. Negative hydrogen ion production mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, M. [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Wada, M. [School of Science and Engineering, Doshisha University, Kyoto 610-0321 (Japan)

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  19. Hydrogen-based electrochemical energy storage

    Science.gov (United States)

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  20. Status of photoelectrochemical production of hydrogen and electrical energy

    Science.gov (United States)

    Byvik, C. E.; Walker, G. H.

    1976-01-01

    The efficiency for conversion of electromagnetic energy to chemical and electrical energy utilizing semiconductor single crystals as photoanodes in electrochemical cells was investigated. Efficiencies as high as 20 percent were achieved for the conversion of 330 nm radiation to chemical energy in the form of hydrogen by the photoelectrolysis of water in a SrTiO3 based cell. The SrTiO3 photoanodes were shown to be stable in 9.5 M NaOH solutions for periods up to 48 hours. Efficiencies of 9 percent were measured for the conversion of broadband visible radiation to hydrogen using n-type GaAs crystals as photoanodes. Crystals of GaAs coated with 500 nm of gold, silver, or tin for surface passivation show no significant change in efficiency. By suppressing the production of hydrogen in a CdSe-based photogalvanic cell, an efficiency of 9 percent was obtained in conversion of 633 nm light to electrical energy. A CdS-based photogalvanic cell produced a conversion efficiency of 5 percent for 500 nm radiation.

  1. Quantitative analysis of hydrogen and hydrogen isotopes at the solid surface

    International Nuclear Information System (INIS)

    Trocellier, P.

    2007-01-01

    Because of the importance of the effects bound to the hydrogen presence in materials it is particularly important to determine with accuracy the surface and volume distribution of hydrogen. Meanwhile the electronic structure of the hydrogen (one electron) do not allow to use many characterization techniques as the electrons spectroscopies or the X micro analysis. The author presents other possible techniques. (A.L.B.)

  2. Hydrogen application dynamics and networks

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E. [Air Liquide Large Industries, Champigny-sur-Marne (France)

    2010-12-30

    The Chemical Industry consumes large volumes of hydrogen as raw material for the manufacture of numerous products (e.g. polyamides and polyurethanes account for 60% of hydrogen demand). The hydrogen demand was in the recent past and will continue to be driven by the polyurethane family. China will host about 60% of new hydrogen needs over the period 2010-2015 becoming the first hydrogen market next year and reaching 25% of market share by 2015 (vs. only 4% in 2001). Air Liquide supplies large volumes of Hydrogen (and other Industrial Gases) to customers by on-site plants and through pipeline networks which offer significant benefits such as higher safety, reliability and flexibility of supply. Thanks to its long term strategy and heavy investment in large units and pipeline networks, Air Liquide is the Industrial Gas leader in most of the world class Petrochemical basins (Rotterdam, Antwerp, US Gulf Coast, Yosu, Caojing,..) (orig.)

  3. A Simple, Low-cost, and Robust System to Measure the Volume of Hydrogen Evolved by Chemical Reactions with Aqueous Solutions.

    Science.gov (United States)

    Brack, Paul; Dann, Sandie; Wijayantha, K G Upul; Adcock, Paul; Foster, Simon

    2016-08-17

    There is a growing research interest in the development of portable systems which can deliver hydrogen on-demand to proton exchange membrane (PEM) hydrogen fuel cells. Researchers seeking to develop such systems require a method of measuring the generated hydrogen. Herein, we describe a simple, low-cost, and robust method to measure the hydrogen generated from the reaction of solids with aqueous solutions. The reactions are conducted in a conventional one-necked round-bottomed flask placed in a temperature controlled water bath. The hydrogen generated from the reaction in the flask is channeled through tubing into a water-filled inverted measuring cylinder. The water displaced from the measuring cylinder by the incoming gas is diverted into a beaker on a balance. The balance is connected to a computer, and the change in the mass reading of the balance over time is recorded using data collection and spreadsheet software programs. The data can then be approximately corrected for water vapor using the method described herein, and parameters such as the total hydrogen yield, the hydrogen generation rate, and the induction period can also be deduced. The size of the measuring cylinder and the resolution of the balance can be changed to adapt the setup to different hydrogen volumes and flow rates.

  4. Hydrogen production from fusion reactors coupled with high temperature electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  5. Does One Know the Properties of a MICE Solid or Liquid Absorber to Better than 0.3 Percent?

    International Nuclear Information System (INIS)

    Green, Michael A.; Yang, Stephanie Q.

    2006-01-01

    This report discusses the report discusses whether the MICE absorbers can be characterized to ±0.3 percent, so that one predict absorber ionization cooling within the absorber. This report shows that most solid absorbers can be characterized to much better than ±0.3 percent. The two issues that dominate the characterization of the liquid cryogen absorbers are the dimensions of the liquid in the vessel and the density of the cryogenic liquid. The thickness of the window also plays a role. This report will show that a liquid hydrogen absorber can be characterized to better than ±0.3 percent, but a liquid helium absorber cannot be characterized to better and ±1 percent

  6. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  7. Effects of microstructures on hydrogen induced cracking of electrochemically hydrogenated double notched tensile sample of 4340 steel

    Energy Technology Data Exchange (ETDEWEB)

    Sk, Mobbassar Hassan, E-mail: Skmobba@qu.edu.qa [Center for Advanced Materials, Qatar University, Doha (Qatar); Overfelt, Ruel A. [Materials Research and Education Center, Materials Engineer, Auburn University, Auburn, AL (United States); Abdullah, Aboubakr M. [Center for Advanced Materials, Qatar University, Doha (Qatar)

    2016-04-06

    Quantitative fractographic characteristics of 4340 steel is demonstrated for a grain size range of 10−100 µm and hardness range of 41–52 HRC. Double-notched tensile samples were electrochemically charged in-situ with hydrogen in 0.5 m H{sub 2}SO{sub 4}+5 mg/l As{sub 2}O{sub 3} solution for 0–40 min charging time. Hydrogen induced fracture initiations were analyzed by novel metallographic investigation of the “unbroken” notch while the overall fractographic behaviors were examined by the scanning electron microscopic imaging of the fracture surfaces of the actually broken notch. Effect of hydrogen was predominantly manifested as intergranular fracture for the harder samples and quasi-cleavage fracture for the softer counterparts. 10–40 µm samples showed the maximum intensity of the hydrogen induced fracture features (intergranular and/or quasi-cleavage) close to the notch which gradually reduced with increasing distance from the notch. The largest grained samples (100 µm) however showed brittle behavior even in absence of hydrogen with similar intensity of percent fracture features at all distance from the notch, while presence of hydrogen intensified the overall percent brittle fractures with their intensities being highest close to the notch. Finally, the brittle fracture characteristics of the hydrogen embrittled samples were shown to be distinguishably different from that of the liquid nitrogen treated samples of same grain sizes and hardnesses.

  8. Effects of internal hydrogen on the vacancy loop formation probability in Al

    International Nuclear Information System (INIS)

    Bui, T.X.; Sirois, E.; Robertson, I.M.

    1990-04-01

    The effect of internal hydrogen on the formation of vacancy dislocation loops from heavy-ion generated displacement cascades in Al has been investigated. Samples of high-purity aluminum and aluminum containing 900 and 1300 appM of hydrogen were irradiated at room temperature with 50 keV Kr+ ions. The ion dose rate was typically 2 x 10 10 ions cm -2 sec -1 and the ion dose was between 10 11 and 10 13 ion cm -2 . Under these irradiation conditions, dislocation loops were observed in all compositions, although the formation probability was relatively low (less than 10 percent of the displacement cascades produced a vacancy loop). The loop formation probability was further reduced by the presence of hydrogen. No difference in the geometry or the size of the loops created in the hydrogen free and hydrogen charged samples was found. These results are difficult to interpret, and the explanation may lie in the distribution and form of the hydrogen. To account for the large hydrogen concentrations and from calculations of the energy associated with hydrogen entry into aluminum, it has been suggested that the hydrogen enters the aluminum lattice with an accompanying vacancy. This will create hydrogen-vacancy complexes in the material; two dimensional complexes have been detected in the hydrogen-charged, but unirradiated, samples by the small-angle x-ray scattering technique. The possibility of these complexes trapping the vacancies produced by the cascade process exists thus lowering the formation probability. However, such a mechanism must occur within the lifetime of the cascade. Alternatively, if a displacement cascade overlaps with the hydrogen-vacancy complexes, the lower atomic density of the region will result in an increase in the cascade volume (decrease in the local vacancy concentration) which will also reduce the loop formation probability

  9. Capacity retention in hydrogen storage alloys

    Science.gov (United States)

    Anani, A.; Visintin, A.; Srinivasan, S.; Appleby, A. J.; Reilly, J. J.; Johnson, J. R.

    1992-01-01

    Results of our examination of the properties of several candidate materials for hydrogen storage electrodes and their relation to the decrease in H-storage capacity upon open-circuit storage over time are reported. In some of the alloy samples examined to date, only about 10 percent of the hydrogen capacity was lost upon storage for 20 days, while in others, this number was as high as 30 percent for the same period of time. This loss in capacity is attributed to two separate mechanisms: (1) hydrogen desorbed from the electrode due to pressure differences between the cell and the electrode sample; and (2) chemical and/or electrochemical degradation of the alloy electrode upon exposure to the cell environment. The former process is a direct consequence of the equilibrium dissociation pressure of the hydride alloy phase and the partial pressure of hydrogen in the hydride phase in equilibrium with that in the electrolyte environment, while the latter is related to the stability of the alloy phase in the cell environment. Comparison of the equilibrium gas-phase dissociation pressures of these alloys indicate that reversible loss of hydrogen capacity is higher in alloys with P(eqm) greater than 1 atm than in those with P(eqm) less than 1 atm.

  10. Nonlinear effects at volume charge polarization and calculation of the structure radiation changes in the crystals with hydrogen bonds

    International Nuclear Information System (INIS)

    Tonkonogov, M.P.; Medvedev, V.Ya.

    2003-01-01

    The formulas for volume charge distribution, complex permittivity, static dielectric constant for the crystals with hydrogen bonds are proposed. With help of the formulas the structure defect concentration, relaxation energy of relaxators were calculated for important electronic and optoelectronic materials as mica, KDP and DKDP crystals, gypsum, talk

  11. Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films

    International Nuclear Information System (INIS)

    Volpi, F.; Braccini, M.; Pasturel, A.; Devos, A.; Raymond, G.; Morin, P.

    2014-01-01

    In the present article, we report a study on the mechanical behaviour displayed by hydrogen atoms and pores in silicon nitride (SiN) films. A simple three-phase model is proposed to relate the physical properties (stiffness, film stress, mass density, etc.) of hydrogenated nanoporous SiN thin films to the volume fractions of hydrogen and pores. This model is then applied to experimental data extracted from films deposited by plasma enhanced chemical vapour deposition, where hydrogen content, stress, and mass densities range widely from 11% to 30%, −2.8 to 1.5 GPa, and 2.0 to 2.8 g/cm 3 , respectively. Starting from the conventional plotting of film's Young's modulus against film porosity, we first propose to correct the conventional calculation of porosity volume fraction with the hydrogen content, thus taking into account both hydrogen mass and concentration. The weight of this hydrogen-correction is found to evolve linearly with hydrogen concentration in tensile films (in accordance with a simple “mass correction” of the film density calculation), but a clear discontinuity is observed toward compressive stresses. Then, the effective volume occupied by hydrogen atoms is calculated taking account of the bond type (N-H or Si-H bonds), thus allowing a precise extraction of the hydrogen volume fraction. These calculations applied to tensile films show that both volume fractions of hydrogen and porosity are similar in magnitude and randomly distributed against Young's modulus. However, the expected linear dependence of the Young's modulus is clearly observed when both volume fractions are added. Finally, we show that the stiffer behaviour of compressive films cannot be only explained on the basis of this (hydrogen + porosity) volume fraction. Indeed this stiffness difference relies on a dual mechanical behaviour displayed by hydrogen atoms against the film stress state: while they participate to the stiffness in compressive films, hydrogen atoms mainly

  12. Asymptotic analysis of methane-hydrogen-air mixtures

    NARCIS (Netherlands)

    Hermanns, R.T.E.; Bastiaans, R.J.M.; Goey, de L.P.H.

    2005-01-01

    In this paper an asymptotic analysis of de Goey et al.concerning premixed stoichiometric methane-hydrogen-air flames is analyzed in depth. The analysis is performed with up to 50 mole percent of hydrogen in the fuel, at gas inlet temperatures ranging from 300 K to 650 K and pressures from 1 to 15

  13. Effective hydrogen diffusion coefficient for solidifying aluminium alloys

    International Nuclear Information System (INIS)

    Felberbaum, M.; Landry-Desy, E.; Weber, L.; Rappaz, M.

    2011-01-01

    An effective hydrogen diffusion coefficient has been calculated for two solidifying Al - 4.5 wt.% Cu and Al - 10 wt.% Cu alloys as a function of the volume fraction of solid. For this purpose, in situ X-ray tomography was performed on these alloys. For each volume fraction of solid between 0.6 and 0.9, a representative volume element of the microstructure was extracted. Solid and liquid voxels were assimilated to solid and liquid nodes in order to solve the hydrogen diffusion equation based on the chemical potential and using a finite volume formulation. An effective hydrogen diffusion coefficient based on the volume fraction of solid only could be deduced from the results of the numerical model at steady state. The results are compared with various effective medium theories.

  14. Hydrogenating oils. [British patent

    Energy Technology Data Exchange (ETDEWEB)

    1938-08-31

    A safety fuel boiling within the limits 130/sup 0/ to 260/sup 0/C, is obtained by treating hydrocarbon mixtures boiling below 260/sup 0/C, and for the most part above 130/sup 0/C according to the process described in the parent Specification. A fraction boiling from 140/sup 0/ to 250/sup 0/ C, which has been distilled off from the liquefaction product obtained by the destructive hydrogenation of coal soaked with ferrous sulphate, is passed at 485/sup 0/C under a partial pressure of 1.5 atmos. and a hydrogen pressure of 50 atmos. over a catalyst consisting of nickel and tungsten sulphides. The gasification is only 2 to 5 percent and from the reaction product a fraction of the same boiling range as the initial material is distilled off with a yield of 85 percent and an octane number of 97.

  15. Electrocatalysts for hydrogen energy

    CERN Document Server

    Losiewicz, Bozena

    2015-01-01

    This special topic volume deals with the development of novel solid state electrocatalysts of a high performance to enhance the rates of the hydrogen or oxygen evolution. It contains a description of various types of metals, alloys and composites which have been obtained using electrodeposition in aqueous solutions that has been identified to be a technologically feasible and economically superior technique for the production of the porous electrodes. The goal was to produce papers that would be useful to both the novice and the expert in hydrogen technologies. This volume is intended to be us

  16. Hydrogen as the solar energy translator. [in photochemical and photovoltaic processes

    Science.gov (United States)

    Kelley, J. H.

    1979-01-01

    Many concepts are being investigated to convert sunlight to workable energy forms with emphasis on electricity and thermal energy. The electrical alternatives include direct conversion of photons to electricity via photovoltaic solar cells and solar/thermal production of electricity via heat-energy cycles. Solar cells, when commercialized, are expected to have efficiencies of about 12 to 14 percent. The cells would be active about eight hours per day. However, solar-operated water-splitting process research, initiated through JPL, shows promise for direct production of hydrogen from sunlight with efficiencies of up to 35 to 40 percent. The hydrogen, a valuable commodity in itself, can also serve as a storable energy form, easily and efficiently converted to electricity by fuel cells and other advanced-technology devices on a 24-hour basis or on demand with an overall efficiency of 25 to 30 percent. Thus, hydrogen serves as the fundamental translator of energy from its solar form to electrical form more effectively, and possibly more efficiently, than direct conversion. Hydrogen also can produce other chemical energy forms using solar energy.

  17. Containment loadings due to hydrogen burning in LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Cybulskis, P.

    1981-01-01

    The potential pressure loadings due to hydrogen burning under conditions representative of meltdown accident conditions are examined for a variety of PWR and BWR containment designs. For the PWR, the large dry, ice condenser, as well as subatmospheric containments are considered. For the BWR, MARK I, II, and III pressure suppression containments are evaluated. The key factors considered are: free volume, design pressure, extend to hydrogen generation, and the flammability of the atmosphere under a range of accident conditions. The potential for and the possible implications of hydrogen detonation are also considered. The results of these analyses show that the accumulation and rapid burning of the quantities of hydrogen that would be generated during core meltdown accidents will lead to pressures above design levels in all of the containments considered. As would be expected, containments characterized by small volumes and/or low design pressures are the most vulnerable to damage due to hydrogen burning. Large volume, high pressure designs may also be threatened but offer significantly more potential for accomodating hydrogen burns. The attainment of detonable hydrogen mixtures is made easier by smaller containment volumes. Detonable mixtures are also possible in the larger volume containments, but imply the accumulation of hydrogen for long periods of time without prior ignition. Hydrogen detonations, if they occur, would probably challenge the integrity of any of the containments considered. (orig.)

  18. Effect of LEO cycling on 125 Ah advanced design IPV nickel-hydrogen flight cells - An update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1991-01-01

    An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.

  19. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells. An update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1991-01-01

    An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.

  20. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells - An update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1991-01-01

    An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent potassium hydroxide (KOH) electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen cells is reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH.

  1. Composition and method for hydrogen storage

    Science.gov (United States)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2004-01-01

    A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.

  2. NaBH4 (sodium borohydride) hydrogen generator with a volume-exchange fuel tank for small unmanned aerial vehicles powered by a PEM (proton exchange membrane) fuel cell

    International Nuclear Information System (INIS)

    Kim, Taegyu

    2014-01-01

    A proton exchange membrane fuel cell system integrated with a NaBH 4 (sodium borohydride) hydrogen generator was developed for small UAVs (unmanned aerial vehicles). The hydrogen generator was composed of a catalytic reactor, liquid pump and volume-exchange fuel tank, where the fuel and spent fuel exchange the volume within a single fuel tank. Co–B catalyst supported on a porous ceramic material was used to generate hydrogen from the NaBH 4 solution. Considering the power consumption according to the mission profile of a UAV, the power output of the fuel cell and auxiliary battery was distributed passively as an electrical load. A blended wing-body was selected considering the fuel efficiency and carrying capability of fuel cell components. First, the fuel cell stack and hydrogen generator were evaluated under the operating conditions, and integrated into the airframe. The ground test of the complete fuel cell UAV was performed under a range of load conditions. Finally, the fuel cell powered flight test was made for 1 h. The volume-exchange fuel tank minimized the fuel sloshing and the change in center of gravity due to fuel consumption during the flight, so that much stable operation of the fuel cell system was validated at different flight modes. - Highlights: • PEMFC system with a NaBH 4 hydrogen source was developed for small UAVs. • Volume-exchange fuel tank was used to reduce the size of the fuel cell system. • Passive power management was used for a stable power output during the flight. • BWB UAV was selected by taking the fuel cell integration into consideration. • Stable operation of the fuel cell system was verified from the flight test

  3. Quantitative determination of a hydrogen impurity in a sodium coolant by hydride thermal dissociation

    Science.gov (United States)

    Ivanovskiy, M. N.; Pavlova, G. D.; Shmatko, B. A.; Milovidova, A. V.; Konovalov, E. YE.; Arnoldov, M. N.; Pleshivtsev, A. D.

    1988-01-01

    A molten sodium coolant containing hydrogen was heated in a vacuum at 450 C, and the gases generated pumped through a liquid nitrogen trap, and the H2 was then oxidized on a copper oxide substrate heated to 400 C. The accuracy of the method is 1.5 percent and the sensitivity is 1x10 to the -5 wt percent hydrogen.

  4. An evaluation of 10 percent and 20 percent benzocaine gels in patients with acute toothaches

    Science.gov (United States)

    Hersh, Elliot V.; Ciancio, Sebastian G.; Kuperstein, Arthur S.; Stoopler, Eric T.; Moore, Paul A.; Boynes, Sean G.; Levine, Steven C.; Casamassimo, Paul; Leyva, Rina; Mathew, Tanya; Shibly, Othman; Creighton, Paul; Jeffers, Gary E.; Corby, Patricia M.A.; Turetzky, Stanley N.; Papas, Athena; Wallen, Jillian; Idzik-Starr, Cynthia; Gordon, Sharon M.

    2013-01-01

    Background The authors evaluated the efficacy and tolerability of 10 percent and 20 percent benzocaine gels compared with those of a vehicle (placebo) gel for the temporary relief of toothache pain. They also assessed the compliance with the label dose administration directions on the part of participants with toothache pain. Methods Under double-masked conditions, 576 participants self-applied study gel to an open tooth cavity and surrounding oral tissues. Participants evaluated their pain intensity and pain relief for 120 minutes. The authors determined the amount of gel the participants applied. Results The responders’ rates (the primary efficacy parameter), defined as the percentage of participants who had an improvement in pain intensity as exhibited by a pain score reduction of at least one unit on the dental pain scale from baseline for two consecutive assessments any time between the five- and 20-minute points, were 87.3 percent, 80.7 percent and 70.4 percent, respectively, for 20 percent benzocaine gel, 10 percent benzocaine gel and vehicle gel. Both benzocaine gels were significantly (P ≤ .05) better than vehicle gel; the 20 percent benzocaine gel also was significantly (P ≤ .05) better than the 10 percent benzocaine gel. The mean amount of gel applied was 235.6 milligrams, with 88.2 percent of participants applying 400 mg or less. Conclusions Both 10 percent and 20 percent benzocaine gels were more efficacious than the vehicle gel, and the 20 percent benzocaine gel was more efficacious than the 10 percent benzocaine gel. All treatments were well tolerated by participants. Practical Implications Patients can use 10 percent and 20 percent benzocaine gels to temporarily treat toothache pain safely. PMID:23633700

  5. Hydrogen isotope permeation in elastomeric materials

    International Nuclear Information System (INIS)

    Steinmeyer, R.H.; Braun, J.D.

    1976-01-01

    The permeabilities of elastomeric and polymeric materials to hydrogen isotopes were measured at room temperature. The technique for measuring permeation rates is based on the following constant-volume method: a fixed pressure of gas is applied to one side of the specimen to be studied and the permeability constant is determined from the observed rate of pressure increase in an initially evacuated volume on the other side of the specimen. Permeability constants for hydrogen, deuterium, and tritium were measured for Mylar, Teflon, Kapton, Saran, Buna-N, and latex rubber. Results were compared with literature values for hydrogen and deuterium where available and showed excellent agreement

  6. Low temperature, low pressure hydrogen gettering

    International Nuclear Information System (INIS)

    Anderson, D.R.; Courtney, R.L.; Harrah, L.A.

    1975-01-01

    A system is described for the gettering of hydrogen and its isotopes. The gettering materials are painted or coated onto, or otherwise disposed in an area or volume from which hydrogen is to be removed

  7. Experiments on the thermalization of slow neutrons by liquid hydrogen (1962); Experience de thermalisation de neutrons lents par de l'hydrogene liquide (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Cribier, D; Jacrot, B; Lacaze, A; Roubeau, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Institut Fourier, 38 - Grenoble (France)

    1962-07-01

    In order to increase the flux of neutrons of long wave-length ({lambda} > 4 A) emerging from a channel in the EL-3, a liquid hydrogen device was introduced into a channel of the reactor (Channel H{sub 1}). The principle of the device is simple. A volume of liquid hydrogen is introduced as close as possible to the reactor core into a region of intense isotropic flux. This hydrogen slows down the slow neutrons; because of the very small mean free diffusion path of slow in hydrogen, this slowing down is considerable even in a small volume of liquid hydrogen, and the spectrum temperature of neutrons emerging from the volume of liquid hydrogen can therefore be shifted. The intensity gain for neutrons with a wave length {lambda}, is a G ({lambda}) function which, for perfect thermalization and ignoring capture, is expressed by: G ({lambda}) = 225 exp (- 45.3/{lambda}{sup 2}), assuming a temperature of 300 deg. K for the neutrons before cooling and is 20 deg. K after cooling. For a wave-length of 5 A, the theoretical maximum gain of thus about 37. (authors) [French] Dans le but d'accroitre le flux des neutrons de grande longueur d'onde ({lambda} > 4 A) sortant d'un canal de la pile EL-3, un dispositif a hydrogene liquide a ete introduit dans un canal de la pile (canal H{sub 1}). Le principe du dispositif est simple. Un volume d'hydrogene liquide est introduit le plus pres possible du coeur de ia pile dans une region de flux intense et isotrope. Les neutrons lents sont ralentis par cet hydrogene; a cause du tres faible libre parcours moyen de diffusion des neutrons lents dans l'hydrogene, ce ralentissement est important meme dans un faible volume d'hydrogene liquide et l'on peut ainsi deplacer la temperature du spectre des neutrons sortant du volume d'hydrogene liquide. Le gain en intensite des neutrons de longueur d'onde {lambda} est une fonction G ({lambda}) qui pour une thermalisation parfaite et en negligeant la capture, s'exprime par: G ({lambda}) = 225 exp (- 45

  8. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cell - Update II

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    An update of validation test results confirming the breakthrough in LEO cycle life of nickel-hydrogen cells containing 26 percent KOH electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel (IPV) nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40,000 LEO cycles, compared to 3500 cycles for cells containing 31 percent KOH. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min discharge (2X normal rate). The depth-of-discharge was 80 percent. Six 48-Ah Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells), and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The three 31 percent KOH cells failed (cycles 3729, 4165, and 11355). One of the 26 percent KOH cells failed at cycle 15314. The other two 26 percent KOH cells were cycled for over 16,000 cycles during the continuing test.

  9. Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen-oxygen mixtures

    International Nuclear Information System (INIS)

    Wang, Shuofeng; Ji, Changwei; Zhang, Jian; Zhang, Bo

    2011-01-01

    This paper compared the effects of hydrogen and hydrogen-oxygen blends (hydroxygen) additions on the performance of a gasoline engine at 1400 rpm and a manifolds absolute pressure of 61.5 kPa. The tests were carried out on a 1.6 L gasoline engine equipped with a hydrogen and oxygen injection system. A hybrid electronic control unit was applied to adjust the hydrogen and hydroxygen volume fractions in the intake increasing from 0% to about 3% and keep the hydrogen-to-oxygen mole ratio at 2:1 in hydroxygen tests. For each testing condition, the gasoline flow rate was adjusted to maintain the mixture global excess air ratio at 1.00. The test results confirmed that engine fuel energy flow rate was decreased after hydrogen addition but increased with hydroxygen blending. When hydrogen or hydroxygen volume fraction in the intake was lower than 2%, the hydroxygen-blended gasoline engine produced a higher thermal efficiency than the hydrogen-blended gasoline engine. Both the additions of hydrogen and hydroxygen help reduce flame development and propagation periods of the gasoline engine. HC emissions were reduced whereas NOx emissions were raised with the increase of hydrogen and hydroxygen addition levels. CO was slightly increased after hydrogen blending, but reduced with hydroxygen addition. -- Highlights: → We compared the effects of hydrogen and hydroxygen additions on the gasoline engine performance. → The hydroxygen should be added into the engine only at low blending levels. → CO is decreased with hydroxygen addition whereas increased with hydrogen blending.

  10. Quantitative analysis of hydrogen and hydrogen isotopes at the solid surface; Analyse quantitative de l'hydrogene et de ses isotopes a la surface des solides

    Energy Technology Data Exchange (ETDEWEB)

    Trocellier, P. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SEMI), Service de Recherches de Metallurgie Physique, 91 - Gif-sur-Yvette (France)

    2007-07-01

    Because of the importance of the effects bound to the hydrogen presence in materials it is particularly important to determine with accuracy the surface and volume distribution of hydrogen. Meanwhile the electronic structure of the hydrogen (one electron) do not allow to use many characterization techniques as the electrons spectroscopies or the X micro analysis. The author presents other possible techniques. (A.L.B.)

  11. Advanced nanostructured materials as media for hydrogen storage

    International Nuclear Information System (INIS)

    David, E.; Niculescu, V.; Armeanu, A.; Sandru, C.; Constantinescu, M.; Sisu, C.

    2005-01-01

    Full text: In a future sustainable energy system based on renewable energy, environmentally harmless energy carriers like hydrogen, will be of crucial importance. One of the major impediments for the transition to a hydrogen based energy system is the lack of satisfactory hydrogen storage alternatives. Hydrogen storage in nanostructured materials has been proposed as a solution for adequate hydrogen storage for a number of applications, in particular for transportation. This paper is a preliminary study with the focus on possibilities for hydrogen storage in zeolites, alumina and nanostructured carbon materials. The adsorption properties of these materials were evaluated in correlation with their internal structure. From N 2 physisorption data the BET surface area (S BET ) , total pore volume (PV), micropore volume (MPV) and total surface area (S t ) were derived. H 2 physisorption measurements were performed at 77 K and a pressure value of 1 bar. From these data the adsorption capacities of sorbent materials were determined. Apparently the microporous adsorbents, e.g activated carbons, display appreciable sorption capacities. Based on their micropore volume, carbon-based sorbents have the largest adsorption capacity for H 2 , over 230 cm 3 (STP)/g, at the previous conditions. By increasing the micropore volume (∼ 1 cm 3 /g) of sorbents and optimizing the adsorption conditions it is expected to obtain an adsorption capacity of ∼ 560 cm 3 (STP)/g, close to targets set for mobile applications. (authors)

  12. Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source

    International Nuclear Information System (INIS)

    Kim, Jincheol; Kim, Taegyu

    2015-01-01

    Highlights: • Compact fuel cell system was developed for a portable power generator. • Novel concept using an all-in-one reactor for hydrogen generation was proposed. • Catalytic reactor, hydrogen chamber and separator were combined in a volume. • The system can be used to drive fuel cell-powered unmanned autonomous systems. - Abstract: Compact fuel cell system was developed for a portable power generator. The power generator features a polymer electrolyte membrane fuel cell (PEMFC) using a chemical hydride as a hydrogen source. The hydrogen generator extracted hydrogen using a catalytic hydrolysis from a sodium borohydride alkaline solution. A novel concept using an all-in-one reactor was proposed in which a catalyst, hydrogen chamber and byproduct separator were combined in a volume. In addition, the reactor as well as a pump, cooling fans, valves and controller was integrated in a single module. A 100 W PEMFC stack was connected with the hydrogen generator and was evaluated at various load conditions. It was verified that the stable hydrogen supply was achieved and the developed system can be used to drive fuel cell-powered unmanned autonomous systems.

  13. Relationship between breast sound speed and mammographic percent density

    Science.gov (United States)

    Sak, Mark; Duric, Nebojsa; Boyd, Norman; Littrup, Peter; Myc, Lukasz; Faiz, Muhammad; Li, Cuiping; Bey-Knight, Lisa

    2011-03-01

    Despite some shortcomings, mammography is currently the standard of care for breast cancer screening and diagnosis. However, breast ultrasound tomography is a rapidly developing imaging modality that has the potential to overcome the drawbacks of mammography. It is known that women with high breast densities have a greater risk of developing breast cancer. Measuring breast density is accomplished through the use of mammographic percent density, defined as the ratio of fibroglandular to total breast area. Using an ultrasound tomography (UST) prototype, we created sound speed images of the patient's breast, motivated by the fact that sound speed in a tissue is proportional to the density of the tissue. The purpose of this work is to compare the acoustic performance of the UST system with the measurement of mammographic percent density. A cohort of 251 patients was studied using both imaging modalities and the results suggest that the volume averaged breast sound speed is significantly related to mammographic percent density. The Spearman correlation coefficient was found to be 0.73 for the 175 film mammograms and 0.69 for the 76 digital mammograms obtained. Since sound speed measurements do not require ionizing radiation or physical compression, they have the potential to form the basis of a safe, more accurate surrogate marker of breast density.

  14. Determination of the gaseous hydrogen ductile-brittle transition in copper-nickel alloys

    Science.gov (United States)

    Parr, R. A.; Johnston, M. H.; Davis, J. H.; Oh, T. K.

    1985-01-01

    A series of copper-nickel alloys were fabricated, notched tensile specimens machined for each alloy, and the specimens tested in 34.5 MPa hydrogen and in air. A notched tensile ratio was determined for each alloy and the hydrogen environment embrittlement (HEE) determined for the alloys of 47.7 weight percent nickel to 73.5 weight percent nickel. Stacking fault probability and stacking fault energies were determined for each alloy using the x ray diffraction line shift and line profiles technique. Hydrogen environment embrittlement was determined to be influenced by stacking fault energies; however, the correlation is believed to be indirect and only partially responsible for the HEE behavior of these alloys.

  15. Development of Improved Composite Pressure Vessels for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Newhouse, Norman L. [Hexagon Lincoln, Lincoln, NE (United States)

    2016-04-29

    Hexagon Lincoln started this DOE project as part of the Hydrogen Storage Engineering Center of Excellence (HSECoE) contract on 1 February 2009. The purpose of the HSECoE was the research and development of viable material based hydrogen storage systems for on-board vehicular applications to meet DOE performance and cost targets. A baseline design was established in Phase 1. Studies were then conducted to evaluate potential improvements, such as alternate fiber, resin, and boss materials. The most promising concepts were selected such that potential improvements, compared with the baseline Hexagon Lincoln tank, resulted in a projected weight reduction of 11 percent, volume increase of 4 percent, and cost reduction of 10 percent. The baseline design was updated in Phase 2 to reflect design improvements and changes in operating conditions specified by HSECoE Partners. Evaluation of potential improvements continued during Phase 2. Subscale prototype cylinders were designed and fabricated for HSECoE Partners’ use in demonstrating their components and systems. Risk mitigation studies were conducted in Phase 3 that focused on damage tolerance of the composite reinforcement. Updated subscale prototype cylinders were designed and manufactured to better address the HSECoE Partners’ requirements for system demonstration. Subscale Type 1, Type 3, and Type 4 tanks were designed, fabricated and tested. Laboratory tests were conducted to evaluate vacuum insulated systems for cooling the tanks during fill, and maintaining low temperatures during service. Full scale designs were prepared based on results from the studies of this program. The operating conditions that developed during the program addressed adsorbent systems operating at cold temperatures. A Type 4 tank would provide the lowest cost and lightest weight, particularly at higher pressures, as long as issues with liner compatibility and damage tolerance could be resolved. A Type 1 tank might be the choice if the

  16. A Study on Methodology of Assessment for Hydrogen Explosion in Hydrogen Production Facility

    International Nuclear Information System (INIS)

    Jung, Gun Hyo

    2007-02-01

    Due to the exhaustion of fossil fuel as energy sources and international situation insecurity for political factor, unstability of world energy market is rising, consequently, a substitute energy development have been required. Among substitute energy to be discussed, producing hydrogen from water by nuclear energy which does not release carbon is a very promising technology. Very high temperature gas cooled reactor is expected to be utilized since the procedure of producing hydrogen requires high temperature over 1000 .deg. C. Hydrogen production facility using very high temperature gas cooled reactor lies in situation of high temperature and corrosion which makes hydrogen release easily. In case of hydrogen release, there lies a danger of explosion. Moreover explosion not only has a bad influence upon facility itself but very high temperature gas cooled reactor which also result in unsafe situation that might cause serious damage. However, from point of thermal-hydraulics view, long distance makes low efficiency result. In this study, therefore, outlines of hydrogen production using nuclear energy is researched. Several methods for analyzing the effects of hydrogen explosion upon high temperature gas cooled reactor are reviewed. Reliability physics model which is appropriate for assessment is used. Using this model, leakage probability, rupture probability and structure failure probability of very high temperature gas cooled reactor is evaluated classified by detonation volume and distance. Also based on standard safety criteria which is a value of 1x10 -6 , the safety distance between very high temperature and hydrogen production facility is calculated. In the future, assessment for characteristic of very high temperature gas cooled reactor, capacity to resist pressure from outside hydrogen explosion and overpressure for large amount of detonation volume in detail is expected to identify more precise distance using reliability physics model in this paper. This

  17. A model for growth of beta-phase particles in zirconium-2.5 wt percent niobium

    International Nuclear Information System (INIS)

    Chow, C.K.; Liner, Y.; Rigby, G.L.

    1984-08-01

    The kinetics of the α → β phase change in Zr-2.5 percent Nb pressure-tube material at constant temperature have been studied. The volume-fraction change of the β phase due to diffusion in an infinite α-phase matrix was considered, and a mathematical model with a numerical solution was developed to predict the transient spherical growth of the β-phase region. This model has been applied to Zr-2.5 wt percent Nb, and the calculated results compared to experiment

  18. Volumetric, acoustic and viscometric behaviour of dipotassium hydrogen phosphate and disodium hydrogen phosphate in aqueous solution of N-acetyl glycine at different temperatures

    International Nuclear Information System (INIS)

    Kumar, Harsh; Singla, Meenu; Mittal, Heena

    2016-01-01

    Highlights: • Densities, speeds of sound, viscosities of phosphate salts in aqueous N-acetyl glycine. • Large values of partial molar volume for dipotassium hydrogen phosphate. • Partial molar volume of transfer are positive for phosphate salts. • Positive B-coefficient values indicate ion–solvent interactions. - Abstract: Densities, speeds of sound and viscosities of dipotassium hydrogen phosphate (DPHP) and disodium hydrogen phosphate (DSHP) in aqueous solutions of N-acetyl glycine (AcGly) are reported at different temperatures. Densities and speeds of sound have been used to calculate apparent molar volume, apparent molar isentropic compression, partial molar volume, partial molar isentropic compression, partial molar volume of transfer, partial molar isentropic compression of transfer and partial molar expansivity. Pair and triplet interaction coefficients have also been calculated. Experimental viscosities have been used to determine B-coefficients. Further pair and triplet interaction coefficients have also been calculated. The results are discussed in terms of solute–solvent interactions.

  19. Large-scale hydrogen combustion experiments: Volume 2, Data plots: Final report

    International Nuclear Information System (INIS)

    Thompson, R.T.; Torok, R.C.; Randall, D.S.; Sullivan, J.S.; Thompson, L.B.; Haugh, J.J.

    1988-10-01

    Forty large-scale experiments to investigate the combustion behavior of hydrogen during postulated degraded core accidents were conducted in a 16 m (52 ft) diameter sphere. The performance of safety related equipment and cable also was examined. Combustion was initiated by thermal igniters in both premixed hydrogen air-steam atmospheres and during the continuous injection of hydrogen and steam. The effects of steam, igniter location, water sprays, fans and injection rates were studied. Measurements were made of gas concentrations, combustion pressures, temperatures and heat fluxes. Burn fractions and flame speeds also were determined. Near-infrared seeing cameras permitted direct observation of the hydrogen burns. Combustion pressures and temperatures in premixed atmospheres with hydrogen concentrations up to 13 vol% (steam saturated) were less than the theoretical maximum values. Multiple deflagrations were not encountered during continuous hydrogen injection with pre-activated igniters. Moderate pressure rises resulted from diffusion flames. These flames generally were found above the source. Combustion results have been compared to smaller scale experiments. Several safety related equipment items exhibited degraded performance after a number of tests. Most cable samples passed their electrical checks at the end of the test series. These experiments confirm the effectiveness of the deliberate ignition approach to controlling hydrogen. They also provide data for validating computer codes used to predict hydrogen combustion during degraded core accidents, and for assessing the performance of safety related equipment in such environments

  20. Prenatal MRI fetal lung volumes and percent liver herniation predict pulmonary morbidity in congenital diaphragmatic hernia (CDH).

    Science.gov (United States)

    Zamora, Irving J; Olutoye, Oluyinka O; Cass, Darrell L; Fallon, Sara C; Lazar, David A; Cassady, Christopher I; Mehollin-Ray, Amy R; Welty, Stephen E; Ruano, Rodrigo; Belfort, Michael A; Lee, Timothy C

    2014-05-01

    The purpose of this study was to determine whether prenatal imaging parameters are predictive of postnatal CDH-associated pulmonary morbidity. The records of all neonates with CDH treated from 2004 to 2012 were reviewed. Patients requiring supplemental oxygen at 30 days of life (DOL) were classified as having chronic lung disease (CLD). Fetal MRI-measured observed/expected total fetal lung volume (O/E-TFLV) and percent liver herniation (%LH) were recorded. Receiver operating characteristic (ROC) curves and multivariate regression were applied to assess the prognostic value of O/E-TFLV and %LH for development of CLD. Of 172 neonates with CDH, 108 had fetal MRIs, and survival was 76%. 82% (89/108) were alive at DOL 30, 46 (52%) of whom had CLD. Neonates with CLD had lower mean O/E-TFLV (30 vs.42%; p=0.001) and higher %LH (21.3±2.8 vs.7.1±1.8%; p20% (AUC=0.78; p20% were highly associated with indicators of long-term pulmonary sequelae. On multivariate analysis, %LH was the strongest predictor of CLD in patients with CDH (OR: 10.96, 95%CI: 2.5-48.9, p=0.002). Prenatal measurement of O/E-TFLV and %LH is predictive of CDH pulmonary morbidity and can aid in establishing parental expectations of postnatal outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Hydrogen Contractors Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Tim [Dept. of Energy (DOE), Washington DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering

    2006-05-16

    This volume highlights the scientific content of the 2006 Hydrogen Contractors Meeting sponsored by the Division of Materials Sciences and Engineering (DMS&E) on behalf of the Office of Basic Energy Sciences (BES) of the U. S. Department of Energy (DOE). Hydrogen Contractors Meeting held from May 16-19, 2006 at the Crystal Gateway Marriott Hotel Arlington, Virginia. This meeting is the second in a series of research theme-based Contractors Meetings sponsored by DMS&E held in conjunction with our counterparts in the Office of Energy Efficiency and Renewable Energy (EERE) and the first with the Hydrogen, Fuel Cells and Infrastructure Technologies Program. The focus of this year’s meeting is BES funded fundamental research underpinning advancement of hydrogen storage. The major goals of these research efforts are the development of a fundamental scientific base in terms of new concepts, theories and computational tools; new characterization capabilities; and new materials that could be used or mimicked in advancing capabilities for hydrogen storage.

  2. Plasma and blood volume in the calf from birth till 90 days of age

    International Nuclear Information System (INIS)

    Moellerberg, L.; Ekman, L.; Jacobsson, S.-O.

    1975-01-01

    Determinations of plasma volume were made of 9 clinically healthy Swedish Red and White calves from birth to 90 days of age by means of the isotop dilution technique. Commercially available 131 I labelled human serum albumin was used. Calculation of the total blood volume was based on the plasma volume and packed cell volume. The plasma and blood volumes increased per kg body weight in average 17 and 14 percent respectively from directly after birth to 24 hrs. old. From 1 to 90 days of age the plasma and blood volume fell steadily per kg body weight. Plasma volume expressed as a percentage of body weight was 5.3 percent at birth, 6.5 percent at 1 day old, and 4.9 percent at 90 days old. Corresponding values for blood were 8.4, 9.3 and 7.0 percent. (author)

  3. Magnesium mechanical alloys for hydrogen storage

    International Nuclear Information System (INIS)

    Ivanov, E.; Konstanchuk, I.; Stepanov, A.; Boldyrev, V.

    1985-01-01

    Metal hybrides are currently being used to store and handle hydrogen and its isotopes. They are also being tested in hydrogen compressors and in heat energy, refrigerators and in hydrogen and thermal storage devices. Metal hydrides have been proposed as one of the possible media for hydrogen storage to overcome the limitations of other techniques in regard to safety hydrogen weight and volume ration. The suitability of metal hybrides as a hydrogen storage media depends on a number of factors such as storage capacity, reactivity with hydrogen at various pressures and temperatures, and the cost of base materials. Magnesium based alloys are promising materials for storing hydrogen. They are generally made by argon melting and no attention has been payed to other fabrication techniques such as mechanical alloying or powder technique

  4. Mechanism of nucleation and growth of hydrogen porosity in solidifying A356 aluminum alloy: an analytical solution

    International Nuclear Information System (INIS)

    Li, K.-D.; Chang, Edward

    2004-01-01

    This study derives an analytical solution for the mechanism of nucleation and growth of hydrogen pore in the solidifying A356 aluminum alloy. A model of initial transient hydrogen redistribution in the growing dendritic grain is used to modify the lever rule for the mechanism of nucleation of pore. The model predicts the fraction of solid at nucleation, the temperature range of nucleation, the radius of hydrogen diffusion cell, and the supersaturation of hydrogen needed for nucleation. The role of solidus velocity in nucleation is explained. The parameters calculated from the model of nucleation are used for analyzing the mechanism of kinetic diffusion-controlled growth of pore, in which the mathematical transformations of variables are introduced. With the transformations, it is argued that the diffusion problem involving the liquid and solid phases during solidification could be treated as a classic problem of precipitation in the single-phase medium treated by Ham or Avrami. The analytical solution for the nucleation of pore is compared with the mechanism of macrosegregation. The predicted volume percent of porosity and radius of pore based on the mechanism of growth of pore is discussed with respect to the thermodynamic solution, the published experimental data, the numerical solutions, and the role of interdendritic fluid flow governed by Darcy's law

  5. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1983-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure, particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  6. Chromatographic hydrogen isotope separation

    International Nuclear Information System (INIS)

    Aldridge, F.T.

    1981-01-01

    Intermetallic compounds with the CaCu5 type of crystal structure , particularly LaNiCo and CaNi5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors

  7. Realization of a liquid hydrogen target

    International Nuclear Information System (INIS)

    Libin, J.F.; Gangnant, F.

    1997-01-01

    Experiments by the SPEG facility at GANIL need liquid hydrogen targets of some cm 3 . To achieve such targets, temperatures lower than 20 K must be obtained while their thin windows must withstand to pressures higher than 1000 m bars at these temperatures. Havar windows of 4.4 μm thickness met these requirements. A RW5 type Leybold cryo-generator was used as well as a system of ohmic heaters allowing regaining the initial state in a time equivalent with time elapsed for cooling. The working regime was chosen to be constant volume - variable pressure. The various components of this equipment (cryogenic head, buffer volume, hydrogen reservoir and vacuum pump) were coupled through 'aeroquip' allowing by dismantling and changes to keep the hydrogen isolated from the ambient atmosphere. The tests confirmed the accuracy of estimations done for the buffer volume and pressure. The only uncertainty is related to the window deformations. The time of cooling and reheating of target is around one hour. This allows during an experiment to aerate the chamber as the target was accessible to any necessary intervention

  8. Improved Short-Term Outcomes following Orthognathic Surgery Are Associated with High-Volume Centers.

    Science.gov (United States)

    Berlin, Nicholas L; Tuggle, Charles T; Steinbacher, Derek M

    2016-08-01

    Previous studies assessing outcomes following orthognathic surgery rely primarily on single-center/surgeon experience. In addition to issues of generalizability, these studies are limited in evaluating the effect of operative volume on patient outcomes. Orthognathic procedures were identified in the 1999 to 2011 Healthcare Cost and Utilization Project Nationwide Inpatient Sample. Outcomes included occurrence of any in-hospital complication, extended length of stay (>2 days), and increased costs (>$10,784). High-volume hospitals were defined as the 90th percentile of case volume or higher (>31 cases/year). Univariate and multivariate analyses were conducted to identify independent predictors of outcomes. Trend analyses were performed to assess changes in the annual rate of patients treated at high-volume hospitals over the study period. Among 101,692 orthognathic surgery patients, 19.6 percent underwent concurrent ancillary procedures (i.e., genioplasty, rhinoplasty, or septoplasty), and 37.6 percent underwent double-jaw surgery. Fifty-three percent were treated at high-volume hospitals. High-volume hospitals more often performed ancillary procedures (21.4 percent versus 17.4 percent; p surgery (41.3 percent versus 33.4 percent; p orthognathic cases nationwide are performed at a small number of high-volume hospitals. These hospitals discharge patients earlier, perform more complex procedures, and have fewer complications. Risk, III.

  9. Solar hydrogen infrastructure of road and maritime traffic in Croatia

    International Nuclear Information System (INIS)

    Firak, M.

    2005-01-01

    In the next 10 to 20 years the world and national economy will be faced with the need to transition from traditional sources of primary energy (e.g., fossil fuels) to renewable energy resources, mainly solar and wind power. At the same time hydrogen will appear on the energy scene, so already today we discuss the coming 'Hydrogen Economy', i.e., the economy based on hydrogen use. Given such developments, the question is how and when Croatia will begin to keep up with this global scenario? One of possible answers is discussed in this paper. It starts with the fact that Croatia is a significant tourist destination, visited by 10 millions mainly motorized tourists a year. World Tourism Organization forecast the increase in foreign tourists' arrivals by 8.4 percent a year until 2020. More than 90 percent of tourists stay in the Adriatic coast and islands; 55 percent of them arrive in the two summer months. Hence, the visits occur mainly in the region where and during the season when solar energy is abundant. The other assumption is the so called Hart Report, a study addressing the introduction of hydrogen infrastructure in the European traffic road system. It projects the number of hydrogen-fueled vehicles on the roads of the EU until 2020. Based on these two assumptions estimated is the number of hydrogen-fueled vehicles that in this period could arrive to the Croatian coast and islands for which the hydrogen infrastructure should be provided. Since during the holiday season thousands of motorized vessels sail along the Croatian coast and islands and many of them have some of 'hydrogen options' installed, it will be an additional reason for development for hydrogen infrastructure on the islands. Considering the above the paper proposed the hydrogen infrastructure based on photo-voltaic technology of solar energy use and water electrolysis as hydrogen production technology. The suggestion is to connect these installations to the Croatian electricity production and

  10. A catalyst for hydrogenating medium-distilled petroleum fractions

    Energy Technology Data Exchange (ETDEWEB)

    Mordanov, M A; Gasanova, Zh I; Isaev, A Ia; Khavkin, V A; Kurganov, V M; Musaeva, S K

    1982-01-01

    The catalyst for hydrogenating medium-distilled petroleum fractions, which contain Cr/sub 2/O/sub 3/ and Ni-concentrate components in the gamma-A1/sub 2/O/sub 3/ transfer agent, also contains, as a Ni-concentrate component, NiO and Re in the following component ratios (by percentage): Cr/sub 2/O/sub 3/ 25-44, NiO 4-25, Re 1-2 and the transfer agent the remainder, in order to improve catalytic resistance to catalyst toxins--nitrous and sulfurous compounds. The resistance of the proposed catalyst to toxins makes it possible to hydrogenate in less stringent conditions (280 degrees, 30 atmospheres) without first hydropurifying the raw material. Here, the catalyst's selectivity reaches 100 percent (aromatic hydrocarbons are absent); the yield of the target fraction is 99 percent.

  11. A systematic neutron reflectometry study on hydrogen absorption in thin Mg{sub 1-x}Al{sub x} alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H.; Poirier, E. [National Research Council of Canada, Chalk River, ON (Canada). Canadian Neutron Beam Centre; Haagsma, J.; Ophus, C.; Luber, E.; Harrower, C.T.; Mitlin, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; National Research Council of Canada, Edmonton, AB (Canada). National Inst. for Nanotechnology

    2010-10-15

    Various methods for storing hydrogen have been examined in an effort to find ways to store hydrogen in increasingly smaller volumes with decreasing weight of the whole hydrogen storage system. Metal hydrides, in which hydrogen is chemically bound to a metal atom, are considered to be very promising candidates for hydrogen storage because they have high gravimetric and volumetric storage capacities. This study investigated the effect of different magnesium (Mg) and aluminium (Al) ratios on the absorption and desorption properties of thin films. Neutron reflectometry (NR) was used in this study to better understand the absorption and desorption properties of commercially promising hydrogen storage materials. The large negative scattering length of hydrogen atoms changes the reflectivity curve substantially, so that NR can determine the total amount of stored hydrogen as well as the hydrogen distribution along the film normal, with nanometer resolution. In order to use NR, the samples must have smooth surfaces, and the film thickness should range between 10 and 200 nm. Thin Mg{sub 1-x}Al{sub x} alloy films (x = 0.2, 0.3, 0.4, 0.67) capped with a palladium (Pd) catalyst layer were used in this study. The NR experiments revealed that Mg{sub 0.7}Al{sub 0.3} is the optimum composition for this binary alloy system, with the highest amount of stored hydrogen and the lowest desorption temperature. All the thin films expanded by approximately 20 percent due to hydrogen absorption. The hydrogen was stored only in the MgAl layer without any hydrogen in the Pd layer. It was concluded that NR can be used to effectively determine the hydrogen profile in thin MgAl films. 29 refs., 5 figs.

  12. Solid-State Hydrogen Storage

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a method for converting metals to metal hydrides at low pressures for hydrogen storage systems with high efficiency with respect to volume...

  13. Exhaled breath condensate pH and hydrogen peroxide as non-invasive markers for asthma

    International Nuclear Information System (INIS)

    Al-Obaidy, Amina H.; Al-Samarai, Abdul-Gahni M.

    2007-01-01

    Objective was to estimate the predictive value of exhaled breath condensate (EBC) hydrogen peroxide (H2O2) concentration and pH as non-invasive markers in asthma. Fifty patients with unstable, steroid naive atopic asthma were included in this study, 25 with persistent asthma. Asthma diagnosis was according to the National Heart Lung and Blood Institute guidelines for the diagnosis and management of asthma. Forced expiratory volume in one second (FEV1) was measured by computerized spirometry. The EBC H2O2 assay was carried out using the colorimetric assay. The study was conducted from January to December 2005 in the Asthma and Allergy Center, Tikrit, Iraq. The EBC H2O2 concentration was higher in the asthmatic group (0.91mol) as compared with the control (0.23 mol). There was inverse correlation between EBC H2O2 concentration and FEV1 predicted percent for asthmatic patients. The mean EBC pH was lower in the asthmatic than the control group. There was a positive correlation between EBC pH and FEV 1 predicted percent for asthmatic patients. There was an inverse correlation between EBC H2O2 concentration and pH for all asthmatic patients, intermittent, and persistent asthmatic group. Exhaled breath condensate hydrogen peroxide concentration and pH was a good non-invasive marker for asthma, whether it was with a persistent or intermittent course. (author)

  14. Predictions of glass transition temperature for hydrogen bonding biomaterials.

    Science.gov (United States)

    van der Sman, R G M

    2013-12-19

    We show that the glass transition of a multitude of mixtures containing hydrogen bonding materials correlates strongly with the effective number of hydroxyl groups per molecule, which are available for intermolecular hydrogen bonding. This correlation is in compliance with the topological constraint theory, wherein the intermolecular hydrogen bonds constrain the mobility of the hydrogen bonded network. The finding that the glass transition relates to hydrogen bonding rather than free volume agrees with our recent finding that there is little difference in free volume among carbohydrates and polysaccharides. For binary and ternary mixtures of sugars, polyols, or biopolymers with water, our correlation states that the glass transition temperature is linear with the inverse of the number of effective hydroxyl groups per molecule. Only for dry biopolymer/sugar or sugar/polyol mixtures do we find deviations due to nonideal mixing, imposed by microheterogeneity.

  15. Two dimensional simulation of hydrogen iodide decomposition reaction using fluent code for hydrogen production using nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Jung Sik [The Institute of Machinery and Electronic Technology, Mokpo National Maritime University, Mokpo (Korea, Republic of); Shin, Young Joon; Lee, Ki Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Jae Hyuk [Division of Marine Engineering System, Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-06-15

    The operating characteristics of hydrogen iodide (HI) decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV) ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of H2O was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.

  16. Carotid bifurcation calcium and correlation with percent stenosis of the internal carotid artery on CT angiography

    International Nuclear Information System (INIS)

    McKinney, Alexander M.; Casey, Sean O.; Teksam, Mehmet; Truwit, Charles L.; Kieffer, Stephen; Lucato, Leandro T.; Smith, Maurice

    2005-01-01

    The aim of this paper was to determine the correlation between calcium burden (expressed as a volume) and extent of stenosis of the origin of the internal carotid artery (ICA) by CT angiography (CTA). Previous studies have shown that calcification in the coronary arteries correlates with significant vessel stenosis, and severe calcification (measured by CT) in the carotid siphon correlates with significant (greater than 50% stenosis) as determined angiographically. Sixty-one patients (age range 50-85 years) underwent CT of the neck with intravenous administration of iodinated contrast for a variety of conditions. Images were obtained with a helical multidetector array CT scanner and reviewed on a three-dimensional workstation. A single observer manipulated window and level to segment calcified plaque from vascular enhancement in order to quantify vascular calcium volume (cc) in the region of the bifurcation of the common carotid artery/ICA origin, and to measure the extent of ICA stenosis near the origin. A total of 117 common carotid artery bifurcations were reviewed. A ''significant'' stenosis was defined arbitrarily as >40% (to detect lesions before they become hemodynamically significant) of luminal diameter on CTA using NASCET-like criteria. All ''significant'' stenoses (21 out of 117 carotid bifurcations) had measurable calcium. We found a relatively strong correlation between percent stenosis and the calcium volume (Pearson's r= 0.65, P<0.0001). We also found that there was an even stronger correlation between the square root of the calcium volume and the percent stenosis as measured by CTA (r= 0.77, P<0.0001). Calcium volumes of 0.01, 0.03, 0.06, 0.09 and 0.12 cc were used as thresholds to evaluate for a ''significant'' stenosis. A receiver operating characteristic (ROC) curve demonstrated that thresholds of 0.06 cc (sensitivity 88%, specificity 87%) and 0.03 cc (sensitivity 94%, specificity 76%) generated the best combinations of sensitivity and

  17. Percent Coverage

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Percent Coverage is a spreadsheet that keeps track of and compares the number of vessels that have departed with and without observers to the numbers of vessels...

  18. Improved synthesis and hydrogen storage of a microporous metal-organic framework material

    International Nuclear Information System (INIS)

    Cheng Shaojuan; Liu Shaobing; Zhao Qiang; Li Jinping

    2009-01-01

    A microporous metal-organic framework MOF-5 [Zn 4 O(BDC) 3 , BDC = 1,4-benzenedicarboxylic] was synthesized with and without H 2 O 2 by improved methods based on the previous studies. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption, and their hydrogen storage capacities were measured. The synthesis experiments showed that H 2 O 2 favored the growth of high quality sample, large pore volume and high specific surface area. The measurements of hydrogen storage indicated that the sample with higher specific surface area and large pore volume showed better hydrogen storage behavior than other samples. It was suggested that specific surface area and pore volume influenced the capacity of hydrogen storage for MOF-5 material.

  19. Repression of hydrogen uptake using conjugated oligoelectrolytes in microbial electrolysis cells

    KAUST Repository

    Hou, Huijie

    2014-11-01

    Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. DSBN+, a conjugated oligoelectrolyte (COE), was added to microbial electrolysis cells (MECs) to improve hydrogen recovery. The volume of hydrogen gas recovered in a fedbatch cycle of mixed culture MECs increased by 126× compared to controls (no COE addition), mainly by preventing the loss of hydrogen to methane production. Performance in pure culture MECs fed with Geobacter sulfurreducens increased by factors of 10.5 in terms of energy yield, 2.1 in COD removal, and 11.8 in hydrogen yield. Hydrogen gas recycling was reduced, and the volume of hydrogen gas recovered increased by 6.5× compared to controls. Minimal methane production and a lack of hydrogen gas uptake by G. sulfurreducens suggested that the COEs increased hydrogen recoveries by interfering with hydrogen uptake by hydrogenotrophic methanogens but also by exoelectrogenic bacteria. COEs may therefore be useful for inhibiting the activities of certain hydrogenases, although the mechanism of inhibition needs further investigation.

  20. Repression of hydrogen uptake using conjugated oligoelectrolytes in microbial electrolysis cells

    KAUST Repository

    Hou, Huijie; Chen, Xiaofen; Liu, Jia; Zhu, Xiuping; Bazan, Guillermo C.; Logan, Bruce E.

    2014-01-01

    Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. DSBN+, a conjugated oligoelectrolyte (COE), was added to microbial electrolysis cells (MECs) to improve hydrogen recovery. The volume of hydrogen gas recovered in a fedbatch cycle of mixed culture MECs increased by 126× compared to controls (no COE addition), mainly by preventing the loss of hydrogen to methane production. Performance in pure culture MECs fed with Geobacter sulfurreducens increased by factors of 10.5 in terms of energy yield, 2.1 in COD removal, and 11.8 in hydrogen yield. Hydrogen gas recycling was reduced, and the volume of hydrogen gas recovered increased by 6.5× compared to controls. Minimal methane production and a lack of hydrogen gas uptake by G. sulfurreducens suggested that the COEs increased hydrogen recoveries by interfering with hydrogen uptake by hydrogenotrophic methanogens but also by exoelectrogenic bacteria. COEs may therefore be useful for inhibiting the activities of certain hydrogenases, although the mechanism of inhibition needs further investigation.

  1. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo-Jin; Lee, Seul-Yi [Department of Chemistry, Inha University, 253 Nam-gu, Incheon 402-751 (Korea, Republic of)

    2010-12-15

    In this work, the hydrogen storage behaviors of multi-walled carbon nanotubes (MWNTs) loaded by crystalline platinum (Pt) particles were studied. The microstructure of the Pt/MWNTs was characterized by X-ray diffraction and transmission electron microscopy. The pore structure and total pore volumes of the Pt/MWNTs were analyzed by N{sub 2}/77 K adsorption isotherms. The hydrogen storage capacity of the Pt/MWNTs was evaluated at 298 K and 100 bar. From the experimental results, it was found that Pt particles were homogeneously distributed on the MWNT surfaces. The amount of hydrogen storage capacity increased in proportion to the Pt content, with Pt-5/MWNTs exhibiting the largest hydrogen storage capacity. The superior amount of hydrogen storage was linked to an increase in the number of active sites and the optimum-controlled micropore volume for hydrogen adsorption due to the well-dispersed Pt particles. Therefore, it can be concluded that Pt particles play an important role in hydrogen storage characteristics due to the hydrogen spillover effect. (author)

  2. excess molar volumes, and refractive index of binary mixtures

    African Journals Online (AJOL)

    Preferred Customer

    because (a) water molecules have hydroxyl group which can make stronger hydrogen bonding than methanol and (b) water molecules and glycerol have suitable kinetic energy for bulk volumes at high temperature. Thus, the mixture of glycerol + water have big excess molar volume than methanol. The hydrogen bonding ...

  3. Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions; Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W.; Steward, D.; Penev, M.; McQueen, S.; Jaffe, S.; Talon, C.

    2012-08-01

    Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on 2015 as a target timeframe for global FCEV commercialization, the window of opportunity is short for establishing a sufficient network of hydrogen stations to support large-volume vehicle deployments. This report describes expert feedback on the market readiness of hydrogen infrastructure technology from two activities.

  4. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela [Pennsylvania State Univ., State College, PA (United States); Badding, John [Pennsylvania State Univ., State College, PA (United States); Crespi, Vinent [Pennsylvania State Univ., State College, PA (United States)

    2015-12-01

    Hydrogen trapped in a carbon cage, captured through repulsive interactions, is a novel concept in hydrogen storage. Trapping hydrogen via repulsive interactions borrows an idea from macroscale hydrogen storage (i.e. compressed gas storage tanks) and reapplies these concepts on the nanoscale in specially designed molecular containers. Under extreme conditions of pressure, hydrogen solubility in carbon materials is expected to increase and carbon is expected to restructure to minimize volume via a mixed sp2/sp3 hydrogenated state. Thermodynamics dictate that pre-formed C-H structures will rearrange with increased pressure, yet the final carbon-hydrogen interactions may be dependent upon the mechanism by which hydrogen is introduced. Gas “trapping” is meant to denote gas present in a solid in a high density, adsorbed-like state, when the external pressure is much less than that necessary to provide a comparable fluid density. Trapping thus denotes a kinetically metastable state rather than thermodynamic equilibrium. This project probed mechanochemical means to polymerize select hydrocarbons in the presence of gases, in an attempt to form localized carbon cages that trap gases via repulsive interactions. Aromatic, polyaromatic, and hydroaromatic molecules expected to undergo cyclo-addition reactions were polymerized at high (~GPa) pressures to form extended hydrogenated amorphous carbon networks. Notably, aromatics with a pre-existing internal free volume (such as Triptycene) appeared to retain an internal porosity upon application of pressure. However, a high photoluminescence background after polymerization precluded in situ identification of trapped gases. No spectroscopic evidence was found after depressurization that would be indicative of pockets of trapped gases in a localized high-pressure environment. Control studies suggested this measurement may be insensitive to gases at low pressure. Similarly, no spectral fingerprint was found for gas-imbued spherical

  5. Experiments on the thermalization of slow neutrons by liquid hydrogen (1962)

    International Nuclear Information System (INIS)

    Cribier, D.; Jacrot, B.; Lacaze, A.; Roubeau, P.

    1962-01-01

    In order to increase the flux of neutrons of long wave-length (λ > 4 A) emerging from a channel in the EL-3, a liquid hydrogen device was introduced into a channel of the reactor (Channel H 1 ). The principle of the device is simple. A volume of liquid hydrogen is introduced as close as possible to the reactor core into a region of intense isotropic flux. This hydrogen slows down the slow neutrons; because of the very small mean free diffusion path of slow in hydrogen, this slowing down is considerable even in a small volume of liquid hydrogen, and the spectrum temperature of neutrons emerging from the volume of liquid hydrogen can therefore be shifted. The intensity gain for neutrons with a wave length λ, is a G (λ) function which, for perfect thermalization and ignoring capture, is expressed by: G (λ) = 225 exp (- 45.3/λ 2 ), assuming a temperature of 300 deg. K for the neutrons before cooling and is 20 deg. K after cooling. For a wave-length of 5 A, the theoretical maximum gain of thus about 37. (authors) [fr

  6. Validation test of advanced technology for IPV nickel-hydrogen flight cells - Update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the LEO cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion.

  7. High density hydrogen research

    International Nuclear Information System (INIS)

    Hawke, R.S.

    1977-01-01

    The interest in the properties of very dense hydrogen is prompted by its abundance in Saturn and Jupiter and its importance in laser fusion studies. Furthermore, it has been proposed that the metallic form of hydrogen may be a superconductor at relatively high temperatures and/or exist in a metastable phase at ambient pressure. For ten years or more, laboratories have been developing the techniques to study hydrogen in the megabar region (1 megabar = 100 GPa). Three major approaches to study dense hydrogen experimentally have been used, static presses, shockwave compression, and magnetic compression. Static tchniques have crossed the megabar threshold in stiff materials but have not yet been convincingly successful in very compressible hydrogen. Single and double shockwave techniques have improved the precision of the pressure, volume, temperature Equation of State (EOS) of molecular hydrogen (deuterium) up to near 1 Mbar. Multiple shockwave and magnetic techniques have compressed hydrogen to several megabars and densities in the range of the metallic phase. The net result is that hydrogen becomes conducting at a pressure between 2 and 4 megabars. Hence, the possibility of making a significant amount of hydrogen into a metal in a static press remains a formidable challenge. The success of such experiments will hopefully answer the questions about hydrogen's metallic vs. conducting molecular phase, superconductivity, and metastability. 4 figures, 15 references

  8. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight cells-update 2

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1991-01-01

    An update of validation test results confirming the breakthrough in low earth orbit (LEO) cycle life of nickel-hydrogen cells containing 26 percent KOH electrolyte is presented. A breakthrough in the LEO cycle life of individual pressure vessel (IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40 000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH. This test was conducted at Hughes Aircraft Company under a NASA Lewis contract. The purpose was to investigate the effect of KOH concentration on cycle life. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min discharge (2x normal rate). The depth of discharge (DOD) was 80 percent. The cell temperature was maintained at 23 C. The boiler plate test results are in the process of being validated using flight hardware and real time LEO test at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. Six 48 Ah Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells), and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The three 31 percent KOH cells failed (cycles 3729, 4165, and 11355). One of the 26 percent KOH cells failed at cycle 15314. The other two 26 percent KOH cells were cycled for over 16600 cycles during the continuing test.

  9. Hydrogen treatment system in the Genkai nuclear power plant No. 2

    International Nuclear Information System (INIS)

    Nakamura, Masayuki; Kodama, Hideo; Murashima, Masayasu

    1977-01-01

    The new hydrogen treatment system which injects hydrogen into the volume control tank for purging the mixed waste gas of Kr, Xe, etc. is adopted in the Genkai nuclear power plant No. 2. The system is composed of mainly the waste gas pretreatment equipment, a palladium alloy membrane type hydrogen separator, a hydrogen compressor, and a waste gas decay tank. The outline of the primary cooling system and the chemical volume control system of PWR, the hydrogen treatment system, and the gaseous waste disposal system of original and new types for the Genkai nuclear power plants No. 1 and 2 are explained in this paper. This newly added hydrogen treatment system will be able to reduce the rare gas concentration rate in the primary coolant to about 1/2 and 1/5 for Kr 85 and Xe 133 , respectively. (auth.)

  10. Grand Canonical Monte Carlo simulations of hydrogen adsorption on aluminophosphate molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mee Kyung [Bioinformatics and Molecular Design Research Center, B138A, Yonsei Engineering Research Complex, Yonsei University, Seoul 120-749 (Korea); No, Kyoung Tai [Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea)

    2009-03-15

    The hydrogen adsorption simulations were carried for several model AlPOs (VPI-5, AlPO-5, AlPO-11 and AlPO-25) employing the Grand Canonical Monte Carlo (GCMC) simulations at 77 K to investigate the effect of pore size and the pore volume on the hydrogen uptake. The adsorption capacity showed no relationship with the pore size, surface area and micropore volume of AlPOs. However, the adsorption capacity per unit micropore volume increased as the pore size decreases. The heat of adsorption also increased as the pore size decreases. For all model AlPOs, the hydrogen exists homogeneously near the oxygen atoms in the framework. (author)

  11. Geothermal hydrogen - a vision? Paper

    Energy Technology Data Exchange (ETDEWEB)

    Zittel, W.; Weindorf, W.; Wurster, R.; Bussmann, W.

    2001-07-01

    With the progresses in geothermal electricity production by means of the hot-dry-rock (HDR) method electricity might be produced at cost of between 0.07 - 0.09 ECU/kWh, depending on systems sizes of between 5 - 20 MW{sub e}. The electricity can be used to produce hydrogen from electrolysis and water. This method of electricity production offers high availability with operating hour of between 7,600 - 8,000 hours per year. The 40 GWh electricity production per year from one 5 MW{sub e} geothermal plant are sufficient to produce enough hydrogen for the operation of an average fueling station with about 400 refuelings per day at cost of about 20 - 30 percent higher than today's gasoline (including taxes). In this contribution some details of the analysis are presented as well as a general discussion of geothermal hydrogen production as a future energy vector. (orig.)

  12. Validation test of advanced technology for IPV nickel-hydrogen flight cells: Update

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the low-earth-orbit (LEO) cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. An advanced 125 Ah IPV nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. The advanced cell design is in the process of being validated using real time LEO cycle life testing of NWSC, Crane, Indiana. An update of validation test results confirming this technology is presented.

  13. Hydrogen formation and control under postulated LMFBR accident conditions

    International Nuclear Information System (INIS)

    Armstrong, G.R.; Wierman, R.W.

    1976-09-01

    The objective of this study is to experimentally investigate the potential for autoignition and combustion of hydrogen-sodium mixtures which may be produced in LMFBR accidents. The purpose and ultimate usefulness of this work is to provide data that will establish the validity and acceptability of mechanisms inherent to the LMFBR that could either prevent or delay the accumulation of hydrogen gas to less than 4 percent (V) in the Reactor Containment Building (RCB) under accident conditions. The results to date indicate that sodium and sodium-hydrogen mixtures such as may be expected during LMFBR postulated accidents will ignite upon entering an air atmosphere and that the hydrogen present will be essentially all consumed until such time that the oxygen concentration is depleted

  14. Enhancing atom densities in solid hydrogen by isotopic substitution

    International Nuclear Information System (INIS)

    Collins, G.W.; Souers, P.C.; Mapoles, E.R.; Magnotta, F.

    1991-01-01

    Atomic hydrogen inside solid H 2 increases the energy density by 200 MegaJoules/m 3 , for each percent mole fraction stored. How many atoms can be stored in solid hydrogen? To answer this, we need to know: (1) how to produce and trap hydrogen atoms in solid hydrogen, (2) how to keep the atoms from recombining into the ground molecular state, and (3) how to measure the atom density in solid hydrogen. Each of these topics will be addressed in this paper. Hydrogen atoms can be trapped in solid hydrogen by co-condensing atoms and molecules, external irradiation of solid H 2 , or introducing a radioactive impurity inside the hydrogen lattice. Tritium, a heavy isotope of hydrogen, is easily condensed as a radioactive isotopic impurity in solid H 2 . Although tritium will probably not be used in future rockets, it provides a way of applying a large, homogenious dose to solid hydrogen. In all of the data presented here, the atoms are produced by the decay of tritium and thus knowing how many atoms are produced from the tritium decay in the solid phase is important. 6 refs., 6 figs

  15. Hydrogen isotope ratios of mouse tissues are influenced by a variety of factors other than diet

    International Nuclear Information System (INIS)

    DeNiro, M.J.; Epstein, S.

    1981-01-01

    Hydrogen isotopes are fractionated during biochemical reactions in a variety of organisms. A number of experiments have shown that the D/H ratios of animals and their tissues are not controlled solely by the D/H ratios of their food. The authors performed a simple experiment which indicated that the D/H ratios of a significant fraction of the organically bonded hydrogen in animal tissues must be determined by the isotopic composition of water that the samples encounter. Aliquots of dried mouse brain and liver and mouse food were exposed to water vapors of different D/H ratios prior to isotopic analysis. The results of the experiment showed that at least 16 percent of the hydrogen in mouse brain is exchangeable with the hydrogen of water; the corresponding values for mouse liver and mouse food were 25 to 29 percent

  16. Determination of hydrogen permeation using metallic sensors of construction similar to bimetallic thermocouples; Determinacao de permeacao de hidrogenio utilizando sensores metalicos de construcao similar a termopares bimetalicos

    Energy Technology Data Exchange (ETDEWEB)

    Maul, Alexandre M. [Ministerio de Ciencia e Tecnologia (MCT), Brasilia, DF (Brazil). Programa de Pos-graduacao em Engenharia e Processos (PIPE- PRH-24/ANP); Ponte, Haroldo A. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Correa, Luiz A. [Metaldata Tecnologia de Materiais, Curitiba, PR (Brazil)] (in Memoriam)

    2004-07-01

    Crude oils range in consistency from water to tar-like solids, and in color from clear to black. An average crude oil contains about 84 percent carbon, 14 percent hydrogen, 1 to 3 percent sulfur, and less than 1 percent each of nitrogen, oxygen, metals, and salts. Crude oils are generally classified as paraffinic, naphthenic, or aromatic based on the predominant proportion of similar hydrocarbon molecules. Refinery crude base stocks usually consist of mixtures of two or more different crude oils. Many corrosive processes found in machines, equipment and pipes used in the petroleum industry are directly influenced by hydrogen. The structural damages are caused by hydrogen inclusion in metallic structures, generated by acid media that contain free protons (H{sup +}), by chemical processes that lead to the protons formation, by formation of atomic hydrogen (H0) or even by adsorbed gas hydrogen (H2). The structural damages are varied: hydrogen induced cracking (HIC), blistering, stress corrosion cracking (SSC), stress oriented hydrogen induced cracking (SOHIC). The main problem found in practice is how to detect, in a safe, fast and economically viable way, the formation of hydrogen close to a surface subjected to hydrogen permeation. Within this work, we built a cell for hydrogen generation/permeation to study and evaluate a new hydrogen sensor. This new sensor is composed of two parts, each one build with a couple of dissimilar materials, being a sensor couple, for hydrogen flux measurement, and a reference couple, for temperature corrections. In this sensor, the changes in some physical properties are related with the flow of permeated hydrogen. The results using a prototype model showed good agreement with a traditional Devanathan-Stachurski sensor. (author)

  17. Hydrogen charging, hydrogen content analysis and metallographic examination of hydride in zirconium alloys

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Mukherjee, S.; Roychowdhury, S.; Srivastava, D.; Sinha, T.K.; De, P.K.; Banerjee, S.; Gopalan, B.; Kameswaran, R.; Sheelvantra, Smita S.

    2003-12-01

    Gaseous and electrolytic hydrogen charging techniques for introducing controlled amount of hydrogen in zirconium alloy is described. Zr-1wt%Nb fuel tube, zircaloy-2 pressure tube and Zr-2.5Nb pressure tube samples were charged with up to 1000 ppm of hydrogen by weight using one of the aforementioned methods. These hydrogen charged Zr-alloy samples were analyzed for estimating the total hydrogen content using inert gas fusion technique. Influence of sample surface preparation on the estimated hydrogen content is also discussed. In zirconium alloys, hydrogen in excess of the terminal solid solubility precipitates out as brittle hydride phase, which acquire platelet shaped morphology due to its accommodation in the matrix and can make the host matrix brittle. The F N number, which represents susceptibility of Zr-alloy tubes to hydride embrittlement was measured from the metallographs. The volume fraction of the hydride phase, platelet size, distribution, interplatelet spacing and orientation were examined metallographically using samples sliced along the radial-axial and radial-circumferential plane of the tubes. It was observed that hydride platelet length increases with increase in hydrogen content. Considering the metallographs generated by Materials Science Division as standard, metallographs prepared by the IAEA round robin participants for different hydrogen concentration was compared. It is felt that hydride micrographs can be used to estimate not only that approximate hydrogen concentration of the sample but also its size, distribution and orientation which significantly affect the susceptibility to hydride embrittlement of these alloys. (author)

  18. Comparative evaluation of PSA-Density, percent free PSA and total PSA

    OpenAIRE

    Ströbel, Greta

    2010-01-01

    BACKGROUND The objective of this study was to evaluate the prostate specific antigen (PSA) density (PSAD) (the quotient of PSA and prostate volume) compared with the percent free PSA (%fPSA) and total PSA (tPSA) in different total PSA (tPSA) ranges from 2 ng/mL to 20 ng/mL. Possible cut-off levels depending on the tPSA should be established. METHODS In total, 1809 men with no pretreatment of the prostate were enrolled between 1996 and 2004. Total and free PSA were measured with t...

  19. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  20. Electricity Cogenerator from Hydrogen and Biogas

    Science.gov (United States)

    Pinate, W.; Chinnasa, P.; Dangphonthong, D.

    2017-09-01

    This research studied about electricity cogenerator from Hydrogen and Biogas and the factors that cause that effecting Hydrogen from Aluminium which was a cylindrical feature. By using a catalyst was NaOH and CaO, it was reacted in distilled water with percentage of Aluminium: the catalyst (NaOH and CaO) and brought to mix with Biogas afterwards, that have been led to electricity from generator 1 kilowatt. The research outcomes were concentration of solutions that caused amount and percent of maximum Hydrogen was to at 10 % wt and 64.73 % which rate of flowing of constant gas 0.56 litter/minute as temperature 97 degree Celsius. After that led Hydrogen was mixed by Biogas next, conducted to electricity from generator and levelled the voltage of generator at 220 Volt. There after the measure of electricity current and found electricity charge would be constant at 3.1 Ampere. And rate of Biogas flowing and Hydrogen, the result was the generator used Biogas rate of flowing was highest 9 litter/minute and the lowest 7.5 litter/minute, which had rate of flowing around 8.2 litter/minute. Total Biogas was used around 493.2 litter or about 0.493 m3 and Hydrogen had rate of flowing was highest 2.5 litter/minute.

  1. 700 bar hydrogen cylinder design, testing and certification

    International Nuclear Information System (INIS)

    Duncan, M.

    2004-01-01

    'Full text:' Light weight and high pressure cylinders for compressed hydrogen storage are essential components for fuel cell vehicles. Storage volume and mass are two key considerations. Current on-board hydrogen storage systems are based on a maximum pressure of 350 bar. While 350 bar systems are excellent solutions for many applications, some situations required higher storage densities due to space restrictions. As a result significant research and development work has been expended by cylinder manufacturers, systems providers, testing agencies and automotive manufacturers to develop 700 bar systems to reduce storage volume. Dynetek Industries Ltd has proactively developed a range of 700 bar storage cylinders based on a seamless aluminum liner over wrapped with a carbon fiber composite. This paper presents the challenges and processes involved in the design, testing and certification of the Dynetek Industries Ltd 700 bar cylinder. The paper also provides reasoning for further volume and mass optimization of compressed hydrogen cylinders by incorporating realistic cylinder usage parameters into standards. In particular the overly conservative fill life requirement for cylinders will be examined. (author)

  2. Solution thermodynamics of valnemulin hydrogen fumarate in different pure solvents

    International Nuclear Information System (INIS)

    Ouyang, Jinbo; Wang, Jingkang; Huang, Xin; Bao, Ying; Wang, Yongli; Yin, Qiuxiang; Liu, Ailing; Li, Xudong; Hao, Hongxun

    2015-01-01

    Highlights: • The solubility of valnemulin hydrogen fumarate in five pure solvents was experimentally determined. • The solubility data were correlated by Wilson model, NRTL model and UNIQUAC model. • Mixing thermodynamic properties of valnemulin hydrogen fumarate in five pure solvents were calculated. - Abstract: Solubility of valnemulin hydrogen fumarate in five pure solvents was determined within temperature range of (278.15 to 323.15) K by a gravimetric method. The results show that the solubility of valnemulin hydrogen fumarate in tested pure solvents increases with the increasing temperature. The solubility values were correlated by the Wilson model, NRTL model and UNIQUAC model. The UNIQUAC volume parameter, area parameter, and Wilson liquid molar volume parameter of valnemulin hydrogen fumarate were estimated by the group contribution method. It was found that the correlated results are in good agreement with the experimental results. Furthermore, the mixing thermodynamic properties of valnemulin hydrogen fumarate in solutions, including the mixing Gibbs energy, the mixing enthalpy and entropy, were determined by using the Wilson model and the experimental solubility results.

  3. Change in lattice parameter of tantalum due to dissolved hydrogen

    Directory of Open Access Journals (Sweden)

    Gyanendra P. Tiwari

    2012-06-01

    Full Text Available The volume expansion of tantalum due to the dissolved hydrogen has been determined using Bragg equation. The hydrogen was dissolved in the pure tantalum metal at constant temperature (360 °C and constant pressure (132 mbar by varying the duration of hydrogen charging. The amount of dissolved hydrogen was within the solid solubility limit. The samples with different hydrogen concentration were analyzed by X-ray diffraction technique. Slight peak shifts as well as peak broadening were observed. The relative changes of lattice parameters plotted against the hydrogen concentration revealed that the lattice parameters varied linearly with the hydrogen concentration.

  4. The formation of hydrogen in the radiolysis of water in closed volumes

    International Nuclear Information System (INIS)

    Kabakchi, S.A.; Lebedeva, I.E.

    1984-01-01

    By applying the sum total of the elementary reactions involving short-lived particles it is possible to fairly accurately calculate the kinetics of hydrogen formation and of its separation from water, and also to calculate the accumulation of hydrogen peroxide and oxygen during radiolysis of pure water and water solutions at room temperature. This paper describes a semi-empirical method to calculate the kinetics of hydrogen formation for certain cases encountered in nuclear power production. (author)

  5. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    International Nuclear Information System (INIS)

    Papell, S.S.; Nyland, T.W.; Saiyed, N.H.

    1992-07-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band. 3 refs

  6. Percent Wetland Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  7. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  8. Inspiration: One Percent and Rising

    Science.gov (United States)

    Walling, Donovan R.

    2009-01-01

    Inventor Thomas Edison once famously declared, "Genius is one percent inspiration and ninety-nine percent perspiration." If that's the case, then the students the author witnessed at the International Student Media Festival (ISMF) last November in Orlando, Florida, are geniuses and more. The students in the ISMF pre-conference workshop…

  9. Market Penetration Simulation of Hydrogen Powered Vehicles in Korea

    International Nuclear Information System (INIS)

    Eunju Jun; Yong Hoon, Jeong; Soon Heung, Chang

    2006-01-01

    As oil price being boosted, hydrogen has been considered to be a strong candidate for the future energy carrier along with electricity. Although hydrogen can be produced by many energy sources, carbon-free sources such as nuclear and renewable energy may be ideal ones due to their environmental friendliness. For the analysis of hydrogen economy, the cost and market penetration of various end-use technologies are the most important factors in production and consumer side, respectively. Particularly, hydrogen powered vehicle is getting more interests as fuel cell technologies are developed. In this paper, the hydrogen powered vehicle penetration into the transportation market is simulated. A system dynamic code, Vensim, was utilized to simulate the dynamics in the transportation, assuming various types of vehicle such as gasoline, hybrid electricity and hydrogen powered. Market shares of each vehicle are predicted by using currently available data. The result showed that hydrogen era will not be bright as we think. To reach the era of hydrogen fuel cell cost should be reduced dramatically. And if the hydrogen cost which includes both operating and capital cost reaches to a $0.16 per kilometer, hydrogen portion can be a 50 percent in the transportation sector. However, if strong policy or subsidy can be given, the result will be changed. [1] (authors)

  10. Estimating forest biomass and volume using airborne laser data

    Science.gov (United States)

    Nelson, Ross; Krabill, William; Tonelli, John

    1988-01-01

    An airborne pulsed laser system was used to obtain canopy height data over a southern pine forest in Georgia in order to predict ground-measured forest biomass and timber volume. Although biomass and volume estimates obtained from the laser data were variable when compared with the corresponding ground measurements site by site, the present models are found to predict mean total tree volume within 2.6 percent of the ground value, and mean biomass within 2.0 percent. The results indicate that species stratification did not consistently improve regression relationships for four southern pine species.

  11. The U.S. National Hydrogen Storage Project

    International Nuclear Information System (INIS)

    Sunita Satyapal; Carole Read; Grace Ordaz; John Petrovic; George Thomas

    2006-01-01

    Hydrogen is being considered by many countries as a potential energy carrier for vehicular applications. In the United States, hydrogen-powered vehicles must possess a driving range of greater than 300 miles in order to meet customer requirements and compete effectively with other technologies. For the overall vehicular fleet, this requires that a range of 5-13 kg of hydrogen be stored on-board. The storage of such quantities of hydrogen within vehicular weight, volume, and system cost constraints is a major scientific and technological challenge. The targets for on-board hydrogen storage were established in the U.S. through the FreedomCAR and Fuel partnership, a partnership among the U.S. Department of Energy, the U.S. Council for Automotive Research (USCAR) and major energy companies. In order to achieve these long-term targets, the Department of Energy established a National Hydrogen Storage Project to develop the areas of metal hydrides, chemical hydrogen storage, carbon-based and high-surface-area sorbent materials, and new hydrogen storage materials and concepts. The current status of vehicular hydrogen storage is reviewed and hydrogen storage research associated with the National Hydrogen Storage Project is discussed. (authors)

  12. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    Science.gov (United States)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  13. Effect of serum testosterone and percent tumor volume on extra-prostatic extension and biochemical recurrence after laparoscopic radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Eu Chang Hwang

    2016-01-01

    Full Text Available Several studies have revealed that the preoperative serum testosterone and percent tumor volume (PTV predict extra-prostatic extension (EPE and biochemical recurrence (BCR after radical prostatectomy. This study investigated the prognostic significance of serum testosterone and PTV in relation to EPE and BCR after laparoscopic radical prostatectomy (LRP. We reviewed 520 patients who underwent LRP between 2004 and 2012. PTV was determined as the sum of all visually estimated tumor foci in every section. BCR was defined as two consecutive increases in the postoperative prostate-specific antigen (PSA >0.2 ng ml−1 . The threshold for serum total testosterone was 3.0 ng ml−1 . Multivariate logistic regression was used to define the effect of variables on the risk of EPE and BCR. A low serum testosterone (<3.0 ng ml−1 was associated with a high serum PSA, Gleason score, positive core percentage of the prostate biopsy, PTV, and all pathological variables. On multivariate analysis, similar to previous studies, the serum PSA, biopsy positive core percentage, Gleason score, and pathological variables predicted EPE and BCR. In addition, low serum testosterone (<3.0 ng ml−1 , adjusted OR, 8.52; 95% CI, 5.04-14.4, P= 0.001 predicted EPE and PTV (adjusted OR, 1.02; 95% CI, 1.01-1.05, P= 0.046 predicted BCR. In addition to previous predictors of EPE and BCR, low serum testosterone and PTV are valuable predictors of EPE and BCR after LRP.

  14. Hydrogen production using plasma processing

    International Nuclear Information System (INIS)

    Wagner, D.; Whidden, T.K.

    2006-01-01

    Plasma processing is a promising method of extracting hydrogen from natural gas while avoiding the greenhouse gas (GHG) production typical of other methods such as steam methane reforming. This presentation describes a plasma discharge process based that, in a single reactor pass, can yield hydrogen concentrations of up to 50 % by volume in the product gas mixture. The process is free of GHG's, does not require catalysts and is easily scalable. Chemical and morphological analyses of the gaseous and solid products of the process by gas-chromatography/mass-spectrometry, microscopic Raman analyses and electron microscopy respectively are reviewed. The direct production of hydrogen-enriched natural gas (HENG) as a fuel for low pollution internal combustion engines and its purification to high-purity hydrogen (99.99%) from the product gas by pressure swing adsorption (PSA) purifier beds are reviewed. The presentation reviews potential commercial applications for the technology

  15. Experimental study of hydrogen formation and recombination under postulated LMFBR accident conditions

    International Nuclear Information System (INIS)

    Wierman, R.W.; Hilliard, R.K.

    1976-01-01

    The report describes an experimental study of hydrogen jets burning in air, hydrogen formation by sodium in humid air atmospheres, and the effects of nitrogen, water vapor sodium vapor/aerosol, jet velocity, and jet temperature on ignition of hydrogen jets. The results show that hydrogen jets above 1450 0 F (788 0 C) issuing into an air atmosphere need no ignition source for ignition, a hydrogen jet temperature higher than 500 0 F (260 0 C) and containing more than six grams of sodium per cubic meter of jet gas will auto-ignite in an air atmosphere, the burning efficiency of a hydrogen jet decreases rapidly to zero when the oxygen concentration outside the flame region approaches 10 percent, and hydrogen does not form from a sodium-nitrogen jet issuing into a humid air atmosphere until the ratio O 2 /(H 2 O + O 2 ) is less than 0.5

  16. Metal–organic frameworks for hydrogen storage

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2015-08-01

    Full Text Available Over the past decade, hydrogen storage in metal-organic frameworks (MOFs) has received increasing attention worldwide because they possess versatile structures, high surface areas, large free volumes, ultrahigh porosities, and tunable pore...

  17. Hydrogen alternatives for a regional upgrader

    International Nuclear Information System (INIS)

    Bailey, R.T.; Padamsey, R.

    1991-01-01

    For a proposed regional upgrader in Alberta, hydrogen will be needed to upgrade the bitumen and heavy oil to be processed by that facility. The upgrader will rely on high conversion hydrocracking which consumes 3.4 wt % hydrogen to produce a 106% volume yield of high quality synthetic crude. The costs of producing hydrogen via steam reforming of methane, partial oxidation of coal or upgrading residues, and electrolysis are compared, showing that steam reforming is the cheapest. However, an even cheaper source of hydrogen is available in the Edmonton and Fort Saskatchewan area as byproducts from petrochemical plants. An economic analysis is presented of a proposed scheme to capture, purify, compress, and transfer hydrogen from one or two such plants to a nearby regional upgrader. The two plants could supply a total of 126.6 million ft 3 /d of hydrogen at a total installed capital cost of about half of that of a steam reforming plant of equivalent size. When operating costs are added (including the cost of replacing the hydrogen, currently used as fuel at the two plants, with natural gas), the total cost of hydrogen is substantially less than the costs for a hydrogen plant within the upgrader. 3 refs., 5 figs., 4 tabs

  18. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    Increasing concern about the global climate change spurs the development of low- or zero-carbon energy system. Nuclear hydrogen production by water electrolysis would be the one of the short-term solutions, but low efficiency and high production cost (high energy consumption) is the technical hurdle to be removed. In this paper the once-through sulfur process composed of the desulfurization and the water electrolysis systems is proposed. Electrode potential for the conventional water electrolysis (∼2.0 V) can be reduced significantly by the anode depolarization using sulfur dioxide: down to 0.6 V depending on the current density This depolarized electrolysis is the electrolysis step of the hybrid sulfur process originally proposed by the Westinghouse. However; recycling of sulfur dioxide requires a high temperature heat source and thus put another technical hurdle on the way to nuclear hydrogen production: the development of high temperature nuclear reactors and corresponding sulfuric acid decomposition system. By the once-through use of sulfur dioxide rather than the closed recycle, the hurdle can be removed. For the sulfur feed, the desulfurization system is integrated into the water electrolysis system. Fossil fuels include a few percent of sulfur by weight. During the refinement or energy conversion, most of the sulfur should be separated The separated sulfur can be fed to the water electrolysis system and the final product would be hydrogen and sulfuric acid, which is number one chemical in the world by volume. Lowered electrode potential and additional byproduct, the sulfuric acid, can provide economically affordable hydrogen. In this study, the once-through hybrid sulfur process for hydrogen production was proposed and the process was optimized considering energy consumption in electrolysis and sulfuric acid concentration. Economic feasibility of the proposed process was also discussed. Based on currently available experimental data for the electrode

  19. High-temperature effect of hydrogen on sintered alpha-silicon carbide

    Science.gov (United States)

    Hallum, G. W.; Herbell, T. P.

    1986-01-01

    Sintered alpha-silicon carbide was exposed to pure, dry hydrogen at high temperatures for times up to 500 hr. Weight loss and corrosion were seen after 50 hr at temperatures as low as 1000 C. Corrosion of SiC by hydrogen produced grain boundary deterioration at 1100 C and a mixture of grain and grain boundary deterioration at 1300 C. Statistically significant strength reductions were seen in samples exposed to hydrogen for times greater than 50 hr and temperatures above 1100 C. Critical fracture origins were identified by fractography as either general grain boundary corrision at 1100 C or as corrosion pits at 1300 C. A maximum strength decrease of approximately 33 percent was seen at 1100 and 1300 C after 500 hr exposure to hydrogen. A computer assisted thermodynamic program was also used to predict possible reaction species of SiC and hydrogen.

  20. Hydrogenated dilute nitride semiconductors theory, properties, and applications

    CERN Document Server

    Ciatto, Gianluca

    2015-01-01

    ""The electrical and optical properties of the technologically and scientifically important dilute nitride semiconductors are strongly influenced by the introduction of atomic hydrogen. This volume is an excellent summary and resource for the most recent understanding of experimental results and state-of-the-art theoretical studies of the formation, reversibility, and microscopic structure of nitrogen-hydrogen complexes in these materials. The book details how a wide variety of experimental techniques have provided a detailed understanding of the role of hydrogen. It is the premier sourc

  1. Metal oxide/hydrogen battery; Kinzoku sankabutsu/suiso denchi

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, M.; Niki, H. [Toshiba Research and Development Centre, Komukai, Kawasaki (Japan)

    1995-07-04

    The metal oxide-hydrogen battery consisting mainly of hydrogen storage alloy has high energy density and high volume efficiency. However, it is disadvantageous that the self-discharge takes place since the discharge capacity is lowered due to the delivery of stored hydrogen from the hydrogen electrode. This invention relates to the metal oxide-hydrogen battery consisting of hydrogen storage alloy. Hydrogen storage alloy which is composed of LaNi5 system homogeneous solid solution having an equilibrium plateau pressure of less than 1 atm at 20{degree}C is used. As a result, the battery voltage change and the self-discharge can be reduced, and the cell performance can be improved. Examples of LaNi5 system hydrogen storage alloy are ANi(5-x)Mx (A = La, Mm, and Ca, M = Al, Mn, Si, Ge, Fe, B, Ga, Cu, In, and Co). LaNi(4.7)Al(0.3) and MmNi(4.2)Mn(0.8) are preferable. 3 figs.

  2. High density hydrogen storage in nanocavities: Role of the electrostatic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Reguera, L. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Legaria 694, Mexico D.F (Mexico); Facultad de Quimica, Universidad de La Habana, La Habana (Cuba); Roque, J. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Legaria 694, Mexico D.F (Mexico); Hernandez, J. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Legaria 694, Mexico D.F (Mexico); Universidad de Pinar del Rio, Pinar del Rio (Cuba); Reguera, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Legaria 694, Mexico D.F (Mexico); Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana, La Habana (Cuba)

    2010-12-15

    High pressure H{sub 2} adsorption isotherms at N{sub 2} liquid temperature were recorded for the series of cubic nitroprussides, Ni{sub 1-x}Co{sub x}[Fe(CN){sub 5}NO] with x = 0, 0.5, 0.7, 1. The obtained data were interpreted according to the effective polarizing power for the metal found at the surface of the cavity. The cavity volume where the hydrogen molecules are accumulated was estimated from the amount of water molecules that are occupying that available space in the as-synthesized solids considering a water density of 1 g/cm{sup 3}. The calculated cavity volume was then used to obtain the density of H{sub 2} storage in the cavity. For the Ni-containing material the highest storage density was obtained, in a cavity volume of 448.5 A{sup 3} up to 10.4 hydrogen molecules are accumulated, for a local density of 77.6 g/L, above the density value corresponding to liquid hydrogen (71 g/L). Such high value of local density was interpreted as related to the electrostatic contribution to the adsorption potential for the hydrogen molecule within the cavity. (author)

  3. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery

    DEFF Research Database (Denmark)

    Westermann, Peter; Jørgensen, Betina; Lange, L.

    2007-01-01

    Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary for photo......Biological production of hydrogen from biomass by fermentative or photofermentative microorganisms has been described in numerous research articles and reviews. The major challenge of these techniques is the low yield from fermentative production, and the large reactor volumes necessary...

  4. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.

    1994-01-01

    The present research reports on the effect of initial mixture temperature on the experimentally measured detonation cell size for hydrogen-air-steam mixtures. Experimental and theoretical research related to combustion phenomena in hydrogen-air-steam mixtures has been ongoing for many years. However, detonation cell size data currently exists or hydrogen-air-steam mixtures up to a temperature of only 400K. Sever accident scenarios have been identified for light water reactors (LWRs) where hydrogen-air mixture temperatures in excess of 400K could be generated within containment. The experiments in this report focus on extending the cell size data base for initial mixture temperatures in excess of 400K. The experiments were carried out in a 10-cm inner-diameter, 6.1-m long heated detonation tube with a maximum operating temperature of 700K and spatial temperature uniformity of ±14K. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air initial gas mixture temperature, in the range 300K--650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside-diameter test vessel, based upon the onset of single-head spin, decreased from 15 percent by hydrogen at 300K down to about 9 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments

  5. Hydrogen-Induced Plastic Deformation in ZnO

    Science.gov (United States)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  6. Hydrogen in semiconductors II

    CERN Document Server

    Nickel, Norbert H; Weber, Eicke R; Nickel, Norbert H

    1999-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition ...

  7. KOH concentration effect on the cycle life of nickel-hydrogen cells

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    Effects of KOH concentration on the cycle life of a sintered-type nickel electrode were studied in a boiler plate nickel-hydrogen cell at 23 C using an accelerated 45-min cycle regime at 80 percent depth of discharge. The cycle life improved greatly as the KOH concentration decreased, although the initial capacity of the cell decreased slightly. The cycle life improved by a factor of two or more when the KOH concentration was reduced from 36 to 31 percent and by a similar factor from reductions of 31 to 26 percent. For many applications, this life improvement may outweigh the initial capacity decrease.

  8. Palladium coated fibre Bragg grating based hydrogen sensor

    International Nuclear Information System (INIS)

    Kasinathan, M.; Sosamma, S.; Kishore, S.; Elumalai, V.; Krishnan, R.; Babu Rao, C.; Dash, Sitaram; Murali, N.; Jayakumar, T.

    2011-01-01

    Detection of steam generator leaks in fast nuclear reactors is carried out by monitoring hydrogen in argon cover-gas. Hydrogen released during sodium cleaning of fast reactor components is required to be monitored. Hydrogen sensors with good sensitivity, stability and response time are required for all the above applications. We report a new type of hydrogen sensor with a Fibre Bragg Grating (FBG) coated with palladium thin film which is used to detect the leak of hydrogen gas in the Steam Generator (SG) module of the Fast Breeder Reactor (FBR). If water leaks into sodium, it results in sodium-water reaction. In this reaction hydrogen and sodium hydroxide are formed. Due to the explosive risk of hydrogen system, hydrogen sensors are of great interest in this case. It is known that hydrogen forms an explosive mixture with air once its concentration exceeds beyond the explosion limit of four percent. The advantages of FBG based hydrogen sensor over the other hydrogen sensors are its inherent property of safety from sparking, immunity to ambient electromagnetic interference. The sensing mechanism in this device is based on mechanical strain that is induced in the palladium coating when it absorbs hydrogen. This process physically stretches the grating and causes the grating period and grating's refractive index, to change. The Bragg wavelength shift is directly proportional to the strain induced and can be directly related to the percentage of hydrogen exposure. The online monitoring of palladium thin film coating on FBG is carried out and recorded the wavelength change and strain induced on the FBG. A hydrogen sensor set up have been fabricated which consists of SS vessel of capacity 10 litres, provided with pressure gauge, Argon filling line with a valve, Hydrogen injection line with flange, a vent line with valve and Hydrogen sensor fixing point. The Palladium coated FBG based Hydrogen sensor is tested in this experimental facility in the exposure of hydrogen in

  9. Effect of KOH concentration on LEO cycle life of IPV nickel-hydrogen flight battery cells

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1990-01-01

    A breakthrough in the low-earth-orbit (LEO) cycle life of individual pressure vessel (IPV) nickel hydrogen battery cells is reported. The cycle life of boiler plate cells containing 26 percent potassium hydroxide (KOH) electrolyte was about 40,000 LEO cycles compared to 3500 cycles for cells containing 31 percent KOH. The effect of KOH concentration on cycle life was studied. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min charge (2 x normal rate). The depth of discharge (DOD) was 80 percent. The cell temperature was maintained at 23 C. The next step is to validate these results using flight hardware and real time LEO test. NASA Lewis has a contract with the Naval Weapons Support Center (NWSC), Crane, Indiana to validate the boiler plate test results. Six 48 A-hr Hughes recirculation design IPV nickel-hydrogen flight battery cells are being evaluated. Three of the cells contain 26 percent KOH (test cells) and three contain 31 percent KOH (control cells). They are undergoing real time LEO cycle life testing. The cycle regime is a 90-min LEO orbit consisting of a 54-min charge followed by a 36-min discharge. The depth-of-discharge is 80 percent. The cell temperature is maintained at 10 C. The cells were cycled for over 8000 cycles in the continuing test. There were no failures for the cells containing 26 percent KOH. There were two failures, however, for the cells containing 31 percent KOH.

  10. Chromatographic enrichment of isotopes in hydrogen and water samples on palladium

    International Nuclear Information System (INIS)

    Andreev, B.M.; Polevoi, A.S.; Perevezentsev, A.N.

    1987-01-01

    Data on the isotopic enrichment of hydrogen and water samples by chromatography on palladium have been analyzed. Experimental data on the effect of temperature, hydrogen flow, volume of the enriched fraction, and length of the chromatographic column on the degree of separation attainable in the column have been obtained. It has been shown that the maximum separation achievable (regardless of the type of the isotope mixture) at 273 K falls with increase of hydrogen flow and volume of the enriched gas fraction recoverable from the column. A separation degree of ∼ 1040 has been achieved for a mixture of protium and deuterium in a 10-mm wide and 0.6-m long chromatographic column packed with palladium black with a grain size of 0.2-0.5 mm at 273 K and a specific hydrogen flow of 1.22 mole/m 2 x sec. For a protium-tritium mixture a separation degree of ∼ 90 has been reached in a similar column at 273 K and a specific hydrogen flow of 0.4 mole/m 2 x sec

  11. Hydrogen bonds in concreto and in computro: the sequel

    Science.gov (United States)

    Stouten, Pieter F. W.; Van Eijck, Bouke P.; Kroon, Jan

    1991-02-01

    In the framework of our comparative research concerning hydrogen bonding in the crystalline and liquid phases we have carried out molecular dynamics (MD) simulations of liquid methanol. Six different rigid three site models are compared. Five of them had been reported in the literature and one (OM2) we developed by a fit to the experimental molar volume, heat of vaporization and neutron weighted radial distribution function. In general the agreement with experiment is satisfactory for the different models. None of the models has an explicit hydrogen bond potential, but five of the six models show a degree of hydrogen bonding comparable to experiments on liquid methanol. The analysis of the simulation hydrogen bonds indicates that there is a distinct preference of the O⋯O axis to lie in the acceptor lone pairs plane, but hardly any for the lone pair directions. Ab initio calculations and crystal structure statistics of OH⋯O hydrogen bonds agree with this observation. The O⋯O hydrogen bond length distributions are similar for most models. The crystal structures show a sharper O⋯O distribution. Explicit introduction of harmonic motion with a quite realistic root mean square amplitude of 0.08 Å to the thermally averaged crystal distribution results in a distribution comparable to OM2 although the maximum of the former is found at shorter distance. On the basis of the analysis of the static properties of all models we conclude that our OM2, Jorgenson's OPLS and Haughney, Ferrario and McDonald's HFM1 models are good candidates for simulations of liquid methanol under isothermal, isochoric conditions. Partly flexible and completely rigid OM2 are simulated at constant pressure and with fixed volume. The flexible simulations give essentially the same (correct) results under both conditions, which is not surprising because the flexible form was fitted under both conditions. Rigid OM2 has a similar potential energy but larger pressure in the

  12. Experimental study of combustion behavior during continuous hydrogen injection with an operating igniter

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zhe, E-mail: zhe.liang@cnl.ca; Clouthier, Tony; Thomas, Bryan

    2016-03-15

    Highlights: • Combustion during continuous hydrogen release. • Periodical slow burning with a low release rate or weak turbulence. • Fast global burning with stratified hydrogen or strong turbulence. • Initiation of standing flame. - Abstract: Deliberate hydrogen ignition systems have been widely installed in many water cooled nuclear power plants to mitigate hydrogen risk in a loss-of-coolant accident. Experimental studies were performed at a large scale facility to simulate a post-accident containment scenario, where hydrogen is released into a volume (not closed) with an energized igniter. The test chamber had a volume of 60 m{sup 3}. The test parameters included hydrogen injection mass flow rate, injection elevation, igniter elevation, and level of turbulence in the chamber. Several dynamic combustion behaviors were observed. Under certain conditions, slow burning occurred periodically or locally without significant pressurization, and the hydrogen concentration could be maintained near the lean hydrogen flammability limit or a steady hydrogen distribution profile could be formed with a maximum hydrogen concentration less than 9 vol.%. Under other conditions, a global fast burn or a burn moving along the hydrogen dispersion pathway was observed and was followed by an immediate initiation of a standing flame. The study provided a better understanding of the dynamic combustion behavior induced by a deliberate igniter during a continuous hydrogen release. The data can be used for validation of combustion models used for hydrogen safety analysis.

  13. Hydrogen - the energy source of the future

    International Nuclear Information System (INIS)

    Aakervik, Anne-Lise

    2001-01-01

    The use of hydrogen is an excellent way of reducing the emission of greenhouse gases. It causes no emission when used in fuel cells. Iceland has set itself the goal of becoming the world's first hydrogen society without emission of carbon dioxide and other greenhouse gases. In the USA, California has decided to concentrate on cars that do not pollute. Hydrogen power is then an interesting alternative. Germany, Japan and the USA are all concentrating on hydrogen. The world production of hydrogen is 50 million tons, 90 per cent of which is made from fossil material, 4 per cent by electrolysis of water. The largest consumers of hydrogen are the petroleum industry and the fertilizer industry. The sale of hydrogen in the refining industry has increased recently and is expected to rise substantially when the fuel cell technology is commercialized. At present, storage of hydrogen is the major problem. Gas storage at atmospheric pressure is inconvenient because of the large volumes required. Alternatives are storage as compressed gas under high pressure, liquid gas at low temperature, storage in metal hydrides or carbon materials, or chemically bound in methanol or ammonia

  14. Hydrogen gas embrittlement of stainless steels mainly austenitic steels. Volumes 1 and 2

    International Nuclear Information System (INIS)

    Azou, P.

    1988-01-01

    Steel behavior in regard to hydrogen is examined especially austenitic steels. Gamma steels are studied particularly the series 300 with various stabilities and gamma steels with improved elasticity limit for intermetallic phase precipitation and nitrogen additions. A two-phase structure γ + α' is also studied. All the samples are tested for mechanical behavior in gaseous hydrogen. Influence of metallurgical effects and of testing conditions on hydrogen embrittlement are evidenced. Microstructure resulting from mechanical or heat treatments, dislocation motion during plastic deformation and influence of deformation rate are studied in detail [fr

  15. Hydrogen mobility is moving forward; Wasserstoff-Mobilitaet kommt voran

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Duran, Andres [Air Liquide Deutschland GmbH, Duesseldorf (Germany)

    2013-06-15

    The European Union (EU) declared aim is to cover at least 20 percent of energy needs from alternative sources until 2020. EU as well as federal and state governments promote various projects, to establish hydrogen as an energy carrier. Air Liquide participates by setting up a hydrogen infrastructure in this future project. [German] Erklaertes Ziel der Europaeischen Union (EU) ist es, bis 2020 mindestens 20 Prozent des Energiebedarfs aus alternativen Quellen zu decken. Dazu foerdern EU sowie Bund und Laender verschiedene Projekte, die Wasserstoff als Energietraeger etablieren sollen. Air Liquide beteiligt sich durch Mitarbeit am Aufbau einer Wasserstoff-Infrastruktur an diesem Zukunftsvorhaben.

  16. Beyond Marbles: Percent Change and Social Justice

    Science.gov (United States)

    Denny, Flannery

    2013-01-01

    In the author's eighth year of teaching, she hit a wall teaching percent change. Percent change is one of the few calculations taught in math classes that shows up regularly in the media, and one that she often does in her head to make sense of the world around her. Despite this, she had been teaching percent change using textbook problems about…

  17. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    Science.gov (United States)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  18. Hydrogen production in a PWR during LOCA

    International Nuclear Information System (INIS)

    Cassette, P.

    1984-01-01

    Hydrogen generation during a PWR LOCA has been estimated for design basis accident and for two more severe hypothetical accidents. Hydrogen production during design basis accident is a rather slow mechanism, allowing in the worst case, 15 days to connect a hydrogen recombining unit to the containment atmosphere monitoring system. Hydrogen generated by steam oxidation during more severe hypothetical accidents was found limited by steam availability and fuel melting phenomena. Uncertainty is, however, still remaining on corium-zirconium-steam interaction. In the worst case, calculations lead to the production of 500 kg of hydrogen, thus leading to a volume concentration of 15% in containment atmosphere, assuming homogeneous hydrogen distribution within the reactor building. This concentration is within flammability limits but not within detonation limits. However, hydrogen detonation due to local hydrogen accumulation cannot be discarded. A major uncertainty subsisting on hydrogen hazard is hydrogen distribution during the first hours of the accident. This point determines the effects and consequences of local detonation or deflagration which could possibly be harmful to safeguard systems, or induce missile generation in the reactor building. As electrical supply failures are identified as an important contributor to severe accident risk, corrective actions have been taken in France to improve their reliability, including the installation of a gas turbine on each site to supplement the existing sources. These actions are thus contributing to hydrogen hazard reduction

  19. Reversible hydrogen storage materials

    Science.gov (United States)

    Ritter, James A [Lexington, SC; Wang, Tao [Columbia, SC; Ebner, Armin D [Lexington, SC; Holland, Charles E [Cayce, SC

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  20. Proceedings of the DOE chemical/hydrogen energy systems contractor review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    This volume contains 45 papers as well as overviews of the two main project areas: the NASA Hydrogen Energy Storage Technology Project and Brookhaven National Laboratory's program on Electrolysis-Based Hydrogen Storage Systems. Forty-six project summaries are included. Individual papers were processed for inclusion in the Energy Data Base.

  1. Risks incurred by hydrogen escaping from containers and conduits

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R.; Grilliot, E.S. [Univ. of Miami, Coral Gables, FL (United States); Swain, M.N. [Analytical Technologies, Inc., Miami, FL (United States)

    1998-08-01

    This paper is a discussion of a method for hydrogen leak classification. Leaks are classified as; gas escapes into enclosed spaces, gas escapes into partially enclosed spaces (vented), and gas escapes into unenclosed spaces. Each of the three enclosure classifications is further divided into two subclasses; total volume of hydrogen escaped and flow rate of escaping hydrogen. A method to aid in risk assessment determination in partially enclosed spaces is proposed and verified for several enclosure geometries. Examples are discussed for additional enclosure geometries.

  2. Mössbauer spectroscopic study of cobalt hexacyanoferrate nanoparticles: Effect of hydrogenation

    Science.gov (United States)

    Kumar, Asheesh; Kanagare, A. B.; Meena, Sher Singh; Banerjee, S.; Kumar, P.; Sudarsan, V.

    2018-04-01

    This paper reports Mössbauer study of cobalt hexacyanoferrate (CoHCF) before and after hydrogenation. The CoHCF was synthesised by chemical precipitation method. The sample was characterized by using various techniques (XRD, TG, EDX and FTIR). The CoHCF paricles show fcc structure. The hydrogen storage property was measured at different temperature. The COHCF shows maximum 0.93 wt% hydrogen storage capacity at 223K. 57Fe Mössbauer spectroscopic study shows the effect of hydrogenation on the electronic structure in terms of electronic charge distribution and volume expansion. Isomer shift and quadrupole splitting values were found to be increased after hydrogenation.

  3. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  4. Percent Wetland Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  5. The study of hydrogen removal

    International Nuclear Information System (INIS)

    Yasufuku, Katsumi; Fukuhara, Masashi; Izaki, Takashi; Nakase, Takeshi

    1979-01-01

    Two methods of hydrogen removal from the helium coolant for high temperature helium gas-cooled nuclear reactor plants were investigated; the one is the process absorbing hydrogen with titanium sponges and the other is the water removal with zeolite, after hydrogen is converted to water utilizing copper oxide (CuO). The special feature of these two hydrogen removal methods is to treat the very low hydrogen concentration in helium about 0.06 mm Hg (2 Vpm, 41 ata). As for the titanium sponge method, a preliminary experimental facility was constructed to test the temperature dependences of the quantity of equilibrium absorption of hydrogen and the diffusion velocity inside titanium sponge by the batch type constant volume process. The temperature of titanium sponge was 800 deg C, the vacuum was from 2 to 3 x 10 -7 mm Hg and hydrogen partial pressure was from 1.0 to 10 -4 mm Hg in the experiment. The measured hydrogen absorption rate and the diffusion velocity data are presented, and the experimental conditions were evaluated. After the preliminary experiment, a mini-loop was constructed to confirm the temperature and velocity dependences of overall capacity factor, and the overall capacity factor and the regenerating characteristics of titanium sponge were tested. These experimental data are shown, and were evaluated. Concerning the hydrogen removal method utilizing CuO, the experiment was carried out under the following test conditions: the temperature from 400 to 265 deg C, the linear velocity from 50.3 to 16.7 cm/sec and the hydrogen concentration from 12.0 to 1.93 mm/Hg. The hydrogen removal rate and capacity were obtained in this experiment, and the data are presented and explained. (Nakai, Y.)

  6. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 1, Part 3

    Science.gov (United States)

    Jung, David S.; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume I: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries of the program's operations.

  7. Hydrogen storage: state-of-the-art and future perspective

    International Nuclear Information System (INIS)

    Tzimas, E.; Filiou, C.; Peteves, S.D.; Veyret, J.B.

    2003-01-01

    The EU aims at establishing a sustainable energy supply, able to provide affordable and clean energy without increasing green house gas emissions. Hydrogen and fuel cells are seen by many as key energy system solutions for the 21. century, enabling clean and efficient production of power and heat from a broad range of primary energy sources. To be effective, there is a crucial need for well-coordinated research, development and deployment at European Level. The particular segment of hydrogen storage is one key element of the full hydrogen chain and it must meet a number of challenges before it is introduced into the global energy system. Regarding its energy characteristics, the gravimetric energy density of hydrogen is about three times higher than gasoline, but its energy content per volume is about a quarter. Therefore, the most significant problem for hydrogen (in particular for on-board vehicles) is to store sufficient -amounts of hydrogen. The volumetric energy density of hydrogen can be increased by compression or liquefaction which are both the most mature technologies. Still the energy required for both compression and liquefaction is one element to be properly assessed in considering the different pathways in particular for distribution. As far as on-board vehicle storage is concerned all possible options (compressed, liquid, metal hydrides and porous structures) have their own advantages and disadvantages with respect to weight, volume, energy efficiency, refuelling times, cost and safety aspects. To address these problems, long-term commitments to scientific excellence in research, coupled with co-ordination between the many different stakeholders, is required. In the current state-of-the-art in hydrogen storage, no single technology satisfies all of the criteria required by manufacturers and end-users, and a large number of obstacles have to be overcome. The current hydrogen storage technologies and their associated limitations/needs for improvement

  8. Hydrogen control in the System 80+TM ALWR design

    International Nuclear Information System (INIS)

    Schneider, R.E.; Jacob, M.C.; Carpentino, F.L.; Wachowiak, R.M.

    2004-01-01

    This paper provides an assessment of the features built into the System 80 +TM Advanced Light Water Reactor (ALWR) design for controlling hydrogen concentration during a hypothetical severe accident. Although the significantly larger System 80 + containment volume serves to passively maintain the global average below detonable limits, the design incorporates a Hydrogen Mitigation System (HMS) to further reduce the local hydrogen concentration. The HMS consists of a large number of hydrogen ignitors distributed within the containment to selectively burn-off hydrogen at low concentrations. The criteria for the placement of these igniters are discussed along with an assessment of the effectiveness of the igniters to control the hydrogen concentrations. This assessment, which was performed using the generalized containment model of the MAAP 4 code, evaluated the potential for hydrogen build-up in the containment and calculated the best-estimate response of the igniters. (author)

  9. Quadrennial Review of Military Compensation (6th). Executive Summary. Volumes 1 thru 1C, and Volumes 2 thru 3

    Science.gov (United States)

    1988-08-01

    CIVILIAN EARNINGS PROFILE: ENLISTED SOURCE: SYLLOGISTICS 2-24 6th ORNC Esport -Volum 11 participation and higher than that of civilian counterparts in...7-26 6th QRNC esport - Volume I m Eliminate the existing 80 percent limiltation onmeai/entertairment deductions incurred in connection with the

  10. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  11. A simple method for calculation of the hydrogen diffusion in composite materials

    International Nuclear Information System (INIS)

    Paraschiv, M.C.; Paraschiv, A.; Grecu, V. V.

    2008-01-01

    A method for calculating the diffusion of various chemical species in composite materials when the material compounds can not be described as a function of the position coordinate in every point has been proposed. The method can be applied only for such systems in which a quasi-continuous presence of every component can be defined in every arbitrary region. Since the complete random distribution of the boundaries between the components will influence the diffusion process, the continuity equation associated to the diffusion problem was extended for arbitrary volumes that keep the volume concentration of every component of the alloy as the entire material volume. Its consistency with the Fick's second law was also proved. To visualise the differences of hydrogen migration in a thermal gradient inside the TRIGA fuels, arising as a result of increasing the uranium content from ∼ 10% wt. U to ∼ 45% wt. U in the TRIGA U-ZrH δ alloy, the method has been applied for the two concentrations of uranium. To this aim, the assumption that the rate-controlling parameter of hydrogen diffusion is the dissociation equilibrium pressure of hydrogen in zirconium hydride has been used. The results show significant differences of both hydrogen distribution and the kinetics of hydrogen migration in a thermal gradient for the two cases analysed. (authors)

  12. Hydrogen diffusion and microstructure in undoped and boron-dope hydrogenated amorphous silicon: An IR and SIMS study

    International Nuclear Information System (INIS)

    Mitra, S.

    1991-01-01

    Hydrogenated amorphous silicon (a-Si:H) prepared by rf sputtering of a polycrystalline Si target at various rf powers 50 ≤ P ≤ 550 W (0.27--2.97 W/cm 2 ), target to substrate distance 1 ≤ d ≤ 2 double-prime, and varying hydrogen partial pressures. Doping was accomplished by introducing diborane (B 2 H 6 ) in the plasma. Hydrogen diffusion was studied from the depth profiles obtained from the SIMS on multilayered a-Si:H/a-Si:(H,D)/a-Si:H samples. The properties of the samples were characterized by IR absorption, optical gap measurements and ESR. IR yielded quantitative and qualitative information total hydrogen content and the nature of the hydrogen bonding, respectively. Hence the hydrogen microstructure of the samples could be varied in a systematic manner and monitored from the hydrogen vibrational modes. The ESR gave information on the number of paramagnetic defects per unit volume in the samples. The IR absorption of both as-deposited and annealed samples were closely monitored and the results clearly demonstrate a strong correlation between hydrogen diffusion and its microstructure. It is shown that microvoids in a-Si:H play a critical role in the process of diffusion by inducing deep hydrogen trapping sites that render them immobile. Consequently, as the microvoid density increases beyond a critical density hydrogen diffusion is totally quenched. The diffusion results are discussed both in the context of multiple trapping transport of hydrogen in an exponential distribution of trapping sites and the floating bond model

  13. Standard-D hydrogen monitoring system, system design description

    International Nuclear Information System (INIS)

    Schneider, T.C.

    1996-01-01

    During most of the year, it is assumed that the vapor space in the 177 radioactive waste tanks on the Hanford Project site contain a uniform mixture of gases. Several of these waste tanks (currently twenty-five, 6 Double Shell Tanks and 19 Single Shell Tanks) were identified as having the potential for the buildup of gasses to a flammable level. An active ventilation system in the Double Shell Tanks and a passive ventilation system in the Single Shell Tanks provides a method of expelling gasses from the tanks. A gas release from a tank causes a temporary rise in the tank pressure, and a potential for increased concentration of hydrogen gas in the vapor space. The gas is released via the ventilation systems until a uniform gas mixture in the vapor space is once again achieved. The Standard Hydrogen Monitoring System (SHMS) is designed to monitor and quantify the percent hydrogen concentration during these potential gas releases. This document describes the design of the Standard-D Hydrogen Monitoring System, (SHMS-D) and its components as it differs from the original SHMS

  14. Blow-off of hydrogen using an optimized design of discharge jet-mixer arrangement

    International Nuclear Information System (INIS)

    Ristow, Torsten

    2011-01-01

    Hydrogen is ignitable in air at volume concentrations between 4 % and 75 %. Therefore, in the case of an emergency evacuation of a hydrogen-cooled generator in nuclear power plants, the gas has to be safely blown-off above the turbine building. Especially, a leakage at the hydrogen containing piping system at the generator has gained more and more importance in the context of safety assessments. The design of a blow-off system respects two safety aspects: Firstly, a short blow-off time is necessary to reduce the hydrogen release inside the turbine building in case of a leakage. Secondly, for the postulated ignition of the released hydrogen on the roof of the building the resulting pressure load must remain below the maximum admissible one of the turbine building roof. In order to fulfill the first condition an appropriate fast evacuation piping system from the generator to the blow-off outlet is designed. Regarding the latter the blow-off system uses special discharge nozzles placed horizontally in a radial-symmetric configuration. In this respect, the influence of strong wind conditions during the evacuation process is also considered. The resulting ignitable volume of the overlapping H2-air clouds does not exceed the maximum allowed ignitable volume. In the following the underlying process of blow-off by a fast hydrogen evacuation system is discussed. First the transient general blow-off behavior in the dedicated piping system is analyzed with the fluid piping tool ROLAST. The results of these calculations are boundary conditions for the subsequent qualification of the blow-off jet-mixer. Here a proof of the general functionality is given (2D CFD). Subsequently the blow-off behavior of the H2-air mixture is discussed in independent 3D CFD calculations with and without wind. From these analyses the possible ignitable gas volumes are determined. Final step is a simplified semi-analytical assessment of the resulting possible deflagration loads on the civil structure

  15. Thermodynamically Tuned Nanophase Materials for reversible Hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Ping Liu; John J. Vajo

    2010-02-28

    This program was devoted to significantly extending the limits of hydrogen storage technology for practical transportation applications. To meet the hydrogen capacity goals set forth by the DOE, solid-state materials consisting of light elements were developed. Many light element compounds are known that have high capacities. However, most of these materials are thermodynamically too stable, and they release and store hydrogen much too slowly for practical use. In this project we developed new light element chemical systems that have high hydrogen capacities while also having suitable thermodynamic properties. In addition, we developed methods for increasing the rates of hydrogen exchange in these new materials. The program has significantly advanced (1) the application of combined hydride systems for tuning thermodynamic properties and (2) the use of nanoengineering for improving hydrogen exchange. For example, we found that our strategy for thermodynamic tuning allows both entropy and enthalpy to be favorably adjusted. In addition, we demonstrated that using porous supports as scaffolds to confine hydride materials to nanoscale dimensions could improve rates of hydrogen exchange by > 50x. Although a hydrogen storage material meeting the requirements for commercial development was not achieved, this program has provided foundation and direction for future efforts. More broadly, nanoconfinment using scaffolds has application in other energy storage technologies including batteries and supercapacitors. The overall goal of this program was to develop a safe and cost-effective nanostructured light-element hydride material that overcomes the thermodynamic and kinetic barriers to hydrogen reaction and diffusion in current materials and thereby achieve > 6 weight percent hydrogen capacity at temperatures and equilibrium pressures consistent with DOE target values.

  16. Evaluation of the toxicity and efficacy of hydrogen peroxide treatments on eggs of warm and cool water fishes

    Science.gov (United States)

    Rach, J.J.; Gaikowski, M.P.; Howe, G.E.; Schreier, Theresa M.

    1998-01-01

    The use of hydrogen peroxide in aquaculture is growing and there is a need to develop fundamental guidelines to effectively treat diseased fish. The safety (toxicity) of hydrogen peroxide treatments was determined on eggs of representative warm- and coolwater fish species. Eggs of northern pike (Esox lucius), walleye (Stizostedion vitreum), yellow perch (Pel ca flavescens), white sucker (Catostomus commersoni), lake sturgeon (Acipenser fulvescens), paddlefish (Polyodon spathula), common carp (Cyprinus carpio), and channel catfish (Ictalurus punctatus) were cultured in egg jars or aquaria. Treatments were initiated with non-eyed eggs and continued until all viable eggs had hatched. Eggs were treated daily for 15 min Monday through Friday with either 0, 500, 1000, 3000, or 6000 mu l l(-1) of hydrogen peroxide. For all species, the mean percent hatch was greater in eggs treated with 1000 mu l l(-1) hydrogen peroxide for 15 min than in the untreated controls. Common carp, lake sturgeon, and paddlefish were the least sensitive to hydrogen peroxide with percent hatch ranging from 40 to 48% in the 6000 mu l l(-1) hydrogen peroxide treatment. Fungal infections reduced or eliminated the hatch in most controls whereas nearly all treated eggs remained free of infection; hydrogen peroxide inhibited fungal infections on fish eggs. (C) 1998 Elsevier Science B.V. All rights reserved.

  17. Development of Affordable, Low-Carbon Hydrogen Supplies at an Industrial Scale

    Science.gov (United States)

    Roddy, Dermot J.

    2008-01-01

    An existing industrial hydrogen generation and distribution infrastructure is described, and a number of large-scale investment projects are outlined. All of these projects have the potential to generate significant volumes of low-cost, low-carbon hydrogen. The technologies concerned range from gasification of coal with carbon capture and storage…

  18. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  19. Efficiency of hydrogen gas production in a stand-alone solar hydrogen system

    International Nuclear Information System (INIS)

    Singh, K.; Tamakloe, R.Y.

    2003-01-01

    Many photovoltaic systems operate in a decentralised electricity producing system, or stand-alone mode and the total energy demand is met by the output of the photovoltaic array. The output of the photovoltaic system fluctuates and is unpredictable for many applications making some forms of energy storage system necessary. The role of storage medium is to store the excess energy produced by the photovoltaic arry, to absorb momentary power peaks and to supply energy during sunless periods. One of the storage modes is the use of electrochemical techniques, with batteries and water electrolysis as the most important examples. The present study includes three main parts: the first one is the hydrogen production form the electrolysis of water depending on the DC output current of the photovoltaic (PV) energy source and the charging of the battery. The second part presents the influence of various parameters on the efficiency of hydrogen gas production. The final part includes simulation studies with focus on solar hydrogen efficiency under the influence of various physical and chemical parameters. For a 50W panel-battery-electrolyser system, the dependence of volume of hydrogen gas on voltage, current and power yielded a maximum efficiency of 13.6% (author)

  20. FY 1974 report on the results of the Sunshine Project. Comprehensive study of hydrogen use subsystem and study on the periphery technology (Study on the periphery technology of hydrogen); 1974 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso no shuhen gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-01

    This is aimed at making an investigational study on the periphery technology and sprouting technology of the hydrogen energy system. In Volume 1, 'Technology of hydrogen production,' as to the hydrogen production, the paper summed up the expected technical subjects on the electrolysis method and thermochemical method. The paper further included the survey of the direct pyrolysis method and the hydrogen production method using solar energy. Concerning the latter, in Volume 2, the light electrode reaction was theoretically developed, and samples of various hybrid methods were concretely studied. In relation to subjects on hydrogen and materials, in Volume 3, the results were described of the investigation into the hydrogen behavior in metal which is the most basic field of the subjects. About the storage method which is important as periphery technology, the study was made of the methods which can be expected but liquefied hydrogen and metal hydride which are now under research and development. In the last volume, as a part of the work to review the hydrogen energy system from a wider viewpoint, the basic study was additionally made in comparison with the system using coal. (NEDO)

  1. FY 1974 report on the results of the Sunshine Project. Comprehensive study of hydrogen use subsystem and study on the periphery technology (Study on the periphery technology of hydrogen); 1974 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Suiso no shuhen gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-01

    This is aimed at making an investigational study on the periphery technology and sprouting technology of the hydrogen energy system. In Volume 1, 'Technology of hydrogen production,' as to the hydrogen production, the paper summed up the expected technical subjects on the electrolysis method and thermochemical method. The paper further included the survey of the direct pyrolysis method and the hydrogen production method using solar energy. Concerning the latter, in Volume 2, the light electrode reaction was theoretically developed, and samples of various hybrid methods were concretely studied. In relation to subjects on hydrogen and materials, in Volume 3, the results were described of the investigation into the hydrogen behavior in metal which is the most basic field of the subjects. About the storage method which is important as periphery technology, the study was made of the methods which can be expected but liquefied hydrogen and metal hydride which are now under research and development. In the last volume, as a part of the work to review the hydrogen energy system from a wider viewpoint, the basic study was additionally made in comparison with the system using coal. (NEDO)

  2. Validation of CFD models for hydrogen safety application

    International Nuclear Information System (INIS)

    Nikolaeva, Anna; Skibin, Alexander; Krutikov, Alexey; Golibrodo, Luka; Volkov, Vasiliy; Nechaev, Artem; Nadinskiy, Yuriy

    2015-01-01

    Most accidents involving hydrogen begin with its leakage and spreading in the air and spontaneous detonation, which is accompanied by fire or deflagration of hydrogen mixture with heat and /or shocks, which may cause harm to life and equipment. Outflow of hydrogen in a confined volume and its propagation in the volume is the worst option because of the impact of the insularity on the process of detonation. According to the safety requirements for handling hydrogen specialized systems (ventilation, sprinklers, burners etc.) are required for maintaining the hydrogen concentration less than the critical value, to eliminate the possibility of detonation and flame propagation. In this study, a simulation of helium propagation in a confined space with different methods of injection and ventilation of helium is presented, which is used as a safe replacement of hydrogen in experimental studies. Five experiments were simulated in the range from laminar to developed turbulent with different Froude numbers, which determine the regime of the helium outflow in the air. The processes of stratification and erosion of helium stratified layer were investigated. The study includes some results of OECD/NEA-PSI PANDA benchmark and some results of Gamelan project. An analysis of applicability of various turbulence models, which are used to close the system of equations of momentum transport, implemented in the commercial codes STAR CD, STAR CCM+, ANSYS CFX, was conducted for different mesh types (polyhedral and hexahedral). A comparison of computational studies results with experimental data showed a good agreement. In particular, for transition and turbulent regimes the error of the numerical results lies in the range from 5 to 15% for all turbulence models considered. This indicates applicability of the methods considered for some hydrogen safety problems. However, it should be noted that more validation research should be made to use CFD in Hydrogen safety applications with a wide

  3. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    Science.gov (United States)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  4. Potentiometric Titration Method for Quantitative Determination of Hydrogen Peroxide

    National Research Council Canada - National Science Library

    Bessette, Russell R

    2005-01-01

    An electrochemical potentiometric titration method that entails titration of a known volume of a catholyte containing an unknown amount of hydrogen peroxide in a titration cell having two electrodes...

  5. Hydrogen outbreak of Zirconium Molybdate Hihydrate

    International Nuclear Information System (INIS)

    Miura, Yasuhiko; Fukuda, Kazuhiro; Ochi, Eiji

    2008-01-01

    JNFL is planning to construct a facility for enclosing the hull and end pieces produced due to reprocessing of spent fuel into stainless canisters after compressing, while those hull and end pieces enclosed into the stainless canisters are called 'compressed hulls'. Since the compressed hulls contain moisture absorbent Zirconium Molybdate Hihydrate accompanying hull and end pieces, there is a risk of outbreak of radiolysisradiolysis gas such as hydrogen, etc. by radiolysisradiolysis. This report intends to state the result of radiation irradiation experiment with the purpose of examining the volume of hydrogen outbreak from Zirconium Molybdate Hihydrate of the compressed hulls. (author)

  6. A Conceptual Model for Solving Percent Problems.

    Science.gov (United States)

    Bennett, Albert B., Jr.; Nelson, L. Ted

    1994-01-01

    Presents an alternative method to teaching percent problems which uses a 10x10 grid to help students visualize percents. Offers a means of representing information and suggests different approaches for finding solutions. Includes reproducible student worksheet. (MKR)

  7. The Algebra of the Cumulative Percent Operation.

    Science.gov (United States)

    Berry, Andrew J.

    2002-01-01

    Discusses how to help students avoid some pervasive reasoning errors in solving cumulative percent problems. Discusses the meaning of ."%+b%." the additive inverse of ."%." and other useful applications. Emphasizes the operational aspect of the cumulative percent concept. (KHR)

  8. Inhalation of water electrolysis-derived hydrogen ameliorates cerebral ischemia-reperfusion injury in rats - A possible new hydrogen resource for clinical use.

    Science.gov (United States)

    Cui, Jin; Chen, Xiao; Zhai, Xiao; Shi, Dongchen; Zhang, Rongjia; Zhi, Xin; Li, Xiaoqun; Gu, Zhengrong; Cao, Liehu; Weng, Weizong; Zhang, Jun; Wang, Liping; Sun, Xuejun; Ji, Fang; Hou, Jiong; Su, Jiacan

    2016-10-29

    Hydrogen is a kind of noble gas with the character to selectively neutralize reactive oxygen species. Former researches proved that low-concentration of hydrogen can be used to ameliorating cerebral ischemia/reperfusion injury. Hydrogen electrolyzed from water has a hydrogen concentration of 66.7%, which is much higher than that used in previous studies. And water electrolysis is a potential new hydrogen resource for regular clinical use. This study was designed and carried out for the determination of safety and neuroprotective effects of water electrolysis-derived hydrogen. Sprague-Dawley rats were used as experimental animals, and middle cerebral artery occlusion was used to make cerebral ischemia/reperfusion model. Pathologically, tissues from rats in hydrogen inhalation group showed no significant difference compared with the control group in HE staining pictures. The blood biochemical findings matched the HE staining result. TTC, Nissl, and TUNEL staining showed the significant improvement of infarction volume, neuron morphology, and neuron apoptosis in rat with hydrogen treatment. Biochemically, hydrogen inhalation decreased brain caspase-3, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine-positive cells and inflammation factors concentration. Water electrolysis-derived hydrogen inhalation had neuroprotective effects on cerebral ischemia/reperfusion injury in rats with the effect of suppressing oxidative stress and inflammation, and it is a possible new hydrogen resource to electrolyze water at the bedside clinically. Copyright © 2016. Published by Elsevier Ltd.

  9. Spectroscopic and thermodynamic properties of molecular hydrogen dissolved in water at pressures up to 200 MPa

    Science.gov (United States)

    Borysow, Jacek; del Rosso, Leonardo; Celli, Milva; Moraldi, Massimo; Ulivi, Lorenzo

    2014-04-01

    We have measured the Raman Q-branch of hydrogen in a solution with water at a temperature of about 280 K and at pressures from 20 to 200 MPa. From a least-mean-square fitting analysis of the broad Raman Q-branch, we isolated the contributions from the four lowest individual roto-vibrational lines. The vibrational lines were narrower than the pure rotational Raman lines of hydrogen dissolved in water measured previously, but significantly larger than in the gas. The separations between these lines were found to be significantly smaller than in gaseous hydrogen and their widths were slightly increasing with pressure. The lines were narrowing with increasing rotational quantum number. The Raman frequencies of all roto-vibrational lines were approaching the values of gas phase hydrogen with increasing pressure. Additionally, from the comparison of the integrated intensity signal of Q-branch of hydrogen to the integrated Raman signal of the water bending mode, we have obtained the concentration of hydrogen in a solution with water along the 280 K isotherm. Hydrogen solubility increases slowly with pressure, and no deviation from a smooth behaviour was observed, even reaching thermodynamic conditions very close to the transition to the stable hydrogen hydrate. The analysis of the relative hydrogen concentration in solution on the basis of a simple thermodynamic model has allowed us to obtain the molar volume for the hydrogen gas/water solution. Interestingly, the volume relative to one hydrogen molecule in solution does not decrease with pressure and, at high pressure, is larger than the volume pertinent to one molecule of water. This is in favour of the theory of hydrophobic solvation, for which a larger and more stable structure of the water molecules is expected around a solute molecule.

  10. Reaction rates and electrical resistivities of the hydrogen isotopes with, and their solubilities in, liquid lithium

    International Nuclear Information System (INIS)

    Pulham, R.J.; Adams, P.F.; Hubberstey, P.; Parry, G.; Thunder, A.E.

    1976-01-01

    The rate of reaction, k, of hydrogen and of deuterium with liquid lithium have been determined up to pressures of 20kNm -2 and at temperatures between 230 and 270 0 C. The reaction is first order with an apparent activation energy of 52.8 and 55.2 kJmol -1 for hydrogen and deuterium, respectively. The deuterium isotope effect, k/sub H/k/sub D/, decreases from 2.95 at 230 to 2.83 at 270 0 C. Tritium is predicted to react even more slowly than deuterium. The freezing point of lithium is depressed by 0.082 and 0.075 0 C, respectively, by dissolved hydride and deuteride giving eutectics at 0.016 mol percent H and 0.012 mol percent D in the metal-salt phase diagrams. The depression and eutectic concentration are expected to be less for tritium. The increase in the resistivity of liquid lithium caused by dissolved hydrogen isotopes is linear and relatively large, 5 x 10 -8 Ωm (mol percent H or D) -1 . The solubility of lithium hydride and deuteride was determined from the marked change in resistivity on saturation. The liquidus of the metal-salt phase diagram rises steeply from the eutectic point to meet the two-immiscible liquid region. Tritium is expected to be less soluble than deuterium. The partial molar enthalpies of solution are 44.2 and 55.0 kJmol -1 for hydrogen and deuterium, respectively. These values are used to calculate the solvation enthalpies of the isotope anions in the metal

  11. Hydrogen-Helium shock Radiation tests for Saturn Entry Probes

    Science.gov (United States)

    Cruden, Brett A.

    2016-01-01

    This paper describes the measurement of shock layer radiation in Hydrogen/Helium mixtures representative of that encountered by probes entering the Saturn atmosphere. Normal shock waves are measured in Hydrogen-Helium mixtures (89:11% by volume) at freestream pressures between 13-66 Pa (0.1-0.5 Torr) and velocities from 20-30 km/s. Radiance is quantified from the Vacuum Ultraviolet through Near Infrared. An induction time of several centimeters is observed where electron density and radiance remain well below equilibrium. Radiance is observed in front of the shock layer, the characteristics of which match the expected diffusion length of Hydrogen.

  12. A Model for Thermal Decomposition of Hydrogen Peroxide

    National Research Council Canada - National Science Library

    Heister, S

    2004-01-01

    ..., gas-phase decomposition kinetics, droplet dynamics, and control volume conservation laws. The code is adjustable for HP percent concentration for both main and secondary flows, massflow rates for both flows, and initial temperature of each...

  13. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  14. Hydrogen problems related to reactor accidents

    International Nuclear Information System (INIS)

    Bujor, A.

    1993-09-01

    At reactor accidents, the combustion of hydrogen causes pressure and temperature transients which pose supplementary loads in containment. In certain conditions, they could reach hazardous levels and impair the integrity of the containment and the operability of the safety systems. The mechanisms of chemical reactions specific for the hydrogen-oxygen system are presented. Conditions in which combustion can occur and the various combustion modes, including the transition to detonation are also described. The related safety aspects and mitigation methods are discussed. Examples for particular applications and safety approaches for various types of reactors, included those promoted for the advanced reactors are also given. Presentation of the experimental research completed at AECL-Research, Whiteshell Laboratory is given, where the multi-point ignition effects for constant volume and for vented combustion of dry hydrogen-air mixtures in various geometries have been investigated. Various aspects of modelling and simulation of hydrogen combustion are discussed. The adaptations and the new models implemented in the codes VENT and CONTAIN, aimed to widen the simulation capabilities of hydrogen combustion models are described. The capabilities and limitations of the modelling assumptions of these two codes are also evaluated. (EG) (11 tabs., 39 ills., 82 refs.)

  15. Chemical hydrogen storage material property guidelines for automotive applications

    Science.gov (United States)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  16. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys

    Science.gov (United States)

    Ovshinsky, Stanford R.; Fetcenko, Michael A.

    1996-01-01

    An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

  17. Low-cost storage options for solar hydrogen systems for remote area power supply

    International Nuclear Information System (INIS)

    Suhaib Muhammad Ali; John Andrews

    2006-01-01

    Equipment for storing hydrogen gas under pressure typically accounts for a significant proportion of the total capital cost of solar-hydrogen systems for remote area power supply (RAPS). RAPS remain a potential early market for renewable energy - hydrogen systems because of the relatively high costs of conventional energy sources in remote regions. In the present paper the storage requirements of PV-based solar-hydrogen RAPS systems employing PEM electrolysers and fuel cells to meet a range of typical remote area daily and annual demand profiles are investigated using a spread sheet-based simulation model. It is found that as the costs of storage are lowered the requirement for longer-term storage from summer to winter is increased with consequent potential gains in the overall economics of the solar-hydrogen system. In many remote applications, there is ample space for hydrogen storages with relatively large volumes. Hence it may be most cost-effective to store hydrogen at low to medium pressures achievable by using PEM electrolysers directly to generate the hydrogen at the pressures required, without a requirement for separate electrically-driven compressors. The latter add to system costs while requiring significant parasitic electricity consumption. Experimental investigations into a number of low-cost storage options including plastic tanks and low-to-medium pressure metal and composite cylinders are reported. On the basis of these findings, the economics of solar-hydrogen RAPS systems employing large-volume low-cost storage are investigated. (authors)

  18. Hydrogen generation from aluminium corrosion in reactor containment spray solutions

    International Nuclear Information System (INIS)

    Frid, W.; Karlberg, G.; Sundvall, S.B.

    1982-01-01

    The aluminium corrosion experiments in reactor containment spray solutions, under the conditions expected to prevail during LOCA in BWR and PWR, were performed in order to investigate relationships between temperature, pH and hydrogen production rates. In order to simulate the conditions in a BWR containment realistic ratios between aluminium surface and water volume and between aluminium surface and oxygen volume were used. Three different aluminium alloys were exposed to spray solutions: AA 1050, AA 5052 and AA 6082. The corrosion rates were measured for BWR solutions (deaerated and aerated) with pH 5 and 9 at 50, 100 and 150 0 C. The pressure was constantly 0.8 MPa. The hydrogen production rate was measured by means of gas chromatography. In deionized BWR water the corrosion rates did not exceed about 0.05 mm/year in all cases, i.e. were practically independent of temperature and pH. Hydrogen concentrations were less than 0.1 vol.% in cooled dry gas. Corrosion rates and hydrogen production in PWR alkaline solution measured at pH 9.7 and 150 0 C were very high. AA 5052 alloy was the best material

  19. Motor fuels by hydrogenation of liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1938-05-07

    A process is disclosed for the production of knock-stable low-boiling motor fuels by conversion of liquid hydrocarbons which are vaporizable under the reaction conditions, which comprises passing the initial material at a temperature above 380/sup 0/C in a true vapor phase under pressure of more than 40 atmospheres together with hydrogen and gaseous hydrocarbons containing more than 1 carbon atom in the molecule in an amount by volume larger than that of the hydrogen over catalysts stable to poisoning stationarily confined in the reaction vessel.

  20. Scaled Testing of Hydrogen Gas Getters for Transuranic Waste

    International Nuclear Information System (INIS)

    Kaszuba, J.; Mroz, E.; Haga, M.; Hollis, W. K.; Peterson, E.; Stone, M.; Orme, C.; Luther, T.; Benson, M.

    2006-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage and shipment containers. Hydrogen forms a flammable mixture with air over a wide range of concentrations (5% to 75%), and very low energy is needed to ignite hydrogen-air mixtures. For these reasons, the concentration of hydrogen in waste shipment containers (Transuranic Package Transporter-II or TRUPACT-II containers) needs to remain below the lower explosion limit of hydrogen in air (5 vol%). Accident scenarios and the resulting safety analysis require that this limit not be exceeded. The use of 'hydrogen getters' is being investigated as a way to prevent the build up of hydrogen in TRUPACT-II containers. Preferred getters are solid materials that scavenge hydrogen from the gas phase and chemically and irreversibly bind it into the solid state. In this study, two getter systems are evaluated: a) 1,4-bis (phenylethynyl)benzene or DEB, characterized by the presence of carbon-carbon triple bonds; and b) a proprietary polymer hydrogen getter, VEI or TruGetter, characterized by carbon-carbon double bonds. Carbon in both getter types may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. With oxygen present, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB and VEI performed satisfactorily in lab scale tests using small test volumes (ml-scale), high hydrogen generation rates, and short time spans of hours to days. The purpose of this study is to evaluate whether DEB and VEI perform satisfactorily in actual drum-scale tests with realistic hydrogen generation rates and time frames. The two getter systems were evaluated in test vessels comprised of a Gas Generation Test Program-style bell-jar and a drum equipped with a composite drum filter. The vessels were scaled to replicate the ratio between void space in the

  1. Solubility of hydrogen isotopes in stressed hydride-forming metals

    International Nuclear Information System (INIS)

    Coleman, C.E.; Ambler, J.F.R.

    1983-01-01

    Components made from hydride-forming metals can be brittle when particles of hydride are present. The solid solubility limit of hydrogen in these metals needs to be known so that fracture resistance can be properly assessed. Stress affects the solubility of hydrogen in metals. As hydrogen dissolves the metal volume increases, an applied hydrostatic tensile stress supplies work to increase the solubility. Precipitation of hydrides increases the volume further. A hydrostatic tensile stress promotes the formation of hydrides and tends to reduce the terminal solubility. For materials containing hydrogen in solution in equilibrium with hydrides, the effect of stress on the terminal solubility is given. Hydrogen migrates up tensile stress gradients because of the effect of stress on the solubility and solubility limit. Consequently, hydrogen concentrates at flaws. When hydrides are present in the metal matrix, those remote from the flaw tip will preferentially dissolve in favor of those precipitated at the flaw. If the stress is large enough, at some critical condition the hydrides at the flaw will crack. This is delayed hydrogen cracking. Notched and fatigue-cracked cantilever beam specimens (6) (38 x 4 x 3 mm) were machined from the circumferential direction of several cold-worked Zr-2.5 at. % Nb pressure tubes. The chemical compositions had the ranges (in atomic %) Nb - 2.5 to 2.7; O - 0.58 to 0.71; H - 0.018 to 0.18. The effect of test temperature is for a specimen containing 0.13 at. % protium and 0.29 at .% deuterium. Between 505 K and 530 K was less than 1 hr, between 530 K and 537 K it increased to 25.8 h, while at 538 K no cracking was observed up to the 54 h

  2. High efficiency atomic hydrogen source

    International Nuclear Information System (INIS)

    Lagomarsino, V.; Bassi, D.; Bertok, E.; De Paz, M.; Tommasini, F.

    1974-01-01

    This work presents preliminary results of research intended to produce a M.W. discharge atomic hydrogen source with good dissociation at pressures larger than 10 torr. Analysis of the recombination process at these pressures shows that the volume recombination by three body collisions may be more important than wall recombination or loss of atoms by diffusion and flow outside the discharge region

  3. Hydrogen-induced strain localisation in oxygen-free copper in the initial stage of plastic deformation

    Science.gov (United States)

    Yagodzinskyy, Yuriy; Malitckii, Evgenii; Tuomisto, Filip; Hänninen, Hannu

    2018-03-01

    Single crystals of oxygen-free copper oriented to easy glide of dislocations were tensile tested in order to study the hydrogen effects on the strain localisation in the form of slip bands appearing on the polished specimen surface under tensile straining. It was found that hydrogen increases the plastic flow stress in Stage I of deformation. The dislocation slip localisation in the form of slip bands was observed and analysed using an online optical monitoring system and atomic force microscopy. The fine structure of the slip bands observed with AFM shows that they consist of a number of dislocation slip offsets which spacing in the presence of hydrogen is markedly reduced as compared to that in the hydrogen-free specimens. The tensile tests and AFM observations were accompanied with positron annihilation lifetime measurements showing that straining of pure copper in the presence of hydrogen results in free volume generation in the form of vacancy complexes. Hydrogen-enhanced free-volume generation is discussed in terms of hydrogen interactions with edge dislocation dipoles forming in double cross-slip of screw dislocations in the initial stage of plastic deformation of pure copper.

  4. Excess molar volumes and partial molar volumes for (propionitrile + an alkanol) at T = 298.15 K and p = 0.1 MPa

    International Nuclear Information System (INIS)

    Deenadayalu, N.; Bhujrajh, P.

    2006-01-01

    The excess molar volumes and the partial molar volumes for (propionitrile + an alkanol) at T = 298.15 K and at atmospheric pressure are reported. The hydrogen bonding between the OH133;NC groups are discussed in terms of the chain length of the alkanol. The alkanols studied are (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 1-pentanol). The excess molar volume data was fitted to the Redlich-Kister equation The partial molar volumes were calculated from the Redlich-Kister coefficients

  5. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    Energy Technology Data Exchange (ETDEWEB)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park [School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, (Korea, Republic of)

    2006-07-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H{sub 2}/l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H{sub 2}/l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  6. Bio-hydrogen production by Enterobacter asburiae SNU-1 isolated from a landfill

    International Nuclear Information System (INIS)

    Jong-Hwan Shin; Jong Hyun Yoon; Tai Hyun Park

    2006-01-01

    A new fermentative hydrogen-producing bacterium was isolated from a landfill, and it was identified as Enterobacter asburiae strain using a genomic DNA hybridization method. Environmental factors and metabolic flux influencing the hydrogen production were investigated, including pH, initial glucose and formate concentrations. The major hydrogen production pathway of this strain is considered to be a formate pathway by using formate hydrogen lyase (FHL). Optimum pH for the hydrogen production was pH 7.0 in PYG medium, at which hydrogen production/unit volume and overall hydrogen productivity were 2615 ml/l and 174 ml H 2 /l/hr, respectively, at 25 g glucose/l. The maximum hydrogen productivity was estimated to be 417 ml H 2 /l/hr at 15 g glucose/l. This strain produced bio-hydrogen mostly in the stationary phase, in which formate concentration was high. In this paper, hydrogen production was tried in formate medium after cell harvest. (authors)

  7. Improving the Corrosion Inhibitive Strength of Sodium Sulphite in Hydrogen Cyanide Solution Using Sodium Benzoate

    OpenAIRE

    Muhammed Olawale Hakeem AMUDA; Olusegun Olusoji SOREMEKUN; Olakunle Wasiu SUBAIR; Atinuke OLADOYE

    2008-01-01

    The improvement in the inhibitive strength of sodium sulphite on corrosion of mild steel in hydrogen cyanide by adding sodium benzoate in regulated volume was investigated using the fundamental weight loss measurement.500 ppm concentration inhibitive mixtures of sodium benzoate and sodium sulphite in three different volume ratios (5/15, 10/10, 15/5) were formulated and studied for corrosion rate in 200ml hydrogen cyanide fluid. Result obtained indicates that the corrosion rate of mild steel i...

  8. Effects of hydrogen on the single crystalline elastic constants of niobium

    International Nuclear Information System (INIS)

    Schlader, D.M.

    1977-06-01

    A special hydriding system was designed and constructed to satisfy conditions for hydriding niobium. This system controlled the temperature and hydrogen atmosphere surrounding the niobium while ultrasonic measurements were recorded. Ultrasonic wave velocities were determined by measurement of the times for ultrasonic pulses to transit and then echo through known dimensions of test specimens. The method which was employed is commonly known as the pulse-echo-overlap method. This study confirmed the general trends of earlier investigations. In this study C' continued to decrease and C 44 continued to increase up to 4.69 atomic percent hydrogen which is the maximum concentration which has yet been examined. In the case of the niobium-hydrogen system the Snoek effect may well be a contributory factor to the decrease of C' with increasing hydrogen concentration. However, crystallographic considerations preclude this effect from contributing a concentration dependence to C 44 or B. The observation of the present work implies that other factors must also be contributing to the overall behavior

  9. Polarization and molar volumes of ortho- and para-deuterium solutions

    International Nuclear Information System (INIS)

    Milenko, Yu.Ya.; Sibileva, R.M.

    1976-01-01

    The dielectric constant of liquid solutions of ortho-and para-deuterium is measured over the range of 2.2-91% p-D 2 from 18.7 to 20.4deg K. Data on polarization and molar volumes are obtained for the whole (0-100%) concentration range. Corrected summary to paper [2] is also listed: dielectric constant of ortho- and para-hydrogen liquid solution is measured within a concentration range of 0-97% of o-molecules at 14-20.4deg K. It is established that dependence of the Clausius-Mossotti function for o-p-hydrogen solutions of o-p-composition is linear. Molar volumes of the o-p-mixtures are calculated. The excessive molar volumes are found, positive deviation from additivity, 0.15% is established

  10. Containment air circulation for optimal hydrogen recombination

    International Nuclear Information System (INIS)

    Spinks, N.; Krause, M.

    1997-01-01

    An accepted first-line defense for hydrogen mitigation is to design for the hydrogen to be rapidly mixed with the containment atmosphere and diluted to below flammability concentrations. Then, as hydrogen continues to be produced in the longer term, recombiners can be used to remove hydrogen: recombiners can be located in forced-air ducts or passive recombiners can be distributed within containment and the heat of recombination used to promote local air circulation. However, this principle does not eliminate the possibility of high hydrogen concentrations at locations removed from the recombiners. An improvement on this strategy is to arrange for a specific, buoyancy-driven, overall circulation of the containment atmosphere such that the recombiners can be located within the recirculation flow, immediately downstream of the hydrogen source. This would make the mixing process more predictable and solve the mass-transfer problem associated with distributed recombiners. Ideally, the recombiners would be located just above the hydrogen source so that the heat of recombination would assist the overall circulation. In this way, the hydrogen would be removed as close as possible to the source, thereby minimizing the amount of hydrogen immediately downstream of the source and reducing the hydrogen concentration to acceptable levels at other locations. Such a strategy requires the containment volume to be divided into an upflow path, past the hydrogen source and the recombiner, and a downflow path to complete the circuit. The flow could be generated actively using fans or passively using buoyancy forces arising from the difference in density of gases in the upfiow and downflow paths; the gases in the downflow path being cooled at an elevated heat sink. (author)

  11. Hydrogen behavior at a subcomparment in the containment building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, U J; Park, G C [Seoul National University, Seoul (Korea, Republic of)

    1998-12-31

    For hydrogen management in severe accidents with degraded nuclear core of PWR`s, several experiments have been performed in the SNU hydrogen mixing facility. The objectives are understanding the extent of hydrogen mixing and analyzing the effects of factors which dominate uniform or non-uniform mixing at compartments in the containment building. The facility represents on a 1/11th linearly scaled model of the YGN unit 3 and 4, hydrogen was simulated by helium. Because there are the gaps between safety injection tank and compartment layers in the containment, the test facility was constructed in three dimensional mode for analyzing of mixture behaviour through the gaps. >From the experimental results we could conclude that overall hydrogen concentration distributed uniformly in the free volume of the test compartment, but fluctuated in the gaps. This paper is focused on experimental result from several experiments. 5 refs., 4 figs. (Author)

  12. Hydrogen behavior at a subcomparment in the containment building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, U. J.; Park, G. C. [Seoul National University, Seoul (Korea, Republic of)

    1997-12-31

    For hydrogen management in severe accidents with degraded nuclear core of PWR`s, several experiments have been performed in the SNU hydrogen mixing facility. The objectives are understanding the extent of hydrogen mixing and analyzing the effects of factors which dominate uniform or non-uniform mixing at compartments in the containment building. The facility represents on a 1/11th linearly scaled model of the YGN unit 3 and 4, hydrogen was simulated by helium. Because there are the gaps between safety injection tank and compartment layers in the containment, the test facility was constructed in three dimensional mode for analyzing of mixture behaviour through the gaps. >From the experimental results we could conclude that overall hydrogen concentration distributed uniformly in the free volume of the test compartment, but fluctuated in the gaps. This paper is focused on experimental result from several experiments. 5 refs., 4 figs. (Author)

  13. Electrical properties and flux performance of composite ceramic hydrogen separation membranes

    DEFF Research Database (Denmark)

    Fish, J.S.; Ricote, Sandrine; O'Hayre, R.

    2015-01-01

    The electrical properties and hydrogen permeation flux behavior of the all-ceramic protonic/electronic conductor composite BaCe0.2Zr0.7Y0.1O3-δ/Sr0.95Ti0.9Nb0.1O3-δ (BCZY27/STN95: BS27) are evaluated. Conductivity and hydrogen permeability are examined as a function of phase volume ratios. Total ...

  14. The KEK 1 m hydrogen bubble chamber

    International Nuclear Information System (INIS)

    Doi, Yoshikuni; Araoka, Osamu; Hayashi, Kohei; Hayashi, Yoshio; Hirabayashi, Hiromi.

    1978-03-01

    A medium size hydrogen bubble chamber has been constructed at the National Laboratory for High Energy Physics, KEK. The bubble chamber has been designed to be operated with a maximum rate of three times per half a second in every two second repetition time of the accelerator, by utilizing a hydraulic expansion system. The bubble chamber has a one meter diameter and a visible volume of about 280 l. A three-view stereo camera system is used for taking photographic pictures of the chamber. A 2 MW bubble chamber magnet is constructed. The main part of the bubble chamber vessel is supported by the magnet yoke. The magnet gives a maximum field of 18.4 kG at the centre of the fiducial volume of the chamber. The overall system of the KEK 1 m hydrogen bubble chamber facility is described in some detail. Some operational characteristics of the facility are also reported. (auth.)

  15. Sensitive detection of hydrogen in a-Si:H by coincidence measurement of elastically scattered 100 MeV /sup 3/He/sup 2 +/ ions and recoil protons

    Energy Technology Data Exchange (ETDEWEB)

    Fukada, Noboru; Imura, Takeshi; Hiraki, Akio [Osaka Univ., Suita (Japan). Faculty of Engineering; Itahashi, Takahisa; Fukuda, Tomokazu; Tanaka, Masayoshi

    1982-09-01

    We have drastically improved the sensitivity of the nuclear elastic scattering (NES) method for determining hydrogen concentrations in hydrogenated amorphous silicon (a-Si:H) films. A beam of 100 MeV /sup 3/He/sup 2 +/ ions was used in the experiment. By taking the coincidence of detection of the scattered /sup 3/He ion with that of the recoil proton, we could achieve a sensitivity of 0.1 atomic percent with a precision of about 1 percent for 1 ..mu..m films.

  16. Hydrogen distribution studies relevant to CANDU containments

    International Nuclear Information System (INIS)

    Krause, M.; Whitehouse, D.R.; Chan, C.K.; Jones, S.C.A.

    1995-01-01

    Following a loss of coolant accident with coincident loss of emergency core cooling, hydrogen may be produced in a CANDU reactor from the in-core Zircaloy-steam reaction, and released into containment. To meet the requirements for predicting containment hydrogen distribution, and to support measures for mitigation, a computer code GOTHIC is used. Simulations of gas mixing were performed using simple well defined experiments in a small-scale compartment, helium being substituted for hydrogen. At the time of the conference, results indicated that GOTHIC could quantitatively predict the stratified gas distribution resulting from buoyant gas injection near the bottom of an unobstructed compartment. When gas was injected near the top, GOTHIC underpredicted maximum gas concentration at the top, and overpredicted mixing. These errors arise from the finite-volume approximation. 2 refs., 11 figs

  17. Effects of Hydrogen Ion Implantation on TiC-C Coating of Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui-qian; LIU Yao-guang; HUANG Ning-kang

    2008-01-01

    Titanium carbide coatings are widely used as various wear-resistant material.The hydrogen erosion resistance of TiC-C films and the effect of hydrogen participation on TiC-C films were studied.Seventy-five percent TiC-C films are prepared on stainless steel surface by using ion mixing,where TiC-C films are deposited by rf magnetron sputtering followed by argon ion bombardment.The samples are then submitted to hydrogen ion implantation at 1.2×10-3 Pa.Characterization for the 75% TiC-C films was done with SIMS,XRD,AES,and XPS.Secondary ion mass spectroscopy (SIMS) was used to analyze hydrogen concentration variation with depth,X-Ray diffraction (XRD) was used to identify the phases,and Auger electron spectra (AES) as well as X-ray photoelectron spectra (XPS) were used to check the effects of hydrogen on shifts of chemical bonding states of C and Ti in the TiC-C films.It is found that TiC-C films on stainless steel surface can prevent hydrogen from entering stainless steel.

  18. CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan

    2006-05-30

    Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

  19. Alloys having improved resistance to hydrogen embrittlement

    International Nuclear Information System (INIS)

    Kane, R.D.; Greer, J.B.; Jacobs, D.F.; Berkowitz, B.J.

    1983-01-01

    The invention involves a process of improving the hydrogen embrittlement resistance of a cold-worked high yield strength nickel/cobalt base alloy containing chromium, and molybdenum and/or tungsten and having individual elemental impurity concentrations as measured by Auger spectroscopy at the crystallographic boundaries of up to about 1 Atomic percent. These elemental impurities are capable of becoming active and mobile at a temperature less than the recrystallization temperature of the alloy. The process involves heat treating the alloy at a temperature above 1300 degrees F but below the temperature of recrystallization for a time of from 1/4 to 100 hours. This is sufficient to effect a reduction in the level of the elemental impurities at the crystallographic boundaries to the range of less than 0.5 Atomic percent without causing an appreciable decrease in yield strength

  20. Investigation of Local Hydrogen Risk in the RDT Compartment of OPR1000 under SBO Scenario

    International Nuclear Information System (INIS)

    Kim, Nam Kyung; Jeon, Joon Goo; Choi, Won Jun; Song, Kyu Sang; Jeun, Gyoo Dong; Kim, Sung Joong

    2016-01-01

    As TMI-2 and Fukushima accidents revealed, a high concentration of hydrogen in a nuclear power plant (NPP) could cause hydrogen combustion. In order to take follow-up measures, an average and local hydrogen concentration in the NPP containment are regulated below 0.1 using hydrogen mitigation system such as igniter and/or passive autocatalytic recombiner (PAR). During a severe accident, some compartments of the NPP containment temporarily may show peaks of the local hydrogen concentration over 0.1 depending on the geometry of the containment structure and hydrogen transportation path. For example, the compartment of a reactor drain tank (RDT) is connected to the pressurizer nozzle and if the relieved pressure drives the significant amount of steam and hydrogen, then substantial peaks of the hydrogen concentration can occur. Before the RPV failure under SBO scenario, the RDT compartment was the main region for hydrogen release due to the RDT break. Therefore, confirming the local hydrogen risk in the RDT compartment is very important to verify the integrity of the NPP containment. In this study, the local hydrogen risk in the RDT compartment of OPR1000 under SBO scenario was evaluated using MELCOR 1.8.6 code in terms of the hydrogen volume fraction and the Shapiro diagram. (1) The RDT compartment showed the peaks of the hydrogen volume fraction over 0.1. As a future work, the local hydrogen risk of the compartment of a steam generator (SG) needs to be analyzed under SBLOCA scenario. Because the SG compartment is also a main region of hydrogen release under SBLOCA scenario. In the long run, the analysis for the detailed hydrogen distribution, based on detailed modeling of the whole OPR1000 containment, needs to be performed.

  1. Concentration dependent hydrogen diffusion in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ahlgren, T., E-mail: tommy.ahlgren@helsinki.fi; Bukonte, L.

    2016-10-15

    The diffusion of hydrogen in tungsten is studied as a function of temperature, hydrogen concentration and pressure using Molecular Dynamics technique. A new analysis method to determine diffusion coefficients that accounts for the random oscillation of atoms around the equilibrium position is presented. The results indicate that the hydrogen migration barrier of 0.25 eV should be used instead of the presently recommended value of 0.39 eV. This conclusion is supported by both experiments and density functional theory calculations. Moreover, the migration volume at the saddle point for H in W is found to be positive: ΔV{sub m} ≈ 0.488 Å{sup 3}, leading to a decrease in the diffusivity at high pressures. At high H concentrations, a dramatic reduction in the diffusion coefficient is observed, due to site blocking and the repulsive H-H interaction. The results of this study indicates that high flux hydrogen irradiation leads to much higher H concentrations in tungsten than expected. - Highlights: • The recommended value of 0.39 eV for the H in W migration barrier should be changed to 0.25 eV. • The random oscillation of atoms around the equilibrium position can be dealt with in diffusion simulations. • Hydrogen diffusion in tungsten is highly concentration dependent.

  2. Trends in Medicare Service Volume for Cataract Surgery and the Impact of the Medicare Physician Fee Schedule.

    Science.gov (United States)

    Gong, Dan; Jun, Lin; Tsai, James C

    2017-08-01

    To calculate the associations between Medicare payment and service volume for complex and noncomplex cataract surgeries. The 2005-2009 CMS Part B National Summary Data Files, CMS Part B Carrier Summary Data Files, and the Medicare Physician Fee Schedule. Conducting a retrospective, longitudinal analysis using a fixed-effects model of Medicare Part B carriers representing all 50 states and the District of Columbia from 2005 to 2009, we calculated the Medicare payment-service volume elasticities for noncomplex (CPT 66984) and complex (CPT 66982) cataract surgeries. Service volume data were extracted from the CMS Part B National Summary and Carrier Summary Data Files. Payment data were extracted from the Medicare Physician Fee Schedule. From 2005 to 2009, the proportion of total cataract services billed as complex increased from 3.2 to 6.7 percent. Every 1 percent decrease in Medicare payment was associated with a nonsignificant change in noncomplex cataract service volume (elasticity = 0.15, 95 percent CI [-0.09, 0.38]) but a statistically significant increase in complex cataract service volume (elasticity = -1.12, 95 percent CI [-1.60, -0.63]). Reduced Medicare payment was associated with a significant increase in complex cataract service volume but not in noncomplex cataract service volume, resulting in a shift toward performing a greater proportion of complex cataract surgeries from 2005 to 2009. © Health Research and Educational Trust.

  3. Effect of storage and LEO cycling on manufacturing technology IPV nickel-hydrogen cells

    Science.gov (United States)

    Smithrick, John J.

    1987-01-01

    Yardney Manufacturing Technology (MANTECH) 50 A-hr space weight individual pressure vessel nickel-hydrogen cells were evaluated. This consisted of investigating: the effect of storage and charge/discharge cycling on cell performance. For the storage test the cells were precharged with hydrogen, by the manufacturer, to a pressure of 14.5 psia. After undergoing activation and acceptance tests, the cells were discharged at C/10 rate (5A) to 0.1 V or less. The terminals were then shorted. The cells were shipped to NASA Lewis Research Center where they were stored at room temperature in the shorted condition for 1 year. After storage, the acceptance tests were repeated at NASA Lewis. A comparison of test results indicate no significant degradation in electrical performance due to 1 year storage. For the cycle life test the regime was a 90 minute low earth orbit at deep depths of discharge (80 and 60 percent). At the 80 percent DOD the three cells failed on the average at cycle 741. Failure for this test was defined to occur when the cell voltage degraded to 1 V prior to completion of the 35 min discharge. The DOD was reduced to 60 percent. The cycle life test was continued.

  4. Nanomaterials for Hydrogen Storage Applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael U. Niemann

    2008-01-01

    Full Text Available Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS2/MoS2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc. and their hydrogen storage characteristics are outlined.

  5. Hydrogen from algal biomass: A review of production process

    Directory of Open Access Journals (Sweden)

    Archita Sharma

    2017-09-01

    Full Text Available Multifariousness of biofuel sources has marked an edge to an imperative energy issue. Production of hydrogen from microalgae has been gathering much contemplation right away. But, mercantile production of microalgae biofuels considering bio-hydrogen is still not practicable because of low biomass concentration and costly down streaming processes. This review has taken up the hydrogen production by microalgae. Biofuels are the up and coming alternative to exhaustible, environmentally and unsafe fossil fuels. Algal biomass has been considered as an enticing raw material for biofuel production, these days photobioreactors and open-air systems are being used for hydrogen production from algal biomass. The formers allow the careful cultivation control whereas the latter ones are cheaper and simpler. A contemporary, encouraging optimization access has been included called algal cell immobilization on various matrixes which has resulted in marked increase in the productivity per volume of a reactor and addition of the hydrogen-production phase.

  6. Improved estimates of separation distances to prevent unacceptable damage to nuclear power plant structures from hydrogen detonation for gaseous hydrogen storage. Technical report

    International Nuclear Information System (INIS)

    1994-05-01

    This report provides new estimates of separation distances for nuclear power plant gaseous hydrogen storage facilities. Unacceptable damage to plant structures from hydrogen detonations will be prevented by having hydrogen storage facilities meet separation distance criteria recommended in this report. The revised standoff distances are based on improved calculations on hydrogen gas cloud detonations and structural analysis of reinforced concrete structures. Also, the results presented in this study do not depend upon equivalencing a hydrogen detonation to an equivalent TNT detonation. The static and stagnation pressures, wave velocity, and the shock wave impulse delivered to wall surfaces were computed for several different size hydrogen explosions. Separation distance equations were developed and were used to compute the minimum separation distance for six different wall cases and for seven detonating volumes (from 1.59 to 79.67 lbm of hydrogen). These improved calculation results were compared to previous calculations. The ratio between the separation distance predicted in this report versus that predicted for hydrogen detonation in previous calculations varies from 0 to approximately 4. Thus, the separation distances results from the previous calculations can be either overconservative or unconservative depending upon the set of hydrogen detonation parameters that are used. Consequently, it is concluded that the hydrogen-to-TNT detonation equivalency utilized in previous calculations should no longer be used

  7. Relation of exercise capacity with lung volumes before and after 6-minute walk test in subjects with COPD.

    Science.gov (United States)

    Wibmer, Thomas; Rüdiger, Stefan; Kropf-Sanchen, Cornelia; Stoiber, Kathrin M; Rottbauer, Wolfgang; Schumann, Christian

    2014-11-01

    There is growing evidence that exercise-induced variation in lung volumes is an important source of ventilatory limitation and is linked to exercise intolerance in COPD. The aim of this study was to compare the correlations of walk distance and lung volumes measured before and after a 6-min walk test (6MWT) in subjects with COPD. Forty-five subjects with stable COPD (mean pre-bronchodilator FEV1: 47 ± 18% predicted) underwent a 6MWT. Body plethysmography was performed immediately pre- and post-6MWT. Correlations were generally stronger between 6-min walk distance and post-6MWT lung volumes than between 6-min walk distance and pre-6MWT lung volumes, except for FEV1. These differences in Pearson correlation coefficients were significant for residual volume expressed as percent of total lung capacity (-0.67 vs -0.58, P = .043), percent of predicted residual volume expressed as percent of total lung capacity (-0.68 vs -0.59, P = .026), inspiratory vital capacity (0.65 vs 0.54, P = .019), percent of predicted inspiratory vital capacity (0.49 vs 0.38, P = .037), and percent of predicted functional residual capacity (-0.62 vs -0.47, P = .023). In subjects with stable COPD, lung volumes measured immediately after 6MWT are more closely related to exercise limitation than baseline lung volumes measured before 6MWT, except for FEV1. Therefore, pulmonary function testing immediately after exercise should be included in future studies on COPD for the assessment of exercise-induced ventilatory constraints to physical performance that cannot be adequately assessed from baseline pulmonary function testing at rest. Copyright © 2014 by Daedalus Enterprises.

  8. Effect of hydrogenation on the crystal structure of La{sub 2}Pd{sub 2}In

    Energy Technology Data Exchange (ETDEWEB)

    Kolomiets, A.V., E-mail: kolomiet@mag.mff.cuni.cz [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Department of Physics, Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv (Ukraine); Maskova, S.; Havela, L.; Matej, Z.; Kuzel, R. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)

    2011-03-10

    Research highlights: > La{sub 2}Pd{sub 2}In hydride is crystalline with 1.5 H atoms per formula unit and amorphous at 4 H atoms/f.u. > Volume expansion of La{sub 2}Pd{sub 2}In due to hydrogenation reaches 6.0% (or +4.9 A{sup 3}/H atom) and is anisotropic. > Hydrogenation 'softens' the lattice of La{sub 2}Pd{sub 2}In. - Abstract: The paper is focusing on the modification of the crystal lattice upon the hydrogenation of La{sub 2}Pd{sub 2}In and hydrogen desorption from La{sub 2}Pd{sub 2}In hydrides. The synthesis at 1 bar of hydrogen produces a crystalline hydride with 1.5 H atoms per formula unit and the volume expansion of {Delta}V/V = 6.0%. The synthesis at 10 and 100 bar H{sub 2} pressures leads to an amorphous state and with 4 + {delta} H atoms/f.u. The uptake of hydrogen leads to the decrease of the Debye temperature of La{sub 2}Pd{sub 2}In and modification of the optical phonon spectrum.

  9. A combined experimental and theoretical approach to the study of hydrogen bond interaction in the binary mixture of N-methylimidazole with water

    International Nuclear Information System (INIS)

    Huang, Rongyi; Du, Rongbin; Liu, Guangxiang; Zhao, Xiuqin; Ye, Shiyong; Wu, Genhua

    2012-01-01

    Highlights: ► Densities of N-methylimidazole with water binary mixture were measured. ► Excess molar volumes were fitted to Redlich–Kister polynomial equation. ► Excess molar volumes are negative in the whole mole fraction range. ► 1:1 Hydrogen complex formation between the unlike components was observed. ► Formation of hydrogen bonds in the binary mixture was confirmed by DFT//B3LYP. - Abstract: The intermolecular hydrogen bond interactions in the N-methylimidazole (MeIm) with water binary mixture have been studied by a combined experimental and theoretical approach. The densities of the binary mixture have been measured at T = (288.15 to 323.15) K and at atmospheric pressure. From the experimental data, excess molar volumes were determined as a function of composition at each temperature. The results reveal the formation of 1:1 hydrogen bond complex between MeIm with water at the maximal excess molar volume. Meanwhile, the formation of hydrogen bonds in the binary mixture was further confirmed by high level theoretical calculation. The structures, interactional energies and bond characteristics of the hydrogen bond complexes were calculated in the gas phase using density functional theory (DFT) at the B3LYP/6-311++G(d, p) theory levels. The changes of thermodynamic properties from the monomers to hydrogen bond complexes with the temperature ranging from (288.15 to 323.15) K were obtained using the statistical thermodynamic method. Thermodynamic analyses have been interpreted in terms of intermolecular interactions and excess molar volume changes in the binary mixture. It was also found that the formation reaction of the hydrogen bond complex of MeIm with water was an exothermic, entropy reduced and spontaneous thermodynamic process at all the temperature studied.

  10. Metallic hydrogen: The most powerful rocket fuel yet to exist

    Energy Technology Data Exchange (ETDEWEB)

    Silvera, Isaac F [Lyman Laboratory of Physics, Harvard University, Cambridge MA 02138 (United States); Cole, John W, E-mail: silvera@physics.harvard.ed [NASA MSFC, Huntsville, AL 35801 (United States)

    2010-03-01

    Wigner and Huntington first predicted that pressures of order 25 GPa were required for the transition of solid molecular hydrogen to the atomic metallic phase. Later it was predicted that metallic hydrogen might be a metastable material so that it remains metallic when pressure is released. Experimental pressures achieved on hydrogen have been more than an order of magnitude higher than the predicted transition pressure and yet it remains an insulator. We discuss the applications of metastable metallic hydrogen to rocketry. Metastable metallic hydrogen would be a very light-weight, low volume, powerful rocket propellant. One of the characteristics of a propellant is its specific impulse, I{sub sp}. Liquid (molecular) hydrogen-oxygen used in modern rockets has an Isp of {approx}460s; metallic hydrogen has a theoretical I{sub sp} of 1700s. Detailed analysis shows that such a fuel would allow single-stage rockets to enter into orbit or carry economical payloads to the moon. If pure metallic hydrogen is used as a propellant, the reaction chamber temperature is calculated to be greater than 6000 K, too high for currently known rocket engine materials. By diluting metallic hydrogen with liquid hydrogen or water, the reaction temperature can be reduced, yet there is still a significant performance improvement for the diluted mixture.

  11. Hydrogen peroxide treatment of TCE contaminated soil

    International Nuclear Information System (INIS)

    Hurst, D.H.; Robinson, K.G.; Siegrist, R.L.

    1993-01-01

    Solvent contaminated soils are ubiquitous in the industrial world and represent a significant environmental hazard due to their persistence and potentially negative impacts on human health and the environment. Environmental regulations favor treatment of soils with options which reduce the volume and toxicity of contaminants in place. One such treatment option is the in-situ application of hydrogen peroxide to soils contaminated with chlorinated solvents such as trichloroethylene (TCE). This study investigated hydrogen peroxide mass loading rates on removal of TCE from soils of varying organic matter content. Batch experiments conducted on contaminated loam samples using GC headspace analysis showed up to 80% TCE removal upon peroxide treatment. Column experiments conducted on sandy loam soils with high organic matter content showed only 25% TCE removal, even at hydrogen peroxide additions of 25 g peroxide per kg soil

  12. Water fog inerting of hydrogen-air mixtures

    International Nuclear Information System (INIS)

    Zalosh, R.G.; Bajpai, S.N.

    1982-01-01

    Laboratory tests have been conducted to determine the effects of water fog density, droplet diameter and temperature on the lower flammable limit (LFL) of hydrogen-air-steam mixtures. Five different fog nozzles were used to generate dense fogs with volume mean drop diameters ranging from 20 micro-meters to 115 micro-meters. At 20 0 C, these nozzles marginally raised the hydrogen LFL from 4.0 vol.% hydrogen to typically 4.8%, with one exceptional nozzle producing an LFL of 7.2%. At 50 0 C, the LFL in the presence of dense fog ranged from 5.0 to 7.9%, while at 70 0 C, the range was 5.9 to 8.5%. Fog densities required to achieve a given level of partial inerting increased with approximately the second power of average drop diameter, as predicted by a theoretical flame quenching analysis

  13. Volume generation of negative ions in high density hydrogen discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.

    1983-01-01

    A parametric survey is made of a high-density tandem two-chamber hydrogen negative ion system. The optimum extracted negative ion current densities are sensitive to the atom concentration in the discharge and to the system scale length. For scale lengths ranging from 10 cm to 0.1 cm optimum current densities range from of order 1 to 100 mA cm -2 , respectively

  14. A model for vented deflagration of hydrogen in a volume

    International Nuclear Information System (INIS)

    Mulpuru, S.R.; Wilkin, G.B.

    1982-02-01

    A simple model was constructed to predict the property transients resulting from the deflagration of a combustible mixture in a sphere or cylinder with venting of the gas mixture to the environment. A computer program VENT, was written to solve the model equation. The model will be particularly useful for studying hydrogen burning effects in loss-of-coolant plus losss of emergency coolant accidents in CANDU reactors

  15. 26 CFR 301.6226(b)-1 - 5-percent group.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false 5-percent group. 301.6226(b)-1 Section 301.6226... ADMINISTRATION PROCEDURE AND ADMINISTRATION Assessment In General § 301.6226(b)-1 5-percent group. (a) In general. All members of a 5-percent group shall join in filing any petition for judicial review. The...

  16. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  17. Tungsten effect over co-hydrotalcite catalysts to produce hydrogen from bio-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, J.L.; Ortiz, M.A.; Luna, R.; Nuno, L. [Univ. Autonoma Metropolitana-Azcapozalco, Mexico City (Mexico). Dept. de Energia; Fuentes, G.A. [Univ. Autonoma Metropolitana-Iztapalapa, Mexico City (Mexico). Dept. de IPH; Salmones, J.; Zeifert, B. [Inst. Politecnico Nacional, Mexico City (Mexico); Vazquez, A. [Inst. Mexicano del Petroleo, Mexico City (Mexico)

    2010-07-15

    The use of bioethanol has been considered for generating hydrogen via catalytic reforming. The reaction of ethanol with stream is strongly endothermic and produces hydrogen (H{sub 2}) and carbon dioxide (CO{sub 2}). However, undesirable products such as carbon monoxide (CO) and methane (CH{sub 4}) may also form during the reaction. This paper reported on the newly found stabilization effect of tungsten over the Co-hydrotalcite catalysts to produce H{sub 2} from ethanol in steam reforming. The catalysts were characterized by nitrogen (N{sub 2}) physisorption (BET area), X-ray diffraction, Infrared, Raman and UV-vis spectroscopies. Catalytic evaluations were determined using a fixed bed reactor with a water/ethanol mol ratio of 4 at 450 degrees C. The tungsten concentration studied was from 0.5 to 3 wt percent. The intensity of crystalline reflections of the Co-hydrotalcite catalysts decreased as tungsten concentration increased. Infrared spectroscopy was used to determine the superficial chemical groups, notably -OH, H{sub 2}O, Al-OH, Mg-OH, W-O-W and CO{sub 3}{sup 2.} The highest H{sub 2} production and the best catalytic stability was found in catalysts with low tungsten. The smallest pore volume of this catalyst could be related with long residence times of ethanol in the pores. Tungsten promoted the conversion for the Co-hydrotalcite catalysts. The reaction products were H{sub 2}, CO{sub 2}, CH{sub 3}CHO, CH{sub 4} and C{sub 2}H{sub 4} and the catalysts did not produce CO. 33 refs., 2 tabs., 10 figs.

  18. The impact of carbon materials on the hydrogen storage properties of light metal hydrides

    NARCIS (Netherlands)

    Adelhelm, P.A.; de Jongh, P.E.

    2011-01-01

    The safe and efficient storage of hydrogen is still one of the remaining challenges towards fuel cell powered cars. Metal hydrides are a promising class of materials as they allow the storage of large amounts of hydrogen in a small volume at room temperature and low pressures. However, usually the

  19. Meso-microstructural computational simulation of the hydrogen permeation test to calculate intergranular, grain boundary and effective diffusivities

    Energy Technology Data Exchange (ETDEWEB)

    Jothi, S., E-mail: s.jothi@swansea.ac.uk [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Winzer, N. [Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, 79108 Freiburg (Germany); Croft, T.N.; Brown, S.G.R. [College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom)

    2015-10-05

    Highlights: • Characterized polycrystalline nickel microstructure using EBSD analysis. • Development meso-microstructural model based on real microstructure. • Calculated effective diffusivity using experimental electrochemical permeation test. • Calculated intergranular diffusivity of hydrogen using computational FE simulation. • Validated the calculated computation simulation results with experimental results. - Abstract: Hydrogen induced intergranular embrittlement has been identified as a cause of failure of aerospace components such as combustion chambers made from electrodeposited polycrystalline nickel. Accurate computational analysis of this process requires knowledge of the differential in hydrogen transport in the intergranular and intragranular regions. The effective diffusion coefficient of hydrogen may be measured experimentally, though experimental measurement of the intergranular grain boundary diffusion coefficient of hydrogen requires significant effort. Therefore an approach to calculate the intergranular GB hydrogen diffusivity using finite element analysis was developed. The effective diffusivity of hydrogen in polycrystalline nickel was measured using electrochemical permeation tests. Data from electron backscatter diffraction measurements were used to construct microstructural representative volume elements including details of grain size and shape and volume fraction of grains and grain boundaries. A Python optimization code has been developed for the ABAQUS environment to calculate the unknown grain boundary diffusivity.

  20. GOTHIC analysis of post-accident hydrogen mixing behaviour in CANDU fuelling machine vault

    International Nuclear Information System (INIS)

    Yim, K.; Wong, R.C.; Fluke, R.J.

    1997-01-01

    The GOTHIC code was used to assess the post-accident hydrogen gas mixing patterns in a CANDU reactor containment and demonstrate the acceptability of Ontario Hydro Nuclear's hydrogen mitigation methods. The fuelling machine vault, being a small volume room containing major reactor piping, is the room of most concern with respect to hydrogen concentrations. Detailed three dimensional modelling of the gas mixing patterns in the fuelling machine vault was completed. Results showed that, even without forced air circulation, there is enough dispersion of hydrogen to other parts of containment to preclude the build-up of sensitive mixtures in the vault. For a brief time during the peak period of hydrogen release, hydrogen concentrations rise to close to the lower ignition limit in a small portion of the vault, but these hydrogen-steam-air mixtures are considered acceptable. Natural mixing alone is sufficient to preclude damaging hydrogen burns. (author)

  1. Characterization of the uranium--2 weight percent molybdenum alloy

    International Nuclear Information System (INIS)

    Hemperly, V.C.

    1976-01-01

    The uranium-2 wt percent molybdenum alloy was prepared, processed, and age hardened to meet a minimum 930-MPa yield strength (0.2 percent) with a minimum of 10 percent elongation. These mechanical properties were obtained with a carbon level up to 300 ppM in the alloy. The tensile-test ductility is lowered by the humidity of the laboratory atmosphere

  2. Effect of LEO cycling on 125 Ah advanced design IPV nickel-hydrogen battery cells

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1990-01-01

    An advanced 125 Ah individual pressure vessel (IPV) nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, low earth-orbit (LEO) spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent potassium hydroxide (KOH) electrolyte, (2) use of a patented catalyzed wall wick, (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management, and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion. Six 125-Ah flight cells based on this design were fabricated by Eagle-Picher. Three of the cells contain all of the advanced features (test cells) and three are the same as the test cells except they don't have catalyst on the wall wick (control cells). All six cells are in the process of being evaluated in a LEO cycle life test. The cells have accumulated about 4700 LEO cycles (60 percent DOD 10 C). There have been no cell failures; the catalyzed wall wick cells, however, are performing better.

  3. Effects of hydrogen on the single crystalline elastic constants of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Schlader, Daniel Michael [Iowa State Univ., Ames, IA (United States)

    1977-06-01

    A special hydriding system was designed and constructed to satisfy conditions for hydriding niobium. This system controlled the temperature and hydrogen atmosphere surrounding the niobium while ultrasonic measurements were recorded. Ultrasonic wave velocities were determined by measurement of the times for ultrasonic pulses to transit and then echo through known dimensions of test specimens. The method which was employed is commonly known as the pulse-echo-overlap method. This study confirmed the general trends of earlier investigations. In this study C' continued to decrease and C44 continued to increase up to 4.69 atomic percent hydrogen which is the maximum concentration which has yet been examined. In the case of the niobium-hydrogen system the Snoek effect may well be a contributory factor to the decrease of C' with increasing hydrogen concentration. However, crystallographic considerations preclude this effect from contributing a concentration dependence to C44 or B. The observation of the present work implies that other factors must also be contributing to the overall behavior.

  4. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Xin-juan Li

    2015-01-01

    Full Text Available The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X 7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X 7 receptors.

  5. Combustion characteristics of natural gas-hydrogen hybrid fuel turbulent diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghafour, S.A.A.; El-dein, A.H.E.; Aref, A.A.R. [Mechanical Power Engineering Department, Faculty of Engineering, Suez Canal University, Port-Said (Egypt)

    2010-03-15

    Combustion characteristics of natural gas - hydrogen hybrid fuel were investigated experimentally in a free jet turbulent diffusion flame flowing into a slow co-flowing air stream. Experiments were carried out at a constant jet exit Reynolds number of 4000 and with a wide range of NG-H{sub 2} mixture concentrations, varied from 100%NG to 50%NG-50% H{sub 2} by volume. The effect of hydrogen addition on flame stability, flame length, flame structure, exhaust species concentration and pollutant emissions was conducted. Results showed that, hydrogen addition sustains a progressive improvement in flame stability and reduction in flame length, especially for relatively high hydrogen concentrations. Hydrogen-enriched flames found to have a higher combustion temperatures and reactivity than natural gas flame. Also, it was found that hydrogen addition to natural gas is an ineffective strategy for NO and CO reduction in the studied range, while a significant reduction in the %CO{sub 2} molar concentration by about 30% was achieved. (author)

  6. Residual limb fluid volume change and volume accommodation: Relationships to activity and self-report outcomes in people with trans-tibial amputation.

    Science.gov (United States)

    Sanders, Joan E; Youngblood, Robert T; Hafner, Brian J; Ciol, Marcia A; Allyn, Katheryn J; Gardner, David; Cagle, John C; Redd, Christian B; Dietrich, Colin R

    2018-02-01

    Fluctuations in limb volume degrade prosthesis fit and require users to accommodate changes using management strategies, such as donning and doffing prosthetic socks. To examine how activities and self-report outcomes relate to daily changes in residual limb fluid volume and volume accommodation. Standardized, two-part laboratory protocol with an interim observational period. Participants were classified as "accommodators" or "non-accommodators," based on self-report prosthetic sock use. Participants' residual limb fluid volume change was measured using a custom bioimpedance analyzer and a standardized in-laboratory activity protocol. Self-report health outcomes were assessed with the Socket Comfort Score and Prosthesis Evaluation Questionnaire. Activity was monitored while participants left the laboratory for at least 3 h. They then returned to repeat the bioimpedance test protocol. Twenty-nine people were enrolled. Morning-to-afternoon percent limb fluid volume change per hour was not strongly correlated to percent time weight-bearing or to self-report outcomes. As a group, non-accommodators ( n = 15) spent more time with their prosthesis doffed and reported better outcomes than accommodators. Factors other than time weight-bearing may contribute to morning-to-afternoon limb fluid volume changes and reported satisfaction with the prosthesis among trans-tibial prosthesis users. Temporary doffing may be a more effective and satisfying accommodation method than sock addition. Clinical relevance Practitioners should be mindful that daily limb fluid volume change and prosthesis satisfaction are not dictated exclusively by activity. Temporarily doffing the prosthesis may slow daily limb fluid volume loss and should be investigated as an alternative strategy to sock addition.

  7. Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery

    International Nuclear Information System (INIS)

    Shah, A.A.; Al-Fetlawi, H.; Walsh, F.C.

    2010-01-01

    A model for hydrogen evolution in an all-vanadium redox flow battery is developed, coupling the dynamic conservation equations for charge, mass and momentum with a detailed description of the electrochemical reactions. Bubble formation at the negative electrode is included in the model, taking into account the attendant reduction in the liquid volume and the transfer of momentum between the gas and liquid phases, using a modified multiphase-mixture approach. Numerical simulations are compared to experimental data for different vanadium concentrations and mean linear electrolyte flow rates, demonstrating good agreement. Comparisons to simulations with negligible hydrogen evolution demonstrate the effect of gas evolution on the efficiency of the battery. The effects of reactant concentration, flow rate, applied current density and gas bubble diameter on hydrogen evolution are investigated. Significant variations in the gas volume fraction and the bubble velocity are predicted, depending on the operating conditions.

  8. Effect of foliar application of salicylic acid, hydrogen peroxide

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 2. Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associatedwith capsinoids synthesis in Capsicum annuum L. AY ZUNUN-PÉREZ T GUEVARA-FIGUEROA SN ...

  9. Development of a Micro-Fiber Nickel Electrode for Nickel-Hydrogen Cell

    Science.gov (United States)

    Britton, Doris L.

    1996-01-01

    The development of a high specific energy battery is one of the objectives of the lightweight nickel-hydrogen (NiH2) program at the NASA Lewis Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen fuel cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active materials. Initial tests include activation and capacity measurements at different discharge levels followed by half-cell cycle testing at 80 percent depth-of-discharge in a low Earth orbit regime. The electrodes that pass the initial tests are life cycle tested in a boiler plate nickel-hydrogen cell before flightweight designs are built and tested.

  10. The relationships between percent body fat and other ...

    African Journals Online (AJOL)

    The relationships between percent body fat and other anthropometric nutritional predictors among male and female children in Nigeria. ... A weak significant positive correlation was observed between the percent body fat and height – armspan ratio ... There was evidence of overweight and obesity in both children. The mid ...

  11. Continuous hydrogen production from starch by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Keigo; Tanisho, Shigeharu [Yokohama National Univ. (Japan)

    2010-07-01

    This study was investigated the effect of hydraulic retention time (HRT) on hydrogen production rate, hydrogen yield and the production rate of volatile fatty acid. The experiment was performed in a continuous stirred tank reactor (CSTR) with a working volume of 1 L by using a Clostridium sp. The temperature of the CSTR was regulated 37 C. The pH was controlled 6.0 by the addition of 3 M of NaOH solution. Starch was used as the carbon source with the concentration of 30 g L{sup -1}. Hydrogen production rate increased from 0.9 L-H{sub 2} L-culture{sup -1} h{sup -1} to 3.2 L-H{sub 2} L-culture{sup -1} h{sup -1} along with the decrease of HRT from 9 h to 1.5 h. Hydrogen yield decreased at low HRT. The major volatile fatty acids are acetic acid, butyric acid and lactic acid. The production rates of acetic acid and butyric acid increased along with the decrease of HRT. On the other hand, the rate of lactic acid was low at high HRT while it increased at HRT 1.5 h. The increase of the production rate of lactic acid suggested one of the reasons that hydrogen yield decreased. (orig.)

  12. Storage of hydrogen in advanced high pressure container. Appendices

    International Nuclear Information System (INIS)

    Bentzen, J.J.; Lystrup, A.

    2005-07-01

    The objective of the project has been to study barriers for a production of advanced high pressure containers especially suitable for hydrogen, in order to create a basis for a container production in Denmark. The project has primarily focused on future Danish need for hydrogen storage in the MWh area. One task has been to examine requirement specifications for pressure tanks that can be expected in connection with these stores. Six potential storage needs have been identified: (1) Buffer in connection with start-up/regulation on the power grid. (2) Hydrogen and oxygen production. (3) Buffer store in connection with VEnzin vision. (4) Storage tanks on hydrogen filling stations. (5) Hydrogen for the transport sector from 1 TWh surplus power. (6) Tanker transport of hydrogen. Requirements for pressure containers for the above mentioned use have been examined. The connection between stored energy amount, pressure and volume compared to liquid hydrogen and oil has been stated in tables. As starting point for production technological considerations and economic calculations of various container concepts, an estimation of laminate thickness in glass-fibre reinforced containers with different diameters and design print has been made, for a 'pure' fibre composite container and a metal/fibre composite container respectively. (BA)

  13. CO2-free hydrogen as a substitute to fossil fuels: What are the targets? Prospective assessment of the hydrogen market attractiveness

    International Nuclear Information System (INIS)

    Mansilla, C.; Avril, S.; Imbach, J.; Le Duigou, A.

    2012-01-01

    Hydrogen is usually presented as a promising energy carrier that has a major role to play in low carbon mobility, through the use of fuel cells. However, such a market is not expected in the short term. In the meantime, hydrogen may also contribute to reduce carbon emissions in diverse sectors: oil refining, low carbon mobility through the industrial deployment of advanced bio-fuels, natural gas consumption, and methanol production. According to the targeted market, objective costs are rather different; and so is the reachable mitigated CO 2 amount. This paper assesses the dynamics of these markets' attractiveness, in order to provide target costs for CO 2 -free hydrogen production. The potential of the markets of hydrogen as a fuel and hydrogen for the biomass-to-liquid production is highlighted, as they could represent significant volumes by 2050, as well as interesting perspectives for CO 2 emission reduction. However the targets are very sensitive to the CO 2 price, thus highlighting the requirement for economic instruments in order to facilitate the penetration of such technologies. Hydrogen is then highlighted as a key player of the energy system in the years to come, as the connection of the energy and mobility sectors. (authors)

  14. Turbulent burning rates of methane and methane-hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  15. Securing hydrogen in a confined space

    International Nuclear Information System (INIS)

    Buttin, D.

    2000-01-01

    The autonomy of quasi infinite propulsion of the modern submarines premise by the utilization of nuclear energy has considerably lengthened times for the immersion of this type of vessel. The limits of the operational missions are now fixed by personal elements and logistics (for example, food autonomy limited by volumes of storage of food). The prolonged life in restricted space, under some hundreds of meters of sea water and without possible stopover lasting several weeks poses problems, medical and psychological due to the tolerance of the bodies and of the human spirit in a close space for community life. In this specific environment it is necessary to pay a particular attention to the chemical composition of the atmosphere in order to assure it remains compatible with the physiological needs (oxygen content and carbon dioxide, absence of pollutants). The current method largely used to produce oxygen is electrolysis of water under pressure. This type of production, which presently has multiple operational advantages poses the problem of sedentary management of hydrogen produced in a confined space. Launching of the development of these installations, safety has value in the architectural and technological choices. Two items of design need to be considered. The first relates to the mixture potential of hydrogen and oxygen and the second relates to volumes of stored hydrogen. Lastly a study of safety lessons learned has provided fascinating accounts from past experience with stoichiometric explosion mixtures. Lessons learned helps to verify the theoretical results obtained at the time of the design engineering

  16. Thermodesorption examination of interaction of hydrogen with traps in silver

    International Nuclear Information System (INIS)

    Gabis, I.E.; Kurdyumov, A.A.; Ovsvannikova, T.A.

    1992-01-01

    The authors have previously examined the interaction of hydrogen with silver by the methods of thermal desorption spectrometry (TDS) and hydrogen permeability. The results showed that the TDS spectra contained a high-temperature phase linked with hydrogen which left the volume of the specimen during heating. It was assumed that hydrogen was captured and released by structural defects acting as traps. These traps can be represented by vacancies and their clusters. In this work, the high-temperature desorption of hydrogen from silver was studied. The experimental setup consisted of an all-metal vacuum system, a time-of-flight mass spectrometer, a DVK-2M computing system, and a Camac system. The described model of a local equilibrium should be regarded only as a first approximation. The results provide unambiguous information on the processes of permeability and desorption, and make it possible to assume that the formation of the high-temperature phase in TD spectra was caused by the generation of hydrogen from the traps. The parameters of the interaction of hydrogen with the traps were determined by the concentration wave method. 7 refs., 2 figs

  17. Test results of a 60 volt bipolar nickel-hydrogen battery

    Science.gov (United States)

    Cataldo, Robert L.; Gonzalez-Sanabria, Olga; Gahn, Randall F.; Manzo, Michelle A.; Gemeiner, Russel P.

    1987-01-01

    In July 1986, a high-voltage nickel-hydrogen battery was assembled at the NASA Lewis Research Center. This battery incorporated bipolar construction techniques to build a 50-cell stack with approximately 1.0 A-hr capacity (C) and an open-circuit voltage of 65 V. The battery was characterized at both low and high current rates prior to pulsed and nonpulsed discharges. Pulse discharges at 5 and 10 C were performed before placing the battery on over 1400, 40-percent depth-of-discharge, low-earth-orbit cycles. The successful demonstration of a high-voltage bipolar battery in one containment vessel has advanced the technology to where nickel-hydrogen high-voltage systems can be constructed of several modules instead of hundreds of individual cells.

  18. Exchange reaction between tritiated hydrogen and water vapor

    International Nuclear Information System (INIS)

    Yamada, Koichi; Takano, Kenichi; Watanabe, Tamaki.

    1979-01-01

    Exchange reaction of tritiated hydrogen to water vapor under the condition of tritium gas concentration between 1 μCi/l and 1 mCi/l was studied. Tritium gas with hydrogen gas of 5 Torr and water of 20 mg were enclosed in a Pyrex glass ampule with volume of about 100 ml. The mixed gas with water vapor was heated with electric furnace. The heating time was between 2 and 100 hr, and the temperature was 776, 725, 675, 621, and 570.5 0 K. After heating, tritiated water was trapped with liquid nitrogen, and counted with a liquid scintillation counter. The radioactive concentration of initial tritiated hydrogen was measured with a calibrated ionization chamber. The main results obtained are as follows; 1) the concentration of produced tritiated water is well proportioned to that of initial tritiated hydrogen, 2) the activation energy of exchange reaction from tritiated hydrogen to tritiated water is 26.2 kcal/mol and that of inverse reaction is 27.4 kcal/mol, 3) the reaction rate at room temperature which calculated with activation energy is 1.04 x 10 -13 day -1 , and then exchange reaction at room temperature is negligible. (author)

  19. Properties of Resistive Hydrogen Sensors as a Function of Additives of 3 D-Metals Introduced in the Volume of Thin Nanocrystalline SnO2 Films

    Science.gov (United States)

    Sevast'yanov, E. Yu.; Maksimova, N. K.; Potekaev, A. I.; Sergeichenko, N. V.; Chernikov, E. V.; Almaev, A. V.; Kushnarev, B. O.

    2017-11-01

    Analysis of the results of studying electrical and gas sensitive characteristics of the molecular hydrogen sensors based on thin nanocrystalline SnO2 films coated with dispersed Au layers and containing Au+Ni and Au+Co impurities in the bulk showed that the characteristics of these sensors are more stable under the prolonged exposure to hydrogen in comparison with Au/SnO2:Sb, Au films modified only with gold. It has been found that introduction of the nickel and cobalt additives increases the band bending at the grain boundaries of tin dioxide already in freshly prepared samples, which indicates an increase in the density Ni of the chemisorbed oxygen. It is important that during testing, the band bending eφs at the grain boundaries of tin dioxide additionally slightly increases. It can be assumed that during crystallization of films under thermal annealing, the 3d-metal atoms in the SnO2 volume partially segregate on the surface of microcrystals and form bonds with lattice oxygen, the superstoichiometric tin atoms are formed, and the density Ni increases. If the bonds of oxygen with nickel and cobalt are stronger than those with tin, then, under the prolonged tests, atomic hydrogen will be oxidized not by lattice oxygen, but mainly by the chemisorbed one. In this case, stability of the sensors' characteristics increases.

  20. The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures

    International Nuclear Information System (INIS)

    Kumar, R.K.; Tamm, H.

    1984-01-01

    The effect of fan-induced turbulence on the combustion of hydrogen-air mixtures has been studied in a 2.3-m diameter sphere over a hydrogen concentration range of 4 to 42% (by volume). Two fans were used to produce the turbulence, which was measured at various lacations by hot-wire anemometry. For low hydrogen concentrations (< 7%), turbulence increases the rate and extent of combustion; for large turbulence intensities the extent of combustion approaches 100%, and combustion times are reduced by factors of 8 to 10 from those observed under quiescent conditions. At high hydrogen concentrations, the effect of turbulence on combustion time is less pronounced than at low hydrogen concentrations. Flame-generated turbulence has a significant effect on the combustion rate. (orig.)

  1. Manufacturing Competitiveness and Supply Chain Analyses for Hydrogen Refueling Stations

    Energy Technology Data Exchange (ETDEWEB)

    Mayyas, Ahmad T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Garland, Nancy [U.S. Department of Energy

    2018-04-27

    This slide deck was presented in the monthly FCTO webinar series (May 2017). The goal of this presentation was to share our latest results and remarks on the manufacturing competitiveness analysis of the hydrogen refueling stations (HRS). Manufacturing cost models were developed for major systems in the HRS such as compressors, storage tanks, chillers, heat exchangers, and dispensers. In addition to the cost models, we also discussed important remarks from our analysis for the international trade flows and global supply chain for the hydrogen refueling stations. The last part of the presentation also highlights effect of economies of scale and high production volumes on lowering the cost of the hydrogen at the pump.

  2. A sensitive hydrogen peroxide sensor based on leaf-like silver

    International Nuclear Information System (INIS)

    Meng, Zuchao; Zhang, Mingyin; Zhang, Hongfang; Zheng, Jianbin

    2014-01-01

    A novel non-enzymatic hydrogen peroxide sensor based on leaf-like silver was constructed. The leaf-like silver was synthesized on the surface of L-cysteine (L-cys) by electrodeposition. Scanning electron microscopy and electrochemical techniques were used to characterize the leaf-like silver nanoparticles. The sensor showed high electrocatalytic activity towards the reduction of hydrogen peroxide. A wide linear range of 2.5–1.5 mM with a low detection limit of 0.7 µM was obtained. Excellent electrocatalytic activity, large surface-to-volume ratio and efficient electron transport properties of leaf-like silver have enabled stable and highly sensitive performance for the non-enzymatic hydrogen peroxide sensor. (paper)

  3. Use of regenerative energy sources and hydrogen technology 2006. Proceedings

    International Nuclear Information System (INIS)

    Lehmann, J.; Luschtinetz, T.

    2006-01-01

    This volume contains 25 contributions, which were held on the 13th symposium ''Use of regenerative energy sources and hydrogen technology'' in Stralsund (Germany). Separate documentation items analysing 16 of the contributions have been prepared for the ENERGY database

  4. Final Report: Main Group Element Chemistry in Service of Hydrogen Storage and Activation

    Energy Technology Data Exchange (ETDEWEB)

    David A. Dixon; Anthony J. Arduengo, III

    2010-09-30

    Replacing combustion of carbon-based fuels with alternative energy sources that have minimal environmental impact is one of the grand scientific and technological challenges of the early 21st century. Not only is it critical to capture energy from new, renewable sources, it is also necessary to store the captured energy efficiently and effectively for use at the point of service when and where it is needed, which may not be collocated with the collection site. There are many potential storage media but we focus on the storage of energy in chemical bonds. It is more efficient to store energy on a per weight basis in chemical bonds. This is because it is hard to pack electrons into small volumes with low weight without the use of chemical bonds. The focus of the project was the development of new chemistries to enable DOE to meet its technical objectives for hydrogen storage using chemical hydrogen storage systems. We provided computational chemistry support in terms of thermodynamics, kinetics, and properties prediction in support of the experimental efforts of the DOE Center of Excellence for Chemical Hydrogen Storage. The goal of the Center is to store energy in chemical bonds involving hydrogen atoms. Once the hydrogen is stored in a set of X-H/Y-H bonds, the hydrogen has to be easily released and the depleted fuel regenerated very efficiently. This differs substantially from our current use of fossil fuel energy sources where the reactant is converted to energy plus CO2 (coal) or CO2 and H2O (gasoline, natural gas), which are released into the atmosphere. In future energy storage scenarios, the spent fuel will be captured and the energy storage medium regenerated. This places substantial additional constraints on the chemistry. The goal of the computational chemistry work was to reduce the time to design new materials and develop materials that meet the 2010 and 2015 DOE objectives in terms of weight percent, volume, release time, and regeneration ability. This

  5. Main Group Element Chemistry in Service of Hydrogen Storage and Activation. Final report

    International Nuclear Information System (INIS)

    Dixon, David A.; Arduengo, Anthony J. III

    2010-01-01

    Replacing combustion of carbon-based fuels with alternative energy sources that have minimal environmental impact is one of the grand scientific and technological challenges of the early 21st century. Not only is it critical to capture energy from new, renewable sources, it is also necessary to store the captured energy efficiently and effectively for use at the point of service when and where it is needed, which may not be collocated with the collection site. There are many potential storage media but we focus on the storage of energy in chemical bonds. It is more efficient to store energy on a per weight basis in chemical bonds. This is because it is hard to pack electrons into small volumes with low weight without the use of chemical bonds. The focus of the project was the development of new chemistries to enable DOE to meet its technical objectives for hydrogen storage using chemical hydrogen storage systems. We provided computational chemistry support in terms of thermodynamics, kinetics, and properties prediction in support of the experimental efforts of the DOE Center of Excellence for Chemical Hydrogen Storage. The goal of the Center is to store energy in chemical bonds involving hydrogen atoms. Once the hydrogen is stored in a set of X-H/Y-H bonds, the hydrogen has to be easily released and the depleted fuel regenerated very efficiently. This differs substantially from our current use of fossil fuel energy sources where the reactant is converted to energy plus CO 2 (coal) or CO 2 and H 2 O (gasoline, natural gas), which are released into the atmosphere. In future energy storage scenarios, the spent fuel will be captured and the energy storage medium regenerated. This places substantial additional constraints on the chemistry. The goal of the computational chemistry work was to reduce the time to design new materials and develop materials that meet the 2010 and 2015 DOE objectives in terms of weight percent, volume, release time, and regeneration ability

  6. A mathematical approach for evaluating nickel-hydrogen cells

    Science.gov (United States)

    Leibecki, H. F.

    1986-01-01

    A mathematical equation is presented which gives a quantitative relationship between time-voltage discharge curves, when a cell's ampere-hour capacity is determined at a constant discharge current. In particular the equation quantifies the initial exponential voltage decay; the rate of voltage decay; the overall voltage shift of the curve and the total capacity of the cell at the given discharge current. The results of 12 nickel-hydrogen boiler plate cells cycled to 80 percent depth-of-discharge (DOD) are discussed in association with these equations.

  7. Measurement of laminar burning velocities and Markstein lengths of diluted hydrogen-enriched natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Haiyan; Jiao, Qi; Huang, Zuohua; Jiang, Deming [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Eng., Xi' an Jiaotong University (China)

    2009-01-15

    The laminar flame characteristics of natural gas-hydrogen-air-diluent gas (nitrogen/CO{sub 2}) mixtures were studied in a constant volume combustion bomb at various diluent ratios, hydrogen fractions and equivalence ratios. Both unstretched laminar burning velocity and Markstein length were obtained. The results showed that hydrogen fraction, diluent ratio and equivalence ratio have combined influence on laminar burning velocity and flame instability. The unstretched laminar burning velocity is reduced at a rate that is increased with the increase of the diluent ratio. The reduction effect of CO{sub 2} diluent gas is stronger than that of nitrogen diluent gas. Hydrogen-enriched natural gas with high hydrogen fraction can tolerate more diluent gas than that with low hydrogen fraction. Markstein length can either increase or decrease with the increase of the diluent ratio, depending on the hydrogen fraction of the fuel. (author)

  8. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  9. Hydrogen storage materials at INCDTIM Cluj - Napoca. Achievements and outlook

    International Nuclear Information System (INIS)

    Lupu, D.; Biris, A.R.; Misan, I.

    2005-01-01

    Introducing hydrogen fuel to the transportation area poses key challenges for research on hydrogen storage materials. As one of the most promising alternative fuels for transport, hydrogen offers the long-term potential for an energy system that produces near-zero emissions and can be based on renewable energy sources. The Joint Research Centre (JRC), a Directorate-General of the European Commission fosters research for safe methods for storing hydrogen, for use in fuel cells or modified combustion engines in cars and other road vehicles. Hydrogen storage materials focused, in the last 30 years, the attention of the research programs in the many countries. Due to the fast development of the fuel cell technologies, the subject is much more stringent now. For mobile applications to fuel cell powered vehicles, on-board storage materials with hydrogen absorption/desorption capacities of at least 6.5%H are needed. For an efficient storage system the goal is to pack hydrogen as close as possible. Hydrogen storage implies the reduction of an enormous volume of H 2 gas (1 kg of gas has a volume of 11 m 3 at ambient temperature and pressure). To reach the high volumetric and gravimetric density suitable for mobile applications, basically six reversible storage methods are known today according to A. Zuettel: 1) high-pressure gas cylinders, 2) liquid in cryogenic tanks, 3) physisorbed on a solid surface e.g. carbon-nanotubes 4) metal hydrides of the metals or intermetallic compounds. 5) complex hydrides of light elements such as alanates and boranates, 6) storage via chemical reactions. Recently, the storage as hydrogen hydrates at 50 bar using promoters has been reported by F. Peetom. The paper discusses the feasibility of each of these storing alternatives. The authors presents their experience and results of the work in the field of metal hydrides and application obtained since 1975. All classes of hydrogen absorbing intermetallic compounds were studied: LaNi 5 , FeTi, Ti

  10. Outcome and patterns of failure following limited-volume irradiation for malignant astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Garden, A.S.; Maor, M.H.; Yung, W.K.A.; Bruner, J.M.; Woo, Shiao Y.; Moser, R.P.; Lee, Ya-Yen (Anderson (M.D.) Hospital and Tumor Inst., Houston, TX (USA))

    1991-02-01

    Between January 1982 and June 1986, 60 consecutive patients with high-grade astrocytomas (39 glioblastoma multiforme (GBM), 21 anaplastic astrocytoma (AA)) were treated with radiation therapy after biopsy (13 patients) or resection (47 patients). 53 patients were treated with limited-volume irradiation, 7 received whole-brain irradiation. The mean tumor dose was 65.4 Gy. In 35 patients, chemotherapy was given as part of their initial treatment. The 1- and 2-year survivals for GBM patients were 40 and 14 percent, respectively. Survival figures for AA patients were 76 and 52 percent at 1 and 2 years, respectively. The progression-free rate at 1 year was 13 percent in GBM and 29 percent in AA patients. 34 of 48 patients who received limited-volume irradiation had evidence of progression on postirradiation CT scans. 6 patients (3 GBM, 3 AA) had evidence of a new intracranial metastatic site on CT scan. In 3 patients the metastasis was within the previously irradiated volume, and in 3 other patients, it was outside this volume. All 6 had evidence of progression of their primary tumor at the original location on CT scan prior to the discovery of the metastatic site. 21 patients (15 GBM, 6 AA) had at least 1 postirradiation reoperation for a recurrent mass. 19 patients had recurrent tumors in the primary site, and 2 patients had necrosis but no tumor. Patients who received limited-volume irradiation for high-grade astrocytomas achieved the same survival results as patients treated previously with whole brain irradiation. New intra-cranial metastases did not influence the outcome, since these were always antedated by tumor progression at the primary site. (author). 16 refs.; 8 figs.; 2 tabs.

  11. Hydrogen energy in changing environmental scenario: Indian context

    International Nuclear Information System (INIS)

    Leo Hudson, M. Sterlin; Dubey, P.K.; Pukazhselvan, D.; Pandey, Sunil Kumar; Singh, Rajesh Kumar; Raghubanshi, Himanshu; Shahi, Rohit R.; Srivastava, O.N.

    2009-01-01

    This paper deals with how the Hydrogen Energy may play a crucial role in taking care of the environmental scenario/climate change. The R and D efforts, at the Hydrogen Energy Center, Banaras Hindu University have been described and discussed to elucidate that hydrogen is the best option for taking care of the environmental/climate changes. All three important ingredients for hydrogen economy, i.e., production, storage and application of hydrogen have been dealt with. As regards hydrogen production, solar routes consisting of photoelectrochemical electrolysis of water have been described and discussed. Nanostructured TiO 2 films used as photoanodes have been synthesized through hydrolysis of Ti[OCH(CH 3 ) 2 ] 4 . Modular designs of TiO 2 photoelectrode-based PEC cells have been fabricated to get high hydrogen production rate (∝10.35 lh -1 m -2 ). However, hydrogen storage is a key issue in the success and realization of hydrogen technology and economy. Metal hydrides are the promising candidates due to their safety advantage with high volume efficient storage capacity for on-board applications. As regards storage, we have discussed the storage of hydrogen in intermetallics as well as lightweight complex hydride systems. For intermetallic systems, we have dealt with material tailoring of LaNi 5 through Fe substitution. The La(Ni l-x Fe x ) 5 (x = 0.16) has been found to yield a high storage capacity of ∝2.40 wt%. We have also discussed how CNT admixing helps to improve the hydrogen desorption rate of NaAlH 4 . CNT (8 mol%) admixed NaAlH 4 is found to be optimum for faster desorption (∝3.3 wt% H 2 within 2 h). From an applications point of view, we have focused on the use of hydrogen (stored in intermetallic La-Ni-Fe system) as fuel for Internal Combustion (IC) engine-based vehicular transport, particularly two and three-wheelers. It is shown that hydrogen used as a fuel is the most effective alternative fuel for circumventing climate change. (author)

  12. Pd Nanoparticles and MOFs Synergistically Hybridized Halloysite Nanotubes for Hydrogen Storage.

    Science.gov (United States)

    Jin, Jiao; Ouyang, Jing; Yang, Huaming

    2017-12-01

    Natural halloysite nanotubes (HNTs) were hybridized with metal-organic frameworks (MOFs) to prepare novel composites. MOFs were transformed into carbon by carbonization calcination, and palladium (Pd) nanoparticles were introduced to build an emerging ternary compound system for hydrogen adsorption. The hydrogen adsorption capacities of HNT-MOF composites were 0.23 and 0.24 wt%, while those of carbonized products were 0.24 and 0.27 wt% at 25 °C and 2.65 MPa, respectively. Al-based samples showed higher hydrogen adsorption capacities than Zn-based samples on account of different selectivity between metal and hydrogen and approximate porous characteristics. More pore structures are generated by the carbonization reaction from metal-organic frameworks into carbon; high specific surface area, uniform pore size, and large pore volume benefited the hydrogen adsorption ability of composites. Moreover, it was also possible to promote hydrogen adsorption capacity by incorporating Pd. The hydrogen adsorption capacity of ternary compound, Pd-C-H3-MOFs(Al), reached 0.32 wt% at 25 °C and 2.65 MPa. Dissociation was assumed to take place on the Pd particles, then atomic and molecule hydrogen spilled over to the structure of carboxylated HNTs, MOFs, and the carbon products for enhancing the hydrogen adsorption capacity.

  13. Pd Nanoparticles and MOFs Synergistically Hybridized Halloysite Nanotubes for Hydrogen Storage

    Science.gov (United States)

    Jin, Jiao; Ouyang, Jing; Yang, Huaming

    2017-03-01

    Natural halloysite nanotubes (HNTs) were hybridized with metal-organic frameworks (MOFs) to prepare novel composites. MOFs were transformed into carbon by carbonization calcination, and palladium (Pd) nanoparticles were introduced to build an emerging ternary compound system for hydrogen adsorption. The hydrogen adsorption capacities of HNT-MOF composites were 0.23 and 0.24 wt%, while those of carbonized products were 0.24 and 0.27 wt% at 25 °C and 2.65 MPa, respectively. Al-based samples showed higher hydrogen adsorption capacities than Zn-based samples on account of different selectivity between metal and hydrogen and approximate porous characteristics. More pore structures are generated by the carbonization reaction from metal-organic frameworks into carbon; high specific surface area, uniform pore size, and large pore volume benefited the hydrogen adsorption ability of composites. Moreover, it was also possible to promote hydrogen adsorption capacity by incorporating Pd. The hydrogen adsorption capacity of ternary compound, Pd-C-H3-MOFs(Al), reached 0.32 wt% at 25 °C and 2.65 MPa. Dissociation was assumed to take place on the Pd particles, then atomic and molecule hydrogen spilled over to the structure of carboxylated HNTs, MOFs, and the carbon products for enhancing the hydrogen adsorption capacity.

  14. Ionization of cloud and intercloud hydrogen by O and B stars

    International Nuclear Information System (INIS)

    Elmergreen, B.G.

    1975-01-01

    Lyman continuum radiation from OB stars may be the primary source of ionization of interstellar hydrogen. Eighty percent of Lyman continuum photons produced by these stars comes from a very small number of 05 and 06 stars, however, and if this radiation is ionized to interstellar hydrogen with the high degree of uniformity indicated by pulsar dispersion measures or by the diffuse background of Hα emission, then each 05 or 06 star must be able to maintain an H II region over a distance of several hundred parsecs. The cloudy structure of interstellar space prevents such long range ionization, however, and a large fraction of the stellar Lyman continuum photons will be converted to Balmer photons in the high-density ionized surfaces of the exposed clouds. Two questions concerning this cloudy obscuration naturally arise: what will be the consequences of a cloud's exposure to Lyman continuum radiation, and to what extent can low-density, intercloud hydrogen be ionized in the obscured regions. These questions are considered

  15. Continuous fermentative hydrogen production in different process conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nasirian, N. [Islamic Azad Univ., Shoushtar (Iran, Islamic Republic of). Dept. of Agricultural Mechanization; Almassi, M.; Minaee, S. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Agricultural Mechanization; Widmann, R. [Duisburg-Essen Univ., Essen (Germany). Dept. of Environmental Engineering, Waste and Water

    2010-07-01

    This paper reported on a study in which hydrogen was produced by fermentation of biomass. A continuous process using a non-sterile substrate with a readily available mixed microflora was used on heat treated digested sewage sludge from a wastewater treatment plant. Hydrogen was produced from waste sugar at a pH of 5.2 and a temperature of 37 degrees C. An experimental setup of three 5.5 L working volume continuously stirred tank reactors (CSTR) in different stirring speeds were constructed and operated at 7 different hydraulic retention times (HRTs) and different organic loading rates (OLR). Dissolved organic carbon was examined. The results showed that the stirring speed of 135 rpm had a beneficial effect on hydrogen fermentation. The best performance was obtained in 135 rpm and 8 h of HRT. The amount of gas varied with different OLRs, but could be stabilized on a high level. Methane was not detected when the HRT was less than 16 h. The study identified the reactor in which the highest specific rate of hydrogen production occurred.

  16. Production method of hydrogen jet plasma process in hydro machinery

    International Nuclear Information System (INIS)

    Amini, F.

    2007-01-01

    The purpose of present paper is to the process of plasma formation in hydro machinery when a hydro turbine operates at various conditions and load rejection. By investigation the power, shock pressure , and impact effects of hydro machinery, it is revealed that energy and hydrogen are generated by the plasma process. The investigation on several turbines of various hydro power plants reveals that cold fusion process in hydro machinery generates hydrogen. The hypothesis concerning the participation of alkaline metals in river water and the atomic nuclei of the runner blade material in the formation of hydrogen are considered. It is possible to assume hydrogen, deuterium, helium, and tritium atoms (based on Dr. Mizuno and Dr. Kanarev theories) that are formed, diffuse into cavitation bubbles. The plasma is generated during the collapse of the bubble; thus, the quantity of burnt hydrogen determine the volume of generating hydrogen and the impact force caused by hydrogen explosion (noise).There are five main notions, which can determine hydrogen and plasma process: (1) turbine power effect, (2) high shock pressure, (3) crack on turbine parts, (4) impacts effects and (4) the lift of rotating parts. The frequency of the excitation lies in a range from 0.786 to 1.095 Hz.In future, it may be possible to design hydro turbines based on the plasma process that generates hydrogen; or there may exist turbines that rotate with a mixture of hydrogen explosion and water energies

  17. Investigation of a novel protonic/electronic ceramic composite material as a candidate for hydrogen separation membranes

    Science.gov (United States)

    Fish, Jason S.

    A novel ceramic protonic/electronic conductor composite BaCe 0.2Zr0.7Y0.1O3-delta / Sr0.95 Ti0.9Nb0.1O3-delta (BCZY27/STN95: BS27) has been synthesized, and its electrical properties and hydrogen permeability have been investigated. The volume ratio of the STN95 phase was varied from 50 - 70 % to test the effects on conductivity and hydrogen permeability. BCZY27 and STN95 powders were prepared by solid-state reaction, and membrane samples were fabricated through conventional and spark plasma sintering techniques. The phase composition, density, and microstructure were compared between the sintering methodologies. Total conductivities of 0.01 - 0.06 S·cm -1 were obtained in wet (+1 % H2O) dilute H2/(N 2, He, Ar) from 600 - 800 °C for 50 volume % STN95. With increasing STN content (60 and 70 volume %), conductivity generally increased, though remained lower than predicted by standard effective medium models, even at 70 volume % STN95. A new effective medium model was proposed, which accounted for an interfacial resistance term associated with the heterojunctions formed between the BCZY27 and STN95 phases. Better fits for the measured data were achieved with this new method, although some effects remain unexplained. Discrepancies between the model and experiment were attributed to space charge effects, grain boundary resistances, and insulating impurity phase formation during synthesis. Dense BS27 samples were tested for high-temperature hydrogen permeation and a measured flux of 0.006 mumol·cm-2·s -1 was recorded for a 50 volume % STN95 sample at 700 °C, using dry argon as a sweep gas. This value represents a modest improvement on other ceramic composite membranes, but remains short of targets for commercialization. Persistent leaks in the flux experiments generated a shallower hydrogen gradient across the samples, although this p(H2) on the sweep side simultaneously decreased the oxygen partial pressure gradient across the sample and preserved the reduced state

  18. Hydrogen concentration determinations using focusing configuration in crystal neutron diffractometry

    International Nuclear Information System (INIS)

    Ionita, I.; Meleg, T.

    2001-01-01

    By generalizing the formulation given by Dorner one can express the neutron intensity at detector as: I = dΦ/dk i ∫NV s dσ/dk f p(k i ,r,k f )drdk i dk f where dΦ/dk i is the source flux distribution, N is the unit cell density, ds/dk f is the cross-section, V s is the irradiated sample volume and p(k i ,r,k f ) is the transmission function of the spectrometer. Therefore, for the same sample volume and beam intensity, the integral intensity is proportional to the unit cell density, i.e., proportional to the concentration of each element included in the unit-cell structure. This allows for a convenient nondestructive method to evaluate the concentration for the elements entering into the composition of a certain specimen, for example the hydrogen concentration in metallic hydrides, as HZr is. To do it is only necessary for a calibration curve rise, by preparing standard samples with concentrations in the desired range; the corresponding sample concentrations can be measured using a standard destructive method, for example by using the commercially available LECO device. The HZr samples were prepared by controlled hydrogenating process of Zr 2.5% Nb 40x25x1.62 mm plates. A set of 9 samples was realized with different hydrogen concentrations. The 9-th sample is of 'zero' hydrogen concentration, i.e., a sample not suffering a hydrogenating process. The calibration curve (straight) is given. The concentrations of the six pressure tube samples were determined using the above-described procedure; the corresponding values are given in a table form. (authors)

  19. 7 CFR 762.129 - Percent of guarantee and maximum loss.

    Science.gov (United States)

    2010-01-01

    ... loss. (a) General. The percent of guarantee will not exceed 90 percent based on the credit risk to the lender and the Agency both before and after the transaction. The Agency will determine the percentage of... PLP lenders will not be less than 80 percent. (d) Maximum loss. The maximum amount the Agency will pay...

  20. Turbojet Performance and Operation at High Altitudes with Hydrogen and Jp-4 Fuels

    Science.gov (United States)

    Fleming, W A; Kaufman, H R; Harp, J L , Jr; Chelko, L J

    1956-01-01

    Two current turbojet engines were operated with gaseous-hydrogen and JP-4 fuels at very high altitudes and a simulated Mach number of 0.8. With gaseous hydrogen as the fuel stable operation was obtained at altitudes up to the facility limit of about 90,000 feet and the specific fuel consumption was only 40 percent of that with JP-4 fuel. With JP-4 as the fuel combustion was unstable at altitudes above 60,000 to 65,000 feet and blowout limits were reached at 75,000 to 80,000 feet. Over-all performance, component efficiencies, and operating range were reduced considerable at very high altitudes with both fuels.

  1. Data integrity review of Three Mile Island Unit 2. Hydrogen burn data. Volume 3

    International Nuclear Information System (INIS)

    Jacoby, J.K.; Nelson, R.A.; Nalezny, C.L.; Averill, R.H.

    1983-09-01

    About 10 hours after the March 28, 1979 loss-of-coolant accident began at Three Mile Island Unit 2 (TMI-2), a hydrogen burn occurred inside the Reactor Building. This report reviews and presents data from 16 channels of resistance temperature detectors (RTDs), 2 steam generator pressure transmitters, 16 Reactor Building pressure switches, 2 channels of Reactor Building pressure measurements, and measurements of Reactor Building hydrogen, oxygen, and nitrogen concentrations with regard to their usefulness for determining the extent of the burn and the resulting pressure and temperature excursions inside the building

  2. [Determination of the redox potential of water saturated with hydrogen].

    Science.gov (United States)

    Piskarev, I M; Ushkanov, V A; Aristova, N A; Likhachev, P P; Myslivets, T C

    2010-01-01

    It has been shown that the redox potential of water saturated with hydrogen is -500--700 mV. The time of the establishment of the potential is 24 h. The potential somewhat increases with increasing volume of hydrogen introduced to a reservoir with water and practically does not depend on the presence of additions in water, provided these additions are not reduced by hydrogen. The pH value of water does not change after the addition of water. In a glass vessel with a metallic cover resting on the side, no decrease in potential during the 2.5-month storage was observed. In plastic bottles, the content of hydrogen decreased; on storage for more than two weeks, it disappeared almost completely, and as a result, the potential increased after storage for three to four weeks to a level near zero. In an open vessel, the potential remained negative for two days.

  3. The Need to introduce CFD Methodology in Analyze Hydrogen Distribution for Postulated Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Na, Hanbee; Park, Sukyung; Kim, Kyuntae [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lee, Jongkwang [Hanbat National University, Daejeon (Korea, Republic of); Kwon, Sejin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    The regulatory requirements for combustible gas control systems in Korea is that mean hydrogen mole fraction shall be lower than 10 %, containment integrity shall be kept from combustion of hydrogen, and detonation and global fast turbulent combustion shall be avoided. KHNP provided some analysis which show hydrogen mole fraction is less than 10 % and detonation and global fast turbulence combustion are avoided for postulated severe accident events which covered over 90 % of CDF (core damage frequency) for each NPP. The results were from MAAP code that can simulate from the initiation of the accidents to hydrogen distribution inside containments. It is a Lumped-Parameter codes in which the transport of energy and mass is possible in only predetermined one direction. Therefore, there has been a long-history dispute whether one-dimensional LP codes could simulate the transportation of hydrogen accurately. For example, KHNP made a MAAP model to simulate hydrogen distribution in KSNP (Korean Standard Nuclear Plants), and the containment free volume is divided into 27 nodes in which it is assumed all the properties like each molecule mole fraction and temperate are uniform in each node. In addition, the maximum volume size of them is over 22,000 m{sup 3}, and it is not quite confident that the mole fraction of each molecules and temperature are uniform in the big size space. As for the stress test results of the Wolsong 1, civil experts asked KHNP to conduct hydrogen distribution analysis using Computational Fluid Dynamics (CFD) methodology, and if needed to install hydrogen ignitors in Wolsong 1 NPP. As a reviewer for KHNP's post actions to the Stress Test, the author also asked KHNP to do CFD analysis of hydrogen distribution, and KHNP finally agreed to analyze it using CFD by 2017. KHNP submitted a Shin-hanul 1 and 2 Operation License application in 2015, and the author also asked it to do CFD analysis to simulate hydrogen distribution for Shin-hanul 1 and 2

  4. NATO Advanced Study Institute on Hydrogen in Disordered and Amorphous Solids

    CERN Document Server

    Bowman, Robert

    1986-01-01

    This is the second volume in the NATO ASI series dealing with the topic of hydrogen in solids. The first (V. B76, Metal Hydrides) appeared five years ago and focussed primarily on crystalline phases of hydrided metallic systems. In the intervening period, the amorphous solid state has become an area of intense research activity, encompassing both metallic and non-metallic, e.g. semiconducting, systems. At the same time the problem of storage of hydrogen, which motivated the first ASI, continues to be important. In the case of metallic systems, there were early indications that metallic glasses and disordered alloys may be more corrosion resistant, less susceptible to embrittlement by hydrogen and have a higher hydrogen mobility than ordered metals or intermetallics. All of these properties are desirable for hydrogen storage. Subsequent research has shown that thermodynamic instability is a severe problem in many amorphous metal hydrides. The present ASI has provided an appropriate forum to focus on these issu...

  5. Hydrogen absorption and its effect on magnetic properties of Nd2Fe14B

    Science.gov (United States)

    Bezdushnyi, R.; Damianova, R.; Tereshina, I. S.; Pankratov, N. Yu.; Nikitin, S. A.

    2018-05-01

    Magnetic properties of hydrides of the intermetallic compound Nd2Fe14BHx are investigated in the temperature range covering the Curie temperatures (TC) of the compounds (up to 670 K). The temperature dependencies of magnetization are measured under continuous control of hydrogen content in the investigated samples. The dependencies of Curie and spin-reorientation transition (TSR) temperatures on the hydrogen concentration are studied in detail. The dependence of hydrogen concentration on pressure at a constant temperature (near TC) and on the temperature at various pressures are obtained. We attempted to estimate the contributions of the unit cell volume increase upon hydrogenation and the electronic structure change in the variation of TC of the hydrogenated Nd2Fe14 B .

  6. Chromatographic measurement of hydrogen isotopic and permanent gas impurities in tritium

    International Nuclear Information System (INIS)

    Warner, D.K.; Kinard, C.; Bohl, D.C.

    1976-01-01

    This paper describes a gas chromatograph that was designed for dedicated analysis of hydrogen isotopic and permanent gas impurities in tritium and tritium-deuterium mixtures. The instrument that was developed substantially improved the accuracy and precision of hydrogen isotopic analysis in the 20 ppM to one mole percent range as compared with other analytical methods. Several unique design features of the instrument were required due to the radiation and isotopic exchange properties of the tritium in the samples; descriptions of these features are presented along with details of the complete chromatographic system. The experimental procedures used to calibrate the detector and statistically evaluate its performance are given, and the sources of analytical error are cited. The limitations of the present system are also discussed

  7. Review of progress in the theory of volume production

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1986-01-01

    With the demonstration of large current densities extracted from hydrogen-discharge-type negative ion sources there has been a new emphasis directed toward the further development of these volume-type sources. Along with this emphasis has been a rapid increase in our understanding of the underlying atomic processes that occur in hydrogen-negative-ion discharges, together with a rapid evolution of the geometric configuration of these ion sources. An account of the development of the atomic processes in negative hydrogen discharges has been given in a recent review. Here we shall emphasize these atomic developments as they bear on the tandem high-density ion-source configuration. 32 refs., 10 figs

  8. Lobar analysis of collapsibility indices to assess functional lung volumes in COPD patients.

    Science.gov (United States)

    Kitano, Mariko; Iwano, Shingo; Hashimoto, Naozumi; Matsuo, Keiji; Hasegawa, Yoshinori; Naganawa, Shinji

    2014-01-01

    We investigated correlations between lung volume collapsibility indices and pulmonary function test (PFT) results and assessed lobar differences in chronic obstructive pulmonary disease (COPD) patients, using paired inspiratory and expiratory three dimensional (3D) computed tomography (CT) images. We retrospectively assessed 28 COPD patients who underwent paired inspiratory and expiratory CT and PFT exams on the same day. A computer-aided diagnostic system calculated total lobar volume and emphysematous lobar volume (ELV). Normal lobar volume (NLV) was determined by subtracting ELV from total lobar volume, both for inspiratory phase (NLVI) and for expiratory phase (NLVE). We also determined lobar collapsibility indices: NLV collapsibility ratio (NLVCR) (%)=(1-NLVE/NLVI)×100%. Associations between lobar volumes and PFT results, and collapsibility indices and PFT results were determined by Pearson correlation analysis. NLVCR values were significantly correlated with PFT results. Forced expiratory volume in 1 second, measured as percent of predicted results (FEV1%P) was significantly correlated with NLVCR values for the lower lobes (Pvolume, measured as percent of predicted (DLCO/VA%P) results were strongly correlated with ELVI for the upper lobes (Ppulmonary function in COPD patients.

  9. Final Report: Metal Perhydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    H molecule contains one hydrogen atom because the valence of a Li ion is +1. One MgH2 molecule contains two hydrogen atoms because the valence of a Mg ion is +2. In metal perhydrides, a molecule could contain more hydrogen atoms than expected based on the metal valance, i.e. LiH1+n and MgH2+n (n is equal to or greater than 1). When n is sufficiently high, there will be plenty of hydrogen storage capacity to meet future requirements. The existence of hydrogen clusters, Hn+ (n = 5, 7, 9, 11, 13, 15) and transition metal ion-hydrogen clusters, M+(H2)n (n = 1-6), such as Sc(H2)n+, Co(H2)n+, etc., have assisted the development of this concept. Clusters are not stable species. However, their existence stimulates our approach on using electric charges to enhance the hydrogen adsorption in a hydrogen storage system in this study. The experimental and modeling work to verify it are reported here. Experimental work included the generation of cold hydrogen plasma through a microwave approach, synthesis of sorbent materials, design and construction of lab devices, and the determination of hydrogen adsorption capacities on various sorbent materials under various electric field potentials and various temperatures. The results consistently show that electric potential enhances the adsorption of hydrogen on sorbents. NiO, MgO, activated carbon, MOF, and MOF and platinum coated activated carbon are some of the materials studied. Enhancements up to a few hundred percents have been found. In general, the enhancement increases with the electrical potential, the pressure applied, and the temperature lowered. Theoretical modeling of the hydrogen adsorption on the sorbents under the electric potential has been investigated with the density functional theory (DFT) approach. It was found that the interaction energy between hydrogen and sorbent is increased remarkably when an electric field is applied. This increase of binding energy offers a potential solution for DOE when looking for a compromise

  10. Peculiarities of hydrogen permeation through Zr–1%Nb alloy and evaluation of terminal solid solubility

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, E.A.; Kompaniets, M.V.; Kompaniets, T.N., E-mail: tkompaniets@spbu.ru; Bobkova, I.S.

    2016-04-15

    Hydrogen permeation through Zr–1%Nb alloy was studied at the temperature below the temperature of α-β transition. Analysis of the transient permeation curves from a closed volume in a surface limited regime allowed to determine total and mobile hydrogen concentrations. At the mobile hydrogen concentration of 4.3 at% a part of the absorbed hydrogen is cut out of permeation process. Increase of the mobile hydrogen concentration in α-phase of Zr–1%Nb alloy is ceasing at the concentration of (5.5 ± 0.3) at%, which is the maximum possible concentration of the mobile hydrogen in α-phase of the studied alloy. From this moment on all absorbed hydrogen is spent on hydride formation. The obtained results are compared with those obtained by means of traditional techniques for terminal solid solubility determination.

  11. Investigation on molecular interaction of amino acids in aqueous disodium hydrogen phosphate solutions with reference to volumetric and compressibility measurements

    International Nuclear Information System (INIS)

    Kumar, Harsh; Singla, Meenu; Jindal, Rajeev

    2014-01-01

    Highlights: • Densities and speeds of sound of amino acids in aqueous disodium hydrogen phosphate. • Partial molar volumes and compressibility of transfer. • Positive values of transfer volume indicates interactions between ions of amino acids and TSC. • Ion–hydrophilic and hydrophilic–hydrophilic interactions are present. • Pair-wise interactions are dominant in the mixtures. -- Abstract: The interactions of amino acids glycine (Gly), L-alanine (Ala), and L-valine (Val) with disodium hydrogen phosphate (DSHP) as a function of temperature have been investigated by combination of volumetric and acoustic measurements. Densities (ρ) and speeds of sound (u) of amino acids in aqueous solutions of disodium hydrogen phosphate have been measured at T = (288.15, 293.15, 298.15, 303.15 and 308.15) K and atmospheric pressure. The apparent molar volume (V ϕ ), the partial molar volume (V ϕ 0 ) and standard partial molar volumes of transfer (ΔV ϕ 0 ) for amino acids from water to aqueous disodium hydrogen phosphate solutions have been calculated from density data. Partial molar adiabatic compressibility (κ ϕ,s ) and partial molar adiabatic compressibility of transfer (Δκ ϕ,S 0 ) have been calculated from speed of sound data. The pair (V AB , κ AB ) and triplet (V ABB , κ ABB ) interaction coefficient have been calculated from both the properties. The results have been explained based on competing patterns of interactions of co-solvents and the solute

  12. Preparation of Pt-PTFE hydrophobic catalyst for hydrogen-water isotope exchange

    International Nuclear Information System (INIS)

    Li Junhua; Kang Yi; Han Yande; Ruan Hao; Dou Qincheng; Hu Shilin

    2001-01-01

    The hydrophobic catalyst used in the hydrogen-water isotope exchange is prepared with Pt as the active metal, PTFE as the hydrophobic material, active carbon or silicon dioxide as the support. The isotope catalytic exchange reaction between hydrogen and water is carried out in the trickle bed and the effects of different carriers, mass fraction of Pt and PTFE on the catalytic activity are discussed. The experimental results show that the activity of Pt-C-PTFE hydrophobic catalyst with the ratio between PTFE and Pt-C from 1 to 2 is higher than other kinds of catalysts and the overall volume transfer coefficient is increased with the increasing of the hydrogen flow rate and reaction temperature

  13. Hydrogen from renewable energy - Photovoltaic/water electrolysis as an exemplary approach

    Science.gov (United States)

    Sprafka, R. J.; Tison, R. R.; Escher, W. J. D.

    1984-01-01

    A feasibility study has been conducted for a NASA Kennedy Space Center liquid hydrogen/liquid oxygen production facility using solar cell arrays as the power source for electrolysis. The 100 MW output of the facility would be split into 67.6 and 32 MW portions for electrolysis and liquefaction, respectively. The solar cell array would cover 1.65 sq miles, and would be made up of 249 modular 400-kW arrays. Hydrogen and oxygen are generated at either dispersed or centralized water electrolyzers. The yearly hydrogen output is projected to be 5.76 million lbs, with 8 times that much oxygen; these fuel volumes can support approximately 18 Space Shuttle launches/year.

  14. Hydrogen production with a solar steam–methanol reformer and colloid nanocatalyst

    KAUST Repository

    Lee, Ming-Tsang

    2010-01-01

    In the present study a small steam-methanol reformer with a colloid nanocatalyst is utilized to produce hydrogen. Radiation from a focused continuous green light laser (514 nm wavelength) is used to provide the energy for steam-methanol reforming. Nanocatalyst particles, fabricated by using pulsed laser ablation technology, result in a highly active catalyst with high surface to volume ratio. A small novel reformer fabricated with a borosilicate capillary is employed to increase the local temperature of the reformer and thereby increase hydrogen production. The hydrogen production output efficiency is determined and a value of 5% is achieved. Experiments using concentrated solar simulator light as the radiation source are also carried out. The results show that hydrogen production by solar steam-methanol colloid nanocatalyst reforming is both feasible and promising. © 2009 Professor T. Nejat Veziroglu.

  15. Steam gasification of rapeseed, wood, sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas

    International Nuclear Information System (INIS)

    Sattar, Anwar; Leeke, Gary A.; Hornung, Andreas; Wood, Joseph

    2014-01-01

    Steam gasification of biochars has emerged as a promising method for generating syngas that is rich in hydrogen. In this study four biochars formed via intermediate pyrolysis (wood pellet, sewage sludge, rapeseed and miscanthus) were gasified in a quartz tubular reactor using steam. The dynamic behaviour of the process and effects of temperature, steam flow and particle size were studied. The results show that increases in both steam flow and temperature significantly increase the dry gas yield and carbon conversion, but hydrogen volume fraction decreases at higher temperatures whilst particle size has little effect on gaseous composition. The highest volume fraction of hydrogen, 58.7%, was obtained at 750 °C from the rapeseed biochar. - Highlights: • Four biochars from intermediate pyrolysis were gasified. • High hydrogen concentration was achieved in all cases. • Peak hydrogen was 165 mg min −1  g −1 biochar at 700–750 °C. • High mineral content biochars had the highest reactivities. • Varying particle size had very little effect on gaseous composition

  16. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Science.gov (United States)

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-01

    As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.

  17. The Effect of Converting to a U.S. Hydrogen Fuel Cell Vehicle Fleet on Emissions and Energy Use

    Science.gov (United States)

    Colella, W. G.; Jacobson, M. Z.; Golden, D. M.

    2004-12-01

    mines and chemically processed into a hydrogen rich gas. Hydrogen is transmitted through pipelines to refueling stations. In the third scenario, hydrogen is derived via electrolysis powered by wind-generated electricity that has been transmitted across the country to electrolyzers at distributed hydrogen refueling stations. If hydrogen is produced via the first scenario, total annual U.S. production of carbon dioxide (CO2) could be expected to decrease by approximately 900 million metric tons, or 16 percent of annual U.S. CO2 production from all anthropogenic sources. Under this scenario, compared with the conventional vehicle fleet, a fuel cell vehicle fleet would produce some additional CO2 emissions due to the electric power required for the compression of hydrogen, but less CO2 emissions on the road during vehicle operation. This scenario results in an additional methane leakage of approximately one million metric tons per year, or 4 percent of annual U.S. methane emissions from all anthropogenic sources.

  18. Demonstration of fleet trucks fueled with PV hydrogen

    International Nuclear Information System (INIS)

    Provenzano, J.; Scott, P.B.; Zweig, R.

    1998-01-01

    The Clean Air Now (CAN) Solar Hydrogen Project has been installed at the Xerox Corporation, El Segundo, California site. Three Ford Ranger trucks have been converted to use hydrogen fuel. The ''stand- alone'' electrolyzer and hydrogen dispensing system is powered by a photovoltaic array with no connection to the power grid. A variable frequency DC/AC converter steps up the voltage to drive the 15 hp motor for the hydrogen compressor. Up to 400 standard cubic meters (SCM) of solar hydrogen is stored, and storage of up to 2300 SCM of commercial hydrogen is collocated. As the hydrogen storage is within 5km of Los Angeles International Airport, pilot operation of a hydrogen fuel cell bus for airport shuttle service has been demonstrated with fueling at the CAN facility. The truck engine conversions are bored to 2.91 displacement, use a Roots type supercharger and CVI (constant volume injection) fuel induction to allow performance similar to that of the gasoline powered truck. Truck fuel storage is done with carbon composite tanks at pressures up to 24.8 MPa (3600 psi). Two tanks are located just behind the driver's cab, and take up nearly half of the truck bed space. The truck highway range is approximately 140 miles. The engine operates in lean burn mode, with nil emissions of CO and HC. NO x emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two Xerox fleet trucks have been converted, and one for the City of West Hollywood. The Clean Air Now Program demonstrates that hydrogen powered fleet development is an appropriate safe, and effective strategy for improvement of urban air quality. It further demonstrates that continued technological development and cost reduction will make such implementation competitive. (Author)

  19. Fog inerting criteria for hydrogen/air mixtures

    International Nuclear Information System (INIS)

    Tsai, S.S.; Liparulo, N.J.

    1982-01-01

    A distributed ignition system has been proposed to ignite hydrogen at low concentration in the ice condenser containment during severe accidents. The post-accident containment atmosphere could be misty due to fog generation from the break flow and condensation in the ice bed. Thus it is important to establish a fog inerting criterion for effective performance of the ignition system. This paper presents such a criterion that specifies the necessary fogging conditions, i.e., fog concentration and drop size, for inerting a hydrogen/air mixture. The criterion shows that the minimum fog inerting concentration varies with the square of the volume mean fog drop size. The present fog inerting criterion is shown to be in general agreement with the Factory Mutual test data

  20. Removal of sulfur from process streams

    International Nuclear Information System (INIS)

    Brignac, D.G.

    1984-01-01

    A process wherein water is added to a non-reactive gas stream, preferably a hydrogen or hydrogen-containing gas stream, sufficient to raise the water level thereof to from about 0.2 percent to about 50 percent, based on the total volume of the process gas stream, and the said moist gas stream is contacted, at elevated temperature, with a particulate mass of a sulfur-bearing metal alumina spinel characterized by the formula MAl 2 O 4 , wherein M is chromium, iron, cobalt, nickel, copper, cadmium, mercury, or zinc to desorb sulfur thereon. In the sulfur sorption cycle, due to the simultaneous adsorption of water and sulfur, the useful life of the metal alumina spinel for sulfur adsorption can be extended, and the sorbent made more easily regenerable after contact with a sulfur-bearing gas stream, notably sulfur-bearing wet hydrogen or wet hydrogen-rich gas streams

  1. Modelling of hydrogen deflagration in a vented vessel

    International Nuclear Information System (INIS)

    Wang, L.L.; Wong, R.C.

    1995-01-01

    Hydrogen Deflagration inside closed and vented 2.3 m diameter vessels were simulated by using the GOTHIC lumped-parameter computer code. Different cell arrangements were used in the modelling. Other parameters such as flame speed and hydrogen concentration were studied. It was found that the calculated peak pressures for cases using the experimental measured burn durations were close to the pressures measured from the experiments. When the default flame speed was used, higher peak pressure was predicted by GOTHIC. This could be explained by the the fact that the default flame speed used in the GOTHIC burn model was based on the results of a large scale test with moderate turbulence level. However, the overall results of the pressure transients were comparable with the experimental data. In addition, time and spatial convergencies of the model were also studied. The peak pressure estimated by modelling the sphere as five or more spherical cells was shown to converge to within +/- 3 percent. (author). 8 refs., 6 tabs., 9 figs

  2. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  3. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  4. Waste volume reduction by acid digestion

    International Nuclear Information System (INIS)

    Lerch, R.E.; Divine, J.R.

    1975-06-01

    Acid digestion is a process being developed at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington, to reduce the volume of alpha-contaminated combustible waste by converting it into a non-combustible residue. Typical waste materials such as polyvinylchloride (PVC), polyethylene, paper and other cellulosic materials, ion exchange resin, all types of rubber, etc., are digested in hot (230 0 C--270 0 C) concentrated sulfuric acid containing nitric acid oxidant to form inert residues generally having less than four percent of their original volume and less than twenty-five percent of their original mass. The process is currently being tested using non-radioactive waste in an Acid Digestion Test Unit (ADTU) with all glass equipment. Engineering tests to date have shown acid digestion to be a potentially attractive method for treating combustible waste materials. Based on results of the engineering tests, an acid digestion pilot unit capable of treating radioactive wastes is being designed and constructed. Design capacity of the pilot unit for radioactive waste will be 100 kg of waste per day. (U.S.)

  5. Properties of thermoplastic polymers used for hydrogen storage under pressure

    International Nuclear Information System (INIS)

    Jousse, F.; Mazabraud, P.; Icard, B.; Mosdale, R.; Serre-Combe, P.

    2000-01-01

    The storage of hydrogen is one of the points of development of industrial applications of fuel cells of type PEMFC ( Proton Exchange Membrane Fuel Cell). Developing an effective system of storage remains major. Ameliorations concerning the storage density of energy, the cost and facilities and the storage must be considered especially for the mobile applications. Among different approaches possible, the absorption on carbon nanotubes, the production by hydrides in the organic solutions or storage hyperbar in the gas state seem the most promising way. The storage of hydrogen gas at ambient temperature today appears as the simplest technical solution, the most advanced and the most economic solution. However, the energy density of hydrogen being weaker than that of the traditional fuels, of the quantities more important must be stored at equivalent rate. Hyperbar storage (higher pressure has 350 bar) of hydrogen makes it possible to reduce the volume of the tanks and strengthens the argument for their weights and cost

  6. Hydrogen absorption in epitaxial Nb-films. A STM-study; Wasserstoffabsorption in epitaktischen Niobschichten. Eine STM-Studie

    Energy Technology Data Exchange (ETDEWEB)

    Noerthemann, K.

    2006-07-01

    In this work the phase transition of the system Niobium Hydrogen in thin films was investigated. The epitaxial Niobium films were fabricated using ion sputtering on sapphire substrates. The changes due to the hydrogen loading were observed with the scanning tunnel microscope (STM). With this method it is possible to detect the changes in the nanometer scale. With help of theoretical models it was possible to establish volume changes through the measured surface data. This is possible due to the linear relationship between hydrogen concentration and volume expansion. Comparisons between experimental data and calculations, which were done using the 'finite element method', allows to establish that the hydride precipitates are of cylindrical form. Thereafter the time continuously measurements of nuclei formation and precipitations growth was investigated. The growth is described through a 'Johnson-Mehl-Avrami' kinetic. Whereas coherent precipitations at first stage were observed, afterwards at higher Hydrogen concentration these transformed to incoherent. This coherent - incoherent transition occur at precipitation sizes which shows a film thickness dependency. (orig.)

  7. Coupling a PEM fuel cell and the hydrogen generation from aluminum waste cans

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Albanil Sanchez, Loyda; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. CP 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad, UPCH, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    High purity hydrogen was generated from the chemical reaction of aluminum and sodium hydroxide. The aluminum used in this study was obtained from empty soft drink cans and treated with concentrated sulfuric acid to remove the paint and plastic film. One gram of aluminum was reacted with a solution of 2moldm{sup -3} of sodium hydroxide to produce hydrogen. The hydrogen produced from aluminum cans and oxygen obtained from a proton exchange membrane electrolyzer or air, was fed to a proton exchange membrane (PEM) fuel cell to produce electricity. Yields of 44 mmol of hydrogen contained in a volume of 1.760dm{sup 3} were produced from one gram of aluminum in a time period of 20 min. (author)

  8. A study of wind hydrogen production of systems for Malaysia

    International Nuclear Information System (INIS)

    Ibrahim, M.Z.; Kamaruzzaman Sopian; Wan Ramli Wan Daud; Othman, M.Y.; Baharuddin Yatim; Veziroglu, T.N.

    2006-01-01

    Recently, Malaysia is looking into the potential of using hydrogen as future fuel. By recognizing the potential of hydrogen fuel, the government had channeled a big amount of money in funds to related organizations to embark on hydrogen research and development programmed. The availability of indigenous renewable resources, high trade opportunities, excellent research capabilities and current progress in hydrogen research at the university are some major advantages for the country to attract government and industry investment in hydrogen. It is envisaged that overall energy demand in Malaysia as stated in the Eighth Malaysia Plan (EMP) report will increase by about 7.8 percent per annum in this decade at the present economic growth. Considering the vast potential inherent in renewable energy (RE), it could be a significant contributor to the national energy supply. Malaysia had been blessed with abundant and varied resources of energy, nevertheless, concerted efforts should be undertaken to ensure that the development of energy resources would continue to contribute to the nation's economic expansion. In this regard, an initial study has been carried out to see the available potential of wind energy towards the hydrogen production, that could be utilized in various applications particularly in Malaysian climate condition via a computer simulation (HYDROGEMS), which built for TRNSYS (a transient system simulation program) version 15. The system simulated in this study consist of one unit (1 kW) wind turbine, an electrolyze (1 kW), a hydrogen (H 2 ) storage tank, and a power conditioning system. A month hourly data of highest wind speed is obtained from the local weather station that is at Kuala Terengganu Air Port located at 5''o 23'' latitude (N) and 103''o 06'' Longitude (E). The results show, wind energy in Malaysian Climate has a potential to generate hydrogen with the minimum rate approximately 9 m 3 /hr and storage capacity of 60 Nm 3 , State of Charge (SOC

  9. Hydrogen production from palm oil mill effluent by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Tanisho, S.; Shimazaki, T. [Yokohama National Univ., Shigeharu TANISHO and Tsuruyo SHIMAZAKI, Yokohama (Japan)

    2003-09-01

    Hydrogen production by fermentation was examined by using palm oil mill effluent. Clostridium butyricum produced more than 2.2 NL of hydrogen from 1 L of raw POME at pH 5.0, and Enterobacter aerogenes produced ca. 1.9 NL at pH 6.0. While from the culture liquid added 1% of peptone on the raw POME, C. butyricum produced more than 3.3 NL and also E. aerogenes 3.4 NL at pH 6.0 and 5.0, respectively. In this manner, the addition of nitrogen source to the POME liquid exerted an influence on the volume of hydrogen production. Since Aspergillus niger has ability to produce cellulase, co-cultivation of C.butyricum with A. niger was tried to utilize celluloses in the POME. Against our expectations, however, the results were lower productivities than pure cultivation's. We analyzed the components of POME by liquid chromatography and capillary electrophoresis before and after cultivation. The main substrate for hydrogen production was found to be glycerol. (authors)

  10. Study of the storage of hydrogen in carbon nanostructures

    International Nuclear Information System (INIS)

    Poirier, E.; Chahine, R.; Cossement, D.; Tessier, A.; Belanger, M.; Bose, T.K.; Dodelet, J-P.; Dellero, T.

    2000-01-01

    The storage of hydrogen is one of the points of development in industrial applications of fuel cells (CAP) of type PEMFC (Proton Exchange Membrane Fuel Cell). An effective system of storage would be a major step in the large scale utilization of this energy source. Process improvements concerning the storage density of energy, the cost, and facilities and the reliability of the storage must be sought in particular for the mobile applications. Among the different approaches possible, the absorption on carbon nanotubes, the production by hydrides in the organic solutions or storage hyperbar in the gas state seems the most promising way.The storage of hydrogen gas at ambient temperature today appears as the technical solution simplest, more advanced and more economic. However the energy density of hydrogen being weaker than that of the traditional fuels, of the quantities more important must be stored at equivalent rate. Hyperbar storage (higher pressure has 350 bar) of hydrogen makes it possible to reduce the volume of the tanks and strengthens the argument for their weights and cost

  11. Does Asset Allocation Policy Explain 40, 90, 100 Percent of Performance?

    OpenAIRE

    Roger G. Ibbotson; Paul D. Kaplan

    2001-01-01

    Does asset allocation policy explain 40 percent, 90 percent, or 100 percent of performance? According to some well-known studies, more than 90 percent of the variability of a typical plan sponsor's performance over time is attributable to asset allocation. However, few people want to explain variability over time. Instead, an analyst might want to know how important it is in explaining the differences in return from one fund to another, or what percentage of the level of a typical fund's retu...

  12. Bigger is better! Hippocampal volume and declarative memory performance in healthy young men.

    Science.gov (United States)

    Pohlack, Sebastian T; Meyer, Patric; Cacciaglia, Raffaele; Liebscher, Claudia; Ridder, Stephanie; Flor, Herta

    2014-01-01

    The importance of the hippocampus for declarative memory processes is firmly established. Nevertheless, the issue of a correlation between declarative memory performance and hippocampal volume in healthy subjects still remains controversial. The aim of the present study was to investigate this relationship in more detail. For this purpose, 50 healthy young male participants performed the California Verbal Learning Test. Hippocampal volume was assessed by manual segmentation of high-resolution 3D magnetic resonance images. We found a significant positive correlation between putatively hippocampus-dependent memory measures like short-delay retention, long-delay retention and discriminability and percent hippocampal volume. No significant correlation with measures related to executive processes was found. In addition, percent amygdala volume was not related to any of these measures. Our data advance previous findings reported in studies of brain-damaged individuals in a large and homogeneous young healthy sample and are important for theories on the neural basis of episodic memory.

  13. NRC Information No. 89-44: Hydrogen storage on the roof of the control room

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    During the Region V Chemistry Team Inspection at the Trojan Nuclear Plant the week of April 17, 1989, the inspectors identified a potential safety problem concerning the location of the hydrogen storage facility. Hydrogen is used on pressurized water reactor (PWR) plants for (1) providing a cover gas in the volume control tank, and (2) for cooling the main turbine generator. At boiling water reactor (BWR) plants, hydrogen is also used for cooling the main turbine generator and for injection into the feed system for plants which have implemented hydrogen water chemistry. The Trojan hydrogen storage facility is located on the control room roof which is 30-inch-thick reinforced concrete. The Trojan plant hydrogen facility does not meet guidelines from the standpoint of (1) the separation distance needed between a hydrogen pipe break and the control room ventilation intake to prevent buildup of a flammable or explosive gas mixture inside the control room, and (2) the separation distance needed to prevent damage to safety-related structures resulting from the explosion of an 8,000-scf hydrogen tank

  14. Modelling of flame propagation in the gasoline fuelled Wankel rotary engine with hydrogen additives

    Science.gov (United States)

    Fedyanov, E. A.; Zakharov, E. A.; Prikhodkov, K. V.; Levin, Y. V.

    2017-02-01

    Recently, hydrogen has been considered as an alternative fuel for a vehicles power unit. The Wankel engine is the most suitable to be adapted to hydrogen feeding. A hydrogen additive helps to decrease incompleteness of combustion in the volumes near the apex of the rotor. Results of theoretical researches of the hydrogen additives influence on the flame propagation in the combustion chamber of the Wankel rotary engine are presented. The theoretical research shows that the blend of 70% gasoline with 30% hydrogen could accomplish combustion near the T-apex in the stoichiometric mixture and in lean one. Maps of the flame front location versus the angle of rotor rotation and hydrogen fraction are obtained. Relations of a minimum required amount of hydrogen addition versus the engine speed are shown on the engine modes close to the average city driving cycle. The amount of hydrogen addition that could be injected by the nozzle with different flow sections is calculated in order to analyze the capacity of the feed system.

  15. Gaseous hydrogen embrittlement of an API X80 ferrito-pearlitic steel; Fragilisation par l'hydrogene gazeux d'un acier ferrito-perlitique de grade API X80

    Energy Technology Data Exchange (ETDEWEB)

    Moro, I.

    2009-11-15

    This work deals with hydrogen embrittlement, at ambient temperature and under a high pressure gaseous way, of an API X80 high elasticity limit steel used for pipelines construction, and with the understanding of the associated physical mechanisms of the embrittlement. At first has been described a bibliographic study of the adsorption, absorption, diffusion, transport and trapping of hydrogen in the steels. Then has been carried out an experimental and numerical study concerning the implantation in the finite element code CASTEM3M of a hydrogen diffusion model coupled to mechanical fields. The hydrogen influence on the mechanical characteristics of the X80 steel, of a ferrito-pearlitic microstructure has been studied with tensile tests under 300 bar of hydrogen and at ambient temperature. The sensitivity of the X80 steel to hydrogen embrittlement has been analyzed by tensile tests at different deformation velocities and under different hydrogen pressures on axisymmetrical notched test specimens. These studies show that the effect of the hydrogen embrittlement vary effectively with the experimental conditions. Moreover, correlated with the results of the tests simulations, it has been shown too that in these experimental conditions and for that steel, the hydrogen embrittlement is induced by three different hydrogen populations: the hydrogen trapped at the ferrite/perlite interfaces, the hydrogen adsorbed on surface and the reticular hydrogen trapped in the material volume. At last, the tensile and rupture tests of specimens, during which atmosphere changes have been carried out, have shown a strong reversibility of the hydrogen embrittlement, associated with its initiation as soon as hydrogen is introduced in the atmosphere. At last, three hydrogen mechanisms, depending of the different hydrogen populations are presented and discussed. (O.M.)

  16. Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks.

    Science.gov (United States)

    Tylianakis, Emmanuel; Klontzas, Emmanouel; Froudakis, George E

    2011-03-01

    The quest for efficient hydrogen storage materials has been the limiting step towards the commercialization of hydrogen as an energy carrier and has attracted a lot of attention from the scientific community. Sophisticated multi-scale theoretical techniques have been considered as a valuable tool for the prediction of materials storage properties. Such techniques have also been used for the investigation of hydrogen storage in a novel category of porous materials known as Covalent Organic Frameworks (COFs). These framework materials are consisted of light elements and are characterized by exceptional physicochemical properties such as large surface areas and pore volumes. Combinations of ab initio, Molecular Dynamics (MD) and Grand Canonical Monte-Carlo (GCMC) calculations have been performed to investigate the hydrogen adsorption in these ultra-light materials. The purpose of the present review is to summarize the theoretical hydrogen storage studies that have been published after the discovery of COFs. Experimental and theoretical studies have proven that COFs have comparable or better hydrogen storage abilities than other competitive materials such as MOF. The key factors that can lead to the improvement of the hydrogen storage properties of COFs are highlighted, accompanied with some recently presented theoretical multi-scale studies concerning these factors.

  17. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    Science.gov (United States)

    Lawrence, S. K.; Somerday, B. P.; Ingraham, M. D.; Bahr, D. F.

    2018-04-01

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases 20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.

  18. Calculation and analysis of hydrogen volume concentrations in the vent pipe rigid proposed for NPP-L V

    International Nuclear Information System (INIS)

    Gomez T, A. M.; Xolocostli M, V.; Lopez M, R.; Filio L, C.; Royl, P.

    2014-10-01

    In 2012 was modeled of primary and secondary container of the nuclear power plant of Laguna Verde (NPP-L V) for the CFD Gas-Flow code. These models were used to calculate hydrogen volume concentrations run release the reactor building in case of a severe accident. The results showed that the venting would produce detonation conditions in the venting level (level 33) and flammability at ground level of reload. One of the solutions to avoid reaching critical concentrations (flammable or detonable) inside the reactor building and thus safeguard the contentions is to make a rigid venting. The rigid vent is a pipe connected to the primary container could go to the level 33 of the secondary container and style fireplace climb to the top of the reactor building. The analysis of hydrogen transport inside the vent pipe can be influenced by various environmental criteria and factors vent, so a logical consequence of the 2012 analysis is the analysis of the gases transport within said pipe to define vent ideal conditions. For these evaluations the vent pipe was modeled with a fine mesh of 32 radial interior nodes and a coarse mesh of 4 radial interior nodes. With three-dimensional models were realized calculations that allow observing the influence of heat transfer in the long term, i.e. a complete analysis of exhaust (approx. 700 seconds). However, the most interesting results focus on the first milliseconds, when the H 2 coming from the atmosphere of the primary container faces the air in the vent pipe. These first milliseconds besides allowing evaluating the detonation criteria in great detail in the different tubular sections similarly allow evaluating the pressure wave that occurs in the pipe and that at some point slows to the fluid on the last tubular section and could produce a detonation inside the pipe. Results are presented for venting fixed conditions, showing possible detonations into the pipe. (Author)

  19. An investigation of hydrogen storage methods for fuel cell operation with man-portable equipment

    Energy Technology Data Exchange (ETDEWEB)

    Browning, D [Defence Evaluation and Research Agency, Haslar (United Kingdom); Jones, P [Defence Evaluation and Research Agency, Haslar (United Kingdom); Packer, K [Defence Evaluation and Research Agency, Haslar (United Kingdom)

    1997-03-01

    Air breathing proton exchange membrane fuel cells (PEMFC) are being considered as a power source for man-portable equipment, such as army radios. In addition to the weight and volume of the fuel cell itself, the device producing hydrogen with which to fuel the cell is also of crucial importance. This paper describes a number of hydrogen storage methods and discusses their applicability to man-portable equipment. (orig.)

  20. Safe production and application of hydrogen at Munich airport

    Energy Technology Data Exchange (ETDEWEB)

    Szamer, R.

    2005-07-01

    At Munich International Airport the world's first public filling station for liquid and gaseous hydrogen with on-site hydrogen gas production has been installed. In order to prove the safety, liability and economic feasibility of hydrogen this pilot project examined the complete sequence of hydrogen production and application: on-site production with pressurized electrolyser and steam reformer, storage and filling of gaseous and liquid hydrogen, application of hydrogen for propelling several vehicles, e.g. airport busses in day to day operation, cars, fork lifter. TUV SUD Group, one of the largest service provider for technical safety and quality, was involved in the safety evaluation of the hydrogen project from the very beginning with the following services: safety consultancy throughout all project phases, e.g. for licensing procedures, plant design and operation safety analysis of the overall plant and of subsystems (electrolyser, filling stations, storage tanks, control systems etc.) safety assessment and acceptance testing of CH2 busses, CH2 fork lifter and LH2 passenger cars inspections and tests The challenges of this complex project relating to safety will be presented in the lecture, e.g. identification of potential hazards, safety requirements for the design and operation of the hydrogen plant as wells as for the various applications. Project description The hydrogen plant (cf. Figure 1) comprises two supply paths, one for compressed gaseous hydrogen (CH2) and one for cryogenic liquid hydrogen. Gaseous hydrogen is produced via high-pressure electrolysis at an operating pressure of 3 MPa (30 bar) and/or steam reforming process. The hydrogen will be led into a compressor, compressed to 35 MPa (350 bar) and stored in high pressure cylinders with a total geometrical storage volume of 10 m. The cylinders supply the high-pressure filling stations which refuels the 3 hydrogen buses and the fork lifter. Liquid hydrogen (LH2) is delivered in tank trucks and

  1. Development of a hydrogen permeation sensor for future tritium applications

    Energy Technology Data Exchange (ETDEWEB)

    Llivina, L.; Colominas, S.; Abellà, J., E-mail: sergi.colominas@iqs.es

    2014-10-15

    Highlights: • Designing and testing of a hydrogen permeation sensor. • Palladium and α-iron have been used as a hydrogen permeation materials in the sensor. • The experiments performed using both membranes showed that the operation of the sensors in the equilibrium mode required at least several hours to reach the hydrogen equilibrium pressure. - Abstract: Tritium monitoring in lithium–lead eutectic is of great importance for the performance of liquid blankets in fusion reactors. In addition, tritium measurements will be required in order to proof tritium self-sufficiency in liquid metal breeding systems. On-line hydrogen (isotopes) sensors must be design and tested in order to accomplish these goals. In this work, an experimental set up was designed in order to test the permeation hydrogen sensors at 500 °C. This experimental set-up allowed working with controlled environments (different hydrogen partial pressures) and the temperature was measured using a thermocouple connected to a temperature controller that regulated an electrical heater. In a first set of experiments, a hydrogen sensor was constructed using an α-iron capsule as an active hydrogen area. The sensor was mounted and tested in the experimental set up. In a second set of experiments the α-iron capsule was replaced by a welded thin palladium disk in order to minimize the death volume. The experiments performed using both membranes (α-iron and palladium) showed that the operation of the sensors in the equilibrium mode required at least several hours to reach the hydrogen equilibrium pressure.

  2. Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting

    Science.gov (United States)

    Mohapatra, Susanta K.; Mahajan, Vishal K.; Misra, Mano

    2007-11-01

    A sonoelectrochemical anodization method is proposed to synthesize TiO2 nanotubular arrays on both sides of a titanium foil (TiO2/Ti/TiO2). Highly ordered TiO2 nanotubular arrays of 16 cm2 area with uniform surface distribution can be obtained using this anodization procedure. These double-sided TiO2/Ti/TiO2 materials are used as both photoanode (carbon-doped titania nanotubes) and cathode (Pt nanoparticles dispersed on TiO2 nanotubes; PtTiO2/Ti/PtTiO2) in a specially designed photoelectrochemical cell to generate hydrogen by water splitting at a rate of 38 ml h-1. The nanomaterials are characterized by FESEM, HRTEM, STEM, EDS, FFT, SAED and XPS techniques. The present approach can be used for large-scale hydrogen generation using renewable energy sources.

  3. Evaluation of Peritumoral Edema in the Delineation of Radiotherapy Clinical Target Volumes for Glioblastoma

    International Nuclear Information System (INIS)

    Chang, Eric L.; Akyurek, Serap; Avalos, Tedde C; Rebueno, Neal C; Spicer, Chris C; Garcia, John C; Famiglietti, Robin; Allen, Pamela K.; Chao, K.S. Clifford; Mahajan, Anita; Woo, Shiao Y.; Maor, Moshe H.

    2007-01-01

    Purpose: To evaluate the spatial relationship between peritumoral edema and recurrence pattern in patients with glioblastoma (GBM). Methods and Materials: Forty-eight primary GBM patients received three-dimensional conformal radiotherapy that did not intentionally include peritumoral edema within the clinical target volume between July 2000 and June 2001. All 48 patients have subsequently recurred, and their original treatment planning parameters were used for this study. New theoretical radiation treatment plans were created for the same 48 patients, based on Radiation Therapy Oncology Group (RTOG) target delineation guidelines that specify inclusion of peritumoral edema. Target volume and recurrent tumor coverage, as well as percent volume of normal brain irradiated, were assessed for both methods of target delineation using dose-volume histograms. Results: A comparison between the location of recurrent tumor and peritumoral edema volumes from all 48 cases failed to show correlation by linear regression modeling (r 2 0.0007; p = 0.3). For patients with edema >75 cm 3 , the percent volume of brain irradiated to 46 Gy was significantly greater in treatment plans that intentionally included peritumoral edema compared with those that did not (38% vs. 31%; p = 0.003). The pattern of failure was identical between the two sets of plans (40 central, 3 in-field, 3 marginal, and 2 distant recurrence). Conclusion: Clinical target volume delineation based on a 2-cm margin rather than on peritumoral edema did not seem to alter the central pattern of failure for patients with GBM. For patients with peritumoral edema >75 cm 3 , using a constant 2-cm margin resulted in a smaller median percent volume of brain being irradiated to 30 Gy, 46 Gy, and 50 Gy compared with corresponding theoretical RTOG plans that deliberately included peritumoral edema

  4. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  5. Modeling of the thermal effects of hydrogen adsorption on activated carbon

    International Nuclear Information System (INIS)

    Richard, M.-A.; Chahine, R.

    2006-01-01

    'Full text:' Heat management is one of the most critical issues for the design of efficient adsorption-based storage of hydrogen. We present simulations of mass and energy balance for hydrogen and nitrogen adsorption on activated carbon over wide temperature and pressure ranges. First, the Dubinin-Astakhov (DA) model is adapted to model excess hydrogen and nitrogen adsorption isotherms at high pressures and supercritical temperatures assuming a constant microporous adsorption volume. The five parameter modified D-A adsorption model is shown to fit the experimental data over the temperature range (35 K-293 K) for hydrogen and (93 K-298 K) for nitrogen and pressure range (0-6 MPa) within the experimental uncertainties of the measurement system. We derive the thermodynamic properties of the adsorbed phase from this analytical expression of the measured data. The mass and energy rate balance equations in a microporous adsorbent/adsorbate system are then presented and validated with nitrogen desorption experiments. Finally, simulations of adiabatic and isothermal filling of adsorption-based hydrogen storage are presented and discussed. (author)

  6. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Erck, R.; Park, E.T. [Argonne National Lab., IL (United States)] [and others

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.

  7. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    International Nuclear Information System (INIS)

    Park, J.H.; Erck, R.; Park, E.T.

    1997-01-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10 -4 torr at temperatures between 250 and 700 degrees C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R ∼ 10 and 100 at 700 and 250 degrees C, respectively). However at <267 degrees C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy

  8. Favorable recycling photocatalyst TiO2/CFA: Effects of loading percent of TiO2 on the structural property and photocatalytic activity

    International Nuclear Information System (INIS)

    Shi Jianwen; Chen Shaohua; Ye Zhilong; Wang Shumei; Wu Peng

    2010-01-01

    A series of photocatalysts TiO 2 /CFA were prepared using coal fly ash (CFA), waste discharged from coal-fired power plant, as substrate, and then these photocatalysts were characterized by scanning electron microscope, X-ray diffraction analysis, nitrogen adsorption test and ultraviolet-visible absorption analysis. The effects of loading percent of TiO 2 on the photocatalytic activity and re-use property of TiO 2 /CFA were evaluated by the photocatalytic decoloration and mineralization of methyl orange solution. The results show that the pore volume and the specific surface area of the TiO 2 /CFA both increased with the increase in the loading percent of TiO 2 , which improved the photocatalytic activity of TiO 2 /CFA. However, when the loading percent of TiO 2 was too high (up to 54.51%), superfluous TiO 2 was easy to break away from CFA in the course of water treatment, which was disadvantaged to the recycling property of TiO 2 /CFA. In this study, the optimal loading percent of TiO 2 was 49.97%, and the efficiencies of photocatalytic decoloration and mineralization could be maintained above 99% and 90%, respectively, when the photocatalyst was used repeatedly, without any decline, even at the sixth cycle.

  9. Spray Bar Zero-Gravity Vent System for On-Orbit Liquid Hydrogen Storage

    Science.gov (United States)

    Hastings, L. J.; Flachbart, R. H.; Martin, J. J.; Hedayat, A.; Fazah, M.; Lak, T.; Nguyen, H.; Bailey, J. W.

    2003-01-01

    During zero-gravity orbital cryogenic propulsion operations, a thermodynamic vent system (TVS) concept is expected to maintain tank pressure control without propellant resettling. In this case, a longitudinal spray bar mixer system, coupled with a Joule-Thompson (J-T) valve and heat exchanger, was evaluated in a series of TVS tests using the 18 cu m multipurpose hydrogen test bed. Tests performed at fill levels of 90, 50, and 25 percent, coupled with heat tank leaks of about 20 and 50 W, successfully demonstrated tank pressure control within a 7-kPa band. Based on limited testing, the presence of helium constrained the energy exchange between the gaseous and liquid hydrogen (LH2) during the mixing cycles. A transient analytical model, formulated to characterize TVS performance, was used to correlate the test data. During self-pressurization cycles following tank lockup, the model predicted faster pressure rise rates than were measured; however, once the system entered the cyclic self-pressurization/mixing/venting operational mode, the modeled and measured data were quite similar. During a special test at the 25-percent fill level, the J-T valve was allowed to remain open and successfully reduced the bulk LH2 saturation pressure from 133 to 70 kPa in 188 min.

  10. Functionalized Palladium Nanoparticles for Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    H. Baccar

    2011-01-01

    Full Text Available We present a comparison between two biosensors for hydrogen peroxide (H2O2 detection. The first biosensor was developed by the immobilization of Horseradish Peroxidase (HRP enzyme on thiol-modified gold electrode. The second biosensor was developed by the immobilization of cysteamine functionalizing palladium nanoparticles on modified gold surface. The amino groups can be activated with glutaraldehyde for horseradish peroxidase immobilization. The detection of hydrogen peroxide was successfully observed in PBS for both biosensors using the cyclic voltammetry and the chronoamperometry techniques. The results show that the limit detection depends on the large surface-to-volume ratio attained with palladium nanoparticles. The second biosensor presents a better detection limit of 7.5 μM in comparison with the first one which is equal to 75 μM.

  11. The Texas Ten Percent Plan's Impact on College Enrollment

    Science.gov (United States)

    Daugherty, Lindsay; Martorell, Paco; McFarlin, Isaac, Jr.

    2014-01-01

    The Texas Ten Percent Plan (TTP) provides students in the top 10 percent of their high-school class with automatic admission to any public university in the state, including the two flagship schools, the University of Texas at Austin and Texas A&M. Texas created the policy in 1997 after a federal appellate court ruled that the state's previous…

  12. EXPERIMENTAL STUDY OF THE PRODUCTION OF SOLAR HYDROGEN IN ALGERIA

    Directory of Open Access Journals (Sweden)

    W. Bendaikha

    2015-08-01

    Full Text Available Hydrogen is a sustainable fuel option and one of the potential solutions for the current energy and environmental problems. In this study hydrogen is produced using a hydrogen generator with a Proton Exchange Membrane (PEM electrolyser. An experimental study is done in the Center of Development of the Renewable Energy, Algiers, Algeria.The experimental device contains essentially a photovoltaic module, a PEM electrolyser, a gasometer and the devices of measures of characteristics of the PEM electrolyser as well as two pyranometers for the horizontal and diffuse global radiance registration. This system in pilots scale is permitted on the one hand, to measured and analyzed the characteristics: of the PEM electrolyser for two different pressures of working (Patm and P=3 bar, on the other hand, to study the volume of hydrogen produces in the time with different sources of electrical power (generator, photovoltaic module, fluorescent lamp, the efficiency for every case is calculated and compared. We present in this paper the variation of the solar hydrogen flow rate produced according to the global radiance and according to the time for a typical day’s of August.

  13. Influence of Lumber Volume Maximization on Value in Sawing Hardwood Sawlogs

    Science.gov (United States)

    Philip H. Steele; Francis G. Wagner; Lalit Kumar; Philip A. Araman

    1992-01-01

    Research based on applying volume-maximizing sawing solutions to idealized hardwood log forms has shown that average lumber yield can be increased by 6 percent. It is possible, however, that a lumber volume-maximizing solution may result in a decrease in lumber grade and a net reduction in total value of sawn lumber. The objective of this study was to determine the...

  14. Device for removing hydrogen gas from the safety containment vessel of a nuclear reactor

    International Nuclear Information System (INIS)

    Stiefel, M.

    1983-01-01

    The safe processing of all concentrations of gas mixtures should be possible with such a device using a thermal recombiner of compact construction. A recombiner consisting of a metal case and diverter sheets situated in it is heated by induction. The incoming pipe for the gas mixture enriched with hydrogen and the outgoing pipe for the gas mixture with low hydrogen content are connected together by a three way valve. The third connection to the safety valve takes the larger port of the gas mixture with low hydrogen content back to the safety containment vessel. Sufficient amount of the gas mixture with low hydrogen content is taken via the three way valve to the safety containment vessel to ensure that the hydrogen content of the gas mixture taken to the recombiner remains below the 4% by volume limit. (orig./PW)

  15. Effect of light intensity and initial pH during hydrogen production by an integrated dark and photofermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Kaushik [Department of Chemical Engineering, GH Patel College of Engineering and Technology, Vallabh Vidyanagar 388 120, Gujarat (India); Das, Debabrata [Fermentation Technology Laboratory, Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India)

    2009-09-15

    Photofermentation was carried out with the spent fermentation broth obtained from the anaerobic dark fermentation in a two-stage process. For the first stage, i.e. dark fermentation Enterobacter cloacae DM 11 was used as hydrogen producing microorganism. For photofermentation Rhodobacter sphaeroides O.U. 001, a photo-heterotrophic purple non-sulfur bacterium, was used. pH study revealed that cumulative hydrogen production was maximum at initial medium pH of 7.0 {+-} 0.2. Biomass yield was also high at the vicinity of pH 7.0 and it decreased as the pH increased from 7.0 to 8.0. Increased light intensity resulted in an increase in the total volume of hydrogen evolved and also hydrogen production rate. However, light conversion efficiency decreased by increasing light intensity. A four-fold increase in light intensity resulted in a three-fold decrease in light conversion efficiency although the cumulative volume of hydrogen gas production increased. It was observed that only a maximum of 0.51% light conversion efficiency could be achieved but at the expense of very low light intensity of 2500 lux (3.75 W m{sup -2}). (author)

  16. Experimental facilities for large-scale and full-scale study of hydrogen accidents

    Energy Technology Data Exchange (ETDEWEB)

    Merilo, E.; Groethe, M.; Colton, J. [SRI International, Poulter Laboratory, Menlo Park, CA (United States); Chiba, S. [SRI Japan, Tokyo (Japan)

    2007-07-01

    This paper summarized some of the work that has been performed at SRI International over the past 5 years that address safety issues for the hydrogen-based economy. Researchers at SRI International have conducted experiments at the Corral Hollow Experiment Site (CHES) near Livermore California to obtain fundamental data on hydrogen explosions for risk assessment. In particular, large-scale hydrogen tests were conducted using homogeneous mixtures of hydrogen in volumes from 5.3 m{sup 3} to 300 m{sup 3} to represent scenarios involving fuel cell vehicles as well as transport and storage facilities. Experiments have focused on unconfined deflagrations of hydrogen and air, and detonations of hydrogen in a semi-open space to measure free-field blast effects; the use of blast walls as a mitigation technique; turbulent enhancement of hydrogen combustion due to obstacles within the mixture, and determination of when deflagration-to-detonation transition occurs; the effect of confined hydrogen releases and explosions that could originate from an interconnecting hydrogen pipeline; and, large and small accidental releases of hydrogen. The experiments were conducted to improve the prediction of hydrogen explosions and the capabilities for performing risk assessments, and to develop mitigation techniques. Measurements included hydrogen concentration; flame speed; blast overpressure; heat flux; and, high-speed, standard, and infrared video. The data collected in these experiments is used to correlate computer models and to facilitate the development of codes and standards. This work contributes to better safety technology by evaluating the effectiveness of different blast mitigation techniques. 13 refs., 13 figs.

  17. Flow-Control Unit For Nitrogen And Hydrogen Gases

    Science.gov (United States)

    Chang, B. J.; Novak, D. W.

    1990-01-01

    Gas-flow-control unit installed and removed as one piece replaces system that included nine separately serviced components. Unit controls and monitors flows of nitrogen and hydrogen gases. Designed for connection via fluid-interface manifold plate, reducing number of mechanical fluid-interface connections from 18 to 1. Unit provides increasing reliability, safety, and ease of maintenance, and for reducing weight, volume, and power consumption.

  18. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content

    International Nuclear Information System (INIS)

    Doshida, Tomoki; Takai, Kenichi

    2014-01-01

    The effects of the hydrogen state, temperature, strain rate and hydrogen content on hydrogen embrittlement susceptibility and hydrogen-induced lattice defects were evaluated for cold-drawn pearlitic steel that absorbed hydrogen in two trapping states. Firstly, tensile tests were carried out under various conditions to evaluate hydrogen embrittlement susceptibility. The results showed that peak 2 hydrogen, desorbed at temperatures above 200 °C as determined by thermal desorption analysis (TDA), had no significant effect on hydrogen embrittlement susceptibility. In contrast, hydrogen embrittlement susceptibility increased in the presence of peak 1 hydrogen, desorbed from room temperature to 200 °C as determined by TDA, at temperatures higher than −30 °C, at lower strain rates and with higher hydrogen content. Next, the same effects on hydrogen-induced lattice defects were also evaluated by TDA using hydrogen as a probe. Peak 2 hydrogen showed no significant effect on either hydrogen-induced lattice defects or hydrogen embrittlement susceptibility. It was found that hydrogen-induced lattice defects formed under the conditions where hydrogen embrittlement susceptibility increased. This relationship indicates that hydrogen embrittlement susceptibility was higher under the conditions where the formation of hydrogen-induced lattice defects tended to be enhanced. Since hydrogen-induced lattice defects formed by the interaction between hydrogen and strain were annihilated by annealing at a temperature of 200 °C, they were presumably vacancies or vacancy clusters. One of the common atomic-level changes that occur in cold-drawn pearlitic steel showing higher hydrogen embrittlement susceptibility is the formation of vacancies and vacancy clusters

  19. Analysis association of milk fat and protein percent in quantitative ...

    African Journals Online (AJOL)

    Analysis association of milk fat and protein percent in quantitative trait locus ... African Journal of Biotechnology ... Protein and fat percent as content of milk are high-priority criteria for financial aims and selection of programs in dairy cattle.

  20. Plasma promoted manufacturing of hydrogen and vehicular applications

    Science.gov (United States)

    Bromberg, Leslie

    2003-10-01

    Plasmas can be used for promoting reformation of fuels. Plasma-based reformers developed at MIT use a low temperature, low power, low current electrical discharge to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The very fuel rich mixture is hard to ignite, and the plasmatron provides a volume-ignition. To minimize erosion and to simplify the power supply, a low current high voltage discharge is used, with wide area electrodes. The plasmatron fuel reformer operates at or slightly above atmospheric pressure. The plasma-based reformer technology provides the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels. These advantages enable use of hydrogen-manufacturing reformation technology in cars using available fuels, such as gasoline and diesel. This plasma-based reformer technology can provide substantial throughputs even without the use of a catalyst. The electrical power consumption of the device is minimized by design and operational characteristics (less than 500 W peak and 200 W average). The product from these plasma reactors is a hydrogen rich mixture that can be used for combustion enhancement and emissions aftertreatment in vehicular applications. By converting a small fraction of the fuel to hydrogen rich gas, in-cylinder combustion can be improved. With minor modification of the engine, use of hydrogen rich gas results in increased fuel efficiency and decreased emissions of smog producing gases. The status of plasma based reformer technology and its application to vehicles will be described.

  1. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  2. Hydrogen embrittlement of thermomechanically treated 18Ni Maraging steel

    International Nuclear Information System (INIS)

    Munford, J.W.; Rack, H.J.; Kass, W.J.

    1977-01-01

    The influence of thermomechanical treatments on susceptibility to cracking in 100 percent relative humidity air and low pressure (93.3 KPa) gaseous hydrogen has been investigated for 18Ni (350 ksi) Maraging steel. Two thermomechanical treatments were studied, ausforming and marforming and compared with the standard solution treated and aged material. Although little difference exists for the strength and toughness values between these treatments, a two to five-fold increase in the stress intensity threshold for cracking was found for both the ausformed and marformed material. A dramatic difference in cracking kinetics was also apparent as shown by the failure times at comparable stress intensities. Fractographic analysis showed that the primary fracture mode was 100 percent intergranular for the solution treated and aged samples while the ausform and marform failures were predominately quasi-cleavage or intergranular depending on orientation. Finally, permeation and diffusion measurements were conducted on the above materials and these results are correlated with the environmental cracking behavior

  3. Hydrogen embrittlement of thermomechanically treated 18Ni Maraging steel

    Energy Technology Data Exchange (ETDEWEB)

    Munford, J.W.; Rack, H.J.; Kass, W.J.

    1977-01-01

    The influence of thermomechanical treatments on susceptibility to cracking in 100 percent relative humidity air and low pressure (93.3 KPa) gaseous hydrogen has been investigated for 18Ni (350 ksi) Maraging steel. Two thermomechanical treatments were studied, ausforming and marforming and compared with the standard solution treated and aged material. Although little difference exists for the strength and toughness values between these treatments, a two to five-fold increase in the stress intensity threshold for cracking was found for both the ausformed and marformed material. A dramatic difference in cracking kinetics was also apparent as shown by the failure times at comparable stress intensities. Fractographic analysis showed that the primary fracture mode was 100 percent intergranular for the solution treated and aged samples while the ausform and marform failures were predominately quasi-cleavage or intergranular depending on orientation. Finally, permeation and diffusion measurements were conducted on the above materials and these results are correlated with the environmental cracking behavior.

  4. Stable Hydrogen-rich Atmospheres of Young Rocky Planets

    Science.gov (United States)

    Zahnle, K. J.; Catling, D. C.; Gacesa, M.

    2016-12-01

    SourceURL:file://localhost/Volumes/Lexar/Zahnle_AGU_2016.docx Understanding hydrogen escape is essential to understanding the limits to habitability, both for liquid water where the Sun is bright, but also to assess the true potential of H2 as a greenhouse gas where the Sun is faint. Hydrogen-rich primary atmospheres of Earth-like planets can result either from gravitational capture of solar nebular gases (with helium), or from impact shock processing of a wide variety of volatile-rich planetesimals (typically accompanied by H2O, CO2, and under the right circumstances, CH4). Most studies of hydrogen escape from planets focus on determining how fast the hydrogen escapes. In general this requires solving hydrodynamic equations that take into account the acceleration of hydrogen through a critical transonic point and an energy budget that should include radiative heating and cooling, thermal conduction, the work done in lifting the hydrogen against gravity, and the residual heat carried by the hydrogen as it leaves. But for planets from which hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which is much simpler, and for which a relatively full-featured treatment of radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ is straightforward. Previous work has overlooked the fact that the H2 molecule is extremely efficient at exciting non-LTE CO2 15 micron emission, and thus that radiative cooling can be markedly more efficient when H2 is abundant. We map out the region of phase space in which terrestrial planets keep hydrogen-rich atmospheres, which is what we actually want to know for habitability. We will use this framework to reassess Tian et al's (Science 308, pp. 1014-1017, 2005) hypothesis that H2-rich atmospheres may have been rather long-lived on Earth itself. Finally, we will address the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than

  5. Solar chemistry / hydrogen - Summary report on the research programme 2002; Forschungsprogramm Solarchemie / Wasserstoff

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This summary report for the Swiss Federal Office of Energy (SFOE) on the solar chemistry / hydrogen research programme presents an overview of work done in these fields in Switzerland in 2002. It includes an overview of work done on 12 research and development projects and 9 pilot and demonstration projects. The volume is completed with a selection of 13 annual reports on particular topics, including transformation and storage of energy by photo-chemical, photo-electrochemical and photovoltaic means, generation of hydrogen using water splitting, solar production of zinc and calcium, catalytic synthesis, redox processes for the production of hydrogen and compressed air as a means of storing energy. Also covered are the topics of how solar chemistry can help reduce CO{sub 2} emissions and the management of the International Energy Agency's hydrogen annex 14. Further reports look at the destabilisation of metal hydride compounds, materials for sustainable energy technologies and diffusion barriers for high-pressure hydrogen tanks.

  6. Serum Predictors of Percent Lean Mass in Young Adults.

    Science.gov (United States)

    Lustgarten, Michael S; Price, Lori L; Phillips, Edward M; Kirn, Dylan R; Mills, John; Fielding, Roger A

    2016-08-01

    Lustgarten, MS, Price, LL, Phillips, EM, Kirn, DR, Mills, J, and Fielding, RA. Serum predictors of percent lean mass in young adults. J Strength Cond Res 30(8): 2194-2201, 2016-Elevated lean (skeletal muscle) mass is associated with increased muscle strength and anaerobic exercise performance, whereas low levels of lean mass are associated with insulin resistance and sarcopenia. Therefore, studies aimed at obtaining an improved understanding of mechanisms related to the quantity of lean mass are of interest. Percent lean mass (total lean mass/body weight × 100) in 77 young subjects (18-35 years) was measured with dual-energy x-ray absorptiometry. Twenty analytes and 296 metabolites were evaluated with the use of the standard chemistry screen and mass spectrometry-based metabolomic profiling, respectively. Sex-adjusted multivariable linear regression was used to determine serum analytes and metabolites significantly (p ≤ 0.05 and q ≤ 0.30) associated with the percent lean mass. Two enzymes (alkaline phosphatase and serum glutamate oxaloacetate aminotransferase) and 29 metabolites were found to be significantly associated with the percent lean mass, including metabolites related to microbial metabolism, uremia, inflammation, oxidative stress, branched-chain amino acid metabolism, insulin sensitivity, glycerolipid metabolism, and xenobiotics. Use of sex-adjusted stepwise regression to obtain a final covariate predictor model identified the combination of 5 analytes and metabolites as overall predictors of the percent lean mass (model R = 82.5%). Collectively, these data suggest that a complex interplay of various metabolic processes underlies the maintenance of lean mass in young healthy adults.

  7. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  8. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Energy Technology Data Exchange (ETDEWEB)

    Rauner, D.; Kurutz, U.; Fantz, U. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg (Germany)

    2015-04-08

    As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines

  9. Estimating Hydrogen Production Potential in Biorefineries Using Microbial Electrolysis Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    Borole, Abhijeet P [ORNL; Mielenz, Jonathan R [ORNL

    2011-01-01

    Microbial electrolysis cells (MECs) are devices that use a hybrid biocatalysis-electrolysis process for production of hydrogen from organic matter. Future biofuel and bioproducts industries are expected to generate significant volumes of waste streams containing easily degradable organic matter. The emerging MEC technology has potential to derive added- value from these waste streams via production of hydrogen. Biorefinery process streams, particularly the stillage or distillation bottoms contain underutilized sugars as well as fermentation and pretreatment byproducts. In a lignocellulosic biorefinery designed for producing 70 million gallons of ethanol per year, up to 7200 m3/hr of hydrogen can be generated. The hydrogen can either be used as an energy source or a chemical reagent for upgrading and other reactions. The energy content of the hydrogen generated is sufficient to meet 57% of the distillation energy needs. We also report on the potential for hydrogen production in existing corn mills and sugar-based biorefineries. Removal of the organics from stillage has potential to facilitate water recycle. Pretreatment and fermentation byproducts generated in lignocellulosic biorefinery processes can accumulate to highly inhibitory levels in the process streams, if water is recycled. The byproducts of concern including sugar- and lignin- degradation products such as furans and phenolics can also be converted to hydrogen in MECs. We evaluate hydrogen production from various inhibitory byproducts generated during pretreatment of various types of biomass. Finally, the research needs for development of the MEC technology and aspects particularly relevant to the biorefineries are discussed.

  10. Isotope effect in the diffusion of hydrogen and deuterium in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Toi, K.; Takeuchi, K.; Tokuda, T.

    1980-02-01

    Temperature dependences of diffusion and permeation coefficients of hydrogen and deuterium in glassy and rubbery polymer films have been measured. The size of the free volume element in rubbery polymers has been calculated according to the theory of Frisch and Rogers for the quantum isotope effect, but the free volume is too large for precise calculation below the glass-transition temperature. The cooperative movement of segments is also discussed using the ratio of preexponential factors for diffusion mechanisms above and below the glass-transition temperature.

  11. CIDEX, SAVLON AND HYDROGEN PEROXIDE: WHICH OF THEM IS MORE EFFECTIVE IN DISINFECTION OF VENTILATOR TUBES

    Directory of Open Access Journals (Sweden)

    H SOLTANI NEZHAD

    2001-12-01

    Full Text Available Introduction: Nasocomial infections threat any hospitalized patient, specially in intensive care unit. Incidence of these infections has been reported from 1.9 to more than 25 percent. The most common nasocomial infection in intensive care units (ICU is pneumonia caused by endotraheal intubation and mechanical ventilation. The best procedure for pneumonia prevention in patients under mechanical ventilation is utilization of suitable and proper techniques for equipment sterilization: The goal of this study is determination and comparison of disinfectant materials (cidex, savlon and hydrogen peroxide about their effects on incidence and type of mechanical ventilators breathing tubes contamination in intensive care unit. Methods: This is an experimental trial which was done on three groups of mechanical ventilator breathing tubes. Each group contained 20 samples. These three groups of breathing tubes were disinfected with cidex, savlon and hydrogen peroxide. Samples were obtained from tubes for microbial culture berore and after disinfection. Samples were cultured on blood agar. The results of microbial culturing were compared between three groups. Results: There was no significant difference between three groups of breathing tubes about microbial types and number of colony counted before disinfection. There was no significant difference between cultured colony numbers in three groups before and after disinfection. Cidex, savlon and hydrogen peroxide could decrease incidence of contamination to 100, 98.09 and 100 percent, respectively. Discussion: All of tested chemical materials have the same results in disinfection. Hydrogen peroxide has less adverse effect on human and environment than cidex. It is less expensive than cidex. So, we recommend to use this material for disifection of mechanical ventilator berthing tubes.

  12. Detection of atomic and molecular hydrogen in post-discharge by resonant multi-photo-ionisation. Determination of absolute atomic densities

    International Nuclear Information System (INIS)

    Persuy, Philippe

    1990-01-01

    Within the frame of studies on devices for physical vapour deposition, and on phenomena leading to these depositions, this research thesis reports the development of a laser-diagnosis based on the phenomenon of resonant multi-photo-ionisation, and an attempt to obtain from it values of the absolute concentration of atomic hydrogen. After some recalls on the diversity of multi-photon phenomena, their theoretical and experimental evolutions, and on the particular role of hydrogen, the author reports experiments performed at 307.7 and 364.7 nm which respectively addressed the post-discharge detection of molecular hydrogen and of atomic hydrogen. A model is presented which addresses the interaction volume, and results of experiments of atom multi-photo-ionisation are reported. One of the results of this model is an assessment of the cross-section of the excitation with three photons of the hydrogen atom. This result is then used to determine the absolute density of atoms in fundamental state for different discharge conditions. Finally, the author presents the calculation software and some curve examples displaying the evolution of the number of ions and of excited states within the interaction volume [fr

  13. Comparative study about hydrogen sorption in sponge and powder titanium

    International Nuclear Information System (INIS)

    Vasut, Felicia; Preda, Anisoara; Zamfirache, Marius; Ducu, Catalin; Malinovschi, Viorel

    2005-01-01

    Currently, hydrogen may be stored as a compressed gas or a cryogenic liquid. Neither method appears to be practical for many applications in which hydrogen use would otherwise be attractive. For example, gaseous storage of stationary fuel is not feasible because of the large volume or weight of the storage vessels. Liquid hydrogen could be use extensively but the liquefaction process is relatively expensive. The hydrogen can be stored for a long term with a high separation factor, as a solid metal hydride. Using hydride-forming metals and intermetallic compounds, for example, recovery, purification and storage of heavy isotopes in tritium containing system, can solve many problems arising in the nuclear-fuel cycle. The paper presents a comparative study about hydrogen sorption on two titanium structures: powder and sponge. Also, it is presented the characterization, by X-Ray diffraction, of two structures, before and after sorption process. From our results, one can conclude that sorption method is efficient for both samples. Kinetic curves indicates that sorption rate for titanium powder is lower than for sponge titanium. This is the effect of reaction surface, which is larger for powder titanium. Sorption capacity for hydrogen is lower in powder titanium for identical experimental conditions. The difference between storage capacities could be explained by activation temperature, which was lower for titanium powder than for sponge. (authors)

  14. PALLADIUM DOPED TIN OXIDE BASED HYDROGEN GAS SENSORS FOR SAFETY APPLICATIONS

    International Nuclear Information System (INIS)

    Kasthurirengan, S.; Behera, Upendra; Nadig, D. S.

    2010-01-01

    Hydrogen is considered to be a hazardous gas since it forms a flammable mixture between 4 to 75% by volume in air. Hence, the safety aspects of handling hydrogen are quite important. For this, ideally, highly selective, fast response, small size, hydrogen sensors are needed. Although sensors based on different technologies may be used, thin-film sensors based on palladium (Pd) are preferred due to their compactness and fast response. They detect hydrogen by monitoring the changes to the electrical, mechanical or optical properties of the films. We report the development of Pd-doped tin-oxide based gas sensors prepared on thin ceramic substrates with screen printed platinum (Pt) contacts and integrated nicrome wire heaters. The sensors are tested for their performances using hydrogen-nitrogen gas mixtures to a maximum of 4%H 2 in N 2 . The sensors detect hydrogen and their response times are less than a few seconds. Also, the sensor performance is not altered by the presence of helium in the test gas mixtures. By the above desired performance characteristics, field trials of these sensors have been undertaken. The paper presents the details of the sensor fabrication, electronic circuits, experimental setup for evaluation and the test results.

  15. Fuel Retention Improvement at High Temperatures in Tungsten-Uranium Dioxide Dispersion Fuel Elements by Plasma-Spray Cladding

    Science.gov (United States)

    Grisaffe, Salvatore J.; Caves, Robert M.

    1964-01-01

    An investigation was undertaken to determine the feasibility of depositing integrally bonded plasma-sprayed tungsten coatings onto 80-volume-percent tungsten - 20-volume-percent uranium dioxide composites. These composites were face clad with thin tungsten foil to inhibit uranium dioxide loss at elevated temperatures, but loss at the unclad edges was still significant. By preheating the composite substrates to approximately 3700 degrees F in a nitrogen environment, metallurgically bonded tungsten coatings could be obtained directly by plasma spraying. Furthermore, even though these coatings were thin and somewhat porous, they greatly inhibited the loss of uranium dioxide. For example, a specimen that was face clad but had no edge cladding lost 5.8 percent uranium dioxide after 2 hours at 4750 dgrees F in flowing hydrogen. A similar specimen with plasma-spray-coated edges, however, lost only 0.75 percent uranium dioxide under the same testing conditions.

  16. Effect of Heating Method on Hydrogen Production by Biomass Gasification in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Qiuhui Yan

    2014-01-01

    Full Text Available The glucose as a test sample of biomass is gasified in supercritical water with different heating methods driven by renewable solar energy. The performance comparisons of hydrogen production of glucose gasification are investigated. The relations between temperature raising speed of reactant fluid, variation of volume fraction, combustion enthalpy, and chemical exergy of H2 of the product gases with reactant solution concentration are presented, respectively. The results show that the energy quality of product gases with preheating process is higher than that with no preheating unit for hydrogen production. Hydrogen production quantity and gasification rate of glucose decrease obviously with the increase of concentration of material in no preheating system.

  17. Numerical analysis on the ion species ratios in a steady state hydrogen plasma

    International Nuclear Information System (INIS)

    Fukumasa, Osamu; Saeki, Setsuo; Osaki, Katashi; Sakiyama, Satoshi; Itatani, Ryohei.

    1984-07-01

    Ion species ratios in a hydrogen plasma are calculated systematically as a function of plasma parameters, i.e. the electron density, the electron temperature, the pressure of hydrogen gas and the plasma volume. Furthermore, in the present analysis, the recombination factor for hydrogen atoms at the wall surface of a vacuum vessel is treated as another plasma parameter. The most significant point is that ion species ratios depend strongly not only on plasma parameters, but also on the recombination factor. The proton ratio increases with decreasing value of the recombination factor. Primary electrons also play an important role for ion species ratios, and the presence of primary electrons causes the proton ratio to decrease. (author)

  18. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Velasco, A.J. [Universidad de Pamplona, Pamplona (Colombia); Dougar-Jabon, V.D. [Universidad Industrial de Santander, Bucaramanga (Colombia)

    2004-07-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H{sup -} and D{sup -} ion production involves the process of high Rydberg state excitation. (authors)

  19. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    International Nuclear Information System (INIS)

    Chacon Velasco, A.J.; Dougar-Jabon, V.D.

    2004-01-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H - and D - ion production involves the process of high Rydberg state excitation. (authors)

  20. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  1. Design of spiral fin type condenser for hydrogen cryogenic distillation column

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Nishi, Masataka; Yamanishi, Toshihiko

    2005-08-01

    The purpose of this paper is the proposal of new concept condenser for hydrogen cryogenic distillation column of Hydrogen Isotope Separation System (ISS) in a fusion reactor, and the establishment of numerical evaluation method of the hydrogen isotope inventory in the condenser. A large amount of hydrogen isotopes including high concentration of tritium, radioactive hydrogen isotope, has been handled in the cryogenic distillation column. Therefore, from the safety point of view, cryogenic coolant tube was commonly arranged to surround the condensed area to prevent the mixing of tritium into the coolant. This inevitable arrangement leads the difficulty in the minimization of the condenser. The scale of condenser has influence on the scale of the ISS and its earthquake-resistance. The spiral fin type condenser, which introduces fins inside it and in coolant tube to enhance heat exchange, is proposed as a new concept condenser for hydrogen cryogenic distillation column to miniaturize the condenser. The volume of spiral fin type condenser is estimated to become less than half of that of coil tube type condenser currently in use. Accordingly, it is found that the adoption of spiral fin type condenser realizes the significant miniaturization of the ISS. Moreover, the numerical evaluation method of the hydrogen isotope inventory in the condenser is proposed. The validity of this method was confirmed by the experimental data. The synthetic design of the condenser for the hydrogen cryogenic distillation column is achieved by the combination of the proposed new concept condenser with the numerical evaluation method of the hydrogen isotope inventory. (author)

  2. Mirror Advanced Reactor Study (MARS). Final report. Volume 2. Commercial fusion synfuels plant

    International Nuclear Information System (INIS)

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 2 contains the following chapters: (1) synfuels; (2) physics base and parameters for TMR; (3) high-temperature two-temperature-zone blanket system for synfuel application; (4) thermochemical hydrogen processes; (5) interfacing the sulfur-iodine cycle; (6) interfacing the reactor with the thermochemical process; (7) tritium control in the blanket system; (8) the sulfur trioxide fluidized-bed composer; (9) preliminary cost estimates; and (10) fuels beyond hydrogen

  3. Technical feasibility and financial analysis of hybrid wind-photovoltaic system with hydrogen storage for Cooma

    Energy Technology Data Exchange (ETDEWEB)

    Shakya, B.D.; Aye, L. [Melbourne Univ., Victoria (Australia). Dept. of Civil and Environmental Engineering; Musgrave, P. [Snowy Hydro Ltd., Cooma, NSW (Australia)

    2005-01-01

    The feasibility of a stand-alone hybrid wind-photovoltaic (PV) system incorporating compressed hydrogen gas storage was studied for Cooma (Australia). Cooma has an average annual solar and wind energy availability of 1784 and 932 kWh/m{sup 2}, respectively. A system with 69 kWh{sub e}/day (load) and 483 kWh{sub e}(storage) was studied. Hydrogen is generated in electrolysers using excess electricity from the system. The system components were selected according to their availability and cost. The 'discounted cash flow' method, with the 'levelized energy cost' (LEC) as a financial indicator was used for analysis. Configurations with PV% of 100, 60, 12 and zero were analysed. The lowest LEC of AU $2.52/kWh{sub e} was found for 100% PV. The cost of hydrogen generation from 100% PV was AU $692/GJ of hydrogen. Fifty-two percent of the total project costs were due to the electrolyser. Hence, a reduction in the electrolyser cost would reduce the cost of the overall system. (Author)

  4. Mitigation of hydrogen hazards in water cooled power reactors

    International Nuclear Information System (INIS)

    2001-02-01

    Past considerations of hydrogen generated in containment buildings have tended to focus attention on design basis accidents (DBAs) where the extent of the in-core metal-water reaction is limited at low values by the operation of the emergency core cooling systems (ECCS). The radiolysis of water in the core and in the containment sump, together with the possible corrosion of metals and paints in the containment, are all relatively slow processes. Therefore, in DBAs the time scale involved for the generation of hydrogen allows sufficient time for initiation of measures to control the amount of hydrogen in the containment atmosphere and to prevent any burning. Provisions have been made in most plants to keep the local hydrogen concentration below its flammability limit (4% of volume) by means of mixing devices and thermal recombiners. Severe accidents, involving large scale core degradation and possibly even core concrete interactions, raise the possibility of hydrogen release rates greatly exceeding the capacity of conventional DBA hydrogen control measures. The accident at Three Mile Island illustrated the potential of unmitigated hydrogen accumulation to escalate the potential consequences of a severe accident. In a severe accident scenario, local high hydrogen concentrations can be reached in a short time, leading to flammable gas mixtures in containment. Another possibility is that local high steam concentrations will initially create an inert atmosphere and prevent burning for a limited time. While such temporary inerting provides additional time for mixing (dilution) of the hydrogen with containment air, depending on the quantity of hydrogen released, it prevents early intervention by deliberate ignition and sets up conditions for more severe combustion hazards after steam condensation eventually occurs, e.g., by spray initiation or the long term cooling down of the containment atmosphere. As the foregoing example indicates, analysis of the hydrogen threat in

  5. Hydrogen storage in Mg: a most promising material

    International Nuclear Information System (INIS)

    Jain, I.P.; Jain, A.; Lal, C.

    2009-01-01

    In the last one decade hydrogen has attracted worldwide interest as an energy carrier. This has generated comprehensive investigations on the technology involved and how to solve the problems of production, storage and applications of hydrogen. The interest in hydrogen as energy of the future is due to it being a clean energy, most abundant element in the universe, the lightest fuel and richest in energy per unit mass. Hydrogen as a fuel can be used to cook food, drive cars, jet planes, run factories and for all our domestic energy requirements. It can provide cheap electricity. In short, hydrogen shows the solution and also allows the progressive and non-traumatic transition of today's energy sources, towards feasible safe reliable and complete sustainable energy chains. The present article deals with the hydrogen storage in metal hydrides with particular interest in Mg as it has potential to become one of the most promising storage materials. Many metals combine chemically with Hydrogen to form a class of compounds known as Hydrides. These hydrides can discharge hydrogen as and when needed by raising their temperature or pressure. An optimum hydrogen-storage material is required to have various properties viz. high hydrogen capacity per unit mass and unit volume which determines the amount of available energy, low dissociation temperature, moderate dissociation pressure, low heat of formation in order to minimize the energy necessary for hydrogen release, low heat dissipation during the exothermic hydride formation, reversibility, limited energy loss during charge and discharge of hydrogen, fast kinetics, high stability against O 2 and moisture for long cycle life, cyclibility, low cost of recycling and charging infrastructures and high safety. So far most of the hydrogen storage alloys such as LaNi 5 , TiFe, TiMn 2 , have hydrogen storage capacities, not more than 2 wt% which is not satisfactory for practical application as per DOE Goal. A group of Mg based

  6. Hydrogen molecules and hydrogen-related defects in crystalline silicon

    Science.gov (United States)

    Fukata, N.; Sasaki, S.; Murakami, K.; Ishioka, K.; Nakamura, K. G.; Kitajima, M.; Fujimura, S.; Kikuchi, J.; Haneda, H.

    1997-09-01

    We have found that hydrogen exists in molecular form in crystalline silicon treated with hydrogen atoms in the downstream of a hydrogen plasma. The vibrational Raman line of hydrogen molecules is observed at 4158 cm-1 for silicon samples hydrogenated between 180 and 500 °C. The assignment of the Raman line is confirmed by its isotope shift to 2990 cm-1 for silicon treated with deuterium atoms. The Raman intensity has a maximum for hydrogenation at 400 °C. The vibrational Raman line of the hydrogen molecules is broad and asymmetric. It consists of at least two components, possibly arising from hydrogen molecules in different occupation sites in crystalline silicon. The rotational Raman line of hydrogen molecules is observed at 590 cm-1. The Raman band of Si-H stretching is observed for hydrogenation temperatures between 100 and 500 °C and the intensity has a maximum for hydrogenation at 250 °C.

  7. Correlation between free-volume parameters and physical properties of polyethylene-nitrile rubber blend

    Science.gov (United States)

    Gomaa, E.; Mostafa, N.; Mohsen, M.; Mohammed, M.

    2004-10-01

    Positron annihilation lifetime spectroscopy (PALS) was used to study the immiscibility of a polar nitrile rubber (NBR) that had been blended with pure and waste, low- and high-density polyethylene (PE). The effect of the weight percent of the rubber added to the PE was also investigated. It was found that a complicated variation (positive and negative) in both free-volume parameters (τ3 and I 3) from the values of the initial polymers forms an immiscible blend. These results are supported by a significant broadening in the free-volume hole size distributions. This has been interpreted in terms of interfacial spaces created between the boundaries of the two phases. Furthermore, a correlation was established between the free-volume parameters (τ3 and I 3) and the electrical and mechanical properties of the before mentioned polymer blends as a function of the weight percent of waste PE.

  8. Improving the Corrosion Inhibitive Strength of Sodium Sulphite in Hydrogen Cyanide Solution Using Sodium Benzoate

    Directory of Open Access Journals (Sweden)

    Muhammed Olawale Hakeem AMUDA

    2008-12-01

    Full Text Available The improvement in the inhibitive strength of sodium sulphite on corrosion of mild steel in hydrogen cyanide by adding sodium benzoate in regulated volume was investigated using the fundamental weight loss measurement.500 ppm concentration inhibitive mixtures of sodium benzoate and sodium sulphite in three different volume ratios (5/15, 10/10, 15/5 were formulated and studied for corrosion rate in 200ml hydrogen cyanide fluid. Result obtained indicates that the corrosion rate of mild steel in hydrogen cyanide in the presence of sodium benzoate/sodium sulphite inhibitive mixtures range 0.322mmpy to 1.1269mmpy across the three volumetric ratios considered. The 15ml5ml sodium benzoatesodium sulphite mixture had the best average corrosion rate of 0.5123mmpy.The corrosion rate followed reducing pattern after the first 200 hours of immersion. The average corrosion rate in the sodium benzoate / sodium sulphite mixture is less than the rate in sodium sulphite and the mixture is only effective after long time exposure.It is concluded that adding sodium benzoate to sodium sulphite in the volumetric ratio 155ml improves the inhibitive strength of sodium sulphite on the corrosion of mild steel in hydrogen cyanide environment.

  9. Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001

    Energy Technology Data Exchange (ETDEWEB)

    Kars, Goekhan; Guenduez, Ufuk; Yuecel, Meral [Department of Biological Sciences, Middle East Technical University, 06531 Ankara (Turkey); Rakhely, Gabor; Kovacs, Kornel L. [Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged (Hungary); Eroglu, Inci [Department of Chemical Engineering, Middle East Technical University, 06531 Ankara (Turkey)

    2008-06-15

    Rhodobacter sphaeroides O.U.001 is a purple non-sulfur bacterium producing hydrogen under photoheterotrophic conditions. Hydrogen is produced by Mo-nitrogenase enzyme and substantial amount of H{sub 2} is reoxidized by a membrane-bound uptake hydrogenase in the wild type strain. To improve the hydrogen producing capacity of the cells, a suicide vector containing a gentamicin cassette in the hupSL genes was introduced into R. sphaeroiodes O.U.001 and the uptake hydrogenase genes were destroyed by site directed mutagenesis. The correct integration of the construct was confirmed by uptake hydrogenase activity measurement, PCR and subsequent sequence analysis. The wild type and the mutant cells showed similar growth patterns but the total volume of hydrogen gas evolved by the mutant was 20% higher than that of the wild type strain. This result demonstrated that the hydrogen produced by the nitrogenase was not consumed by uptake hydrogenase leading to higher hydrogen production. (author)

  10. 3H-dextran method for measurements of the blood volume in the rat choroid

    International Nuclear Information System (INIS)

    Matsusaka, Toshihiko; Morimoto, Kazuhiro; Kikkawa, Yoshizo.

    1980-01-01

    A new method was developed using 3 H-dextran for measuring the blood volume in the choroid. Under pentobarbital-anesthesia, albino rats weighing 200 grams were perfused through the left ventricle with a 2.5 percent glutaraldehyde solution containing the radioactive dextran. The procedure allowed exchange of the choroidal blood with the 3 H-dextran solution with a simultaneous fixation of the choroid. The blood volume in the choroid was calculated from the radioactivity count, which is estimated to be 1.690 x 10 -4 ml per mg wet weight and 5.070 x 10 -4 ml per mg dry weight. Epinephrine subconjunctivally injected diminished the blood volume in the choroid by 68 percent. Pretreatment with lidocaine almost nullified the effect of epinephrine. Applicability of this method to the analytical study of the choroidal circulation is discussed. (author)

  11. Hydrogen concentration control utilizing a hydrogen permeable membrane

    International Nuclear Information System (INIS)

    Keating, S.J. Jr.

    1976-01-01

    The concentration of hydrogen in a fluid mixture is controlled to a desired concentration by flowing the fluid through one chamber of a diffusion cell separated into two chambers by a hydrogen permeable membrane. A gradient of hydrogen partial pressure is maintained across the membrane to cause diffusion of hydrogen through the membrane to maintain the concentration of hydrogen in the fluid mixture at the predetermined level. The invention has particular utility for the purpose of injecting into and/or separating hydrogen from the reactor coolant of a nuclear reactor system

  12. A model for hydrogen pickup for BWR cladding materials

    International Nuclear Information System (INIS)

    Hede, G.; Kaiser, U.

    2001-01-01

    It has been observed that rod elongation is driven by the hydrogen pickup but not by corrosion as such. Based on this a non-destructive method to determine clad hydrogen concentration has been developed. The method is based on the observation that there are three different mechanisms behind the rod growth: the effect of neutron irradiation on the Zircaloy microstructure, the volume increase of the cladding as an effect of hydride precipitation and axial pellet-cladding-mechanical-interaction (PCMI). The derived correlation is based on the experience of older cladding materials, inspected at hot-cell laboratories, that obtained high hydrogen levels (above 500 ppm) at lower burnup (assembly burnup below 50 MWd/kgU). Now this experience can be applied, by interpolation, on more modern cladding materials with a burnup beyond 50 MWd/kgU by analysis of the rod growth database of the respective cladding materials. Hence, the method enables an interpolation rather than an extrapolation of present day hydrogen pickup database, which improves the reliability and accuracy. Further, one can get a good estimate of the hydrogen pickup during an ongoing outage based on a non-destructive method. Finally, rod growth measurements are normally performed for a large population of rods, hence giving a good statistics compared to examination of a few rods at a hot cell. (author)

  13. A Biomimetic Approach to New Adsorptive Hydrogen Storage Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hongcai J [Texas A& M University

    2015-08-12

    In the past decades, there has been an escalation of interest in the study of MOFs due to their fascinating structures and intriguing application potentials. Their exceptionally high surface areas, uniform yet tunable pore sizes, and well-defined adsorbate-MOF interaction sites make them suitable for hydrogen storage. Various strategies to increase the hydrogen capacity of MOFs, such as constructing pore sizes comparable to hydrogen molecules, increasing surface area and pore volume, utilizing catenation, and introducing coordinatively unsaturated metal centers (UMCs) have been widely explored to increase the hydrogen uptake of the MOFs. MOFs with hydrogen uptake approaching the DOE gravimetric storage goal under reasonable pressure but cryo- temperature (typically 77 K) were achieved. However, the weak interaction between hydrogen molecules and MOFs has been the major hurdle limiting the hydrogen uptake of MOFs at ambient temperature. Along the road, we have realized both high surface area and strong interaction between framework and hydrogen are equally essential for porous materials to be practically applicable in Hydrogen storage. Increasing the isosteric heats of adsorption for hydrogen through the introduction of active centers into the framework could have great potential on rendering the framework with strong interaction toward hydrogen. Approaches on increasing the surface areas and improving hydrogen affinity by optimizing size and structure of the pores and the alignment of active centers around the pores in frameworks have been pursued, for example: (a) the introduction of coordinatively UMC (represents a metal center missing multiple ligands) with potential capability of multiple dihydrogen-binding (Kubas type, non-dissociative) per UMC, (b) the design and synthesis of proton-rich MOFs in which a + H3 binds dihydrogen just like a metal ion does, and (c) the preparation of MOFs and PPNs with well aligned internal electric fields. We believe the

  14. Measures for ensuring hydrogen fire and explosion safety for VVER-440/230

    International Nuclear Information System (INIS)

    Bezlepkin, V.; Semashko, S.; Svetlov, S.; Sidorov, V.; Ivkov, I.; Krylov, Yu.; Kukhtevich, V.

    2004-01-01

    integral release (as compared to a small leak accident). In the course of propagating the said accident, dangerous local concentrations of hydrogen may occur (with a possibility of rapid deflagration combustion) in the places which are closely located to the leakage. In this case, maximum volume of the boxes, where fast deflagration combustion may occur is commensurate with the volumes of main rooms. In case of 20 mm small primary leak and of a failure of the emergency makeup system, maximum emissions of hydrogen would be significantly lower than peak emissions during 500 mm large break accident, anyhow an integral release into the tight rooms would be drastically higher. Capacity of the hydrogen removal system has therefore been selected based on possible peak emissions of hydrogen, on the one hand, and a necessity of removing of huge amount of hydrogen within a long period of time, on the other. Avoidance of such combustion conditions whose loads may lead to a destruction of civil structures and of localizing safety systems has been the key criterion for selecting the locations and capacity of the recombiners. Analysis of various arrangements of recombiners allows to design the hydrogen removal system in such a way that the concentration of hydrogen in combination with aqueous steam and air would turn out to be lower than the concentration limits of fire propagation throughout the entire calculation range of changing the parameters of medium within the rooms during the accidents under review. The concentration monitoring system is built up so that operator would have representative information on the changes in the concentration of hydrogen within the tight rooms. Sensors are located in the places where hydrogen may very probably occur and such places have been determined based on the findings of calculation analysis. Thus, the measures aimed at removal and monitoring of hydrogen recommended on the basis of the presented calculation analyses are in full compliance with

  15. 12 CFR 741.4 - Insurance premium and one percent deposit.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Insurance premium and one percent deposit. 741... Insurance premium and one percent deposit. (a) Scope. This section implements the requirements of Section... payment of an insurance premium. (b) Definitions. For purposes of this section: (1) Available assets ratio...

  16. Thermo-hydraulic test of the moderator cell of liquid hydrogen cold neutron source for the Budapest research reactor

    International Nuclear Information System (INIS)

    Grosz, Tamas; Rosta, Laszlo; Hargitai, Tibor; Mityukhlyaev, V.A.; Serebrov, A.P.; Zaharov, A.A.

    1999-01-01

    Thermo-hydraulic experiment was carried out in order to test performance of the direct cooled liquid hydrogen moderator cell to be installed at the research reactor of the Budapest Neutron Center. Two electric hearers up to 300 W each imitated the nuclear heat release in the liquid hydrogen as well as in construction material. The test moderator cell was also equipped with temperature gauges to measure the hydrogen temperature at different positions as well as the inlet and outlet temperature of cooling he gas. The hydrogen pressure in the connected buffer volume was also controlled. At 140 w expected total heat load the moderator cell was filled with liquid hydrogen within 4 hours. The heat load and hydrogen pressure characteristics of the moderator cell are also presented. (author)

  17. Feasibility Studies of Vortex Flow Impact On the Proliferation of Algae in Hydrogen Production for Fuel Cell Applications

    Science.gov (United States)

    Miskon, Azizi; A/L Thanakodi, Suresh; Shiema Moh Nazar, Nazatul; Kit Chong, Marcus Wai; Sobri Takriff, Mohd; Fakir Kamarudin, Kamrul; Aziz Norzali, Abdul; Nooraya Mohd Tawil, Siti

    2016-11-01

    The instability of crude oil price in global market as well as the sensitivity towards green energy increases, more research works being carried out to find alternative energy replacing the depleting of fossil fuels. Photobiological hydrogen production system using algae is one of the promising alternative energy source. However, the yield of hydrogen utilizing the current photobioreactor (PBR) is still low for commercial application due to restricted light penetration into the deeper regions of the reactor. Therefore, this paper studies the feasibility of vortex flow impact utilizing magnetic stirring in hydrogen production for fuel cell applications. For comparison of results, a magnetic stirrer is placed under a PBR of algae to stir the algae to obtain an even distribution of sunlight to the algae while the controlled PBR of algae kept in static. The produced hydrogen level was measured using hydrogen sensor circuit and the data collected were communicated to laptop using Arduino Uno. The results showed more cell counts and hydrogen produced in the PBR under the influence of magnetic stirring compared to static PBR by an average of 8 percent in 4 days.

  18. Three-Dimensional Photography for Quantitative Assessment of Penile Volume-Loss Deformities in Peyronie's Disease.

    Science.gov (United States)

    Margolin, Ezra J; Mlynarczyk, Carrie M; Mulhall, John P; Stember, Doron S; Stahl, Peter J

    2017-06-01

    Non-curvature penile deformities are prevalent and bothersome manifestations of Peyronie's disease (PD), but the quantitative metrics that are currently used to describe these deformities are inadequate and non-standardized, presenting a barrier to clinical research and patient care. To introduce erect penile volume (EPV) and percentage of erect penile volume loss (percent EPVL) as novel metrics that provide detailed quantitative information about non-curvature penile deformities and to study the feasibility and reliability of three-dimensional (3D) photography for measurement of quantitative penile parameters. We constructed seven penis models simulating deformities found in PD. The 3D photographs of each model were captured in triplicate by four observers using a 3D camera. Computer software was used to generate automated measurements of EPV, percent EPVL, penile length, minimum circumference, maximum circumference, and angle of curvature. The automated measurements were statistically compared with measurements obtained using water-displacement experiments, a tape measure, and a goniometer. Accuracy of 3D photography for average measurements of all parameters compared with manual measurements; inter-test, intra-observer, and inter-observer reliabilities of EPV and percent EPVL measurements as assessed by the intraclass correlation coefficient. The 3D images were captured in a median of 52 seconds (interquartile range = 45-61). On average, 3D photography was accurate to within 0.3% for measurement of penile length. It overestimated maximum and minimum circumferences by averages of 4.2% and 1.6%, respectively; overestimated EPV by an average of 7.1%; and underestimated percent EPVL by an average of 1.9%. All inter-test, inter-observer, and intra-observer intraclass correlation coefficients for EPV and percent EPVL measurements were greater than 0.75, reflective of excellent methodologic reliability. By providing highly descriptive and reliable measurements of

  19. Effect of hydrogen addition on combustion and emissions performance of a gasoline rotary engine at part load and stoichiometric conditions

    International Nuclear Information System (INIS)

    Ji, Changwei; Su, Teng; Wang, Shuofeng; Zhang, Bo; Yu, Menghui; Cong, Xiaoyu

    2016-01-01

    Highlights: • The performance of a H_2-blended gasoline rotary engine was studied. • The p, Bmep, T_m_a_x and η_b increased after H_2 blending. • Both the CA0-10 and CA10-90 were shortened by the H_2 addition. • H_2 addition resulted in the reduced HC, CO and CO_2 emissions. - Abstract: The rotary engines may encounter high fuel consumption and emissions due to its narrow and long combustion chamber design. The low ignition energy and high flame speed of hydrogen may help improve the combustion of rotary engines. In this paper, a gasoline rotary engine equipped with gasoline and hydrogen injectors was developed to investigate the combustion and emissions of hydrogen-blended gasoline rotary engines. The engine was run at 3000 rpm and a manifolds absolute pressure of 37.5 kPa with the stoichiometric excess air ratio. The spark timing was set to be 25°CA before the top dead center. The engine was first fueled with the pure gasoline and then blended with the hydrogen. The hydrogen volume fractions in the intake were gradually increased from 0% to 5.2%. The results showed that the combustion pressure, brake mean effective pressure, cylinder temperature and thermal efficiency were simultaneously increased after the hydrogen blending. The crank angle of peak pressure was advanced with the hydrogen addition. The hydrogen enrichment was effective on reducing flame development and propagation periods. HC emissions were reduced by 44.8% when the hydrogen volume fraction in the intake was raised from 0% to 5.2%, CO and CO_2 emissions were also reduced after the hydrogen blending.

  20. Nano-porous inorganic-organic hybrid solids: some new materials for hydrogen storage?

    International Nuclear Information System (INIS)

    Serre, Ch.; Loiseau, Th.; Devic, T.; Ferey, G.; Latroche, M.; Llewellyn, Ph.; Chang, J.S.

    2007-01-01

    Recently have been studied chromium and aluminium carboxylates MIL-53(Cr, Al), formed from an assembly of octahedrons chains and for hybrid solids formed with octahedrons trimers (MIL-100 and MIL-101). The compounds MIL-53(Cr, Al) are microporous (φ ∼ 8 Angstroms, while the solids MIL-100 and MIL-101 have very large porous volumes (V ∼ 380-700000 (Angstroms) 3 ), meso-pores (φ ∼ 25-34 Angstroms) and a zeolitic architecture. The resulting specific surface areas are important (between 1000 m 2 .g -1 for the MIL-53 solids, until 4000 m 2 .g -1 for the MIL-101 compound. Here is presented their hydrogen adsorption properties, at 77 K and 298 K. The hydrogen adsorption kinetics has been tested on the MIL-53(Cr) solid at 77 K. Hydrogen adsorption micro-calorimetry experiments have been carried out on these solids between 0 and 1 bar in order to obtain data on the strongest interactions between hydrogen and the porous basic structure. (O.M.)

  1. Blood Volume and Other Hematologic Values in Young Elephant Seals (Mirounga angustirostris)

    National Research Council Canada - National Science Library

    Simpson, John G; Gilmartin, William G; Ridgway, Sam H

    1970-01-01

    ... (Mirounga angustirostris) by a method that could be accurate to 2 percent. The blood volumes of 7 young northern elephant seals were analyzed using a dilution of radioactive iodinated human serum albumin...

  2. Hydrogen disposal investigation for the Space Shuttle launch complex at Vandenberg Air Force Base

    Science.gov (United States)

    Breit, Terry J.; Elliott, George

    1987-01-01

    The concern of an overpressure condition on the aft end of the Space Shuttle caused by ignition of unburned hydrogen being trapped in the Space Shuttle Main Engine exhaust duct at the Vandenberg AFB launch complex has been investigated for fifteen months. Approximately twenty-five concepts have been reviewed, with four concepts being thoroughly investigated. The four concepts investigated were hydrogen burnoff ignitors (ignitors located throughout the exhaust duct to continuously ignite any unburned hydrogen), jet mixing (utilizing large volumes of high pressure air to ensure complete combustion of the hydrogen), steam inert (utilizing flashing hot water to inert the duct with steam) and open duct concept (design an open duct or above grade J-deflector to avoid trapping hydrogen gas). Extensive studies, analyses and testing were performed at six test sites with technical support from twenty-two major organizations. In December 1986, the Air Force selected the steam inert concept to be utilized at the Vandenberg launch complex and authorized the design effort.

  3. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  4. Thermogravimetric measurement of hydrogen storage in carbon-based materials: promise and pitfalls

    International Nuclear Information System (INIS)

    Pinkerton, F.E.; Wicke, B.G.; Olk, C.H.; Tibbetts, G.G.; Meisner, G.P.; Meyer, M.S.; Herbst, J.F.

    2000-01-01

    We have used a thermogravimetric analyzer (TGA) to measure the hydrogen absorption capacity of a variety of carbon-based storage materials, including Li- and K-intercalated graphite and Li-doped multi-wall nanotubes. The TGA uses weight gain/loss as a function of time and temperature to monitor hydrogen absorption/desorption in flowing hydrogen gas. Creating and maintaining a contaminant-free atmosphere is critical to the accurate TGA measurement of hydrogen absorption in carbon-based materials; even low concentrations of impurity gases such as O 2 or H 2 O are sufficient to masquerade as hydrogen absorption. We will discuss examples of this effect relevant to recent reports of hydrogen storage appearing in the literature. The precautions required are non-trivial. In our TGA, for instance, about 16% of the original atmosphere remains after a two-hour purge; at least 15 hours is required to fully purge the apparatus. Furthermore, we cover the TGA with a protective atmosphere enclosure during sample loading to minimize the introduction of impurity gases. With these precautions it is possible to unambiguously measure hydrogen storage. For example, we have determined the hydrogen absorption capacity of our K-intercalated graphite samples to be 1.3 wt% total hydrogen absorption above 50 o C, of which 0.2 wt% can be reproducibly recovered with temperature cycling. With due care, TGA measurements provide complementary information to that obtained from standard pressure techniques for measuring hydrogen sorption, which rely on measuring the loss of gas pressure in a known volume. Taken together, TGA and pressure measurements provide a powerful combination for determining verifiable hydrogen storage capacity. (author)

  5. Hydrogen isotope effect through Pd in hydrogen transport pipe

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi

    1992-01-01

    This investigation concerns hydrogen system with hydrogen transport pipes for transportation, purification, isotope separation and storage of hydrogen and its isotopes. A principle of the hydrogen transport pipe (heat pipe having hydrogen transport function) was proposed. It is comprised of the heat pipe and palladium alloy tubes as inlet, outlet, and the separation membrane of hydrogen. The operation was as follows: (1) gas was introduced into the heat pipe through the membrane in the evaporator; (2) the introduced gas was transported toward the condenser by the vapor flow; (3) the transported gas was swept and compressed to the end of the condenser by the vapor pressure; and (4) the compressed gas was exhausted from the heat pipe through the membrane in the condenser. The characteristics of the hydrogen transport pipe were examined for various working conditions. Basic performance concerning transportation, evacuation and compression was experimentally verified. Isotopic dihydrogen gases (H 2 and D 2 ) were used as feed gas for examining the intrinsic performance of the isotope separation by the hydrogen transport pipe. A simulated experiment for hydrogen isotope separation was carried out using a hydrogen-helium gas mixture. The hydrogen transport pipe has a potential for isotope separation and purification of hydrogen, deuterium and tritium in fusion reactor technology. (author)

  6. Remediation of diesel-contaminated soils using catalyzed hydrogen peroxide: a laboratory evaluation

    International Nuclear Information System (INIS)

    Xu, P.; Achari, G.; Mahmoud, M.; Joshi, R.C.

    2002-01-01

    This paper presents the results of a laboratory investigation conducted to determine the optimum amount of Fenton's reagent that allows for effective treatment of diesel-contaminated soils. Two types of soils spiked with 5,000 mg/kg diesel fuel were treated in vial reactors with varying concentrations and volumes of hydrogen peroxide. Additionally, Ottawa sand spiked with 5,000 mg/kg of diesel was treated with different H 2 O 2 to iron ratios. The gases produced during the remediation process were measured and analyzed to evaluate the oxidation of diesel range organics. As much as 40 % of diesel range organics was removed when 5 grams of silty clay were treated with 20 mL of 20 % H 2 O 2 . The same concentration and volume of hydrogen peroxide removed about 63 % of diesel range organics from sandy silt. The optimal molar ratio of H 2 O 2 : iron catalyst was found to vary between 235:1 to 490:1. (author)

  7. Pressure hydrogenation of solid carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M; Kroenig, W

    1942-09-28

    A process is described for the continuous pressure hydrogenation of solid, nonfusible carbonaceous material, such as coal, oil shale, or peat, in a pasted condition, characterized in that the charge is heated in a known way under pressure, together with water, nearly to the reaction temperature, then it is led into a pressure vessel, whose volume amounts to 20 to 40% of the usual reaction space without any change at the same temperature, and the charge then goes through the reaction vessel, after which its temperature is raised to the reaction height.

  8. Determination of trapping parameters and the chemical diffusion coefficient from hydrogen permeation experiments

    International Nuclear Information System (INIS)

    Svoboda, J.; Mori, G.; Prethaler, A.; Fischer, F.D.

    2014-01-01

    Highlights: • A modeling study for diffusion of hydrogen with traps is presented. • Introduction of a new chemical diffusion coefficient. • Density of traps and average depth of traps can be determined. • Lattice diffusion and sub-surface concentration of atomic hydrogen can be determined. - Abstract: An improved diffusion theory accounting for trapping effects is applied to evaluation of hydrogen permeation experiments performed for pure iron and pearlitic and martensitic steels. The trapping parameters as molar volume and depth of traps are determined by fitting experiments by simulations based on the theory. The concentration-dependent chemical diffusion coefficient of hydrogen is extracted indicating that the trapping effect on diffusion in pure iron and pearlitic steel is negligible. However, it is significant for martensitic steel, for which the chemical diffusion coefficient cannot be considered as concentration-independent as it is established in current standards

  9. Scope and perspectives of industrial hydrogen production and infrastructure for fuel cell vehicles in North Rhine-Westphalia

    International Nuclear Information System (INIS)

    Pastowski, Andreas; Grube, Thomas

    2010-01-01

    A promising candidate that may follow conventional vehicles with internal combustion engines combines hydrogen from regenerative sources of energy, fuel cells and an electric drive train. For early fleets introduced the refuelling infrastructure needs to be in place at least to the extent of the vehicles operational reach. The question arises which strategies may help to keep initial hydrogen and infrastructure cost low? Industrial production, distribution and use of hydrogen is well-established and the volumes handled are substantial. Even though today's industrial hydrogen is not in tune with the long-term sustainable vision, hydrogen production and infrastructure already in place might serve as a nucleus for putting that vision into practice. This contribution takes stock of industrial production and use of hydrogen in North Rhine-Westphalia based on a recently finalized project. It demonstrates to which extent industrial hydrogen could be used for a growing number of vehicles and at which time additional capacity might need to be installed.

  10. The motion of hydrogen isotopes in metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Drexel, W.; Murani, A.; Tocchetti, D.; Kley, W.

    1976-08-01

    The existence of local and band modes of hydrogen and deuterium impurities in α-palladium hydride was observed by inelastic scattering of thermal neutrons of 12.6 meV. The first and second harmonic of the hydrogen local mode could be observed at Esub(1)sup(H)=(66+-4)meV and Esub(2)sup(H)=(135+-15)meV. For deuterium the first harmonics appears at Esub(1)sup(D)=(48+-4)meV. The width of the hydrogen local mode Esub(1)sup(H) is changing from 30 to 20 meV and its position from 63 to 66meV if the hydrogen concentration is altered from 2.7 to 0.2 atom percent. The intensity of the Esub(1)sup(H) mode, integrated for scattering angles from 11 0 till 68 0 and a mean k-vector pointing in the [210]-direction, is decreasing by a factor of 5 with respect to harmonic oscillator while the intensity of the second harmonic Esub(2)sup(H) and of the band modes stays almost constant if the temperature is changed from 423 0 K till 673 0 K. The behavior of this intensity distributions with temperature indicates a partition of the proton motions in diffusive and localized motions and supports the assumption of an anharmonic periodic potential along the [110] direction. The frequency distribution function of the hydrogen band modes has a shape as expected from measured dispersion curves. For [Pdsub(0.018)sup(D)-Pd] a broad quasielastic line is observed that indicates the existence of overdamped phonons in the vicinity of the impurity atom

  11. 49 CFR 173.182 - Barium azide-50 percent or more water wet.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Barium azide-50 percent or more water wet. 173.182 Section 173.182 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.182 Barium azide—50 percent or more water wet. Barium azide—50 percent or more...

  12. The effect of pearlite on the hydrogen-induced ductility loss in ductile cast irons

    Science.gov (United States)

    Matsuo, T.

    2017-05-01

    Hydrogen energy systems, such as a hydrogen fuel cell vehicle and a hydrogen station, are rapidly developing to solve global environmental problems and resource problems. The available structural materials used for hydrogen equipments have been limited to only a few relatively expensive metallic materials that are tolerant for hydrogen embrittlement. Therefore, for the realization of a hydrogen society, it is important to expand the range of materials available for hydrogen equipment and thereby to enable the use of inexpensive common materials. Therefore, ductile cast iron was, in this study, focused as a structural material that could contribute to cost reduction of hydrogen equipment, because it is a low-cost material having good mechanical property comparable to carbon steels in addition to good castability and machinability. The strength and ductility of common ductile cast irons with a ferritic-pearlitic matrix can be controlled by the volume fraction of pearlitic phase. In the case of carbon steels, the susceptibility to hydrogen embrittlement increases with increase in the pearlite fraction. Toward the development of ferritic-pearlitic ductile cast iron with reasonable strength for hydrogen equipment, it is necessary to figure out the effect of pearlite on the hydrogen embrittlement of this cast iron. In this study, the tensile tests were conducted using hydrogen-precharged specimens of three kinds of ferritic-pearlitic ductile cast irons, JIS-FCD400, JIS-FCD450 and JIS-FCD700. Based on the results, the role of pearlite in characterizing the hydrogen embrittlement of ductile cast iron was discussed.

  13. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  14. A synergetic use of hydrogen and fuel cells in human spaceflight power systems

    Science.gov (United States)

    Belz, S.

    2016-04-01

    Hydrogen is very flexible in different fields of application of energy conversion. It can be generated by water electrolysis. Stored in tanks it is available for re-electrification by fuel cells. But it is not only the power system, which benefits from use of hydrogen, but also the life support system, which can contain hydrogen consuming technologies for recycling management (e.g. carbon dioxide removal and waste combustion processes). This paper points out various fields of hydrogen use in a human spaceflight system. Depending on mission scenarios, shadow phases, and the need of energy storage, regenerative fuel cell systems can be more efficient than secondary batteries. Here, different power storage concepts are compared by equivalent system mass calculation, thus including impact in the peripheral structure (volume, thermal management, etc.) on the space system. It is also focused on the technical integration aspect, e.g. which peripheral components have to be adapted when hydrogen is also used for life support technologies and what system mass benefit can be expected. Finally, a recommendation is given for the following development steps for a synergetic use of hydrogen and fuel cells in human spaceflight power systems.

  15. Hydrogen and methane production from condensed molasses fermentation soluble by a two-stage anaerobic process

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chiu-Yue; Liang, You-Chyuan; Lay, Chyi-How [Feng Chia Univ., Taichung, Taiwan (China). Dept. of Environmental Engineering and Science; Chen, Chin-Chao [Chungchou Institute of Technology, Taiwan (China). Environmental Resources Lab.; Chang, Feng-Yuan [Feng Chia Univ., Taichung, Taiwan (China). Research Center for Energy and Resources

    2010-07-01

    The treatment of condensed molasses fermentation soluble (CMS) is a troublesome problem for glutamate manufacturing factory. However, CMS contains high carbohydrate and nutrient contents and is an attractive and commercially potential feedstock for bioenergy production. The aim of this paper is to produce hydrogen and methane by two-stage anaerobic fermentation process. The fermentative hydrogen production from CMS was conducted in a continuously-stirred tank bioreactor (working volume 4 L) which was operated at a hydraulic retention time (HRT) of 8 h, organic loading rate (OLR) of 120 kg COD/m{sup 3}-d, temperature of 35 C, pH 5.5 and sewage sludge as seed. The anaerobic methane production was conducted in an up-flow bioreactor (working volume 11 L) which was operated at a HRT of 24 -60 hrs, OLR of 4.0-10 kg COD/m{sup 3}-d, temperature of 35 C, pH 7.0 with using anaerobic granule sludge from fructose manufacturing factory as the seed and the effluent from hydrogen production process as the substrate. These two reactors have been operated successfully for more than 400 days. The steady-state hydrogen content, hydrogen production rate and hydrogen production yield in the hydrogen fermentation system were 37%, 169 mmol-H{sub 2}/L-d and 93 mmol-H{sub 2}/g carbohydrate{sub removed}, respectively. In the methane fermentation system, the peak methane content and methane production rate were 66.5 and 86.8 mmol-CH{sub 4}/L-d with methane production yield of 189.3 mmol-CH{sub 4}/g COD{sub removed} at an OLR 10 kg/m{sup 3}-d. The energy production rate was used to elucidate the energy efficiency for this two-stage process. The total energy production rate of 133.3 kJ/L/d was obtained with 5.5 kJ/L/d from hydrogen fermentation and 127.8 kJ/L/d from methane fermentation. (orig.)

  16. Making the case for direct hydrogen storage in fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  17. New method for the hydrogen isotope exchange reaction in a hydrophobic catalyst bed

    International Nuclear Information System (INIS)

    Asakura, Y.; Kikuchi, M.; Yusa, H.

    1982-01-01

    To improve the isotope exchange reaction efficiency between water and hydrogen, a new reactor in which water mists and hydrogen gas react cocurrently was studied. To apply this to the enrichment of tritium in heavy water, a dual temperature isotope exchange reactor which is composed of cocurrent low temperature reactors and the usual countercurrent high temperature reactor was proposed and analyzed using a McCabe-Thiele diagram. By utilizing cocurrent reactors, in combination, the necessary catalyst volume can be reduced to one-tenth as compared with the usual countercurrent low temperature reactor. 17 refs

  18. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    Science.gov (United States)

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  19. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Siemens Energy, Inc., Orlando, FL (United States)

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  20. /sup 3/H-dextran method for measurements of the blood volume in the rat choroid

    Energy Technology Data Exchange (ETDEWEB)

    Matsusaka, T [Osaka Prefectural Center for Adult Diseases (Japan); Morimoto, K; Kikkawa, Y

    1980-01-01

    A new method was developed using /sup 3/H-dextran for measuring the blood volume in the choroid. Under pentobarbital-anesthesia, albino rats weighing 200 grams were perfused through the left ventricle with a 2.5 percent glutaraldehyde solution containing the radioactive dextran. The procedure allowed exchange of the choroidal blood with the /sup 3/H-dextran solution with a simultaneous fixation of the choroid. The blood volume in the choroid was calculated from the radioactivity count, which is estimated to be 1.690 x 10/sup -4/ ml per mg wet weight and 5.070 x 10/sup -4/ ml per mg dry weight. Epinephrine subconjunctivally injected diminished the blood volume in the choroid by 68 percent. Pretreatment with lidocaine almost nullified the effect of epinephrine. Applicability of this method to the analytical study of the choroidal circulation is discussed.

  1. Achievement report for 1st phase (fiscal 1974-80) Sunshine Program research and development - Hydrogen energy. Research on hydrogen-fueled engine; 1974-1980 nendo suiso energy seika hokokusho. Suiso nenryo gendoki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    The research aims to acquire data necessary for designing an engine, which is fueled by hydrogen stored in metal hydrides, for an automobile power plant. It covers the characteristics of hydrogen and their theoretical examination, basic studies on the turbulent mixing and combustion of hydrogen, research using a single-cylinder engine, changes brought into engine performance upon addition of hydrogen, etc. When hydrogen is burned in a spark ignition engine, flashback to the induction system is prone to occur. But this is prevented by directly injecting nothing but hydrogen into the cylinder. In the case of hydrogen fuel, there is the problem of thermal NO generation. Since a hydrogen/air flame is higher in temperature than flames in the case of other fuels, it generates more NO. As techniques for lowering the flame temperature, there are lean fuel combustion, water vapor injection, delayed ignition timing, etc. For the improvement of power and performance, increasing the engine revolution and pressurizing the inlet air are the methods, but both have their own shortcomings. An engine equipped with a third valve is experimentally constructed in this research, which is theoretically free of flashback, suppresses a reduction in the inlet air volume, and necessitates no high-pressure injection system. (NEDO)

  2. Effect of CO_2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine

    International Nuclear Information System (INIS)

    Wang, Shuofeng; Ji, Changwei; Zhang, Bo; Cong, Xiaoyu; Liu, Xiaolong

    2016-01-01

    CO_2 (Carbon dioxide) dilution is a feasible way for controlling NOx (Nitrogen oxides) emissions and loads of the internal combustion engines. This paper investigated the effect of CO_2 dilution on the combustion and emissions characteristics of a hydrogen-enriched gasoline engine. The experiment was conducted on a 1.6 L spark-ignition engine with electronically controlled hydrogen and gasoline injection systems. At two hydrogen volume fractions of 0 and 3%, the CO_2 volume fraction in the intake was gradually increased from 0 to 4%. The fuel-air mixtures were kept at the stoichiometric. The experimental results demonstrated that brake mean effective pressure of the gasoline engine was quickly reduced after adopting CO_2 dilution. Comparatively, Bmep (Brake mean effective pressure) of the 3% hydrogen-enriched engine was gently decreased with the increase of CO_2 dilution level. Thermal efficiency of the 3% hydrogen-enriched gasoline engine was raised under properly increased CO_2 dilution levels. However, thermal efficiency of the pure gasoline engine was generally dropped after the CO_2 dilution. The addition of hydrogen could shorten flame development and propagation durations under CO_2 diluent conditions for the gasoline engine. Increasing CO_2 fraction in the intake caused the dropped NOx and raised HC (Hydrocarbon) emissions. Increasing hydrogen fraction in the intake could effectively reduce HC emissions under CO_2 diluent conditions. - Highlights: • CO_2 dilution reduces cooling loss and NOx of H_2-enriched gasoline engines. • H_2-blended gasoline engine gains better efficiency after CO_2 dilution. • CoVimep of H_2-blended gasoline engine is kept at low level after CO_2 addition. • CO_2 dilution has small effect on reducing Bmep of H_2-blended gasoline engine.

  3. Single step vacuum-free and hydrogen-free synthesis of graphene

    Directory of Open Access Journals (Sweden)

    Christian Orellana

    2017-08-01

    Full Text Available We report a modified method to grow graphene in a single-step process. It is based on chemical vapor deposition and considers the use of methane under extremely adverse synthesis conditions, namely in an open chamber without requiring the addition of gaseous hydrogen in any of the synthesis stages. The synthesis occurs between two parallel Cu plates, heated up via electromagnetic induction. The inductive heating yields a strong thermal gradient between the catalytic substrates and the surrounding environment, promoting the enrichment of hydrogen generated as fragments of the methane molecules within the volume confined by the Cu foils. This induced density gradient is due to thermo-diffusion, also known as the Soret effect. Hydrogen and other low mass molecular fractions produced during the process inhibit oxidative effects and simultaneously reduce the native oxide on the Cu surface. As a result, high quality graphene is obtained on the inner surfaces of the Cu sheets as confirmed by Raman spectroscopy.

  4. Tokamak experimental power reactor conceptual design. Volume II

    International Nuclear Information System (INIS)

    1976-08-01

    Volume II contains the following appendices: (1) summary of EPR design parameters, (2) impurity control, (3) plasma computational models, (4) structural support system, (5) materials considerations for the primary energy conversion system, (6) magnetics, (7) neutronics penetration analysis, (8) first wall stress analysis, (9) enrichment of isotopes of hydrogen by cryogenic distillation, and (10) noncircular plasma considerations

  5. Hydrogen molecules and hydrogen-related defects in crystalline silicon

    OpenAIRE

    Fukata, N.; Sasak, S.; Murakami, K.; Ishioka, K.; Nakamura, K. G.; Kitajima, M.; Fujimura, S.; Kikuchi, J.; Haneda, H.

    1997-01-01

    We have found that hydrogen exists in molecular form in crystalline silicon treated with hydrogen atoms in the downstream of a hydrogen plasma. The vibrational Raman line of hydrogen molecules is observed at 4158cm-1 for silicon samples hydrogenated between 180 and 500 °C. The assignment of the Raman line is confirmed by its isotope shift to 2990cm-1 for silicon treated with deuterium atoms. The Raman intensity has a maximum for hydrogenation at 400 °C. The vibrational Raman line of the hydro...

  6. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  7. Implementation of hydrogen mitigation techniques during severe accidents in nuclear power plants

    International Nuclear Information System (INIS)

    1996-01-01

    concentration and under special geometric conditions, an accelerated flame or even a local detonation may occur which would produce higher dynamic loads than a deflagration and a more serious threat to equipment and structures. Should it occur in spite of its low probability, a global detonation, following prolonged and extensive accumulation of hydrogen in the containment atmosphere, would be a major threat to the containment integrity. The goal of hydrogen mitigation techniques is to prevent loads, resulting from hydrogen combustion, which could threaten containment integrity. The risk of containment failure depends on the overall hydrogen concentration which is dependent on the amount of hydrogen released and the containment volume. A possible containment failure also depends on the containment structure and design which is very important in the resistance of the containment to a global combustion. Geometrical sub-compartmentalization is also very important, because significant amounts of hydrogen could accumulate in compartments to create high local concentrations of hydrogen that could be well within the detonability limits. Once accident management measures aimed at preventing severe accidents from occurring have failed and hydrogen is being generated and released to the containment atmosphere in large amounts, the first step is to reduce the possibility of hydrogen accumulating to flammable concentrations. Where flammable concentrations cannot be precluded, the next step is to minimize the volume of gas at flammable concentrations and the third and last step is to prevent further increasing hydrogen levels from the flammable to detonable mixture concentrations. The purpose of this paper is to present a snapshot, from a technical viewpoint, of the current situation regarding the implementation of hydrogen mitigation techniques for severe accident conditions in nuclear power plants. Broader aspects related to overall accident management policies are not considered here

  8. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  9. Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves

    KAUST Repository

    Hanson, Ronald K.; Pang, Genny A.; Chakraborty, Sreyashi; Ren, Wei; Wang, Shengkai; Davidson, David Frank

    2013-01-01

    We report a constrained-reaction-volume strategy for conducting kinetics experiments behind reflected shock waves, achieved in the present work by staged filling in a shock tube. Using hydrogen-oxygen ignition experiments as an example, we

  10. An experimental study of the growth and hydrogen production of C. reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Tamburic, B.; Burgess, S.; Nixon, P.J.; Hellgardt, K. [Imperial College London (United Kingdom)

    2010-07-01

    Some unicellular green algae, such as C. reinhardtii, have the ability to photosynthetically produce molecular hydrogen under anaerobic conditions. They offer a biological route to renewable, carbon-neutral hydrogen production from two of nature's most plentiful resources - sunlight and water. This process provides the additional benefit of carbon dioxide sequestration and the option of deriving valuable products from algal biomass. The growth of dense and healthy algal biomass is a prerequisite for efficient hydrogen production. This study investigates the growth of C. reinhardtii under different cyclic light regimes and at various continuous light intensities. Algal growth is characterised in terms of the cell count, chlorophyll content and optical density of the culture. The consumption of critical nutrients such as acetate and sulphate is measured by chromatography techniques. C. reinhardtii wild-type CC-124 strain is analysed in a 3 litre tubular flow photobioreactor featuring a large surface-to-volume ratio and excellent light penetration through the culture. Key parameters of the hydrogen production process are continuously monitored and controlled; these include pH, pO{sub 2}, optical density, temperature, agitation and light intensity. Gas phase hydrogen production is determined by mass spectrometry. (orig.)

  11. Hydrogen adsorption properties of polymer-derived nanoporous SiC{sub x} fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Zengyong; He, Rongan; Zhang, Xiaobin; Cheng, Haifeng; Li, Xiaodong; Wang, Yingde [State Key Laboratory of Advanced Ceramic Fibers and Composites, National University of Defense Technology, Changsha 410073 (China)

    2010-04-15

    In an effort to prepare new hydrogen storage materials, we successfully obtained three types of polymer-derived nanoporous SiC{sub x} (x = 5-7) fibers, whose specific surface areas (SSAs) are larger than 580 m{sup 2}/g. Their hydrogen adsorption properties were studied with a comparison of multi-walled carbon nanotubes (MWCNTs). The results reveal that micropores play a predominant role in hydrogen adsorptions at 77 K and at pressures below 0.5 MPa, and mesopores begin to take greater effect when the pressure increases beyond 0.5 MPa. The maximum hydrogen storage capacity (HSC), 0.33 wt% at 302 K and 4 MPa, was achieved for SiC{sub x}-KN fibers with SSA of 990 m{sup 2}/g, while the HSC of the MWCNTs is 0.09 wt% at the same conditions. For these new materials, this work demonstrates that small pore size, large micropore volume and large SSA are all beneficial for the high hydrogen uptake. It can also be deduced from the work that the HSC of the SiC{sub x} fibers could be further increased if the crystallinity and the composition are better controlled. (author)

  12. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  13. Transport of high fluxes of hydrogen plasma in a linear plasma generator

    NARCIS (Netherlands)

    Vijvers, W.A.J.; Al, R.S.; Lopes Cardozo, N.J.; Goedheer, W.J.; Groot, de B.; Kleyn, A.W.; Meiden, van der H.J.; Peppel, van de R.J.E.; Schram, D.C.; Shumack, A.E.; Westerhout, J.; Rooij, van G.J.; Schmidt, J.; Simek, M.; Pekarek, S.; Prukner, V.

    2007-01-01

    A study was made to quantify the losses during the convective hydrogen plasma transport in the linear plasma generator Pilot-PSI due to volume recombination. A transport efficiency of 35% was achieved at neutral background pressures below ~7 Pa in a magnetic field of 1.2 T. This efficiency decreased

  14. Uterine artery embolization for leiomyomas. Examination of correlation between degree of leiomyoma perfusion determined by enhanced MR i-Drive method and leiomyoma volume change on MR image

    International Nuclear Information System (INIS)

    Arimoto, Hiroshi; Yamamoto, Kazuhiro; Yamaguchi, Hiroyuki; Terai, Yoshito; Ohmichi, Masahide; Narabayashi, Isamu

    2007-01-01

    The objective of this study was to evaluate the correlations of leiomyoma volume reduction with the perfusion pattern of leiomyomas and signal intensity on T2-weighted images. Magnetic resonance (MR) imaging was performed on 11 patients with 35 symptomatic uterine leiomyomas before and 3 and 6 months after uterine artery embolization (UAE). The correlation between leiomyoma perfusion pattern and percent leiomyoma volume reduction was assessed. The mean percent leiomyoma volume reductions were 41.1% 3 months and 58.4% 6 months after UAE. The mean percent volume reductions of highly perfused leiomyomas were 58.6% 3 months and 85.7% 6 months after UAE. The reduction rates of poorly perfused leiomyomas were 37.9% 3 months and 49.1% 6 months after UAE. Well-perfused leiomyomas are more likely to reduce in leiomyoma volume. It is thought that a patient with a well-perfusion myoma is a good candidate for UAE. (author)

  15. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  16. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  17. Hypervelocity Impact Testing of Nickel Hydrogen Battery Cells

    Science.gov (United States)

    Frate, David T.; Nahra, Henry K.

    1996-01-01

    Nickel-Hydrogen (Ni/H2) battery cells have been used on several satellites and are planned for use on the International Space Station. In January 1992, the NASA Lewis Research Center (LeRC) conducted hypervelocity impact testing on Ni/H2 cells to characterize their failure modes. The cell's outer construction was a 24 mil-thick Inconel 718 pressure vessel. A sheet of 1.27 cm thick honeycomb was placed in front of the battery cells during testing to simulate the on-orbit box enclosure. Testing was conducted at the NASA White Sands Test Facility (WSTF). The hypervelocity gun used was a 7.6 mm (0.30 caliber) two-stage light gas gun. Test were performed at speeds of 3, 6, and 7 km/sec using aluminum 2017 spherical particles of either 4.8 or 6.4 mm diameter as the projectile. The battery cells were electrically charged to about 75 percent of capacity, then back-filled with hydrogen gas to 900 psi simulating the full charge condition. High speed film at 10,000 frames/sec was taken of the impacts. Impacts in the dome area (top) and the electrode area (middle) of the battery cells were investigated. Five tests on battery cells were performed. The results revealed that in all of the test conditions investigated, the battery cells simply vented their hydrogen gas and some electrolyte, but did not burst or generate any large debris fragments.

  18. CATALYTICALLY ENHANCED SYSTEMS FOR HYDROGEN STORAGE. Final report

    International Nuclear Information System (INIS)

    Craig M. Jensen

    2007-01-01

    Previous U.S. DOE sponsored research at the University of Hawaii resulted in the development of methods of doping of sodium aluminum hydride, NaAlH4 with titanium, zirconium and other catalysts such that: dehydriding occurs at temperatures as low as 100 C; rehydriding requires less than 1 h; and >4 weight percent hydrogen can be repeatedly cycled through dehydriding/rehydriding. These materials appeared to be on the threshold of practical viability as hydrogen carriers for onboard fuel cells. However, it was apparent that further kinetic enhancement was required to achieve commercial viability. Thus, one of the primary goals of this project was to develop the requisite improved catalysts. Over the course of this project, a variety of titanium and zirconium dopant precursors were investigated. Moreover, the approach was to conduct guided search for improved catalysts by obtaining a fundamental understanding of the chemical nature of the titanium dopants and their mechanism of action. Therefore, the projected also aimed to determined the chemical nature of the titanium species that are formed upon mechanical milling of NaAlH4 with the dopant precursors through synchrotron X-ray and neutron diffraction as well as transmission electron microscopy, scanning electron microscopy, and electron paramagnetic resonance (EPR) spectroscopy. In addition to kinetic studies, insight into the mechanism of action of the dopants was gained through studies of the destabilization of hydrogen in NaAlH4 by the dopants through infrared, NMR, and anelastic spectroscopy

  19. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Koohi-Fayegh, Seama

    2016-01-01

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  20. Plasma diagnostic tools for optimizing negative hydrogen ion sources

    International Nuclear Information System (INIS)

    Fantz, U.; Falter, H.D.; Franzen, P.; Speth, E.; Hemsworth, R.; Boilson, D.; Krylov, A.

    2006-01-01

    The powerful diagnostic tool of optical emission spectroscopy is used to measure the plasma parameters in negative hydrogen ion sources based on the surface mechanism. Results for electron temperature, electron density, atomic-to-molecular hydrogen density ratio, and gas temperature are presented for two types of sources, a rf source and an arc source, which are currently under development for a neutral beam heating system of ITER. The amount of cesium in the plasma volume is obtained from cesium radiation: the Cs neutral density is five to ten orders of magnitude lower than the hydrogen density and the Cs ion density is two to three orders of magnitude lower than the electron density in front of the grid. It is shown that monitoring of cesium lines is very useful for monitoring the cesium balance in the source. From a line-ratio method negative ion densities are determined. In a well-conditioned source the negative ion density is of the same order of magnitude as the electron density and correlates with extracted current densities

  1. Interaction of atomic hydrogen with charcoal at 77 K

    International Nuclear Information System (INIS)

    Gorodetsky, A.E.; Vnukov, S.P.; Zalavutdinov, R.Kh.; Zakharov, A.P.; Buryak, A.K.; Ulyanov, A.V.; Federici, G.; Day, Chr.

    2005-01-01

    Charcoal is a working material of sorption cryopumps in the ITER project. The interaction of thermal hydrogen molecules and atoms with charcoal has been analyzed by TDS (77-300 K) and sorption measurements at 77 K. A stream quartz reactor with an H 2 RF discharge was used for the production of H atoms. The ratio of H and H 2 in the gas mixture in the afterglow zone was ∼10 -4 , hydrogen flow and inlet pressure were 6.9 sccm and 30 Pa, respectively. After exposure in the H/H 2 mixture during 1 hour the marked change in the shape of the TD spectra and decrease of the charcoal sorption capacity for hydrogen and nitrogen were detected. A wide spectrum of hydrocarbon fragments formed at 77 K was registered by mass-spectrometry at charcoal heating up to 700 K. The specific adsorption volume of charcoal, which was measured by N 2 adsorption at 77 K, decreased directly as amount of H atoms passed through the section with charcoal. (author)

  2. System optimization of solar hydrogen energy system based on hydrogen production cost. 2; Suiso seizo cost wo hyoka shihyo to shita taiyo suiso energy system no saiteki sekkei. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ota, D; Yamagami, Y; Tani, T [Science University of Tokyo, Tokyo (Japan)

    1996-10-27

    In this paper, to evaluate the hydrogen production cost per unit volume, system optimization of solar hydrogen energy system is discussed. Based on the simulation of the I-V characteristics of amorphous Si (a-Si) photovoltaic array, the working point between the array and hydrogen generator was determined. The cost ratio of each design point was calculated. The optimum design points were 500 W/m{sup 2} for the single crystal Si system, and 600 W/m{sup 2} for the a-Si system. When the rating capacity of design point was constant, almost constant cost ratio was obtained independent of the type of photovoltaic cells. It was found that the photovoltaic cells can be fabricated in about 15% lower cost at maximum. It was also found that the optimum design point sifts to the lower insolation site due to reduction of the photovoltaic cell cost. Since the annual hydrogen generation quantity does not depend on the type of photovoltaic cells under the constant rating capacity of design point, hydrogen can be produced in lower cost by using photovoltaic cell of lower cost. 5 refs., 10 figs., 5 tabs.

  3. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  4. Hydrogen storage in metallic hydrides: the hydrides of magnesium-nickel alloys

    International Nuclear Information System (INIS)

    Silva, E.P. da.

    1981-01-01

    The massive and common use of hydrogen as an energy carrier requires an adequate solution to the problem of storing it. High pressure or low temperatures are not entirely satisfactory, having each a limited range of applications. Reversible metal hydrides cover a range of applications intermediate to high pressure gas and low temperature liquid hydrogen, retaining very favorable safety and energy density characteristics, both for mobile and stationary applications. This work demonstrates the technical viability of storing hydrogen in metal hydrides of magnesium-nickel alloys. Also, it shows that technology, a product of science, can be generated within an academic environment, of the goal is clear, the demand outstanding and the means available. We review briefly theoretical models relating to metal hydride properties, specially the thermodynamics properties relevant to this work. We report our experimental results on hydrides of magnesium-nickel alloys of various compositions including data on structure, hydrogen storage capacities, reaction kinetics, pressure-composition isotherms. We selected a promising alloy for mass production, built and tested a modular storage tank based on the hydrides of the alloy, with a capacity for storing 10 Nm sup(3) of hydrogen of 1 atm and 20 sup(0)C. The tank weighs 46,3 Kg and has a volume of 21 l. (author)

  5. A study on metal organic framework (MOF-177) synthesis, characterization and hydrogen adsorption -desorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Viditha, V.; Venkateswer Rao, M.; Srilatha, K.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P. (India); Yerramilli, Anjaneyulu [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2013-07-01

    Hydrogen has long been considered to be an ideal alternative to fossil-fuel systems and much work has now been done on its storage. There are four main methods of hydrogen storage: as a liquid; as compressed hydrogen; in the form of metal hydrides; and by physisorption. Among all the materials metal organic frameworks (MOFs) are considered to have desirable properties like high porosity, pore volume and high thermal stability. MOF-177 is considered to be an ideal storage material. In this paper we study about its synthesis and hydrogen storage capacities of MOF-177 at different pressures ranging from 25, 50, 75 and 100 bar respectively. The obtained samples are characterized by XRD, BET and SEM. The recorded results show that the obtained hydrogen capacity is 1.1, 2.20, 2.4 and 2.80 wt%. The desorption capacity is 0.9, 2.1, 2.37 and 2.7 wt% at certain temperatures like 373 K.

  6. Electrical disruption in toroidal plasma of hydrogen

    International Nuclear Information System (INIS)

    Roberto, M.; Silva, C.A.B.; Goes, L.C.S.; Sudano, J.P.

    1991-01-01

    The initial phase of ionization of a toroidal plasma produced in hydrogen was investigated using zero-dimensional model. The model describes the temporal evolution of plasma by spatial medium of particle density and temperature, on whole plasma volume. The energy and particle (electrons and ions) balance equations are considered. The electron loss is due to ambipolar diffusion in the presence of magnetic field. The electron energy loss involves ionization, Coulomb interaction and diffusion. The ohmic heating converter gives the initial voltage necessary to disruption. (M.C.K.)

  7. Cea assessment of the sulphur-iodine cycle for hydrogen production

    International Nuclear Information System (INIS)

    Caries, Ph.; Vitart, X.; Yvon, P.

    2010-01-01

    The sulphur-iodine cycle is a promising process for hydrogen production using nuclear heat: - it is a purely thermochemical cycle, implying that hydrogen production will scale with volume rather than surface; - it only involves fluids, thus avoiding the often difficult handling of solids; - its heat requirements are well matched to the temperatures available from a Generation IV very/high temperature reactor. These characteristics seem very attractive for high efficiency and low cost massive hydrogen production. On the other hand, the efficiency of the cycle may suffer from the large over-stoichiometries of water and iodine and the very important heat exchanges it involves; furthermore, due to lack of adequate thermodynamic models, its efficiency is difficult to assess with confidence. Besides, the large quantities of chemicals that need to be handled, and the corrosiveness of these chemicals, are factors not to be overlooked in terms of investment and operation costs. In order to assess the actual potential of the sulphur-iodine cycle for massive hydrogen production at a competitive cost, CEA has been conducting an important programme on this cycle, ranging from thermodynamic measurements to hydrogen production cost evaluation, with flow sheet optimisation, component sizing and investment cost estimation as intermediate steps. The paper will present the method used, the status of both efficiency and production cost estimations, and discuss perspectives for improvement. (authors)

  8. Bio hydrogen production from cassava starch by anaerobic mixed cultures: Multivariate statistical modeling

    Science.gov (United States)

    Tien, Hai Minh; Le, Kien Anh; Le, Phung Thi Kim

    2017-09-01

    Bio hydrogen is a sustainable energy resource due to its potentially higher efficiency of conversion to usable power, high energy efficiency and non-polluting nature resource. In this work, the experiments have been carried out to indicate the possibility of generating bio hydrogen as well as identifying effective factors and the optimum conditions from cassava starch. Experimental design was used to investigate the effect of operating temperature (37-43 °C), pH (6-7), and inoculums ratio (6-10 %) to the yield hydrogen production, the COD reduction and the ratio of volume of hydrogen production to COD reduction. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. The interaction effects between them seem not significant. The central composite design showed that the polynomial regression models were in good agreement with the experimental results. This result will be applied to enhance the process of cassava starch processing wastewater treatment.

  9. Hydrogen embrittlement and stress corrosion cracking in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-15

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the

  10. Hydrogen embrittlement and stress corrosion cracking in metals

    International Nuclear Information System (INIS)

    Kim, Young Suk; Cheong, Yong Mu; Im, Kyung Soo

    2004-10-01

    The objective of this report is to elucidate the mechanism for hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals. To this end, we investigate the common features between delayed hydride cracking (DHC) in zirconium alloys and HE in metals with no precipitation of hydrides including Fe base alloys, Nickel base alloys, Cu alloys and Al alloys. Surprisingly, as with the crack growth pattern for the DHC in zirconium alloy, the metals mentioned above show a discontinuous crack growth, striation lines and a strong dependence of yield strength when exposed to hydrogen internally and externally. This study, for the first time, analyzes the driving force for the HE in metals in viewpoints of Kim's DHC model that a driving force for the DHC in zirconium alloys is a supersaturated hydrogen concentration coming from a hysteresis of the terminal solid solubility of hydrogen, not by the stress gradient, As with the crack growing only along the hydride habit plane during the DHC in zirconium alloys, the metals exposed to hydrogen seem to have the crack growing by invoking the dislocation slip along the preferential planes as a result of some interactions of the dislocations with hydrogen. Therefore, it seems that the hydrogen plays a role in inducing the slip only on the preferential planes so as to cause a strain localization at the crack tip. Sulfur in metals is detrimental in causing a intergranular cracking due to a segregation of the hydrogens at the grain boundaries. In contrast, boron in excess of 500 ppm added to the Ni3Al intermetallic compound is found to be beneficial in suppressing the HE even though further details of the mechanism for the roles of boron and sulfur are required. Carbon, carbides precipitating semi-continuously along the grain boundaries and the CSL (coherent site lattice) boundaries is found to suppress the intergranular stress corrosion cracking (IGSCC) in Alloy 600. The higher the volume fraction of twin boundaries, the more

  11. Respiratory Pattern and Tidal Volumes Differ for Pressure Support and Volume-assured Pressure Support in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Nicholson, Trevor T; Smith, Sean B; Siddique, Teepu; Sufit, Robert; Ajroud-Driss, Senda; Coleman, John M; Wolfe, Lisa F

    2017-07-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease resulting in respiratory failure and death. Use of noninvasive ventilation (NIV) improves survival. However, use of volume-assured pressure support (VAPS) has not been extensively studied in ALS. To explore the clinical usefulness of a detailed evaluation of device-recorded NIV data in the management of chronic respiratory failure in ALS, and to determine whether there are differences in efficacy between patients using VAPS or PS. We performed a retrospective chart review of 271 patients with ALS using either PS or VAPS, along with an evaluation of device-recorded data to explore differences in attainment of goal tidal volumes (Vt) and ratio of respiratory rate to tidal volume (f/Vt), in addition to triggering and cycling ability. Two hundred and fifteen patients were using PS, while 56 were using VAPS. There were no significant differences in demographic data, symptoms, pulmonary function, or patient compliance. Compared with VAPS, achieved Vt was significantly lower for PS while f/Vt was significantly higher. Percent spontaneous triggering was relatively preserved in both cohorts, whereas percent spontaneous cycling was considerably decreased in both. Furthermore, there was no association found between spontaneous triggering or cycling, and pulmonary function, indicating the presence of low spontaneous breath cycling or triggering ability is difficult to predict. Examination of device data for exhaled tidal volumes and f/Vt may be of use in evaluating efficacy of NIV in ALS. VAPS provides more reliable goal Vt than does PS, and is associated with decreased f/Vt. Spontaneous cycling is decreased in ALS despite preservation of triggering ability. Although a set backup rate may address decreased triggering, perhaps more importantly, setting a sufficient fixed inspiratory time would address the issue of decreased cycling.

  12. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  13. Nano-porous inorganic-organic hybrid solids: some new materials for hydrogen storage?; Les solides hybrides inorganiques-organiques nanoporeux: de nouveaux materiaux pour le stockage de l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    Serre, Ch.; Loiseau, Th.; Devic, T.; Ferey, G. [Institut Lavoisier, UMR CNRS 8180, 78 - Versailles (France); Latroche, M. [Laboratoire de Chimie Metallurgique des Terres Rares (LCMTR), UPR 209, 94 - Thiais (France); Llewellyn, Ph. [Universite de Provence, Madirel, 13 - Marseille (France); Chang, J.S. [KRICT, Daejon (Korea, Republic of)

    2007-07-01

    Recently have been studied chromium and aluminium carboxylates MIL-53(Cr, Al), formed from an assembly of octahedrons chains and for hybrid solids formed with octahedrons trimers (MIL-100 and MIL-101). The compounds MIL-53(Cr, Al) are microporous ({phi} {approx} 8 Angstroms, while the solids MIL-100 and MIL-101 have very large porous volumes (V {approx} 380-700000 (Angstroms){sup 3}), meso-pores ({phi} {approx} 25-34 Angstroms) and a zeolitic architecture. The resulting specific surface areas are important (between 1000 m{sup 2}.g{sup -1} for the MIL-53 solids, until 4000 m{sup 2}.g{sup -1} for the MIL-101 compound. Here is presented their hydrogen adsorption properties, at 77 K and 298 K. The hydrogen adsorption kinetics has been tested on the MIL-53(Cr) solid at 77 K. Hydrogen adsorption micro-calorimetry experiments have been carried out on these solids between 0 and 1 bar in order to obtain data on the strongest interactions between hydrogen and the porous basic structure. (O.M.)

  14. Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11

    Energy Technology Data Exchange (ETDEWEB)

    Nath, K.; Kumar, A.; Das, D. [Indian Inst. of Technology, Kharagpur (India). Dept. of Biotechnology, Fermentation Technology Laboratory

    2006-06-15

    This study addressed the issue of using biological systems for hydrogen production as an environmentally sound alternative to conventional thermochemical and electrochemical processes. In particular, it examined the potential for anaerobic fermentation for biological hydrogen production and the possibility of coupling gaseous energy generation with simultaneous treatment of biodegradable waste materials. The study focused on hydrogen production by anaerobic fermentation using Enterobacter cloacae DM11, a Gram-negative, motile facultative anaerobe. Although hydrogen production by these bacteria depends on many environmental parameters, there is very little information on the effects of these factors in the hydrogen production potential of this organism. For that reason, this study examined the effect of initial medium pH, reaction temperature, initial glucose concentration, and iron (Fe2+) concentration on the fermentative production of hydrogen. Fermentative hydrogen production was carried out by Enterobacter cloacae DM11, using glucose as the substrate. Batch cultivations were performed in a 500 ml custom-designed vertical tubular bioreactor. The maximum molar yield of hydrogen was 3.31 mol (mol glucose){sub 1}. The rate and cumulative volume of hydrogen production decreased at higher initial glucose concentration. The pH of 6.5 at a temperature of 37 degrees C was most suitable for maximum rate of production of hydrogen in batch fermentation. The addition of Fe2+ on hydrogen production had a marginal enhancing effect on total hydrogen production. A simple model developed from the modified Gompertz equation was used to fit the cumulative hydrogen production curve and to estimate the hydrogen production potential, maximum production rate, and lag time. It was concluded that these study results could be used in the development of a high rate continuous hydrogen production process. 30 refs., 4 tabs., 3 figs.

  15. United States home births increase 20 percent from 2004 to 2008.

    Science.gov (United States)

    MacDorman, Marian F; Declercq, Eugene; Mathews, T J

    2011-09-01

    After a gradual decline from 1990 to 2004, the percentage of births occurring at home increased from 2004 to 2008 in the United States. The objective of this report was to examine the recent increase in home births and the factors associated with this increase from 2004 to 2008. United States birth certificate data on home births were analyzed by maternal demographic and medical characteristics. In 2008, there were 28,357 home births in the United States. From 2004 to 2008, the percentage of births occurring at home increased by 20 percent from 0.56 percent to 0.67 percent of United States births. This rise was largely driven by a 28 percent increase in the percentage of home births for non-Hispanic white women, for whom more than 1 percent of births occur at home. At the same time, the risk profile for home births has been lowered, with substantial drops in the percentage of home births of infants who are born preterm or at low birthweight, and declines in the percentage of home births that occur to teen and unmarried mothers. Twenty-seven states had statistically significant increases in the percentage of home births from 2004 to 2008; only four states had declines. The 20 percent increase in United States home births from 2004 to 2008 is a notable development that will be of interest to practitioners and policymakers. (BIRTH 38:3 September 2011). © 2011, Copyright the Authors. Journal compilation © 2011, Wiley Periodicals, Inc.

  16. Crevice corrosion and hydrogen embrittlement of grades-2 and -12 titanium under Canadian nuclear waste vault conditions

    International Nuclear Information System (INIS)

    Ikeda, B.M.; Bailey, M.G.; Clarke, C.F.; Shoesmith, D.W.

    1990-01-01

    Results on the corrosion of titanium grades 2 and 12 under the saline conditions anticipated in Canadian nuclear waste vaults are presented. The experimental approach included short-term electrochemical experiments to determine corrosion mechanisms, the susceptibility of titanium to crevice corrosion under a variety of conditions, and the extent of hydrogen uptake under controlled conditions; medium-term corrosion tests lasting a few weeks to a few months; and long-term immersion tests to provide rates for uniform corrosion, crevice corrosion, and hydrogen pickup. Results indicated that propagation, not initiation, is important in establishing susceptibility to crevice corrosion. Increasing the iron content of Ti-2 to 0.13 weight percent prevents crevice corrosion by causing repassivation. Crevice corrosion initiates on Ti-12, but repassivation is rapid. The supply of oxidant is essential to maintain crevice propagation. Hydrogen embrittlement is unlikely unless oxide film breakdown occurs. Film breakdown occurs under crevice conditions, and hydrogen pickup is to be expected. Film breakdown could occur if the strain or creep rate is fast enough to compete with repassivation reactions, a highly unlikely situation

  17. Current Design of the Flange Type Hydrogen Permeation Sensor in Liquid Breeder

    International Nuclear Information System (INIS)

    Lee, E. H.; Jin, H. G.; Yoon, J. S.; Kim, S. K.; Lee, D. W.; Lee, H. G.

    2015-01-01

    In 2004, A. Ciampichetti et al. proposed a hollow capsule shape permeation sensor and they theoretically and experimentally evaluated the performance of the sensor made of Nb membrane at test condition of 500 .deg. C. However, the evaluation result showed the measured hydrogen permeation flux in the sensor much lower than the predicted one and they concluded that, the result is due to the formation of an oxide layer on the sensor membrane surface. Three years later, A. Ciampichetti et al. observed that a hollow capsule shape permeation sensor has too long response time to measure hydrogen concentration in liquid breeder. However, they suggested optimizing the sensor geometry with the reduction of the ratio 'total sensor volume/permeation surface' to overcome the low hydrogen permeating flux. For development of the liquid breeding technologies in nuclear fusion, the permeation sensor to measure tritium concentration in liquid metal breeder has been developed. Lee et al. proposed a flange type permeation sensor to dramatically reduce the ratio sensor 'inside volume/permeation surface' and to remove membrane welding during sensor manufacture process. However, the flange type sensor has problem with sealing. In present study, the modified flange sensor design with a metallic C-ring spring gasket is introduced. The modified sensor will be verified and evaluated under high temperature conditions by end of 2015

  18. Current Design of the Flange Type Hydrogen Permeation Sensor in Liquid Breeder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. H.; Jin, H. G.; Yoon, J. S.; Kim, S. K.; Lee, D. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, H. G. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In 2004, A. Ciampichetti et al. proposed a hollow capsule shape permeation sensor and they theoretically and experimentally evaluated the performance of the sensor made of Nb membrane at test condition of 500 .deg. C. However, the evaluation result showed the measured hydrogen permeation flux in the sensor much lower than the predicted one and they concluded that, the result is due to the formation of an oxide layer on the sensor membrane surface. Three years later, A. Ciampichetti et al. observed that a hollow capsule shape permeation sensor has too long response time to measure hydrogen concentration in liquid breeder. However, they suggested optimizing the sensor geometry with the reduction of the ratio 'total sensor volume/permeation surface' to overcome the low hydrogen permeating flux. For development of the liquid breeding technologies in nuclear fusion, the permeation sensor to measure tritium concentration in liquid metal breeder has been developed. Lee et al. proposed a flange type permeation sensor to dramatically reduce the ratio sensor 'inside volume/permeation surface' and to remove membrane welding during sensor manufacture process. However, the flange type sensor has problem with sealing. In present study, the modified flange sensor design with a metallic C-ring spring gasket is introduced. The modified sensor will be verified and evaluated under high temperature conditions by end of 2015.

  19. Hydrogen storage in engineered carbon nanospaces.

    Science.gov (United States)

    Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter

    2009-05-20

    It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.

  20. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  1. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Marc A.; Koohi-Fayegh, Seama [Ontario Univ., Oshawa, ON (Canada). Inst. of Technology

    2016-02-15

    Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. As fossil-fuel supplies become scarcer and environmental concerns increase, hydrogen is likely to become an increasingly important chemical energy carrier and eventually may become the principal chemical energy carrier. When most of the world's energy sources become non-fossil based, hydrogen and electricity are expected to be the two dominant energy carriers for the provision of end-use services. In such a ''hydrogen economy,'' the two complementary energy carriers, hydrogen and electricity, are used to satisfy most of the requirements of energy consumers. A transition era will bridge the gap between today's fossil-fuel economy and a hydrogen economy, in which non-fossil-derived hydrogen will be used to extend the lifetime of the world's fossil fuels - by upgrading heavy oils, for instance - and the infrastructure needed to support a hydrogen economy is gradually developed. In this paper, the role of hydrogen as an energy carrier and hydrogen energy systems' technologies and their economics are described. Also, the social and political implications of hydrogen energy are examined, and the questions of when and where hydrogen is likely to become important are addressed. Examples are provided to illustrate key points. (orig.)

  2. INVESTIGATION OF COMBUSTION, PERFORMANCE AND EMISSION CHARACTERISTICS OF SPARK IGNITION ENGINE FUELLED WITH BUTHANOL – GASOLINE MIXTURE AND A HYDROGEN ENRICHED AIR

    OpenAIRE

    Alfredas Rimkus; Mindaugas Melaika; Jonas Matijošius; Šarūnas Mikaliūnas; Saugirdas Pukalskas

    2016-01-01

    In this study, spark ignition engine fuelled with buthanol-gasoline mixture and a hydrogen-enriched air was investigated. Engine performance, emissions and combustion characteristics were investigated with different buthanol (10% and 20% by volume) gasoline mixtures and additionally supplied oxygen and hydrogen (HHO) gas mixture (3.6 l/min) in the sucked air. Hydrogen, which is in the HHO gas, improves gasoline and gasoline-buthanol mixture combustion, increases indicated pressure during comb...

  3. Hydrogen Generation in Microbial Reverse-Electrodialysis Electrolysis Cells Using a Heat-Regenerated Salt Solution

    KAUST Repository

    Nam, Joo-Youn

    2012-05-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m3 H2/m3·d, with a hydrogen yield of 3.4 mol H2/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes. © 2012 American Chemical Society.

  4. Performance of a hydrogen-enriched ethanol engine at unthrottled and lean conditions

    International Nuclear Information System (INIS)

    Zhang, Bo; Ji, Changwei; Wang, Shuofeng

    2016-01-01

    Highlights: • H_2 addition eased cyclic variation of ethanol engine at unthrottled condition. • H_2-blended ethanol engine gains better efficiency at lean conditions. • Bmep of H_2-blended ethanol engine could be controlled by lean burning. • H_2 addition results in reduced exhaust loss and HC emissions. - Abstract: Concerning the throttling loss under part load conditions, it is feasible to further improve the engine thermal efficiency through operating the engine under the unthrottled condition and controlling its load by changing the excess air ratio. However, the narrow flammability of ethanol may lead the ethanol engine to encounter high cyclic variations under unthrottled and lean conditions. The addition of hydrogen is potentially helpful for solving this problem. In this test, the engine was run under an speed of 1400 rpm and unthrottled conditions. The hydrogen volume fractions in the intake were respectively kept at 0% and 3%. For a given hydrogen blending level, the ethanol flow rate was reduced to enable the engine to run under lean conditions. The results showed that the engine efficiency was improved with the blending of hydrogen. The highest thermal efficiency was improved by 6.07% after blending 3% hydrogen to the intake air. The addition of hydrogen could increase the engine torque output at lean conditions. Both cooling and exhaust losses were decreased after the hydrogen enrichment while adopting the lean combustion strategy. The hydrogen addition contributed to the extended lean burn limit and decreased cyclic variation under lean conditions. HC and CO emissions were decreased whereas NOx emissions were increased after the blending of hydrogen.

  5. Spin-polarized hydrogen, deuterium, and tritium : I

    International Nuclear Information System (INIS)

    Haugen, M.; Ostgaard, E.

    1989-01-01

    The ground-state energy of spin-polarized hydrogen, deuterium and tritium is calculated by means of a modified variational lowest order constrained-variation method, and the calculations are done for five different two-body potentials. Spin-polarized H is not self-bound according to our theoretical results for the ground-state binding energy. For spin-polarized D, however, we obtain theoretical results for the ground-state binding energy per particle from -0.4 K at an equilibrium particle density of 0.25 σ -3 or a molar volume of 121 cm 3 /mol to +0.32 K at an equilibrium particle density of 0.21 σ -3 or a molar volume of 142 cm 3 /mol, where σ = 3.69 A (1A = 10 -10 m). It is, therefore, not clear whether spin-polarized deuterium should be self-bound or not. For spin-polarized T, we obtain theoretical results for the ground-state binding energy per particle from -4.73 K at an equilibrium particle density of 0.41 σ -3 or a molar volume of 74 cm 3 /mol to -1.21 K at an equilibrium particle density of 0.28 σ -3 or a molar volume of 109 cm 3 /mol. (Author) 27 refs., 9 figs., tab

  6. Amineborane Based Chemical Hydrogen Storage - Final Report

    International Nuclear Information System (INIS)

    Sneddon, Larry G.

    2011-01-01

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH 3 BH 3 (AB), 19.6-wt% H 2 , and ammonia triborane NH 3 B 3 H 7 (AT), 17.7-wt% H 2 , were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H 2 -release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H 2 -release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H 2 -release, the tunability of both their H 2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic-liquid based systems attractive candidates for chemical hydrogen storage applications. These

  7. Amineborane Based Chemical Hydrogen Storage - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2011-04-21

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2­-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic­-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also

  8. Hydrogen anode for nitrate waste destruction. Revision 2

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Kalu, E.E.; White, R.E.

    1996-01-01

    Large quantities of radioactive and hazardous wastes have been generated from nuclear materials production during the past fifty years. Processes are under evaluation to separate the high level radioactive species from the waste and store them permanently in the form of durable solids. The schemes proposed will separate the high level radioactive components, cesium-137 and strontium-90, into a small volume for incorporation into a glass wasteform. The remaining low-level radioactive waste contain species such as nitrites and nitrates that are capable of contaminating ground water. Electrochemical destruction of the nitrate and nitrite before permanent storage has been proposed. Not only will the electrochemical processing destroy these species, the volume of the waste could also be reduced. The use of a hydrogen gas-fed anode and an acid anolyte in an electrochemical cell used to destroy nitrate was demonstrated. A mixed Na 2 SO 4 /H 2 SO 4 anolyte was shown to favor the nitrate cell performance, and the generation of a higher hydroxide ion concentration in the catholyte. The suggested scheme is an apparent method of sodium sulfate disposal and a possible means through which ammonia (to ammonium sulfate, fertilizer) and hydrogen gas could be recycled through the anode side of the reactor. This could result in a substantial savings in the operation of a nitrate destruction cell

  9. Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure.

    Science.gov (United States)

    Hernández, Mario Andrés; Rodríguez Susa, Manuel; Andres, Yves

    2014-09-01

    Coffee mucilage (CM), a novel substrate produced as waste from agricultural activity in Colombia, the largest fourth coffee producer in the world, was used for hydrogen production. The study evaluated three ratios (C1-3) for co-digestion of CM and swine manure (SM), and an increase in organic load to improve hydrogen production (C4). The hydrogen production was improved by a C/N ratio of 53.4 used in C2 and C4. The average hydrogen production rate in C4 was 7.6 NL H2/LCMd, which indicates a high hydrogen potential compare to substrates such as POME and wheat starch. In this condition, the biogas composition was 0.1%, 50.6% and 39.0% of methane, carbon dioxide and hydrogen, respectively. The butyric and acetic fermentation pathways were the main routes identified during hydrogen production which kept a Bu/Ac ratio at around 1.0. A direct relationship between coffee mucilage, biogas and cumulative hydrogen volume was established. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Numerical investigation on the effects of natural gas and hydrogen blends on engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Morrone, Biagio; Unich, Andrea [Dipartimento di Ingegneria Aerospaziale e Meccanica (DIAM), Seconda Universita degli Studi di Napoli via Roma 29, 81031 Aversa (CE) (Italy)

    2009-05-15

    The use of hydrogen blended with natural gas is a viable alternative to pure fossil fuels because of the expected reduction of the total pollutant emissions and increase of efficiency. These blends offer a valid opportunity for tackling sustainable transportation, in view of the future stringent emission limits for road vehicles. The aim of the present paper is the investigation of the performance of internal combustion engines fuelled by such blends. A numerical investigation on the characteristics of natural gas-hydrogen blends as well as their effect on engine performance is carried out. The activity is focused on the influence of such blends on flame propagation speed. Combustion pattern modelling allows the comparison of engine brake efficiency and power output using different fuels. Results showed that there is an increase in engine efficiency only if Maximum Brake Torque (MBT) spark advance is used for each fuel. Moreover, an economic analysis has been carried out to determine the over cost of hydrogen in such blends, showing percent increments by using these fuels about between 10 and 34%. (author)

  11. Acoustic emission monitoring of activation behavior of LaNi5 hydrogen storage alloy

    Directory of Open Access Journals (Sweden)

    Igor Maria De Rosa, Alessandro Dell'Era, Mauro Pasquali, Carlo Santulli and Fabrizio Sarasini

    2011-01-01

    Full Text Available The acoustic emission technique is proposed for assessing the irreversible phenomena occurring during hydrogen absorption/desorption cycling in LaNi5. In particular, we have studied, through a parametric analysis of in situ detected signals, the correlation between acoustic emission (AE parameters and the processes occurring during the activation of an intermetallic compound. Decreases in the number and amplitude of AE signals suggest that pulverization due to hydrogen loading involves progressively smaller volumes of material as the number of cycles increases. This conclusion is confirmed by electron microscopy observations and particle size distribution measurements.

  12. Breath Hydrogen Produced by Ingestion of Commercial Hydrogen Water and Milk

    OpenAIRE

    Shimouchi, Akito; Nose, Kazutoshi; Yamaguchi, Makoto; Ishiguro, Hiroshi; Kondo, Takaharu

    2009-01-01

    Objective: To compare how and to what extent ingestion of hydrogen water and milk increase breath hydrogen in adults.Methods: Five subjects without specific diseases, ingested distilled or hydrogen water and milk as a reference material that could increase breath hydrogen. Their end-alveolar breath hydrogen was measured.Results: Ingestion of hydrogen water rapidly increased breath hydrogen to the maximal level of approximately 40 ppm 10–15 min after ingestion and thereafter rapidly decrease...

  13. Hydrogen - From hydrogen to energy production

    International Nuclear Information System (INIS)

    Klotz, Gregory

    2005-01-01

    More than a century ago, Jules Verne wrote in 'The Mysterious Island' that water would one day be employed as fuel: 'Hydrogen and oxygen, which constitute it, used singly or together, will furnish an inexhaustible source of heat and light'. Today, the 'water motor' is not entirely the dream of a writer. Fiction is about to become fact thanks to hydrogen, which can be produced from water and when burned in air itself produces water. Hydrogen is now at the heart of international research. So why do we have such great expectations of hydrogen? 'Hydrogen as an energy system is now a major challenge, both scientifically and from an environmental and economic point of view'. Dominated as it is by fossil fuels (oil, gas and coal), our current energy system has left a dual threat hovering over our environment, exposing the planet to the exhaustion of its natural reserves and contributing to the greenhouse effect. If we want sustainable development for future generations, it is becoming necessary to diversify our methods of producing energy. Hydrogen is not, of course, a source of energy, because first it has to be produced. But it has the twofold advantage of being both inexhaustible and non-polluting. So in the future, it should have a very important role to play. (author)

  14. Hydrogen fuel. Uses

    International Nuclear Information System (INIS)

    Darkrim-Lamari, F.; Malbrunot, P.

    2006-01-01

    Hydrogen is a very energetic fuel which can be used in combustion to generate heat and mechanical energy or which can be used to generate electricity and heat through an electrochemical reaction with oxygen. This article deals with the energy conversion, the availability and safety problems linked with the use of hydrogen, and with the socio-economical consequences of a generalized use of hydrogen: 1 - hydrogen energy conversion: hydrogen engines, aerospace applications, fuel cells (principle, different types, domains of application); 2 - hydrogen energy availability: transport and storage (gas pipelines, liquid hydrogen, adsorbed and absorbed hydrogen in solid materials), service stations; 3 - hazards and safety: flammability, explosibility, storage and transport safety, standards and regulations; 4 - hydrogen economy; 5 - conclusion. (J.S.)

  15. How I Love My 80 Percenters

    Science.gov (United States)

    Maturo, Anthony J.

    2002-01-01

    Don't ever take your support staff for granted. By support staff, I mean the people in personnel, logistics, and finance; the ones who can make things happen with a phone call or a signature, or by the same token frustrate you to no end by their inaction; these are people you must depend on. I've spent a lot of time thinking about how to cultivate relationships with my support staff that work to the advantage of both of us. The most important thing that have learned working with people, any people--and I will tell you how I learned this in a minute--is there are some folks you just can't motivate, so forget it, don't try; others you certainly can with a little psychology and some effort; and the best of the bunch, what I call the 80 percenters, you don't need to motivate because they're already on the team and performing beautifully. The ones you can't change are rocks. Face up to it, and just kick them out of your way. I have a reputation with the people who don't want to perform or be part of the team. They don't come near me. If someone's a rock, I pick up on it right away, and I will walk around him or her to find someone better. The ones who can be motivated I take time to nurture. I consider them my projects. A lot of times these wannabes are people who want to help but don't know how. Listen, you can work with them. Lots of people in organizations have the mindset that all that matters are the regulations. God forbid if you ever work outside those regulations. They've got one foot on that regulation and they're holding it tight like a baby holds a blanket. What you're looking for is that first sign that their minds are opening. Usually you hear it in their vocabulary. What used to sound like "We can't do that ... the regulations won't allow it ... we have never done this before," well, suddenly that changes to "We have options ... let's take a look at the options ... let me research this and get back to you." The 80 percenters you want to nurture too, but

  16. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  17. Long-term, low-level radwaste volume-reduction strategies. Volume 4. Waste disposal costs. Final report

    International Nuclear Information System (INIS)

    Sutherland, A.A.; Adam, J.A.; Rogers, V.C.; Merrell, G.B.

    1984-11-01

    Volume 4 establishes pricing levels at new shallow land burial grounds. The following conclusions can be drawn from the analyses described in the preceding chapters: Application of volume reduction techniques by utilities can have a significant impact on the volumes of wastes going to low-level radioactive waste disposal sites. Using the relative waste stream volumes in NRC81 and the maximum volume reduction ratios provided by Burns and Roe, Inc., it was calculated that if all utilities use maximum volume reduction the rate of waste receipt at disposal sites will be reduced by 40 percent. When a disposal site receives a lower volume of waste its total cost of operation does not decrease by the same proportion. Therefore the average cost for a unit volume of waste received goes up. Whether the disposal site operator knows in advance that he will receive a smaller amount of waste has little influence on the average unit cost ($/ft) of the waste disposed. For the pricing algorithm postulated, the average disposal cost to utilities that volume reduce is relatively independent of whether all utilities practice volume reduction or only a few volume reduce. The general effect of volume reduction by utilities is to reduce their average disposal site costs by a factor of between 1.5 to 2.5. This factor is generally independent of the size of the disposal site. The largest absolute savings in disposal site costs when utilities volume reduce occurs when small disposal sites are involved. This results from the fact that unit costs are higher at small sites. Including in the pricing algorithm a factor that penalizes waste generators who contribute larger amounts of the mobile nuclides 3 H, 14 C, 99 Tc, and 129 I, which may be the subject of site inventory limits, lowers unit disposal costs for utility wastes that contain only small amounts of the nuclides and raises unit costs for other utility wastes

  18. XVIII Mendeleev congress on general and applied chemistry. Summaries of reports in five volumes. Volume 5. IV Russian-French symposium Supramolecular systems in chemistry and biology. II Russian-Indian symposium on organic chemistry. International symposium on present-day radiochemistry Radiochemistry: progress and prospects. International symposium Green chemistry, stable evolution and social responsibility of chemists. Symposium Nucleophilic hydrogen substitution in aromatic systems and related reactions

    International Nuclear Information System (INIS)

    2007-01-01

    The 5 volume of the XVIII Mendeleev congress on general and applied chemistry includes summaries of reports on the subjects of sypramolecular systems in chemistry and biology, organic chemistry, modern radiochemistry, green chemistry - development and social responsibility of chemists, nucleophilic hydrogen substitution in aromatic systems and related chemical reactions [ru

  19. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    Science.gov (United States)

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Production of hydrogen from organic waste via hydrogen sulfide

    International Nuclear Information System (INIS)

    McMahon, M.; Davis, B.R.; Roy, A.; Daugulis, A.

    2007-01-01

    In this paper an integrated process is proposed that converts organic waste to hydrogen via hydrogen sulphide. The designed bioreactor has achieved high volumetric productivities comparable to methanogenic bioreactors. Proposed process has advantages of bio-methane production and is more resilient to process upset. Thermochemical conversion of hydrogen sulphide to hydrogen is exothermic and also requires smaller plant infrastructure

  1. Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation

  2. Time series analysis of brain regional volume by MR image

    International Nuclear Information System (INIS)

    Tanaka, Mika; Tarusawa, Ayaka; Nihei, Mitsuyo; Fukami, Tadanori; Yuasa, Tetsuya; Wu, Jin; Ishiwata, Kiichi; Ishii, Kenji

    2010-01-01

    The present study proposed a methodology of time series analysis of volumes of frontal, parietal, temporal and occipital lobes and cerebellum because such volumetric reports along the process of individual's aging have been scarcely presented. Subjects analyzed were brain images of 2 healthy males and 18 females of av. age of 69.0 y, of which T1-weighted 3D SPGR (spoiled gradient recalled in the steady state) acquisitions with a GE SIGNA EXCITE HD 1.5T machine were conducted for 4 times in the time series of 42-50 months. The image size was 256 x 256 x (86-124) voxels with digitization level 16 bits. As the template for the regions, the standard gray matter atlas (icbn452 a tlas p robability g ray) and its labeled one (icbn.Labels), provided by UCLA Laboratory of Neuro Imaging, were used for individual's standardization. Segmentation, normalization and coregistration were performed with the MR imaging software SPM8 (Statistic Parametric Mapping 8). Volumes of regions were calculated as their voxel ratio to the whole brain voxel in percent. It was found that the regional volumes decreased with aging in all above lobes examined and cerebellum in average percent per year of -0.11, -0.07, -0.04, -0.02, and -0.03, respectively. The procedure for calculation of the regional volumes, which has been manually operated hitherto, can be automatically conducted for the individual brain using the standard atlases above. (T.T.)

  3. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth

    International Nuclear Information System (INIS)

    Huh, Junghwan; Kim, Gyu Tae; Park, Jonghyurk; Park, Jeong Young

    2011-01-01

    We have successfully demonstrated a ZnO nanorod-based 3D nanostructure to show a high sensitivity and very fast response/recovery to hydrogen gas. ZnO nanorods have been synthesized selectively over the pre-defined area at relatively low temperature using a simple self-catalytic solution process assisted by a lithographic method. The conductance of the ZnO nanorod device varies significantly as the concentration of the hydrogen is changed without any additive metal catalyst, revealing a high sensitivity to hydrogen gas. Its superior performance can be explained by the porous structure of its three-dimensional network and the enhanced surface reaction of the hydrogen molecules with the oxygen defects resulting from a high surface-to-volume ratio. It was found that the change of conductance follows a power law depending on the hydrogen concentration. A Langmuir isotherm following an ideal power law and a cross-over behavior of the activation energy with respect to hydrogen concentration were observed. This is a very novel and intriguing phenomenon on nanostructured materials, which suggests competitive surface reactions in ZnO nanorod gas sensors.

  4. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth.

    Science.gov (United States)

    Huh, Junghwan; Park, Jonghyurk; Kim, Gyu Tae; Park, Jeong Young

    2011-02-25

    We have successfully demonstrated a ZnO nanorod-based 3D nanostructure to show a high sensitivity and very fast response/recovery to hydrogen gas. ZnO nanorods have been synthesized selectively over the pre-defined area at relatively low temperature using a simple self-catalytic solution process assisted by a lithographic method. The conductance of the ZnO nanorod device varies significantly as the concentration of the hydrogen is changed without any additive metal catalyst, revealing a high sensitivity to hydrogen gas. Its superior performance can be explained by the porous structure of its three-dimensional network and the enhanced surface reaction of the hydrogen molecules with the oxygen defects resulting from a high surface-to-volume ratio. It was found that the change of conductance follows a power law depending on the hydrogen concentration. A Langmuir isotherm following an ideal power law and a cross-over behavior of the activation energy with respect to hydrogen concentration were observed. This is a very novel and intriguing phenomenon on nanostructured materials, which suggests competitive surface reactions in ZnO nanorod gas sensors.

  5. Wavelet analysis of cyclic variability in a spark ignition engine powered by gasoline-hydrogen fuel blends

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Asok K. [Richard G. Lugar Centre for Renewable Energy, and Department of Mathematical Sciences, Indiana University, (United States)], email: asen@iupui.edu; Akif Ceviz, M.; Volkan Oner, I. [Department of Mechanical Engineering, University of Ataturk (Turkey)], email: aceviz@atauni.edu.tr

    2011-07-01

    The cycle-to-cycle variations (CCV) of the indicated mean effective pressure (IMEP) in a spark ignition engine fuelled by gasoline and gasoline-hydrogen blends is investigated. CCVs are estimated by using the coefficient of variation (COV) and the overall spectral power given by the global wavelet spectrum (GWS). It was found that the addition of hydrogen reduces the CCV of the IMEP. Analysis of the wavelet can also identify the dominant modes of variability and delineate the engine cycles over which these modes can persist. Air-fuel ratio was varied from 1.0 to 1.3, and hydrogen was added up to 7.74% by volume. The engine was operated at 2000 rpm. Results demonstrate that subject to air-fuel ratio and % of hydrogen added, IMEP time series can exhibit multiscale dynamics consisting of persistent oscillations and intermittent fluctuations. These results can help develop effective control strategies to reduce cyclic variability in a spark ignition engine fuelled by gasoline-hydrogen mixtures.

  6. Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tahtouh, T.; Halter, F.; Mounaim-Rousselle, C. [Institut PRISME, Universite d' Orleans, 8 rue Leonard de Vinci-45072, Orleans Cedex 2 (France); Samson, E. [PSA Peugeot Citroen (France)

    2009-10-15

    The effect of hydrogen addition and nitrogen dilution on laminar flame characteristics was investigated. The spherical expanding flame technique, in a constant volume bomb, was employed to extract laminar flame characteristics. The mole fraction of hydrogen in the methane-hydrogen mixture was varied from 0 to 1 and the mole fraction of nitrogen in the total mixture (methane-hydrogen-air-diluent) from 0 to 0.35. Measurements were performed at an initial pressure of 0.1 MPa and an initial temperature of 300 K. The mixtures investigated were under stoichiometric conditions. Based on experimental measurements, a new correlation for calculating the laminar burning velocity of methane-hydrogen-air-nitrogen mixtures is proposed. The laminar burning velocity was found to increase linearly with hydrogen mass fraction for all dilution ratios while the burned gas Markstein length decreases with the increase in hydrogen amount in the mixture except for high hydrogen mole fractions (>0.6). Nitrogen dilution has a nonlinear reducing effect on the laminar burning velocity and an increasing effect on the burned gas Markstein length. The experimental results and the proposed correlation obtained are in good agreement with literature values. (author)

  7. Hydrogen Village : creating hydrogen and fuel cell communities

    International Nuclear Information System (INIS)

    Smith, G.R.

    2009-01-01

    The Hydrogen Village (H2V) is a collaborative public-private partnership administered through Hydrogen and Fuel Cells Canada and funded by the Governments of Canada and Ontario. This end user-driven, market development program accelerates the commercialization of hydrogen and fuel cell (FC) technologies throughout the Greater Toronto Area (GTA). The program targets 3 specific aspects of market development, notably deployment of near market technologies in community based stationary and mobile applications; development of a coordinated hydrogen delivery and equipment service infrastructure; and societal factors involving corporate policy and public education. This presentation focused on lessons learned through outreach programs and the deployment of solid oxide fuel cell (SOFC) heat and power generation; indoor and outdoor fuel cell back up power systems; fuel cell-powered forklifts, delivery vehicles, and utility vehicles; hydrogen internal combustion engine powered shuttle buses, sedans, parade float; hydrogen production/refueling stations in the downtown core; and temporary fuel cell power systems

  8. Determination of the Relative Atomic Masses of Metals by Liberation of Molecular Hydrogen

    Science.gov (United States)

    Waghorne, W. Earle; Rous, Andrew J.

    2009-01-01

    Students determine the relative atomic masses of calcium, magnesium, and aluminum by reaction with hydrochloric acid and measurement of the volume of hydrogen gas liberated. The experiment demonstrates stoichiometry and illustrates clearly that mass of the reagent is not the determinant of the amounts in chemical reactions. The experiment is…

  9. The BREAST-V: a unifying predictive formula for volume assessment in small, medium, and large breasts.

    Science.gov (United States)

    Longo, Benedetto; Farcomeni, Alessio; Ferri, Germano; Campanale, Antonella; Sorotos, Micheal; Santanelli, Fabio

    2013-07-01

    Breast volume assessment enhances preoperative planning of both aesthetic and reconstructive procedures, helping the surgeon in the decision-making process of shaping the breast. Numerous methods of breast size determination are currently reported but are limited by methodologic flaws and variable estimations. The authors aimed to develop a unifying predictive formula for volume assessment in small to large breasts based on anthropomorphic values. Ten anthropomorphic breast measurements and direct volumes of 108 mastectomy specimens from 88 women were collected prospectively. The authors performed a multivariate regression to build the optimal model for development of the predictive formula. The final model was then internally validated. A previously published formula was used as a reference. Mean (±SD) breast weight was 527.9 ± 227.6 g (range, 150 to 1250 g). After model selection, sternal notch-to-nipple, inframammary fold-to-nipple, and inframammary fold-to-fold projection distances emerged as the most important predictors. The resulting formula (the BREAST-V) showed an adjusted R of 0.73. The estimated expected absolute error on new breasts is 89.7 g (95 percent CI, 62.4 to 119.1 g) and the expected relative error is 18.4 percent (95 percent CI, 12.9 to 24.3 percent). Application of reference formula on the sample yielded worse predictions than those derived by the formula, showing an R of 0.55. The BREAST-V is a reliable tool for predicting small to large breast volumes accurately for use as a complementary device in surgeon evaluation. An app entitled BREAST-V for both iOS and Android devices is currently available for free download in the Apple App Store and Google Play Store. Diagnostic, II.

  10. The metal-carbon-fluorine system for improving hydrogen storage by using metal and fluorine with different levels of electronegativity

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea)

    2009-02-15

    In order to improve the capacity of hydrogen storage using activated carbon nanofibers, metal and fluorine were introduced into the activated carbon nanofibers by electrospinning, heat treatment, and direct fluorination. The pore structure of the samples was developed by the KOH activation process and investigated using nitrogen isotherms and micropore size distribution. The specific surface area and total pore volume approached 2800 m{sup 2}/g and 2.7 cc/g, respectively. Because of the electronegativity gap between the two elements (metal and fluorine), the electron of a hydrogen molecule can be attracted to one side. This reaction effectively guides the hydrogen molecule into the carbon nanofibers. The amount of hydrogen storage was dramatically increased in this metal-carbon-fluorine system; hydrogen content was as high as 3.2 wt%. (author)

  11. Hydrogen Evolution and Sludge Suspension During the Preparation of the First Batch of Sludge at the Savannah River Site

    International Nuclear Information System (INIS)

    Hay, M.S.; Lee, E.D.

    1995-01-01

    The first batch of High Level Radioactive Sludge for the Defense Waste Processing Facility is being prepared in two 4.9 million liter waste tanks. The preparation involves removing water soluble salts by washing (water addition, sludge suspension, settling and decantation). Sludge suspension is accomplished using long shafted slurry pumps that are mounted on rotating turntables. During the sludge suspension runs in 1993 and 1994, the slurry pumps' cleaning radius was determined to be less than that expected from previous determinations using synthetic sludge in a full size waste tank mockup. Hydrogen concentrations in the tanks' vapor space were monitored during the sludge suspension activities. As expected, the initial agitation of the sludge increased the hydrogen concentration, however, with the controls in place the hydrogen concentration was maintained below seven percent of the lower flammability limit

  12. First-Principles and Thermodynamic Simulation of Elastic Stress Effect on Energy of Hydrogen Dissolution in Alpha Iron

    Science.gov (United States)

    Rakitin, M. S.; Mirzoev, A. A.; Mirzaev, D. A.

    2018-04-01

    Mobile hydrogen, when dissolving in metals, redistributes due to the density gradients and elastic stresses, and enables destruction processes or phase transformations in local volumes of a solvent metal. It is rather important in solid state physics to investigate these interactions. The first-principle calculations performed in terms of the density functional theory, are used for thermodynamic simulation of the elastic stress effect on the energy of hydrogen dissolution in α-Fe crystal lattice. The paper presents investigations of the total energy of Fe-H system depending on the lattice parameter. As a result, the relation is obtained between the hydrogen dissolution energy and stress. A good agreement is shown between the existing data and simulation results. The extended equation is suggested for the chemical potential of hydrogen atom in iron within the local stress field. Two parameters affecting the hydrogen distribution are compared, namely local stress and phase transformations.

  13. Study on radiation degradation of hydroxylamine derivatives. Pt.3: Qualitative and quantitative analyses of hydrogen and carbon monoxide produced by radiation degradation of N,N-diethyl hydroxylamine

    International Nuclear Information System (INIS)

    Wang Jinhua; Bao Borong; Wu Minghong; Sun Xilian

    2004-01-01

    The qualitative and quantitative analysis of hydrogen and carbon monoxide produced by radiation degradation of N,N-diethyl hydroxylamine is performed on a 2 m column packed with 5 Angstrom molecular sieve and equipped with a thermal conductivity detector. The analysis of hydrogen employs argon as a carrier gas, the column temperature is 85 degree C and the detector temperature is 110 degree C; the analysis of carbon monoxide employs hydrogen as a carrier gas, the column temperature is 50 degree C and the detector temperature is 80 degree C. The results show that the volume fraction of hydrogen is increased with the increase of dose, but has little relationship with the concentration of N,N-diethyl hydroxylamine. Carbon monoxide is only produced when the absorption dose is very high and the volume fraction is very low

  14. Hydrogen storage behaviors of Ni-doped graphene Oxide/MIL-101 hybrid composites.

    Science.gov (United States)

    Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    In this work, Ni-doped graphene oxide/MIL-101 hybrid composites (Ni--GO/MIL) were prepared to investigate their hydrogen storage behaviors. Ni--GO/MIL was synthesized by adding Ni--GO in situ during the synthesis of MIL-101 using a hydrothermal process, which was conducted by conventional convection heating with Cr(III) ion as a metal center and telephthalic acid as organic ligands. The crystalline structures and morphologies were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The specific surface area and micropore volume were investigated by N2/77 K adsorption isotherms using the Brunauer-Emmett-Teller (BET) method and Dubinin-Radushkevic (D-R) equation, respectively. The hydrogen storage capacity was investigated by BEL-HP at 77 K and 1 bar. The obtained results show that Ni--GO/MIL presents new directions for achieving novel hybrid materials with higher hydrogen storage capacity.

  15. Effect of water fogs on the deliberate ignition of hydrogen. Final report

    International Nuclear Information System (INIS)

    Zalosh, R.G.; Bajpai, S.N.

    1982-11-01

    This report presents an experimental evaluation of the effects of water fog density, droplet diameter, and temperature on the lower flammable limit (LFL) of hydrogen-air-steam mixtures. The results show that the LFL for hydrogen in air at 20 0 C is only marginally higher with fog than without. Most of the nozzles tested at 20 0 C raised the hydrogen LFL from 4.0 vol % to about 4.8%, for the case of dense fogs with volume-average drop size in the range 45 to 90 microns. The lower flammable limit at 50 0 C was typically 7.2% for dense fogs with drop size in the range 25 to 50 microns. The lower flammable limit at 70 0 C was typically 7.6%. Typical fog concentrations ranged from 0.03 to 0.09 vol % at 20 0 C and decreased with increasing fog temperature. 7 figures, 4 tables

  16. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

  17. Hydrogen energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Salzano, F J; Braun, C [eds.

    1977-09-01

    The purpose of this assessment is to define the near term and long term prospects for the use of hydrogen as an energy delivery medium. Possible applications of hydrogen are defined along with the associated technologies required for implementation. A major focus in the near term is on industrial uses of hydrogen for special applications. The major source of hydrogen in the near term is expected to be from coal, with hydrogen from electric sources supplying a smaller fraction. A number of potential applications for hydrogen in the long term are identified and the level of demand estimated. The results of a cost benefit study for R and D work on coal gasification to hydrogen and electrolytic production of hydrogen are presented in order to aid in defining approximate levels of R and D funding. A considerable amount of data is presented on the cost of producing hydrogen from various energy resources. A key conclusion of the study is that in time hydrogen is likely to play a role in the energy system; however, hydrogen is not yet competitive for most applications when compared to the cost of energy from petroleum and natural gas.

  18. New formula for calculation of cobalt-60 percent depth dose

    International Nuclear Information System (INIS)

    Tahmasebi Birgani, M. J.; Ghorbani, M.

    2005-01-01

    On the basis of percent depth dose calculation, the application of - dosimetry in radiotherapy has an important role to play in reducing the chance of tumor recurrence. The aim of this study is to introduce a new formula for calculating the central axis percent depth doses of Cobalt-60 beam. Materials and Methods: In the present study, based on the British Journal of Radiology table, nine new formulas are developed and evaluated for depths of 0.5 - 30 cm and fields of (4*4) - (45*45) cm 2 . To evaluate the agreement between the formulas and the table, the average of the absolute differences between the values was used and the formula with the least average was selected as the best fitted formula. The Microsoft Excel 2000 and the Data fit 8.0 soft wares were used to perform the calculations. Results: The results of this study indicated that one amongst the nine formulas gave a better agreement with the percent depth doses listed in the table of British Journal of Radiology . The new formula has two parts in terms of log (A/P). The first part as a linear function with the depth in the range of 0.5 to 5 cm and the other one as a second order polynomial with the depth in the range of 6 to 30 cm. The average of - the differences between the tabulated and the calculated data using the formula (Δ) is equal to 0.3 152. Discussion and Conclusion: Therefore, the calculated percent depth dose data based on this formula has a better agreement with the published data for Cobalt-60 source. This formula could be used to calculate the percent depth dose for the depths and the field sizes not listed in the British Journal of Radiology table

  19. Detection of carbon dioxide in the gases evolved during the hot extraction determination of hydrogen in uranium ingots

    International Nuclear Information System (INIS)

    Jursik, M.L.; Pope, J.D.

    1977-08-01

    The hot extraction method was used at the National Lead Company of Ohio to determine hydrogen in uranium metal at the 2 ppM level. The volume of gas evolved from the heated sample was assumed to be hydrogen. When a liquid nitrogen trap was placed into the system the hydrogen values were reduced 5 to 10%. The gas retained by the nitrogen trap was identified by mass spectrometry as predominantly carbon dioxide. Low hydrogen values were observed only when the nitrogen trap was used in the analysis of high-carbon (300 to 600 ppM) uranium from NLO production ingots. However, hydrogen values for low-carbon (30 to 50 ppM) uranium were unaffected by the nitrogen trap. The formation of carbon dioxide appears to be associated with the carbon content of the uranium metal. Comparisons of hydrogen values obtained with the hot extraction method and with an inert fusion--thermal conductivity method are also presented. 3 tables, 4 figures

  20. Test Results of a Ten Cell Bipolar Nickel-hydrogen Battery

    Science.gov (United States)

    Cataldo, R. L.

    1984-01-01

    A study was initiated to design and evaluate a new design concept for nickel-hydrogen cells. This concept involved constructing a battery in a bipolar stack with cells consisting of a one plate for each nickel and hydrogen electrode. Preliminary designs at the system level of this concept promised improvements in both volumetric and gravimetric energy densities, thermal management, life extension, costs, and peak power capability over more conventional designs. Test results were most encouraging. This preprototype battery, built with less than ideal components and hardware, exceeded expectations. A total of 2000 LEO cycles at 80 percent depth of discharge were accrued. A cycle life goal of 30,000 cycles appears achievable with minor design changes. These improvements include advanced technology nickel electrodes, insulated bipolar plates and specifically designed frames to minimize shunt currents. The discharge rate capability of this design exceeds 25C. At the 10C discharge rate, 80% of the battery capacity can be withdrawn in six minutes. This data shows that the bipolar design is well suited for those applications requiring high peak power pulses.