WorldWideScience

Sample records for volume percent fuel

  1. Comparing proton conductivity of polymer electrolytes by percent conducting volume

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Pivovar, Bryan [NREL

    2009-01-01

    Proton conductivity of sulfonated polymers plays a key role in polymer electrolyte membrane fuel cells. Mass based water uptake and ion exchange capacity of sulfonated polymers have been failed to correlating their proton conductivity. In this paper, we report a length scale parameter, percent conductivity volume, which is rather simply obtained from the chemical structure of polymer to compare proton conductivity of wholly aromatic sulfonated polymer perflurosulfonic acid. Morphology effect on proton conductivity at lower RH conditions is discussed using the percent conductivity volume parameter.

  2. Ultrasonic methods for measuring liquid viscosity and volume percent of solids

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, S.H.; Chien, H.T.; Raptis, A.C.

    1997-02-01

    This report describes two ultrasonic techniques under development at Argonne National Laboratory (ANL) in support of the tank-waste transport effort undertaken by the U.S. Department of Energy in treating low-level nuclear waste. The techniques are intended to provide continuous on-line measurements of waste viscosity and volume percent of solids in a waste transport line. The ultrasonic technique being developed for waste-viscosity measurement is based on the patented ANL viscometer. Focus of the viscometer development in this project is on improving measurement accuracy, stability, and range, particularly in the low-viscosity range (<30 cP). A prototype instrument has been designed and tested in the laboratory. Better than 1% accuracy in liquid density measurement can be obtained by using either a polyetherimide or polystyrene wedge. To measure low viscosities, a thin-wedge design has been developed and shows good sensitivity down to 5 cP. The technique for measuring volume percent of solids is based on ultrasonic wave scattering and phase velocity variation. This report covers a survey of multiple scattering theories and other phenomenological approaches. A theoretical model leading to development of an ultrasonic instrument for measuring volume percent of solids is proposed, and preliminary measurement data are presented.

  3. Standard test method for atom percent fission in uranium and plutonium fuel (Neodymium-148 Method)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This test method covers the determination of stable fission product 148Nd in irradiated uranium (U) fuel (with initial plutonium (Pu) content from 0 to 50 %) as a measure of fuel burnup (1-3). 1.2 It is possible to obtain additional information about the uranium and plutonium concentrations and isotopic abundances on the same sample taken for burnup analysis. If this additional information is desired, it can be obtained by precisely measuring the spike and sample volumes and following the instructions in Test Method E267. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  4. Small Volume Fuel Testers Report

    Energy Technology Data Exchange (ETDEWEB)

    Schoegl, I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-31

    Micro-liter fuel ignition testing (μ-FIT) is based on the premise that characteristics FREI (Flames with Repetitive Extinction and Ignition, i.e. cyclically occurring combustion events within heated capillaries), are linked to fuel properties. In early FY16, proof-of-concept measurements with primary reference fuel (PRF) mixtures, i.e. blends of n-heptane and iso-octane, yielded clear evidence for the feasibility of the approach. Our experiments showed that it is critical to accurately link observed flame positions to local temperatures, which provides information on ignition, extinction and flame propagation, all of which are known to be impacted by fuel properties. In FY16, one major hurdle was uncertainty of temperature calibration, which required significant efforts for corrective action that were not included in the original scope of work. Temperature calibrations are obtained by translating a thermocouple within the capillary in absence of a flame. While measurements have good repeatability when accounting for transient and insertion effects, results from nominally identical thermocouples reveal unacceptable uncertainty (up to ±50K), which is attributed to variations in thermocouple placement and manufacturing tolerances. This issue is currently being resolved by switching to non-intrusive optical temperature measurements. Updates are expected to yield uncertainties of less than ±10K, while also eliminating transient and insertion effects. The experimental work was complemented by computational efforts where it was shown that a simplified Lagrangian zero-D model with detailed kinetics yields fuelspecific differentiation of ignition temperatures for simple fuels that are consistent with experiments. Further, a 2D transient model was implemented in OpenFOAM to investigate combustion behavior of simple fuels at elevated pressure. In an upcoming visit to LLNL, more advanced simulations using LLNL’s computational tools (e.g. zero-RK) are planned, which will

  5. Evaluation of 25-Percent ATJ Fuel Blends in the John Deere 4045HF 280 Engine

    Science.gov (United States)

    2014-08-01

    advertising or product endorsement purposes. Contracted Author As the author(s) is(are) not a Government employee(s), this document was only...ABSTRACT A 25% blend of Alcohol to Jet (ATJ) and JP8 fuel was evaluated in the mechanically fuel injected John Deere 4045HF280 engine. Pre and post...TERMS Alcohol to Jet (ATJ), JP8, Alternative Fuels, Stanadyne, Rotary Fuel Injection Pump, John Deere 16. SECURITY CLASSIFICATION OF

  6. 18 CFR 281.304 - Computation of alternative fuel volume.

    Science.gov (United States)

    2010-04-01

    ... alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY... Determination § 281.304 Computation of alternative fuel volume. (a) General rule. For purposes of § 281.208(b)(1)(i)(B), and § 281.305: (1) Alternative fuel volume of an essential agricultural user is equal to...

  7. Fuel quality processing study, volume 1

    Science.gov (United States)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  8. Nuclear Fuels & Materials Spotlight Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    I. J. van Rooyen,; T. M. Lillo; Y. Q. WU; P.A. Demkowicz; L. Scott; D.M. Scates; E. L. Reber; J. H. Jackson; J. A. Smith; D.L. Cottle; B.H. Rabin; M.R. Tonks; S.B. Biner; Y. Zhang; R.L. Williamson; S.R. Novascone; B.W. Spencer; J.D. Hales; D.R. Gaston; C.J. Permann; D. Anders; S.L. Hayes; P.C. Millett; D. Andersson; C. Stanek; R. Ali; S.L. Garrett; J.E. Daw; J.L. Rempe; J. Palmer; B. Tittmann; B. Reinhardt; G. Kohse; P. Ramuhali; H.T. Chien; T. Unruh; B.M. Chase; D.W. Nigg; G. Imel; J. T. Harris

    2014-04-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • The first identification of silver and palladium migrating through the SiC layer in TRISO fuel • A description of irradiation assisted stress corrosion testing capabilities that support commercial light water reactor life extension • Results of high-temperature safety testing on coated particle fuels irradiated in the ATR • New methods for testing the integrity of irradiated plate-type reactor fuel • Description of a 'Smart Fuel' concept that wirelessly provides real time information about changes in nuclear fuel properties and operating conditions • Development and testing of ultrasonic transducers and real-time flux sensors for use inside reactor cores, and • An example of a capsule irradiation test. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps to spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at INL, and hope that you find this issue informative.

  9. Effect of serum testosterone and percent tumor volume on extra-prostatic extension and biochemical recurrence after laparoscopic radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Eu Chang Hwang

    2016-01-01

    Full Text Available Several studies have revealed that the preoperative serum testosterone and percent tumor volume (PTV predict extra-prostatic extension (EPE and biochemical recurrence (BCR after radical prostatectomy. This study investigated the prognostic significance of serum testosterone and PTV in relation to EPE and BCR after laparoscopic radical prostatectomy (LRP. We reviewed 520 patients who underwent LRP between 2004 and 2012. PTV was determined as the sum of all visually estimated tumor foci in every section. BCR was defined as two consecutive increases in the postoperative prostate-specific antigen (PSA >0.2 ng ml−1 . The threshold for serum total testosterone was 3.0 ng ml−1 . Multivariate logistic regression was used to define the effect of variables on the risk of EPE and BCR. A low serum testosterone (<3.0 ng ml−1 was associated with a high serum PSA, Gleason score, positive core percentage of the prostate biopsy, PTV, and all pathological variables. On multivariate analysis, similar to previous studies, the serum PSA, biopsy positive core percentage, Gleason score, and pathological variables predicted EPE and BCR. In addition, low serum testosterone (<3.0 ng ml−1 , adjusted OR, 8.52; 95% CI, 5.04-14.4, P= 0.001 predicted EPE and PTV (adjusted OR, 1.02; 95% CI, 1.01-1.05, P= 0.046 predicted BCR. In addition to previous predictors of EPE and BCR, low serum testosterone and PTV are valuable predictors of EPE and BCR after LRP.

  10. Carbon Slurry Fuels for Volume Limited Missiles

    Science.gov (United States)

    1979-11-01

    nge being 20 mole percent. The oxygen analyzer is a Beckman Model 776 and .... a maximum range of 25 mole percent. The gas chromatograph is a Carle ...salt can also have an important effec.t on the case of Kcarbon oxidation. For example, Nebel and t.ramer 54 ive a relative lictivity series for lead...1978. 54. Nebel , G. .J, and Cramer, P. L., Ind. Eng. Chem 47m 2393, 1955. - 231 - I APPENDIX C - PREPARATION OF HANSEN PLOTS (1) The first step is

  11. Nuclear Fuels & Materials Spotlight Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Petti, David Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system. • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.

  12. Alternatives to traditional transportation fuels 1994. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    In this report, alternative and replacement fuels are defined in accordance with the EPACT. Section 301 of the EPACT defines alternative fuels as: methanol, denatured ethanol, and other alcohols; mixtures containing 85% or more (or such other percentage, but not less than 70%, as determined by the Secretary of Energy, by rule, to provide for requirements relating to cold start, safety, or vehicle functions) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials; electricity (including electricity from solar energy); and any other fuel the Secretary determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. The EPACT defines replacement fuels as the portion of any motor fuel that is methanol, ethanol, or other alcohols, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels (other than alcohol) derived from biological materials, electricity (including electricity from solar energy), ethers, or any other fuel the Secretary of Energy determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. This report covers only those alternative and replacement fuels cited in the EPACT that are currently commercially available or produced in significant quantities for vehicle demonstration purposes. Information about other fuels, such as hydrogen and biodiesel, will be included in later reports as those fuels become more widely used. Annual data are presented for 1992 to 1996. Data for 1996 are based on plans or projections for 1996.

  13. National Aviation Fuel Scenario Analysis Program (NAFSAP). Volume I. Model Description. Volume II. User Manual.

    Science.gov (United States)

    1980-03-01

    TESI CHART NATIONAI RUREAt (F ANDA[)Rt 1V4 A NATIONAL. AVIATION ~ FUEL SCENARIO.. ANALYSIS PROGRAM 49!! VOLUM I: MODEL DESCRIA~v 4<C VOLUME II: tr)ER...executes post processor which translates results of the graphics program to machine readable code used by the pen plotter) cr (depressing the carriage

  14. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Giles, H.N. [ed.] [Deputy Assistant Secretary for Strategic Petroleum Reserve, Washington, DC (United States). Operations and Readiness Office

    1998-12-01

    Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

  15. The percent of cores positive for cancer in prostate needle biopsy specimens is strongly predictive of tumor stage and volume at radical prostatectomy.

    Science.gov (United States)

    Sebo, T J; Bock, B J; Cheville, J C; Lohse, C; Wollan, P; Zincke, H

    2000-01-01

    Pretreatment clinical staging of prostatic adenocarcinoma is important due to the increasing use of nonsurgical treatment options. Using multivariate analysis we assessed the predictive value of biopsy cores positive for cancer as a percent of all cores obtained as well as the percent surface area of needle cores involved with tumor for determining tumor volume and pathological stage at radical prostatectomy. Candidate variables for the multivariate model included patient age, clinical disease stage, serum prostate specific antigen (PSA) and Gleason score of cancer in the needle biopsy. We reviewed prostate needle biopsy findings in 207 consecutive patients who subsequently underwent radical retropubic prostatectomy. Each biopsy specimen was assessed for tumor involvement by calculating the percent of cores positive for cancer, percent surface area involved in all cores and Gleason score. Initial serum PSA and preoperative clinical disease stage were incorporated with biopsy results into a multivariate model to determine the parameters most predictive of pathological stage and tumor volume at radical retropubic prostatectomy. Of the 207 patients 152 (73.4%) had organ confined cancer and 55 (26.6%) had extraprostatic extension (pathological stages T2 and T3 or greater, respectively). Preoperative clinical staging information was available in 195 cases, in which disease was clinically confined and not confined in 184 (94.4%) and 11 (5.6%), respectively. Needle biopsy revealed a surface area of cancer ranging from less than 5% in 69 patients (33.3%) to 90% (mean 16, median 10). Univariate analysis demonstrated that the risk of extraprostatic extension was predicted by preoperative serum PSA (p = 0.027), the percent of cores and percent of surface area positive for cancer (p <0.0001), and Gleason score (p = 0.0009). Clinical stage approached significance (p = 0.071). Multivariate analysis showed that the percent of positive cores (p = 0.0003), initial serum PSA (p = 0

  16. Gd/sub 2/O/sub 3/ up to 9 weight percent, an established burnable poison for advanced fuel management in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, W.; Kiehlmann, H.D.; Neufert, A.; Peehs, M.

    1987-07-01

    High weight percent Gd/sub 2/O/sub 3/ has given excellent results when applied as burnable poison in pressurized water reactors for advanced fuel management tasks. Poisoning of up to 9 weight% Gd/sub 2/O/sub 3/ has been implemented in commercial reload cores to match the requirements of full low leakage loading and cycle extension strategies. Operational performance has confirmed that the high degree of accuracy achieved for calculational methods for standard loading applications also applies for highly Gd poisoned cores. The UO/sub 2/-Gd/sub 2/O/sub 3/ fabrication process has been rationalized by the use of direct pelletizing.

  17. The effects of volume percent and aspect ratio of carbon fiber on fracture toughness of reinforced aluminum matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Naji, H. [Department of Materials and Metallurgical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Azadi Square, P.O. Box 91775-1111 (Iran, Islamic Republic of); Zebarjad, S.M. [Department of Materials and Metallurgical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Azadi Square, P.O. Box 91775-1111 (Iran, Islamic Republic of)], E-mail: Zebarjad@ferdowsi.um.ac.ir; Sajjadi, S.A. [Department of Materials and Metallurgical Engineering, Engineering Faculty, Ferdowsi University of Mashhad, Azadi Square, P.O. Box 91775-1111 (Iran, Islamic Republic of)

    2008-07-15

    Carbon fiber reinforced aluminum matrix composites are used as advanced materials in aerospace and electronic industries. In order to investigate role of aspect ratio of carbon fiber on fracture toughness of aluminum matrix composite, the composite was produced using stir casting. Al-8.5%Si-5%Mg selected as a matrix. The samples were prepared with three volume fractions (1, 2 and 3) and three aspect ratios (300, 500 and 800). Three-point bending test was performed on the specimens to evaluate the fracture toughness of the materials. The results showed that the fracture toughness of composites depends on both fiber volume fraction and aspect ratio. Scanning electron microscopy (SEM) was employed to elucidate the fracture behavior and crack deflection of composites. The study also, showed that the toughening mechanism depends strongly on fiber volume fraction, aspect ratio and the degree of wetting between fiber and matrix.

  18. Subject positioning in the BOD POD® only marginally affects measurement of body volume and estimation of percent body fat in young adult men.

    Directory of Open Access Journals (Sweden)

    Maarten W Peeters

    Full Text Available INTRODUCTION: The aim of the study was to evaluate whether subject positioning would affect the measurement of raw body volume, thoracic gas volume, corrected body volume and the resulting percent body fat as assessed by air displacement plethysmography (ADP. METHODS: Twenty-five young adult men (20.7±1.1 y, BMI = 22.5±1.4 kg/m(2 were measured using the BOD POD® system using a measured thoracic gas volume sitting in a 'forward bent' position and sitting up in a straight position in random order. RESULTS: Raw body volume was 58±124 ml (p<0.05 higher in the 'straight' position compared to the 'bent' position. The mean difference in measured thoracic gas volume (bent-straight = -71±211 ml was not statistically significant. Corrected body volume and percent body fat in the bent position consequently were on average 86±122 ml (p<0.05 and 0.5±0.7% (p<0.05 lower than in the straight position respectively. CONCLUSION: Although the differences reached statistical significance, absolute differences are rather small. Subject positioning should be viewed as a factor that may contribute to between-test variability and hence contribute to (inprecision in detecting small individual changes in body composition, rather than a potential source of systematic bias. It therefore may be advisable to pay attention to standardizing subject positioning when tracking small changes in PF are of interest. The cause of the differences is shown not to be related to changes in the volume of isothermal air in the lungs. It is hypothesized and calculated that the observed direction and magnitude of these differences may arise from the surface area artifact which does not take into account that a subject in the bent position exposes more skin to the air in the device therefore potentially creating a larger underestimation of the actual body volume due to the isothermal effect of air close to the skin.

  19. Fuel performance annual report for 1990. Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Preble, E.A.; Painter, C.L.; Alvis, J.A.; Berting, F.M.; Beyer, C.E.; Payne, G.A. [Pacific Northwest Lab., Richland, WA (United States); Wu, S.L. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

    1993-11-01

    This annual report, the thirteenth in a series, provides a brief description of fuel performance during 1990 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience and trends, fuel problems high-burnup fuel experience, and items of general significance are provided . References to additional, more detailed information, and related NRC evaluations are included where appropriate.

  20. Variable volume combustor with nested fuel manifold system

    Energy Technology Data Exchange (ETDEWEB)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-13

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.

  1. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Energy Technology Data Exchange (ETDEWEB)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  2. LIFE Materails: Molten-Salt Fuels Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  3. Variable volume combustor with pre-nozzle fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  4. Variable volume combustor with center hub fuel staging

    Energy Technology Data Exchange (ETDEWEB)

    Ostebee, Heath Michael; McConnaughhay, Johnie Franklin; Stewart, Jason Thurman; Keener, Christopher Paul

    2016-08-23

    The present application and the resultant patent provide a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a center hub for providing the flow of fuel therethrough. The center hub may include a first supply circuit for a first micro-mixer fuel nozzle and a second supply circuit for a second micro-mixer fuel nozzle.

  5. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Giles, H.N. [ed.] [Deputy Assistant Secretary for Strategic Petroleum Reserve, Washington, DC (United States). Operations and Readiness Office

    1998-12-01

    Volume 2 of these proceedings contain 42 papers arranged under the following topical sections: Fuel blending and compatibility; Middle distillates; Microbiology; Alternative fuels; General topics (analytical methods, tank remediation, fuel additives, storage stability); and Poster presentations (analysis methods, oxidation kinetics, health problems).

  6. 40 CFR 80.596 - How is a refinery motor vehicle diesel fuel volume baseline calculated?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How is a refinery motor vehicle diesel... Requirements § 80.596 How is a refinery motor vehicle diesel fuel volume baseline calculated? (a) For purposes of this subpart, a refinery's motor vehicle diesel fuel volume baseline is calculated using...

  7. Fuel performance annual report for 1991. Volume 9

    Energy Technology Data Exchange (ETDEWEB)

    Painter, C.L.; Alvis, J.M.; Beyer, C.E. [Pacific Northwest Lab., Richland, WA (United States); Marion, A.L. [Oregon State Univ., Corvallis, OR (United States). Dept. of Nuclear Engineering; Payne, G.A. [Northwest Coll. and Univ. Association for Science, Richland, WA (United States); Kendrick, E.D. [Nuclear Regulatory Commission, Washington, DC (United States)

    1994-08-01

    This report is the fourteenth in a series that provides a compilation of information regarding commercial nuclear fuel performance. The series of annual reports were developed as a result of interest expressed by the public, advising bodies, and the US Nuclear Regulatory Commission (NRC) for public availability of information pertaining to commercial nuclear fuel performance. During 1991, the nuclear industry`s focus regarding fuel continued to be on extending burnup while maintaining fuel rod reliability. Utilities realize that high-burnup fuel reduces the amount of generated spent fuel, reduces fuel costs, reduces operational and maintenance costs, and improves plant capacity factors by extending operating cycles. Brief summaries of fuel operating experience, fuel design changes, fuel surveillance programs, high-burnup experience, problem areas, and items of general significance are provided.

  8. SU-E-T-562: Scanned Percent Depth Dose Curve Discrepancy for Photon Beams with Physical Wedge in Place (Varian IX) Using Different Sensitive Volume Ion Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, H; Sarkar, V; Rassiah-Szegedi, P; Huang, Y; Szegedi, M; Huang, L; Salter, B [University Utah, Salt Lake City, UT (United States)

    2014-06-01

    Purpose: To investigate and report the discrepancy of scanned percent depth dose (PDD) for photon beams with physical wedge in place when using ion chambers with different sensitive volumes. Methods/Materials: PDD curves of open fields and physical wedged fields (15, 30, 45, and 60 degree wedge) were scanned for photon beams (6MV and 10MV, Varian iX) with field size of 5x5 and 10x10 cm using three common scanning chambers with different sensitive volumes - PTW30013 (0.6cm3), PTW23323 (0.1cm3) and Exradin A16 (0.007cm3). The scanning system software used was OmniPro version 6.2, and the scanning water tank was the Scanditronix Wellhoffer RFA 300.The PDD curves from the three chambers were compared. Results: Scanned PDD curves of the same energy beams for open fields were almost identical between three chambers, but the wedged fields showed non-trivial differences. The largest differences were observed between chamber PTW30013 and Exradin A16. The differences increased as physical wedge angle increased. The differences also increased with depth, and were more pronounced for 6MV beam. Similar patterns were shown for both 5x5 and 10x10 cm field sizes. For open fields, all PDD values agreed with each other within 1% at 10cm depth and within 1.62% at 20 cm depth. For wedged fields, the difference of PDD values between PTW30013 and A16 reached 4.09% at 10cm depth, and 5.97% at 20 cm depth for 6MV with 60 degree physical wedge. Conclusion: We observed a significant difference in scanned PDD curves of photon beams with physical wedge in place obtained when using different sensitive volume ion chambers. The PDD curves scanned with the smallest sensitive volume ion chamber showed significant difference from larger chamber results, beyond 10cm depth. We believe this to be caused by varying response to beam hardening by the wedges.

  9. Mechanical behaviors of the dispersion nuclear fuel plates induced by fuel particle swelling and thermal effect I: Effects of variations of the fuel particle volume fractions

    Science.gov (United States)

    Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong

    2010-05-01

    A new method of modeling the in-pile mechanical behaviors of dispersion nuclear fuel elements is proposed. Considering the irradiation swelling together with the thermal effect, numerical simulations of the in-pile mechanical behaviors are performed with the developed finite element models for different fuel particle volume fractions of the fuel meat. The effects of the particle volume fractions on the mechanical performances of the fuel element are studied. The research results indicate that: (1) the maximum Mises stresses and equivalent plastic strains at the matrix increase with the particle volume fractions at each burnup; the locations of the maximum first principal stresses shift with increasing burnup; at low burnups, the maximum first principal stresses increase with the particle volume fractions; while at high burnups, the 20% volume fraction case holds the lowest value; (2) at the cladding, the maximum equivalent plastic strains and the tensile principal stresses increase with the particle volume fractions; while the maximum Mises stresses do not follow this order at high burnups; (3) the maximum Mises stresses at the fuel particles increase with the particle volume fractions, and the particles will engender plastic strains until the particle volume fraction reaches high enough.

  10. The determinants of fuel use in the trucking industry – volume, size and the rebound effect

    DEFF Research Database (Denmark)

    Mulalic, Ismir

    2011-01-01

    We analyse the determinants of trucking firm fuel use. We develop a simple model to show that trucking firm fuel use depends, in addition to the fuel price and the traffic volume, also on the output of the trucking firm’s production process (the movement of cargo) measured in tonkilometres...... decompose the standard definition of the rebound effect for motor vehicles, i.e. the elasticity of traffic volume with respect to fuel cost, into the elasticity by which changes in fuel costs affects freight activity and the elasticity by which changes in freight activity affect traffic volume. We estimate...... these elasticities using a simultaneous-equation model based on aggregate time-series data for Denmark for 1980-2007. Our best estimates of the short run and the long run rebound effects for road freight transportation are 19% and 28%, respectively. We also find that an increase in the fuel price surprisingly has...

  11. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  12. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2A. GSFLS visit findings (appendix). Interim report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-31

    This appendix is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This appendix provides the legal/regulatory reference material, supportive of Volume 2 - GSFLS Visit Finding and Evaluations; and certain background material on British Nuclear Fuel Limited (BNFL).

  13. Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have been designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.

  14. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 3, Calculated activity profiles of spent nuclear fuel assembly hardware for boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Short, S.M.; Luksic, A.T.; Schutz, M.E.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel as required by the Nuclear Waste Policy Act of 1982. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly that is also radioactive and required disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report presents a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volume 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1.

  15. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 1, Activation measurements and comparison with calculations for spent fuel assembly hardware

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, A.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly remains that is also radioactive and requires disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report presents a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volumes 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1. 5 refs., 4 figs., 21 tabs.

  16. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 2, Calculated activity profiles of spent nuclear fuel assembly hardware for pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Short, S.M.; Luksic, A.T.; Lotz, T.L.; Schutz, M.E.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel as required by the Nuclear Waste Policy Act of 1982. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly remains that is also radioactive and requires disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report present a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from Laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volumes 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1.

  17. Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

  18. Industrial Fuel Gas Demonstration Plant Program. Volume III. Demonstration plant environmental analysis (Deliverable No. 27)

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    An Environmental Report on the Memphis Light, Gas and Water Division Industrial Fuel Demonstration Plant was prepared for submission to the US Department of Energy under Contract ET-77-C-01-2582. This document is Volume III of a three-volume Environmental Report. Volume I consists of the Summary, Introduction and the Description of the Proposed Action. Volume II consists of the Description of the Existing Environment. Volume III contains the Environmental Impacts of the Proposed Action, Mitigating Measures and Alternatives to the Proposed Action.

  19. LIFE Materials: Fuel Cycle and Repository Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, H; Blink, J A

    2008-12-12

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste

  20. Hanford spent nuclear fuel project recommended path forward, volume III: Alternatives and path forward evaluation supporting documentation

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, J.C.

    1994-10-01

    Volume I of the Hanford Spent Nuclear Fuel Project - Recommended Path Forward constitutes an aggressive series of projects to construct and operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. Volume II provided a comparative evaluation of four Alternatives for the Path Forward and an evaluation for the Recommended Path Forward. Although Volume II contained extensive appendices, six supporting documents have been compiled in Volume III to provide additional background for Volume II.

  1. International Source Book: Nuclear Fuel Cycle Research and Development Vol 1 Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lakey, L. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    1983-07-01

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This first volume includes the overview and the program summaries of those countries listed alphabetically from Argentina to Italy.

  2. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 4. Pacific basin spent fuel logistics system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    This report summarizes the conceptual framework for a Pacific Basin Spent Fuel Logistics System (PBSFLS); and preliminarily describes programatic steps that might be taken to implement such a system. The PBSFLS concept is described in terms of its technical and institutional components. The preferred PBSFLS concept embodies the rationale of emplacing a fuel cycle system which can adjust to the technical and institutional non-proliferation solutions as they are developed and accepted by nations. The concept is structured on the basis of initially implementing a regional spent fuel storage and transportation system which can technically and institutionally accommodate downstream needs for energy recovery and long-term waste management solutions.

  3. 40 CFR 80.595 - How does a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the...

    Science.gov (United States)

    2010-07-01

    ... for a motor vehicle diesel fuel volume baseline for the purpose of extending their gasoline sulfur... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... a small or GPA refiner apply for a motor vehicle diesel fuel volume baseline for the purpose...

  4. 77 FR 59458 - Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume

    Science.gov (United States)

    2012-09-27

    ... water supply; The impact of renewable fuels on the energy security of the United States; The expected... taking this view generally did not offer any data or information to support their belief that 1.28...

  5. 40 CFR 80.164 - Certification test fuels.

    Science.gov (United States)

    2010-07-01

    ... nonoxygenated gasoline), the finished test fuel shall contain ethanol at 10 volume percent. (ii) To certify a... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.164 Certification test fuels. (a... the levels of these parameters in the base gasoline prior to the addition of any oxygenate. The...

  6. 40 CFR 1060.515 - How do I test EPA Nonroad Fuel Lines and EPA Cold-Weather Fuel Lines for permeation emissions?

    Science.gov (United States)

    2010-07-01

    ... reference in § 1060.810) blended with ethanol such that the blended fuel has 10.0 ± 1.0 percent ethanol by volume. (2) For EPA Cold-Weather Fuel Lines, use gasoline blended with ethanol such that the blended fuel has 10.0 ± 1.0 percent ethanol by volume. (b) Drain the fuel line and refill it immediately with...

  7. 40 CFR 80.1429 - Requirements for separating RINs from volumes of renewable fuel.

    Science.gov (United States)

    2010-07-01

    ... or biogas for which RINs have been generated in accordance with § 80.1426(f) must separate any RINs that have been assigned to that volume of renewable electricity or biogas if: (i) The party designates the electricity or biogas as transportation fuel; and (ii) The electricity or biogas is used...

  8. Percent Wetland Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  9. Percent Wetland Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  10. International Source Book: Nuclear Fuel Cycle Research and Development Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, K. M.; Lakey, L. T.

    1982-11-01

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This second volume includes the program summaries of those countries listed alphabetically from Japan to Yugoslavia. Information on international agencies and associations, particularly the IAEA, NEA, and CEC, is provided also.

  11. Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.

  12. Recovery of Navy distillate fuel from reclaimed product. Volume I. Technical discussion

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). The first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 referenvces and abstracts. This appendix, because of its volume, has been published separately as Volume 2. 18 figures, 4 tables.

  13. Technology, safety and costs of decommissioning a reference small mixed oxide fuel fabrication plant. Volume 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C. E.; Murphy, E. S.; Schneider, K. J.

    1979-01-01

    Volume 2 contains appendixes on small MOX fuel fabrication facility description, site description, residual radionuclide inventory estimates, decommissioning, financing, radiation dose methodology, general considerations, packaging and shipping of radioactive materials, cost assessment, and safety (JRD)

  14. Two-dimensional thermal analysis of a fuel rod by finite volume method

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Rhayanne Y.N.; Silva, Mario A.B. da; Lira, Carlos A.B. de O., E-mail: ryncosta@gmail.com, E-mail: mabs500@gmail.com, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamaento de Energia Nuclear

    2015-07-01

    In a nuclear reactor, the amount of power generation is limited by thermal and physic limitations rather than by nuclear parameters. The operation of a reactor core, considering the best heat removal system, must take into account the fact that the temperatures of fuel and cladding shall not exceed safety limits anywhere in the core. If such considerations are not considered, damages in the fuel element may release huge quantities of radioactive materials in the coolant or even core meltdown. Thermal analyses for fuel rods are often accomplished by considering one-dimensional heat diffusion equation. The aim of this study is to develop the first paper to verify the temperature distribution for a two-dimensional heat transfer problem in an advanced reactor. The methodology is based on the Finite Volume Method (FVM), which considers a balance for the property of interest. The validation for such methodology is made by comparing numerical and analytical solutions. For the two-dimensional analysis, the results indicate that the temperature profile agree with expected physical considerations, providing quantitative information for the development of advanced reactors. (author)

  15. Visualization of Gas-to-Liquid (GTL) Fuel Liquid Length and Soot Formation in the Constant Volume Combustion Chamber

    Science.gov (United States)

    Azimov, Ulugbek; Kim, Ki-Seong

    In this research, GTL spray combustion was visualized in an optically accessible quiescent constant-volume combustion chamber. The results were compared with the spray combustion of diesel fuel. Fast-speed photography with direct laser sheet illumination was used to determine the fuel liquid-phase length, and shadowgraph photography was used to determine the distribution of the sooting area in the fuel jet. The results showed that the fuel liquid-phase length of GTL fuel jets stabilized at about 20-22mm from the injector orifice and mainly depended on the ambient gas temperature and fuel volatility. GTL had a slightly shorter liquid length than that of the diesel fuel. This tendency was also maintained when multiple injection strategy was applied. The penetration of the tip of the liquid-phase fuel during pilot injection was a little shorter than the penetration during main injection. The liquid lengths during single and main injections were identical. In the case of soot formation, the results showed that soot formation was mainly affected by air-fuel mixing, and had very weak dependence on fuel volatility.

  16. Materials Requirements for Advanced Energy Systems - New Fuels. Volume 3: Materials Research Needs in Advanced Energy Systems Using New Fuels

    Science.gov (United States)

    1974-07-01

    principal new fuel studied; hydrogen-derived fuels considere-d were ammonia, hydrazine, boranes, silanes, carbon monoxide, and methyl alcohol . The...NEEDED 𔄁O SbPPOR1 THE USE -F Item I No. Equipment Class Fuel Problem Ares. Type of Solution Materials Problema . Malerials E 1 . TURBINES (Con’t) 1.4.1 H...methyl alcohol . The materials implica- tionsof the use, transportation, and storage of oxygen (produced as a by-product in hydrogen generation) and of

  17. Management of radioactive waste gases from the nuclear fuel cycle. Volume I. Comparison of alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Evans, A.G.; Prout, W.E.; Buckner, J.T.; Buckner, M.R.

    1980-12-01

    Alternatives were compared for collection and fixation of radioactive waste gases released during normal operation of the nuclear fuel cycle, and for transportation and storage/disposal of the resulting waste forms. The study used a numerical rating scheme to evaluate and compare the alternatives for krypton-85, iodine-129, and carbon-14; whereas a subjective evaluation, based on published reports and engineering judgement, was made for transportation and storage/disposal options. Based on these evaluations, certain alternatives are recommended for an integrated scheme for waste management of each of the subject waste gases. Phase II of this project, which is concerned with the development of performance criteria for the waste forms associated with the subject gases, will be completed by the end of 1980. This work will be documented as Volume II of this report.

  18. Modular, High-Volume Fuel Cell Leak-Test Suite and Process

    Energy Technology Data Exchange (ETDEWEB)

    Ru Chen; Ian Kaye

    2012-03-12

    Fuel cell stacks are typically hand-assembled and tested. As a result the manufacturing process is labor-intensive and time-consuming. The fluid leakage in fuel cell stacks may reduce fuel cell performance, damage fuel cell stack, or even cause fire and become a safety hazard. Leak check is a critical step in the fuel cell stack manufacturing. The fuel cell industry is in need of fuel cell leak-test processes and equipment that is automatic, robust, and high throughput. The equipment should reduce fuel cell manufacturing cost.

  19. China's imports Up 15 Percent in 2002

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Based on the latest statistical figure released from China Customs, China's total imports rose 15 percent in 2002 as compared to the previous year. The spending for China's crude oil import rose 9.4 percent to 12.757 billion yuan in 2002 while the importing volume of oil products dropped 4.9 percent to 20.34

  20. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 3. Alternatives for interim storage and transportation

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume III of the five-volume report contains information on alternatives for interim storage and transportation. Section titles are: interim storage of spent fuel elements; interim storage of chop-leach fuel bundle residues; tank storage of high-level liquid waste; interim storage of solid non-high-level wastes; interim storage of solidified high-level waste; and, transportation alternatives. (JGB)

  1. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2 concentrations were used, spanning 10-21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH∗ with the increase of ambient temperature and O2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O2 concentration conditions by the

  2. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  3. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  4. Percents Are Not Natural Numbers

    Science.gov (United States)

    Jacobs, Jennifer A.

    2013-01-01

    Adults are prone to treating percents, one representational format of rational numbers, as novel cases of natural number. This suggests that percent values are not differentiated from natural numbers; a conceptual shift from the natural numbers to the rational numbers has not yet occurred. This is most surprising, considering people are inundated…

  5. Inspiration: One Percent and Rising

    Science.gov (United States)

    Walling, Donovan R.

    2009-01-01

    Inventor Thomas Edison once famously declared, "Genius is one percent inspiration and ninety-nine percent perspiration." If that's the case, then the students the author witnessed at the International Student Media Festival (ISMF) last November in Orlando, Florida, are geniuses and more. The students in the ISMF pre-conference workshop had much to…

  6. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  7. Additional experiments on flowability improvements of aviation fuels at low temperatures, volume 2

    Science.gov (United States)

    Stockemer, F. J.; Deane, R. L.

    1982-01-01

    An investigation was performed to study flow improver additives and scale-model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures. Test were performed in a facility that simulated the heat transfer and temperature profiles anticipated in wing fuel tanks during flight of long-range commercial aircraft. The results are presented of experiments conducted in a test tank simulating a section of an outer wing integral fuel tank approximately full-scale in height, chilled through heat exchange panels bonded to the upper and lower horizontal surfaces. A separate system heated lubricating oil externally by a controllable electric heater, to transfer heat to fuel pumped from the test tank through an oil-to-fuel heat exchanger, and to recirculate the heated fuel back to the test tank.

  8. Fuel Quality/Processing Study. Volume II. Appendix, Task I, literature survey

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J B; Bela, A; Jentz, N E; Klumpe, H W; Kessler, R E; Kotzot, H T; Loran, B I

    1981-04-01

    This activity was begun with the assembly of information from Parsons' files and from contacts in the development and commercial fields. A further more extensive literature search was carried out using the Energy Data Base and the American Petroleum Institute Data Base. These are part of the DOE/RECON system. Approximately 6000 references and abstracts were obtained from the EDB search. These were reviewed and the especially pertinent documents, approximately 300, were acquired in the form of paper copy or microfiche. A Fuel Properties form was developed for listing information pertinent to gas turbine liquid fuel properties specifications. Fuel properties data for liquid fuels from selected synfuel processes, deemed to be successful candidates for near future commercial plants were tabulated on the forms. The processes selected consisted of H-Coal, SRC-II and Exxon Donor Solvent (EDS) coal liquefaction processes plus Paraho and Tosco shale oil processes. Fuel properties analyses for crude and distillate syncrude process products are contained in Section 2. Analyses representing synthetic fuels given refinery treatments, mostly bench scale hydrotreating, are contained in Section 3. Section 4 discusses gas turbine fuel specifications based on petroleum source fuels as developed by the major gas turbine manufacturers. Section 5 presents the on-site gas turbine fuel treatments applicable to petroleum base fuels impurities content in order to prevent adverse contaminant effects. Section 7 relates the environmental aspects of gas turbine fuel usage and combustion performance. It appears that the near future stationary industrial gas turbine fuel market will require that some of the synthetic fuels be refined to the point that they resemble petroleum based fuels.

  9. Fuel Quality/Processing Study. Volume II. Appendix, Task I, literature survey

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J B; Bela, A; Jentz, N E; Klumpe, H W; Kessler, R E; Kotzot, H T; Loran, B I

    1981-04-01

    This activity was begun with the assembly of information from Parsons' files and from contacts in the development and commercial fields. A further more extensive literature search was carried out using the Energy Data Base and the American Petroleum Institute Data Base. These are part of the DOE/RECON system. Approximately 6000 references and abstracts were obtained from the EDB search. These were reviewed and the especially pertinent documents, approximately 300, were acquired in the form of paper copy or microfiche. A Fuel Properties form was developed for listing information pertinent to gas turbine liquid fuel properties specifications. Fuel properties data for liquid fuels from selected synfuel processes, deemed to be successful candidates for near future commercial plants were tabulated on the forms. The processes selected consisted of H-Coal, SRC-II and Exxon Donor Solvent (EDS) coal liquefaction processes plus Paraho and Tosco shale oil processes. Fuel properties analyses for crude and distillate syncrude process products are contained in Section 2. Analyses representing synthetic fuels given refinery treatments, mostly bench scale hydrotreating, are contained in Section 3. Section 4 discusses gas turbine fuel specifications based on petroleum source fuels as developed by the major gas turbine manufacturers. Section 5 presents the on-site gas turbine fuel treatments applicable to petroleum base fuels impurities content in order to prevent adverse contaminant effects. Section 7 relates the environmental aspects of gas turbine fuel usage and combustion performance. It appears that the near future stationary industrial gas turbine fuel market will require that some of the synthetic fuels be refined to the point that they resemble petroleum based fuels.

  10. ROE Fish Faunal Percent Loss

    Data.gov (United States)

    U.S. Environmental Protection Agency — Percent reduction is based on the number of native species determined to be present as of 2015, compared with historical numbers documented prior to 1970. Data are...

  11. Determination of the steam volume fraction in the event of loss of cooling of the spent fuel storage pool

    Science.gov (United States)

    Sledkov, R. M.; Galkin, I. Yu.; Stepanov, O. E.; Strebnev, N. A.

    2017-01-01

    When one solves engineering problems related to the cooling of fuel assemblies (FAs) in a spent fuel storage pool (SFSP) and the assessment of nuclear safety of FA storage in an SFSP in the initial event of loss of SFSP cooling, it is essential to determine the coolant density and, consequently, steam volume fractions φ in bundles of fuel elements at a pressure of 0.1-0.5 MPa. Such formulas for calculating φ that remain valid in a wide range of operating parameters and geometric shapes of channels and take the conditions of loss of SFSP cooling into account are currently almost lacking. The results of systematization and analysis of the available formulas for φ are reported in the present study. The calculated values were compared with the experimental data obtained in the process of simulating the conditions of FA cooling in an SFSP in the event of loss of its cooling. Six formulas for calculating the steam volume fraction, which were used in this comparison, were chosen from a total of 11 considered relations. As a result, the formulas producing the most accurate values of φ in the conditions of loss of SFSP cooling were selected. In addition, a relation that allows one to perform more accurate calculations of steam volume fractions in the conditions of loss of SFSP cooling was derived based on the Fedorov formula in the two-group approximation.

  12. The determinants of fuel use in the trucking industry - volume, fleet characteristics and the rebound effect

    DEFF Research Database (Denmark)

    de Borger, Bruno; Mulalic, Ismir

    2012-01-01

    more fuel efficient, trucks. Third, these adjustments and the rebound effect jointly imply that the effect of higher fuel prices on fuel use in the trucking industry is fairly small; estimated price elasticities are _0:13 and _0:22 in the short run and in the long run, respectively. The empirical...... of this effect is approximately 10% in the short run and 17% in the long run, so that a 1% improvement in fuel efficiency reduces fuel use by 0.90% (short-run) to 0.83% (long-run). Second, we find that higher fuel prices raise the average capacity of trucks, and they induce firm sto invest in newer, typically...

  13. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  14. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  15. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume III. Resources and fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Volume III explores resources and fuel cycle facilities. Chapters are devoted to: estimates of US uranium resources and supply; comparison of US uranium demands with US production capability forecasts; estimates of foreign uranium resources and supply; comparison of foreign uranium demands with foreign production capability forecasts; and world supply and demand for other resources and fuel cycle services. An appendix gives uranium, fissile material, and separative work requirements for selected reactors and fuel cycles.

  16. Integrated Aircraft Fuel Tank Inerting and Compartment Fire Suppression System. Volume 2. Evaluation of Nitrogen-Enriched Air as a Fire Suppressant

    Science.gov (United States)

    1983-04-01

    speculation that such an ideal condition might not occur in an actual test situation, further tests were conducted to determine whether the...TYPE: POOL FUEL TYPE: .JP4 FUEL FLOW RATE; N/A EXTINGUISHANT: C02 RUN1Cn AIR TEMPERATURE: VARIOUS 4 .. i00 PUNtOS RUN117 .110 2 30 4065 VOLUME I

  17. Licensed fuel facility. Volume 14. Inventory difference data, status report, July 1, 1993--June 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Joy, D R

    1995-03-01

    The Nuclear Regulatory Commission is committed to an annual publication of licensed fuel facilities` inventory difference (ID) results, after Agency review of the information and completion of any related investigations. Information in this report includes ID results for active fuel fabrication and/or recovery facilities.

  18. Canola Oil Fuel Cell Demonstration: Volume 3 - Technical, Commercialization, and Application Issues Associated with Harvested Biomass

    Science.gov (United States)

    2006-08-17

    Fuels for Fuel Cells.” International Journal of Hydrogen Energy , vol 26, pp. 291-301. Arthur D. Little, Inc. 2001. Conceptual Design of POX / SOFC 5...Compact Plasmatron-Boosted Hydrogen Generation Technology for Vehicular Applications.” International Journal of Hydrogen Energy , No. 24. pp. 341

  19. Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  20. Fuel Cell Auxiliary Power Study Volume 1: RASER Task Order 5

    Science.gov (United States)

    Mak, Audie; Meier, John

    2007-01-01

    This study evaluated the feasibility of a hybrid solid oxide fuel cell (SOFC) auxiliary power unit (APU) and the impact in a 90-passenger More-Electric Regional Jet application. The study established realistic hybrid SOFC APU system weight and system efficiencies, and evaluated the impact on the aircraft total weight, fuel burn, and emissions from the main engine and the APU during cruise, landing and take-off (LTO) cycle, and at the gate. Although the SOFC APU may be heavier than the current conventional APU, its weight disadvantage can be offset by fuel savings in the higher SOFC APU system efficiencies against the main engine bleed and extraction during cruise. The higher SOFC APU system efficiency compared to the conventional APU on the ground can also provide considerable fuel saving and emissions reduction, particularly at the gate, but is limited by the fuel cell stack thermal fatigue characteristic.

  1. LIFE Materials: Phase Formation and Transformations in Transmutation Fuel Materials for the LIFE Engine Part I - Path Forward Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P A; Kaufman, L; Fluss, M

    2008-12-19

    The current specifications of the LLNL fusion-fission hybrid proposal, namely LIFE, impose severe constraints on materials, and in particular on the nuclear fissile or fertile nuclear fuel and its immediate environment. This constitutes the focus of the present report with special emphasis on phase formation and phase transformations of the transmutation fuel and their consequences on particle and pebble thermal, chemical, and mechanical integrities. We first review the work that has been done in recent years to improve materials properties under the Gen-IV project, and with in particular applications to HTGR and MSR, and also under GNEP and AFCI in the USA. Our goal is to assess the nuclear fuel options that currently exist together with their issues. Among the options, it is worth mentioning TRISO, IMF, and molten salts. The later option will not be discussed in details since an entire report (Volume 8 - Molten-salt Fuels) is dedicated to it. Then, in a second part, with the specific LIFE specifications in mind, the various fuel options with their most critical issues are revisited with a path forward for each of them in terms of research, both experimental and theoretical. Since LIFE is applicable to very high burn-up of various fuels, distinctions will be made depending on the mission, i.e., energy production or incineration. Finally a few conclusions are drawn in terms of the specific needs for integrated materials modeling and the in depth knowledge on time-evolution thermo-chemistry that controls and drastically affects the performance of the nuclear materials and their immediate environment. Although LIFE demands materials that very likely have not yet been fully optimized, the challenges are not insurmountable, and a well concerted experimental-modeling effort should lead to dramatic advances that should well serve other fission programs such as Gen-IV, GNEP, AFCI as well as the international fusion program, ITER.

  2. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 2, User's manual

    Energy Technology Data Exchange (ETDEWEB)

    Rector, D.R.; Cuta, J.M.; Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.

    1986-11-01

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations; however, the transient capability has not yet been validated. This volume contains the input instructions for COBRA-SFS and an auxiliary radiation exchange factor code, RADX-1. It is intended to aid the user in becoming familiar with the capabilities and modeling conventions of the code.

  3. Biotechnology for producing fuels and chemicals from biomass. Volume 2: Fermentation chemicals from biomass

    Science.gov (United States)

    Villet, R.

    1981-02-01

    The technological and economic feasibility of producing chemicals by fermentation is discussed: acetone; butanol; acetic acid; citric acid; 2,3-butanediol, and propionic acid. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5 percent to 7 percent/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. The feedstock cost is 15 to 20 percent of the overall cost of production. The anticipated 5 percent growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. The commercial fermentative production of propionic acid has not yet been developed.

  4. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

  5. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 2. Alternatives for waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume II of the five-volume report is devoted to the description of alternatives for waste treatment. The discussion is presented under the following section titles: fuel reprocessing modifications; high-level liquid waste solidification; treatment and immobilization of chop-leach fuel bundle residues; treatment of noncombustible solid wastes; treatment of combustible wastes; treatment of non-high-level liquid wastes; recovery of transuranics from non-high-level wastes; immobilization of miscellaneous non-high-level wastes; volatile radioisotope recovery and off-gas treatment; immobilization of volatile radioisotopes; retired facilities (decontamination and decommissioning); and, modification and use of selected fuel reprocessing wastes. (JGB)

  6. Industrial Fuel Gas Demonstration Plant Program. Volume 1. Demonstration plant environmental analysis (Deliverable No. 27)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Robert W.; Swift, Richard J.; Krause, Arthur J.; Berkey, Edgar

    1979-08-01

    This environmental report describes the proposed action to construct, test and operate a coal gasification demonstration plant in Memphis, Tennessee, under the co-sponsorship of the Memphis Light, Gas and Water Division (MLGW) and the US Department of Energy (DOE). This document is Volume I of a three-volume Environmental Report. Volume I consists of the Summary, Introduction and the Description of the Proposed Action. Volume II consists of the Description of the Existing Environment. Volume III contains the Environmental Impacts of the Proposed Action, Mitigating Measures and Alternatives to the Proposed Action.

  7. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository - Volume 3: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.L.; Wilson, J.R. (INEEL); Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K. (SNL); Rath, J.S. (New Mexico Engineering Research Institute)

    1998-10-01

    The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  8. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: • MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis • expected process scale required for favorable economics • the availability of MSW in quantities sufficient to meet process scale requirements • the state-of-the-art of MSW gasification technology.

  9. Industrial fuel choice analysis model. Volume II. Appendices to model documentation

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-08

    Descriptions, documentation, and other information are included in these appendices dealing with industrial fuel choices: Energy Consumption Data Base; Major Fuel Burning Installation Survey; American Boiler Manufacturers Association Data File; Midrange Energy Forecasting System; Projection Method; Capacity Utilization Rates; Nonboiler Characteristics; Boiler Capital and O and M Cost Data; Nonboiler Capital and O and M Cost Data; Approach to Estimating Energy Impacts of the Coal Conversion Regulatory Program; Index or Acronyms.

  10. Assessment of ether and alcohol fuels from coal. Volume 2. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A unique route for the indirect liquefaction of coal to produce transportation fuel has been evaluated. The resultant fuel includes alkyl tertiary alkyl ethers and higher alcohols, all in the gasoline boiling range. When blended into gasoline, the ether fuel provides several advantages over the lower alcohols: (1) lower chemical oxygen content, (2) less-severe water-separation problems, and (3) reduced front-end volatility effects. The ether fuel also has high-octane quality. Further, it can be utilized as a gasoline substitute in all proportions. Production of ether fuel combines several steps, all of which are or have been practiced on an industrial scale: (1) coal gasification, (2) gas cleanup and shift to desired H/sub 2/:CO ratio, (3) conversion of synthesis gas to isobutanol, methanol, and higher alcohols, (4) separation of alcohols, (5) chemical dehydration of isobutanol to isobutylene, and (6) etherification of isobutylene with methanol. A pilot-plant investigation of the isobutanol synthesis step was performed. Estimates of ether-fuel manufacturing costs indicate this process route is significantly more costly than synthesis of methanol. However, the fuel performance features provide incentive for developing the necessary process and catalyst improvements. Co-production of higher-molecular-weight co-solvent alcohols represents a less-drastic form of methanol modification to achieve improvement in the performance of methanol-gasoline blends. Costs were estimated for producing several proportions of methanol plus higher alcohols from coal. Estimated fuel selling price increases regularly but modestly with higher alcohol content.

  11. LIFE Materials: Overview of Fuels and Structural Materials Issues Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J

    2008-09-08

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  12. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    Energy Technology Data Exchange (ETDEWEB)

    DeLuchi, M.A. [Argonne National Lab., IL (United States)]|[Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  13. Proceedings of the US Department of Energy environmental control symposium. Volume 1. Plenary session and fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    Volume one of the proceedings (Plenary Session and Fossil Fuels) contains papers on environmental pollution control which resulted mainly from US DOE's research programs in coal (preparation, desulfurization, gasification, liquefaction, combustion, fluidized-bed combustion, and pollution control methods with respect to SO/sub 2/, NO/sub x/, and CO/sub 2/ (global effects and feasibility studies); a few papers deal with oil shale operations and the enhanced recovery of petroleum. Papers have been entered individually into EDB and ERA, with 3 also into EAPA; six papers had been entered previously from other sources. (LTN)

  14. LIFE Materials: Overview of Fuels and Structural Materials Issues Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J

    2008-09-08

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission

  15. Development of Accelerated Fuel-Engines Qualification Procedures Methodology. Volume II. Appendices.

    Science.gov (United States)

    1981-12-01

    S TOME R ENVIRO ]N S0AfI< TI ME T FMP 0R V I [MI ’iTAN DViM SR FREE 24HR 7SF 7DAY WEI IItll & HAR)NDEMSS I)ATA SC %VS (WE1) %VS(DRY) HC (WET) H: (DR Y...Content vt%, min 13.6 13.6 or Smoke Point, amn, min 20.0 N/A Fuel System Icing Inhibitor, voiX 0.10-0.15 N/A Fuel Electrical Conductivity, pS/in 200-600...system. Figure A-3 shows a schematic of the smoke generating system. Table A-4 lists the vendor or source of supply for the primary fuel system

  16. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2. GSFLS visit findings and evaluations. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-31

    This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This report describes a global framework that evaluates spent fuel disposition requirements, influencing factors and strategies. A broad sampling of foreign governmental officials, electric utility spokesmen and nuclear power industry officials responsible for GSFLS policies, plans and programs were surveyed as to their views with respect to national and international GSFLS related considerations. The results of these GSFLS visit findings are presented herein. These findings were then evaluated in terms of technical, institutional and legal/regulatory implications. The GSFLS evaluations, in conjunction with perceived US spent fuel objectives, formed the basis for selecting a set of GSFLS strategies which are reported herein.

  17. Survey of Flex Fuel in 2014. CRC Project E-85-3

    Energy Technology Data Exchange (ETDEWEB)

    Alleman, Teresa L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-07-27

    ASTM D5798 sets the specifications for Ethanol Flex Fuel, which currently permits between 51 volume percent (vol%) and 83 vol% ethanol. The vapor pressure varies seasonally and geographically and is divided into four distinct classes to ensure year-round driveability. This project is the first survey of Ethanol Flex Fuel since these specification changes were made to Specification D5798.

  18. Development of a mathematical model for a single alkaline membrane fuel cell (AMFC) with fixed volume and general square section

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Elise Meister; Vargas, Jose Viriato Coelho [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico. Setor de Tecnologia], Email: jvargas@demec.ufpr.br; Martins, Lauber de Souza; Ordonez, Juan Carlos [Florida State University, Tallahasse, FL (United States). Dept. of Mechanical Engineering and Center for Advanced Power Systems], Emails: martins@caps.fsu.edu, ordonez@eng.fsu.edu

    2010-07-01

    The Alkaline Membrane Fuel Cell (AMFC) is a recently developed fuel cell type, which has shown good experimental results in the laboratory. This paper introduces a mathematical model for the single AMFC with fixed volume and general square section. The main objective is to produce a reliable model (and computationally fast) to predict the response of the single AMFC according to variations of the physical properties of manufacturing materials and operating and design parameters. The model is based on mass, momentum, energy and species conservation, and electrochemical principles, and takes into account pressure drops in the gas channels and temperature gradients with respect to space in the flow direction. The simulation results comprise the AMFC temperature distribution, net power and polarization curves. It is shown that temperature spatial gradients and gas channels pressure drops significantly affect fuel cell performance. Such effects are not usually investigated in the models available in the literature, with most of them assuming uniform pressure and temperature operation. Therefore, the model is expected to be a useful tool for AMFC design and optimization. (author)

  19. Water equilibria and management using a two-volume model of a polymer electrolyte fuel cell

    Science.gov (United States)

    Karnik, Amey Y.; Stefanopoulou, Anna G.; Sun, Jing

    In this paper, we introduce a modified interpretation of the water activity presented in Springer et al. [T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel cell model, J. Electrochem. Soc. 138 (8) (1991) 2334-2342]. The modification directly affects the membrane water transport between the anode and the cathode (two electrodes) of the polymer electrolyte membrane (PEM) fuel cell in the presence of liquid water inside the stack. The modification permits calibration of a zero-dimensional isothermal model to predict the flooding and drying conditions in the two electrodes observed at various current levels [D. Spernjak, S. Advani, A.K. Prasad, Experimental investigation of liquid water formation and transport in a transparent single-serpentine PEM fuel cell, in: Proceedings of the Fourth International Conference on Fuel Cell Science, Engineering and Technology (FUELCELL2006-97271), June 2006]. Using this model the equilibria of the lumped water mass in the two electrodes are analyzed at various flow conditions of the stack to determine stable and unstable (liquid water growth) operating conditions. Two case studies of water management through modification of cathode inlet humidification and anode water removal are then evaluated using this model. The desired anode water removal and the desired cathode inlet humidification are specified based upon (i) the water balance requirements, (ii) the desired conditions in the electrodes, and (iii) the maximum membrane transport at those conditions.

  20. Experimental hydrogen-fueled automotive engine design data-base project. Volume 2. Main technical report

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.R.; Adt, R.R. Jr.; Pappas, J.M.

    1983-05-01

    Operational performance and emissions characteristics of hydrogen-fueled engines are reviewed. The project activities are reviewed including descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained. Analyses of other hydrogen engine project data are also presented and compared with the results of the present effort.

  1. Variability of Major Organic Components in Aircraft Fuels. Volume 1. Technical Discussion

    Science.gov (United States)

    1984-06-27

    yield an unequi- vocal definition of a GC/FID or GC/MS feature due to mass spectra similarities. TQ better define GC/FID and GC/MS features, additional...Reference Fuel. In this GC/MS quntitative analy- sis, each of the GC/FID features above 4 mg/ml was identifie using retention time and up to three

  2. Nuclear fuel reprocessing and high level waste disposal: informational hearings. Volume V. Reprocessing. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-03-08

    Testimony was presented by a four member panel on the commercial future of reprocessing. Testimony was given on the status of nuclear fuel reprocessing in the United States. The supplemental testimony and materials submitted for the record are included in this report. (LK)

  3. CPP-603 Underwater Fuel Storage Facility Site Integrated Stabilization Management Plan (SISMP), Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Denney, R.D.

    1995-10-01

    The CPP-603 Underwater Fuel Storage Facility (UFSF) Site Integrated Stabilization Management Plan (SISMP) has been constructed to describe the activities required for the relocation of spent nuclear fuel (SNF) from the CPP-603 facility. These activities are the only Idaho National Engineering Laboratory (INEL) actions identified in the Implementation Plan developed to meet the requirements of the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 to the Secretary of Energy regarding an improved schedule for remediation in the Defense Nuclear Facilities Complex. As described in the DNFSB Recommendation 94-1 Implementation Plan, issued February 28, 1995, an INEL Spent Nuclear Fuel Management Plan is currently under development to direct the placement of SNF currently in existing INEL facilities into interim storage, and to address the coordination of intrasite SNF movements with new receipts and intersite transfers that were identified in the DOE SNF Programmatic and INEL Environmental Restoration and Waste Management Environmental Impact Statement Record, of Decision. This SISMP will be a subset of the INEL Spent Nuclear Fuel Management Plan and the activities described are being coordinated with other INEL SNF management activities. The CPP-603 relocation activities have been assigned a high priority so that established milestones will be meet, but there will be some cases where other activities will take precedence in utilization of available resources. The Draft INEL Site Integrated Stabilization Management Plan (SISMP), INEL-94/0279, Draft Rev. 2, dated March 10, 1995, is being superseded by the INEL Spent Nuclear Fuel Management Plan and this CPP-603 specific SISMP.

  4. Assessment of LWR spent fuel disposal options. Volume 2. System definition and assessments. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Volume 2, in addition to introducing and defining the requirements for the study, contains the detailed evaluation of the study cases in each of six assessment areas, and describes and evaluates a number of study variations.

  5. Solid Oxide Fuel Cell APU Feasibility Study for a Long Range Commercial Aircraft Using UTC ITAPS Approach. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation

    Science.gov (United States)

    Srinivasan, Hari; Yamanis, Jean; Welch, Rick; Tulyani, Sonia; Hardin, Larry

    2006-01-01

    The objective of this contract effort was to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future long range commercial aircraft, and to define the technology gaps to enable such a system. The study employed technologies commensurate with Entry into Service (EIS) in 2015. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate system concepts to a conceptual level of fidelity. The technology benefits were captured as reductions of the mission fuel burn and emissions. The baseline aircraft considered was the Boeing 777-200ER airframe with more electric subsystems, Ultra Efficient Engine Technology (UEET) engines, and an advanced APU with ceramics for increased efficiency. In addition to the baseline architecture, four architectures using an SOFC system to replace the conventional APU were investigated. The mission fuel burn savings for Architecture-A, which has minimal system integration, is 0.16 percent. Architecture-B and Architecture-C employ greater system integration and obtain fuel burn benefits of 0.44 and 0.70 percent, respectively. Architecture-D represents the highest level of integration and obtains a benefit of 0.77 percent.

  6. CleanFleet. Volume 2, Project Design and Implementation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The CleanFleet alternative fuels demonstration project evaluated five alternative motorfuels in commercial fleet service over a two-year period. The five fuels were compressed natural gas, propane gas, California Phase 2 reformulated gasoline (RFG), M-85 (85 percent methanol and 15 percent RFG), and electric vans. Eight-four vans were operated on the alternative fuels and 27 vans were operated on gasoline as baseline controls. Throughout the demonstration information was collected on fleet operations, vehicle emissions, and fleet economics. In this volume of the CleanFleet findings, the design and implementation of the project are summarized.

  7. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 3A. GSFLS technical analysis (appendix). Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Kriger, A.

    1978-01-31

    This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. The technical and financial considerations underlying a global spent fuel logistics systems have been studied and are reported. The Pacific Basin is used as a model throughout this report; however the stated methodology and, in many cases, considerations and conclusions are applicable to other global regions. Spent fuel discharge profiles for Pacific Basin Countries were used to determine the technical systems requirements for alternative concepts. Functional analyses and flows were generated to define both system design requirements and logistics parameters. A technology review was made to ascertain the state-of-the-art of relevant GSFLS technical systems. Modular GSFLS facility designs were developed using the information generated from the functional analysis and technology review. The modular facility designs were used as a basis for siting and cost estimates for various GSFLS alternatives. Various GSFLS concepts were analyzed from a financial and economic perspective in order to provide total concepts costs and ascertain financial and economic sensitivities to key GSFLS variations. Results of the study include quantification of GSFLS facility and hardware requirements; drawings of relevant GSFLS facility designs; system cost estimates; financial reports - including user service charges; and comparative analyses of various GSFLS alternatives.

  8. Global spent fuel logistics systems study (GSFLS). Volume I. GSFLS summary report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    An important element in the implementation of international nuclear energy policies is the creation of viable systems for transporting, handling, storing, and disposing of the world's spent nuclear fuel. There is an urgent need to implement selected global spent fuel logistics systems (GSFLS) which can best bridge the interests of countries throughout the world and provide the necessary means for transporting, handling, storing and disposing of spent nuclear fuel. The viability of these systems depends upon their compatibility with governmental policies and nonproliferation concerns; their adequacy in support of projected global nuclear power programs; and their adaptation to realistic technological and institutional constraints. The United States Department of Energy contracted with Boeing Engineering and Construction (BEC), a division of the Boeing Company, and its subcontractors, International Energy Associates Limited (IEAL) and the firm of Doub, Purcell, Muntzing and Hansen to conduct a study of issues and options in establishing GSFLS and to develop preliminary GSFLS concepts. BEC conducted the study integration and developed the technological/economic framework; IEAL researched and developed the institutional framework; and the firm of Doub, Purcell, Muntzing and Hansen conducted the legal/regulatory research associated with the study. BEC also consulted with the First Boston Corporation regarding generic financial considerations associated with GSFLS. This report provides a summarization of the GSFLS study findings.

  9. Experimental plan for the fuel-oil study. Weatherization Assistance Program: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Ternes, M.P.; Levins, W.P.; Brown, M.A.

    1992-01-01

    An up-to-date assessment of the Weatherization Assistance Program (WAP) is being performed by the US Department of Energy WAP Division and the Oak Ridge National Laboratory. Five studies form the evaluation. Major goals of the Fuel-Oil Study are to estimate the fuel oil saved by the WAP in the Northeast during the 1990 and 1991 program years, identify and quantify non-energy impacts of the WAP, assess the cost effectiveness of the WAP within this submarket, and assess factors which may cause savings and cost effectiveness to vary. The study will only analyze single-family houses in the nine states in the Northeast census region and will be carried out over two heating seasons (1990 and 1991 WAP program years). A split-winter, pre- and post-weatherization experimental design with a control group will be used. Houses will be monitored over one winter. Energy conservation measures will be installed in the weatherized houses in January of each winter by the local WAP subgrantee. One hundred twenty five weatherized houses and 75 control houses will be monitored over the 1990--1991 winter; a different set of 200 houses will be monitored over the 1991--1992 winter. The houses will be evenly distributed among 25 subgrantees. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature data will be collected for all houses. Fuel-oil delivery data will be collected for each house monitored over the 1990--1991 winter for at least a year before weatherization. The delivery data will be analyzed to determine if the accuracy of the study can be improved by collecting fuel-oil delivery data on a larger sample of houses over the 1991--1992 winter. Detailed survey information will be obtained on all the houses. This information includes descriptive details of the house and its mechanical systems, details on household size and other demographics, and occupant answers to questions regarding comfort, safety, and operation of their space-heating system and house.

  10. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2016-05-26

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i.e., biomass to liquid (BTL), and a regular No. 2 diesel in a constant volume combustion chamber using multiband flame measurement and two-color pyrometry. The spray combustion flame structure was visualized by using multiband flame measurement to show features of soot formation, high temperature and low temperature reactions, which can be characterized by the narrow-band emissions of radicals or intermediate species such as OH, HCHO, and CH. The objective of this study was to identify the details of multiple injection combustion, including a pilot and a main injection, and to provide further insights on how the two injections interact. For comparison, three injection strategies were considered for both fuels including a two-injection strategy (Case TI), single injection strategy A (Case SA), and single injection strategy B (Case SB). Multiband flame results show a strong interaction, indicated by OH emissions between the pilot injection and the main injection for Case TI while very weak connection is found for the narrow-band emissions acquired through filters with centerlines of 430 nm and 470 nm. A faster flame development is found for the main injection of Case TI compared to Cases SA and SB, which could be due to the high temperature environment and large air entrainment from the pilot injection. A lower soot level is observed for the BTL flame compared to the diesel flame for all three injection types. Case TI has a lower soot level compared to Cases SA and SB for the BTL fuel, while the diesel fuel maintains a similar soot level among all three injection strategies. Soot temperature of Case TI is lower for both fuels, especially for diesel. Based on these results, it is expected that the two-injection strategy could be

  11. Compliance problems of small utility systems with the Powerplant and Industrial Fuel Use Act of 1978: volume II - appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    A study of the problems of compliance with the Powerplant and Industrial Fuel Use Act of 1978 experienced by electric utility systems which have a total generating capacity of less than 2000 MW is presented. This volume presents the following appendices: (A) case studies (Farmington, New Mexico; Lamar, Colorado; Dover, Delaware; Wolverine Electric Cooperative, Michigan; Central Telephone and Utilities, Kansas; Sierra Pacific Power Company, Nevada; Vero Beach, Florida; Lubbock, Texas; Western Farmers Cooperative, Oklahoma; and West Texas Utilities Company, Texas); (B) contacts and responses to study; (C) joint action legislation chart; (D) Texas Municipal Power Agency case study; (E) existing generating units jointly owned with small utilities; (F) future generating units jointly owned with small utilities; (G) Federal Register Notice of April 17, 1980, and letter of inquiry to utilities; (H) small utility responses; and (I) Section 744, PIFUA. (WHK)

  12. Fuel ethanol and South Carolina: a feasibility assessment. Volume II. Detailed report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The feasibility of producing ethanol from carbohydrates in the State of South Carolina is discussed. It is preliminary in the sense that it provides partial answers to some of the questions that exist concerning ethanol production in the state, and is not intended to be a comprehensive treatment of the subject. A great deal more work needs to be done as ethanol fuels become a more significant element in South Carolina's energy mix. The existing carbohydrate resource base in the state is reviewed, the extent to which this base can be increased is estimated, and importation of out-of-state feedstocks to expand the base further is discussed. A discussion of the economics of ethanol production is provided for farm-scale and commercial-sized plants, as is a general discussion of environmental impacts and state permitting and approval requirements. Several other considerations affecting the small-scale producer are addressed, including the use of agricultural residues and manure-derived methane to fuel the ethanol production process. Research needs are identified, and brief case studies for Williamsburg and Orangeburg counties are provided.

  13. Production of Jet Fuels from Coal Derived Liquids. Volume 1. Market Assessment for Liquid By-Products from the Great Plains Gasification Plant.

    Science.gov (United States)

    1987-08-01

    at the Institute Francais de Petrole at Rueil-Malmaison, France. Table 8 presents the critical fuel properties and conpares them with the starting...available for the Great Plains tar oil, one analysis of sediment by extraction gave 0.1 weight percent. If this material were all particulates by...selective hydrogenation of a wide range of di- olefins, rnono-olefins, sulfur and nitrogen contaminants , without the formation of troublesome gum, polymer

  14. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle descriptions

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Nonproliferation Alternative Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates. Volume IX is divided into three sections: Chapter 1, Reactor Systems; Chapter 2, Fuel-Cycle Systems; and the Appendixes. Chapter 1 contains the characterizations of the following 12 reactor types: light-water reactor; heavy-water reactor; water-cooled breeder reactor; high-temperature gas-cooled reactor; gas-cooled fast reactor; liquid-metal fast breeder reactor; spectral-shift-controlled reactor; accelerator-driven reactor; molten-salt reactor; gaseous-core reactor; tokamak fusion-fisson hybrid reactor; and fast mixed-spectrum reactor. Chapter 2 contains similar information developed for fuel-cycle facilities in the following categories: mining and milling; conversion and enrichment; fuel fabrication; spent fuel reprocessing; waste handling and disposal; and transportation of nuclear materials.

  15. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  16. Industrial Fuel Gas Demonstration Plant Program. Volume II. Commercial plant design (Deliverable Nos. 15 and 16)

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This report presents a Conceptual Design and Evaluation of Commercial Plant report in four volumes as follows: I - Executive Summary, II - Commercial Plant Design, III - Economic Analyses, IV - Demonstration Plant Recommendations. Volume II presents the commercial plant design and various design bases and design analyses. The discussion of design bases includes definition of plant external and internal considerations. The basis is described for process configuration selection of both process units and support facilities. Overall plant characteristics presented include a summary of utilities/chemicals/catalysts, a plant block flow diagram, and a key plot plan. Each process unit and support facility is described. Several different types of process analyses are presented. A synopsis of environmental impact is presented. Engineering requirements, including design considerations and materials of construction, are summarized. Important features such as safety, startup, control, and maintenance are highlighted. The last section of the report includes plant implementation considerations that would have to be considered by potential owners including siting, coal and water supply, product and by-product characteristics and uses, overall schedule, procurement, construction, and spare parts and maintenance philosophy.

  17. Fuel combustion test in constant volume combustion chamber with built-in adaptor

    Institute of Scientific and Technical Information of China (English)

    JEONG; DongSoo; CHO; GyuBack; CHOI; SuJin; LEE; JinSoo

    2010-01-01

    Combustion tests of pre-mixture of methane and air in constant volume combustion chamber(CVCC) have been carried out by means of flame propagation photo and gas pressure measurement,the effects of CVCC body temperature,intake pressure of pre-mixture of methane and air,equivalence ratio and location of the built-in adaptor have been investigated.The whole combustion chamber can be divided into two parts,i.e.the upper combustion chamber and the lower combustion chamber,by the built-in adaptor with through hole.Owing to the built-in adaptor with through hole,jet ignition or compression ignition(auto-ignition) phenomena may occur in the lower combustion chamber,which is helpful to getting higher flame propagation velocity,higher combustion peak pressure,low cycle-to-cycle variation and more stable combustion process.

  18. The Algebra of the Cumulative Percent Operation.

    Science.gov (United States)

    Berry, Andrew J.

    2002-01-01

    Discusses how to help students avoid some pervasive reasoning errors in solving cumulative percent problems. Discusses the meaning of ."%+b%." the additive inverse of ."%." and other useful applications. Emphasizes the operational aspect of the cumulative percent concept. (KHR)

  19. Alzheimer's Deaths Jump 55 Percent: CDC

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_165941.html Alzheimer's Deaths Jump 55 Percent: CDC More patients also ... News) -- As more baby boomers age, deaths from Alzheimer's disease have jumped 55 percent, and in a ...

  20. Industrial Sector Technology Use Model (ISTUM): industrial energy use in the United States, 1974-2000. Volume 3. Appendix on service and fuel demands. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    This book is the third volume of the ISTUM report. The first volume of the report describes the primary model logic and the model's data inputs. The second volume lists and evaluates the results of one model run. This and the fourth volume give supplementary information in two sets of model data - the energy consumption base and technology descriptions. Chapter III of Vol. I, Book 1 describes the ISTUM demand base and explains how that demand base was developed. This volume serves as a set of appendices to that chapter. The chapter on demands in Vol. I describes the assumptions and methodology used in constructing the ISTUM demand base; this volume simply lists tables of data from that demand base. This book divides the demand tables into two appendices. Appendix III-1 contains detailed tables on ISTUM fuel-consumption estimates, service-demand forecasts, and size and load-factor distributions. Appendix III-2 contains tables detailing ISTUM allocations of each industry's fuel consumption to service sectors. The tables show how the ECDB was used to develop the ISTUM demand base.

  1. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint US/Russian Progress Report for Fiscal 1997. Volume 3 - Calculations Performed in the Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the Russian Federation during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the contaminated benchmarks that the United States and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors.

  2. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle description

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The Nonproliferation Alterntive Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates.

  3. DOD Residential Proton Exchange Membrane (PEM) Fuel Cell Demonstration Program. Volume 1. Summary of the Fiscal Year 2001 Program

    Science.gov (United States)

    2004-02-01

    electricity, heat, and water There are several kinds of fuel cells, categorized by the type of electrolyte the re- action uses. This project used...Residential PEM Fuel Cell Demonstration Program.” Subse- quent funding in FY02 and FY03 has extended the Program, and has placed additional fuel...for large-scale Phos- phoric Acid Fuel Cells ( PAFC ), set the groundwork for program management. The release of a Broad Agency Announcement (BAA) for

  4. Partially-reflected water-moderated square-piteched U(6.90)O2 fuel rod lattices with 0.67 fuel to water volume ratio (0.800 CM Pitch)

    Energy Technology Data Exchange (ETDEWEB)

    Harms, Gary A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The US Department of Energy (DOE) Nuclear Energy Research Initiative funded the design and construction of the Seven Percent Critical Experiment (7uPCX) at Sandia National Laboratories. The start-up of the experiment facility and the execution of the experiments described here were funded by the DOE Nuclear Criticality Safety Program. The 7uPCX is designed to investigate critical systems with fuel for light water reactors in the enrichment range above 5% 235U. The 7uPCX assembly is a water-moderated and -reflected array of aluminum-clad square-pitched U(6.90%)O2 fuel rods.

  5. Emissions of Water and Carbon Dioxide from Fossil-Fuel Combustion Contribute Directly to Ocean Mass and Volume Increases

    Science.gov (United States)

    Skuce, A. G.

    2014-12-01

    The direct, non-climate, contribution of carbon dioxide and water emissions from fossil-fuel (FF) combustion to the volume and mass of the oceans has been omitted from estimates of sea-level rise (SLR) in IPCC reports. Following the method of Gornitz et al. (1997), H2O emissions are estimated using carbon emissions from the Carbon Dioxide Information Analysis Center, along with typical carbon and hydrogen contents of FF. Historic H2O emissions from 1750 to 2010 amount to 430 ±50 PgH2O, equivalent to 1.2 ±0.2 mmSLR. Sometime in this decade the volume of H2O from historic FF combustion will exceed the volume of Lake Erie (480 km3). CO2 dissolved in the ocean increases the seawater volume by 31-33 mL mol-1 CO2. From 1750 to 2010, 370 ±70 PgCO2 from FF combustion has dissolved in the oceans, causing 0.7 ±0.2 mmSLR. Combined H2O+CO2emissions from FF have therefore added 1.9 ±0.4 mm to sea levels in the Industrial Era. Combustion of FF in 2010 resulted in emissions of 32 PgCO2 and 12 ±1 PgH2O. SLR contributions for that year from FF emissions were 0.033 ±0.005 mm from H2O and 0.011±0.003 mm from dissolved CO2, a total rate of 0.044 ±0.008 mm yr-1. Emissions incorporated in socio-economic models underlying the RCP 8.5 and 2.6 scenarios are used along with concentration-driven CMIP5 Earth System Models results to estimate future sea-level rise from FF combustion. From 2010 to 2100, RCP8.5 and 2.6 models respectively produce 9 ±2 mmSLR and 5 ±1 mmSLR from FF H2O+CO2. For perspective, these amounts are larger than the modelled contributions from loss of glaciers in the Andes. The direct contribution of FF emissions to SLR is small (1-2%) relative to current rates and projected estimates under RCP scenarios up to 2100. The magnitude is similar to SLR estimates from other minor sources such as the melting of floating ice, land-use emissions and produced water from oil operations, none of which are currently included in SLR assessments. As uncertainties in

  6. Fuel Cell Power Plant Initiative. Volume 2; Preliminary Design of a Fixed-Base LFP/SOFC Power System

    Science.gov (United States)

    Veyo, S.E.

    1997-01-01

    This report documents the preliminary design for a military fixed-base power system of 3 MWe nominal capacity using Westinghouse's tubular Solid Oxide Fuel Cell [SOFC] and Haldor Topsoe's logistic fuels processor [LFP]. The LFP provides to the fuel cell a methane rich sulfur free fuel stream derived from either DF-2 diesel fuel, or JP-8 turbine fuel. Fuel cells are electrochemical devices that directly convert the chemical energy contained in fuels such as hydrogen, natural gas, or coal gas into electricity at high efficiency with no intermediate heat engine or dynamo. The SOFC is distinguished from other fuel cell types by its solid state ceramic structure and its high operating temperature, nominally 1000'C. The SOFC pioneered by Westinghouse has a tubular geometry closed at one end. A power generation stack is formed by aggregating many cells in an ordered array. The Westinghouse stack design is distinguished from other fuel cell stacks by the complete absence of high integrity seals between cell elements, cells, and between stack and manifolds. Further, the reformer for natural gas [predominantly methane] and the stack are thermally and hydraulically integrated with no requirement for process water. The technical viability of combining the tubular SOFC and a logistic fuels processor was demonstrated at 27 kWe scale in a test program sponsored by the Advanced Research Projects Agency [ARPA) and carried out at the Southern California Edison's [SCE] Highgrove generating station near San Bernardino, California in 1994/95. The LFP was a breadboard design supplied by Haldor Topsoe, Inc. under subcontract to Westinghouse. The test program was completely successful. The LFP fueled the SOFC for 766 hours on JP-8 and 1555 hours of DF-2. In addition, the fuel cell operated for 3261 hours on pipeline natural gas. Over the 5582 hours of operation, the SOFC generated 118 MVVH of electricity with no perceptible degradation in performance. The LFP processed military

  7. Deep repository for spent nuclear fuel. SR-97-Post-closure safety. Main Report. Volume I and II

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, A. [ed.

    1999-11-01

    buffer, geosphere and biosphere are analyzed in the canister defect scenario. Releases from the geosphere are converted to doses in different ecosystems. The variation in flow-related data in the geosphere has the greatest impact on the result, followed by data uncertainties for the biosphere. Other conclusions are that our understanding of fuel dissolution needs to be improved, and that the probability and size of initial canister defects that escape quality-control inspection is difficult to estimate. Risk analyses in the form of simplified probabilistic calculations are also performed. The risk analyses show that all sites lie well below the acceptance criterion. The maximum risk for release to a well is never more than 0.5 percent of the acceptance criterion, even when the calculations are extended a million years into the future. The same applies to releases to peat land for times up to 100,000 years, while the maximum risk here grows to about one-tenth of the acceptance criterion at the least favourable site at times after 100,000 years. The consequences of future climate change are explored in the climate scenario. A conceivable sequence of events, including severe glaciation, on each of the three sites is sketched for the coming 150,000 years. In the climate scenario as well, the overall conclusion is that the isolating capacity of the copper canister is not threatened by either mechanical or chemical stresses. As far as the retarding capacity of the repository is concerned, for example in the event of initial canister damage, the most important changes take place in the biosphere. The repository sites are expected to be covered by ice sheets or sea during long periods, and the aggregate effect of climate change will therefore be a reduction of the dose consequences compared with a situation where the present-day climate persists. In the earthquake scenario, the consequences of earthquakes are analyzed by means of model studies where site-specific data are used

  8. Deep repository for spent nuclear fuel. SR-97-Post-closure safety. Main Report. Volume I and II

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, A. [ed.

    1999-11-01

    buffer, geosphere and biosphere are analyzed in the canister defect scenario. Releases from the geosphere are converted to doses in different ecosystems. The variation in flow-related data in the geosphere has the greatest impact on the result, followed by data uncertainties for the biosphere. Other conclusions are that our understanding of fuel dissolution needs to be improved, and that the probability and size of initial canister defects that escape quality-control inspection is difficult to estimate. Risk analyses in the form of simplified probabilistic calculations are also performed. The risk analyses show that all sites lie well below the acceptance criterion. The maximum risk for release to a well is never more than 0.5 percent of the acceptance criterion, even when the calculations are extended a million years into the future. The same applies to releases to peat land for times up to 100,000 years, while the maximum risk here grows to about one-tenth of the acceptance criterion at the least favourable site at times after 100,000 years. The consequences of future climate change are explored in the climate scenario. A conceivable sequence of events, including severe glaciation, on each of the three sites is sketched for the coming 150,000 years. In the climate scenario as well, the overall conclusion is that the isolating capacity of the copper canister is not threatened by either mechanical or chemical stresses. As far as the retarding capacity of the repository is concerned, for example in the event of initial canister damage, the most important changes take place in the biosphere. The repository sites are expected to be covered by ice sheets or sea during long periods, and the aggregate effect of climate change will therefore be a reduction of the dose consequences compared with a situation where the present-day climate persists. In the earthquake scenario, the consequences of earthquakes are analyzed by means of model studies where site-specific data are used

  9. 76 FR 67287 - Alternative Fuel Transportation Program; Alternative Fueled Vehicle Credit Program (Subpart F...

    Science.gov (United States)

    2011-10-31

    ... ``dedicated [alternative fuel] or dual fueled vehicle,'' and sections 501 (42 U.S.C. 13251) and 507 (42 U.S.C... example, B20 (a 20 percent blend of biodiesel with 80 percent petroleum diesel) is not an alternative fuel... that operate solely on alternative fuel, or ``dual fueled vehicles,'' which have some capability for...

  10. Test design description Volume 2, Part 1. IFR-1 metal fuel irradiation test (AK-181) element as-built data

    Energy Technology Data Exchange (ETDEWEB)

    Dodds, N. E.

    1986-06-01

    The IFR-1 Test, designated as the AK-181 Test Assembly, will be the first irradiation test of wire wrapped, sodium-bonded metallic fuel elements in the Fast Flux Test Facility (FFTF). The test is part of the Integral Fast Reactor (IFR) fuels program conducted by Argonne National Laboratory (ANL) in support of the Innovative Reactor Concepts Program sponsored by the US Department of Energy (DOE). One subassembly, containing 169 fuel elements, will be irradiated for 600 full power days to achieve 10 at.% burnup. Three metal fuel alloys (U-10Zr, U-8Pu-10Zr) will be irradiated in D9 cladding tubes. The metal fuel elements have a fuel-smeared density of 75% and each contains five slugs. The enriched zone contains three slugs and is 36-in. long. One 6.5-in. long depleted uranium axial blanket slug (DU-10Zr) was loaded at each end of the enriched zone. the fuel elements were fabricated at ANL-W and delivered to Westinghouse-Hanford for wirewrapping and assembly into the test article. This Test Design Description contains relevant data on compositions, densities, dimensions and weights for the cast fuel slugs and completed fuel elements. The elements conform to the requirements in MG-22, "Users` Guide for the Irradiation of Experiments in the FTR."

  11. OPTIMIZED DETERMINATION OF TRACE JET FUEL VOLATILE ORGANIC COMPOUNDS IN HUMAN BLOOD USING IN-FIELD LIQUID-LIQUID EXTRACTION WITH SUBSEQUENT LABORATORY GAS CHROMATOGRAPHIC-MASS SPECTROMETRIC ANALYSIS AND ON-COLUMN LARGE VOLUME INJECTION

    Science.gov (United States)

    A practical and sensitive method to assess volatile organic compounds (VOCs) from JP-8 jet fuel in human whole blood was developed by modifying previously established liquid-liquid extraction procedures, optimizing extraction times, solvent volume, specific sample processing te...

  12. 77 FR 2979 - Regulation of Fuel and Fuel Additives: Modification to Octamix Waiver

    Science.gov (United States)

    2012-01-20

    ... corrosion inhibitor, TOLAD\\TM\\ MFA-10A, to be used within Texas Methanol's gasoline-alcohol fuel, also known... of 2.5 percent by volume co-solvents \\5\\ and 42.7 milligrams per liter (mg/l) of Petrolite TOLAD MFA... formulations are acceptable as alternatives to TOLAD\\TM\\ MFA-10.\\7\\ The physical properties of TOLAD\\TM\\...

  13. Evaluation of three percent Aqueous Film Forming Foam (AFFF) concentrates as fire fighting agents

    Science.gov (United States)

    Jablonski, E. J.

    1981-04-01

    A large-scale fire test program involving 20,000-square foot JP-4 fuel fires was conducted to evaluate the fire suppression effectiveness and compatibility of 3 percent Aqueous Film Forming Foam (AFFF) agents in Air Force fire fighting vehicles. Three commercially available 3 percent AFFF concentrates were tested in accordance with military specification MIL-F-24385B. Test results are summarized in Appendix A. As a result of these tests, an updated Revision C to this MIL SPEC has been accomplished with new requirements for both 3 percent and 6 percent AFFF extinguishing agents.

  14. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository--Volume 1: Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.Z.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-10-01

    The US Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  15. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  16. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository--Volume 2: Methodology and Results

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-10-01

    The US Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  17. Evaluation of ASTM D5006 for Accuracy, Repeatability, and Reproducibility for Fuel System Icing Inhibitor (FSII) Concentrations 0.10% by Volume and Varying Fuel Composition

    Science.gov (United States)

    2012-12-01

    MISCO JPX-DIEGME Digital o Gammon SC HB B/2 o Reichart Brix 35 HP o Reichart AR 200 Digital (report refractive index only) • Refractometer...B/2 o Reichart Brix 35 HP o Reichart AR 200 Digital (report refractive index only) 5018 Synthetic Paraffinic Kerosene 0 0.755 SPK derived from...refractive index and percent DiEGME as used in the original B/2 refractometer, while the MISCO instrument is based on the Brix calculation in D5006

  18. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  19. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX{reg_sign}) molten carbonate fuel cell. Volumes 1--6, Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  20. Technology, safety and costs of decommissioning a reference small mixed oxide fuel fabrication plant. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C. E.; Murphy, E. S.; Schneider, K J

    1979-01-01

    Detailed technology, safety and cost information are presented for the conceptual decommissioning of a reference small mixed oxide fuel fabrication plant. Alternate methods of decommissioning are described including immediate dismantlement, safe storage for a period of time followed by dismantlement and entombment. Safety analyses, both occupational and public, and cost evaluations were conducted for each mode.

  1. RERTR Fuel Developmemt and Qualification Plan

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wachs

    2007-01-01

    detailing very-high density fuel behavior will be submitted to the U.S. Nuclear Regulatory Commission (NRC). Assuming acceptable fuel behavior, it is anticipated that NRC will issue a Safety Evaluation Report granting generic approval of the developed fuels based on the qualification report. It is anticipated that Phase I of fuel qualification will be completed prior to the end of FY10. Phase II of the fuel qualification requires development of fuels with density greater than 8.5 g-U/cm3. This fuel is required to convert the remaining few reactors that have been identified for conversion. The second phase of the fuel qualification effort includes both dispersion fuels with fuel particle volume loading on the order of 65 percent, and monolithic fuels. Phase II presents a larger set of technical unknowns and schedule uncertainties than phase I. The final step in the fuel qualification process involves insertion of lead test elements into the converting reactors. Each reactor that plans to convert using the developed high-density fuels will develop a reactor specific conversion plan based upon the reactor safety basis and operating requirements. For some reactors (FRM-II, High-Flux Isotope Reactor [HFIR], and RHF) conversion will be a one-step process. In addition to the U.S. fuel development effort, a Russian fuel development strategy has been developed. Contracts with Russian Federation institutes in support of fuel development for Russian are in place.

  2. Assessment of LWR spent fuel disposal options. Volume 3. Study bases and system design considerations (Appendices). Technical report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Volume 3 (Appendices) provides a tabulation of the bases and assumptions used in the study as well as preconceptual design description and cost estimates of the facilities and transportation systems necessary to implement the various study cases.

  3. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 5. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume V of the five-volume report consists of appendices, which provide supplementary information, with emphasis on characteristics of geologic formations that might be used for final storage or disposal. Appendix titles are: selected glossary; conversion factors; geologic isolation, including, (a) site selection factors for repositories of wastes in geologic media, (b) rock types--geologic occurrence, (c) glossary of geohydrologic terms, and (d) 217 references; the ocean floor; and, government regulations pertaining to the management of radioactive materials. (JGB)

  4. Estimating a percent reduction in load

    Science.gov (United States)

    Millard, Steven P.

    This article extends the work of Cohn et al. [1989] on estimating constituent loads to the problem of estimating a percent reduction in load. Three estimators are considered: the maximum likelihood (MLE), a ``bias-corrected'' maximum likelihood (BCMLE), and the minimum variance unbiased (MVUE). In terms of root-mean-square error, both the MVUE and BCMLE are superior to the MLE, and for the cases considered here there is no appreciable difference between the MVUE and the BCMLE. The BCMLE is constructed from quantities computed by most regression packages and is therefore simpler to compute than the MVUE (which involves approximating an infinite series). All three estimators are applied to a case study in which an agricultural tax in the Everglades agricultural area is tied to an observed percent reduction in phosphorus load. For typical hydrological data, very large sample sizes (of the order of 100 observations each in the baseline period and after) are required to estimate a percent reduction in load with reasonable precision.

  5. Feasibility study for a 10-MM-GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume 1. Process and plant design

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    An investigation was performed to determine the technical and economic viability of constructing and operating a geothermally heated, biomass, motor fuel alcohol plant at Brady's Hot Springs. The results of the study are positive, showing that a plant of innovative, yet proven design can be built to adapt current commerical fermentation-distillation technology to the application of geothermal heat energy. The specific method of heat production from the Brady's Hot Spring wells has been successful for some time at an onion drying plant. Further development of the geothermal resource to add the capacity needed for an ethanol plant is found to be feasible for a plant sized to produce 10 million gallons of motor fuel grade ethanol per year. A very adequate supply of feedgrains is found to be available for use in the plant without impact on the local or regional feedgrain market. The effect of diverting supplies from the animal feedlots in Northern Nevada and California will be mitigated by the by-product output of high-protein feed supplements that the plant will produce. The plant will have a favorable impact on the local farming economies of Fallon, Lovelock, Winnemucca and Elko, Nevada. It will make a positive and significant socioeconomic contribution to Churchill County, providing direct employment for an additional 61 persons. Environmental impact will be negligible, involving mostly a moderate increase in local truck traffic and railroad siding activity. The report is presented in two volumes. Volume 1 deals with the technical design aspects of the plant. The second volume addresses the issue of expanded geothermal heat production at Brady's Hot Springs, goes into the details of feedstock supply economics, and looks at the markets for the plant's primary ethanol product, and the markets for its feed supplement by-products. The report concludes with an analysis of the economic viability of the proposed project.

  6. Joint DoD/DoE Shale Oil Project. Volume 3. Testing of Refined Shale Oil Fuels.

    Science.gov (United States)

    1983-12-01

    10-9. GROWTH RATINGS OF CLADOSPORIUM RESINAE AT VARIOUS INCUBATION STAGES ......................... 10-25 S 0 xv - LIST OF TABLES (Continued) TABLE 10...both shale DFM and shale JP-5 support heavy growth of Cladosporium resinae . Short-term engine performance tests were conducted on two gas turbine...microbiological growth of shale DFM and shale JP-5 was investigated by inoculating a mixture of fuel and 0 nutrient medium with Cladosporium resinae

  7. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement; Volume 1, Appendix F, Nevada Test Site and Oak Ridge Reservation Spent Nuclear Fuel Management Programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering.

  8. 77 FR 61281 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-10-09

    ... at least 80 percent mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal... fuel must contain at least 80 percent mono-alkyl esters of long chain fatty acids derived from... activities. Fuel oils used to generate process heat, power, or other functions will not be included in...

  9. Simulation studies of diesel engine performance with oxygen enriched air and water emulsified fuels

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, D.N.; Baker, D. (Illinois Univ., Urbana, IL (USA)); Sekar, R.R.; Siambekos, C.T.; Cole, R.L.; Marciniak, T.J. (Argonne National Lab., IL (USA))

    1990-01-01

    A computer simulation code of a turbocharged, turbocompound diesel engine was modified to study the effects of using oxygen-enriched combustion air and water-emulsified diesel fuels. Oxygen levels of 21 percent to 40 percent by volume in the combustion air were studied. Water content in the fuel was varied from 0 percent to 50 percent mass. Simulation studies and a review and analysis of previous work in this area led to the following conclusions about expected engine performance and emissions: the power density of the engine is significantly increased by oxygen enrichment. Ignition delay and particulate emissions are reduced. Combustion temperatures and No{sub x} emissions are increased with oxygen enrichment but could be brought back to the base levels by introducing water in the fuel. The peak cylinder pressure which increases with the power output level might result in mechanical problems with engine components. Oxygen enrichment also provides an opportunity to use cheaper fuel such as No. 6 diesel fuel. Overall, the adverse effects of oxygen enrichment could be countered by the addition of water and it appears that an optimum combination of water content, oxygen level, and base diesel fuel quality may exist. This could yield improved performance and emissions characteristics compared to a state-of-the-art diesel engine. 9 refs., 8 figs.

  10. Cost of fuel cell systems on a mass basis as a function of production volume; Kosten von Brennstoffzellensystemen auf Massenbasis in Abhaengigkeit von der Absatzmenge

    Energy Technology Data Exchange (ETDEWEB)

    Werhahn, Johannes

    2009-07-01

    The currently high cost of fuel cells is determined by expensive materials and low production volume. A detailed understanding of the cost structures reveals unexploited potential that can reduce costs in future. However, this requires a method of predicting costs that can be applied with little effort and which offers both a sufficient degree of detail and also good accuracy. Existing forecasting methods do not, however, fulfil these requirements. The major objective of the present work was to apply mass-specific cost forecasting to fuel cell systems for the first time and to modify the approach for this application. In this method, the cost of an object is estimated solely by means of the object mass with the aid of empirical values (Euro/kg). The advantages of the method are its simple application and the accuracy of the forecast. Due to the considerable complexity of the fuel cell and the heterogeneity of the materials used, the application of mass-specific cost forecasting does not provide the desired benefits on the level of the aggregated system. The mass-specific cost forecast approach was therefore expanded and optimized. Instead of determining costs on the level of the aggregated system, the cost forecast was applied directly to the individual components. Cost parameters were also embedded in the method in order to include component-internal cost-relevant differences. Due to the great influence of the production rate on the manufacturing costs, an additional dependence on number of units was also integrated. Expanding the empirical values from discrete values to distribution functions enabled a detailed error analysis to be performed and also a statistical localization of the predicted production costs. Empirical values are necessary in order to implement the modified method and therefore an extensive data search was performed. To this end, a methodology was developed which comprehensively described the data acquisition and the required data evaluation on

  11. Computer model for refinery operations with emphasis on jet fuel production. Volume 2: Data and technical bases

    Science.gov (United States)

    Dunbar, D. N.; Tunnah, B. G.

    1978-01-01

    The FORTRAN computing program predicts the flow streams and material, energy, and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuel of varying end point and hydrogen content specifications. The program has provision for shale oil and coal oil in addition to petroleum crudes. A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case. The report has sufficient detail for the information of most readers.

  12. European Community Can Reduce CO2 Emissions by Sixty Percent : A Feasibility Study

    NARCIS (Netherlands)

    Mot, E.; Bartelds, H.; Esser, P.M.; Huurdeman, A.J.M.; Laak, P.J.A. van de; Michon, S.G.L.; Nielen, R.J.; Baar, H.J.W. de

    1993-01-01

    Carbon dioxide (CO2) emissions in the European Community (EC) can be reduced by roughly 60 percent. A great many measures need to be taken to reach this reduction, with a total annual cost of ECU 55 milliard. Fossil fuel use is the main cause of CO2 emissions into the atmosphere; CO2 emissions are t

  13. Temperature, Oxygen, and Soot-Volume-Fraction Measurements in a Turbulent C2H4-Fueled Jet Flame

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, Sean P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guildenbecher, Daniel Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Winters, Caroline [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farias, Paul Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grasser, Thomas W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hewson, John C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    We present a detailed set of measurements from a piloted, sooting, turbulent C 2 H 4 - fueled diffusion flame. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) is used to monitor temperature and oxygen, while laser-induced incandescence (LII) is applied for imaging of the soot volume fraction in the challenging jet-flame environment at Reynolds number, Re = 20,000. Single-laser shot results are used to map the mean and rms statistics, as well as probability densities. LII data from the soot-growth region of the flame are used to benchmark the soot source term for one-dimensional turbulence (ODT) modeling of this turbulent flame. The ODT code is then used to predict temperature and oxygen fluctuations higher in the soot oxidation region higher in the flame.

  14. Fuel flexible fuel injector

    Science.gov (United States)

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  15. Biotechnology for producing fuels and chemicals from biomass: recommendations for R and D. Volume I. Synopsis and executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Villet, R

    1979-12-01

    Areas of research and development judged to be crucial for establishing a biotechnology of biomass processing are identified. Two general avenues are recommended for R and D: (1) in the near term, revival of the older fermentation technology and improvement of processing efficiencies; and (2) in the longer term, the development of novel biotechnological processes, such as for the conversion of lignocellulosic biomass to fuels and chemicals. Recommended R and D ranges from work in moleular genetics to biochemical engineering aspects of plant design. It is recommended that the R and D strategy be designed as an integration of three disciplines: biochemical engineering, microbial genetics, and biochemistry. Applcations of gene-transfer methodology and developments in continuous fermentation should be pursued. Currently, economic incentive for the use of biological conversion processes for producing fuels and chemical feedstocks from biomass is marginal. But as the imported fraction of US oil supply grows and hydrocarbon costs mount, the market is beginning to motivate a quest for substitutes. The commercial potential for biotechnology for establishing a renewable resources chemicals industry appears similar to the potential of the computer and microelectronics field several decades ago.

  16. How I Love My 80 Percenters

    Science.gov (United States)

    Maturo, Anthony J.

    2002-01-01

    Don't ever take your support staff for granted. By support staff, I mean the people in personnel, logistics, and finance; the ones who can make things happen with a phone call or a signature, or by the same token frustrate you to no end by their inaction; these are people you must depend on. I've spent a lot of time thinking about how to cultivate relationships with my support staff that work to the advantage of both of us. The most important thing that have learned working with people, any people--and I will tell you how I learned this in a minute--is there are some folks you just can't motivate, so forget it, don't try; others you certainly can with a little psychology and some effort; and the best of the bunch, what I call the 80 percenters, you don't need to motivate because they're already on the team and performing beautifully. The ones you can't change are rocks. Face up to it, and just kick them out of your way. I have a reputation with the people who don't want to perform or be part of the team. They don't come near me. If someone's a rock, I pick up on it right away, and I will walk around him or her to find someone better. The ones who can be motivated I take time to nurture. I consider them my projects. A lot of times these wannabes are people who want to help but don't know how. Listen, you can work with them. Lots of people in organizations have the mindset that all that matters are the regulations. God forbid if you ever work outside those regulations. They've got one foot on that regulation and they're holding it tight like a baby holds a blanket. What you're looking for is that first sign that their minds are opening. Usually you hear it in their vocabulary. What used to sound like "We can't do that ... the regulations won't allow it ... we have never done this before," well, suddenly that changes to "We have options ... let's take a look at the options ... let me research this and get back to you." The 80 percenters you want to nurture too, but

  17. Fuel economy and exhaust emissions characteristics of diesel vehicles: Test results of a prototype fiat 131TC 2.4 liter automobile

    Science.gov (United States)

    Quayle, S. S.

    1982-01-01

    The results obtained from fuel economy and emission tests conducted on a prototype Fiat 131 turbocharged diesel vehicle are presented. The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. Two fuels were used, a United States number 2 diesel and a European diesel fuel. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. It was determined that turbocharging accompanied by complementary modifications results in small but substantial improvements in regulated emissions, fuel economy, and performance. Notably, particulate levels were reduced by 30 percent.

  18. Engineering aspects and hardware verification of a volume producable solid oxide fuel cell stack design for diesel auxiliary power units

    Science.gov (United States)

    Stelter, Michael; Reinert, Andreas; Mai, Björn Erik; Kuznecov, Mihail

    A solid oxide fuel cell (SOFC) stack module is presented that is designed for operation on diesel reformate in an auxiliary power unit (APU). The stack was designed using a top-down approach, based on a specification of an APU system that is installed on board of vehicles. The stack design is planar, modular and scalable with stamped sheet metal interconnectors. It features thin membrane electrode assemblies (MEAs), such as electrolyte supported cells (ESC) and operates at elevated temperatures around 800 °C. The stack has a low pressure drop in both the anode and the cathode to facilitate a simple system layout. An overview of the technical targets met so far is given. A stack power density of 0.2 kW l -1 has been demonstrated in a fully integrated, thermally self-sustaining APU prototype running with diesel and without an external water supply.

  19. Industrial Fuel Gas Demonstration-Plant Program. Volume II. The environment (Deliverable No. 27). [Baseline environmental data

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    The proposed site of the Industrial Fuel Gas Demonstration Plant (IFGDP) is located on a small peninsula extending eastward into Lake McKeller from the south shore. The peninsula is located west-southwest of the City of Memphis near the confluence of Lake McKeller and the Mississippi River. The environmental setting of this site and the region around this site is reported in terms of physical, biological, and human descriptions. Within the physical description, this report divides the environmental setting into sections on physiography, geology, hydrology, water quality, climatology, air quality, and ambient noise. The biological description is divided into sections on aquatic and terrestrial ecology. Finally, the human environment description is reported in sections on land use, demography, socioeconomics, culture, and visual features. This section concludes with a discussion of physical environmental constraints.

  20. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    Science.gov (United States)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  1. 航空油量测量技术研究及其发展现状%Research on the Measurement Technology for Aviation Fuel Volume and Its Current Developing Status

    Institute of Scientific and Technical Information of China (English)

    单宝峰; 张广涛; 李景春; 王斌

    2013-01-01

    介绍了航空油量测量技术在飞机航行过程中的重要作用、发展现状和航空油量测量系统的基本工作原理,描述了液位测量传感器的工作原理及其发展过程,总结了国内外油量测量的计算方法,并罗列了对测量结果造成影响的一些因素.经分析指出数字化、综合化是航空油量测量系统的必然发展趋势.%The important role of the measurement technology for aviation fuel volume in aircraft navigation process, the current developing status of this technology, and the fundamental operational principle of the aviation fuel volume measuring system are introduced. The working principle and developing process of the level sensors are described. The computation methods for fuel volume measurement at home and abroad are summarized, and some factors that influence the measurement results are listed. After analysis, it is proposed that digitization and integration are the inevitable development trend of the aviation fuel volume measuring systems.

  2. 78 FR 49411 - Denial of Petitions for Reconsideration of Regulation of Fuels and Fuel Additives: 2013 Biomass...

    Science.gov (United States)

    2013-08-14

    ... Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume Final Rule AGENCY: Environmental... entitled Regulation of Fuels and Fuel Additives: 2013 Biomass-Based Diesel Renewable Fuel Volume. DATES...(o)(2)(B)(ii) of the Clean Air Act requires that EPA determine the applicable volume of...

  3. Percent area coverage through image analysis

    Science.gov (United States)

    Wong, Chung M.; Hong, Sung M.; Liu, De-Ling

    2016-09-01

    The notion of percent area coverage (PAC) has been used to characterize surface cleanliness levels in the spacecraft contamination control community. Due to the lack of detailed particle data, PAC has been conventionally calculated by multiplying the particle surface density in predetermined particle size bins by a set of coefficients per MIL-STD-1246C. In deriving the set of coefficients, the surface particle size distribution is assumed to follow a log-normal relation between particle density and particle size, while the cross-sectional area function is given as a combination of regular geometric shapes. For particles with irregular shapes, the cross-sectional area function cannot describe the true particle area and, therefore, may introduce error in the PAC calculation. Other errors may also be introduced by using the lognormal surface particle size distribution function that highly depends on the environmental cleanliness and cleaning process. In this paper, we present PAC measurements from silicon witness wafers that collected fallouts from a fabric material after vibration testing. PAC calculations were performed through analysis of microscope images and compare them to values derived through the MIL-STD-1246C method. Our results showed that the MIL-STD-1246C method does provide a reasonable upper bound to the PAC values determined through image analysis, in particular for PAC values below 0.1.

  4. Turbine fuels from tar sands bitumen and heavy oil. Volume 1. Phase 3. Pilot plant testing, final design, and economics. Final report, 1 June 1985-31 March 1987

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, A.F.; Carson, T.C.; Magill, L.G.; Swesey, J.R.

    1987-08-01

    Pilot-plant-scale demonstration of an upgrading/refining scheme to convert bitumen or heavy crude oil into high yields of specification-quality aviation turbine fuel was performed. An atmospheric residue from San Ardo (California) crude was converted under hydrovisbreaking conditions to synthetic crude for further refining. Naphtha cuts from the straight run and synthetic crude were combined, catalytically hydrotreated, then hydrocracked. Products from these operations were combined to produce two prototype specification fuels (JP-4 and JP-8) as well as two heavier, variable-quality fuels. An engineering design (Volume II) was developed for a 50,000 BPSD grass-roots refinery, from the pilot-plant operations. Capital investment and operating costs were estimated, and fuel manufacturing costs projected. Conclusions and recommendations for further work are included.

  5. Producing a solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, K.; Nisino, A.; Sonedaka, V.; Takeuti, Y.

    1982-08-21

    Coal, semicoke, coke, graphite and other hydrocarbon fuels are formed into cellular briquets with the addition as a binder of 3 percent by weight of alumina or Portland cement, which operates as a sulfur removing agent. To provide for high thermal resistance and resistance to oxidation, cement which consists of 30 to 60 percent lime, 40 to 60 percent alumina and 2 to 10 percent iron oxide is recommended. Ca(OH)/sub 2/, CaCO/sub 3/, dolomite, Na/sub 2/CO/sub 3/, MgO and ZnO are added to promote the removal of the sulfur.

  6. Variable volume combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul

    2017-01-17

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.

  7. Breaking the news or fueling the epidemic? Temporal association between news media report volume and opioid-related mortality.

    Directory of Open Access Journals (Sweden)

    Nabarun Dasgupta

    Full Text Available BACKGROUND: Historical studies of news media have suggested an association between reporting and increased drug abuse. Period effects for substance use have been documented for different classes of legal and illicit substances, with the suspicion that media publicity may have played major roles in their emergence. Previous analyses have drawn primarily from qualitative evidence; the temporal relationship between media reporting volume and adverse health consequences has not been quantified nationally. We set out to explore whether we could find a quantitative relationship between media reports about prescription opioid abuse and overdose mortality associated with these drugs. We assessed whether increases in news media reports occurred before or after increases in overdose deaths. METHODOLOGY/PRINCIPAL FINDINGS: Our ecological study compared a monthly time series of unintentional poisoning deaths involving short-acting prescription opioid substances, from 1999 to 2005 using multiple cause-of-death data published by the National Center for Health Statistics, to monthly counts of English-language news articles mentioning generic and branded names of prescription opioids obtained from Google News Archives from 1999 to 2005. We estimated the association between media volume and mortality rates by time-lagged regression analyses. There were 24,272 articles and 30,916 deaths involving prescription opioids during the seven-year study period. Nationally, the number of articles mentioning prescription opioids increased dramatically starting in early 2001, following prominent coverage about the nonmedical use of OxyContin. We found a significant association between news reports and deaths, with media reporting preceding fatal opioid poisonings by two to six months and explaining 88% (p<0.0001, df 78 of the variation in mortality. CONCLUSIONS/SIGNIFICANCE: While availability, structural, and individual predispositions are key factors influencing substance

  8. Nuclear fuel elements design, fabrication and performance

    CERN Document Server

    Frost, Brian R T

    1982-01-01

    Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overvie

  9. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./Russian Progress Report for Fiscal Year 1997 Volume 2-Calculations Performed in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Primm III, RT

    2002-05-29

    This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the US during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the computational benchmarks and for those experimental benchmarks that the US and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors.

  10. A solid fuel which has good flamability, stability and combustability

    Energy Technology Data Exchange (ETDEWEB)

    Iketani, Yu.; Masunetaka, K.; Nisino, A.; Takeuti, Ya.

    1983-09-27

    A solid fuel is patented which contains a carbon material, an oxidizing agent which has a breakdown point above the flash point of the carbon bearing material, a sublimating organic product and a binder. Coal, heat treated coal, coke and so on may be used for the carbon bearing material. The oxidizing agent consists of Ca (NO3)2, Ba (NO3)2, Sr(NO3)2, KCLO4, KCLO3 and bichromates and is used in a volume of 5 to 35 percent. The sublimating product may contain at least one of the following substances: camphor, metaldehyde, hexamethylendiamine, hexamethylentetraline and n-benzoquinone and is added in a volume of greater than or equal to 4 percent. The binder may be one of the following substances: tar, natural cellulose (Ts), rubber, cement, colloidal SG, colloidal ammonium and phosphates.

  11. Optimized determination of trace jet fuel volatile organic compounds in human blood using in-field liquid-liquid extraction with subsequent laboratory gas chromatographic-mass spectrometric analysis and on-column large-volume injection.

    Science.gov (United States)

    Liu, S; Pleil, J D

    2001-03-05

    A practical and sensitive method to assess volatile organic compounds (VOCs) from JP-8 jet fuel in human whole blood was developed by modifying previously established liquid-liquid extraction procedures, optimizing extraction times, solvent volume, specific sample processing techniques, and a new on-column large-volume injection method for GC-MS analysis. With the optimized methods, the extraction efficiency was improved by 4.3 to 20.1 times and the detection sensitivity increased up to 660 times over the standard method. Typical detection limits in the parts-per-trillion (ppt) level range were achieved for all monitored JP-8 constituents; this is sufficient for assessing human fuels exposures at trace environmental levels as well as occupational exposure levels. The sample extractions are performed in the field and only solvent extracts need to be shipped to the laboratory. The method is implemented with standard biological laboratory equipment and a modest bench-top GC-MS system.

  12. A Possible Solution for the U.S. Navy’s Addiction to Petroleum: A Business Case Analysis for Transitioning the U.S. Navy From Petroleum to Synthetic Fuel Resources

    Science.gov (United States)

    2007-03-01

    temperatures , to be useful. Today’s tactical vehicles have a limited fuel volume and fuel weight capacity. Furthermore, tactical vehicles are subject to...Kuwait or Dubai and crashing it into Abqaiq or Ras Tanura, could turn the complex into an inferno. 16 This could take up to 50 percent of Saudi...are inconsistencies within the data that affect the capital and operating expenses of each cost study. For example if the feedstock is coal, there

  13. Fuel Tank Technology

    Science.gov (United States)

    1989-11-01

    structures b) - Equal thermic inertia c) - Equal fluid volume d) - Equal pressure variation on both wings at the change of the room temperature - This...individual fuel sections. Each fuel section is further ccmpartmentated by metall tank shear walls and tank floors into three individual fuel cells to...plate Dy a stretch forming process, and the metallic tank floors . The air intake segments extend from one bulkhead to the other, thus reducing assembly

  14. Guidance on Compatibility of UST Systems with Ethanol Blends Greater Than 10 Percent and Biodiesel Blends Greater Than 20 Percent

    Science.gov (United States)

    EPA guidance on complying with the federal compatibility requirement for underground storage tank (UST) systems storing gasoline containing greater than 10 percent ethanol or diesel containing greater than 20 percent biodiesel.

  15. Effects of covert subject actions on percent body fat by air-displacement plethsymography.

    Science.gov (United States)

    Tegenkamp, Michelle H; Clark, R Randall; Schoeller, Dale A; Landry, Greg L

    2011-07-01

    Air-displacement plethysmography (ADP) is used for estimation of body composition, however, some individuals, such as athletes in weight classification sports, may use covert methods during ADP testing to alter their apparent percent body fat. The purpose of this study was to examine the effect of covert subject actions on percent body fat measured by ADP. Subjects underwent body composition analysis in the Bod Pod following the standard procedure using the manufacturer's guidelines. The subjects then underwent 8 more measurements while performing the following intentional manipulations: 4 breathing patterns altering lung volume, foot movement to disrupt air, hand cupping to trap air, and heat and cold exposure before entering the chamber. Increasing and decreasing lung volume during thoracic volume measurement and during body density measurement altered the percent body fat assessment (p < 0.001). High lung volume during thoracic gas measures overestimated fat by 3.7 ± 2.1 percentage points. Lowered lung volume during body volume measures overestimated body fat by an additional 2.2 ± 2.1 percentage points. The heat and cold exposure, tapping, and cupping treatments provided similar estimates of percent body fat when compared with the standard condition. These results demonstrate the subjects were able to covertly change their estimated ADP body composition value by altering breathing when compared with the standard condition. We recommend that sports conditioning coaches, athletic trainers, and technicians administering ADP should be aware of the potential effects of these covert actions. The individual responsible for administering ADP should remain vigilant during testing to detect deliberate altered breathing patterns by athletes in an effort to gain a competitive advantage by manipulating their body composition assessment.

  16. Fire Resistant Fuel for Military Compression Ignition Engines

    Science.gov (United States)

    2013-12-04

    fuel (FRF) was a stable mixture of diesel fuel, 10 percent water, and an emulsifier . The Army FRF program ended in 1987 without fielding this fire...was developed. Chemically, this fire resistant fuel (FRF) was a stable mixture of diesel fuel, 10 percent water, and an emulsifier . The Army FRF...diesel fuel, 10% purified water containing less than 50ppm dissolved solids, 6% emulsifier , and 6% aromatic hydrocarbon concentrate to aid in the

  17. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant

    Science.gov (United States)

    Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

    1976-01-01

    Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

  18. Near Zero Emissions at 50 Percent Thermal Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-12-31

    Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called Near-Zero Emission at 50 Percent Thermal Efficiency, and was completed in 2007. The second phase was initiated in 2006, and this phase was named Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines. This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: Quantify thermal efficiency degradation associated with reduction of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under

  19. Mechanical behavior of the directionally solidified. gamma. /. gamma. '--delta eutectic alloy. [Ni-20. 0 percent Nb-2. 5 percent Al-6. 0 percent Cr

    Energy Technology Data Exchange (ETDEWEB)

    Barkalow, R.H.; Jackson, J.J.; Gell, M.; Leverant, G.R.

    1975-01-01

    The eutectic alloy Ni-20.0 percent Nb-2.5 percent Al-6.0 percent Cr was tested in short-term creep and long-term exposure to service conditions to assess its suitability for high temperature turbine blade applications. Long-time exposure showed the lamellar microstructure of the alloy to be exceptionally stable. Other properties tested were notch sensitivity, isothermal and thermomechanical fatigue strength, shear strength, and transverse ductility. It was shown that this alloy is superior to the best currently available directionally solidified superalloys over the temperature/stress conditions encountered in turbine airfoils.

  20. 77 FR 61313 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Science.gov (United States)

    2012-10-09

    ... contains at least 80 percent mono-alkyl esters of long chain fatty acids derived from vegetable oils or..., the fuel must contain at least 80 percent mono-alkyl esters of long chain fatty acids derived from... heat, power, or other functions would not be included in the amended definition. Producers or...

  1. Are Fuel Price Hikes Justifiable?

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China saw its third fuel price hike this year when the National Development and Reform Commission, China’s top price regulator, hiked gasoline and diesel retail prices up by 9 percent, effective on June 30. It is the second rally in a month after the country initiated a new fuel pricing scheme in May.

  2. Near Zero Emissions at 50 Percent Thermal Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-12-31

    Detroit Diesel Corporation (DDC) has successfully completed a 10 year DOE sponsored heavy-duty truck engine program, hereafter referred to as the NZ-50 program. This program was split into two major phases. The first phase was called Near-Zero Emission at 50 Percent Thermal Efficiency, and was completed in 2007. The second phase was initiated in 2006, and this phase was named Advancements in Engine Combustion Systems to Enable High-Efficiency Clean Combustion for Heavy-Duty Engines. This phase was completed in September, 2010. The key objectives of the NZ-50 program for this first phase were to: Quantify thermal efficiency degradation associated with reduction of engine-out NOx emissions to the 2007 regulated level of ~1.1 g/hp-hr. Implement an integrated analytical/experimental development plan for improving subsystem and component capabilities in support of emerging engine technologies for emissions and thermal efficiency goals of the program. Test prototype subsystem hardware featuring technology enhancements and demonstrate effective application on a multi-cylinder, production feasible heavy-duty engine test-bed. Optimize subsystem components and engine controls (calibration) to demonstrate thermal efficiency that is in compliance with the DOE 2005 Joule milestone, meaning greater than 45% thermal efficiency at 2007 emission levels. Develop technology roadmap for meeting emission regulations of 2010 and beyond while mitigating the associated degradation in engine fuel consumption. Ultimately, develop technical prime-path for meeting the overall goal of the NZ-50 program, i.e., 50% thermal efficiency at 2010 regulated emissions. These objectives were successfully met during the course of the NZ-50 program. The most noteworthy achievements in this program are summarized as follows: Demonstrated technologies through advanced integrated experiments and analysis to achieve the technical objectives of the NZ-50 program with 50.2% equivalent thermal efficiency under

  3. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS - PHASE III. DEMONSTRATION TESTS - PHASE IV. GUIDELINES AND RECOMMENDATIONS- VOLUME 1. TECHNICAL REPORT

    Science.gov (United States)

    The report summarizes the results of a four-phase program to demonstrate that fuel cell energy recovery using a commercial phosphoric acid fuel cell is both environmentally sound and commercially feasible. Phase I, a conceptual design and evaluation study, addressed the technical...

  4. Shaping of the axial power density distribution in the core to minimize the vapor volume fraction at the outlet of the VVER-1200 fuel assemblies

    Science.gov (United States)

    Savander, V. I.; Shumskiy, B. E.; Pinegin, A. A.

    2016-12-01

    The possibility of decreasing the vapor fraction at the VVER-1200 fuel assembly outlet by shaping the axial power density field is considered. The power density field was shaped by axial redistribution of the concentration of the burnable gadolinium poison in the Gd-containing fuel rods. The mathematical modeling of the VVER-1200 core was performed using the NOSTRA computer code.

  5. Chapter 11. Fuel Economy: The Case for Market Failure

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; German, John [Environmental and Energy Analysis; Delucchi, Mark A [University of California, Davis

    2009-01-01

    more effective. The chapter explores the roles of uncertainty and loss-aversion in the market for automotive fuel economy. The focus is on the determination of the technical efficiency of the vehicle rather than consumers choices among vehicles. Over the past three decades, changes in the mix of vehicles sold has played little if any role in raising the average fuel economy of new light-duty vehicles from 13 miles per gallon (mpg) in 1975 to 21 mpg today (Heavenrich, 2006). Over that same time period, average vehicle weight is up 2 percent, horsepower is up 60 percent, passenger car interior volume increased by 2 percent and the market share of light trucks grew by 31 percentage points. Historically, at least, increasing light-duty vehicle fuel economy in the United States has been a matter of manufacturers decisions to apply technology to increase the technical efficiency of cars and light trucks. Understanding how efficiently the market determines the technical fuel economy of new vehicles would seem to be critical to formulating effective policies to encourage future fuel economy improvement. The central issue is whether or not the market for fuel economy is economically efficient. Rubenstein (1998) lists the key assumptions of the rational economic decision model. The decision maker must have a clear picture of the choice problem he or she faces. He should be fully aware of the set of alternatives from which to choose and have the skill necessary to make complicated calculations needed to discover the optimal course of action. Finally, the decision maker should have the unlimited ability to calculate and be indifferent to alternatives and choice sets.

  6. 78 FR 49793 - Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards

    Science.gov (United States)

    2013-08-15

    ... renewable fuel volume of 16.55 bill gal. \\4\\ Non-advanced is composed primarily of corn ethanol, but may.... We believe there will be sufficient volumes of conventional renewable fuel including corn ethanol... specified in the Act. For instance, current corn ethanol production capacity is 14.5 bill gal, compared...

  7. Zeolites Remove Sulfur From Fuels

    Science.gov (United States)

    Voecks, Gerald E.; Sharma, Pramod K.

    1991-01-01

    Zeolites remove substantial amounts of sulfur compounds from diesel fuel under relatively mild conditions - atmospheric pressure below 300 degrees C. Extracts up to 60 percent of sulfur content of high-sulfur fuel. Applicable to petroleum refineries, natural-gas processors, electric powerplants, and chemical-processing plants. Method simpler and uses considerably lower pressure than current industrial method, hydro-desulfurization. Yields cleaner emissions from combustion of petroleum fuels, and protects catalysts from poisoning by sulfur.

  8. CRED Cumulative Map of Percent Scleractinian Coral Cover at Zealandia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  9. CRED Cumulative Map of Percent Scleractinian Coral Cover at Maug

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  10. CRED Cumulative Map of Percent Scleractinian Coral Cover at Tutuila

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  11. CRED Cumulative Map of Percent Scleractinian Coral Cover at Guguan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  12. CRED Cumulative Map of Percent Scleractinian Coral Cover at Arakane

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  13. CRED Cumulative Map of Percent Scleractinian Coral Cover at Saipan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  14. CRED Cumulative Map of Percent Scleractinian Coral Cover at Sarigan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  15. CRED Cumulative Map of Percent Scleractinian Coral Cover at Agrihan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  16. CRED Cumulative Map of Percent Scleractinian Coral Cover at Anatahan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  17. Hydrogen fuel for space conditioning of buildings

    Science.gov (United States)

    Bonne, U.

    A comparative study is presented concerning the unique characteristics and relative advantages of hydrogen-air flames employed in boilers for building space heating. From the standpoint of safety, it is noted that the flammability limits of H2, at 4-75 percent in air, are far wider than the 5-15 percent of CH4. In addition to ignition characteristics, pipe sizing and storage tanks, stoichiometric fuel/air ratios, influence of fuel consumption on heating values, UV spectra, and the influence of fuel composition on fuel gas composition, are considered for a variety of hydrocarbon gas, heating oil, alcohols, and carbonaceous solid fuel alternatives to hydrogen.

  18. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 4. Alternatives for waste isolation and disposal

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume IV of the five-volume report contains information on alternatives for final storage and disposal of radioactive wastes. Section titles include: basic concepts for geologic isolation; geologic storage alternatives; geologic disposal alternatives; extraterrestrial disposal; and, transmutation. (JGB)

  19. Characterization of the uranium--2 weight percent molybdenum alloy. [Treatment to obtain 930 MPa yield strength (0. 2 percent)

    Energy Technology Data Exchange (ETDEWEB)

    Hemperly, V.C.

    1976-05-19

    The uranium-2 wt percent molybdenum alloy was prepared, processed, and age hardened to meet a minimum 930-MPa yield strength (0.2 percent) with a minimum of 10 percent elongation. These mechanical properties were obtained with a carbon level up to 300 ppM in the alloy. The tensile-test ductility is lowered by the humidity of the laboratory atmosphere. (auth)

  20. A solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonetaka, K.; Iketani, Y.; Nisino, A.; Takeuti, Y.

    1983-04-15

    A solid fuel is proposed which consists of cylindrical or prismatic pieces, whose surfaces (Pv) are equipped with greater than or equal to one channel, while the pieces themselves have greater than or equal to 1 through opening; the ratio of the total surface to the surface of the channels is within 95 to 5 to 60 to 40. The presence of the channels and the through openings facilitates the feeding of air to the surface of the fuel, providing in such a way, better ignition, the propagation of the flames and the completeness of combustion of the solid fuels based on carbonaceous materials. The optimal composition of the proposed fuel is: 70 to 95 percent carbonaceous base (coal, coke, charcoal, graphite, petroleum coke and so on), 1 to 25 percent desulfurizing additive (carbonate, hydroxide or nitrate of sodium, potassium, calcium or magnesium, 0 to 15 percent combustion accelerator (oxidizers: nitrates of potassium and barium, potassium perchlorate, oxides of magnesium, iron or manganese, aluminum powder and so on), 0 to 10 percent forming additive (bentonite, talc, kaolin and so on) and 0.5 to 5 percent binder (pitch, resin, pulp, cement and so on). The optimal characteristics of the combustion process are reached at a weight of a single piece of fuel of approximately 20 grams, a seeming density of less than or equal to 1.3 grams per cubic centimeter, a cross section surface area of 25 to 1,600 square millimeters and a filling density with combustion of less than or equal to 0.8 grams per cubic centimeter.

  1. The Texas Ten Percent Plan's Impact on College Enrollment

    Science.gov (United States)

    Daugherty, Lindsay; Martorell, Paco; McFarlin, Isaac, Jr.

    2014-01-01

    The Texas Ten Percent Plan (TTP) provides students in the top 10 percent of their high-school class with automatic admission to any public university in the state, including the two flagship schools, the University of Texas at Austin and Texas A&M. Texas created the policy in 1997 after a federal appellate court ruled that the state's previous…

  2. The Texas Ten Percent Plan's Impact on College Enrollment

    Science.gov (United States)

    Daugherty, Lindsay; Martorell, Paco; McFarlin, Isaac, Jr.

    2014-01-01

    The Texas Ten Percent Plan (TTP) provides students in the top 10 percent of their high-school class with automatic admission to any public university in the state, including the two flagship schools, the University of Texas at Austin and Texas A&M. Texas created the policy in 1997 after a federal appellate court ruled that the state's previous…

  3. Development of Army Fire-Resistant Diesel Fuel.

    Science.gov (United States)

    1979-12-01

    The prime FRF candidates have comprised diesel fuel with either 10 percent water and 6 percent emulsifier (FRF-A), or 5 percent water, 3 percent...SOURI * Il SOURCE CANVAS I INVESTIGATE SCREENIT WTERT- ERDO FRULANDO COMPOSITION EFFECTSIWTERHNSOURESOFOMLTN LAOATR AND AECHDI-AC I IEEFCSSCE F L-AIIY

  4. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  5. Experimental evaluation of oxygen-enriched air and emulsified fuels in a single-cylinder diesel engine. Volume 1, Concept evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J.

    1991-11-01

    The performance of a single-cylinder, direct-injection diesel engine was measured with intake oxygen levels of up to 35% and fuel water contents of up to 20%. Because a previous study indicated that the use of a less-expensive fuel would be more economical, two series of tests with No. 4 diesel fuel and No. 2 diesel fuel were conducted. To control the emissions of nitrogen oxides (NO{sub x}), water was introduced into the combustion process in the form of water-emulsified fuel, or the fuel injection timing was retarded. In the first series of tests, compressed oxygen was used; in the second series of tests, a hollow-tube membrane was used. Steady-state engine performance and emissions data were obtained. Test results indicated a large increase in engine power density, a slight improvement in thermal efficiency, and significant reductions in smoke and particulate-matter emissions. Although NO{sub x} emissions increased, they could be controlled by introducing water and retarding the injection timing. The results further indicated that thermal efficiency is slightly increased when moderately water-emulsified fuels are used, because a greater portion of the fuel energy is released earlier in the combustion process. Oxygen-enriched air reduced the ignition delay and caused the heat-release rate and cumulative heat-release rates to change measurably. Even at higher oxygen levels, NO{sub x} emissions decreased rapidly when the timing was retarded, and the amount of smoke and the level of particulate-matter emissions did not significantly increase. The single-cylinder engine tests confirmed the results of an earlier technical assessment and further indicated a need for a low-pressure-drop membrane specifically designed for oxygen enrichment. Extension data set indexed separately. 14 refs.

  6. Evaluation of a Method for Remote Detection of Fuel Relocation Outside the Original Core Volumes of Fukushima Reactor Units 1-3

    Energy Technology Data Exchange (ETDEWEB)

    Douglas W. Akers; Edwin A. Harvego

    2012-08-01

    This paper presents the results of a study to evaluate the feasibility of remotely detecting and quantifying fuel relocation from the core to the lower head, and to regions outside the reactor vessel primary containment of the Fukushima 1-3 reactors. The goals of this study were to determine measurement conditions and requirements, and to perform initial radiation transport sensitivity analyses for several potential measurement locations inside the reactor building. The radiation transport sensitivity analyses were performed based on reactor design information for boiling water reactors (BWRs) similar to the Fukushima reactors, ORIGEN2 analyses of 3-cycle BWR fuel inventories, and data on previously molten fuel characteristics from TMI- 2. A 100 kg mass of previously molten fuel material located on the lower head of the reactor vessel was chosen as a fuel interrogation sensitivity target. Two measurement locations were chosen for the transport analyses, one inside the drywell and one outside the concrete biological shield surrounding the drywell. Results of these initial radiation transport analyses indicate that the 100 kg of previously molten fuel material may be detectable at the measurement location inside the drywell, but that it is highly unlikely that any amount of fuel material inside the RPV will be detectable from a location outside the concrete biological shield surrounding the drywell. Three additional fuel relocation scenarios were also analyzed to assess detection sensitivity for varying amount of relocated material in the lower head of the reactor vessel, in the control rods perpendicular to the detector system, and on the lower head of the drywell. Results of these analyses along with an assessment of background radiation effects and a discussion of measurement issues, such as the detector/collimator design, are included in the paper.

  7. Autoignition characterization of primary reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine

    KAUST Repository

    Baumgardner, Marc E.

    2013-12-19

    In this study, the autoignition behavior of primary reference fuels (PRF) and blends of n-heptane/n-butanol were examined in a Waukesha Fuel Ignition Tester (FIT) and a Homogeneous Charge Compression Engine (HCCI). Fourteen different blends of iso-octane, n-heptane, and n-butanol were tested in the FIT - 28 test runs with 25 ignition measurements for each test run, totaling 350 individual tests in all. These experimental results supported previous findings that fuel blends with high alcohol content can exhibit very different ignition delay periods than similarly blended reference fuels. The experiments further showed that n-butanol blends behaved unlike PRF blends when comparing the autoignition behavior as a function of the percentage of low reactivity component. The HCCI and FIT experimental results favorably compared against single and multizone models with detailed chemical kinetic mechanisms - both an existing mechanism as well as one developed during this study were used. The experimental and modeling results suggest that that the FIT instrument is a valuable tool for analysis of high pressure, low temperature chemistry, and autoignition for future fuels in advanced combustion engines. Additionally, in both the FIT and engine experiments the fraction of low temperature heat release (fLTHR) was found to correlate very well with the crank angle of maximum heat release and shows promise as a useful metric for fuel reactivity in advanced combustion applications. © 2013 American Chemical Society.

  8. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

  9. 49 CFR 393.67 - Liquid fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... NECESSARY FOR SAFE OPERATION Fuel Systems § 393.67 Liquid fuel tanks. (a) Application of the rules in this... an internal hydrostatic pressure equal to 150 percent of the maximum internal pressure reached in...

  10. Thermal-shock Resistance of a Ceramic Comprising 60 Percent Boron Carbide and 40 Percent Titanium Diboride

    Science.gov (United States)

    Yeomans, C M; Hoffman, C A

    1953-01-01

    Thermal-shock resistance of a ceramic comprising 60 percent boron carbide and 40 percent titanium diboride was investigated. The material has thermal shock resistance comparable to that of NBS body 4811C and that of zirconia, but is inferior to beryllia, alumina, and titanium-carbide ceramals. It is not considered suitable for turbine blades.

  11. A simple model to predict the biodiesel blend density as simultaneous function of blend percent and temperature.

    Science.gov (United States)

    Gaonkar, Narayan; Vaidya, R G

    2016-05-01

    A simple method to estimate the density of biodiesel blend as simultaneous function of temperature and volume percent of biodiesel is proposed. Employing the Kay's mixing rule, we developed a model and investigated theoretically the density of different vegetable oil biodiesel blends as a simultaneous function of temperature and volume percent of biodiesel. Key advantage of the proposed model is that it requires only a single set of density values of components of biodiesel blends at any two different temperatures. We notice that the density of blend linearly decreases with increase in temperature and increases with increase in volume percent of the biodiesel. The lower values of standard estimate of error (SEE = 0.0003-0.0022) and absolute average deviation (AAD = 0.03-0.15 %) obtained using the proposed model indicate the predictive capability. The predicted values found good agreement with the recent available experimental data.

  12. Health effects and related standards for fossil-fuel and geothermal power plants. Volume 6 of health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. [In California

    Energy Technology Data Exchange (ETDEWEB)

    Case, G.D.; Bertolli, T.A.; Bodington, J.C.; Choy, T.A.; Nero, A.V.

    1977-01-01

    This report reviews health effects and related standards for fossil-fuel and geothermal power plants, emphasizing impacts which may occur through emissions into the atmosphere, and treating other impacts briefly. Federal regulations as well as California state and local regulations are reviewed. Emissions are characterized by power plant type, including: coal-fired, oil-fired, gas-fired, combined cycle and advanced fossil-fuel plants; and liquid and vapor geothermal systems. Dispersion and transformation of emissions are treated. The state of knowledge of health effects, based on epidemiological, physiological, and biomedical studies, is reviewed.

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 12: Fuel cells. [energy conversion efficiency of, for use in electric power plants

    Science.gov (United States)

    Warde, C. J.; Ruka, R. J.; Isenberg, A. O.

    1976-01-01

    A parametric assessment of four fuel cell power systems -- based on phosphoric acid, potassium hydroxide, molten carbonate, and stabilized zirconia -- has shown that the most important parameters for electricity-cost reduction and/or efficiency improvement standpoints are fuel cell useful life and power density, use of a waste-heat recovery system, and fuel type. Typical capital costs, overall energy efficiencies (based on the heating value of the coal used to produce the power plant fuel), and electricity costs are: phosphoric acid $350-450/kWe, 24-29%, and 11.7 to 13.9 mills/MJ (42 to 50 mills/kWh); alkaline $450-700/kWe, 26-31%, and 12.8 to 16.9 mills/MJ (46 to 61 mills/kWh); molten carbonate $480-650/kWe, 32-46%, and 10.6 to 19.4 mills/MJ (38 to 70 mills/kWh), stabilized zirconia $420-950/kWe, 26-53%, and 9.7 to 16.9 mills/MJ (35 to 61 mills/kWh). Three types of fuel cell power plants -- solid electrolytic with steam bottoming, molten carbonate with steam bottoming, and solid electrolyte with an integrated coal gasifier -- are recommended for further study.

  14. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  15. An analysis of the back end of the nuclear fuel cycle with emphasis on high-level waste management, volume 1

    Science.gov (United States)

    1977-01-01

    The programs and plans of the U.S. government for the "back end of the nuclear fuel cycle" were examined to determine if there were any significant technological or regulatory gaps and inconsistencies. Particular emphasis was placed on analysis of high-level nuclear waste management plans, since the permanent disposal of radioactive waste has emerged as a major factor in the public acceptance of nuclear power. The implications of various light water reactor fuel cycle options were examined including throwaway, stowaway, uranium recycle, and plutonium plus uranium recycle. The results of this study indicate that the U.S. program for high-level waste management has significant gaps and inconsistencies. Areas of greatest concern include: the adequacy of the scientific data base for geological disposal; programs for the the disposal of spent fuel rods; interagency coordination; and uncertainties in NRC regulatory requirements for disposal of both commercial and military high-level waste.

  16. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  17. Analysis of Percent Elongation for Ductile Metal in Uniaxial Tension

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-bin; YANG Mei; JIANG Jian

    2005-01-01

    Percent elongation of ductile metal in uniaxial tension due to non-homogeneity was analyzed based on gradient-dependent plasticity. Three assumptions are used to get the analytical solution of percent elongation: one is static equilibrium condition in axial direction; another is that plastic volumetric strain is zero in necking zone;the other is that the diameter in unloading zone remains constant after strain localization is initiated. The strain gradient term was introduced into the yield function of classical plastic mechanics to obtain the analytical solution of distributed plastic strain. Integrating the plastic strain and considering the influence of necking on plastic elongation, a one-dimensional analytical solution of percent elongation was proposed. The analytical solution shows that the percent elongation is inversely proportional to the gauge length, and the solution is formally similar to earlier empirical formula proposed by Barba. Comparisons of existing experimental results and present analytical solutions for relation between load and total elongation and for relation between percent elongation and gauge lengthwere carried out and the new mechanical model for percent elongation was verified. Moreover, higher ductility,toughness and heterogeneity can cause much larger percentage elongation, which coincides with usual viewpoints.

  18. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  19. Proceedings of the fifth international conference on CANDU fuel. V.1,2

    Energy Technology Data Exchange (ETDEWEB)

    Lau, J.H. [ed.

    1997-07-01

    The First International Conference on CANDU Fuel was held in Chalk River in 1986. The CANDU Fuel community has gathered every three years since. The papers presented include topics on international experience, CANFLEX fuel bundles, Fuel design, Fuel modelling, Manufacturing and Quality assurance, Fuel performance and Safety, Fuel cycles and Spent Fuel management. Volume One was published in advance of the conference and Volume Two was printed after the conference.

  20. 1990 fuel cell seminar: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  1. Percent body fat, fractures and risk of osteoporosis in women.

    Science.gov (United States)

    Wyshak, G

    2010-06-01

    Globally, in an aging population, osteoporosis and fractures are emerging as major public health problems; accessible and affordable recognition, prevention and treatment strategies are needed. Percent body fat is known to be associated with bone mineral density and fractures. This paper uses an innovative, virtually cost-free method to estimate percent body fat from age, height and weight, and assesses its validity by examining the association between percent body fat and fractures among women 39 and older. An epidemiologic study. 3940 college alumnae, median age 53.6, participated by responding to a mailed questionnaire covering medical history, behavioral factors, birth date, weight and height. T-tests, chi-square and multivariable logistic regression. Percent body fat estimated from age, weight, height and gender. Associations of fractures with percent body fat are expressed as odds ratios: for osteoporotic (wrist, hip and/or x-ray confirmed vertebral), the adjusted OR = 2.41, 95% CI (1.65, 3.54), P age, height and weight may be a valid, cost-saving, and cost-effective alternative tool for screening and assessing risk of osteoporosis in settings where Dual x-ray absorptiometry (DXA) or other radiological techniques are too costly or unavailable.

  2. Nuclear Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor

  3. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 3, Site team reports

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    A self assessment was conducted of those Hanford facilities that are utilized to store Reactor Irradiated Nuclear Material, (RINM). The objective of the assessment is to identify the Hanford inventories of RINM and the ES & H concerns associated with such storage. The assessment was performed as proscribed by the Project Plan issued by the DOE Spent Fuel Working Group. The Project Plan is the plan of execution intended to complete the Secretary`s request for information relevant to the inventories and vulnerabilities of DOE storage of spent nuclear fuel. The Hanford RINM inventory, the facilities involved and the nature of the fuel stored are summarized. This table succinctly reveals the variety of the Hanford facilities involved, the variety of the types of RINM involved, and the wide range of the quantities of material involved in Hanford`s RINM storage circumstances. ES & H concerns are defined as those circumstances that have the potential, now or in the future, to lead to a criticality event, to a worker radiation exposure event, to an environmental release event, or to public announcements of such circumstances and the sensationalized reporting of the inherent risks.

  4. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  5. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.

    1989-05-22

    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  6. Fuel-Cell Power Source Based on Onboard Rocket Propellants

    Science.gov (United States)

    Ganapathi, Gani; Narayan, Sri

    2010-01-01

    The use of onboard rocket propellants (dense liquids at room temperature) in place of conventional cryogenic fuel-cell reactants (hydrogen and oxygen) eliminates the mass penalties associated with cryocooling and boil-off. The high energy content and density of the rocket propellants will also require no additional chemical processing. For a 30-day mission on the Moon that requires a continuous 100 watts of power, the reactant mass and volume would be reduced by 15 and 50 percent, respectively, even without accounting for boiloff losses. The savings increase further with increasing transit times. A high-temperature, solid oxide, electrolyte-based fuel-cell configuration, that can rapidly combine rocket propellants - both monopropellant system with hydrazine and bi-propellant systems such as monomethyl hydrazine/ unsymmetrical dimethyl hydrazine (MMH/UDMH) and nitrogen tetroxide (NTO) to produce electrical energy - overcomes the severe drawbacks of earlier attempts in 1963-1967 of using fuel reforming and aqueous media. The electrical energy available from such a fuel cell operating at 60-percent efficiency is estimated to be 1,500 Wh/kg of reactants. The proposed use of zirconia-based oxide electrolyte at 800-1,000 C will permit continuous operation, very high power densities, and substantially increased efficiency of conversion over any of the earlier attempts. The solid oxide fuel cell is also tolerant to a wide range of environmental temperatures. Such a system is built for easy refueling for exploration missions and for the ability to turn on after several years of transit. Specific examples of future missions are in-situ landers on Europa and Titan that will face extreme radiation and temperature environments, flyby missions to Saturn, and landed missions on the Moon with 14 day/night cycles.

  7. HTGR spent fuel composition and fuel element block flow

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, C.J.; Holder, N.D.; Pierce, V.H.; Robertson, M.W.

    1976-07-01

    The High-Temperature Gas-Cooled Reactor (HTGR) utilizes the thorium-uranium fuel cycle. Fully enriched uranium fissile material and thorium fertile material are used in the initial reactor core and for makeup fuel in the recycle core loadings. Bred /sup 233/U and unburned /sup 235/U fissile materials are recovered from spent fuel elements, refabricated into recycle fuel elements, and used as part of the recycle core loading along with the makeup fuel elements. A typical HTGR employs a 4-yr fuel cycle with approximately one-fourth of the core discharged and reloaded annually. The fuel element composition, including heavy metals, impurity nuclides, fission products, and activation products, has been calculated for discharged spent fuel elements and for reload fresh fuel and recycle fuel elements for each cycle over the life of a typical HTGR. Fuel element compositions are presented for the conditions of equilibrium recycle. Data describing compositions for individual reloads throughout the reactor life are available in a detailed volume upon request. Fuel element block flow data have been compiled based on a forecast HTGR market. Annual block flows are presented for each type of fuel element discharged from the reactors for reprocessing and for refabrication.

  8. Molten Carbonate Fuel Cell Operation With Dual Fuel Flexibility

    Science.gov (United States)

    2007-10-01

    oxygen PAFC Phosphoric Acid Fuel Cell PEMFC Polymer Electrolyte Membrane Fuel Cell PDS Propane Desulfurization System ppm parts per million psig...range of power outputs. In addition , instantaneous and on-load fuel switching from natural gas to propane and back was demonstrated without loss of...issues that required additional investigation included identifying the number and volume of propane tanks needed and a vaporization sys- tem to

  9. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  10. Review of air quality modeling techniques. Volume 8. [Assessment of environmental effects of nuclear, geothermal, and fossil-fuel power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, L.C.

    1977-01-01

    Air transport and diffusion models which are applicable to the assessment of the environmental effects of nuclear, geothermal, and fossil-fuel electric generation are reviewed. The general classification of models and model inputs are discussed. A detailed examination of the statistical, Gaussian plume, Gaussian puff, one-box and species-conservation-of-mass models is given. Representative models are discussed with attention given to the assumptions, input data requirement, advantages, disadvantages and applicability of each.

  11. Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The issues of the geothermal resource at Brady's Hot Springs are dealt with: the prospective supply of feedstocks to the ethanol plant, the markets for the spent grain by-products of the plant, the storage, handling and transshipment requirements for the feedstocks and by-products from a rail siding facility at Fernley, the probable market for fuel ethanol in the region, and an assessment of the economic viability of the entire undertaking.

  12. Study for the optimization of a transport aircraft wing for maximum fuel efficiency. Volume 1: Methodology, criteria, aeroelastic model definition and results

    Science.gov (United States)

    Radovcich, N. A.; Dreim, D.; Okeefe, D. A.; Linner, L.; Pathak, S. K.; Reaser, J. S.; Richardson, D.; Sweers, J.; Conner, F.

    1985-01-01

    Work performed in the design of a transport aircraft wing for maximum fuel efficiency is documented with emphasis on design criteria, design methodology, and three design configurations. The design database includes complete finite element model description, sizing data, geometry data, loads data, and inertial data. A design process which satisfies the economics and practical aspects of a real design is illustrated. The cooperative study relationship between the contractor and NASA during the course of the contract is also discussed.

  13. Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The issues of the geothermal resource at Brady's Hot Springs are dealt with: the prospective supply of feedstocks to the ethanol plant, the markets for the spent grain by-products of the plant, the storage, handling and transshipment requirements for the feedstocks and by-products from a rail siding facility at Fernley, the probable market for fuel ethanol in the region, and an assessment of the economic viability of the entire undertaking.

  14. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

  15. 40 CFR 86.307-82 - Fuel specifications.

    Science.gov (United States)

    2010-07-01

    ... composition: Olefins, percent, maximum D1319 10 10 Aromatics, percent maximum D1319 35 35 Saturates D1319 (2... generally available through retail outlets shall be used in service accumulation. For leaded fuel the... and cloud points adequate for operability. The diesel fuel may contain nonmetallic additives...

  16. Evaluating Equating Results: Percent Relative Error for Chained Kernel Equating

    Science.gov (United States)

    Jiang, Yanlin; von Davier, Alina A.; Chen, Haiwen

    2012-01-01

    This article presents a method for evaluating equating results. Within the kernel equating framework, the percent relative error (PRE) for chained equipercentile equating was computed under the nonequivalent groups with anchor test (NEAT) design. The method was applied to two data sets to obtain the PRE, which can be used to measure equating…

  17. 35 GHz integrated circuit rectifying antenna with 33 percent efficiency

    Science.gov (United States)

    Yoo, T.-W.; Chang, K.

    1991-01-01

    A 35 GHz integrated circuit rectifying antenna (rectenna) has been developed using a microstrip dipole antenna and beam-lead mixer diode. Greater than 33 percent conversion efficiency has been achieved. The circuit should have applications in microwave/millimeter-wave power transmission and detection.

  18. Serum Predictors of Percent Lean Mass in Young Adults.

    Science.gov (United States)

    Lustgarten, Michael S; Price, Lori L; Phillips, Edward M; Kirn, Dylan R; Mills, John; Fielding, Roger A

    2016-08-01

    Lustgarten, MS, Price, LL, Phillips, EM, Kirn, DR, Mills, J, and Fielding, RA. Serum predictors of percent lean mass in young adults. J Strength Cond Res 30(8): 2194-2201, 2016-Elevated lean (skeletal muscle) mass is associated with increased muscle strength and anaerobic exercise performance, whereas low levels of lean mass are associated with insulin resistance and sarcopenia. Therefore, studies aimed at obtaining an improved understanding of mechanisms related to the quantity of lean mass are of interest. Percent lean mass (total lean mass/body weight × 100) in 77 young subjects (18-35 years) was measured with dual-energy x-ray absorptiometry. Twenty analytes and 296 metabolites were evaluated with the use of the standard chemistry screen and mass spectrometry-based metabolomic profiling, respectively. Sex-adjusted multivariable linear regression was used to determine serum analytes and metabolites significantly (p ≤ 0.05 and q ≤ 0.30) associated with the percent lean mass. Two enzymes (alkaline phosphatase and serum glutamate oxaloacetate aminotransferase) and 29 metabolites were found to be significantly associated with the percent lean mass, including metabolites related to microbial metabolism, uremia, inflammation, oxidative stress, branched-chain amino acid metabolism, insulin sensitivity, glycerolipid metabolism, and xenobiotics. Use of sex-adjusted stepwise regression to obtain a final covariate predictor model identified the combination of 5 analytes and metabolites as overall predictors of the percent lean mass (model R = 82.5%). Collectively, these data suggest that a complex interplay of various metabolic processes underlies the maintenance of lean mass in young healthy adults.

  19. Winters fuels report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  20. New process for fuel cell fabrication. 3D screen printing of metal bipolar plates; Neues Verfahren zur Brennstoffzellenfertigung. 3D-Siebdruck von metallischen Bipolarplatten

    Energy Technology Data Exchange (ETDEWEB)

    Studnitzky, Thomas [Fraunhofer-Institut fuer Fertigungstechnik und Angewandte Materialforschung (IFAM), Dresden (Germany); Helm, Peter; Heinzel, Angelika [Zentrum fuer BrennstoffzellenTechnik GmbH (ZBT), Duisburg (Germany)

    2011-01-15

    Minimization of space requirements, weight, and production cost is one of the key preconditions for successful launching of the polymer electrolyte membrane fuel cell (PEM). In the stacks constructed from single PEM cells, the bipolar plate is a central component. It determines the weight and volume of the stack and accounts for more than 30 percent of the overall cost, depending on the fabrication process. It is therefore important for producers of fuel cells to develop a process that combines free design, high functionality and low cost in serial production.

  1. 75 FR 42237 - Regulation of Fuels and Fuel Additives: 2011 Renewable Fuel Standards

    Science.gov (United States)

    2010-07-20

    ... those producers who use canola oil, grain sorghum, pulpwood, or palm oil to produce renewable fuel. The... canola oil, grain sorghum, pulpwood, or palm oil to produce renewable fuel, and only if EPA determines.... Additionally, EPA is required to set the cellulosic biofuel standard each year based on the volume projected...

  2. RDF (Refuse-Derived Fuel) Co-Firing Cost/Benefit Analysis Using the NCEL RDF Cost Model. Volume 2. Appendixes.

    Science.gov (United States)

    1986-08-01

    scrubber and a baghouse (Puget Sound). The erroneous algorithm added the individual efficiencies when two devices were present, yielding an efficiency of...PRESENT IS BARE TUBE" 73 73 "Boiler has a history of slagging" 74 74 "ADEQUATE BACKUP CAPABILI TY EXISTS" 75 75 "BOILER IS EQUIPPED WITH .-. A BAGHOUSE ...102 "DESIGN FUEL SPECIFIC HEA T" 103 103 "TEMPERATURE OF DCF AT BO ILER BOUNDARY" 104 104 "HYDROGEN MASS FRACTION 0 F AS-RCVD CFD " 105 105 "RADIATION

  3. The behavior of fuel-lean premixed flames in a standard flammability limit tube under controlled gravity conditions

    Science.gov (United States)

    Wherley, B. L.; Strehlow, R. A.

    1986-01-01

    Fuel-lean flames in methane-air mixtures from 4.90 to 6.20 volume percent fuel and propane-air mixtures from 1.90 to 3.00 volume percent fuel were studied in the vicinity of the limit for a variety of gravity conditions. The limits were determined and the behavior of the flames studied for one g upward, one g downward, and zero g propagation. Photographic records of all flammability tube firings were obtained. The structure and behavior of these flames were detailed including the variations of the curvature of the flame front, the skirt length, and the occurrence of cellular instabilities with varying gravity conditions. The effect of ignition was also discussed. A survey of flame speeds as a function of mixture strength was made over a range of lean mixture compositions for each of the fuels studied. The results were presented graphically with those obtained by other researchers. The flame speed for constant fractional gravity loadings were plotted as a function of gravity loadings from 0.0 up to 2.0 g's against flame speeds extracted from the transient gravity flame histories for corresponding gravity loadings. The effects of varying gravity conditions on the extinguishment process for upward and downward propagating flames were investigated.

  4. 16 CFR Appendix A to Part 306 - Summary of Labeling Requirements for Biodiesel Fuels

    Science.gov (United States)

    2010-01-01

    ... Biodiesel Fuels A Appendix A to Part 306 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER... Part 306—Summary of Labeling Requirements for Biodiesel Fuels (Part 1 of 2) Fuel type Blends of 5 percent or less Blends of more than 5 but not more than 20 percent Header Text Color Biodiesel No...

  5. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 9. Methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V.; Quinby-Hunt, M.S.

    1977-01-01

    This report sets forth methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities for electric power generation. The review is divided into a Notice of Intention process and an Application for Certification process, in accordance with the structure to be used by the California Energy Resources Conservation and Development Commission, the first emphasizing site-specific considerations, the second examining the detailed facility design as well. The Notice of Intention review is divided into three possible stages: an examination of emissions and site characteristics, a basic impact analysis, and an assessment of public impacts. The Application for Certification review is divided into five possible stages: a review of the Notice of Intention treatment, review of the emission control equipment, review of the safety design, review of the general facility design, and an overall assessment of site and facility acceptability.

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

  7. Innovative fossil fuel fired vitrification technology for soil remediation. Volume 1, Phase 1: Annual report, September 28, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Vortex has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program with the Department of Energy (DOE) Morgantown Energy Technology Center (METC). The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conversation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and will not leach to the environment--as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC system design. This topical report will present a summary of the activities conducted during Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The report includes the detail technical data generated during the experimental program and the design and cost data for the preliminary Phase 2 plant.

  8. Percent Errors in the Estimation of Demand for Secondary Items.

    Science.gov (United States)

    1985-11-01

    percent errors, and the program change factor (PCF) to predict item demana during the procurement *’ leadtime (PROLT) ior the item. The PCF accounts for...type of demand it was. It may"-- have been demanded over two years ago or it may nave been a non-recurring demana . Since CC b only retains two years of...observed distributions could be compared with negative binomial distributions. For each item the computed ratio of actual demana to expected demand was

  9. The 50 percent solution to reducing energy costs.

    Science.gov (United States)

    Whitson, B Alan

    2012-11-01

    Hospitals can use a five-step process to achieve energy savings: Define a minimum acceptable ROI or hurdle rate. Seek incentives, rebates, and tax benefits. Set a 10-year investment horizon for all project portfolios. Create a system for tracking and reporting the operational and financial performance of the project portfolios. At the end of the year, return 50 percent of the savings to the facilities department and use the rest to fund additional projects.

  10. Intertemporal discoordination in the 100 percent reserve banking system

    OpenAIRE

    Baeriswyl, Romain

    2014-01-01

    The 100%-Money Plan advocated by Fisher (1936) has a Misesian flavor as it aims at mitigating intertemporal discoordination by reducing (i) the discrepancy between investment and voluntary savings, and (ii) the manipulation of interest rates by monetary injections. Recent proposals to adopt the 100 percent reserve banking system, such as the Chicago Plan Revisited by Benes and Kumhof (2013) or the Limited Purpose Banking by Kotlikoff (2010), take, however, a fundamentally different attitude t...

  11. 40 CFR 80.599 - How do I calculate volume balances for designation purposes?

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... June 30, 2013. July 1, 2013 May 31, 2014. (2) (b) Volume balance for motor vehicle diesel fuel. (1) A facility's motor vehicle diesel fuel volume balance is calculated as follows: MVB = MVI−MVO−MVINVCHG...

  12. Fuel oil and kerosene sales 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  13. Industrial Fuel Gas Demonstration Plant Program. Conceptual design and evaluation of commercial plant. Volume III. Economic analyses (Deliverable Nos. 15 and 16)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    This report presents the results of Task I of Phase I in the form of a Conceptual Design and Evaluation of Commercial Plant report. The report is presented in four volumes as follows: I - Executive Summary, II - Commercial Plant Design, III - Economic Analyses, IV - Demonstration Plant Recommendations. Volume III presents the economic analyses for the commercial plant and the supporting data. General cost and financing factors used in the analyses are tabulated. Three financing modes are considered. The product gas cost calculation procedure is identified and appendices present computer inputs and sample computer outputs for the MLGW, Utility, and Industry Base Cases. The results of the base case cost analyses for plant fenceline gas costs are as follows: Municipal Utility, (e.g. MLGW), $3.76/MM Btu; Investor Owned Utility, (25% equity), $4.48/MM Btu; and Investor Case, (100% equity), $5.21/MM Btu. The results of 47 IFG product cost sensitivity cases involving a dozen sensitivity variables are presented. Plant half size, coal cost, plant investment, and return on equity (industrial) are the most important sensitivity variables. Volume III also presents a summary discussion of the socioeconomic impact of the plant and a discussion of possible commercial incentives for development of IFG plants.

  14. Special Issue: Aviation Alternative Fuels

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2014-12-01

    Full Text Available The investigation of aviation alternative fuels has increased significantly in recent years in an effort to reduce the environment and climate impact by aviation industry. Special requirements have to be met for qualifying as a suitable aviation fuel. The fuel has to be high in energy content per unit of mass and volume, thermally stable and avoiding freezing at low temperatures. There are also many other special requirements on viscosity, ignition properties and compatibility with the typical aviation materials. There are quite a few contending alternative fuels which can be derived from coal, natural gas and biomass.[...

  15. INVESTIGATION OF LAMINAR FLAME SPEED OF ALTERNATIVE LIQUID FUEL BLENDS

    OpenAIRE

    2016-01-01

    The rapid fluctuation in oil prices and increased demand of clean fuels to reduce emissions has forced the researchers to find alternative fuels that can give the same or better overall fuel characteristics. This thesis aims at looking into the prospects of Gas to Liquid (GTL) fuel as an alternative fuel for Internal Combustion Engines (ICEs), by investigating the flame speed of GTL fuel and its 50/50 (by volume) blend with conventional diesel. The tests were conducted in a new...

  16. Meeting the Challenge: The Prospect of Achieving 30 Percent Savings Through the Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, M.

    2002-05-31

    The U.S. Department of Energy's (DOE's) Weatherization Assistance Program has been installing energy-efficiency measures in low-income houses for over 25 years, achieving savings exceeding 30 percent of natural gas used for space heating. Recently, as part of its Weatherization Plus initiative, the Weatherization Assistance Program adopted the goal of achieving 30 percent energy savings for all household energy usage. The expansion of the Weatherization Assistance Program to include electric baseload components such as lighting and refrigerators provides additional opportunities for saving energy and meeting this ambitious goal. This report documents an Oak Ridge National Laboratory study that examined the potential savings that could be achieved by installing various weatherization measures in different types of dwellings throughout the country. Three different definitions of savings are used: (1) reductions in pre-weatherization expenditures; (2) savings in the amount of energy consumed at the house site, regardless of fuel type (''site Btus''); and (3) savings in the total amount of energy consumed at the source (''source Btus''), which reflects the fact that each Btu* of electricity consumed at the household level requires approximately three Btus to produce at the generation source. In addition, the effects of weatherization efforts on carbon dioxide (CO{sub 2}) emissions are examined.

  17. Twenty-second water reactor safety information meeting. Volume 2: Severe accident research, thermal hydraulic research for advanced passive LWRs, high-burnup fuel behavior

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.

    1995-04-01

    This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24-26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.

  18. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  19. A 99 percent purity molecular sieve oxygen generator

    Science.gov (United States)

    Miller, G. W.

    1991-01-01

    Molecular sieve oxygen generating systems (MSOGS) have become the accepted method for the production of breathable oxygen on military aircraft. These systems separate oxygen for aircraft engine bleed air by application of pressure swing adsorption (PSA) technology. Oxygen is concentrated by preferential adsorption in nitrogen in a zeolite molecular sieve. However, the inability of current zeolite molecular sieves to discriminate between oxygen and argon results in an oxygen purity limitations of 93-95 percent (both oxygen and argon concentrate). The goal was to develop a new PSA process capable of exceeding the present oxygen purity limitations. A novel molecular sieve oxygen concentrator was developed which is capable of generating oxygen concentrations of up to 99.7 percent directly from air. The process is comprised of four absorbent beds, two containing a zeolite molecular sieve and two containing a carbon molecular sieve. This new process may find use in aircraft and medical breathing systems, and industrial air separation systems. The commercial potential of the process is currently being evaluated.

  20. Sustainable Harvest for Food and Fuel Preliminary Food & Fuel Gap Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Ray Grosshans; Kevin M. Kostelnik; Jake Jacobson

    2007-04-01

    To promote economic growth and energy security, and to protect the environment, the U.S. is pursuing a national strategy of energy independence and climatic protection in which domestic renewable carbon-neutral biofuels displace 30 percent of U.S. oil consumption by the mid-21st century. Such fuels, including ethanol and biodiesel, will be produced from biological feed stocks (biomass). The availability of this billion-ton biomass will hinge on the application of modern scientific and engineering tools to create a highly-integrated biofuel production system. Efforts are underway to identify and develop energy crops, ranging from agricultural residues to genetically engineered perennials; to develop biology-based processing methods; and, to develop large-scale biorefineries to economically convert biomass into fuels. In addition to advancing the biomass-to-biofuel research and development agenda, policy makers are concurrently defining the correct mix of governmental supports and regulations. Given the volumes of biomass and fuels that must flow to successfully enact a national biomass strategy, policies must encourage large-scale markets to form and expand around a tightly integrated system of farmers, fuel producers and transporters, and markets over the course of decades. In formulating such policies, policy makers must address the complex interactions of social, technical, economic, and environmental factors that bound energy production and use. The Idaho National Laboratory (INL) is a science-based, applied engineering national laboratory dedicated to supporting the U.S. Department of Energy (DOE). The INL Bioenergy Program supports the DOE and the U.S. Department of Agriculture. Key multidisciplinary INL capabilities are being leveraged to address major science and technology needs associated with the cost-effective utilization of biomass. INL’s whole crop utilization (WCU) vision is focused on the use of the entire crop, including both the grain and

  1. Fuel cell engineering

    CERN Document Server

    Sundmacher

    2012-01-01

    Fuel cells are attractive electrochemical energy converters featuring potentially very high thermodynamic efficiency factors. The focus of this volume of Advances in Chemical Engineering is on quantitative approaches, particularly based on chemical engineering principles, to analyze, control and optimize the steady state and dynamic behavior of low and high temperature fuel cells (PEMFC, DMFC, SOFC) to be applied in mobile and stationary systems. * Updates and informs the reader on the latest research findings using original reviews * Written by leading industry experts and scholars * Review

  2. Hydrogen and fuel cells - The clean energy system

    Science.gov (United States)

    Rohland, B.; Nitsch, J.; Wendt, H.

    1992-01-01

    A strategy where hydrogen is effectively converted into useful energies like electricity and heat by fuel cells in the cogeneration mode is presented. A scenario is presented where renewable energies are used in an extensive but technologically achievable way. Renewable shares of 13 percent (2005), 36 percent (2025), and 69 percent (2050) on the total energy demand will lead to hydrogen shares of 11 percent in 2025 and 34 percent in 2050. Fuel cells provide high conversion efficiencies with respect to electricity and make it possible to use waste heat at different temperature levels. Low- and medium temperature fuel cells using pure hydrogen and high-temperature fuel cells for a mixed biogas-hydrogen conversion with a high energy yield are discussed.

  3. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  4. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  5. Monitoring of bunker fuel consumption

    Energy Technology Data Exchange (ETDEWEB)

    Faber, J.; Nelissen, D.; Smit, M.

    2013-03-15

    Monitoring of fuel consumption and greenhouse gas emissions from international shipping is currently under discussion at the EU level as well as at the IMO (International Maritime Organization). There are several approaches to monitoring, each with different characteristics. Based on a survey of the literature and information from equipment suppliers, this report analyses the four main methods for monitoring emissions: (1) Bunker delivery notes (i.e. a note provided by the bunker fuel supplier specifying, inter alia, the amount of fuel bunkered); (2) Tank sounding (i.e. systems for measuring the amount of fuel in the fuel tanks); (3) Fuel flow meters (i.e. systems for measuring the amount of fuel supplied to the engines, generators or boilers); and (4) Direct emissions monitoring (i.e. measuring the exhaust emissions in the stack). The report finds that bunker delivery notes and tank soundings have the lowest investment cost. However, unless tank sounding is automated, these systems have higher operational costs than fuel flow meters or direct emissions monitoring because manual readings have to be entered in monitoring systems. Fuel flow meters have the highest potential accuracy. Depending on the technology selected, their accuracy can be an order of magnitude better than the other systems, which typically have errors of a few percent. By providing real-time feed-back on fuel use or emissions, fuel flow meters and direct emissions monitoring provide ship operators with the means to train their crew to adopt fuel-efficient sailing methods and to optimise their maintenance and hull cleaning schedules. Except for bunker delivery notes, all systems allow for both time-based and route-based (or otherwise geographically delineated) systems.

  6. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 2, Topical reports: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This study, identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. The research needs that have high priority in establishing the technical, environmental, and economic feasibility of large-scale capture and disposal of CO{sub 2} from electric power plants are:(1) survey and assess the capacity, cost, and location of potential depleted gas and oil wells that are suitable CO{sub 2} repositories (with the cooperation of the oil and gas industry); (2) conduct research on the feasibility of ocean disposal, with objectives of determining the cost, residence time, and environmental effects for different methods of CO{sub 2} injection; (3) perform an in-depth survey of knowledge concerning the feasibility of using deep, confined aquifers for disposal and, if feasible, identify potential disposal locations (with the cooperation of the oil and gas industry); (4) evaluate, on a common basis, system and design alternatives for integration of CO{sub 2} capture systems with emerging and advanced technologies for power generation; and prepare a conceptual design, an analysis of barrier issues, and a preliminary cost estimate for pipeline networks necessary to transport a significant portion of the CO{sub 2} to potentially feasible disposal locations.

  7. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

  8. Systolic Pressure in Different Percents of Stenosis at Major Arteries

    CERN Document Server

    Mirzaee, Mohammad Reza; Firoozabadi, Bahar; Dandaneband, Meitham

    2016-01-01

    - Modeling Human cardiovascular system is always an important issue. One of the most effective methods is using lumped model to reach to a complete model of human cardiovascular system. Such modeling with advanced considerations is used in this paper. Some of these considerations are as follow: Exact simulating of ventricles as pressure suppliers, peristaltic motion of descending arteries as additional suppliers, and dividing each vessel into more than one compartment to reach more accurate answers. Finally a circuit with more than 150 RLC segments and different elements is made. Then the verification of our complex circuit is done and at the end, obstruction as an important abnormality is investigated. For this aim different percents of obstruction in vital arteries are considered and the results are brought as different graphs at the end. According to physiological texts the citation of our simulation and its results are obvious. To earn productive information about arteries characteristics a 36-vessels mod...

  9. Influences of Fuel Additive, Crude Palm and Waste Cooking Oil on Emission Characteristics of Small Diesel Engine

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari; Basharie, Mariam

    2017-08-01

    Major research has been conducted on the use of input products, such as rapeseed, canola, soybean, sunflower oil, waste cooking oil (WCO), crude palm oil (CPO) and crude jatropha oil as alternative fuels. Biodiesel is renewable, biodegradable and oxygenated, where it can be easily adopted by current existing conventional diesel engine without any major modification of the engine. To meet the future performance and emission regulations, is urged to improve the performance and exhaust emissions from biodiesel fuels. Hence, further investigation have been carried out on the emission characteristics of small diesel engine that fuelled by variant blending ratio of WCO and CPO with booster additive. For each of the biodiesel blends ratio from 5 to 15 percent volume which are WCO5, WCO10 and WCO15 for WCO biodiesel and CPO5, CPO10 and CPO15 for CPO biodiesel. The exhaust emissions were measured at engine speeds varied at 2000 rpm and 2500 rpm with different booster additive volume DRA (biodiesel without additive), DRB (0.2 ml) and DRC (0.4 ml). Emissions characteristics that had been measured were Hydrocarbon (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Oxide (NOx), and smoke opacity. The results showed that increased of blending ratio with booster additive volume significantly decreased the CO emission, while increased in NOx and CO2 due to changes of fuel characteristics in biodiesel fuel blends.

  10. Effect of nitrogen on tensile properties and structures of T-111 (tantalum, 8 percent tungsten, 2 percent hafnium) tubing

    Science.gov (United States)

    Buzzard, R. J.; Metroka, R. R.

    1973-01-01

    The effect of controlled nitrogen additions was evaluated on the mechanical properties of T-111 (Ta-8W-2Hf) fuel pin cladding material proposed for use in a lithium-cooled nuclear reactor concept. Additions of 80 to 1125 ppm nitrogen resulted in increased strengthening of T-111 tubular section test specimens at temperatures of 25 to 1200 C. Homogeneous distributions of up to 500 ppm nitrogen did not seriously decrease tensile ductility. Both single and two-phase microstructures, with hafnium nitride as the second phase, were evaluated in this study.

  11. One Percent Strömvil Photometry in M 67

    Science.gov (United States)

    Philip, A. G. D.; Boyle, R. P.; Janusz, R.

    2005-05-01

    The Vatican Advanced Technology Telescope on Mt. Graham is being used in a program of CCD photometry of open and globular clusters. We are using the Ströomvil System (Straižys et al. 1996), a combination of the Strömgren and Vilnius Systems. This system allows stars to be classified as to temperature, surface gravity, metallicity and reddening from the photometric measures alone. However, to make accurate estimates of the stellar parameters the photometry should be accurate to 1 or 1.5 percent. In our initial runs on the VATT we did not achieve this accuracy. The problem turned out to be scattered light in the telescope and this has now been reduced so we can do accurate photometry. Boyle has written a routine in IRAF which allows us to correct the flats for any differences. We take rotated frames and also frames which are offset in position by one third of a frame, east-west and north-south. Measures of the offset stars give us the corrections that need to be made to the flat. Robert Janusz has written a program, the CommandLog, which allows us to paste IRAF commands in the correct order to reduce measures made on a given observing run. There is an automatic version where one can test various parameters and get a set of solutions. Now we have a set of Strömvil frames in the open cluster, M 67 and we compare our color-magnitude diagram with those of BATC (Fan et al. 1996) and Vilnius (Boyle et al. 1998). A preliminary report of the M 67 photometry will be found in Laugalys et al. (2004). Here we report on a selected set of stars in the M 67 frames, those with errors 1 percent or less.

  12. An Experimental System of Constant Volume Combustion Bomb for Dual-fuel of Diesel/Methanol%一种研究柴油甲醇双燃料的定容燃烧弹试验装置

    Institute of Scientific and Technical Information of China (English)

    姚春德; 代乾; 许汉君; 杨广峰

    2012-01-01

    An experimental system of constant volume combustion bomb was designed and developed,which was carried out for the fundamental research of combustion characteristics of diesel in premixed air/methanol mixtures atmosphere.The distribution,function and characteristics of the sub-system of the experimental equipment were introduced.The experimental results show that the existence of methanol in the mixture can suppress ignition of diesel fuel.As the increase of the methanol concentration in the mixture,the flame of the combustion becomes dim and consequently the formation of soot are inhibited.Comparing with the combustion of diesel in the pure air atmosphere the ignition delay of diesel fuel is postponed and the lift-off length of diesel fuel flame is extended and the variation of lift-off length is strengthened in the premixed methanol ambient.%设计并研制了一种定容燃烧弹试验装置,用于对柴油在甲醇/空气预混均质混合气中燃烧特性的基础研究。介绍了该试验装置的各子系统的原理、结构及特点。定容燃烧弹试验结果表明:甲醇抑制了柴油的着火燃烧,随着甲醇/空气混合气浓度的增大,燃烧火焰变暗,碳烟生成受到抑制。与空气热氛围相比,甲醇/空气混合气氛围延长了柴油的滞燃期,加长了火焰的浮起长度。火焰稳定后,甲醇氛围中火焰的浮起长度随时间的变化比在纯空气氛围中大。

  13. Fuel distribution

    Energy Technology Data Exchange (ETDEWEB)

    Tison, R.R.; Baker, N.R.; Blazek, C.F.

    1979-07-01

    Distribution of fuel is considered from a supply point to the secondary conversion sites and ultimate end users. All distribution is intracity with the maximum distance between the supply point and end-use site generally considered to be 15 mi. The fuels discussed are: coal or coal-like solids, methanol, No. 2 fuel oil, No. 6 fuel oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Although the fuel state, i.e., gas, liquid, etc., can have a major impact on the distribution system, the source of these fuels (e.g., naturally-occurring or coal-derived) does not. Single-source, single-termination point and single-source, multi-termination point systems for liquid, gaseous, and solid fuel distribution are considered. Transport modes and the fuels associated with each mode are: by truck - coal, methanol, No. 2 fuel oil, and No. 6 fuel oil; and by pipeline - coal, methane, No. 2 fuel oil, No. 6 oil, high-Btu gas, medium-Btu gas, and low-Btu gas. Data provided for each distribution system include component makeup and initial costs.

  14. Alternate-Fueled Combustion-Sector Emissions

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  15. Fuel economy screening study of advanced automotive gas turbine engines

    Science.gov (United States)

    Klann, J. L.

    1980-01-01

    Fuel economy potentials were calculated and compared among ten turbomachinery configurations. All gas turbine engines were evaluated with a continuously variable transmission in a 1978 compact car. A reference fuel economy was calculated for the car with its conventional spark ignition piston engine and three speed automatic transmission. Two promising engine/transmission combinations, using gasoline, had 55 to 60 percent gains over the reference fuel economy. Fuel economy sensitivities to engine design parameter changes were also calculated for these two combinations.

  16. 76 FR 17019 - List of Approved Spent Fuel Storage Casks: HI-STORM Flood/Wind Addition

    Science.gov (United States)

    2011-03-28

    ... Reactor (BWR) fuel with high initial enrichment (up to 4.8 weight percent uranium-235 planer average...) The ability to store and transport BWR fuel with high initial enrichment (up to 4.8 weight percent... part 72, entitled ``General License for Storage of Spent Fuel at Power Reactor Sites'' (55 FR...

  17. Fretting wear in titanium, Monel-400, and cobalt 25-percent-molybdenum using scanning electron microscopy

    Science.gov (United States)

    Bill, R. C.

    1972-01-01

    Damage scar volume measurements taken from like metal fretting pairs combined with scanning electron microscopy observations showed that three sequentially operating mechanisms result in the fretting of titanium, Monel-400, and cobalt - 25-percent molybdenum. Initially, adhesion and plastic deformation of the surface played an important role. This was followed after a few hundred cycles by a fatigue mechanism which produced spall-like pits in the damage scar. Finally, a combination of oxidation and abrasion by debris particles became most significant. Damage scar measurements made on several elemental metals after 600,000 fretting cycles suggested that the ratio of oxide hardness to metal hardness was a measure of the susceptibility of a metal to progressive damage by fretting.

  18. Fuels for Thought!

    Directory of Open Access Journals (Sweden)

    Clifford Louime

    2009-07-01

    Full Text Available When it comes to the marketing of the bioenergy brand, one of the catchiest slogans out these days is “25 by ‘25”. Adopted and supported by industries, academia and government agencies alike, this organization simply aims to supply 25 percent of our energy from renewable resources by the year 2025. By focusing its future efforts on wind, solar and biomass resources, the “25 by 25” initiative is expected to create new jobs, develop novel technologies, help mitigate the effects of global warming and reduce our dependence on fossil fuels. [...

  19. Clean fuel for demanding environmental markets

    Energy Technology Data Exchange (ETDEWEB)

    Josewicz, W.; Natschke, D.E. [Acurex Environmental Corp., Research Triangle Park, NC (United States)

    1995-12-31

    Acurex Environmental Corporation is bringing Clean Fuel to the environmentally demand Krakow market, through the cooperative agreement with the U.S. Department of Energy. Clean fuel is a proprietary clean burning coal-based energy source intended for use in stoves and hand stoked boilers. Clean Fuel is a home heating fuel that is similar in form and function to raw coal, but is more environmentally friendly and lower in cost. The heating value of Clean Fuel is 24,45 kJ/kg. Extensive sets of confirmation runs were conducted in the Academy of Mining and Metallurgy in the Krakow laboratories. It demonstrated up to 54 percent reduction of particulate matter emission, up to 35 percent reduction of total hydrocarbon emissions. Most importantly, polycyclic aromatic hydrocarbons (toxic and carcinogens compounds) emissions were reduced by up to 85 percent, depending on species measured. The above comparison was made against premium chunk coal that is currently available in Krakow for approximately $83 to 93/ton. Clean Fuel will be made available in Krakow at a price approximately 10 percent lower than that of the premium chunk coal.

  20. Alternative Fuels for Military Applications

    Science.gov (United States)

    2011-01-01

    renewable oils in a sustainable manner in the United States have motivated interest in advanced, but longer-term, approaches using microalgae that...algae-derived fuels prior to establishing their commercial viability. Industrial Preparedness 79 The science is sound for using selected microalgae ...biofuels via microalgae to succeed, Nexant expects that significant genetic breakthroughs will be needed, and high volume fuel production will need

  1. Alternatives to traditional transportation fuels 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    In recent years, gasoline and diesel fuel have accounted for about 80 percent of total transportation fuel and nearly all of the fuel used in on-road vehicles. Growing concerns about the environmental effects of fossil fuel use and the Nation`s high level of dependence on foreign oil are providing impetus for the development of replacements or alternatives for these traditional transportation fuels. (The Energy Policy Act of 1992 definitions of {open_quotes}replacement{close_quotes} and {open_quotes}alternative{close_quotes} fuels are presented in the following box.) The Alternative Motor Fuels Act of 1988, the Clean Air Act Amendments of 1990 (CAAA90) and the Energy Policy Act of 1992 (EPACT) are significant legislative forces behind the growth of replacement fuel use. Alternatives to Traditional Transportation Fuels 1993 provides the number of on-road alternative fueled vehicles in use in the United States, alternative and replacement fuel consumption, and information on greenhouse gas emissions resulting from the production, delivery, and use of replacement fuels for 1992, 1993, and 1995.

  2. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  3. Fuel Cell Powered Lift Truck

    Energy Technology Data Exchange (ETDEWEB)

    Moulden, Steve [Sysco Food Service, Houston, TX (United States)

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  4. A three-dimensional theoretical model of the relationship between cavernosal expandability and percent cavernosal smooth muscle.

    Science.gov (United States)

    Luo, Haibiao; Goldstein, Irwin; Udelson, Daniel

    2007-05-01

    Percent corporal smooth muscle content, a traditional predictor of corporal veno-occlusive function, is invasive and clinically assessed by histomorphometric analyses of erectile tissue biopsies. Cavernosal "expandability" which may be a more physiologically relevant parameter is a measure of work performed to achieve penile erection, and as a consequence, an indicator of the ability to approach maximum penile volume at low intracavernosal pressure. To demonstrate that cavernosal "expandability" determined by noninvasive methodology can replace the determination of percent smooth muscle. To predict Young's modulus for the corpora cavernosa in rabbits and, this by inference, in humans; the latter facilitates the comparison of resistance to penile expansion presented by the tunica vs. cavernosal tissue. A refined three-dimensional formula for cavernosal expandability, defined as the negative reciprocal of the cavernosal bulk modulus in the semierect state, was derived as a function of percent corporal smooth muscle content, using principles of engineering mechanics of materials. The model included Young's modulus, E, for the corpora cavernosa as an unknown parameter. Volume-pressure data obtained from three groups of New Zealand white rabbits: (i) control group (N = 7); (ii) hypercholesterolemic group (N = 5) on 0.5%; (iii) atherosclerotic group (N = 8), was plotted, and compared with the model. Data points of mean cavernosal expandability (0.012-0.017 (mm Hg)(-1)) vs. percent trabecular smooth muscle content (33.9-45.4%) for the three groups of rabbits were analyzed. The revised model formula was fitted to the existing rabbit experimental data points producing a value of Young's modulus equal to 0.01 (MPa). Rabbit cavernosal expandability can predict percent smooth muscle content. Cavernosal Young's modulus can be predicted. Further clinical research efforts to provide human data are needed.

  5. 40 CFR 80.535 - How are NRLM diesel fuel credits generated?

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... the standards of § 80.510(a) or (b). V520 = The total volume of motor vehicle diesel fuel produced or... generated by both a foreign refiner and by an importer for the same motor vehicle diesel fuel. (iii)...

  6. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...... temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  7. Recent trends in aviation turbine fuel properties

    Science.gov (United States)

    Friedman, R.

    1982-01-01

    Plots and tables, compiled from Department of Energy (and predecessor agency) inspection reports from 1969 to 1980, present ranges, averages, extremes, and trends for most of the 22 properties of Jet A aviation turbine fuel. In recent years, average values of aromatics content, mercaptan sulfur content, distillation temperature of 10 percent recovered, smoke point, and freezing point show small but recognizable trends toward their specification limits. About 80 percent of the fuel samples had at least one property near specification, defined as within a standard band about the specification limit. By far the most common near-specification properties were aromatics content, smoke point, and freezing point.

  8. History of fast reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, J.H. (Argonne National Lab., IL (United States)); Frost, B.R.T. (Argonne National Lab., IL (United States)); Mustelier, J.P. (COGEMA, Velizy-Villacoublay (France)); Bagley, K.Q. (AEA Reactor Services, Risley (United Kingdom)); Crittenden, G.C. (AEA Reactor Services, Dounreay (United Kingdom)); Dievoet, J. van (Belgonucleaire, Brussels (Belgium))

    1993-09-01

    The first fast breeder eactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s. (orig.)

  9. Fischer-Tropsch-synthesis fuels as diesel engine fuel - Fuel of the future

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Erik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Thermo and Fluid Dynamics

    2000-04-01

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent auto ignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with regular diesel fuel if produced in large volumes. The aim of this investigation is to reveal and analyze the effects of F-T fuels on a research diesel engine performance. Previous engine laboratory tests indicate that F-T fuels are promising alternative fuels because they can be used in unmodified diesel engines, and substantial quantitative exhaust emission reductions can be reached. Also substantial qualitative reductions, e.g. reduction of the number of hazardous chemicals and reduction of the concentration of hazardous chemicals in the exhausts may be realised. Since the engine performance is closely related to in-cylinder processes, a detailed thermodynamic analysis has been performed revealing the real thermochemistry history. The experimental results have shown that F-T fuels have a beneficial effect not only on the emission levels, but also on other energetic parameters of the engine. Heat release analysis have shown that ignition delay, cylinder peak pressure, heat release gradient and indicated efficiency are affected as well. Two different mixtures of FT-fuels with variation in carbon chain branching and, to a certain extent, variation in chain length were tested and their results were compared with those obtained from conventional fuel (MK1). The selected optimized F-T fuels mixture were further tested according to the 13 mode ECE R49 test cycle and were found as good competitive alternative diesel fuels.

  10. Testing of uranium nitride fuel in T-111 cladding at 1200 K cladding temperature

    Science.gov (United States)

    Rohal, R. G.; Tambling, T. N.; Smith, R. L.

    1973-01-01

    Two groups of six fuel pins each were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a tantalum alloy clad. The first group of fuel pins was irradiated for 1500 hours to a maximum burnup of 0.7-atom-percent uranium. The second group of fuel pins was irradiated for about 3000 hours to a maximum burnup of 1.0-atom-percent uranium. The average clad surface temperature during irradiation of both groups of fuel pins was approximately 1200 K. The postirradiation examination revealed the following: no clad failures or fuel swelling occurred; less than 1 percent of the fission gases escaped from the fuel; and the clad of the first group of fuel pins experienced clad embrittlement whereas the second group, which had modified assembly and fabrication procedures to minimize contamination, had a ductile clad after irradiation.

  11. Breast percent density estimation from 3D reconstructed digital breast tomosynthesis images

    Science.gov (United States)

    Bakic, Predrag R.; Kontos, Despina; Carton, Ann-Katherine; Maidment, Andrew D. A.

    2008-03-01

    Breast density is an independent factor of breast cancer risk. In mammograms breast density is quantitatively measured as percent density (PD), the percentage of dense (non-fatty) tissue. To date, clinical estimates of PD have varied significantly, in part due to the projective nature of mammography. Digital breast tomosynthesis (DBT) is a 3D imaging modality in which cross-sectional images are reconstructed from a small number of projections acquired at different x-ray tube angles. Preliminary studies suggest that DBT is superior to mammography in tissue visualization, since superimposed anatomical structures present in mammograms are filtered out. We hypothesize that DBT could also provide a more accurate breast density estimation. In this paper, we propose to estimate PD from reconstructed DBT images using a semi-automated thresholding technique. Preprocessing is performed to exclude the image background and the area of the pectoral muscle. Threshold values are selected manually from a small number of reconstructed slices; a combination of these thresholds is applied to each slice throughout the entire reconstructed DBT volume. The proposed method was validated using images of women with recently detected abnormalities or with biopsy-proven cancers; only contralateral breasts were analyzed. The Pearson correlation and kappa coefficients between the breast density estimates from DBT and the corresponding digital mammogram indicate moderate agreement between the two modalities, comparable with our previous results from 2D DBT projections. Percent density appears to be a robust measure for breast density assessment in both 2D and 3D x-ray breast imaging modalities using thresholding.

  12. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  13. Materials Approach to Fuel Efficient Tires

    Energy Technology Data Exchange (ETDEWEB)

    Votruba-Drzal, Peter [PPG Industries, Monroeville, PA (United States); Kornish, Brian [PPG Industries, Monroeville, PA (United States)

    2015-06-30

    The objective of this project was to design, develop, and demonstrate fuel efficient and safety regulation compliant tire filler and barrier coating technologies that will improve overall fuel efficiency by at least 2%. The program developed and validated two complementary approaches to improving fuel efficiency through tire improvements. The first technology was a modified silica-based product that is 15% lower in cost and/or enables a 10% improvement in tread wear while maintaining the already demonstrated minimum of 2% improvement in average fuel efficiency. The second technology was a barrier coating with reduced oxygen transmission rate compared to the state-of-the-art halobutyl rubber inner liners that will provide extended placarded tire pressure retention at significantly reduced material usage. A lower-permeance, thinner inner liner coating which retains tire pressure was expected to deliver the additional 2% reduction in fleet fuel consumption. From the 2006 Transportation Research Board Report1, a 10 percent reduction in rolling resistance can reduce consumer fuel expenditures by 1 to 2 percent for typical vehicles. This savings is equivalent to 6 to 12 gallons per year. A 1 psi drop in inflation pressure increases the tire's rolling resistance by about 1.4 percent.

  14. Fuel oil and kerosene sales 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-27

    This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

  15. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  16. Thermionic fuel element technology status

    Science.gov (United States)

    Holland, J. W.; Horner, M. W.; Yang, L.

    1985-01-01

    The results of research, conducted between the mid-1960s and 1973, on the multiconverter thermionic fuel elements (TFEs) that comprise the reactor core of an SP-100 thermionic reactor system are presented. Fueled-emitter technology, insulator technology and cell and TFE assembly technology of the prototypical TFEs which were tested in-pile and out-of-pile during these years are described. The proto-TFEs have demonstrated reproducible performance within 5 percent and no premature failures within the 1.5 yr of operation (with projected 3-yr lifetimes). The two primary life-limiting factors had been identified as thermionic emitter dimensional increase due to interactions with the fuel and electrical insulator structural damage from fast neutrons. Multiple options for extending TFE lifetimes to 7 yr or longer are available and will be investigated in the 1984-1985 SP-100 program for resolution of critical technology issues. Design diagrams and test graphs are included.

  17. Fuel cells

    Directory of Open Access Journals (Sweden)

    D. N. Srivastava

    1962-05-01

    Full Text Available The current state of development of fuel cells as potential power sources is reviewed. Applications in special fields with particular reference to military requirements are pointed out.

  18. Future Fuels

    Science.gov (United States)

    2006-04-01

    Storage Devices, Fuel Management, Gasification, Fischer-Tropsch, Syngas , Hubberts’s Peak UNCLAS UNCLAS UNCLAS UU 80 Dr. Sujata Millick (703) 696...prices ever higher, and perhaps lead to intermittent fuel shortages as production fluctuates. Clearly, this competition for resources also provides oil...producers multiple options for selling their products, and raises the possibility that the US could face shortages resulting from shifts in

  19. 40 CFR 80.40 - Fuel certification procedures.

    Science.gov (United States)

    2010-07-01

    ... agent, must be at least 9% and no more than 10% (by volume) of the gasoline. The ethanol content of the... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.40 Fuel certification procedures. (a) Gasoline that complies with one of the standards specified in § 80.41 (a) through (f) that...

  20. A solid fuel which includes coal, coke and charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Takeuti, Y.; Iketani, Y.; Nisino, A.; Sonetaka, K.

    1983-04-15

    A composition of solid domestic fuel is proposed with a reduced liberation of toxic gases (CO and hydrocarbon (Uv)) upon combustion. The fuel is produced from (percent) 80 mineral coal, 10 charcoal, 10 CaC03 with an additive of 2 percent methylcellulose to the charge. Briquets are made from the mixture with perforated openings which have a transverse cross section (PS) of 10 to 200 square millimeters. The ratio of the total transverse cross section of all the openings and the transverse cross section of the fuel briquet, including the area of the openings is 25 to 70. Systems for disposition of the openings in the fuel are cited, along with the cross section of a furnace with the loaded fuel and the dependencies of the CO content in the furnace gas on the properties of the fuel.

  1. Fuel Reduction for the Mobility Air Forces: Executive Summary

    Science.gov (United States)

    2015-01-01

    government energy consumption. DoD has reduced its fuel use in recent years, including a 4 percent reduction in use of petroleum from fiscal year (FY... Economy ,” Flight Operations Support & Line Assistance, Airbus Customer Services, No. 3, July 2004. Neutral  Additional  Impacts Annualized  Fuel...21 References Airbus, “Getting to Grips with Fuel Economy ,” Flight Operations Support & Line Assistance, Airbus Customer Services, No. 3, July 2004

  2. High Octane Fuel: Terminal Backgrounder

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, Kristi [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-11

    The Bioenergy Technologies Office of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy sponsored a scoping study to assess the potential of ethanol-based high octane fuel (HOF) to reduce energy consumption and greenhouse gas emissions. When the HOF blend is made with 25%-40% ethanol by volume, this energy efficiency improvement is potentially sufficient to offset the reduced vehicle range often associated with the decreased volumetric energy density of ethanol. The purpose of this study is to assess the ability of the fuel supply chain to accommodate more ethanol at fuel terminals. Fuel terminals are midstream in the transportation fuel supply chain and serve to store and distribute fuels to end users. While there are no technical issues to storing more ethanol at fuel terminals, there are several factors that could impact the ability to deploy more ethanol. The most significant of these issues include the availability of land to add more infrastructure and accommodate more truck traffic for ethanol deliveries as well as a lengthy permitting process to erect more tanks.

  3. The Fascinating Story of Fossil Fuels

    Science.gov (United States)

    Asimov, Isaac

    1973-01-01

    How this energy source was created, its meaning to mankind, our drastically reduced supply, and why we cannot wait for nature to make more are considered. Today fossil fuels supply 96 percent of the energy used but we must find alternate energy options if we are to combat the energy crisis. (BL)

  4. The Fascinating Story of Fossil Fuels

    Science.gov (United States)

    Asimov, Isaac

    1973-01-01

    How this energy source was created, its meaning to mankind, our drastically reduced supply, and why we cannot wait for nature to make more are considered. Today fossil fuels supply 96 percent of the energy used but we must find alternate energy options if we are to combat the energy crisis. (BL)

  5. Fuel nozzle assembly for use as structural support for a duct structure in a combustor of a gas turbine engine

    Science.gov (United States)

    Wiebe, David J; Fox, Timothy A

    2015-03-31

    A fuel nozzle assembly for use in a combustor apparatus of a gas turbine engine. An outer housing of the fuel nozzle assembly includes an inner volume and provides a direct structural connection between a duct structure and a fuel manifold. The duct structure defines a flow passage for combustion gases flowing within the combustor apparatus. The fuel manifold defines a fuel supply channel therein in fluid communication with a source of fuel. A fuel injector of the fuel nozzle assembly is provided in the inner volume of the outer housing and defines a fuel passage therein. The fuel passage is in fluid communication with the fuel supply channel of the fuel manifold for distributing the fuel from the fuel supply channel into the flow passage of the duct structure.

  6. Analysis of fuel using the Direct LSC method determination of bio-originated fuel in the presence of quenching

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Charles G.; Wright, Cherylyn W.; Morley, Shannon M.; Wright, Bob W.

    2017-04-01

    A modified version of the Direct LSC method to correct for quenching effect was investigated for the determination of bio-originated fuel content in fuel samples produced from multiple biological starting materials. The modified method was found to be accurate in determining the percent bio-originated fuel to within 5% of the actual value for samples with quenching effects ≤43%. Analysis of highly quenched samples was possible when diluted with the exception of one sample with a 100% quenching effect.

  7. Analysis of fuel using the Direct LSC method determination of bio-originated fuel in the presence of quenching.

    Science.gov (United States)

    Doll, Charles G; Wright, Cherylyn W; Morley, Shannon M; Wright, Bob W

    2017-04-01

    A modified version of the Direct LSC method to correct for quenching effect was investigated for the determination of bio-originated fuel content in fuel samples produced from multiple biological starting materials. The modified method was found to be accurate in determining the percent bio-originated fuel to within 5% of the actual value for samples with quenching effects ≤43%. Analysis of highly quenched samples was possible when diluted with the exception of one sample with a 100% quenching effect.

  8. 40 CFR 80.617 - How may California diesel fuel be distributed or sold outside of the State of California?

    Science.gov (United States)

    2010-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Violation... California diesel fuel redesignates it as motor vehicle diesel meeting the 15 ppm sulfur standard; and (vi) The terminal includes the volumes of California diesel fuel redesignated as motor vehicle diesel...

  9. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Science.gov (United States)

    2010-01-01

    ... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel...) that meet the requirements of 14 CFR 25.981 in effect on December 26, 2008. (1) The fuel tank is... tank exceeds a Fleet Average Flammability Exposure of 7 percent. (c) All other fuel tanks that...

  10. Volume Entropy

    CERN Document Server

    Astuti, Valerio; Rovelli, Carlo

    2016-01-01

    Building on a technical result by Brunnemann and Rideout on the spectrum of the Volume operator in Loop Quantum Gravity, we show that the dimension of the space of the quadrivalent states --with finite-volume individual nodes-- describing a region with total volume smaller than $V$, has \\emph{finite} dimension, bounded by $V \\log V$. This allows us to introduce the notion of "volume entropy": the von Neumann entropy associated to the measurement of volume.

  11. Comparison of Vibrations and Emissions of Conventional Jet Fuel with Stressed 100% SPK and Fully Formulated Synthetic Jet Fuel

    Directory of Open Access Journals (Sweden)

    Bhupendra Khandelwal

    2014-08-01

    Full Text Available The rapid growth of the aviation sector around the globe has witnessed an overwhelming impact on fossil fuel resources. With the implementation of stricter environmental laws over emissions by conventional jet fuels, growing demand for research on alternative fuels has become imperative. One-hundred percent Synthetic Paraffinic Kerosene (SPK and Fully Formulated Synthetic Jet Fuel have surfaced as viable alternatives for gas turbine engines due to their similar properties as that of Jet Fuel. This paper presents results from an experimental study performed on a small gas turbine engine, comparing emissions performance and vibrations for conventional Jet A-1 Fuel, thermally stressed 100% SPK and Fully Formulated Synthetic Jet Fuel. Different vibration frequencies, power spectra were observed for different fuels. Gaseous emissions observed were nearly the same, whereas, significant changes in particulates emissions were observed.

  12. A transient fuel cell model to simulate HTPEM fuel cell impedance spectra

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2011-01-01

    This paper presents a spatially resolved transient fuel cell model applied to the simulation of high temperature PEM fuel cell impedance spectra. The model is developed using a 2D finite volume method approach. The model is resolved along the channel and across the membrane. The model considers d...

  13. Alternate-Fueled Combustor-Sector Performance

    Science.gov (United States)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  14. Solar fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J.R.

    1978-11-17

    The paper is concerned with (1) the thermodynamic and kinetic limits for the photochemical conversion and storage of solar energy as it is received on the earth's surface, and (2) the evaluation of a number of possible photochemical reactions with particular emphasis on the production of solar hydrogen from water. Procedures for generating hydrogen fuel are considered. Topics examined include the general requirements for a fuel-generation reaction, the photochemical reaction, limits on the conversion of light energy to chemical energy, an estimate of chemical storage efficiency, and the water decomposition reaction.

  15. Iron aluminide alloy container for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, Roddie Reagan (Knoxville, TN); Singh, Prabhakar (Export, PA); Sikka, Vinod Kumar (Oak Ridge, TN)

    2000-01-01

    A container for fuel cells is made from an iron aluminide alloy. The container alloy preferably includes from about 13 to about 22 weight percent Al, from about 2 to about 8 weight percent Cr, from about 0.1 to about 4 weight percent M selected from Zr and Hf, from about 0.005 to about 0.5 weight percent B or from about 0.001 to about 1 weight percent C, and the balance Fe and incidental impurities. The iron aluminide container alloy is extremely resistant to corrosion and metal loss when exposed to dual reducing and oxidizing atmospheres at elevated temperatures. The alloy is particularly useful for containment vessels for solid oxide fuel cells, as a replacement for stainless steel alloys which are currently used.

  16. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  17. Transport fuel

    DEFF Research Database (Denmark)

    Ronsse, Frederik; Jørgensen, Henning; Schüßler, Ingmar

    2014-01-01

    Worldwide, the use of transport fuel derived from biomass increased four-fold between 2003 and 2012. Mainly based on food resources, these conventional biofuels did not achieve the expected emission savings and contributed to higher prices for food commod - ities, especially maize and oilseeds...

  18. Optimally Controlled Flexible Fuel Powertrain System

    Energy Technology Data Exchange (ETDEWEB)

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA

  19. CO{sub 2} emissions from developing countries: Better understanding the role of energy in the long term. Volume 1, Summary: Revision

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Ketoff, A.

    1991-02-01

    This study examines energy use and carbon emissions in the developing world. Based on analyses of present energy-use patterns in 17 developing nations, this study presents high emissions and low emissions scenarios for these nations in the year 2025. These nations combined account for two thirds of the energy-related carbon emissions presently generated in the developing world. The analysis reveals that energy demand expands dramatically by 2025 and grows increasingly carbon intensive. In the high emissions scenario, carbon emissions from these countries increase four-fold. The greatest share of carbon stems from the industrial sector in 2025, followed by the transport and residential sectors. With the implementation of policies aimed at reducing CO{sub 2} emissions, the low emissions scenario reduces the level of carbon in 2025 by 20 percent relative to the high emissions scenario figure. These nations achieve 80 percent of the carbon reductions by improving the efficiency of energy production and use and the remaining 20 percent by implementing fuel-switching measures. Of all the sectors examined, the industrial sector offers the greatest opportunity for absolute carbon savings (39 percent of the total). This summary is volume one of five volumes.

  20. CO{sub 2} emissions from developing countries: Better understanding the role of energy in the long term. Volume 1, Summary: Revision

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Ketoff, A.

    1991-02-01

    This study examines energy use and carbon emissions in the developing world. Based on analyses of present energy-use patterns in 17 developing nations, this study presents high emissions and low emissions scenarios for these nations in the year 2025. These nations combined account for two thirds of the energy-related carbon emissions presently generated in the developing world. The analysis reveals that energy demand expands dramatically by 2025 and grows increasingly carbon intensive. In the high emissions scenario, carbon emissions from these countries increase four-fold. The greatest share of carbon stems from the industrial sector in 2025, followed by the transport and residential sectors. With the implementation of policies aimed at reducing CO{sub 2} emissions, the low emissions scenario reduces the level of carbon in 2025 by 20 percent relative to the high emissions scenario figure. These nations achieve 80 percent of the carbon reductions by improving the efficiency of energy production and use and the remaining 20 percent by implementing fuel-switching measures. Of all the sectors examined, the industrial sector offers the greatest opportunity for absolute carbon savings (39 percent of the total). This summary is volume one of five volumes.

  1. Standardization of Alternative Fuels. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-15

    There are different interpretations of the term 'alternative fuels', depending on the part of the world in which the definition is used. In this report, alternative fuels mainly stand for fuels that can replace gasoline and diesel oil and at the same time contribute to lowered emissions with impact on health, environment and climate. The use of alternative vehicle fuels has increased during the last 30 years. However, the increase has developed slowly and today the use is very limited, compared to the use of conventional fuels. Although, the use in some special applications, often in rather small geographical areas, can be somewhat larger. The main interest for alternative fuels has for a long time been driven by supply security issues and the possibility to reduce emissions with a negative impact on health and environment. However, the development of reformulated gasoline and low sulphur diesel oil has contributed to substantially decreased emissions from these fuels without using any alternative fuel. This has reduced the environmental impact driving force for the introduction of alternative fuels. In line with the increased interest for climate effects and the connections between these effects and the emission of greenhouse gases, and then primarily carbon dioxide, the interest for biomass based alternative fuels has increased during the 1990s. Even though one of the driving forces for alternative fuels is small today, alternative fuels are more commonly accepted than ever before. The European Commission has for example in May 2003 agreed on a directive for the promotion of the use of bio fuels. In the directive there are goals for the coming 7 years that will increase the use of alternative fuels in Europe rather dramatically, from below 1 percent now up to almost 6 percent of the total vehicle fuel consumption in 2010. The increased use of alternative fuels in Europe and the rest of the world will create a need for a common interpretation of what we

  2. Effects of thermomechanical processing on tensile and long-time creep behavior of Nb-1 percent Zr-0.1 percent C sheet

    Science.gov (United States)

    Titran, Robert H.; Uz, Mehmet

    1994-01-01

    Effects of thermomechanical processing on the mechanical properties of Nb-1 wt. percent Zr-0.1 wt. percent C, a candidate alloy for use in advanced space power systems, were investigated. Sheet bars were cold rolled into 1-mm thick sheets following single, double, or triple extrusion operations at 1900 K. All the creep and tensile specimens were given a two-step heat treatment 1 hr at 1755 K + 2 hr 1475 K prior to testing. Tensile properties were determined at 300 as well as at 1350 K. Microhardness measurements were made on cold rolled, heat treated, and crept samples. Creep tests were carried out at 1350 K and 34.5 MPa for times of about 10,000 to 19,000 hr. The results show that the number of extrusions had some effects on both the microhardness and tensile properties. However, the long-time creep behavior of the samples were comparable, and all were found to have adequate properties to meet the design requirements of advanced power systems regardless of thermomechanical history. The results are discussed in correlation with processing and microstructure, and further compared to the results obtained from the testing of Nb-1 wt. percent Zr and Nb-1 wt. percent Zr-0.06 wt. percent C alloys.

  3. Overview of the International R&D Recycling Activities of the Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Paviet-Hartmann

    2012-10-01

    Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK

  4. CRED Cumulative Map of Percent Scleractinian Coral Cover at Lisianski Island, 2001-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  5. CRED Cumulative Map of Percent Scleractinian Coral Cover at Midway Atoll, 2002-04

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  6. CRED Cumulative Map of Percent Scleractinian Coral Cover at St. Rogatien West, 2001

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  7. CRED Cumulative Map of Percent Scleractinian Coral Cover at Niihau, 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  8. CRED Cumulative Map of Percent Scleractinian Coral Cover at Guam, 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  9. CRED Cumulative Map of Percent Scleractinian Coral Cover at French Frigate Shoals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  10. CRED Cumulative Map of Percent Scleractinian Coral Cover at Supply Reef

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  11. CRED Cumulative Map of Percent Scleractinian Coral Cover at Stingray Shoals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  12. CRED Cumulative Map of Percent Scleractinian Coral Cover at Esmerelda Bank

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  13. CRED Cumulative Map of Percent Scleractinian Coral Cover at Santa Rosa Reef

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  14. CRED Cumulative Map of Percent Scleractinian Coral Cover at Necker Island, 2002-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  15. CRED Cumulative Map of Percent Scleractinian Coral Cover at Palmyra Atoll, 2002-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  16. CRED Cumulative Map of Percent Scleractinian Coral Cover at Maro Reef, 2001-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  17. CRED Cumulative Map of Percent Scleractinian Coral Cover at Ta'u

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  18. CRED Cumulative Map of Percent Scleractinian Coral Cover at Ofu & Olosega

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  19. CRED Cumulative Map of Percent Scleractinian Coral Cover at Molokai, 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  20. CRED Cumulative Map of Percent Scleractinian Coral Cover at Pearl and Hermes Atoll, 2002-2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  1. CRED Cumulative Map of Percent Scleractinian Coral Cover at Raita Bank, 2001

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  2. CRED Cumulative Map of Percent Scleractinian Coral Cover at Johnston Atoll, 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  3. CRED Cumulative Map of Percent Scleractinian Coral Cover at Farallon de Pajaros (Uracas)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  4. CRED Cumulative Map of Percent Scleractinian Coral Cover at Kauai, 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry.

  5. PFR fuel cladding transient test results and analysis

    Science.gov (United States)

    Cannon, N. S.; Hunter, C. W.; Kear, K. L.; Wood, M. H.

    1986-05-01

    Fuel Cladding Transient Tests (FCTT) were performed on M316 cladding specimens obtained from mixed-oxide fuel pins irradiated in the Prototype Fast Reactor (PFR) to burnups of 4 and 9 atom percent. In these tests, specimens of fuel cladding were pressurized and heated until failure occurred. Samples of cladding from PFR fuel pins exhibited generally greater strength and ductility than specimens from Experimental Breeder Reactor-II (EBR-II) mixed-oxide fuel pins tested under similar conditions. Apparently, the PFR cladding properties were not degraded by a fuel adjacency effect (FAE) observed in fuel pin cladding from EBR-II irradiations. A recently developed model of grain boundary cavity growth was used to predict the results of the tests conducted on PFR cladding. It was found that the predicted failure temperatures for the relevant internal pressures were in good agreement with experimental failure temperatures.

  6. Reducing Fuel Volatility. An Additional Benefit From Blending Bio-fuels?

    Energy Technology Data Exchange (ETDEWEB)

    Bailis, R. [Yale School of Forestry and Environmental Studies, 195 Prospect Street, New Haven, CT 06511 (United States); Koebl, B.S. [Utrecht University, Science Technology and Society, Budapestlaan 6, 3584 CD Utrecht (Netherlands); Sanders, M. [Utrecht University, Utrecht School of Economics, Janskerkhof 12, 3512 BL Utrecht (Netherlands)

    2011-02-15

    Oil price volatility harms economic growth. Diversifying into different fuel types can mitigate this effect by reducing volatility in fuel prices. Producing bio-fuels may thus have additional benefits in terms of avoided damage to macro-economic growth. In this study we investigate trends and patterns in the determinants of a volatility gain in order to provide an estimate of the tendency and the size of the volatility gain in the future. The accumulated avoided loss from blending gasoline with 20 percent ethanol-fuel estimated for the US economy amounts to 795 bn. USD between 2010 and 2019 with growing tendency. An amount that should be considered in cost-benefit analysis of bio-fuels.

  7. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  8. Fuel control system for dual fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, M.J.; Ryan, W.P.; Marvin, D.H.

    1987-11-24

    A fuel governing system for an engine adapted for operation on a first fuel and a second fuel is described comprising: a first fuel governing system including a spontaneous motion metering means; and a second fuel governing system, the second fuel governing system further comprising: means for providing a first signal indicative of position of the first fuel metering means, which signal approximates total load on the engine, means for providing a second signal of the selected percentage of first fuel relative to total load, means for controlling flow of the second fuel to the engine, which flow causes reflective displacement of the first fuel metering means, means for determining the difference between the first signal and the second signal, which difference is indicative of distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load, and means for causing operation of the means for controlling flow of the second fuel to the engine to cause displacement of the first fuel metering means equal to the distance the first fuel metering means must be moved to attain the selected percentage of first fuel relative to total load.

  9. Characteristics of potential repository wastes. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The LWR spent fuels discussed in Volume 1 of this report comprise about 99% of all domestic non-reprocessed spent fuel. In this report we discuss other types of spent fuels which, although small in relative quantity, consist of a number of diverse types, sizes, and compositions. Many of these fuels are candidates for repository disposal. Some non-LWR spent fuels are currently reprocessed or are scheduled for reprocessing in DOE facilities at the Savannah River Site, Hanford Site, and the Idaho National Engineering Laboratory. It appears likely that the reprocessing of fuels that have been reprocessed in the past will continue and that the resulting high-level wastes will become part of defense HLW. However, it is not entirely clear in some cases whether a given fuel will be reprocessed, especially in cases where pretreatment may be needed before reprocessing, or where the enrichment is not high enough to make reprocessing attractive. Some fuels may be canistered, while others may require special means of disposal. The major categories covered in this chapter include HTGR spent fuel from the Fort St. Vrain and Peach Bottom-1 reactors, research and test reactor fuels, and miscellaneous fuels, and wastes generated from the decommissioning of facilities.

  10. The influence of high-octane fuel blends on the performance of a two-stroke SI engine with knock-limited-compression ratio

    Science.gov (United States)

    Poola, Ramesh B.; Bhasker, T.; Nagalingam, B.; Gopalakrishnan, K. V.

    The use of alcohol-gasoline blends enables the favorable features of alcohols to be utilized in spark ignition (SI) engines while avoiding the shortcomings of their application as straight fuels. Eucalyptus and orange oils possess high octane values and are also good potential alternative fuels for SI engines. The high octane value of these fuels can enhance the octane value of the fuel when it is blended with low-octane gasoline. In the present work, 20 percent by volume of orange oil, eucalyptus oil, methanol and ethanol were blended separately with gasoline, and the performance, combustion and exhaust emission characteristics were evaluated at two different compression ratios. The phase separation problems arising from the alcohol-gasoline blends were minimized by adding eucalyptus oil as a cosolvent. Test results indicate that the compression ratio can be raised from 7.4 to 9 without any detrimental effect, due to the higher octane rating of the fuel blends. Knock-limited maximum brake output also increases due to extension of the knock limit. The knock limit is extended by methanol-eucalyptus-ethanol-orange oil blends, in descending order.

  11. Regenerative fuel cell energy storage system for a low earth orbit space station

    Science.gov (United States)

    Martin, R. E.; Garow, J.; Michaels, K. B.

    1988-01-01

    A study was conducted to define characteristics of a Regenerative Fuel Cell System (RFCS) for low earth orbit Space Station missions. The RFCS's were defined and characterized based on both an alkaline electrolyte fuel cell integrated with an alkaline electrolyte water electrolyzer and an alkaline electrolyte fuel cell integrated with an acid solid polymer electrolyte (SPE) water electrolyzer. The study defined the operating characteristics of the systems including system weight, volume, and efficiency. A maintenance philosophy was defined and the implications of system reliability requirements and modularization were determined. Finally, an Engineering Model System was defined and a program to develop and demonstrate the EMS and pacing technology items that should be developed in parallel with the EMS were identified. The specific weight of an optimized RFCS operating at 140 F was defined as a function of system efficiency for a range of module sizes. An EMS operating at a nominal temperature of 180 F and capable of delivery of 10 kW at an overall efficiency of 55.4 percent is described. A program to develop the EMS is described including a technology development effort for pacing technology items.

  12. Does Ending Affirmative Action in College Admissions Lower the Percent of Minority Students Applying to College?

    Science.gov (United States)

    Dickson, Lisa M.

    2006-01-01

    The purpose of this study is to determine how ending affirmative action in public colleges in Texas affected the percent of minority high school graduates applying to college. I find the end of affirmative action significantly lowered the percent of Hispanic students applying to college by 1.6 percentage points and significantly lowered the…

  13. Effect of Physical Activity on BMI and Percent Body Fat of Chinese Girls.

    Science.gov (United States)

    Fu, Frank H.; And Others

    1995-01-01

    This study investigated the effect of regular physical activity on body mass index (BMI) and percent body fat of Chinese girls grouped by age and physical activity patterns. Measurements of skinfold, height, and weight, and BMI calculations, found differences in BMI and percent body fat between active and inactive girls. (SM)

  14. CO tolerance of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gubler, L.; Scherer, G.G.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Reformed methanol can be used as a fuel for polymer electrolyte fuel cells instead of pure hydrogen. The reformate gas contains mainly H{sub 2}, CO{sub 2} in the order of 20% and low levels of CO in the order of 100 ppm. CO causes severe voltage losses due to poisoning of the anode catalyst. The effect of CO on cell performance was investigated at different CO levels up to 100 ppm. Various options to improve the CO tolerance of the fuel cell were assessed thereafter, of which the injection of a few percents of oxygen into the fuel feed stream proved to be most effective. By mixing 1% of oxygen with hydrogen containing 100 ppm CO, complete recovery of the cell performance could be attained. (author) 2 figs., 2 tabs., 3 refs.

  15. Fuel oil and kerosene sales 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-29

    This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  16. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  17. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  18. 10 CFR 490.707 - Increasing the qualifying volume of the biodiesel component.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Increasing the qualifying volume of the biodiesel... TRANSPORTATION PROGRAM Biodiesel Fuel Use Credit § 490.707 Increasing the qualifying volume of the biodiesel component. DOE may increase the qualifying volume of the biodiesel component of fuel for purposes...

  19. Ceramic Microchannel Development for Compact Fuel Processors of Hydrocarbon Fuels

    Science.gov (United States)

    Bae, J.-M.; Ahmed, S.; Kumar, R.; Doss, E.

    Fuel processing is a bridging technology for faster commercialization of fuel cell system under lack of hydrogen infrastructures. Argonne national laboratory has been developing fuel processing technologies for fuel cell based electric power. We have reported the development of novel catalysts that are active and selective for hydrocarbon reforming reactions. It has been realized, however, that with pellet or conventional honeycomb catalysts, the reforming process is mass transport limited. This paper reports the development of catalyst structures with microchannels that are able to reduce the diffusion resistance and thereby achieve the same production rate within a smaller reactor bed. These microchannel reforming catalysts were prepared and tested with natural gas and gasoline-type fuels in a microreactor (1-cm dia.) at space velocities of up to 250,000 per hour. These catalysts have also been used in engineering-scale reactors (10 kWe, 7-cm dia.) with similar product qualities. Compared to pellet catalysts, the microchannel catalysts enable a nearly 5-fold reduction in catalyst weight and volume.

  20. Aviation fuels outlook

    Science.gov (United States)

    Momenthy, A. M.

    1980-01-01

    Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.

  1. The Northeast heating fuel market: Assessment and options

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  2. Fabrication and Installation of Radiation Shielded Spent Fuel Fusion System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon Dal; Park, Yang Soon; Kim, Jong Goo; Ha, Yeong Keong; Song, Kyu Seok

    2010-02-15

    Most of the generated fission gases are retained in the fuel matrix in supersaturated state, thus alter the original physicochemical properties of the fuel. And some of them are released into free volume of a fuel rod and that cause internal pressure increase of a fuel rod. Furthermore, as extending fuel burnup, the data on fission gas generation(FGG) and fission gas release(FGR) are considered very important for fuel safety investigation. Consequently, it is required to establish an experimental facility for handling of highly radioactive sample and to develop an analytical technology for measurement of retained fission gas in a spent fuel. This report describes not only on the construction of a shielded glove box which can handle highly radioactive materials but also on the modifications and instrumentations of spent fuel fusion facilities and collection apparatuses of retained fission gas

  3. Stationary Liquid Fuel Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Grandy, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Boroski, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, Lubomir [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, Terry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    container is penetrated by twelve hexagonal control assembly (CA) guide tubes, each of which has 3.0 mm thickness and 69.4 mm flat-to-flat outer distance. The distance between two neighboring CA guide tube is selected to be 26 cm to provide an adequate space for CA driving systems. The fuel container has 18181 penetrating coolant tubes of 6.0 mm inner diameter and 2.0 mm thickness. The coolant tubes are arranged in a triangular lattice with a lattice pitch of 1.21 cm. The fuel, structure, and coolant volume fractions inside the fuel container are 0.386, 0.383, and 0.231, respectively. Separate steel reflectors and B4C shields are used outside of the fuel container. Six gas expansion modules (GEMs) of 5.0 cm thickness are introduced in the radial reflector region. Between the radial reflector and the fuel container is a 2.5 cm sodium gap. The TRU inventory at the beginning of equilibrium cycle (BOEC) is 5081 kg, whereas the TRU inventory at the beginning of life (BOL) was 3541 kg. This is because the equilibrium cycle fuel contains a significantly smaller fissile fraction than the LWR TRU feed. The fuel inventory at BOEC is composed of 34.0 a/o TRU, 41.4 a/o Ce, 23.6 a/o Co, and 1.03 a/o solid fission products. Since uranium-free fuel is used, a theoretical maximum TRU consumption rate of 1.011 kg/day is achieved. The semi-continuous fuel cycle based on the 300-batch, 1- day cycle approximation yields a burnup reactivity loss of 26 pcm/day, and requires a daily reprocessing of 32.5 kg of SLFFR fuel. This yields a daily TRU charge rate of 17.45 kg, including a makeup TRU feed of 1.011 kg recovered from the LWR used fuel. The charged TRU-Ce-Co fuel is composed of 34.4 a/o TRU, 40.6 a/o Ce, and 25.0 a/o Co.

  4. Single-cell concepts for obtaining photovoltaic conversion efficiency over 30 percent

    Science.gov (United States)

    Fan, John C. C.

    1985-01-01

    Although solar photovoltaic conversion efficiencies over 30 percent (one sun, AM1) can be expected for multiple-cell configurations using spectral splitting techniques, the highest practical single-cell conversion efficiency that can be attained using present concepts is estimated to be about 27-28 percent. To achieve conversion efficiencies above 30 percent using single-cell configurations it will be necessary to employ different concepts, such as spectral compression and broad-band detection. The implementation of these concepts would require major breakthroughs that are not anticipated in the near future.

  5. Development and optimization of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Davila, D.; Vigues, N.; Sanchez, O.; Garrido, L.; Tomas, N.; Mas, J. [Univ. Autonoma de Barcelona, Barcelona (Spain). Dept. de Genetica y Microbiologia; Esquivel, J.P.; Sabate, N.; Del Campo, F.J.; Munoz, F.J. [Inst. de Microelectronica de Barcelona-CNM (CSIC), Barcelona (Spain)

    2008-04-15

    While global energy demand increases daily, fossil fuel sources are being depleted at an unsustainable pace. Fuel cells represent a solution as they are more efficient than other energy sources. A microbial fuel cell is an electrochemical device capable of continuously converting chemical energy into electrical energy for as long as adequate fuel and oxidant are available. A microbial fuel cell (MFC) adds the benefit of converting chemical energy from organic compounds, such as simple carbohydrates or organic waste matter, into electricity by using bacteria as biocatalysts. This article described the effect of several parameters that affect the operation of a microbial fuel cell (MFC). The study is based on a methodology utilized in previous studies which employed escherichia coli as biocatalyst and neutral red as the electron mediator in a mediated electron transfer (MET) microbial fuel cell. The study analysed the influence of the bacterial concentration, the effective area of electrode and the volume of the cell. It was concluded that there is a proportional energy production to the bacterial concentration present in the anode compartment. It was demonstrated that an increase in the volume of the cell negatively affects the power produced by the cells. 8 refs., 1 tab., 5 figs.

  6. Prices Up and Volumes Stable

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    2011 First Half China Garment Industry Report Exports Grew at a Slower Pace China Customs reported the garment & accessories export value of $51.286 billion for the first five months of this year, up 23.12% y/y, accounting for 56.28 percent of the total, 5% lower than the previous year’s points.Despite sales prices increase, sales volume remain stable. From Jan. to May

  7. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 7: Nonreplenishable natural resources: Minerals, fossil fuels and geothermal energy sources

    Science.gov (United States)

    Lietzke, K. R.

    1974-01-01

    The application of remotely-sensed information to the mineral, fossil fuel, and geothermal energy extraction industry is investigated. Public and private cost savings are documented in geologic mapping activities. Benefits and capabilities accruing to the ERS system are assessed. It is shown that remote sensing aids in resource extraction, as well as the monitoring of several dynamic phenomena, including disturbed lands, reclamation, erosion, glaciation, and volcanic and seismic activity.

  8. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  9. Advanced research reactor fuel development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Kyu; Pak, H. D.; Kim, K. H. [and others

    2000-05-01

    The fabrication technology of the U{sub 3}Si fuel dispersed in aluminum for the localization of HANARO driver fuel has been launches. The increase of production yield of LEU metal, the establishment of measurement method of homogeneity, and electron beam welding process were performed. Irradiation test under normal operation condition, had been carried out and any clues of the fuel assembly breakdown was not detected. The 2nd test fuel assembly has been irradiated at HANARO reactor since 17th June 1999. The quality assurance system has been re-established and the eddy current test technique has been developed. The irradiation test for U{sub 3}Si{sub 2} dispersed fuels at HANARO reactor has been carried out in order to compare the in-pile performance of between the two types of U{sub 3}Si{sub 2} fuels, prepared by both the atomization and comminution processes. KAERI has also conducted all safety-related works such as the design and the fabrication of irradiation rig, the analysis of irradiation behavior, thermal hydraulic characteristics, stress analysis for irradiation rig, and thermal analysis fuel plate, for the mini-plate prepared by international research cooperation being irradiated safely at HANARO. Pressure drop test, vibration test and endurance test were performed. The characterization on powders of U-(5.4 {approx} 10 wt%) Mo alloy depending on Mo content prepared by rotating disk centrifugal atomization process was carried out in order to investigate the phase stability of the atomized U-Mo alloy system. The {gamma}-U phase stability and the thermal compatibility of atomized U-16at.%Mo and U-14at.%Mo-2at.%X(: Ru, Os) dispersion fuel meats at an elevated temperature have been investigated. The volume increases of U-Mo compatibility specimens were almost the same as or smaller than those of U{sub 3}Si{sub 2}. However the atomized alloy fuel exhibited a better irradiation performance than the comminuted alloy. The RERTR-3 irradiation test of nano

  10. EnviroAtlas - Woodbine, IA - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  11. EnviroAtlas - New Bedford, MA - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  12. EnviroAtlas - Durham, NC - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  13. EnviroAtlas - Austin, TX - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  14. EnviroAtlas - Fresno, CA - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  15. EnviroAtlas - Paterson, NJ - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  16. EnviroAtlas - Portland, OR - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  17. EnviroAtlas - Memphis, TN - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  18. EnviroAtlas - Tampa, FL - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  19. EnviroAtlas - Milwaukee, WI - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  20. 20 percent lower lung cancer mortality with low-dose CT vs chest X-ray

    Science.gov (United States)

    Scientists have found a 20 percent reduction in deaths from lung cancer among current or former heavy smokers who were screened with low-dose helical computed tomography (CT) versus those screened by chest X-ray.

  1. EnviroAtlas - Cleveland, OH - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  2. EnviroAtlas - Green Bay, WI - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  3. EnviroAtlas Estimated Percent Tree Cover Along Walkable Roads Web Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  4. Map of percent scleractinian coral cover and sand along camera tow tracks in west Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral and sand overlaid on bathymetry and landsat imagery northwest...

  5. Map of percent scleractinian coral cover along camera tow tracks in west Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This map displays optical validation observation locations and percent coverage of scleractinian coral overlaid on bathymetry and landsat imagery northwest of...

  6. EnviroAtlas - New York, NY - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  7. EnviroAtlas - Minneapolis/St. Paul, MN - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  8. Stellwagen Bank bathymetry - Percent slope derived from 5-meter bathymetric contour lines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Percent slope of Stellwagen Bank bathymetry. Raster derived from 5-meter bathymetric contour lines (Quads 1-18). Collected on surveys carried out in 4 cruises 1994 -...

  9. EnviroAtlas - Pittsburgh, PA - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  10. Riparian vegetation abundance (percent cover) in the Elwha River estuary, Washington, in 2007 and 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This portion of the data release presents riparian plant species abundance (percent cover) data from plots sampled in the Elwha River estuary, Washington, in 2007...

  11. EnviroAtlas - Phoenix, AZ - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  12. EnviroAtlas - Des Moines, IA - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  13. EnviroAtlas - Portland, ME - Estimated Percent Tree Cover Along Walkable Roads

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates tree cover along walkable roads. The road width is estimated for each road and percent tree cover is calculated in a 8.5 meter...

  14. THE CLINICAL SIGNIFICANCE OF PERCENT FREE PSA IN DIFFERENTIATING PROSTATE CANCER AND BENIGN PROSTATE HYPERPLASIA

    Institute of Scientific and Technical Information of China (English)

    王子明; 张鹏; 种铁; 赵丽华

    2004-01-01

    Objective To evaluate using prostate specific antigen (PSA) and percent free PSA(fPSA) for the diagnosis of prostate cancer(Pca) and benign prostate hyperplasia(BPH). Methods 315 men with BPH and 55 men with Pca were randomly chosen, serum fPSA and total PSA were determined by ELISA and then we compared the sensitivity and specificity of PSA and percent fPSA for the diagnosis of Pca. Results While using PSA and percent fPSA for the diagnosis of prostate cancer, the sensitivity was similar (89.8% vs. 94.5%, P>0.05), but the specificity was significanty different (52.7% vs. 89.8%, P<0.005). Conclusions Using percent fPSA might decrease false-positive and avoid 37.1% negative biopsies as compared with PSA, it is very valuable for the diagnosis of Pca.

  15. EnviroAtlas - Percent Urban Land Cover by 12-Digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset estimates the percent urban land for each 12-digit hydrologic unit code (HUC) in the conterminous United States. For the purposes of this...

  16. Fuel processors for fuel cell APU applications

    Science.gov (United States)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  17. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  18. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL) Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  19. Fuel cells: A survey

    Science.gov (United States)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  20. Nuclear rocket using indigenous Martian fuel NIMF

    Science.gov (United States)

    Zubrin, Robert

    1991-01-01

    In the 1960's, Nuclear Thermal Rocket (NTR) engines were developed and ground tested capable of yielding isp of up to 900 s at thrusts up to 250 klb. Numerous trade studies have shown that such traditional hydrogen fueled NTR engines can reduce the inertial mass low earth orbit (IMLEO) of lunar missions by 35 percent and Mars missions by 50 to 65 percent. The same personnel and facilities used to revive the hydrogen NTR can also be used to develop NTR engines capable of using indigenous Martian volatiles as propellant. By putting this capacity of the NTR to work in a Mars descent/acent vehicle, the Nuclear rocket using Indigenous Martian Fuel (NIMF) can greatly reduce the IMLEO of a manned Mars mission, while giving the mission unlimited planetwide mobility.

  1. Effects of Fuel Quantity on Soot Formation Process for Biomass-Based Renewable Diesel Fuel Combustion

    KAUST Repository

    Jing, Wei

    2016-12-01

    Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement was implemented by two-color pyrometry under quiescent type diesel engine conditions (1000 K and 21% O2 concentration). Different fuel quantities, which correspond to different injection widths from 0.5 ms to 2 ms under constant injection pressure (1000 bar), were used to simulate different loads in engines. For a given fuel, soot temperature and KL factor show a different trend at initial stage for different fuel quantities, where a higher soot temperature can be found in a small fuel quantity case but a higher KL factor is observed in a large fuel quantity case generally. Another difference occurs at the end of combustion due to the termination of fuel injection. Additionally, BTL flame has a lower soot temperature, especially under a larger fuel quantity (2 ms injection width). Meanwhile, average soot level is lower for BTL flame, especially under a lower fuel quantity (0.5 ms injection width). BTL shows an overall low sooting behavior with low soot temperature compared to diesel, however, trade-off between soot level and soot temperature needs to be carefully selected when different loads are used.

  2. Radiographic inspection and densitometric evaluation of CP-5 reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Staroba, J. F.; Knoerzer, T. W.

    1978-02-01

    This report covers the radiographic and densitometric techniques used as part of a quality verification program for CP-5 reactor fuel by the Nondestructive Assay Section of the Special Materials Division. Other nondestructive tests used were ultrasonic and gamma-ray spectrometry. The main objectives were to perform a one-hundred percent radiographic inspection of the fuel tubes and to derive a quantitative relationship between fuel thickness and film density with the use of fabricated fuel step wedges. By the use of tangential x-ray techniques, measurements were made of fuel peaks or ''hot spots'' that protruded above the main fuel line. Other general problems in radiographic inspection and solutions for the upgrading of the total radiographic inspection program are also discussed.

  3. Progress on coal-derived fuels for aviation systems

    Science.gov (United States)

    Witcofski, R. D.

    1978-01-01

    Synthetic aviation kerosene (Syn. Jet-A), liquid methane (LCH4), and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Liquid hydrogen aircraft configurations, their fuel systems, and their ground requirements at the airport are identified. These aircraft appear viable, particularly for long haul use, where aircraft fueled with coal derived LH2 would consume 9 percent less coal resources than would aircraft fueled with coal derived Syn. Jet-A. Distribution of hydrogen from the point of manufacture to airports may pose problems. Synthetic JET-A would appear to cause fewer concerns to the air transportation industry. Of the three candidate fuels, LCH4 is the most energy efficient to produce, and an aircraft fueled with coal derived LCH4 may provide both the most efficient utilization of coal resources and the least expensive ticket as well.

  4. Sinopec's Net Profit Slumps 35.04 Percent in Q1

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Sinopec Corp., Asia's largest oil refiner, announced that its net profit slumped 35.04 percent year on year to 13.41 billion yuan (US$2.13 billion) in the first quarter amid rising operation costs and diminishing profit margins. Business earnings during the period dropped 28.99 percent year on year to 21.81 billion yuan, the company said in its quarterly report filed with the Shanghai Stock Exchange.

  5. WHK Student Internship Enrollment, Mentor Participation Up More than 50 Percent | Poster

    Science.gov (United States)

    By Nancy Parrish, Staff Writer The Werner H. Kirsten Student Internship Program (WHK SIP) has enrolled the largest class ever for the 2013–2014 academic year, with 66 students and 50 mentors. This enrollment reflects a 53 percent increase in students and a 56 percent increase in mentors, compared to 2012–2013 (43 students and 32 mentors), according to Julie Hartman, WHK SIP director.

  6. Evaluation of a staged fuel combustor for turboprop engines

    Science.gov (United States)

    Verdouw, A. J.

    1976-01-01

    Proposed EPA emission regulations require emission reduction by 1979 for various gas turbine engine classes. Extensive combustion technology advancements are required to meet the proposed regulations. The T56 turboprop engine requires CO, UHC, and smoke reduction. A staged fuel combustor design was tested on a combustion rig to evaluate emission reduction potential in turboprop engines from fuel zoning. The can-type combustor has separately fueled-pilot and main combustion zones in series. The main zone fueling system was arranged for potential incorporation into the T56 with minor or no modifications to the basic engine. Three combustor variable geometry systems were incorporated to evaluate various airflow distributions. Emission results with fixed geometry operation met all proposed EPA regulations over the EPA LTO cycle. CO reduction was 82 percent, UHC reduction was 96 percent, and smoke reduction was 84 percent. NOx increased 14 percent over the LTO cycle. At high power, NOx reduction was 40 to 55 percent. This NOx reduction has potential application to stationary gas turbine powerplants which have different EPA regulations.

  7. Final report of fuel dynamics Test E7

    Energy Technology Data Exchange (ETDEWEB)

    Doerner, R.C.; Murphy, W.F.; Stanford, G.S.; Froehle, P.H.

    1977-04-01

    Test data from an in-pile failure experiment of high-power LMFBR-type fuel pins in a simulated $3/s transient-overpower (TOP) accident are reported and analyzed. Major conclusions are that (1) a series of cladding ruptures during the 100-ms period preceding fuel release injected small bursts of fission gas into the flow stream; (2) gas release influenced subsequent cladding melting and fuel release (there were no measurable FCI's (fuel-coolant interactions), and all fuel motion observed by the hodoscope was very slow); (3) the predominant postfailure fuel motion appears to be radial swelling that left a spongy fuel crust on the holder wall; (4) less than 4 to 6 percent of the fuel moved axially out of the original fuel zone, and most of this froze within a 10-cm region above the original top of the fuel zone to form the outlet blockage. An inlet blockage approximately 1 cm long was formed and consisted of large interconnected void regions. Both blockages began just beyond the ends of the fuel pellets.

  8. Future aviation fuels overview

    Science.gov (United States)

    Reck, G. M.

    1980-01-01

    The outlook for aviation fuels through the turn of the century is briefly discussed and the general objectives of the NASA Lewis Alternative Aviation Fuels Research Project are outlined. The NASA program involves the evaluation of potential characteristics of future jet aircraft fuels, the determination of the effects of those fuels on engine and fuel system components, and the development of a component technology to use those fuels.

  9. Impact of fuel composition on emissions and performance of GTL kerosene blends in a Cessna Citation II

    NARCIS (Netherlands)

    Snijders, T.A.; Melkert, J.A.; Bogers, P.F.; Bauldreay, J...; Wahl, C.R.M.; Kapernaum, M.G.

    2011-01-01

    International jet fuel specifications permit up to 50% volume Fischer-Tropsch synthetic paraffinic kerosines (FT-SPKs), such as Gas-to-Liquids (GTL) Kerosine, in Jet A-1. Higher SPK-content fuels could, however, produce desirable fuels: lower density, higher SPK-content fuels may have benefits for

  10. Impact of fuel composition on emissions and performance of GTL kerosene blends in a Cessna Citation II

    NARCIS (Netherlands)

    Snijders, T.A.; Melkert, J.A.; Bogers, P.F.; Bauldreay, J...; Wahl, C.R.M.; Kapernaum, M.G.

    2011-01-01

    International jet fuel specifications permit up to 50% volume Fischer-Tropsch synthetic paraffinic kerosines (FT-SPKs), such as Gas-to-Liquids (GTL) Kerosine, in Jet A-1. Higher SPK-content fuels could, however, produce desirable fuels: lower density, higher SPK-content fuels may have benefits for P

  11. Future technology fuel cells; Zukunftstechnologie Brennstoffzelle. Themen 1999/2000

    Energy Technology Data Exchange (ETDEWEB)

    Hertlein, H.P. (comp.)

    2000-02-01

    The proceedings volume contains 14 papers and presents a survey of the state of the art of fuel cell developments. [German] Dieser Band gibt in 14 Beitraegen einen Ueberblick ueber den Stand der Entwicklung der Brennstoffzellen.

  12. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  13. Versatile Affordable Advanced Fuels and Combustion Technologies

    Science.gov (United States)

    2010-11-01

    the outer surface of the sooting flame , is ‘‘nearly attached” at the outer rim of the centerbody. The blue flame results from chemiluminescence of...images in the (b) fig- ures. Very good agreement is obtained when the observed yellow sooting flame surface in Fig. 2a is compared with the computed...2. (a) Photograph of fully sooting flame , (b) computed temperature (left) and fuel volume fraction (right); and (c) relative soot volume (left) and

  14. Medium-speed diesel engineers: part I-design trends and the use of residual/blended fuels

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, F.J.; Ahluwalia, J.S.; Shamah, E.

    1984-10-01

    Fuel costs can exceed 50 percent of the total diesel plant's operational expenditures. To reduce fuel costs, medium-speed engines are now available with improved fuel consumption and ability to burn residual fuels. Part I of this paper reviews these engine and design changes needed for both improved fuel consumption and the ability to burn poorer quality fuels. Characteristics of these fuels and international fuel specifications are discussed. Ignition quality of residual fuels by a modified ASTM D 613 procedure are presented and correlation shown to calculated diesel index and calculated carbon aromaticity index (CCAI). Residual fuel ignition delay effects on combustion pressure rise, fuel consumption, and piston temperature in a laboratory single-cylinder diesel engine are shown.

  15. The study on injection parameters of selected alternative fuels used in diesel engines

    Science.gov (United States)

    Balawender, K.; Kuszewski, H.; Lejda, K.; Lew, K.

    2016-09-01

    The paper presents selected results concerning fuel charging and spraying process for selected alternative fuels, including regular diesel fuel, rape oil, FAME, blends of these fuels in various proportions, and blends of rape oil with diesel fuel. Examination of the process included the fuel charge measurements. To this end, a set-up for examination of Common Rail-type injection systems was used constructed on the basis of Bosch EPS-815 test bench, from which the high-pressure pump drive system was adopted. For tests concerning the spraying process, a visualisation chamber with constant volume was utilised. The fuel spray development was registered with the use of VisioScope (AVL).

  16. A carbon-13 and proton nuclear magnetic resonance study of some experimental referee broadened-specification /ERBS/ turbine fuels

    Science.gov (United States)

    Dalling, D. K.; Pugmire, R. J.

    1982-01-01

    Preliminary results of a nuclear magnetic resonance (NMR) spectroscopy study of alternative jet fuels are presented. A referee broadened-specification (ERBS) aviation turbine fuel, a mixture of 65 percent traditional kerosene with 35 percent hydrotreated catalytic gas oil (HCGO) containing 12.8 percent hydrogen, and fuels of lower hydrogen content created by blending the latter with a mixture of HCGO and xylene bottoms were studied. The various samples were examined by carbon-13 and proton NMR at high field strength, and the resulting spectra are shown. In the proton spectrum of the 12.8 percent hydrogen fuel, no prominent single species is seen while for the blending stock, many individual lines are apparent. The ERBS fuels were fractionated by high-performance liquid chromatography and the resulting fractions analyzed by NMR. The species found are identified.

  17. A transient model to simulate HTPEM fuel cell impedance spectra

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2012-01-01

    This paper presents a spatially resolved transient fuel cell model applied to the simulation of high temperature PEM fuel cell impedance spectra. The model is developed using a 2D finite volume method approach. The model is resolved along the channel and across the membrane. The model considers...

  18. Thin-Layer Fuel Cell for Teaching and Classroom Demonstrations

    Science.gov (United States)

    Shirkhanzadeh, M.

    2009-01-01

    A thin-layer fuel cell is described that is simple and easy to set up and is particularly useful for teaching and classroom demonstrations. The cell is both an electrolyzer and a fuel cell and operates using a thin layer of electrolyte with a thickness of approximately 127 micrometers and a volume of approximately 40 microliters. As an…

  19. Fuel element concept for long life high power nuclear reactors

    Science.gov (United States)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  20. Bubble Effect in Heterogeneous Nuclear Fuel Solution System

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Xiao-ping; LUO; Huang-da; ZHANG; Wei; ZHU; Qing-fu

    2013-01-01

    Bubble effect means system reactivity changes due to the bubble induced solution volume,neutron leakage and absorption properties,neutron energy spectrum change in the nuclear fuel solution system.In the spent fuel dissolver,during uranium element shearing,the oxygen will be inlet to accelerate the

  1. Production of jet fuel from alternative source

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Zoltan; Papp, Anita; Hancsok, Jenoe [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon and Coal Processing

    2013-06-01

    Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Furthermore, the quality requirements have become more aggravated for jet fuels. Nowadays reduced aromatic hydrocarbon fractions are necessary for the production of jet fuels with good burning properties, which contribute to less harmful material emission. In the recent past the properties of gasolines and diesel gas oils were continuously severed, and the properties of jet fuels will be more severe, too. Furthermore, it can become obligatory to blend alternative components into jet fuels. With the aromatic content reduction there is a possibility to produce high energy content jet fuels with the desirable properties. One of the possibilities is the blending of biocomponents from catalytic hydrogenation of triglycerides. Our aim was to study the possibilities of producing low sulphur and aromatic content jet fuels in a catalytic way. On a CoMo/Al{sub 2}O{sub 3} catalyst we studied the possibilities of quality improving of a kerosene fraction and coconut oil mixture depending on the change of the process parameters (temperature, pressure, liquid hourly space velocity, volume ratio). Based on the quality parameters of the liquid products we found that we made from the feedstock in the adequate technological conditions products which have a high smoke point (> 35 mm) and which have reduced aromatic content and high paraffin content (90%), so these are excellent jet fuels, and their stack gases damage the environment less. (orig.)

  2. Micro solid oxide fuel cell at ARC

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, P.; Rho, H. [Alberta Research Council, Edmonton, AB (Canada)

    2003-07-01

    A fuel cell generates electricity by electrochemically converting chemical energy to electrical energy. The basic components of a fuel cell are the electrolyte, anode, cathode and current collectors. The Alberta Research Council has developed a design and manufacturing process for a high volumetric density Micro Solid Oxide Tubular fuel cell with a diameter of less than 5 mm. The advantage of this newly developed fuel cell is that the power per unit volume is increased significantly because the power of a fuel cell is directly proportional to the electrolyte surface area. The fuel cell also has quick start up. Calculations show that a decrease in tube diameter from 22 mm to 2 mm will increase the electrolyte surface area in a stack by approximately 8 times. The thin wall of the Micro Solid Oxide Fuel Cell has a very high thermal shock resistance and low thermal mass. These are 2 basic characteristics needed to reduce start up and turn off time for the solid oxide fuel cell system (SOFC). The added advantage of high volumetric power is that smaller devices can be fabricated for portable applications. Samples were manufactured using a sequential electrophoretic deposition (EPD) method used to fabricate complex shapes and microstructures. Single cell SOFCs were made using EPD with an electrolyte thickness of less than 10 {mu}m. The cell power was found to be comparable to standard tubular SOFC but with a lower production cost. 3 refs., 1 tab., 7 figs.

  3. Microleakage of composite resin restorations with a 10 percent maleic acid etchant.

    Science.gov (United States)

    Gilpatrick, R O; Owens, B M; Kaplan, I; Cook, G

    1996-04-01

    Microleakage of Class V composite resin restorations with margins all in enamel were compared in this in-vitro study using Scotchbond MultiPurpose Adhesive (SMP) (3M Corp.), and Scotchbond II (SB II) (3M Corp). Twenty extracted human molars were randomly separated into two groups: Group One, which used the SMP system and Group Two, which used the SB II system. Circular Class V preparations were cut 1.8 mm deep and 3 mm in diameter using a #556 fissure bur. Cavosurface margins, all in enamel, were beveled. The enamel and dentin were treated following manufacturer's directions for each group, and a microfilled composite resin, Silux Plus (3M Corp), was applied in two hand-placed increments. All teeth were finished with Sof-Lex discs, stored in water for seven days, then thermocycled in a water bath for 100 cycles, alternating from 4 degrees C to 58 degrees C. The teeth were placed in a 5 percent solution of methylene blue, rinsed and then invested in resin. All teeth were sectioned vertically and horizontally and a ratio (percentage) of wall length to amount of leakage along each wall was established. The overall mean leakage of Group One was 15.27 percent and Group Two was 13.84 percent. Looking at individual walls, the mean occlusal wall leakage of Group One was 28.41 percent and Group Two was 12.45 percent. Mean gingival wall leakage of Group One was 15.96 percent and Group Two was 21.80 percent. Comparing the two groups, using a student's t test, there was no significant difference between the overall mean leakage or between the gingival wall leakage (p > 0.05); however, there was a significant difference between the occlusal wall leakage (p < 0.05), with SMP exhibiting more leakage.

  4. Opportunities for portable Ballard Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, H.H.; Huff, J.R. [Ballard Power Systems Inc., Burnaby, British Columbia (Canada)

    1996-12-31

    With the increasing proliferation and sophistication of portable electronic devices in both commercial and military markets, the need has arisen for small, lightweight power supplies that can provide increased operating life over those presently available. A solution to this power problem is the development of portable Ballard Fuel Cell power systems that operate with a hydrogen fuel source and air. Ballard has developed PEM fuel cell stacks and power systems in the 25 to 100 watt range for both of these markets. For military use, Ballard has teamed with Ball Corporation and Hydrogen Consultants, Inc. and has provided the Ballard Fuel Cell stack for an ambient PEM fuel cell power system for the DoD. The system provides power from idle to I 00 watts and has the capability of delivering overloads of 125 watts for short periods of time. The system is designed to operate over a wide range of temperature, relative humidity and altitude. Hydrogen is supplied as a compressed gas, metal hydride or chemical hydride packaged in a unit that is mated to the power/control unit. The hydrogen sources provide 1.5, 5 and 15 kWh of operation, respectively. The design of the fuel cell power system enables the unit to operate at 12 volts or 24 volts depending upon the equipment being used. For commercial applications, as with the military, fuel cell power sources in the 25 to 500 watt range will be competing with advanced batteries. Ambient PEM fuel cell designs and demonstrators are being developed at 25 watts and other low power levels. Goals are minimum stack volume and weight and greatly enhanced operating life with reasonable system weight and volume. This paper will discuss ambient PEM fuel cell designs and performance and operating parameters for a number of power levels in the multiwatt range.

  5. Principles of Fuel and Fuel Systems, 8-4. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    This volume of student materials for a secondary/postsecondary level course in principles of fuel and fuel systems is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. The purpose of the individualized, self-paced course is to provide the…

  6. An Econometric Analysis of the Elasticity of Vehicle Travel with Respect to Fuel Cost per Mile Using RTEC Survey Data

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.; Kahn, J.; Gibson, R.

    1999-03-01

    This paper presents the results of econometric estimation of the ''rebound effect'' for household vehicle travel in the United States based on a comprehensive analysis of survey data collected by the U.S. Energy Information Administration (EIA) at approximately three-year intervals over a 15-year period. The rebound effect is defined as the percent change in vehicle travel for a percent change in fuel economy. It summarizes the tendency to ''take back'' potential energy savings due to fuel economy improvements in the form of increased vehicle travel. Separate vehicles use models were estimated for one-, two-, three-, four-, and five-vehicle households. The results are consistent with the consensus of recently published estimates based on national or state-level data, which show a long-run rebound effect of about +0.2 (a ten percent increase in fuel economy, all else equal, would produce roughly a two percent increase in vehicle travel and an eight percent reduction in fuel use). The hypothesis that vehicle travel responds equally to changes in fuel cost-per-mile whether caused by changes in fuel economy or fuel price per gallon could not be rejected. Recognizing the interdependency in survey data among miles of travel, fuel economy and price paid for fuel for a particular vehicle turns out to be crucial to obtaining meaningful results.

  7. Sulfate Salts in Gasoline and Ethanol Fuels -- Historical Perspective and Analysis of Available Data

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Alleman, Teresa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yanowitz, Janet [Ecoengineering, Inc.

    2017-09-21

    This report reviews the chemistry of sulfate salts dissolved in ethanol and gasoline, potential sources of sulfate salts in ethanol and gasoline, the history of consumer vehicle issues with sulfate salt deposits in the early 2000s, and the corresponding changes to the denatured fuel ethanol specification. Recommendations for future research are provided. During a period of rapid market expansion in 2004-05, issues were reported with vehicles running on E10 provided by certain suppliers in some markets. It was commonly believed that these vehicle problems were caused by sulfate salts precipitating from the fuel. Investigators identified sodium sulfate, and in one case also ammonium sulfate, as the predominate salts found in the engines. Several stakeholders believed the issue was excess sulfate ions in the ethanol portion of the E10, and in 2005 the ASTM specification for ethanol (D4806) was modified to include a 4-part per million (ppm) limit on sulfate ions. While there have been no further reports of consumer vehicle issues, the recently approved increase of ethanol in gasoline from 10 to 15 volume percent has resulted in renewed interest in the sulfate ion concentration in fuel ethanol. This report reviews published data on the solubility of sulfate salts in ethanol. The possible sources of sulfate anions and charge balancing cations (such as sodium) in fuel ethanol and petroleum derived blendstocks are discussed. Examination of historical information on the consumer vehicle issues that occurred in 2004-2005 reveals that a source of sodium or ammonium ions, required for the formation of the observed insoluble salts, was never identified. Recommendations for research to better understand sulfate salt solubility issues in ethanol, hydrocarbon blendstocks, and ethanol-gasoline blends are presented.

  8. Body mass index and percent body fat: a meta analysis among different ethnic groups.

    Science.gov (United States)

    Deurenberg, P; Yap, M; van Staveren, W A

    1998-12-01

    To study the relationship between percent body fat and body mass index (BMI) in different ethnic groups and to evaluate the validity of the BMI cut-off points for obesity. Meta analysis of literature data. Populations of American Blacks, Caucasians, Chinese, Ethiopians, Indonesians, Polynesians and Thais. Mean values of BMI, percent body fat, gender and age were adapted from original papers. The relationship between percent body fat and BMI differs in the ethnic groups studied. For the same level of body fat, age and gender, American Blacks have a 1.3 kg/m2 and Polynesians a 4.5 kg/m2 lower BMI compared to Caucasians. By contrast, in Chinese, Ethiopians, Indonesians and Thais BMIs are 1.9, 4.6, 3.2 and 2.9 kg/m2 lower compared to Caucasians, respectively. Slight differences in the relationship between percent body fat and BMI of American Caucasians and European Caucasians were also found. The differences found in the body fat/BMI relationship in different ethnic groups could be due to differences in energy balance as well as to differences in body build. The results show that the relationship between percent body fat and BMI is different among different ethnic groups. This should have public health implications for the definitions of BMI cut-off points for obesity, which would need to be population-specific.

  9. HTGR fuel and fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740/sup 0/C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000/sup 0/C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th-/sup 233/U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized.

  10. Combustion and fuel characterization of coal-water fuels

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Pittsburgh Energy Technology Center (PETC) of the Department of Energy initiated a comprehensive effort in 1982 to develop the necessary performance and cost data and to assess the commercial viability of coal water fuels (CWFs) as applied to representative utility and industrial units. The effort comprised six tasks beginning with coal resource evaluation and culminating in the assessment of the technical and economic consequences of switching representative commercial units from oil to state-of-the-art CWF firing. Extensive bench, pilot and commercial-scale tests were performed to develop necessary CWF combustion and fireside performance data for the subsequent boiler performance analyses and retrofit cost estimates. This report (Volume 2) provides a review of the fuel selection and procurement activities. Included is a discussion on coal washability, transport of the slurry, and characterization. 20 figs., 26 tabs.

  11. Thin-Film Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  12. Fuel preheater for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Crossett, J.J.; Crossett, M.C.

    1987-10-13

    A unit for preheating fuel for diesel engines is described having an engine coolant system and a lubrication system utilizing a flowable lubricant. The unit comprises a housing providing a fluid-tight enclosure, a heat exchange coil positioned in and spaced above the bottom of the enclosure and having loops providing a continuous path for the flow of the fuel to be heated. The heat exchange coil has at least one foot of length for each 25 cubic inches of volume of the enclosure and a diesel fuel outlet in the housing connected to one end of the heat exchange coil, a diesel fuel outlet in the housing and connected to the other end of the heat exchange coil, an inlet in the housing for connection of the interior of the enclosure surrounding the coil to a source of a hot heat exchange medium in a diesel engine so as to provide a source of heat for heating the heat exchange coil. An outlet near the top of the housing provides for return of the heat exchange medium to a diesel engine, and spray tube means extend horizontally from the inlet for the heat exchange medium and along the bottom of the housing beneath substantially the entire length of the heat exchange coil. The means have upwardly directed openings to provide for discharge of the heat exchange medium toward the coil and agitation of the heat exchange medium in the enclosure around and over the heat exchange coil.

  13. Catalyst development and systems analysis of methanol partial oxidation for the fuel processor - fuel cell integration

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E.; Mizsey, P.; Hottinger, P.; Truong, T.B.; Roth, F. von; Schucan, Th.H. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Methanol partial oxidation (pox) to produce hydrogen for mobile fuel cell applications has proved initially more successful than hydrocarbon pox. Recent results of catalyst screening and kinetic studies with methanol show that hydrogen production rates have reached 7000 litres/hour/(litre reactor volume) for the dry pox route and 12,000 litres/hour/(litre reactor volume) for wet pox. These rates are equivalent to 21 and 35 kW{sub th}/(litre reactor volume) respectively. The reaction engineering problems remain to be solved for dry pox due to the significant exotherm of the reaction (hot spots of 100-200{sup o}C), but wet pox is essentially isothermal in operation. Analyses of the integrated fuel processor - fuel cell systems show that two routes are available to satisfy the sensitivity of the fuel cell catalysts to carbon monoxide, i.e. a preferential oxidation reactor or a membrane separator. Targets for individual system components are evaluated for the base and best case systems for both routes to reach the combined 40% efficiency required for the integrated fuel processor - fuel cell system. (author) 2 figs., 1 tab., 3 refs.

  14. Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate

    Science.gov (United States)

    Zhu, Ruijun; Cheung, C. S.; Huang, Zuohua; Wang, Xibin

    2011-04-01

    Experiments were carried out on a four-cylinder direct-injection diesel engine operating on Euro V diesel fuel blended with diethyl adipate (DEA). The blended fuels contain 8.1%, 16.4%, 25% and 33.8% by volume fraction of DEA, corresponding to 3%, 6%, 9% and 12% by mass of oxygen in the blends. The engine performance and exhaust gas emissions of the different fuels were investigated at five engine loads at a steady speed of 1800 rev/min. The results indicated an increase of brake specific fuel consumption and brake thermal efficiency when the engine was fueled with the blended fuels. In comparison with diesel fuel, the blended fuels resulted in an increase in hydrocarbon (HC) and carbon monoxide (CO), but a decrease in particulate mass concentrations. The nitrogen oxides (NO x) emission experienced a slight variation among the test fuels. In regard to the unregulated gaseous emissions, formaldehyde and acetaldehyde increased, while 1,3-butadiene, ethene, ethyne, propylene and BTX (benzene, toluene and xylene) in general decreased. A diesel oxidation catalyst (DOC) was found to reduce significantly most of the investigated unregulated pollutants when the exhaust gas temperature was sufficiently high.

  15. Effect on Particulate and Gas Emissions by Combusting Biodiesel Blend Fuels Made from Different Plant Oil Feedstocks in a Liquid Fuel Burner

    OpenAIRE

    Norwazan Abdul Rahim; Mohammad Nazri Mohd Jaafar; Syazwan Sapee; Hazir Farouk Elraheem

    2016-01-01

    This paper focuses on the combustion performance of various blends of biodiesel fuels and diesel fuel from lean to rich mixtures. The biodiesel blend fuel combustion experiments were carried out using a liquid fuel burner and biodiesel fuel made from various plant oil feedstocks, including jatropha, palm and coconut oils. The results show that jatropha oil methyl ester blend 25 (JOME B25) and coconut oil methyl ester blend 25 (COME B25) blended at 25% by volume in diesel fuel produced lower c...

  16. Fuel consumption as cost indicator. [Cost of machine use in forestry

    Energy Technology Data Exchange (ETDEWEB)

    Svanqvist, N.

    1988-01-01

    The scope of the study is to update the data files from 1979 and 1982 concerning forest machine costs and determine changes in these costs over time. Machine costs as a function of fuel consumption is derived. The share of fuel of the total cost has increased from 6 to 13 percent since 1978. (G.B.).

  17. 40 CFR 80.1115 - How are equivalence values assigned to renewable fuel?

    Science.gov (United States)

    2010-07-01

    ... shall have an equivalence value of 1.3. (5) Non-ester renewable diesel, including that produced from... renewable source, expressed as a percent, on an energy basis. EC = Energy content of the renewable fuel, in... renewable fuel? 80.1115 Section 80.1115 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  18. High temperature polymer fuel cells and their Interplay with fuel processing systems

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, R.

    2003-01-01

    This paper reports recent results from our group on polymer electrolyte membrane fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all....... The high working temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  19. Fuel burnup calculation of Ghana MNSR using ORIGEN2 and REBUS3 codes.

    Science.gov (United States)

    Abrefah, R G; Nyarko, B J B; Fletcher, J J; Akaho, E H K

    2013-10-01

    Ghana Research Reactor-1 core is to be converted from HEU fuel to LEU fuel in the near future and managing the spent nuclear fuel is very important. A fuel depletion analysis of the GHARR-1 core was performed using ORIGEN2 and REBUS3 codes to estimate the isotopic inventory at end-of-cycle in order to help in the design of an appropriate spent fuel cask. The results obtained for both codes were consistent for U-235 burnup weight percent and Pu-239 build up as a result of burnup.

  20. WHY WE NEED 100 PERCENT RENEWABLE ENERGIES: A PLEA FOR THE ENERGIEWENDE

    Directory of Open Access Journals (Sweden)

    Christian Hinsch

    2014-05-01

    Full Text Available Those familiar with the fifth intergovernmental Penal on Climate Change report presented in late 2013 can no longer seriously doubt that climate change has become a reality. Although the issue has been the subject of several high profile international conferences, little has been achieved so far. Fossil power plants still continue to emit massive amounts of greenhouse gases further accelerating climate change. There is, however, an alternative to our current climate-damaging way of energy production: The complete transition towards 100 percent renewable energies. This paper examines the way in which an industrialized country like Germany can become a 100 percent renewable by 2020.

  1. Coal liquefaction and gas conversion: Proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume II contains papers presented at the following sessions: Indirect Liquefaction (oxygenated fuels); and Indirect Liquefaction (Fischer-Tropsch technology). Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  2. Tankering Fuel on U.S. Air Force Transport Aircraft: An Assessment of Cost Savings

    Science.gov (United States)

    2015-01-01

    fuel use accounts for a large proportion of the U.S. Department of Defense (DoD) total petroleum use—about 50 percent according to a 2012 analysis by...an aircraft (more than is required for the flight) when traveling from origins where jet fuel is less expensive than at the destination and is a...spending on petroleum rose 381 percent between fiscal year (FY) 2005 and FY 2011—even though its petroleum use decreased 4 percent over the same period

  3. Five Percent Post Survey Check Of National Family Health Survey (NFHS In ORISSA

    Directory of Open Access Journals (Sweden)

    Kumar Benera Sudhir

    1999-01-01

    Full Text Available Research questions: How well a post survey sample check of NFHS correlates with the findings of NFHS? Objective: Post survey check of National Family Health Survey carried out in 1992-93. Study design: Multistage sampling method with 5 percent sample of original NFHS sample. Setting: Study covered 5 percent sample of original NFHS sample. Subjects: Five percent household sample (1093 members of original NFHS sample was studied and compared with NFHS data. Method: Information from five percent house-holds of NFHS in which either there likely to be no change was likely to be only in one direction such as age group, sex-ratio, literacy, family planning knowledge and adoption etc. were collected in a predesigned questionnaire and compared with NFHS data. Results: The demographic characteristics were similar to those of NFHS. TFR and number of children ever borne were also found to be same. The awareness of FP methods and its uses were within acceptable margin of error. Thus on comparison of data of post survey check and NFHS sample error was within acceptable margin.

  4. After-Tax Profit of Kenya Airways for 2010-11 Financial Year Increases 73 Percent

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Kenya Airways is the pride of the whole African continent.Recently,Kenya Airways announced its after-tax profits for the 2010-11 fiscal yearincreased 73 percent.The airline’s CEO and General Manager Titus Naikuni attributes the greatest part of the

  5. 13 CFR 107.1410 - Requirement to redeem 4 percent Preferred Securities.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Requirement to redeem 4 percent Preferred Securities. 107.1410 Section 107.1410 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage)...

  6. 13 CFR 107.1400 - Dividends or partnership distributions on 4 percent Preferred Securities.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Dividends or partnership distributions on 4 percent Preferred Securities. 107.1400 Section 107.1400 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for...

  7. 13 CFR 107.1420 - Articles requirements for 4 percent Preferred Securities.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Articles requirements for 4 percent Preferred Securities. 107.1420 Section 107.1420 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance for Licensees (Leverage)...

  8. Introducing High School Students to NMR Spectroscopy through Percent Composition Determination Using Low-Field Spectrometers

    Science.gov (United States)

    Bonjour, Jessica L.; Pitzer, Joy M.; Frost, John A.

    2015-01-01

    Mole to gram conversions, density, and percent composition are fundamental concepts in first year chemistry at the high school or undergraduate level; however, students often find it difficult to engage with these concepts. We present a simple laboratory experiment utilizing portable nuclear magnetic resonance spectroscopy (NMR) to determine the…

  9. Clinician Percent Syllables Stuttered, Clinician Severity Ratings and Speaker Severity Ratings: Are They Interchangeable?

    Science.gov (United States)

    Karimi, Hamid; Jones, Mark; O'Brian, Sue; Onslow, Mark

    2014-01-01

    Background: At present, percent syllables stuttered (%SS) is the gold standard outcome measure for behavioural stuttering treatment research. However, ordinal severity rating (SR) procedures have some inherent advantages over that method. Aims: To establish the relationship between Clinician %SS, Clinician SR and self-reported Speaker SR. To…

  10. Generalized equations for estimating DXA percent fat of diverse young women and men: The Tiger Study

    Science.gov (United States)

    Popular generalized equations for estimating percent body fat (BF%) developed with cross-sectional data are biased when applied to racially/ethnically diverse populations. We developed accurate anthropometric models to estimate dual-energy x-ray absorptiometry BF% (DXA-BF%) that can be generalized t...

  11. Field method to measure changes in percent body fat of young women: The TIGER Study

    Science.gov (United States)

    Body mass index (BMI), waist (W) and hip (H) circumference (C) are commonly used to assess changes in body composition for field research. We developed a model to estimate changes in dual energy X-ray absorption (DXA) percent fat (% fat) from these variables with a diverse sample of young women fro...

  12. PETROCHINA'S OIL AND GAS PRODUCTION GROWS 5.3 PERCENT IN FIRST THREE QUARTERS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ PetroChina announced its business results of the first three quarters of 2005 in mid-October. Based on the statistical figures made available from China's No. 1 oil producer, the January-September oil and gas production targets rose 5.3 percent as compared to the same period of the previous year.

  13. A Collaborative Endeavour between Mathematics and Science Educators: Focus on the Use of Percent in Chemistry

    Science.gov (United States)

    Ramful, Ajay; Bedgood, Danny; Lowrie, Thomas

    2016-01-01

    This paper is the outcome of a collaborative endeavour between mathematics and science educators where the insight from each field mutually informed one another. Specifically, building on the knowledge base from mathematics education research, this study analyses the ways in which percent is interpreted by first year university students in general…

  14. The Determination of the Percent of Oxygen in Air Using a Gas Pressure Sensor

    Science.gov (United States)

    Gordon, James; Chancey, Katherine

    2005-01-01

    The experiment of determination of the percent of oxygen in air is performed in a general chemistry laboratory in which students compare the results calculated from the pressure measurements obtained with the calculator-based systems to those obtained in a water-measurement method. This experiment allows students to explore a fundamental reaction…

  15. New Twists Mark the Debate over Texas' Top 10-Percent Plan

    Science.gov (United States)

    Schmidt, Peter

    2008-01-01

    Born out of one legal battle over affirmative action, the Texas college-admissions policy known as the "top 10 percent plan" is now at the center of another. The University of Texas at Austin is being challenged in U.S. District Court over its 2004 decision to return to using race-conscious admissions criteria after years without them.…

  16. 5 CFR 2636.304 - The 15 percent limitation on outside earned income.

    Science.gov (United States)

    2010-01-01

    ... ETHICS LIMITATIONS ON OUTSIDE EARNED INCOME, EMPLOYMENT AND AFFILIATIONS FOR CERTAIN NONCAREER EMPLOYEES Outside Earned Income Limitation and Employment and Affiliation Restrictions Applicable to Certain... calendar year which exceeds 15 percent of the annual rate of basic pay for level II of the...

  17. 26 CFR 1.382-3 - Definitions and rules relating to a 5-percent shareholder.

    Science.gov (United States)

    2010-04-01

    ... that, instead of an investment advisor recommending that clients purchase L stock, the trustee of... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Definitions and rules relating to a 5-percent shareholder. 1.382-3 Section 1.382-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE...

  18. Radial growth and percent of latewood in Scots pine provenance trials in Western and Central Siberia

    Directory of Open Access Journals (Sweden)

    S. R. Kuzmin

    2016-12-01

    Full Text Available Percent of latewood of Boguchany and Suzun Scots pine climatypes has been studied in two provenance trials (place of origin and trial place. For Boguchany climatype the place of origin is south taiga of Central Siberia (Krasnoyarsk Krai, the place of trial is forest-steppe zone of Western Siberia (Novosibirsk Oblast and vice versa for Suzun climatype – forest-steppe zone of Western Siberia is the place of origin, south taiga is the place of trial. Comparison of annual average values of latewood percent of Boguchany climatype in south taiga and forest-steppe revealed the same numbers – 19 %. Annual variability of this trait in south taiga is distinctly lower and equal to 17 %, in forest-steppe – 35 %. Average annual values of latewood percent of Suzun climatype in the place of origin and trial place are close (20 and 21 %. Variability of this trait for Suzun climatype is higher than for Boguchany and equal to 23 % in south taiga and 42 % in forest-steppe. Climatic conditions in southern taiga in Central Siberia in comparison with forest-steppe in Western Siberia make differences between climatypes stronger. Differences between climatypes are expressed in different age of maximal increments of diameter, different tree ring width and latewood percent values and in different latewood reaction to weather conditions.

  19. Identification of a novel percent mammographic density locus at 12q24.

    Science.gov (United States)

    Stevens, Kristen N; Lindstrom, Sara; Scott, Christopher G; Thompson, Deborah; Sellers, Thomas A; Wang, Xianshu; Wang, Alice; Atkinson, Elizabeth; Rider, David N; Eckel-Passow, Jeanette E; Varghese, Jajini S; Audley, Tina; Brown, Judith; Leyland, Jean; Luben, Robert N; Warren, Ruth M L; Loos, Ruth J F; Wareham, Nicholas J; Li, Jingmei; Hall, Per; Liu, Jianjun; Eriksson, Louise; Czene, Kamila; Olson, Janet E; Pankratz, V Shane; Fredericksen, Zachary; Diasio, Robert B; Lee, Adam M; Heit, John A; DeAndrade, Mariza; Goode, Ellen L; Vierkant, Robert A; Cunningham, Julie M; Armasu, Sebastian M; Weinshilboum, Richard; Fridley, Brooke L; Batzler, Anthony; Ingle, James N; Boyd, Norman F; Paterson, Andrew D; Rommens, Johanna; Martin, Lisa J; Hopper, John L; Southey, Melissa C; Stone, Jennifer; Apicella, Carmel; Kraft, Peter; Hankinson, Susan E; Hazra, Aditi; Hunter, David J; Easton, Douglas F; Couch, Fergus J; Tamimi, Rulla M; Vachon, Celine M

    2012-07-15

    Percent mammographic density adjusted for age and body mass index (BMI) is one of the strongest risk factors for breast cancer and has a heritable component that remains largely unidentified. We performed a three-stage genome-wide association study (GWAS) of percent mammographic density to identify novel genetic loci associated with this trait. In stage 1, we combined three GWASs of percent density comprised of 1241 women from studies at the Mayo Clinic and identified the top 48 loci (99 single nucleotide polymorphisms). We attempted replication of these loci in 7018 women from seven additional studies (stage 2). The meta-analysis of stage 1 and 2 data identified a novel locus, rs1265507 on 12q24, associated with percent density, adjusting for age and BMI (P = 4.43 × 10(-8)). We refined the 12q24 locus with 459 additional variants (stage 3) in a combined analysis of all three stages (n = 10 377) and confirmed that rs1265507 has the strongest association in the 12q24 region (P = 1.03 × 10(-8)). Rs1265507 is located between the genes TBX5 and TBX3, which are members of the phylogenetically conserved T-box gene family and encode transcription factors involved in developmental regulation. Understanding the mechanism underlying this association will provide insight into the genetics of breast tissue composition.

  20. 77 FR 33733 - Regulation of Fuel and Fuel Additives: Modification to Octamix Waiver (TXCeed)

    Science.gov (United States)

    2012-06-07

    ... 2.5 percent by volume co- solvents \\2\\ and 42.7 milligrams per liter (mg/l) of Petrolite TOLAD MFA... formulations are acceptable as alternatives to TOLAD MFA-10.\\4\\ \\1\\ OCTAMIX waiver decision, 53 FR 3636... Methanol requested the use of TOLAD MFA-10 or an appropriate concentration of any other corrosion...

  1. Fuel preparation for use in the production of medical isotopes

    Science.gov (United States)

    Policke, Timothy A.; Aase, Scott B.; Stagg, William R.

    2016-10-25

    The present invention relates generally to the field of medical isotope production by fission of uranium-235 and the fuel utilized therein (e.g., the production of suitable Low Enriched Uranium (LEU is uranium having 20 weight percent or less uranium-235) fuel for medical isotope production) and, in particular to a method for producing LEU fuel and a LEU fuel product that is suitable for use in the production of medical isotopes. In one embodiment, the LEU fuel of the present invention is designed to be utilized in an Aqueous Homogeneous Reactor (AHR) for the production of various medical isotopes including, but not limited to, molybdenum-99, cesium-137, iodine-131, strontium-89, xenon-133 and yttrium-90.

  2. Sustainable vehicle fuels - Do they exist?

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal; Ericsson, Karin; Di Lucia, Lorenzo; Nilsson, Lars J.; Aahman, Max

    2009-03-15

    Our aim with this report is to discuss vehicle fuels from a wide perspective of sustainability. Biofuels and electricity are analyzed and compared to fossil vehicle fuels. Our goal is to try to point out the circumstances under which vehicle fuels can be reasonably perceived as sustainable, and which systems we should develop and which we should avoid. The all-embracing conclusion of this study is that one can not establish how sustainable fuels will develop in the future without simultaneously taking into consideration both scale and pace of growth. Today's biofuels produced in Sweden are sustainable, given the present production volume, and promote further development of new fuel systems. However, in the case of increased production volumes, exact requirements should be established for the energy- and climate efficiency of the entire fuel chain (from cultivation to tank). High priority should be given to the development of fuel-efficient cars. In this field hybrid electric technology and electric cars will grow in importance. Any long-term strategy for biofuels should include investments in technology for both thermal gasification and biological conversion methods of lignocellulose, since these are complementing as much as competing technologies, both increasing the flexibility as well as decreasing the risk of conflicts. Biogas from waste products has great environmental advantages and the sector can be expanded with only small risks of conflicts. Certification (if correctly formulated) is an important and necessary tool on the way towards more sustainable vehicle fuels and increased production volumes, but certification systems should not be overrated since they can not cover all sustainability aspects. Socio-economic aspects such as working conditions, local rural development etc. must be dealt with through general measures such as national laws, distribution policies, programs and plans, all of which should be supported by international agreements and

  3. Monolithic fuel cell based power source for burst power generation

    Science.gov (United States)

    Fee, D. C.; Blackburn, P. E.; Busch, D. E.; Dees, D. W.; Dusek, J.; Easler, T. E.; Ellingson, W. A.; Flandermeyer, B. K.; Fousek, R. J.; Heiberger, J. J.

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The monolithic fuel cell looks attractive for space applications and represents a quantum jump in fuel cell technology. Such a breakthrough in design is the enabling technology for lightweight, low volume power sources for space based pulse power systems. The monolith is unique among fuel cells in being an all solid state device. The capability for miniaturization, inherent in solid state devices, gives the low volume required for space missions. In addition, the solid oxide fuel cell technology employed in the monolith has high temperature reject heat and can be operated in either closed or open cycles. Both these features are attractive for integration into a burst power system.

  4. Renormalized Volume

    Science.gov (United States)

    Gover, A. Rod; Waldron, Andrew

    2017-09-01

    We develop a universal distributional calculus for regulated volumes of metrics that are suitably singular along hypersurfaces. When the hypersurface is a conformal infinity we give simple integrated distribution expressions for the divergences and anomaly of the regulated volume functional valid for any choice of regulator. For closed hypersurfaces or conformally compact geometries, methods from a previously developed boundary calculus for conformally compact manifolds can be applied to give explicit holographic formulæ for the divergences and anomaly expressed as hypersurface integrals over local quantities (the method also extends to non-closed hypersurfaces). The resulting anomaly does not depend on any particular choice of regulator, while the regulator dependence of the divergences is precisely captured by these formulæ. Conformal hypersurface invariants can be studied by demanding that the singular metric obey, smoothly and formally to a suitable order, a Yamabe type problem with boundary data along the conformal infinity. We prove that the volume anomaly for these singular Yamabe solutions is a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. Recently, Graham proved that the first variation of the volume anomaly recovers the density obstructing smooth solutions to this singular Yamabe problem; we give a new proof of this result employing our boundary calculus. Physical applications of our results include studies of quantum corrections to entanglement entropies.

  5. Availability and cost estimate of a high naphthene, modified aviation turbine fuel

    Science.gov (United States)

    Prok, George M.

    1988-01-01

    Information from an Air Force study was used to determine the potential availability and cost of a modified conventional fuel with a naphthene content which could have a thermal stability near that of JP-7 for high-speed civil transports. Results showed sufficient capacity for a fuel made of a blend of 50 percent naphthenic straight run kerosene and 50 percent hydrocracked product, assuming a near-term requirement of 210,000 BBL per day. Fuel cost would be as low as 62.5 to 64.5 cents per gallon, assuming 20 dollars per barrel for crude.

  6. Predicting fat percent by skinfolds in racial groups: Durnin and Womersley revisited.

    Science.gov (United States)

    Davidson, Lance E; Wang, Jack; Thornton, John C; Kaleem, Zafar; Silva-Palacios, Federico; Pierson, Richard N; Heymsfield, Steven B; Gallagher, Dympna

    2011-03-01

    Despite their widespread use in research and fitness settings, Durnin and Womersley's (DW) 1974 prediction equations using skinfold thickness to estimate body fat percent by hydrodensitometry have not been systematically evaluated in racial or ethnic groups using body fat percent measured by dual-energy x-ray absorptiometry (%BF(DXA)) as the standard. This cross-sectional, population-based study examined whether the DW skinfold equations predict %BF(DXA) in a large, multiracial sample. Four skinfold measures (biceps, triceps, subscapular, and suprailiac), other clinical anthropometrics, and %BF(DXA) were obtained from 1675 healthy adults, age 18-110 yr, who were classified into four racial or ethnic categories: Caucasian, African American, Hispanic, or Asian. Predicted body fat percent using DW equations was compared with %BF(DXA) and evaluated within race/ethnicity- and sex-specific groups. Mean body fat percent predicted by DW equations was significantly different from %BF(DXA) in four of eight race/ethnicity- and sex-specific groups, particularly in Asian women and African American men (3.3 and 2.4 percentage point overestimates, respectively, P < 0.0001). New linear regression equations were developed estimating %BF(DXA) specific to each race/ethnicity and sex group, using the original DW skinfold sites. Body weight, height, and waist circumference independently predicted fat percent and were also included in the new equations. The 1974 DW equations did not predict %BF(DXA) uniformly in all races or ethnicities. Using %BF(DXA) as the criterion measure, the original DW skinfold equations have been updated specific to sex and race/ethnicity while maintaining the DW options for a minimalistic model using fewer predictors.

  7. Diminishing returns from increased percent Bt cotton: the case of pink bollworm.

    Science.gov (United States)

    Huang, Yunxin; Wan, Peng; Zhang, Huannan; Huang, Minsong; Li, Zhaohua; Gould, Fred

    2013-01-01

    Regional suppression of pests by transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) has been reported in several cropping systems, but little is known about the functional relationship between the ultimate pest population density and the pervasiveness of Bt crops. Here we address this issue by analyzing 16 years of field data on pink bollworm (Pectinophora gossypiella) population density and percentage of Bt cotton in the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We find that as the percent Bt cotton increased over the years, the cross-year growth rate of pink bollworm from the last generation of one year to the first generation of the next year decreased. However, as the percent Bt cotton increased, the within-year growth rate of pink bollworm from the first to last generation of the same year increased, with a slope approximately opposite to that of the cross-year rates. As a result, we did not find a statistically significant decline in the annual growth rate of pink bollworm as the percent Bt cotton increased over time. Consistent with the data, our modeling analyses predict that the regional average density of pink bollworm declines as the percent Bt cotton increases, but the higher the percent Bt cotton, the slower the decline in pest density. Specifically, we find that 95% Bt cotton is predicted to cause only 3% more reduction in larval density than 80% Bt cotton. The results here suggest that density dependence can act against the decline in pest density and diminish the net effects of Bt cotton on suppression of pink bollworm in the study region. The findings call for more studies of the interactions between pest density-dependence and Bt crops.

  8. Dictionary Based Segmentation in Volumes

    DEFF Research Database (Denmark)

    Emerson, Monica Jane; Jespersen, Kristine Munk; Jørgensen, Peter Stanley

    2015-01-01

    We present a method for supervised volumetric segmentation based on a dictionary of small cubes composed of pairs of intensity and label cubes. Intensity cubes are small image volumes where each voxel contains an image intensity. Label cubes are volumes with voxelwise probabilities for a given...... label. The segmentation process is done by matching a cube from the volume, of the same size as the dictionary intensity cubes, to the most similar intensity dictionary cube, and from the associated label cube we get voxel-wise label probabilities. Probabilities from overlapping cubes are averaged...... and hereby we obtain a robust label probability encoding. The dictionary is computed from labeled volumetric image data based on weighted clustering. We experimentally demonstrate our method using two data sets from material science – a phantom data set of a solid oxide fuel cell simulation for detecting...

  9. Rheological Properties of Nanoparticle Silica-Surfactant Stabilized Crude Oil Emulsions: Influence of Temperature, Nanoparticle Concentration and Water Volume Fraction"

    Science.gov (United States)

    Kinsey, Erin; Pales, Ashley; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Oil in water emulsions occur during oil extraction due to the presence of water, naturally-occurring surface-active agents and mechanical mixing in pipelines or from oil spillage. Emulsions present difficulties for use of oil in fuel and their rheological properties are important to treat environmental impacts of spills. The objective of this study is to assess the rheological characteristics of oil in water emulsions stabilized by 5% NaCl brine, Tween 20 surfactant and silica nanoparticles to gain knowledge about the behavior of oil flow in pipelines and characterize them for environmental applications. Rheological behaviors such as shear rate, shear stress, and viscosity of Prudhoe Bay crude oil emulsions were analyzed with varying percent of water volume fractions (12.5, 25 and 50%), varying weight percent of silica nanoparticles (0.001, 0.01 and 0.1 weight %), with and without 2 CMC Tween 20 nonionic surfactant. Emulsions with varying water volume fractions were analyzed at 20, 40 and 60 degrees Celsius. Flow curve analysis of the emulsions was performed using an Anton-Paar rheometer. Preliminary findings indicate that increased temperature and increasing the concentration of nanoparticles both produced lower shear stress and that the addition of surfactant decreased the viscosity and shear stress of the emulsions.

  10. HTGR Fuel performance basis

    Energy Technology Data Exchange (ETDEWEB)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600/sup 0/C, and complete fuel failure occurs at 2660/sup 0/C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents.

  11. Corrugated Membrane Fuel Cell Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grot, Stephen [President, Ion Power Inc.

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  12. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2001-01-01

    Present and anticipated variation in jet propulsion fuels due to advanced engine compression ratios and airframe cooling requirements necessitate greater understanding of chemical phenomena associated...

  13. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2000-01-01

    Present and anticipated variation in jet propulsion fuels due to advanced engine compression ratios and airframe cooling requirements necessitate greater understanding of chemical phenomena associated...

  14. Low NO sub x heavy fuel combustor concept program. Phase 1A: Combustion technology generation coal gas fuels

    Science.gov (United States)

    Sherlock, T. P.

    1982-01-01

    Combustion tests of two scaled burners using actual coal gas from a 25 ton/day fluidized bed coal gasifier are described. The two combustor configurations studied were a ceramic lined, staged rich/lean burner and an integral, all metal multiannual swirl burner (MASB). The tests were conducted over a range of temperature and pressures representative of current industrial combustion turbine inlet conditions. Tests on the rich lean burner were conducted at three levels of product gas heating values: 104, 197 and 254 btu/scf. Corresponding levels of NOx emissions were 5, 20 and 70 ppmv. Nitrogen was added to the fuel in the form of ammonia, and conversion efficiencies of fuel nitrogen to NOx were on the order of 4 percent to 12 percent, which is somewhat lower than the 14 percent to 18 percent conversion efficiency when src-2 liquid fuel was used. The MASB was tested only on medium btu gas (220 to 270 btu/scf), and produced approximately 80 ppmv NOx at rated engine conditions. Both burners operated similarly on actual coal gas and erbs fuel, and all heating values tested can be successfully burned in current machines.

  15. Life-cycle analysis of alternative aviation fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  16. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Stratton, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hileman, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Malwitz, A. [Volpe National Transportation Systems Center, Cambridge, MA (United States); Balasubramanian, S. [Volpe National Transportation Systems Center, Cambridge, MA (United States)

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  17. 77 FR 699 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2012-01-05

    ... January 5, 2012 Part V Environmental Protection Agency 40 CFR Part 80 Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard... Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under...

  18. Materials for fuel cells

    Directory of Open Access Journals (Sweden)

    Sossina M Haile

    2003-03-01

    Full Text Available Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cells are attractive for their modular and distributed nature, and zero noise pollution. They will also play an essential role in any future hydrogen fuel economy.

  19. Composite nuclear fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Dollard, W.J.; Ferrari, H.M.

    1982-04-27

    An open lattice elongated nuclear fuel assembly including small diameter fuel rods disposed in an array spaced a selected distance above an array of larger diameter fuel rods for use in a nuclear reactor having liquid coolant flowing in an upward direction. Plenums are preferably provided in the upper portion of the upper smaller diameter fuel rods and in the lower portion of the lower larger diameter fuel rods. Lattice grid structures provide lateral support for the fuel rods and preferably the lowest grid about the upper rods is directly and rigidly affixed to the highest grid about the lower rods.

  20. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A...

  1. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator...

  2. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste?...

  3. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent...

  4. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a)...

  5. Proceedings of the third annual fuel cells contractors review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Huber, W.J. (ed.)

    1991-06-01

    The overall objective of this program is to develop the essential technology for private sector characterization of the various fuel cell electrical generation systems. These systems promise high fuel to electricity efficiencies (40 to 60 percent), distinct possibilities for cogeneration applications, modularity of design, possibilities of urban siting, and environmentally benign emissions. The purpose of this meeting was to provide the research and development (R D) participants in the DOE/Fossil Energy-sponsored Fuel Cells Program with the opportunity to present key results of their research and to establish closer business contacts. Major emphasis was on phosphoric acid, molten carbonate, and solid oxide technology efforts. Research results of the coal gasification and gas stream cleanup R D activities pertinent to the Fuel Cells Program were also highlighted. Two hundred seventeen attendees from industry, utilities, academia, and Government participated in this 2-day meeting. Twenty-three papers were given in three formal sessions: molten carbonate fuel cells R D (9 papers), solid oxide fuel cells (8 papers), phosphoric acid fuel cells R D (6 papers). In addition to the papers and presentations, these proceedings also include comments on the Fuel Cells Program from the viewpoint of DOE/METC Fuel Cell Overview by Rita A. Bajura, DOE/METC Perspective by Manville J. Mayfield, Electric Power Research Institute by Daniel M. Rastler, Natural Gas by Hugh D. Guthrie, and Transportation Applications by Pandit G. Patil.

  6. JSC Case Study: Fleet Experience with E-85 Fuel

    Science.gov (United States)

    Hummel, Kirck

    2009-01-01

    JSC has used E-85 as part of an overall strategy to comply with Presidential Executive Order 13423 and the Energy Policy Act. As a Federal fleet, we are required to reduce our petroleum consumption by 2 percent per year, and increase the use of alternative fuels in our vehicles. With the opening of our onsite dispenser in October 2004, JSC became the second federal fleet in Texas and the fifth NASA center to add E-85 fueling capability. JSC has a relatively small number of GSA Flex Fuel fleet vehicles at the present time (we don't include personal vehicles, or other contractor's non-GSA fleet), and there were no reasonably available retail E-85 fuel stations within a 15-minute drive or within five miles (one way). So we decided to install a small 1000 gallon onsite tank and dispenser. It was difficult to obtain a supplier due to our low monthly fuel consumption, and our fuel supplier contract has changed three times in less than five years. We experiences a couple of fuel contamination and quality control issues. JSC obtained good information on E-85 from the National Ethanol Vehicle Coalition (NEVC). We also spoke with Defense Energy Support Center, (DESC), Lawrence Berkeley Laboratory, and US Army Fort Leonard Wood. E-85 is a liquid fuel that is dispensed into our Flexible Fuel Vehicles identically to regular gasoline, so it was easy for our vehicle drivers to make the transition.

  7. Mechanical modeling of porous oxide fuel pellet A Test Problem

    Energy Technology Data Exchange (ETDEWEB)

    Nukala, Phani K [ORNL; Barai, Pallab [ORNL; Simunovic, Srdjan [ORNL; Ott, Larry J [ORNL

    2009-10-01

    A poro-elasto-plastic material model has been developed to capture the response of oxide fuels inside the nuclear reactors under operating conditions. Behavior of the oxide fuel and variation in void volume fraction under mechanical loading as predicted by the developed model has been reported in this article. The significant effect of void volume fraction on the overall stress distribution of the fuel pellet has also been described. An important oxide fuel issue that can have significant impact on the fuel performance is the mechanical response of oxide fuel pellet and clad system. Specifically, modeling the thermo-mechanical response of the fuel pellet in terms of its thermal expansion, mechanical deformation, swelling due to void formation and evolution, and the eventual contact of the fuel with the clad is of significant interest in understanding the fuel-clad mechanical interaction (FCMI). These phenomena are nonlinear and coupled since reduction in the fuel-clad gap affects thermal conductivity of the gap, which in turn affects temperature distribution within the fuel and the material properties of the fuel. Consequently, in order to accurately capture fuel-clad gap closure, we need to account for fuel swelling due to generation, retention, and evolution of fission gas in addition to the usual thermal expansion and mechanical deformation. Both fuel chemistry and microstructure also have a significant effect on the nucleation and growth of fission gas bubbles. Fuel-clad gap closure leading to eventual contact of the fuel with the clad introduces significant stresses in the clad, which makes thermo-mechanical response of the clad even more relevant. The overall aim of this test problem is to incorporate the above features in order to accurately capture fuel-clad mechanical interaction. Because of the complex nature of the problem, a series of test problems with increasing multi-physics coupling features, modeling accuracy, and complexity are defined with the

  8. Small power systems study. Volume. Study results. Technical summary report

    Energy Technology Data Exchange (ETDEWEB)

    Sitney, L.R.

    1978-05-31

    The Division of Solar Technology of the Department of Energy is currently examining the market potential of a number of dispersed solar energy systems, including the small (less than or equal to 10 MW/sub e/) solar thermal power system. Small fossil-fueled generating units in the United States utility system, (i.e., investor-owned, municipal, and cooperatives) have a current capacity of approximately 8000 MW/sub e/ or about 1.5 percent of the total US electrical capacity, and provide a large potential market for small solar thermal power systems. The Small Power Systems Study has as its objective the determination of conditions under which small (less than or equal to 10 MW/sub e/) solar thermal power units can provide cost-effective electrical power to a variety of users. Potential users, in addition to the utility systems; include Department of Defense installations and applications, remote mining and/or lumbering operations, and other industrial power systems with and without cogeneration. The first year's results on the Small Power Systems Study are summarized. The data base used and the breakeven cost analysis are discussed. Information on both small (less than or equal to 10 MW/sub e/) generating units and the utility systems using them is presented as well as data on fossil fuel costs, solar plant costs, and solar insolation values. The results of a survey of Department of Defense (DOD) worldwide electrical generating capacity at its military bases and on a potential DOD application are presented. Information on a potential small solar power system experiment in the interior of Alaska is given, and a limited amount of information on a remote application which would provide power or a large open pit copper mine is presented. Volume II of this Technical Summary Report contains an inventory, by state, of the small (less than or equal to 10 MW/sub e/) generating units in the US utility system. (WHK)

  9. Quadrennial Review of Military Compensation (6th). Executive Summary. Volumes 1 thru 1C, and Volumes 2 thru 3

    Science.gov (United States)

    1988-08-01

    CIVILIAN EARNINGS PROFILE: ENLISTED SOURCE: SYLLOGISTICS 2-24 6th ORNC Esport -Volum 11 participation and higher than that of civilian counterparts in...7-26 6th QRNC esport - Volume I m Eliminate the existing 80 percent limiltation onmeai/entertairment deductions incurred in connection with the

  10. DUPIC fuel compatibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Rho, G. H.; Park, J. W. [and others

    2000-03-01

    The purpose of this study is to assess the compatibility of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The phase 1 study of this project includes the feasibility analysis on applicability of the current core design method, the feasibility analysis on operation of the DUPIC fuel core, the compatibility analysis on individual reactor system, the sensitivity analysis on the fuel composition, and the economic analysis on DUPIC fuel cycle. The results of the validation calculations have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of core simulations have shown that both natural uranium and DUPIC fuel cores are almost the same from the viewpoint of the operational performance. For individual reactor system including reactively devices, the functional requirements of each system are satisfied in general. However, because of the pronounced power flattening in the DUPIC core, the radiation damage on the critical components increases, which should be investigated more in the future. The DUPIC fuel composition heterogeneity dose not to impose any serious effect on the reactor operation if the fuel composition is adjusted. The economics analysis has been performed through conceptual design studies on the DUPIC fuel fabrication, fuel handling in a plant, and spent fuel disposal, which has shown that the DUPIC fuel cycle is comparable to the once-trough fuel cycle considering uncertainties associated with unit costs of the fuel cycle components. The results of Phase 1 study have shown that it is feasible to use the DUPIC fuel in CANDU reactors without major changes in hardware. However further studies are required to confirm the safety of the reactor under accident condition.

  11. Reversible (unitized) PEM fuel cell devices

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F; Myers, B; Smith, W F; Weisberg, Molter, T M

    1999-06-01

    Regenerative fuel cells (RFCs) are enabling for many weight-critical portable applications, since the packaged specific energy (>400 Wh/kg) of properly designed lightweight RFC systems is several-fold higher than that of the lightest weight rechargeable batteries. RFC systems can be rapidly refueled (like primary fuel cells), or can be electrically recharged (like secondary batteries) if a refueling infrastructure is not conveniently available. Higher energy capacity systems with higher performance, reduced weight, and freedom from fueling infrastructure are the features that RFCs promise for portable applications. Reversible proton exchange membrane (PEM) fuel cells, also known as unitized regenerative fuel cells (URFCs), or reversible regenerative fuel cells, are RFC systems which use reversible PEM cells, where each cell is capable of operating both as a fuel cell and as an electrolyzer. URFCs further economize portable device weight, volume, and complexity by combining the functions of fuel cells and electrolyzers in the same hardware, generally without any system performance or efficiency reduction. URFCs are being made in many forms, some of which are already small enough to be portable. Lawrence Livermore National Laboratory (LLNL) has worked with industrial partners to design, develop, and demonstrate high performance and high cycle life URFC systems. LLNL is also working with industrial partners to develop breakthroughs in lightweight pressure vessels that are necessary for URFC systems to achieve the specific energy advantages over rechargeable batteries. Proton Energy Systems, Inc. (Proton) is concurrently developing and commercializing URFC systems (UNIGEN' product line), in addition to PEM electrolyzer systems (HOGEN' product line), and primary PEM fuel cell systems. LLNL is constructing demonstration URFC units in order to persuade potential sponsors, often in their own conference rooms, that advanced applications based on URFC s are

  12. Amazing 7-day, super-simple, scripted guide to teaching or learning percents

    CERN Document Server

    Hernandez, Lisa

    2014-01-01

    Welcome to The Amazing 7-Day, Super-Simple, Scripted Guide to Teaching or Learning Percents. I have attempted to do just what the title says: make learning percents super simple. I have also attempted to make it fun and even ear-catching. The reason for this is not that I am a frustrated stand-up comic, but because in my fourteen years of teaching the subject, I have come to realize that my jokes, even the bad ones, have a crazy way of sticking in my students' heads. And should I use a joke (even a bad one) repetitively, the associations become embedded in their brains, many times to their cha

  13. Austrian Business Cycle Theory: Are 100 Percent Reserves Sufficient to Prevent a Business Cycle?

    Directory of Open Access Journals (Sweden)

    Philipp Bagus

    2010-02-01

    Full Text Available Authors in the Austrian tradition have made the credit expansion of a fractional reserve banking system as the prime cause of business cycles. Authors such as Selgin (1988 and White (1999 have argued that a solution to this problem would be a free banking system. They maintain that the competition between banks would limit the credit expansion effectively. Other authors such as Rothbard (1991 and Huerta de Soto (2006 have gone further and advocated a 100 percent reserve banking system ruling out credit expansion altogether. In this article it is argued that a 100 percent reserve system can still bring about business cycles through excessive maturity mismatching between deposits and loans.

  14. Prediction of upper flammability limit percent of pure compounds from their molecular structures.

    Science.gov (United States)

    Gharagheizi, Farhad

    2009-08-15

    In this study, a quantitative structure-property relationship (QSPR) is presented to predict the upper flammability limit percent (UFLP) of pure compounds. The obtained model is a five parameters multi-linear equation. The parameters of the model are calculated only from chemical structure. The average absolute error and squared correlation coefficient of the obtained model over all 865 pure compounds used to develop the model are 9.7%, and 0.92, respectively.

  15. A 20 GHz, 70 watt, 48 percent efficient space communications TWT

    Science.gov (United States)

    McDermott, M. A.; Tamashiro, R. N.

    A space qualifiable helix traveling wave tube capable of producing saturated output power levels above 70 watts at 48 percent total efficiency has been developed for 20 GHz satellite communications systems. The design approach stresses high reliability consistent with high power and efficiency. Advanced construction features incorporated into the design are a five stage collector, an M-type dispenser cathode, and a dynamic velocity tapered (DVT) helix.

  16. A hybrid sequential deposition fabrication technique for micro fuel cells

    Science.gov (United States)

    Stanley, Kevin G.; Czyzewska, Eva K.; Vanderhoek, Tom P. K.; Fan, Lilian L. Y.; Abel, Keith A.; Wu, Q. M. Jonathan; Parameswaran, M. Ash

    2005-10-01

    Micro fuel cell systems have elicited significant interest due to their promise for instantly rechargeable, longer duration and portable power. Most micro fuel cell systems are either built as miniaturized plate-and-frame or silicon-based microelectromechanical systems (MEMS). Plate-and-frame systems are difficult to fabricate smaller than 20 cm3. Existing micro fuel cell designs cannot meet the cost, scale and power requirements of some portable power markets. Traditional MEMS scaling advantages do not apply to fuel cells because the minimum area for the fuel cell is fixed by the catalyst area required for a given power output, and minimum volume set by mass transport limitations. We have developed a new hybrid technique that borrows from both micro and macro machining techniques to create fuel cells in the 1-20 cm3 range, suitable for cell phones, PDAs and smaller devices.

  17. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  18. BISON Theory Manual The Equations behind Nuclear Fuel Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hales, J. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williamson, R. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Novascone, S. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pastore, G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, B. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stafford, D. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gamble, K. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Perez, D. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Liu, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    BISON is a finite element-based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO particle fuel, and metallic rod and plate fuel. It solves the fully-coupled equations of thermomechanics and species diffusion, for either 2D axisymmetric or 3D geometries. Fuel models are included to describe temperature and burnup dependent thermal properties, fission product swelling, densification, thermal and irradiation creep, fracture, and fission gas production and release. Plasticity, irradiation growth, and thermal and irradiation creep models are implemented for clad materials. Models are also available to simulate gap heat transfer, mechanical contact, and the evolution of the gap/plenum pressure with plenum volume, gas temperature, and fission gas addition. BISON is based on the MOOSE framework and can therefore efficiently solve problems using standard workstations or very large high-performance computers. This document describes the theoretical and numerical foundations of BISON.

  19. Spent fuel container and a material thereof

    Energy Technology Data Exchange (ETDEWEB)

    Tsubota, Motoji; Kikuchi, Masaaki

    1998-12-04

    The material of a vessel for containing spent fuels of the present invention is prepared by compositing boron fibers in a volume rate of about 30% in a metal base of Al-Mg-Si alloy containing 3% of boron. It has characteristics of the maximum strength at break being 1.8 times or more at a room temperature and at 200degC, a neutron transmittance being about 1/4, and a specific gravity being 1/3 or less compared with those of conventional austenite stainless steel to which 6% of boron is added. With such a constitution, spent fuels can be used smoothly. (T.M.)

  20. Microfluidic fuel cells for energy generation.

    Science.gov (United States)

    Safdar, M; Jänis, J; Sánchez, S

    2016-08-07

    Sustainable energy generation is of recent interest due to a growing energy demand across the globe and increasing environmental issues caused by conventional non-renewable means of power generation. In the context of microsystems, portable electronics and lab-on-a-chip based (bio)chemical sensors would essentially require fully integrated, reliable means of power generation. Microfluidic-based fuel cells can offer unique advantages compared to conventional fuel cells such as high surface area-to-volume ratio, ease of integration, cost effectiveness and portability. Here, we summarize recent developments which utilize the potential of microfluidic devices for energy generation.