WorldWideScience

Sample records for volume particle sampling

  1. Sample volume and alignment analysis for an optical particle counter sizer, and other applications

    International Nuclear Information System (INIS)

    Holve, D.J.; Davis, G.W.

    1985-01-01

    Optical methods for particle size distribution measurements in practical high temperature environments are approaching feasibility and offer significant advantages over conventional sampling methods. A key requirement of single particle counting techniques is the need to know features of the sample volume intensity distribution which in general are a function of the particle scattering properties and optical system geometry. In addition, the sample volume intensity distribution is sensitive to system alignment and thus calculations of alignment sensitivity are required for assessment of practical alignment tolerances. To this end, an analysis of sample volume characteristics for single particle counters in general has been developed. Results from the theory are compared with experimental measurements and shown to be in good agreement. A parametric sensitivity analysis is performed and a criterion for allowable optical misalignment is derived for conditions where beam steering caused by fluctuating refractive-index gradients is significant

  2. Technical Note: New methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples

    Directory of Open Access Journals (Sweden)

    L. Renbaum-Wolff

    2013-01-01

    Full Text Available Herein, a method for the determination of viscosities of small sample volumes is introduced, with important implications for the viscosity determination of particle samples from environmental chambers (used to simulate atmospheric conditions. The amount of sample needed is < 1 μl, and the technique is capable of determining viscosities (η ranging between 10−3 and 103 Pascal seconds (Pa s in samples that cover a range of chemical properties and with real-time relative humidity and temperature control; hence, the technique should be well-suited for determining the viscosities, under atmospherically relevant conditions, of particles collected from environmental chambers. In this technique, supermicron particles are first deposited on an inert hydrophobic substrate. Then, insoluble beads (~1 μm in diameter are embedded in the particles. Next, a flow of gas is introduced over the particles, which generates a shear stress on the particle surfaces. The sample responds to this shear stress by generating internal circulations, which are quantified with an optical microscope by monitoring the movement of the beads. The rate of internal circulation is shown to be a function of particle viscosity but independent of the particle material for a wide range of organic and organic-water samples. A calibration curve is constructed from the experimental data that relates the rate of internal circulation to particle viscosity, and this calibration curve is successfully used to predict viscosities in multicomponent organic mixtures.

  3. Multiple sample, radioactive particle counting apparatus

    International Nuclear Information System (INIS)

    Reddy, R.R.V.; Kelso, D.M.

    1978-01-01

    An apparatus is described for determining the respective radioactive particle sample count being emitted from radioactive particle containing samples. It includes means for modulating the information on the radioactive particles being emitted from the samples, coded detecting means for sequentially detecting different respective coded combinations of the radioactive particles emitted from more than one but less than all of the samples, and processing the modulated information to derive the sample count for each sample. It includes a single light emitting crystal next to a number of samples, an encoder belt sequentially movable between the crystal and the samples. The encoder belt has a coded array of apertures to provide corresponding modulated light pulses from the crystal, and a photomultiplier tube to convert the modulated light pulses to decodable electrical signals for deriving the respective sample count

  4. A note on stereological estimation of the volume-weighted second moment of particle volume

    DEFF Research Database (Denmark)

    Jensen, E B; Sørensen, Flemming Brandt

    1991-01-01

    It is shown that for a variety of biological particle shapes, the volume-weighted second moment of particle volume can be estimated stereologically using only the areas of particle transects, which can be estimated manually by point-counting....

  5. Sampling of solid particles in clouds

    International Nuclear Information System (INIS)

    Feuillebois, F.; Lasek, A.; Scibilia, M.F.

    1986-01-01

    This paper is concerned with the sampling of small solid particles from clouds by an airborne apparatus to be mounted on an airplane for meteorological investigations. In the airborne experiment the particles entering the test tube should be as representative as possible of the upstream conditions ahead of the plane, in the real cloud. Due to the inertia of the particles, the proportion of the different sizes of particles entering the test tube depends on the location of the tube mouth. We present a method of calculating the real concentration in particles of different sizes, using the results of measurements executed during the flight of an airplane in a cloud. Two geometries are considered: the nose of the airplane, represented schematically by a hemisphere, and a wing represented by a (2D) Joukowski profile which matches well a NACA 0015 profile on its leading edge

  6. Aersol particle losses in sampling systems

    International Nuclear Information System (INIS)

    Fan, B.J.; Wong, F.S.; Ortiz, C.A.; Anand, N.K.; McFarland, A.R.

    1993-01-01

    When aerosols are sampled from stacks and ducts, it is usually necessary to transport them from the point of sampling to a location of collection or analysis. Losses of aerosol particles can occur in the inlet region of the probe, in straight horizontal and vertical tubes and in elbows. For probes in laminary flow, the Saffman lift force can cause substantial losses of particles in a short inlet region. An empirical model has been developed to predict probe inlet losses, which are often on the order of 40% for 10 μm AED particles. A user-friendly PC computer code, DEPOSITION, has been setup to model losses in transport systems. Experiments have been conducted to compare the actual aerosol particle losses in transport systems with those predicted by the DEPOSITION code

  7. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple

  8. Manipulation of magnetic particles in microfluidic volumes

    NARCIS (Netherlands)

    Gao, Y.; Reenen, van A.; Hulsen, M.A.; Jong, de A.M.; Prins, M.W.J.; Toonder, den J.M.J.

    2013-01-01

    This paper reports various ways of field-based manipulation of magnetic colloidal particles to enhance biochemical reactions in lab-on-chip systems [1]. For one (I), we show the possibility to assemble the suspended magnetic micro-particles as tunable re-formable micro-stirrers capable of performing

  9. A nested sampling particle filter for nonlinear data assimilation

    KAUST Repository

    Elsheikh, Ahmed H.; Hoteit, Ibrahim; Wheeler, Mary Fanett

    2014-01-01

    . The proposed nested sampling particle filter (NSPF) iteratively builds the posterior distribution by applying a constrained sampling from the prior distribution to obtain particles in high-likelihood regions of the search space, resulting in a reduction

  10. Particle-based non-photorealistic volume visualization

    NARCIS (Netherlands)

    Busking, S.; Vilanova, A.; Van Wijk, J.J.

    2007-01-01

    Non-photorealistic techniques are usually applied to produce stylistic renderings. In visualization, these techniques are often able to simplify data, producing clearer images than traditional visualization methods. We investigate the use of particle systems for visualizing volume datasets using

  11. Particle-based non-photorealistic volume visualization

    NARCIS (Netherlands)

    Busking, S.; Vilanova, A.; Wijk, van J.J.

    2008-01-01

    Non-photorealistic techniques are usually applied to produce stylistic renderings. In visualization, these techniques are often able to simplify data, producing clearer images than traditional visualization methods. We investigate the use of particle systems for visualizing volume datasets using

  12. Volume of the domain visited by N spherical Brownian particles

    International Nuclear Information System (INIS)

    Berezhkovskii, A.M.

    1994-01-01

    The average value and variance of the volume of the domain visited in time t by N spherical Brownian particles starting initially at the same point are presented as quadratures of the solutions of simple diffusion problems of the survival of a point Brownian particle in the presence of one and two spherical traps. As an illustration, explicit time dependences are obtained for the average volume in one and three dimensions

  13. Electroweak properties of particle physics. Volume 2

    International Nuclear Information System (INIS)

    Aleksan, R.; Ellis, N.; Falvard, A.; Fayard, L.; Frere, J.M.; Kuehn, J.H.; Le Yaouanc, A.; Roudeau, P.; Wormser, G.

    1991-01-01

    The 23th GIf school was held at Ecole Polytechnique, Palaiseau, France from 16 to 20 September 1991. The subject was large: Electroweak properties of heavy quarks. The second part has been devoted to B physics at hadron machines, search for Top, Charm particle physics and Quarkonium physics

  14. Sample to moderator volume ratio effects in neutron yield from a PGNAA setup

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, KFUPM Box 1815, Dhahran-31261 (Saudi Arabia)]. E-mail: aanaqvi@kfupm.edu.sa; Fazal-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, KFUPM Box 1815, Dhahran-31261 (Saudi Arabia); Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, KFUPM Box 1815, Dhahran-31261 (Saudi Arabia); Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, KFUPM Box 1815, Dhahran-31261 (Saudi Arabia)

    2007-02-15

    Performance of a prompt gamma ray neutron activation analysis (PGNAA) setup depends upon thermal neutron yield at the PGNAA sample location. For a moderator, which encloses a sample, thermal neutron intensity depends upon the effective moderator volume excluding the void volume due to sample volume. A rectangular moderator assembly has been designed for the King Fahd University of Petroleum and Minerals (KFUPM) PGNAA setup. The thermal and fast neutron yield has been measured inside the sample cavity as a function of its front moderator thickness using alpha particle tracks density and recoil proton track density inside the CR-39 nuclear track detectors (NTDs). The thermal/fast neutron yield ratio, obtained from the alpha particle tracks density to proton tracks density ratio in the NTDs, shows an inverse correlation with sample to moderator volume ratio. Comparison of the present results with the previously published results of smaller moderators of the KFUPM PGNAA setup confirms the observation.

  15. Device for sampling HTGR recycle fuel particles

    International Nuclear Information System (INIS)

    Suchomel, R.R.; Lackey, W.J.

    1977-03-01

    Devices for sampling High-Temperature Gas-Cooled Reactor fuel microspheres were evaluated. Analysis of samples obtained with each of two specially designed passive samplers were compared with data generated by more common techniques. A ten-stage two-way sampler was found to produce a representative sample with a constant batch-to-sample ratio

  16. Thermodynamics with pressure and volume under charged particle absorption

    Science.gov (United States)

    Gwak, Bogeun

    2017-11-01

    We investigate the variation of the charged anti-de Sitter black hole under charged particle absorption by considering thermodynamic volume. When the energy of the particle is considered to contribute to the internal energy of the black hole, the variation exactly corresponds to the prediction of the first law of thermodynamics. Nevertheless, we find the decrease of the Bekenstein-Hawking entropy for extremal and near-extremal black holes under the absorption, which is an irreversible process. This violation of the second law of thermodynamics is only found when considering thermodynamic volume. We test the weak cosmic censorship conjecture affected by the violation. Fortunately, the conjecture is still valid, but extremal and near-extremal black holes do not change their configurations when any particle enters the black hole. This result is quite different from the case in which thermodynamic volume is not considered.

  17. A nested sampling particle filter for nonlinear data assimilation

    KAUST Repository

    Elsheikh, Ahmed H.

    2014-04-15

    We present an efficient nonlinear data assimilation filter that combines particle filtering with the nested sampling algorithm. Particle filters (PF) utilize a set of weighted particles as a discrete representation of probability distribution functions (PDF). These particles are propagated through the system dynamics and their weights are sequentially updated based on the likelihood of the observed data. Nested sampling (NS) is an efficient sampling algorithm that iteratively builds a discrete representation of the posterior distributions by focusing a set of particles to high-likelihood regions. This would allow the representation of the posterior PDF with a smaller number of particles and reduce the effects of the curse of dimensionality. The proposed nested sampling particle filter (NSPF) iteratively builds the posterior distribution by applying a constrained sampling from the prior distribution to obtain particles in high-likelihood regions of the search space, resulting in a reduction of the number of particles required for an efficient behaviour of particle filters. Numerical experiments with the 3-dimensional Lorenz63 and the 40-dimensional Lorenz96 models show that NSPF outperforms PF in accuracy with a relatively smaller number of particles. © 2013 Royal Meteorological Society.

  18. Sampling and identification of gaseous and particle bounded air pollutants

    International Nuclear Information System (INIS)

    Kettrup, A.

    1993-01-01

    Air pollutants are gaseous, components of aerosols or particle bounded. Sampling, sample preparation, identification and quantification of compounds depend from kind and chemical composition of the air pollutants. Quality assurance of analytical data must be guaranted. (orig.) [de

  19. Automated force volume image processing for biological samples.

    Directory of Open Access Journals (Sweden)

    Pavel Polyakov

    2011-04-01

    Full Text Available Atomic force microscopy (AFM has now become a powerful technique for investigating on a molecular level, surface forces, nanomechanical properties of deformable particles, biomolecular interactions, kinetics, and dynamic processes. This paper specifically focuses on the analysis of AFM force curves collected on biological systems, in particular, bacteria. The goal is to provide fully automated tools to achieve theoretical interpretation of force curves on the basis of adequate, available physical models. In this respect, we propose two algorithms, one for the processing of approach force curves and another for the quantitative analysis of retraction force curves. In the former, electrostatic interactions prior to contact between AFM probe and bacterium are accounted for and mechanical interactions operating after contact are described in terms of Hertz-Hooke formalism. Retraction force curves are analyzed on the basis of the Freely Jointed Chain model. For both algorithms, the quantitative reconstruction of force curves is based on the robust detection of critical points (jumps, changes of slope or changes of curvature which mark the transitions between the various relevant interactions taking place between the AFM tip and the studied sample during approach and retraction. Once the key regions of separation distance and indentation are detected, the physical parameters describing the relevant interactions operating in these regions are extracted making use of regression procedure for fitting experiments to theory. The flexibility, accuracy and strength of the algorithms are illustrated with the processing of two force-volume images, which collect a large set of approach and retraction curves measured on a single biological surface. For each force-volume image, several maps are generated, representing the spatial distribution of the searched physical parameters as estimated for each pixel of the force-volume image.

  20. A suspended-particle rosette multi-sampler for discrete biogeochemical sampling in low-particle-density waters

    Energy Technology Data Exchange (ETDEWEB)

    Breier, J. A.; Rauch, C. G.; McCartney, K.; Toner, B. M.; Fakra, S. C.; White, S. N.; German, C. R.

    2010-06-22

    To enable detailed investigations of early stage hydrothermal plume formation and abiotic and biotic plume processes we developed a new oceanographic tool. The Suspended Particulate Rosette sampling system has been designed to collect geochemical and microbial samples from the rising portion of deep-sea hydrothermal plumes. It can be deployed on a remotely operated vehicle for sampling rising plumes, on a wire-deployed water rosette for spatially discrete sampling of non-buoyant hydrothermal plumes, or on a fixed mooring in a hydrothermal vent field for time series sampling. It has performed successfully during both its first mooring deployment at the East Pacific Rise and its first remotely-operated vehicle deployments along the Mid-Atlantic Ridge. It is currently capable of rapidly filtering 24 discrete large-water-volume samples (30-100 L per sample) for suspended particles during a single deployment (e.g. >90 L per sample at 4-7 L per minute through 1 {mu}m pore diameter polycarbonate filters). The Suspended Particulate Rosette sampler has been designed with a long-term goal of seafloor observatory deployments, where it can be used to collect samples in response to tectonic or other events. It is compatible with in situ optical sensors, such as laser Raman or visible reflectance spectroscopy systems, enabling in situ particle analysis immediately after sample collection and before the particles alter or degrade.

  1. Volume reflection efficiency for negative particles in bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Biryukov, V.M., E-mail: valery.biryukov@ihep.ru

    2017-02-10

    We suggest a formula for the efficiency of a single volume reflection of negatively charged particles in bent crystal planes and compare it to recent experiments at SLAC, MAMI and CERN with electrons and negative pions in the energy range from 0.855 to 150 GeV in Si crystals. We show that Lindhard reversibility rule provides sufficient basis for quantitative understanding of these experiments.

  2. Systematic Investigation of Magnetostriction in Composite Magnetorheological Elastomers: the Effect of Particle Shape, Alignment, and Volume Fraction

    Science.gov (United States)

    Kassner, Christopher; Rieger, William; von Lockette, Paris; Lofland, Samuel

    2013-03-01

    We have completed a study of the magnetoelastic properties of several types of magnetorheological elastomers (MREs), composites consisting of magnetic particles cured in an elastic matrix. We have made a number of samples with different particle arrangements (pseudo-random and aligned), volume fraction, and particle shape (rods, spheres, and disks) and measured the field dependent strain in order to determine the magnetostriction. We found that the magnetostriction in these samples is highly dependent on the sample particle shape (aspect ratio) and volume fraction and ordering to a lesser extent. While much of the past work has focused on spherical particles, our results indicate that both rods and disks can yield enhanced results. We discuss our findings in terms of magnetic energy of the particles and elastic energy of the matrix. We then consider the issue of optimization. This work was supported in part by NSF Grant CMMI - 0927326.

  3. Volume Ray Casting with Peak Finding and Differential Sampling

    KAUST Repository

    Knoll, A.; Hijazi, Y.; Westerteiger, R.; Schott, M.; Hansen, C.; Hagen, H.

    2009-01-01

    classification. In this paper, we introduce a method for rendering such features by explicitly solving for isovalues within the volume rendering integral. In addition, we present a sampling strategy inspired by ray differentials that automatically matches

  4. Laboratory evaluation of a gasifier particle sampling system using model compounds of different particle morphology

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Patrik T.; Malik, Azhar; Pagels, Joakim; Lindskog, Magnus; Rissler, Jenny; Gudmundsson, Anders; Bohgard, Mats; Sanati, Mehri [Lund University, Division of Ergonomics and Aerosol Technology, P.O. Box 118, Lund (Sweden)

    2011-07-15

    The objective of this work was to design and evaluate an experimental setup to be used for field studies of particle formation in biomass gasification processes. The setup includes a high-temperature dilution probe and a denuder to separate solid particles from condensable volatile material. The efficiency of the setup to remove volatile material from the sampled stream and the influence from condensation on particles with different morphologies is presented. In order to study the sampling setup model, aerosols were created with a nebulizer to produce compact and solid KCl particles and a diffusion flame burner to produce agglomerated and irregular soot particles. The nebulizer and soot generator was followed by an evaporation-condensation section where volatile material, dioctylsebacete (DOS), was added to the system as a tar model compound. The model aerosol particles were heated to 200 C to create a system containing both solid particles and volatile organic material in gas phase. The heated aerosol particles were sampled and diluted at the same temperature with the dilution probe. Downstream the probe, the DOS was adsorbed in the denuder. This was achieved by slowly decreasing the temperature of the diluted sample towards ambient level in the denuder. Thereby the supersaturation of organic vapors was reduced which decreased the probability for tar condensation and nucleation of new particles. Both the generation system and the sampling technique gave reproducible results. A DOS collection efficiency of >99% was achieved if the denuder inlet concentration was diluted to less than 1-6 mg/m{sup 3} depending on the denuder flow rate. Concentrations higher than that lead to significant impact on the resulting KCl size distribution. The choice of model compounds was done to study the effect from the particle morphology on the achieved particle characteristics after the sampling setup. When similar amounts of volatile material condensed on soot agglomerates and

  5. Interference of identical particles from entanglement to boson-sampling

    International Nuclear Information System (INIS)

    Tichy, Malte C

    2014-01-01

    Progress in the reliable preparation, coherent propagation and efficient detection of many-body states has recently brought collective quantum phenomena of many identical particles into the spotlight. This tutorial introduces the physics of many-boson and many-fermion interference required for the description of current experiments and for the understanding of novel approaches to quantum computing. The field is motivated via the two-particle case, for which the uncorrelated, classical dynamics of distinguishable particles is compared to the quantum behaviour of identical bosons and fermions. Bunching of bosons is opposed to anti-bunching of fermions, while both species constitute equivalent sources of bipartite two-level entanglement. The realms of indistinguishable and distinguishable particles are connected by a monotonic transition, on a scale defined by the coherence length of the interfering particles. As we move to larger systems, any attempt to understand many particles via the two-particle paradigm fails: in contrast to two-particle bunching and anti-bunching, the very same signatures can be exhibited by bosons and fermions, and coherent effects dominate over statistical behaviour. The simulation of many-boson interference, termed boson-sampling, entails a qualitatively superior computational complexity when compared to fermions. The problem can be tamed by an artificially designed symmetric instance, which allows a systematic understanding of coherent bosonic and fermionic signatures for arbitrarily large particle numbers, and a means to stringently assess many-particle interference. The hierarchy between bosons and fermions also characterizes multipartite entanglement generation, for which bosons again clearly outmatch fermions. Finally, the quantum-to-classical transition between many indistinguishable and many distinguishable particles features non-monotonic structures, which dismisses the single-particle coherence length as unique indicator for

  6. Volume changes upon heating of aerosol particles from biomass burning using transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Kouji [Meteorological Research Inst., Tsukuba (Japan). Atmospheric Environment and Applied Meteorology Research Dept.; Sedlacek, Arthur J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Environmental and Climate Sciences; Kleinman, Lawrence [Brookhaven National Lab. (BNL), Upton, NY (United States). Environmental and Climate Sciences; Chand, Duli [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Sciences and Global Change Division; Hubbe, John M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Sciences and Global Change Division; Buseck, Peter R. [Arizona State Univ., Tempe, AZ (United States). School of Earth and Space Exploration and School of Molecular Sciences

    2017-09-26

    The responses of aerosol particles to heating are important for measurements of their chemical, physical, and optical properties, classification, and determination of origin. However, the thermal behavior of organic aerosol particles is largely unknown. We provide a method to analyze such thermal behavior through heating from room temperature to >600°C by using a heating holder within a transmission electron microscope (TEM). Here we describe in-situ shape and size changes and variations in the compositions of individual particles before and after heating. We use ambient samples from wildland and agricultural biomass fires in North America collected during the 2013 Biomass Burn Observation Project (BBOP). The results indicate that individual tar balls (TB; spherical organic material) from biomass burning retained, on average, up to 30% of their volume when heated to 600°C. Chemical analysis reveals that K and Na remain in the residues, whereas S and O were lost. In contrast to bulk sample measurements of carbonaceous particles using thermal/optical carbon analyzers, our single-particle results imply that many individual organic particles consist of multiple types of organic matter having different thermal stabilities. Beyond TBs, our results suggest that because of their thermal stability some organic particles may not be detectable by using aerosol mass spectrometry or thermal/optical carbon analyzers. This result can lead to an underestimate of the abundance of TBs and other organic particles, and therefore biomass burning may have more influence than currently recognized in regional and global climate models.

  7. Absorbed fractions for alpha particles in ellipsoidal volumes

    International Nuclear Information System (INIS)

    Amato, Ernesto; Baldari, Sergio; Italiano, Antonio

    2013-01-01

    Internal dosimetry of alpha particles is gaining attention due to the increasing applications in cancer treatment and also for the assessment of environmental contamination from radionuclides. We developed a Monte Carlo simulation in GEANT4 in order to calculate the absorbed fractions for monoenergetic alpha particles in the energy interval between 0.1 and 10 MeV, uniformly distributed in ellipsoids made of soft tissue. For each volume, we simulated a spherical shape, three oblate and three prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a ‘generalized radius’ was found; and the dependence of the fit parameters on the alpha energy is discussed and fitted by parametric functions. With the proposed formulation, the absorbed fraction for alpha particles in the energy range explored can be calculated for volumes and for ellipsoidal shapes of practical interest. This method can be applied to the evaluation of absorbed fraction from alpha-emitting radionuclides. The contribution to the deposited energy coming from electron and photon emissions can be accounted for exploiting the specific formulations previously introduced. As an example of application, the dosimetry of 213 Bi and its decay chain in ellipsoids is reported. (paper)

  8. TRU Waste Sampling Program: Volume I. Waste characterization

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Kudera, D.E.

    1985-09-01

    Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies

  9. Particle field diagnose using angular multiplexing volume holography

    Science.gov (United States)

    Zhao, Yu; Li, Zeren; Luo, Zhenxiong; Jun, Li; Zhong, Jie; Ye, Yan; Li, Shengfu; Zhu, Jianhua

    2017-08-01

    The problem of particle field diagnosing using holography can be met in many areas. But single frame hologram can only catch one moment of the fast event, which can't reveal the change process of an unrepeatable fast event. For events in different time-scale, different solution should be used. We did this work to record a laser induced particle field in the time-scale of tens of micron seconds. A laser of pulse sequence mode is applied to provide 10 pulses, the energy and time interval of whom is 150mJ and 1μs. Four pockels cells are employed to pick up the last four pulses for holographic recording, the other pulses are controlled to pre-expose the photopolymer based recording material, which can enhance photosensitivity of the photopolymer during the moment of holographic recording. The angular multiplexing technique and volume holography is accepted to avoid shifting the photopolymer between each shot. Another Q-switch YAG laser (pulse energy 100mJ, pulse width 10ns) is applied to produce the fast event. As a result, we successfully caught the motion process of the laser induced particle field. The time interval of each frame is 1μs, the angular range of the four references is 14°, and the diffraction efficiency of each hologram is less than 2%. After a basic analysis, this optical system could catch more holograms through a compact design.

  10. Adaptive sampling method in deep-penetration particle transport problem

    International Nuclear Information System (INIS)

    Wang Ruihong; Ji Zhicheng; Pei Lucheng

    2012-01-01

    Deep-penetration problem has been one of the difficult problems in shielding calculation with Monte Carlo method for several decades. In this paper, a kind of particle transport random walking system under the emission point as a sampling station is built. Then, an adaptive sampling scheme is derived for better solution with the achieved information. The main advantage of the adaptive scheme is to choose the most suitable sampling number from the emission point station to obtain the minimum value of the total cost in the process of the random walk. Further, the related importance sampling method is introduced. Its main principle is to define the importance function due to the particle state and to ensure the sampling number of the emission particle is proportional to the importance function. The numerical results show that the adaptive scheme under the emission point as a station could overcome the difficulty of underestimation of the result in some degree, and the adaptive importance sampling method gets satisfied results as well. (authors)

  11. New adaptive sampling method in particle image velocimetry

    International Nuclear Information System (INIS)

    Yu, Kaikai; Xu, Jinglei; Tang, Lan; Mo, Jianwei

    2015-01-01

    This study proposes a new adaptive method to enable the number of interrogation windows and their positions in a particle image velocimetry (PIV) image interrogation algorithm to become self-adapted according to the seeding density. The proposed method can relax the constraint of uniform sampling rate and uniform window size commonly adopted in the traditional PIV algorithm. In addition, the positions of the sampling points are redistributed on the basis of the spring force generated by the sampling points. The advantages include control of the number of interrogation windows according to the local seeding density and smoother distribution of sampling points. The reliability of the adaptive sampling method is illustrated by processing synthetic and experimental images. The synthetic example attests to the advantages of the sampling method. Compared with that of the uniform interrogation technique in the experimental application, the spatial resolution is locally enhanced when using the proposed sampling method. (technical design note)

  12. Experimental study on the particles deposition in the sampling duct

    Energy Technology Data Exchange (ETDEWEB)

    Vendel, J.; Charuau, J. [Institut de Protection et de Surete Nucleaire, Yvette (France)

    1995-02-01

    A high standard of protection against the harmful effects of radioactive aerosol dissemination requires a measurement, as representative as possible, of their concentration. This measurement depends on the techniques used for aerosol sampling and transfer to the detector, as well as on the location of the latter with respect to the potential sources. The aeraulic design of the apparatus is also an important factor. Once collected the aerosol particles often have to travel through a variably shaped duct to the measurement apparatus. This transport is responsible for losses due to the particles deposition on the walls, leading to a distortion on the concentration measurements and a change in the particle size distribution. To estimate and minimize measurement errors it is important to determine the optimal transport conditions when designing a duct; its diameter and material, the radius of curvature of the bends and the flow conditions must be defined in particular. This paper presents an experimental study in order to determine, for each deposition mechanism, the retained fraction, or the deposition velocity for different flow regimes. This study has pointed out that it exists a favourable flow regime for the particle transport through the sampling ducts (2 500 < Re < 5 000). It has been established, for any particle diameters, equations to predict the aerosol penetration in smooth-walled cylindrical metal ducts.

  13. Rock sampling. [method for controlling particle size distribution

    Science.gov (United States)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  14. Volume Ray Casting with Peak Finding and Differential Sampling

    KAUST Repository

    Knoll, A.

    2009-11-01

    Direct volume rendering and isosurfacing are ubiquitous rendering techniques in scientific visualization, commonly employed in imaging 3D data from simulation and scan sources. Conventionally, these methods have been treated as separate modalities, necessitating different sampling strategies and rendering algorithms. In reality, an isosurface is a special case of a transfer function, namely a Dirac impulse at a given isovalue. However, artifact-free rendering of discrete isosurfaces in a volume rendering framework is an elusive goal, requiring either infinite sampling or smoothing of the transfer function. While preintegration approaches solve the most obvious deficiencies in handling sharp transfer functions, artifacts can still result, limiting classification. In this paper, we introduce a method for rendering such features by explicitly solving for isovalues within the volume rendering integral. In addition, we present a sampling strategy inspired by ray differentials that automatically matches the frequency of the image plane, resulting in fewer artifacts near the eye and better overall performance. These techniques exhibit clear advantages over standard uniform ray casting with and without preintegration, and allow for high-quality interactive volume rendering with sharp C0 transfer functions. © 2009 IEEE.

  15. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    Science.gov (United States)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 µm, while the Ice-CVI also separated many submicron IPR. As strictly parallel sampling could not be performed, a part of the discrepancies between the different techniques may result from

  16. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    Science.gov (United States)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.

    2015-04-01

    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200

  17. Real-time particle volume fraction measurement in centrifuges by wireless electrical resistance detector

    International Nuclear Information System (INIS)

    Nagae, Fumiya; Okawa, Kazuya; Matsuno, Shinsuke; Takei, Masahiro; Zhao Tong; Ichijo, Noriaki

    2015-01-01

    In this study, wireless electrical resistance detector is developed as first step in order to develop electrical resistance tomography (ERT) that are attached wireless communication, and miniaturized. And the particle volume fraction measurement results appropriateness is qualitatively examined. The real-time particle volume fraction measurement is essential for centrifuges, because rotational velocity and supply should be controlled based on the results in order to obtain the effective separation, shorten process time and save energy. However, a technique for the particle volume fraction measurement in centrifuges has not existed yet. In other words, the real-time particle volume fraction measurement in centrifuges becomes innovative technologies. The experiment device reproduces centrifugation in two-phase using particle and salt solution as measuring object. The particle concentration is measured changing rotational velocity, supply and measurement section position. The measured concentration changes coincide with anticipated tendency of concentration changes. Therefore the particle volume fraction measurement results appropriateness are qualitatively indicated. (author)

  18. Sampling soils for 137Cs using various field-sampling volumes

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Schofield, T.G.; White, G.C.; Trujillo, G.

    1981-10-01

    The sediments from a liquid effluent receiving area at the Los Alamos National Laboratory and soils from intensive study area in the fallout pathway of Trinity were sampled for 137 Cs using 25-, 500-, 2500-, and 12 500-cm 3 field sampling volumes. A highly replicated sampling program was used to determine mean concentrations and inventories of 137 Cs at each site, as well as estimates of spatial, aliquoting, and counting variance components of the radionuclide data. The sampling methods were also analyzed as a function of soil size fractions collected in each field sampling volume and of the total cost of the program for a given variation in the radionuclide survey results. Coefficients of variation (CV) of 137 Cs inventory estimates ranged from 0.063 to 0.14 for Mortandad Canyon sediments, where CV values for Trinity soils were observed from 0.38 to 0.57. Spatial variance components of 137 Cs concentration data were usually found to be larger than either the aliquoting or counting variance estimates and were inversely related to field sampling volume at the Trinity intensive site. Subsequent optimization studies of the sampling schemes demonstrated that each aliquot should be counted once, and that only 2 to 4 aliquots out of an many as 30 collected need be assayed for 137 Cs. The optimization studies showed that as sample costs increased to 45 man-hours of labor per sample, the variance of the mean 137 Cs concentration decreased dramatically, but decreased very little with additional labor

  19. Application of digital sampling techniques to particle identification

    International Nuclear Information System (INIS)

    Bardelli, L.; Poggi, G.; Bini, M.; Carraresi, L.; Pasquali, G.; Taccetti, N.

    2003-01-01

    An application of digital sampling techniques is presented which can greatly simplify experiments involving sub-nanosecond time-mark determinations and energy measurements with nuclear detectors, used for Pulse Shape Analysis and Time of Flight measurements in heavy ion experiments. In this work a 100 M Sample/s, 12 bit analog to digital converter has been used: examples of this technique applied to Silicon and CsI(Tl) detectors in heavy-ions experiments involving particle identification via Pulse Shape analysis and Time of Flight measurements are presented. The system is suited for applications to large detector arrays and to different kinds of detectors. Some preliminary results regarding the simulation of current signals in Silicon detectors are also discussed. (authors)

  20. Pulsed Direct Current Electrospray: Enabling Systematic Analysis of Small Volume Sample by Boosting Sample Economy.

    Science.gov (United States)

    Wei, Zhenwei; Xiong, Xingchuang; Guo, Chengan; Si, Xingyu; Zhao, Yaoyao; He, Muyi; Yang, Chengdui; Xu, Wei; Tang, Fei; Fang, Xiang; Zhang, Sichun; Zhang, Xinrong

    2015-11-17

    We had developed pulsed direct current electrospray ionization mass spectrometry (pulsed-dc-ESI-MS) for systematically profiling and determining components in small volume sample. Pulsed-dc-ESI utilized constant high voltage to induce the generation of single polarity pulsed electrospray remotely. This method had significantly boosted the sample economy, so as to obtain several minutes MS signal duration from merely picoliter volume sample. The elongated MS signal duration enable us to collect abundant MS(2) information on interested components in a small volume sample for systematical analysis. This method had been successfully applied for single cell metabolomics analysis. We had obtained 2-D profile of metabolites (including exact mass and MS(2) data) from single plant and mammalian cell, concerning 1034 components and 656 components for Allium cepa and HeLa cells, respectively. Further identification had found 162 compounds and 28 different modification groups of 141 saccharides in a single Allium cepa cell, indicating pulsed-dc-ESI a powerful tool for small volume sample systematical analysis.

  1. Influence of volume of sample processed on detection of Chlamydia trachomatis in urogenital samples by PCR

    NARCIS (Netherlands)

    Goessens, W H; Kluytmans, J A; den Toom, N; van Rijsoort-Vos, T H; Niesters, B G; Stolz, E; Verbrugh, H A; Quint, W G

    In the present study, it was demonstrated that the sensitivity of the PCR for the detection of Chlamydia trachomatis is influenced by the volume of the clinical sample which is processed in the PCR. An adequate sensitivity for PCR was established by processing at least 4%, i.e., 80 microliters, of

  2. New experimental procedure for measuring volume magnetostriction on powder samples

    International Nuclear Information System (INIS)

    Rivero, G.; Multigner, M.; Valdes, J.; Crespo, P.; Martinez, A.; Hernando, A.

    2005-01-01

    Conventional techniques used for volume magnetostriction measurements, as strain gauge or cantilever method, are very useful for ribbons or thin films but cannot be applied when the samples are in powder form. To overcome this problem a new experimental procedure has been developed. In this work, the experimental set-up is described, together with the results obtained in amorphous FeCuZr powders, which exhibit a strong dependence of the magnetization on the strength of the applied magnetic field. The magnetostriction measurements presented in this work point out that this dependence is related to a magnetovolume effect

  3. An evaluation of soil sampling for 137Cs using various field-sampling volumes.

    Science.gov (United States)

    Nyhan, J W; White, G C; Schofield, T G; Trujillo, G

    1983-05-01

    The sediments from a liquid effluent receiving area at the Los Alamos National Laboratory and soils from an intensive study area in the fallout pathway of Trinity were sampled for 137Cs using 25-, 500-, 2500- and 12,500-cm3 field sampling volumes. A highly replicated sampling program was used to determine mean concentrations and inventories of 137Cs at each site, as well as estimates of spatial, aliquoting, and counting variance components of the radionuclide data. The sampling methods were also analyzed as a function of soil size fractions collected in each field sampling volume and of the total cost of the program for a given variation in the radionuclide survey results. Coefficients of variation (CV) of 137Cs inventory estimates ranged from 0.063 to 0.14 for Mortandad Canyon sediments, whereas CV values for Trinity soils were observed from 0.38 to 0.57. Spatial variance components of 137Cs concentration data were usually found to be larger than either the aliquoting or counting variance estimates and were inversely related to field sampling volume at the Trinity intensive site. Subsequent optimization studies of the sampling schemes demonstrated that each aliquot should be counted once, and that only 2-4 aliquots out of as many as 30 collected need be assayed for 137Cs. The optimization studies showed that as sample costs increased to 45 man-hours of labor per sample, the variance of the mean 137Cs concentration decreased dramatically, but decreased very little with additional labor.

  4. Proceeding of the 1999 Particle Accelerator Conference. Volume 1

    Science.gov (United States)

    1999-04-02

    Instituto De Fisica Da Universidade De Sijo Paulo, Brazil; F.T.Degasperi, Faculdade De Tecnologia De Silo Paulo, Brazil...1524 Methods and Complex of Programs for Radiating Particle 3D of Nonlinear Dynamics Analysis -- Y.Alexahin, JIN R , D ubna, R ussia...1623 3d Multispecies Nonlinear Perturbative Particle Simulation of Intense Particle Beams -- Hong

  5. Sampling considerations when analyzing micrometric-sized particles in a liquid jet using laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Faye, C.B.; Amodeo, T.; Fréjafon, E. [Institut National de l' Environnement Industriel et des Risques (INERIS/DRC/CARA/NOVA), Parc Technologique Alata, BP 2, 60550 Verneuil-En-Halatte (France); Delepine-Gilon, N. [Institut des Sciences Analytiques, 5 rue de la Doua, 69100 Villeurbanne (France); Dutouquet, C., E-mail: christophe.dutouquet@ineris.fr [Institut National de l' Environnement Industriel et des Risques (INERIS/DRC/CARA/NOVA), Parc Technologique Alata, BP 2, 60550 Verneuil-En-Halatte (France)

    2014-01-01

    Pollution of water is a matter of concern all over the earth. Particles are known to play an important role in the transportation of pollutants in this medium. In addition, the emergence of new materials such as NOAA (Nano-Objects, their Aggregates and their Agglomerates) emphasizes the need to develop adapted instruments for their detection. Surveillance of pollutants in particulate form in waste waters in industries involved in nanoparticle manufacturing and processing is a telling example of possible applications of such instrumental development. The LIBS (laser-induced breakdown spectroscopy) technique coupled with the liquid jet as sampling mode for suspensions was deemed as a potential candidate for on-line and real time monitoring. With the final aim in view to obtain the best detection limits, the interaction of nanosecond laser pulses with the liquid jet was examined. The evolution of the volume sampled by laser pulses was estimated as a function of the laser energy applying conditional analysis when analyzing a suspension of micrometric-sized particles of borosilicate glass. An estimation of the sampled depth was made. Along with the estimation of the sampled volume, the evolution of the SNR (signal to noise ratio) as a function of the laser energy was investigated as well. Eventually, the laser energy and the corresponding fluence optimizing both the sampling volume and the SNR were determined. The obtained results highlight intrinsic limitations of the liquid jet sampling mode when using 532 nm nanosecond laser pulses with suspensions. - Highlights: • Micrometric-sized particles in suspensions are analyzed using LIBS and a liquid jet. • The evolution of the sampling volume is estimated as a function of laser energy. • The sampling volume happens to saturate beyond a certain laser fluence. • Its value was found much lower than the beam diameter times the jet thickness. • Particles proved not to be entirely vaporized.

  6. Evaluation of Gravimetric Tar Determination in Particle Samples

    DEFF Research Database (Denmark)

    Hindsgaul, Claus; Henriksen, Ulrik B.; Bentzen, Jens Dall

    2000-01-01

    A comparison of tar determination of particles from a down-draft gasifier using soxhlet extractions (with anisole, dichloromethane and acetone) and pyrolysis of the particles.......A comparison of tar determination of particles from a down-draft gasifier using soxhlet extractions (with anisole, dichloromethane and acetone) and pyrolysis of the particles....

  7. Monte Carlo parametric importance sampling with particle tracks scaling

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.

    1981-01-01

    A method for Monte Carlo importance sampling with parametric dependence is proposed. It depends upon obtaining over a single stage the overall functional dependence of the variance on the importance function parameter over a broad range of its values. Results corresponding to minimum variance are adopted and others rejected. The proposed method is applied to the finite slab penetration problem. When the exponential transformation is used, our method involves scaling of the generated particle tracks, and is a new application of Morton's method of similar trajectories. The method constitutes a generalization of Spanier's multistage importance sampling method, obtained by proper weighting over a single stage the curves he obtains over several stages, and preserves the statistical correlations between histories. It represents an extension of a theory by Frolov and Chentsov on Monte Carlo calculations of smooth curves to surfaces and to importance sampling calculations. By the proposed method, it seems possible to systematically arrive at minimum variance results and to avoid the infinite variances and effective biases sometimes observed in this type of calculation. (orig.) [de

  8. Sample holder for studying temperature dependent particle guiding

    International Nuclear Information System (INIS)

    Bereczky, R.J.; Toekesi, K.; Kowarik, G.; Aumayr, F.

    2011-01-01

    Complete text of publication follows. The so called guiding effect is a complex process involving the interplay of a large number of charged particles with a solid. Although many research groups joined this field and carried out various experiments with insulator capillaries many details of the interactions are still unknown. We investigated the temperature dependence of the guiding since it opens new possibilities both for a fundamental understanding of the guiding phenomenon and for applications. For the temperature dependent guiding experiments a completely new heatable sample holder was designed. We developed and built such a heatable sample holder to make accurate and reproducible studies of the temperature dependence of the ion guiding effect possible. The target holder (for an exploded view see Fig. 1) consists of two main parts, the front and the back plates. The two plates of the sample holder, which function as an oven, are made of copper. These parts surround the capillary in order to guarantee a uniform temperature along the whole tube. The temperature of the copper parts is monitored by a K-Type thermocouple. Stainless steel coaxial heaters surrounding the oven are used for heating. The heating power up to a few watts is regulated by a PID controller. Cooling of the capillary is achieved by a copper feed-through connected to a liquid nitrogen bath outside the UHV chamber. This solution allows us to change the temperature of the sample from -30 deg C up to 90 deg C. Our experiments with this newly developed temperature regulated capillary holder show that the glass temperature (i.e. conductivity) can be used to control the guiding properties of the glass capillary and adjust the conditions from guiding at room temperature to simple geometrical transmission at elevated temperatures. This holds the promise to investigate the effect of conductivity on particle transport (build-up and removal of charge patches) through capillaries in more details

  9. National comparison on volume sample activity measurement methods

    International Nuclear Information System (INIS)

    Sahagia, M.; Grigorescu, E.L.; Popescu, C.; Razdolescu, C.

    1992-01-01

    A national comparison on volume sample activity measurements methods may be regarded as a step toward accomplishing the traceability of the environmental and food chain activity measurements to national standards. For this purpose, the Radionuclide Metrology Laboratory has distributed 137 Cs and 134 Cs water-equivalent solid standard sources to 24 laboratories having responsibilities in this matter. Every laboratory has to measure the activity of the received source(s) by using its own standards, equipment and methods and report the obtained results to the organizer. The 'measured activities' will be compared with the 'true activities'. A final report will be issued, which plans to evaluate the national level of precision of such measurements and give some suggestions for improvement. (Author)

  10. VOLUME STUDY WITH HIGH DENSITY OF PARTICLES BASED ON CONTOUR AND CORRELATION IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Tatyana Yu. Nikolaeva

    2014-11-01

    Full Text Available The subject of study is the techniques of particle statistics evaluation, in particular, processing methods of particle images obtained by coherent illumination. This paper considers the problem of recognition and statistical accounting for individual images of small scattering particles in an arbitrary section of the volume in case of high concentrations. For automatic recognition of focused particles images, a special algorithm for statistical analysis based on contouring and thresholding was used. By means of the mathematical formalism of the scalar diffraction theory, coherent images of the particles formed by the optical system with high numerical aperture were simulated. Numerical testing of the method proposed for the cases of different concentrations and distributions of particles in the volume was performed. As a result, distributions of density and mass fraction of the particles were obtained, and the efficiency of the method in case of different concentrations of particles was evaluated. At high concentrations, the effect of coherent superposition of the particles from the adjacent planes strengthens, which makes it difficult to recognize images of particles using the algorithm considered in the paper. In this case, we propose to supplement the method with calculating the cross-correlation function of particle images from adjacent segments of the volume, and evaluating the ratio between the height of the correlation peak and the height of the function pedestal in the case of different distribution characters. The method of statistical accounting of particles considered in this paper is of practical importance in the study of volume with particles of different nature, for example, in problems of biology and oceanography. Effective work in the regime of high concentrations expands the limits of applicability of these methods for practically important cases and helps to optimize determination time of the distribution character and

  11. Particle Sampling and Real Time Size Distribution Measurement in H2/O2/TEOS Diffusion Flame

    International Nuclear Information System (INIS)

    Ahn, K.H.; Jung, C.H.; Choi, M.; Lee, J.S.

    2001-01-01

    Growth characteristics of silica particles have been studied experimentally using in situ particle sampling technique from H 2 /O 2 /Tetraethylorthosilicate (TEOS) diffusion flame with carefully devised sampling probe. The particle morphology and the size comparisons are made between the particles sampled by the local thermophoretic method from the inside of the flame and by the electrostatic collector sampling method after the dilution sampling probe. The Transmission Electron Microscope (TEM) image processed data of these two sampling techniques are compared with Scanning Mobility Particle Sizer (SMPS) measurement. TEM image analysis of two sampling methods showed a good agreement with SMPS measurement. The effects of flame conditions and TEOS flow rates on silica particle size distributions are also investigated using the new particle dilution sampling probe. It is found that the particle size distribution characteristics and morphology are mostly governed by the coagulation process and sintering process in the flame. As the flame temperature increases, the effect of coalescence or sintering becomes an important particle growth mechanism which reduces the coagulation process. However, if the flame temperature is not high enough to sinter the aggregated particles then the coagulation process is a dominant particle growth mechanism. In a certain flame condition a secondary particle formation is observed which results in a bimodal particle size distribution

  12. Primary studies on particle recovery of swipe samples for nuclear safeguards

    International Nuclear Information System (INIS)

    Fan Wang; Yan Chen; Yong-gang Zhao; Yan Zhang; Tong-xing Wang; Jing-huai Li; Zhi-yuan Chang; Hai-ping Cui

    2013-01-01

    Environmental sampling plays a significant role in nuclear safeguards. Isotopic ratio in uranium-bearing particles from swipe samples provides important information for detecting undeclared activities. Particle recovery which is the primary step of particle analysis, would affect the following analysis. The particle recovery efficiency of ultrasoneration recovery and vacuum suction-impact recovery were measured by alpha spectrometer with standard particles produced via aerosol spray pyrolysis method. The conditions of ultrasoneration were optimized and both recovery methods were evaluated. Finally, a procedure of particle recovery for unknown swipe samples was set up. (author)

  13. Brownian Dynamics of a Suspension of Particles with Constrained Voronoi Cell Volumes

    KAUST Repository

    Singh, John P.; Walsh, Stuart D. C.; Koch, Donald L.

    2015-01-01

    © 2015 American Chemical Society. Solvent-free polymer-grafted nanoparticle fluids consist of inorganic core particles fluidized by polymers tethered to their surfaces. The attachment of the suspending fluid to the particle surface creates a strong penalty for local variations in the fluid volume surrounding the particles. As a model of such a suspension we perform Brownian dynamics of an equilibrium system consisting of hard spheres which experience a many-particle potential proportional to the variance of the Voronoi volumes surrounding each particle (E = α(Vi-V0)2). The coefficient of proportionality α can be varied such that pure hard sphere dynamics is recovered as α → 0, while an incompressible array of hairy particles is obtained as α →. As α is increased the distribution of Voronoi volumes becomes narrower, the mean coordination number of the particle increases and the variance in the number of nearest neighbors decreases. The nearest neighbor peaks in the pair distribution function are suppressed and shifted to larger radial separations as the constraint acts to maintain relatively uniform interstitial regions. The structure factor of the model suspension satisfies S(k=0) → 0 as α → in accordance with expectation for a single component (particle plus tethered fluid) incompressible system. The tracer diffusivity of the particles is reduced by the volume constraint and goes to zero at φ 0.52, indicating an earlier glass transition than has been observed in hard sphere suspensions. The total pressure of the suspension grows in proportion to (αkBT)1/2 as the strength of the volume-constraint potential grows. This stress arises primarily from the interparticle potential forces, while the hard-sphere collisional contribution to the stress is suppressed by the volume constraint.

  14. Brownian Dynamics of a Suspension of Particles with Constrained Voronoi Cell Volumes

    KAUST Repository

    Singh, John P.

    2015-06-23

    © 2015 American Chemical Society. Solvent-free polymer-grafted nanoparticle fluids consist of inorganic core particles fluidized by polymers tethered to their surfaces. The attachment of the suspending fluid to the particle surface creates a strong penalty for local variations in the fluid volume surrounding the particles. As a model of such a suspension we perform Brownian dynamics of an equilibrium system consisting of hard spheres which experience a many-particle potential proportional to the variance of the Voronoi volumes surrounding each particle (E = α(Vi-V0)2). The coefficient of proportionality α can be varied such that pure hard sphere dynamics is recovered as α → 0, while an incompressible array of hairy particles is obtained as α →. As α is increased the distribution of Voronoi volumes becomes narrower, the mean coordination number of the particle increases and the variance in the number of nearest neighbors decreases. The nearest neighbor peaks in the pair distribution function are suppressed and shifted to larger radial separations as the constraint acts to maintain relatively uniform interstitial regions. The structure factor of the model suspension satisfies S(k=0) → 0 as α → in accordance with expectation for a single component (particle plus tethered fluid) incompressible system. The tracer diffusivity of the particles is reduced by the volume constraint and goes to zero at φ 0.52, indicating an earlier glass transition than has been observed in hard sphere suspensions. The total pressure of the suspension grows in proportion to (αkBT)1/2 as the strength of the volume-constraint potential grows. This stress arises primarily from the interparticle potential forces, while the hard-sphere collisional contribution to the stress is suppressed by the volume constraint.

  15. Sampling-based motion planning with reachable volumes: Theoretical foundations

    KAUST Repository

    McMahon, Troy

    2014-05-01

    © 2014 IEEE. We introduce a new concept, reachable volumes, that denotes the set of points that the end effector of a chain or linkage can reach. We show that the reachable volume of a chain is equivalent to the Minkowski sum of the reachable volumes of its links, and give an efficient method for computing reachable volumes. We present a method for generating configurations using reachable volumes that is applicable to various types of robots including open and closed chain robots, tree-like robots, and complex robots including both loops and branches. We also describe how to apply constraints (both on end effectors and internal joints) using reachable volumes. Unlike previous methods, reachable volumes work for spherical and prismatic joints as well as planar joints. Visualizations of reachable volumes can allow an operator to see what positions the robot can reach and can guide robot design. We present visualizations of reachable volumes for representative robots including closed chains and graspers as well as for examples with joint and end effector constraints.

  16. Sampling-based motion planning with reachable volumes: Theoretical foundations

    KAUST Repository

    McMahon, Troy; Thomas, Shawna; Amato, Nancy M.

    2014-01-01

    © 2014 IEEE. We introduce a new concept, reachable volumes, that denotes the set of points that the end effector of a chain or linkage can reach. We show that the reachable volume of a chain is equivalent to the Minkowski sum of the reachable volumes of its links, and give an efficient method for computing reachable volumes. We present a method for generating configurations using reachable volumes that is applicable to various types of robots including open and closed chain robots, tree-like robots, and complex robots including both loops and branches. We also describe how to apply constraints (both on end effectors and internal joints) using reachable volumes. Unlike previous methods, reachable volumes work for spherical and prismatic joints as well as planar joints. Visualizations of reachable volumes can allow an operator to see what positions the robot can reach and can guide robot design. We present visualizations of reachable volumes for representative robots including closed chains and graspers as well as for examples with joint and end effector constraints.

  17. Using Mobile Device Samples to Estimate Traffic Volumes

    Science.gov (United States)

    2017-12-01

    In this project, TTI worked with StreetLight Data to evaluate a beta version of its traffic volume estimates derived from global positioning system (GPS)-based mobile devices. TTI evaluated the accuracy of average annual daily traffic (AADT) volume :...

  18. Integral Engine Inlet Particle Separator. Volume 2. Design Guide

    Science.gov (United States)

    1975-08-01

    herein will be used in the design of integral inlet particle separators for future Army aircraft gas turbine engines. Apprupriate technical personnel...into the comprensor at some future date. 5. A typical scavenge vane design Js; shown in Figures 85 and 86. The important features of the scavenge...service passageweys, for cooling of oil, and for directing sand and air into the scroll. Orientetion of the vanes is set by collection efficiency

  19. A comparison of four gravimetric fine particle sampling methods.

    Science.gov (United States)

    Yanosky, J D; MacIntosh, D L

    2001-06-01

    A study was conducted to compare four gravimetric methods of measuring fine particle (PM2.5) concentrations in air: the BGI, Inc. PQ200 Federal Reference Method PM2.5 (FRM) sampler; the Harvard-Marple Impactor (HI); the BGI, Inc. GK2.05 KTL Respirable/Thoracic Cyclone (KTL); and the AirMetrics MiniVol (MiniVol). Pairs of FRM, HI, and KTL samplers and one MiniVol sampler were collocated and 24-hr integrated PM2.5 samples were collected on 21 days from January 6 through April 9, 2000. The mean and standard deviation of PM2.5 levels from the FRM samplers were 13.6 and 6.8 microg/m3, respectively. Significant systematic bias was found between mean concentrations from the FRM and the MiniVol (1.14 microg/m3, p = 0.0007), the HI and the MiniVol (0.85 microg/m3, p = 0.0048), and the KTL and the MiniVol (1.23 microg/m3, p = 0.0078) according to paired t test analyses. Linear regression on all pairwise combinations of the sampler types was used to evaluate measurements made by the samplers. None of the regression intercepts was significantly different from 0, and only two of the regression slopes were significantly different from 1, that for the FRM and the MiniVol [beta1 = 0.91, 95% CI (0.83-0.99)] and that for the KTL and the MiniVol [beta1 = 0.88, 95% CI (0.78-0.98)]. Regression R2 terms were 0.96 or greater between all pairs of samplers, and regression root mean square error terms (RMSE) were 1.65 microg/m3 or less. These results suggest that the MiniVol will underestimate measurements made by the FRM, the HI, and the KTL by an amount proportional to PM2.5 concentration. Nonetheless, these results indicate that all of the sampler types are comparable if approximately 10% variation on the mean levels and on individual measurement levels is considered acceptable and the actual concentration is within the range of this study (5-35 microg/m3).

  20. Study on the etching conditions of polycarbonate detectors for particle analysis of safeguards environmental samples

    International Nuclear Information System (INIS)

    Iguchi, K.; Esaka, K.T.; Lee, C.G.; Inagawa, J.; Esaka, F.; Onodera, T.; Fukuyama, H.; Suzuki, D.; Sakurai, S.; Watanabe, K.; Usuda, S.

    2005-01-01

    The fission track technique was applied to the particle analysis for safeguards environmental samples to obtain information about the isotope ratio of nuclear materials in individual particles. To detect the particles containing nuclear material with high detection efficiency and less particle loss, the influence of uranium enrichments on etching conditions of a fission track detector made of polycarbonate was investigated. It was shown that the increase in uranium enrichment shortened the suitable etching time both for particle detection and for less particle loss. From the results obtained, it was suggested that the screening of the uranium particles according to the enrichment is possible by controlling the etching time of the detector

  1. Modeling keV particle interactions with molecular and polymeric samples

    International Nuclear Information System (INIS)

    Delcorte, Arnaud

    2005-01-01

    Organic surfaces are locally submitted to extreme, out of equilibrium conditions when they are bombarded by kiloelectronvolt particles (atoms, ions, clusters). The time scale of the energy transfer is from tens of femtoseconds to several picoseconds depending on the material and the average energy per atom in the energized volume is of the order of a few eV, i.e. sufficient to break bonds in the solid. As a result, atoms, molecules and their fragments are released in the gas phase, which makes sputtering/desorption methods useful for surface treatment (ion beam patterning) and analysis (mass spectrometry). The radicals created in the sample also induce branching and cross-linking reactions that can be useful for surface modification purposes. Molecular dynamics simulations have provided an invaluable help for the elucidation of keV particle-induced processes in organic overlayers and, most recently, bulk materials. In this review, I illustrate the various mechanisms at play using case studies taken from our recent investigations and from the literature. They include the Ar-induced sputtering of a large polymeric molecule on a metal substrate and a molecular sample made of polystyrene oligomers. The emphasis is placed on the understanding of the energy transfer processes in the disturbed surface region and the mechanisms of molecule desorption, fragmentation and recombination, crucial for ion beam-based analytical methods

  2. Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter

    Science.gov (United States)

    Sindelar, Charles V.; Grigorieff, Nikolaus

    2012-01-01

    The high noise level found in single-particle electron cryo-microscopy (cryo-EM) image data presents a special challenge for three-dimensional (3D) reconstruction of the imaged molecules. The spectral signal-to-noise ratio (SSNR) and related Fourier shell correlation (FSC) functions are commonly used to assess and mitigate the noise-generated error in the reconstruction. Calculation of the SSNR and FSC usually includes the noise in the solvent region surrounding the particle and therefore does not accurately reflect the signal in the particle density itself. Here we show that the SSNR in a reconstructed 3D particle map is linearly proportional to the fractional volume occupied by the particle. Using this relationship, we devise a novel filter (the “single-particle Wiener filter”) to minimize the error in a reconstructed particle map, if the particle volume is known. Moreover, we show how to approximate this filter even when the volume of the particle is not known, by optimizing the signal within a representative interior region of the particle. We show that the new filter improves on previously proposed error-reduction schemes, including the conventional Wiener filter as well as figure-of-merit weighting, and quantify the relationship between all of these methods by theoretical analysis as well as numeric evaluation of both simulated and experimentally collected data. The single-particle Wiener filter is applicable across a broad range of existing 3D reconstruction techniques, but is particularly well suited to the Fourier inversion method, leading to an efficient and accurate implementation. PMID:22613568

  3. A volume-filtered formulation to capture particle-shock interactions in multiphase compressible flows

    Science.gov (United States)

    Shallcross, Gregory; Capecelatro, Jesse

    2017-11-01

    Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.

  4. A Proposal of New Spherical Particle Modeling Method Based on Stochastic Sampling of Particle Locations in Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Hyun; Kim, Do Hyun; Kim, Jong Kyung [Hanyang Univ., Seoul (Korea, Republic of); Noh, Jea Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    To the high computational efficiency and user convenience, the implicit method had received attention; however, it is noted that the implicit method in the previous studies has low accuracy at high packing fraction. In this study, a new implicit method, which can be used at any packing fraction with high accuracy, is proposed. In this study, the implicit modeling method in the spherical particle distributed medium for using the MC simulation is proposed. A new concept in the spherical particle sampling was developed to solve the problems in the previous implicit methods. The sampling method was verified by simulating the sampling method in the infinite and finite medium. The results show that the particle implicit modeling with the proposed method was accurately performed in all packing fraction boundaries. It is expected that the proposed method can be efficiently utilized for the spherical particle distributed mediums, which are the fusion reactor blanket, VHTR reactors, and shielding analysis.

  5. Influence of physical properties and chemical composition of sample on formation of aerosol particles generated by nanosecond laser ablation at 213 nm

    Energy Technology Data Exchange (ETDEWEB)

    Hola, Marketa, E-mail: mhola@sci.muni.c [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Konecna, Veronika [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Mikuska, Pavel [Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic v.v.i., Veveri 97, 602 00 Brno (Czech Republic); Kaiser, Jozef [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Kanicky, Viktor [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2010-01-15

    The influence of sample properties and composition on the size and concentration of aerosol particles generated by nanosecond Nd:YAG laser ablation at 213 nm was investigated for three sets of different materials, each containing five specimens with a similar matrix (Co-cemented carbides with a variable content of W and Co, steel samples with minor differences in elemental content and silica glasses with various colors). The concentration of ablated particles (particle number concentration, PNC) was measured in two size ranges (10-250 nm and 0.25-17 mum) using an optical aerosol spectrometer. The shapes and volumes of the ablation craters were obtained by Scanning Electron Microscopy (SEM) and by an optical profilometer, respectively. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using SEM. The results of particle concentration measurements showed a significant dominance of particles smaller than 250 nm in comparison with larger particles, irrespective of the kind of material. Even if the number of particles larger than 0.25 mum is negligible (up to 0.1%), the volume of large particles that left the ablation cell can reach 50% of the whole particle volume depending on the material. Study of the ablation craters and the laser-generated particles showed a various number of particles produced by different ablation mechanisms (particle splashing or condensation), but the similar character of released particles for all materials was observed by SEM after particle collection on the membrane filter. The created aerosol always consisted of two main structures - spherical particles with diameters from tenths to units of micrometers originally ejected from the molten surface layer and mum-sized 'fibres' composed of primary agglomerates with diameters in the range between tens and hundreds of nanometers. The shape and structure of ablation craters were in good agreement with particle concentration

  6. Legacy sample disposition project. Volume 2: Final report

    International Nuclear Information System (INIS)

    Gurley, R.N.; Shifty, K.L.

    1998-02-01

    This report describes the legacy sample disposition project at the Idaho Engineering and Environmental Laboratory (INEEL), which assessed Site-wide facilities/areas to locate legacy samples and owner organizations and then characterized and dispositioned these samples. This project resulted from an Idaho Department of Environmental Quality inspection of selected areas of the INEEL in January 1996, which identified some samples at the Test Reactor Area and Idaho Chemical Processing Plant that had not been characterized and dispositioned according to Resource Conservation and Recovery Act (RCRA) requirements. The objective of the project was to manage legacy samples in accordance with all applicable environmental and safety requirements. A systems engineering approach was used throughout the project, which included collecting the legacy sample information and developing a system for amending and retrieving the information. All legacy samples were dispositioned by the end of 1997. Closure of the legacy sample issue was achieved through these actions

  7. Impact of particle density and initial volume on mathematical compression models

    DEFF Research Database (Denmark)

    Sonnergaard, Jørn

    2000-01-01

    In the calculation of the coefficients of compression models for powders either the initial volume or the particle density is introduced as a normalising factor. The influence of these normalising factors is, however, widely different on coefficients derived from the Kawakita, Walker and Heckel...... equations. The problems are illustrated by investigations on compaction profiles of 17 materials with different molecular structures and particle densities. It is shown that the particle density of materials with covalent bonds in the Heckel model acts as a key parameter with a dominating influence...

  8. On the Use of Importance Sampling in Particle Transport Problems

    International Nuclear Information System (INIS)

    Eriksson, B.

    1965-06-01

    The idea of importance sampling is applied to the problem of solving integral equations of Fredholm's type. Especially Bolzmann's neutron transport equation is taken into consideration. For the solution of the latter equation, an importance sampling technique is derived from some simple transformations at the original transport equation into a similar equation. Examples of transformations are given, which have been used with great success in practice

  9. On the Use of Importance Sampling in Particle Transport Problems

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, B

    1965-06-15

    The idea of importance sampling is applied to the problem of solving integral equations of Fredholm's type. Especially Bolzmann's neutron transport equation is taken into consideration. For the solution of the latter equation, an importance sampling technique is derived from some simple transformations at the original transport equation into a similar equation. Examples of transformations are given, which have been used with great success in practice.

  10. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Aerial Measurement Systems

    2012-07-31

    The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

  11. Design of sampling tools for Monte Carlo particle transport code JMCT

    International Nuclear Information System (INIS)

    Shangguan Danhua; Li Gang; Zhang Baoyin; Deng Li

    2012-01-01

    A class of sampling tools for general Monte Carlo particle transport code JMCT is designed. Two ways are provided to sample from distributions. One is the utilization of special sampling methods for special distribution; the other is the utilization of general sampling methods for arbitrary discrete distribution and one-dimensional continuous distribution on a finite interval. Some open source codes are included in the general sampling method for the maximum convenience of users. The sampling results show sampling correctly from distribution which are popular in particle transport can be achieved with these tools, and the user's convenience can be assured. (authors)

  12. Light propagation in optical crystal powders: effects of particle size and volume filling factor

    International Nuclear Information System (INIS)

    GarcIa-Ramiro, B; Illarramendi, M A; Aramburu, I; Fernandez, J; Balda, R; Al-Saleh, M

    2007-01-01

    In this work, we analyse the light propagation in some laser and nonlinear crystal powders. In particular, we study the dependence of the diffusive absorption lengths and the transport lengths on particle size and volume filling factor. The theoretical calculations have been made by assuming a diffusive propagation of light in these materials

  13. Guideline for Sampling and Analysis of Tar and Particles in Biomass Producer Gases. Version 3.3

    Energy Technology Data Exchange (ETDEWEB)

    Neeft, J.P.A.; Knoef, H.A.M.; Zielke, U.; Sjoestroem, K.; Hasler, P.; Simell, P.A.; Dorrington, M.A.; Thomas, L.; Abatzoglou, N.; Deutch, S.; Greil, C.; Buffinga, G.J.; Brage, C.; Suomalainen, M.

    2002-07-01

    This Guideline provides a set of procedures for the measurement of organic contaminants and particles in producer gases from biomass gasifiers. The procedures are designed to cover different gasifier types (updraft or downdraft fixed bed or fluidised bed gasifiers), operating conditions (0 - 900C and 0.6-60 bars) and concentration ranges (1 mg/m{sub n}{sup 3} to 300 g/m{sub n}{sup 3}). The Guideline describes a modular sampling train, and a set of procedures, which include: planning and preparation of the sampling, sampling and post-sampling, analysis, calculations, error analysis and reporting. The modular sampling train consists of 4 modules. Module 1 is a preconditioning module for isokinetic sampling and gas cooling. Module 2 is a particle collection module including a heated filter. Module 3 is a tar collection module with a gas quench (optionally by circulating a liquid), impinger bottles and a backup adsorber. Module 4 is a volume-sampling module consisting of a pump, a rotameter, a gas flow meter and pressure and temperature indicators. The equipment and materials that are required for procuring this modular sampling train are given in the Guideline. The sampling procedures consist of a description for isokinetic sampling, a leakage test prior to sampling, the actual sampling and its duration, how the equipment is cleaned after the sampling, and how the samples are prepared and stored. Analysis of the samples is performed via three procedures. Prior to these procedures, the sample is prepared by Soxhlet extraction of the tars on the particle filter and by collection of all tars in one bulk solution. The first procedure describes the weighing of the particle filter to obtain the concentration of particles in the biomass producer gas. The bulk tar solution is used for two purposes: for determination of gravimetric tar and for analysis of individual compounds. The second procedure describes how to determine the gravimetric tar mass from the bulk solution. The

  14. Critical length sampling: a method to estimate the volume of downed coarse woody debris

    Science.gov (United States)

    G& #246; ran St& #229; hl; Jeffrey H. Gove; Michael S. Williams; Mark J. Ducey

    2010-01-01

    In this paper, critical length sampling for estimating the volume of downed coarse woody debris is presented. Using this method, the volume of downed wood in a stand can be estimated by summing the critical lengths of down logs included in a sample obtained using a relascope or wedge prism; typically, the instrument should be tilted 90° from its usual...

  15. Grain Growth in Samples of Aluminum Containing Alumina Particles

    DEFF Research Database (Denmark)

    Tweed, C. J.; Hansen, Niels; Ralph, B.

    1983-01-01

    A study of the two-dimensional and three-dimensional grain size distributions before and after grain growth treatments has been made in samples having a range of oxide contents. In order to collect statistically useful amounts of data, an automatic image analyzer was used and the resulting data w...

  16. Magnetic signature of daily sampled urban atmospheric particles

    Science.gov (United States)

    Muxworthy, Adrian R.; Matzka, Jürgen; Davila, Alfonso Fernández; Petersen, Nikolai

    The magnetic signature of two sets of daily sampled particulate matter (PM) collected in Munich, Germany, were examined and compared to variations in other pollution data and meteorological data using principal component analysis. The magnetic signature arising from the magnetic minerals in the PM was examined using a fast and highly sensitive magnetic remanence measurement. The longest data set studied was 160 days, significantly longer than that of similar magnetic PM studies improving the statistical robustness. It was found that the variations in the mass-dependent magnetic parameters displayed a complicated relationship governed by both the meteorological conditions and the PM loading rate, whereas mineralogy/grain-size-dependent magnetic parameters displayed little variation. A six-fold increase in the number of vehicles passing the sampling locations only doubled the magnetic remanence of the samples, suggesting that the measured magnetic signature is in addition strongly influenced by dispersion rates. At both localities the saturation isothermal remanent magnetisation (SIRM) was found to be strongly correlated with the PM mass, and it is suggested that measuring SIRM as a proxy for PM monitoring is a viable alternative to magnetic susceptibility when the samples are magnetically too weak. The signal was found to be dominated by magnetite-like grains less than 100 nm in diameter which is thought to be derived primarily from vehicles. Such small grains are known to be particularly dangerous to humans. There was also evidence to suggest from magnetic stability parameters that the magnetite-like grains were covered with an oxidised rim. The concentration of magnetic PM was in the range of 0.3-0.5% by mass.

  17. Error Analysis of Ceramographic Sample Preparation for Coating Thickness Measurement of Coated Fuel Particles

    International Nuclear Information System (INIS)

    Liu Xiaoxue; Li Ziqiang; Zhao Hongsheng; Zhang Kaihong; Tang Chunhe

    2014-01-01

    The thicknesses of four coatings of HTR coated fuel particle are very important parameters. It is indispensable to control the thickness of four coatings of coated fuel particles for the safety of HTR. A measurement method, ceramographic sample-microanalysis method, to analyze the thickness of coatings was developed. During the process of ceramographic sample-microanalysis, there are two main errors, including ceramographic sample preparation error and thickness measurement error. With the development of microscopic techniques, thickness measurement error can be easily controlled to meet the design requirements. While, due to the coated particles are spherical particles of different diameters ranged from 850 to 1000μm, the sample preparation process will introduce an error. And this error is different from one sample to another. It’s also different from one particle to another in the same sample. In this article, the error of the ceramographic sample preparation was calculated and analyzed. Results show that the error introduced by sample preparation is minor. The minor error of sample preparation guarantees the high accuracy of the mentioned method, which indicates this method is a proper method to measure the thickness of four coatings of coated particles. (author)

  18. Critical point relascope sampling for unbiased volume estimation of downed coarse woody debris

    Science.gov (United States)

    Jeffrey H. Gove; Michael S. Williams; Mark J. Ducey; Mark J. Ducey

    2005-01-01

    Critical point relascope sampling is developed and shown to be design-unbiased for the estimation of log volume when used with point relascope sampling for downed coarse woody debris. The method is closely related to critical height sampling for standing trees when trees are first sampled with a wedge prism. Three alternative protocols for determining the critical...

  19. Computational methods and modeling. 1. Sampling a Position Uniformly in a Trilinear Hexahedral Volume

    International Nuclear Information System (INIS)

    Urbatsch, Todd J.; Evans, Thomas M.; Hughes, H. Grady

    2001-01-01

    Monte Carlo particle transport plays an important role in some multi-physics simulations. These simulations, which may additionally involve deterministic calculations, typically use a hexahedral or tetrahedral mesh. Trilinear hexahedrons are attractive for physics calculations because faces between cells are uniquely defined, distance-to-boundary calculations are deterministic, and hexahedral meshes tend to require fewer cells than tetrahedral meshes. We discuss one aspect of Monte Carlo transport: sampling a position in a tri-linear hexahedron, which is made up of eight control points, or nodes, and six bilinear faces, where each face is defined by four non-coplanar nodes in three-dimensional Cartesian space. We derive, code, and verify the exact sampling method and propose an approximation to it. Our proposed approximate method uses about one-third the memory and can be twice as fast as the exact sampling method, but we find that its inaccuracy limits its use to well-behaved hexahedrons. Daunted by the expense of the exact method, we propose an alternate approximate sampling method. First, calculate beforehand an approximate volume for each corner of the hexahedron by taking one-eighth of the volume of an imaginary parallelepiped defined by the corner node and the three nodes to which it is directly connected. For the sampling, assume separability in the parameters, and sample each parameter, in turn, from a linear pdf defined by the sum of the four corner volumes at each limit (-1 and 1) of the parameter. This method ignores the quadratic portion of the pdf, but it requires less storage, has simpler sampling, and needs no extra, on-the-fly calculations. We simplify verification by designing tests that consist of one or more cells that entirely fill a unit cube. Uniformly sampling complicated cells that fill a unit cube will result in uniformly sampling the unit cube. Unit cubes are easily analyzed. The first problem has four wedges (or tents, or A frames) whose

  20. Flow simulation of a Pelton bucket using finite volume particle method

    International Nuclear Information System (INIS)

    Vessaz, C; Jahanbakhsh, E; Avellan, F

    2014-01-01

    The objective of the present paper is to perform an accurate numerical simulation of the high-speed water jet impinging on a Pelton bucket. To reach this goal, the Finite Volume Particle Method (FVPM) is used to discretize the governing equations. FVPM is an arbitrary Lagrangian-Eulerian method, which combines attractive features of Smoothed Particle Hydrodynamics and conventional mesh-based Finite Volume Method. This method is able to satisfy free surface and no-slip wall boundary conditions precisely. The fluid flow is assumed weakly compressible and the wall boundary is represented by one layer of particles located on the bucket surface. In the present study, the simulations of the flow in a stationary bucket are investigated for three different impinging angles: 72°, 90° and 108°. The particles resolution is first validated by a convergence study. Then, the FVPM results are validated with available experimental data and conventional grid-based Volume Of Fluid simulations. It is shown that the wall pressure field is in good agreement with the experimental and numerical data. Finally, the torque evolution and water sheet location are presented for a simulation of five rotating Pelton buckets

  1. Large-volume injection of sample diluents not miscible with the mobile phase as an alternative approach in sample preparation for bioanalysis: an application for fenspiride bioequivalence.

    Science.gov (United States)

    Medvedovici, Andrei; Udrescu, Stefan; Albu, Florin; Tache, Florentin; David, Victor

    2011-09-01

    Liquid-liquid extraction of target compounds from biological matrices followed by the injection of a large volume from the organic layer into the chromatographic column operated under reversed-phase (RP) conditions would successfully combine the selectivity and the straightforward character of the procedure in order to enhance sensitivity, compared with the usual approach of involving solvent evaporation and residue re-dissolution. Large-volume injection of samples in diluents that are not miscible with the mobile phase was recently introduced in chromatographic practice. The risk of random errors produced during the manipulation of samples is also substantially reduced. A bioanalytical method designed for the bioequivalence of fenspiride containing pharmaceutical formulations was based on a sample preparation procedure involving extraction of the target analyte and the internal standard (trimetazidine) from alkalinized plasma samples in 1-octanol. A volume of 75 µl from the octanol layer was directly injected on a Zorbax SB C18 Rapid Resolution, 50 mm length × 4.6 mm internal diameter × 1.8 µm particle size column, with the RP separation being carried out under gradient elution conditions. Detection was made through positive ESI and MS/MS. Aspects related to method development and validation are discussed. The bioanalytical method was successfully applied to assess bioequivalence of a modified release pharmaceutical formulation containing 80 mg fenspiride hydrochloride during two different studies carried out as single-dose administration under fasting and fed conditions (four arms), and multiple doses administration, respectively. The quality attributes assigned to the bioanalytical method, as resulting from its application to the bioequivalence studies, are highlighted and fully demonstrate that sample preparation based on large-volume injection of immiscible diluents has an increased potential for application in bioanalysis.

  2. Morphology and nano-structure analysis of soot particles sampled from high pressure diesel jet flames under diesel-like conditions

    Science.gov (United States)

    Jiang, Hao; Li, Tie; Wang, Yifeng; He, Pengfei

    2018-04-01

    Soot particles emitted from diesel engines have a significant impact on the atmospheric environment. Detailed understanding of soot formation and oxidation processes is helpful for reducing the pollution of soot particles, which requires information such as the size and nano-structure parameters of the soot primary particles sampled in a high-temperature and high-pressure diesel jet flame. Based on the thermophoretic principle, a novel sampling probe minimally disturbing the diesel jet flame in a constant volume combustion vessel is developed for analysing soot particles. The injected quantity of diesel fuel is less than 10 mg, and the soot particles sampled by carriers with a transmission electron microscope (TEM) grid and lacey TEM grid can be used to analyse the morphologies of soot aggregates and the nano-structure of the soot primary particles, respectively. When the quantity of diesel fuel is more than 10 mg, in order to avoid burning-off of the carriers in higher temperature and pressure conditions, single-crystal silicon chips are employed. Ultrasonic oscillations and alcohol extraction are then implemented to obtain high quality soot samples for observation using a high-resolution transmission electron microscope. An in-house Matlab-based code is developed to extract the nano-structure parameters of the soot particles. A complete sampling and analysis procedure of the soot particles is provided to study the formation and oxidation mechanism of soot.

  3. Application of digital sampling techniques to particle identification in scintillation detectors

    International Nuclear Information System (INIS)

    Bardelli, L.; Bini, M.; Poggi, G.; Taccetti, N.

    2002-01-01

    In this paper, the use of a fast digitizing system for identification of fast charged particles with scintillation detectors is discussed. The three-layer phoswich detectors developed in the framework of the FIASCO experiment for the detection of light charged particles (LCP) and intermediate mass fragments (IMF) emitted in heavy-ion collisions at Fermi energies are briefly discussed. The standard analog electronics treatment of the signals for particle identification is illustrated. After a description of the digitizer designed to perform a fast digital sampling of the phoswich signals, the feasibility of particle identification on the sampled data is demonstrated. The results obtained with two different pulse shape discrimination analyses based on the digitally sampled data are compared with the standard analog signal treatment. The obtained results suggest, for the present application, the replacement of the analog methods with the digital sampling technique

  4. Sampling based motion planning with reachable volumes: Application to manipulators and closed chain systems

    KAUST Repository

    McMahon, Troy

    2014-09-01

    © 2014 IEEE. Reachable volumes are a geometric representation of the regions the joints of a robot can reach. They can be used to generate constraint satisfying samples for problems including complicated linkage robots (e.g. closed chains and graspers). They can also be used to assist robot operators and to help in robot design.We show that reachable volumes have an O(1) complexity in unconstrained problems as well as in many constrained problems. We also show that reachable volumes can be computed in linear time and that reachable volume samples can be generated in linear time in problems without constraints. We experimentally validate reachable volume sampling, both with and without constraints on end effectors and/or internal joints. We show that reachable volume samples are less likely to be invalid due to self-collisions, making reachable volume sampling significantly more efficient for higher dimensional problems. We also show that these samples are easier to connect than others, resulting in better connected roadmaps. We demonstrate that our method can be applied to 262-dof, multi-loop, and tree-like linkages including combinations of planar, prismatic and spherical joints. In contrast, existing methods either cannot be used for these problems or do not produce good quality solutions.

  5. Sampling based motion planning with reachable volumes: Application to manipulators and closed chain systems

    KAUST Repository

    McMahon, Troy; Thomas, Shawna; Amato, Nancy M.

    2014-01-01

    © 2014 IEEE. Reachable volumes are a geometric representation of the regions the joints of a robot can reach. They can be used to generate constraint satisfying samples for problems including complicated linkage robots (e.g. closed chains and graspers). They can also be used to assist robot operators and to help in robot design.We show that reachable volumes have an O(1) complexity in unconstrained problems as well as in many constrained problems. We also show that reachable volumes can be computed in linear time and that reachable volume samples can be generated in linear time in problems without constraints. We experimentally validate reachable volume sampling, both with and without constraints on end effectors and/or internal joints. We show that reachable volume samples are less likely to be invalid due to self-collisions, making reachable volume sampling significantly more efficient for higher dimensional problems. We also show that these samples are easier to connect than others, resulting in better connected roadmaps. We demonstrate that our method can be applied to 262-dof, multi-loop, and tree-like linkages including combinations of planar, prismatic and spherical joints. In contrast, existing methods either cannot be used for these problems or do not produce good quality solutions.

  6. Comparison of uncertainties related to standardization of urine samples with volume and creatinine concentration

    DEFF Research Database (Denmark)

    Garde, Anne Helene; Hansen, Ase Marie; Kristiansen, Jesper

    2004-01-01

    When measuring biomarkers in urine, volume (and time) or concentration of creatinine are both accepted methods of standardization for diuresis. Both types of standardization contribute uncertainty to the final result. The aim of the present paper was to compare the uncertainty introduced when usi...... increase in convenience for the participants, when collecting small volumes rather than complete 24 h samples....... the two types of standardization on 24 h samples from healthy individuals. Estimates of uncertainties were based on results from the literature supplemented with data from our own studies. Only the difference in uncertainty related to the two standardization methods was evaluated. It was found...... that the uncertainty associated with creatinine standardization (19-35%) was higher than the uncertainty related to volume standardization (up to 10%, when not correcting for deviations from 24 h) for 24 h urine samples. However, volume standardization introduced an average bias of 4% due to missed volumes...

  7. A low-volume cavity ring-down spectrometer for sample-limited applications

    Science.gov (United States)

    Stowasser, C.; Farinas, A. D.; Ware, J.; Wistisen, D. W.; Rella, C.; Wahl, E.; Crosson, E.; Blunier, T.

    2014-08-01

    In atmospheric and environmental sciences, optical spectrometers are used for the measurements of greenhouse gas mole fractions and the isotopic composition of water vapor or greenhouse gases. The large sample cell volumes (tens of milliliters to several liters) in commercially available spectrometers constrain the usefulness of such instruments for applications that are limited in sample size and/or need to track fast variations in the sample stream. In an effort to make spectrometers more suitable for sample-limited applications, we developed a low-volume analyzer capable of measuring mole fractions of methane and carbon monoxide based on a commercial cavity ring-down spectrometer. The instrument has a small sample cell (9.6 ml) and can selectively be operated at a sample cell pressure of 140, 45, or 20 Torr (effective internal volume of 1.8, 0.57, and 0.25 ml). We present the new sample cell design and the flow path configuration, which are optimized for small sample sizes. To quantify the spectrometer's usefulness for sample-limited applications, we determine the renewal rate of sample molecules within the low-volume spectrometer. Furthermore, we show that the performance of the low-volume spectrometer matches the performance of the standard commercial analyzers by investigating linearity, precision, and instrumental drift.

  8. Inter-particle interactions and magnetocaloric effect in a sample of ultrafine Fe1-x Hgx particles in Hg

    DEFF Research Database (Denmark)

    Pedersen, Michael Stanley; Mørup, Steen; Linderoth, S.

    1997-01-01

    to a state in which the magnetic moments of the particles are ordered. The magnetic entropy change induced by application of a magnetic field was determined in the temperature range from 70 to 200 K. When the sample was magnetized in 1 T the magnetic entropy change was almost constant in the temperature...... range from 130 to 200 K. In an applied field of 0.1 T, the entropy change was lower, and decreased with increasing temperature in the same temperature range. A model which takes into account the magnetic interactions between the particles was found to give a better description of the magnetic entropy...

  9. Frequency Mixing Magnetic Detection Scanner for Imaging Magnetic Particles in Planar Samples.

    Science.gov (United States)

    Hong, Hyobong; Lim, Eul-Gyoon; Jeong, Jae-Chan; Chang, Jiho; Shin, Sung-Woong; Krause, Hans-Joachim

    2016-06-09

    The setup of a planar Frequency Mixing Magnetic Detection (p-FMMD) scanner for performing Magnetic Particles Imaging (MPI) of flat samples is presented. It consists of two magnetic measurement heads on both sides of the sample mounted on the legs of a u-shaped support. The sample is locally exposed to a magnetic excitation field consisting of two distinct frequencies, a stronger component at about 77 kHz and a weaker field at 61 Hz. The nonlinear magnetization characteristics of superparamagnetic particles give rise to the generation of intermodulation products. A selected sum-frequency component of the high and low frequency magnetic field incident on the magnetically nonlinear particles is recorded by a demodulation electronics. In contrast to a conventional MPI scanner, p-FMMD does not require the application of a strong magnetic field to the whole sample because mixing of the two frequencies occurs locally. Thus, the lateral dimensions of the sample are just limited by the scanning range and the supports. However, the sample height determines the spatial resolution. In the current setup it is limited to 2 mm. As examples, we present two 20 mm × 25 mm p-FMMD images acquired from samples with 1 µm diameter maghemite particles in silanol matrix and with 50 nm magnetite particles in aminosilane matrix. The results show that the novel MPI scanner can be applied for analysis of thin biological samples and for medical diagnostic purposes.

  10. Target volume delineation and treatment planning for particle therapy a practical guide

    CERN Document Server

    Leeman, Jonathan E; Cahlon, Oren; Sine, Kevin; Jiang, Guoliang; Lu, Jiade J; Both, Stefan

    2018-01-01

    This handbook is designed to enable radiation oncologists to treat patients appropriately and confidently by means of particle therapy. The orientation and purpose are entirely practical, in that the focus is on the physics essentials of delivery and treatment planning , illustration of the clinical target volume (CTV) and associated treatment planning for each major malignancy when using particle therapy, proton therapy in particular. Disease-specific chapters provide guidelines and concise knowledge on CTV selection and delineation and identify aspects that require the exercise of caution during treatment planning. The treatment planning techniques unique to proton therapy for each disease site are clearly described, covering beam orientation, matching/patching field techniques, robustness planning, robustness plan evaluation, etc. The published data on the use of particle therapy for a given disease site are also concisely reported. In addition to fully meeting the needs of radiation oncologists, this "kn...

  11. Volume growth during uniaxial tension of particle-filled elastomers at various temperatures - Experiments and modelling

    Science.gov (United States)

    Ilseng, Arne; Skallerud, Bjørn H.; Clausen, Arild H.

    2017-10-01

    A common presumption for elastomeric material behaviour is incompressibility, however, the inclusion of filler particles might give rise to matrix-particle decohesion and subsequent volume growth. In this article, the volumetric deformation accompanying uniaxial tension of particle-filled elastomeric materials at low temperatures is studied. An experimental set-up enabling full-field deformation measurements is outlined and novel data are reported on the significant volume growth accompanying uniaxial tension of two HNBR and one FKM compounds at temperatures of - 18 , 0, and 23 °C. The volumetric deformation was found to increase with reduced temperature for all compounds. To explain the observed dilatation, in situ scanning electron microscopy was used to inspect matrix-particle debonding occurring at the surface of the materials. A new constitutive model, combining the Bergström-Boyce visco-hyperelastic formulation with a Gurson flow potential function is outlined to account for the observed debonding effects in a numerical framework. The proposed model is shown to provide a good correspondence to the experimental data, including the volumetric response, for the tested FKM compound at all temperature levels.

  12. Using silver nano particles for sampling of toxic mercury vapors from industrial air sample

    Directory of Open Access Journals (Sweden)

    M. Osanloo

    2014-05-01

    .Conclusion: The presented adsorbent is very useful for sampling of the trace amounts of mercury vapors from air. Moreover, it can be regenerated easily is suitable or sampling at 25 to 70 °C. Due to oxidation of silver and reduction in uptake of nanoparticles, oven temperature of 245 °C is used for the recovery of metallic silver. Low amount of adsorbent, high absorbency, high repeatability for sampling, low cost and high accuracy are of the advantages of the presented method.

  13. In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.

    Science.gov (United States)

    Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele

    2017-04-19

    During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.

  14. Volume distribution for particles between 3.5 to 2000 μm in the upper 200 m region of the South Pacific Gyre

    Directory of Open Access Journals (Sweden)

    L. Stemmann

    2008-03-01

    Full Text Available The French JGOFS BIOSOPE cruise crossed the South Pacific Gyre (SPG on a transect between the Marquesas Islands and the Chilean coast on a 7500 km transect (8° S–34° S and 8° W–72° W. The number and volume distributions of small (3.5<d<30 μm and large particles (d>100 μm were analysed combining two instruments, the HIAC/Royco Counter (for the small particles and the Underwater Video Profiler (UVP, for the large particles. For the HIAC analysis, samples were collected from 12 L CTD Rosette bottles and immediately analysed on board while the UVP provided an estimate of in situ particle concentrations and size in a continuous profile. Out of 76 continuous UVP and 117 discrete HIAC vertical profiles, 25 had both sets of measurements, mostly at a site close to the Marquesas Islands (site MAR and one in the center of the gyre (site GYR. At GYR, the particle number spectra from few μm to few mm were fit with power relationships having slopes close to −4. At MAR, the high abundance of large objects, probably living organisms, created a shift in the full size spectra of particles such that a single slope was not appropriate. The small particle pool at both sites showed a diel pattern while the large did not, implying that the movement of mass toward the large particles does not take place at daily scale in the SPG area. Despite the relatively simple nature of the number spectra, the volume spectra were more variable because what were small deviations from the straight line in a log-log plot were large variations in the volume estimates. In addition, the mass estimates from the size spectra are very sensitive to crucial parameters such as the fractal dimension and the POC/Dry Weight ratio. Using consistent values for these parameters, we show that the volume of large particles can equal the volume of the smaller particles. However the proportion of material in large particles decreased from the mesotrophic conditions at the

  15. Quantification of bitumen particles in aerosol and soil samples using HP-GPC

    DEFF Research Database (Denmark)

    Fauser, Patrik; Tjell, Jens Christian; Mosbæk, Hans

    2000-01-01

    A method for identifying and quantifying bitumen particles, generated from the wear of roadway asphalts, in aerosol and soil samples has been developed. Bitumen is found to be the only contributor to airborne particles containing organic molecules with molecular weights larger than 2000 g pr. mol....... These are separated and identified using High Performance Gel Permeation Chromatography (HP-GPC) with fluorescence detection. As an additional detection method Infra Red spectrometry (IR) is employed for selected samples. The methods have been used on aerosol, soil and other samples....

  16. A review of methods for sampling large airborne particles and associated radioactivity

    International Nuclear Information System (INIS)

    Garland, J.A.; Nicholson, K.W.

    1990-01-01

    Radioactive particles, tens of μm or more in diameter, are unlikely to be emitted directly from nuclear facilities with exhaust gas cleansing systems, but may arise in the case of an accident or where resuspension from contaminated surfaces is significant. Such particles may dominate deposition and, according to some workers, may contribute to inhalation doses. Quantitative sampling of large airborne particles is difficult because of their inertia and large sedimentation velocities. The literature describes conditions for unbiased sampling and the magnitude of sampling errors for idealised sampling inlets in steady winds. However, few air samplers for outdoor use have been assessed for adequacy of sampling. Many size selective sampling methods are found in the literature but few are suitable at the low concentrations that are often encountered in the environment. A number of approaches for unbiased sampling of large particles have been found in the literature. Some are identified as meriting further study, for application in the measurement of airborne radioactivity. (author)

  17. Absolute activity determinations on large volume geological samples independent of self-absorption effects

    International Nuclear Information System (INIS)

    Wilson, W.E.

    1980-01-01

    This paper describes a method for measuring the absolute activity of large volume samples by γ-spectroscopy independent of self-absorption effects using Ge detectors. The method yields accurate matrix independent results at the expense of replicative counting of the unknown sample. (orig./HP)

  18. A Volume-Limited Sample of L and T Dwarfs Defined by Parallaxes

    Science.gov (United States)

    Best, William M. J.; Liu, Michael C.; Magnier, Eugene; Dupuy, Trent

    2018-01-01

    Volume-limited samples are the gold standard for stellar population studies, as they enable unbiased measurements of space densities and luminosity functions. Parallaxes are the most direct measures of distance and are therefore essential for defining high-confidence volume limited samples. Previous efforts to model the local brown dwarf population were hampered by samples based on a small number of parallaxes. We are using UKIRT/WFCAM to conduct the largest near-infrared program to date to measure parallaxes and proper motions of L and T dwarfs. For the past 3+ years we have monitored over 350 targets, ≈90% of which are too faint to be observed by Gaia. We present preliminary results from our observations. Our program more than doubles the number of known L and T dwarf parallaxes, defining a volume-limited sample of ≈400 L0-T6 dwarfs out to 25 parsecs, the first L and T dwarf sample of this size and depth based entirely on parallaxes. Our sample will combine with the upcoming stellar census from Gaia DR2 parallaxes to form a complete volume-limited sample of nearby stars and brown dwarfs.

  19. Induced wettability and surface-volume correlation of composition for bovine bone derived hydroxyapatite particles

    Science.gov (United States)

    Maidaniuc, Andreea; Miculescu, Florin; Voicu, Stefan Ioan; Andronescu, Corina; Miculescu, Marian; Matei, Ecaterina; Mocanu, Aura Catalina; Pencea, Ion; Csaki, Ioana; Machedon-Pisu, Teodor; Ciocan, Lucian Toma

    2018-04-01

    Hydroxyapatite powders characteristics need to be determined both for quality control purposes and for a proper control of microstructural features of bone reconstruction products. This study combines bulk morphological and compositional analysis methods (XRF, SEM-EDS, FT-IR) with surface-related methods (XPS, contact angle measurements) in order to correlate the characteristics of hydroxyapatite powders derived from bovine bone for its use in medical applications. An experimental approach for correlating the surface and volume composition was designed based on the analysis depth of each spectral method involved in the study. Next, the influences of powder particle size and forming method on the contact angle between water drops and ceramic surface were evaluated for identifying suitable strategies of tuning hydroxyapatite's wettability. The results revealed a preferential arrangement of chemical elements at the surface of hydroxyapatite particles which could induce a favourable material behaviour in terms of sinterability and biological performance.

  20. A test of alternative estimators for volume at time 1 from remeasured point samples

    Science.gov (United States)

    Francis A. Roesch; Edwin J. Green; Charles T. Scott

    1993-01-01

    Two estimators for volume at time 1 for use with permanent horizontal point samples are evaluated. One estimator, used traditionally, uses only the trees sampled at time 1, while the second estimator, originally presented by Roesch and coauthors (F.A. Roesch, Jr., E.J. Green, and C.T. Scott. 1989. For. Sci. 35(2):281-293). takes advantage of additional sample...

  1. Particle identification by means of fine sampling dE/dX measurements

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, A; Ishii, T; Ohshima, T; Okuno, H; Shiino, K [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study; Naito, F [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology; Matsuda, T [Osaka Univ., Toyonaka (Japan). Faculty of Engineering Science

    1983-04-01

    Identification of relativistic charged particles by means of fine sampling d E/d X measurements with a longitudinal drift chamber has been studied. Using a fast-sampling ADC (25 MHz), dE/dX was measured in a 1.4 mm gas thickness over an electron drift space of 51 mm. For the simulated 1 m long tracks of pions and electrons of 500 MeV/c, a particle separation of 10sigma - 12sigma has been obtained, where sigma is the r.m.s. resolution of the dE/dX measurement. This result with fine sampling is better by a factor of 1.7 compared to the dE/dX measurement, with 21 mm sampling thickness. Further improvement achievable by reducing the correlation between neighbouring samples and simplification of electronics by use of the delta-ray clipping method are also discussed.

  2. Computational analysis of particle reinforced viscoelastic polymer nanocomposites - statistical study of representative volume element

    Science.gov (United States)

    Hu, Anqi; Li, Xiaolin; Ajdari, Amin; Jiang, Bing; Burkhart, Craig; Chen, Wei; Brinson, L. Catherine

    2018-05-01

    The concept of representative volume element (RVE) is widely used to determine the effective material properties of random heterogeneous materials. In the present work, the RVE is investigated for the viscoelastic response of particle-reinforced polymer nanocomposites in the frequency domain. The smallest RVE size and the minimum number of realizations at a given volume size for both structural and mechanical properties are determined for a given precision using the concept of margin of error. It is concluded that using the mean of many realizations of a small RVE instead of a single large RVE can retain the desired precision of a result with much lower computational cost (up to three orders of magnitude reduced computation time) for the property of interest. Both the smallest RVE size and the minimum number of realizations for a microstructure with higher volume fraction (VF) are larger compared to those of one with lower VF at the same desired precision. Similarly, a clustered structure is shown to require a larger minimum RVE size as well as a larger number of realizations at a given volume size compared to the well-dispersed microstructures.

  3. A review of airborne particle sampling with special reference to long-lived radioactive dust

    International Nuclear Information System (INIS)

    Bigu, J.

    1990-03-01

    This report reviews some basic aspects related to the sampling of airborne particles with special reference to Long-Lived Radioactive Dust (LLRD). The report covers a number of areas of practical interest such as the production of aerosols, the dynamics of suspended particles, the physical and chemical characteristics and properties of dust clouds, and the inhalation and measurement of dust. It is followed with a brief review of dust sampling instrumentation, and with a short account of the work done on LLRD in Canada with a few references to work done outside this country. (34 figs., 7 tabs., 117 refs.)

  4. Volume-weighted particle-tracking method for solute-transport modeling; Implementation in MODFLOW–GWT

    Science.gov (United States)

    Winston, Richard B.; Konikow, Leonard F.; Hornberger, George Z.

    2018-02-16

    In the traditional method of characteristics for groundwater solute-transport models, advective transport is represented by moving particles that track concentration. This approach can lead to global mass-balance problems because in models of aquifers having complex boundary conditions and heterogeneous properties, particles can originate in cells having different pore volumes and (or) be introduced (or removed) at cells representing fluid sources (or sinks) of varying strengths. Use of volume-weighted particles means that each particle tracks solute mass. In source or sink cells, the changes in particle weights will match the volume of water added or removed through external fluxes. This enables the new method to conserve mass in source or sink cells as well as globally. This approach also leads to potential efficiencies by allowing the number of particles per cell to vary spatially—using more particles where concentration gradients are high and fewer where gradients are low. The approach also eliminates the need for the model user to have to distinguish between “weak” and “strong” fluid source (or sink) cells. The new model determines whether solute mass added by fluid sources in a cell should be represented by (1) new particles having weights representing appropriate fractions of the volume of water added by the source, or (2) distributing the solute mass added over all particles already in the source cell. The first option is more appropriate for the condition of a strong source; the latter option is more appropriate for a weak source. At sinks, decisions whether or not to remove a particle are replaced by a reduction in particle weight in proportion to the volume of water removed. A number of test cases demonstrate that the new method works well and conserves mass. The method is incorporated into a new version of the U.S. Geological Survey’s MODFLOW–GWT solute-transport model.

  5. In-situ high resolution particle sampling by large time sequence inertial spectrometry

    International Nuclear Information System (INIS)

    Prodi, V.; Belosi, F.

    1990-09-01

    In situ sampling is always preferred, when possible, because of the artifacts that can arise when the aerosol has to flow through long sampling lines. On the other hand, the amount of possible losses can be calculated with some confidence only when the size distribution can be measured with a sufficient precision and the losses are not too large. This makes it desirable to sample directly in the vicinity of the aerosol source or containment. High temperature sampling devices with a detailed aerodynamic separation are extremely useful to this purpose. Several measurements are possible with the inertial spectrometer (INSPEC), but not with cascade impactors or cyclones. INSPEC - INertial SPECtrometer - has been conceived to measure the size distribution of aerosols by separating the particles while airborne according to their size and collecting them on a filter. It consists of a channel of rectangular cross-section with a 90 degree bend. Clean air is drawn through the channel, with a thin aerosol sheath injected close to the inner wall. Due to the bend, the particles are separated according to their size, leaving the original streamline by a distance which is a function of particle inertia and resistance, i.e. of aerodynamic diameter. The filter collects all the particles of the same aerodynamic size at the same distance from the inlet, in a continuous distribution. INSPEC particle separation at high temperature (up to 800 C) has been tested with Zirconia particles as calibration aerosols. The feasibility study has been concerned with resolution and time sequence sampling capabilities under high temperature (700 C)

  6. Improved technique for measuring the size distribution of black carbon particles in rainwater and snow samples

    Science.gov (United States)

    Mori, T.; Moteki, N.; Ohata, S.; Koike, M.; Azuma, K. G.; Miyazaki, Y.; Kondo, Y.

    2015-12-01

    Black carbon (BC) is the strongest contributor to sunlight absorption among atmospheric aerosols. Quantitative understanding of wet deposition of BC, which strongly affects the spatial distribution of BC, is important to improve our understandings on climate change. We have devised a technique for measuring the masses of individual BC particles in rainwater and snow samples, as a combination of a nebulizer and a single-particle soot photometer (SP2) (Ohata et al. 2011, 2013; Schwarz et al. 2012; Mori et al. 2014). We show two important improvements in this technique: 1)We have extended the upper limit of detectable BC particle diameter from 0.9 μm to about 4.0 μm by modifying the photodetector for measuring the laser-induced incandescence signal. 2)We introduced a pneumatic nebulizer Marin-5 (Cetac Technologies Inc., Omaha, NE, USA) and experimentally confirmed its high extraction efficiency (~50%) independent of particle diameter up to 2.0 μm. Using our improved system, we simultaneously measured the size distribution of BC particles in air and rainwater in Tokyo. We observed that the size distribution of BC in rainwater was larger than that in air, indicating that large BC particles were effectively removed by precipitation. We also observed BC particles with diameters larger than 1.0 μm, indicating that further studies of wet deposition of BC will require the use of the modified SP2.

  7. Conditional-sampling spectrograph detection system for fluorescence measurements of individual airborne biological particles

    Science.gov (United States)

    Nachman, Paul; Pinnick, R. G.; Hill, Steven C.; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1996-03-01

    We report the design and operation of a prototype conditional-sampling spectrograph detection system that can record the fluorescence spectra of individual, micrometer-sized aerosols as they traverse an intense 488-nm intracavity laser beam. The instrument's image-intensified CCD detector is gated by elastic scattering or by undispersed fluorescence from particles that enter the spectrograph's field of view. It records spectra only from particles with preselected scattering-fluorescence levels (a fiber-optic-photomultiplier subsystem provides the gating signal). This conditional-sampling procedure reduces data-handling rates and increases the signal-to-noise ratio by restricting the system's exposures to brief periods when aerosols traverse the beam. We demonstrate these advantages by reliably capturing spectra from individual fluorescent microspheres dispersed in an airstream. The conditional-sampling procedure also permits some discrimination among different types of particles, so that spectra may be recorded from the few interesting particles present in a cloud of background aerosol. We demonstrate such discrimination by measuring spectra from selected fluorescent microspheres in a mixture of two types of microspheres, and from bacterial spores in a mixture of spores and nonfluorescent kaolin particles.

  8. Particle filtering with path sampling and an application to a bimodal ocean current model

    International Nuclear Information System (INIS)

    Weare, Jonathan

    2009-01-01

    This paper introduces a recursive particle filtering algorithm designed to filter high dimensional systems with complicated non-linear and non-Gaussian effects. The method incorporates a parallel marginalization (PMMC) step in conjunction with the hybrid Monte Carlo (HMC) scheme to improve samples generated by standard particle filters. Parallel marginalization is an efficient Markov chain Monte Carlo (MCMC) strategy that uses lower dimensional approximate marginal distributions of the target distribution to accelerate equilibration. As a validation the algorithm is tested on a 2516 dimensional, bimodal, stochastic model motivated by the Kuroshio current that runs along the Japanese coast. The results of this test indicate that the method is an attractive alternative for problems that require the generality of a particle filter but have been inaccessible due to the limitations of standard particle filtering strategies.

  9. A cache-friendly sampling strategy for texture-based volume rendering on GPU

    Directory of Open Access Journals (Sweden)

    Junpeng Wang

    2017-06-01

    Full Text Available The texture-based volume rendering is a memory-intensive algorithm. Its performance relies heavily on the performance of the texture cache. However, most existing texture-based volume rendering methods blindly map computational resources to texture memory and result in incoherent memory access patterns, causing low cache hit rates in certain cases. The distance between samples taken by threads of an atomic scheduling unit (e.g. a warp of 32 threads in CUDA of the GPU is a crucial factor that affects the texture cache performance. Based on this fact, we present a new sampling strategy, called Warp Marching, for the ray-casting algorithm of texture-based volume rendering. The effects of different sample organizations and different thread-pixel mappings in the ray-casting algorithm are thoroughly analyzed. Also, a pipeline manner color blending approach is introduced and the power of warp-level GPU operations is leveraged to improve the efficiency of parallel executions on the GPU. In addition, the rendering performance of the Warp Marching is view-independent, and it outperforms existing empty space skipping techniques in scenarios that need to render large dynamic volumes in a low resolution image. Through a series of micro-benchmarking and real-life data experiments, we rigorously analyze our sampling strategies and demonstrate significant performance enhancements over existing sampling methods.

  10. Measuring of filtration efficiency of nonwoven textiles in volume from scattered light by seeding particles

    Directory of Open Access Journals (Sweden)

    Sidlof P.

    2013-04-01

    Full Text Available This paper deals with the method which calculates a filtration efficiency of nonwoven textiles from scattered light intensity by seeding particles. Thefiltration efficiency is commonly measured by particle counters. Samples of liquid or gas are taken during a test in front of and behind a filtration material. The concentration of particles is measured and the filtration efficiency is calculated. The filtration efficiency does not have to be uniform in itswhole surface. The uniformity of filtration is another indicator of a quality of filtration materials. Measurements described in this article were performed on a water filtration setup which enables optical access to the place where the filtration material is mounted. Pictures of illuminated seeding particles are made by a laser sheet and a camera. Visualisation of the filtration process enables measuring of the efficiency of separation versus time and also versus two-dimensional position in case of use of a traverse mechanism. The filtration textiles were tested by 1 μm seeding particles. Mean value of light intensity and number of bright pixels in evaluative areas during image analysis were obtained. On the basis of these data, the filtration efficiency iscalculated. The best image analysis method was chosen.

  11. Uranium and plutonium containing particles in a sea sediment sample from Thule, Greenland

    DEFF Research Database (Denmark)

    Moring, M.; Ikäheimonen, T.K.; Pöllänen, R.

    2001-01-01

    Particles composed of radioactive materials and probably originating from US nuclear weapons were identified in sea sediment samples collected from Thule, Greenland in 1997. The weapons were destroyed close to the Thule Air Base in 1968 in an aeroplane crash, which dispersed radioactive materials...

  12. Qualitative analysis of a powdered diamond sample by particle induced X-ray emission (PIXE)

    International Nuclear Information System (INIS)

    Mabida, C.; Annegarn, H.J.; Renan, M.J.; Sellschop, J.P.F.

    The main purpose of this analysis was to determine whether nickel is present in diamond powder as a trace element. Particle induced X-ray emission (PIXE) showed unambiguously that nickel was present. Due to the convenience of PIXE in multielemental analysis, the investigations also include a number of other trace elements in the sample

  13. Size-Selective Sampling Performance of Six Low-Volume “Total” Suspended Particulate (TSP) Inlets

    Data.gov (United States)

    U.S. Environmental Protection Agency — Results from the comprehensive wind tunnel evaluation of six low-volume aerosol inlets are presented as a function of wind speed and aerodynamic particle diameter....

  14. Mechanical properties of concrete containing a high volume of tire-rubber particles.

    Science.gov (United States)

    Khaloo, Ali R; Dehestani, M; Rahmatabadi, P

    2008-12-01

    Due to the increasingly serious environmental problems presented by waste tires, the feasibility of using elastic and flexible tire-rubber particles as aggregate in concrete is investigated in this study. Tire-rubber particles composed of tire chips, crumb rubber, and a combination of tire chips and crumb rubber, were used to replace mineral aggregates in concrete. These particles were used to replace 12.5%, 25%, 37.5%, and 50% of the total mineral aggregate's volume in concrete. Cylindrical shape concrete specimens 15 cm in diameter and 30 cm in height were fabricated and cured. The fresh rubberized concrete exhibited lower unit weight and acceptable workability compared to plain concrete. The results of a uniaxial compressive strain control test conducted on hardened concrete specimens indicate large reductions in the strength and tangential modulus of elasticity. A significant decrease in the brittle behavior of concrete with increasing rubber content is also demonstrated using nonlinearity indices. The maximum toughness index, indicating the post failure strength of concrete, occurs in concretes with 25% rubber content. Unlike plain concrete, the failure state in rubberized concrete occurs gently and uniformly, and does not cause any separation in the specimen. Crack width and its propagation velocity in rubberized concrete are lower than those of plain concrete. Ultrasonic analysis reveals large reductions in the ultrasonic modulus and high sound absorption for tire-rubber concrete.

  15. Multiscale simulations of patchy particle systems combining Molecular Dynamics, Path Sampling and Green's Function Reaction Dynamics

    Science.gov (United States)

    Bolhuis, Peter

    Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.

  16. Standard Practices for Sampling for Particles in Aerospace Fluids and Components

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These practices cover sampling procedures for use in determining the particle cleanliness of liquids and liquid samples from components. Three practices, A, B, and C, have been developed on the basis of component geometry in order to encompass the wide variety of configurations. These practices establish guidelines to be used in preparing detailed procedures for sampling specific components. Note 1—The term cleanliness used in these practices refers to solid particles in the liquid. It does not generally cover other foreign matter such as gases, liquids, and products of chemical degradation. Cleanliness with respect to particulate contamination does not necessarily give any indication of the other types of contamination. 1.2 All components, regardless of application, may be tested provided (1) the fluid medium selected is completely compatible with the materials, packing and fluid used in the test component, and test apparatus, and (2) the fluid is handled in accordance with the manufacturer's recom...

  17. Dielectrophoretic sample preparation for environmental monitoring of microorganisms: Soil particle removal.

    Science.gov (United States)

    Fatoyinbo, Henry O; McDonnell, Martin C; Hughes, Michael P

    2014-07-01

    Detection of pathogens from environmental samples is often hampered by sensors interacting with environmental particles such as soot, pollen, or environmental dust such as soil or clay. These particles may be of similar size to the target bacterium, preventing removal by filtration, but may non-specifically bind to sensor surfaces, fouling them and causing artefactual results. In this paper, we report the selective manipulation of soil particles using an AC electrokinetic microfluidic system. Four heterogeneous soil samples (smectic clay, kaolinitic clay, peaty loam, and sandy loam) were characterised using dielectrophoresis to identify the electrical difference to a target organism. A flow-cell device was then constructed to evaluate dielectrophoretic separation of bacteria and clay in a continous flow through mode. The average separation efficiency of the system across all soil types was found to be 68.7% with a maximal separation efficiency for kaolinitic clay at 87.6%. This represents the first attempt to separate soil particles from bacteria using dielectrophoresis and indicate that the technique shows significant promise; with appropriate system optimisation, we believe that this preliminary study represents an opportunity to develop a simple yet highly effective sample processing system.

  18. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    Science.gov (United States)

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.

  19. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample

    International Nuclear Information System (INIS)

    Kil Yong Lee; Burnett, W.C.

    2013-01-01

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 deg C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods. (author)

  20. Self Absorbed Fraction for Electrons and Beta Particles in Small Spherical Volumes

    International Nuclear Information System (INIS)

    Grosev, D.

    2003-01-01

    Absorbed fraction and target organ mass are important parameters of internal dosimetry calculations that define the geometry of the system. Standard MIRD (Medical Internal Radiation Dosimetry) formalism assumes that the absorbed fraction for non-penetrating radiations (e.g., electrons, beta particles) is 1. This may not be correct in cases where dimensions of organs/tissues are comparable with the ranges of electrons/beta particles. Such is the case for example in radiodine ablation of thyroid remnant tissue. In this work the self-absorbed fraction (source and target volumes are the same) for monoenergetic electrons and beta particles is calculated for small spherical volumes of various sizes and unit density. Absorbed fraction can be expressed as an integral of the product of two quantities: (a) Scaled beta dose point kernel (mean absorbed dose rate per activity of the point source in infinite homogenous medium), F β ; (b) special geometrical reduction factor (GRF). F β is calculated using EGS4 Monte Carlo (MC) code for transport of electrons and photons. MC source code calculates the deposition of energy inside concentric spherical shells around the isotropic point source of electrons/beta particles in infinite medium (water). Shell thickness was δr=0.02·X 90 , where X 90 represents the radius of the sphere inside which 90% of the source energy is absorbed. Number of concentric spherical shells was 100, 10000 electron histories were started in each program run, and 10 runs were repeated for statistical reason. Numerical integration of the product of F β , calculated by MC program, and GRF for sphere was done using Simpson method. Absorbed fractions were calculated for spheres with mass from 0.01-20 g (r = 0.13 - 1.68 cm). Results are given for monoenergetic electrons with kinetic energy T=0.2, 0.4, 1.0 MeV, and for three beta emitters 1 31I , 3 2P , 9 0Y . For quantitative dosimetric protocols in radioiodine ablation therapy, results for 1 31I are of

  1. Amplification volume reduction on DNA database samples using FTA™ Classic Cards.

    Science.gov (United States)

    Wong, Hang Yee; Lim, Eng Seng Simon; Tan-Siew, Wai Fun

    2012-03-01

    The DNA forensic community always strives towards improvements in aspects such as sensitivity, robustness, and efficacy balanced with cost efficiency. Therefore our laboratory decided to study the feasibility of PCR amplification volume reduction using DNA entrapped in FTA™ Classic Card and to bring cost savings to the laboratory. There were a few concerns the laboratory needed to address. First, the kinetics of the amplification reaction could be significantly altered. Second, an increase in sensitivity might affect interpretation due to increased stochastic effects even though they were pristine samples. Third, statics might cause FTA punches to jump out of its allocated well into another thus causing sample-to-sample contamination. Fourth, the size of the punches might be too small for visual inspection. Last, there would be a limit to the extent of volume reduction due to evaporation and the possible need of re-injection of samples for capillary electrophoresis. The laboratory had successfully optimized a reduced amplification volume of 10 μL for FTA samples. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Improvement of 137Cs analysis in small volume seawater samples using the Ogoya underground facility

    International Nuclear Information System (INIS)

    Hirose, K.; Komura, K.; Kanazawa University, Ishikawa; Aoyama, M.; Igarashi, Y.

    2008-01-01

    137 Cs in seawater is one of the most powerful tracers of water motion. Large volumes of samples have been required for determination of 137 Cs in seawater. This paper describes improvement of separation and purification processes of 137 Cs in seawater, which includes purification of 137 Cs using hexachloroplatinic acid in addition to ammonium phosphomolybdate (AMP) precipitation. As a result, we succeeded the 137 Cs determination in seawater with a smaller sample volume of 10 liter by using ultra-low background gamma-spectrometry in the Ogoya underground facility. 137 Cs detection limit was about 0.1 mBq (counting time: 10 6 s). This method is applied to determine 137 Cs in small samples of the South Pacific deep waters. (author)

  3. Gamut Volume Index: a color preference metric based on meta-analysis and optimized colour samples.

    Science.gov (United States)

    Liu, Qiang; Huang, Zheng; Xiao, Kaida; Pointer, Michael R; Westland, Stephen; Luo, M Ronnier

    2017-07-10

    A novel metric named Gamut Volume Index (GVI) is proposed for evaluating the colour preference of lighting. This metric is based on the absolute gamut volume of optimized colour samples. The optimal colour set of the proposed metric was obtained by optimizing the weighted average correlation between the metric predictions and the subjective ratings for 8 psychophysical studies. The performance of 20 typical colour metrics was also investigated, which included colour difference based metrics, gamut based metrics, memory based metrics as well as combined metrics. It was found that the proposed GVI outperformed the existing counterparts, especially for the conditions where correlated colour temperatures differed.

  4. Hypercrosslinked particles for the extraction of sweeteners using dispersive solid-phase extraction from environmental samples.

    Science.gov (United States)

    Lakade, Sameer S; Zhou, Qing; Li, Aimin; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa M

    2018-04-01

    This work presents a new extraction material, namely, Q-100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid-phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q-100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid-phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q-100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid-phase extraction using Q-100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 μg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The particle analysis based on FT-TIMS technique for swipe sample under the frame of nuclear safeguard

    International Nuclear Information System (INIS)

    Yang Tianli; Liu Xuemei; Liu Zhao; Tang Lei; Long Kaiming

    2008-06-01

    Under the frame of nuclear safeguard, the particles analysis for swipe sample is an advance mean to detect the undeclared uranium enriched facilities and undeclared uranium enriched activity. The technique of particle analysis based on fission track-thermal ionization mass spectrometry (FT-TIMS) for swipe sample have been built. The reliability and the experimental background for selecting particles consisting of uranium from swipe sample by FT method have been verified. In addition, the utilization coefficient of particles on the surface of swipe sample have also been tested. These works have provided the technique support for application in the area of nuclear verification. (authors)

  6. Two-dimensional particle simulation of negative ion extraction from a volume source

    International Nuclear Information System (INIS)

    Naitou, H.; Fukumasa, O.; Sakachou, K.; Mutou, K.

    1995-01-01

    Two-dimensional electrostatic particle simulation was done to study the extraction of negative ions from a volume plasma source. The simulation model is a rectangular system which consists of an extraction grid, a plasma grid, and a grounded wall. Full dynamics of electrons, ions, and negative ions are followed. Negative ions are extracted from the plasma region to the extraction grid through a slit in the plasma grid. For the lower value of extraction grid potential, the simulation results agree with the Child-Langumuir law, where the extracted negative ion current is proportional to the three-halves power of the potential of the extraction grid. For the higher value of extraction grid potential, the space charge effect of negative ions, which enter into the beamline at the top of the concavity of the positive ion boundary, reduces the negative ion current from the prediction of the Child-Langumuir law. ((orig.))

  7. Sampling procedures for inventory of commercial volume tree species in Amazon Forest.

    Science.gov (United States)

    Netto, Sylvio P; Pelissari, Allan L; Cysneiros, Vinicius C; Bonazza, Marcelo; Sanquetta, Carlos R

    2017-01-01

    The spatial distribution of tropical tree species can affect the consistency of the estimators in commercial forest inventories, therefore, appropriate sampling procedures are required to survey species with different spatial patterns in the Amazon Forest. For this, the present study aims to evaluate the conventional sampling procedures and introduce the adaptive cluster sampling for volumetric inventories of Amazonian tree species, considering the hypotheses that the density, the spatial distribution and the zero-plots affect the consistency of the estimators, and that the adaptive cluster sampling allows to obtain more accurate volumetric estimation. We use data from a census carried out in Jamari National Forest, Brazil, where trees with diameters equal to or higher than 40 cm were measured in 1,355 plots. Species with different spatial patterns were selected and sampled with simple random sampling, systematic sampling, linear cluster sampling and adaptive cluster sampling, whereby the accuracy of the volumetric estimation and presence of zero-plots were evaluated. The sampling procedures applied to species were affected by the low density of trees and the large number of zero-plots, wherein the adaptive clusters allowed concentrating the sampling effort in plots with trees and, thus, agglutinating more representative samples to estimate the commercial volume.

  8. Sampling in freshwater environments: Suspended particle traps and variability in the final data

    International Nuclear Information System (INIS)

    Barbizzi, Sabrina; Pati, Alessandra

    2008-01-01

    This paper reports one practical method to estimate the measurement uncertainty including sampling, derived by the approach implemented by Ramsey for soil investigations. The methodology has been applied to estimate the measurements uncertainty (sampling and analyses) of 137 Cs activity concentration (Bq kg -1 ) and total carbon content (%) in suspended particle sampling in a freshwater ecosystem. Uncertainty estimates for between locations, sampling and analysis components have been evaluated. For the considered measurands, the relative expanded measurement uncertainties are 12.3% for 137 Cs and 4.5% for total carbon. For 137 Cs, the measurement (sampling+analysis) variance gives the major contribution to the total variance, while for total carbon the spatial variance is the dominant contributor to the total variance. The limitations and advantages of this basic method are discussed

  9. Sampling in freshwater environments: suspended particle traps and variability in the final data.

    Science.gov (United States)

    Barbizzi, Sabrina; Pati, Alessandra

    2008-11-01

    This paper reports one practical method to estimate the measurement uncertainty including sampling, derived by the approach implemented by Ramsey for soil investigations. The methodology has been applied to estimate the measurements uncertainty (sampling and analyses) of (137)Cs activity concentration (Bq kg(-1)) and total carbon content (%) in suspended particle sampling in a freshwater ecosystem. Uncertainty estimates for between locations, sampling and analysis components have been evaluated. For the considered measurands, the relative expanded measurement uncertainties are 12.3% for (137)Cs and 4.5% for total carbon. For (137)Cs, the measurement (sampling+analysis) variance gives the major contribution to the total variance, while for total carbon the spatial variance is the dominant contributor to the total variance. The limitations and advantages of this basic method are discussed.

  10. Model building with a dynamical volume element in gravity, particle theory and theories of extended object

    International Nuclear Information System (INIS)

    Guendelman, E.

    2004-01-01

    Full Text:The Volume Element of Space Time can be considered as a geometrical object which can be independent of the metric. The use in the action of a volume element which is metric independent leads to the appearance of a measure of integration which is metric independent. This can be applied to all known generally coordinate invariant theories, we will discuss three very important cases: 1. 4-D theories describing gravity and matter fields, 2. Parametrization invariant theories of extended objects and 3. Higher dimensional theories including gravity and matter fields. In case 1, a large number of new effects appear: (i) spontaneous breaking of scale invariance associated to integration of degrees of freedom related to the measure, (ii) under normal particle physics laboratory conditions fermions split into three families, but when matter is highly diluted, neutrinos increase their mass and become suitable candidates for dark matter, (iii) cosmic coincidence between dark energy and dark matter is natural, (iv) quintessence scenarios with automatic decoupling of the quintessence scalar to ordinary matter, but not dark matter are obtained (2) For theories or extended objects, the use of a measure of integration independent of the metric leads to (i) dynamical tension, (ii) string models of non abelian confinement (iii) The possibility of new Weyl invariant light-like branes (WTT.L branes). These Will branes dynamically adjust themselves to sit at black hole horizons and in the context of higher dimensional theories can provide examples of massless 4-D particles with nontrivial Kaluza Klein quantum numbers, (3) In Bronx and Kaluza Klein scenarios, the use of a measure independent of the metric makes it possible to construct naturally models where only the extra dimensions get curved and the 4-D observable space-time remain flat

  11. A self-sampling method to obtain large volumes of undiluted cervicovaginal secretions.

    Science.gov (United States)

    Boskey, Elizabeth R; Moench, Thomas R; Hees, Paul S; Cone, Richard A

    2003-02-01

    Studies of vaginal physiology and pathophysiology sometime require larger volumes of undiluted cervicovaginal secretions than can be obtained by current methods. A convenient method for self-sampling these secretions outside a clinical setting can facilitate such studies of reproductive health. The goal was to develop a vaginal self-sampling method for collecting large volumes of undiluted cervicovaginal secretions. A menstrual collection device (the Instead cup) was inserted briefly into the vagina to collect secretions that were then retrieved from the cup by centrifugation in a 50-ml conical tube. All 16 women asked to perform this procedure found it feasible and acceptable. Among 27 samples, an average of 0.5 g of secretions (range, 0.1-1.5 g) was collected. This is a rapid and convenient self-sampling method for obtaining relatively large volumes of undiluted cervicovaginal secretions. It should prove suitable for a wide range of assays, including those involving sexually transmitted diseases, microbicides, vaginal physiology, immunology, and pathophysiology.

  12. Known volume air sampling pump. Final summary report Jun 1975--Nov 1976

    International Nuclear Information System (INIS)

    McCullough, J.E.; Peterson, A.

    1976-11-01

    The purpose of this development program was to design and develop a known volume air sampling pump for use in measuring the amount of radioactive material in the atmosphere of an underground uranium mine. The principal nuclear radiation hazard to underground uranium mines comes from the mine atmosphere. Daughter products of radon-222 are inhaled by the miner resulting in a relatively high lung cancer rate among these workers. Current exposure control practice employs spot sampling in working areas to measure working level values. Currently available personal air sampling pumps fail to deliver known volumes of air under widely changing differential pressures. A unique type of gas pump known as the scroll compressor, developed by Arthur D. Little, Inc., that has no values and few moving parts is expected to provide a practical, efficient, and dependable air pump for use in dosimeters. The three deliverable known volume air sampling pumps resulting from this work incorporate a scroll pump, drive motor, speed control electronics, and battery pack in a container suitable for attachment to a miner's belt

  13. Localisation and identification of radioactive particles in solid samples by means of a nuclear track technique

    International Nuclear Information System (INIS)

    Boehnke, Antje; Treutler, Hanns-Christian; Freyer, Klaus; Schubert, Michael; Holger Weiss

    2005-01-01

    This study is aimed to develop a generally applicable methodology of investigation that can be used for the localisation of single alpha-active particles in solid samples, such as industrial dust or natural soils, sediments and rocks by autoradiography using solid-state nuclear track detectors. The developed technique allows the detection of local enrichments of alpha-emitters in any solid material. The results of such an investigation are of interest from technical, biological and environmental points of view. The idea behind the methodology is to locate the position of alpha-active spots in a sample by attaching the track detector to the sample in a defined manner, thoroughly described in the paper. The located alpha-active particles are subsequently analysed by an electron microscope and an electron microprobe. An example of the application of this methodology is also given. An ultra-fine -grained ore-processing residue, which causes serious environmental pollution in the respective mining district and thus limits possible land use and affects quality of life in the area, was examined using the described technique. The investigation revealed considerable amounts of alpha-active particles in this material

  14. Examining the effect of psychopathic traits on gray matter volume in a community substance abuse sample.

    Science.gov (United States)

    Cope, Lora M; Shane, Matthew S; Segall, Judith M; Nyalakanti, Prashanth K; Stevens, Michael C; Pearlson, Godfrey D; Calhoun, Vince D; Kiehl, Kent A

    2012-11-30

    Psychopathy is believed to be associated with brain abnormalities in both paralimbic (i.e., orbitofrontal cortex, insula, temporal pole, parahippocampal gyrus, posterior cingulate) and limbic (i.e., amygdala, hippocampus, anterior cingulate) regions. Recent structural imaging studies in both community and prison samples are beginning to support this view. Sixty-six participants, recruited from community corrections centers, were administered the Hare psychopathy checklist-revised (PCL-R), and underwent magnetic resonance imaging (MRI). Voxel-based morphometry was used to test the hypothesis that psychopathic traits would be associated with gray matter reductions in limbic and paralimbic regions. Effects of lifetime drug and alcohol use on gray matter volume were covaried. Psychopathic traits were negatively associated with gray matter volumes in right insula and right hippocampus. Additionally, psychopathic traits were positively associated with gray matter volumes in bilateral orbital frontal cortex and right anterior cingulate. Exploratory regression analyses indicated that gray matter volumes within right hippocampus and left orbital frontal cortex combined to explain 21.8% of the variance in psychopathy scores. These results support the notion that psychopathic traits are associated with abnormal limbic and paralimbic gray matter volume. Furthermore, gray matter increases in areas shown to be functionally impaired suggest that the structure-function relationship may be more nuanced than previously thought. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    International Nuclear Information System (INIS)

    Krommes, John A.

    2007-01-01

    The present state of the theory of fluctuations in gyrokinetic (GK) plasmas and especially its application to sampling noise in GK particle-in-cell (PIC) simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism

  16. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    Energy Technology Data Exchange (ETDEWEB)

    John A. Krommes

    2007-10-09

    The present state of the theory of fluctuations in gyrokinetic GK plasmas and especially its application to sampling noise in GK particle-in-cell PIC simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism.

  17. Brachytherapy dose-volume histogram computations using optimized stratified sampling methods

    International Nuclear Information System (INIS)

    Karouzakis, K.; Lahanas, M.; Milickovic, N.; Giannouli, S.; Baltas, D.; Zamboglou, N.

    2002-01-01

    A stratified sampling method for the efficient repeated computation of dose-volume histograms (DVHs) in brachytherapy is presented as used for anatomy based brachytherapy optimization methods. The aim of the method is to reduce the number of sampling points required for the calculation of DVHs for the body and the PTV. From the DVHs are derived the quantities such as Conformity Index COIN and COIN integrals. This is achieved by using partial uniform distributed sampling points with a density in each region obtained from a survey of the gradients or the variance of the dose distribution in these regions. The shape of the sampling regions is adapted to the patient anatomy and the shape and size of the implant. For the application of this method a single preprocessing step is necessary which requires only a few seconds. Ten clinical implants were used to study the appropriate number of sampling points, given a required accuracy for quantities such as cumulative DVHs, COIN indices and COIN integrals. We found that DVHs of very large tissue volumes surrounding the PTV, and also COIN distributions, can be obtained using a factor of 5-10 times smaller the number of sampling points in comparison with uniform distributed points

  18. The influence of buoyant forces and volume fraction of particles on the particle pushing/entrapment transition during directional solidification of Al/SiC and Al/graphite composites

    Science.gov (United States)

    Stefanescu, Doru M.; Moitra, Avijit; Kacar, A. Sedat; Dhindaw, Brij K.

    1990-01-01

    Directional solidification experiments in a Bridgman-type furnace were used to study particle behavior at the liquid/solid interface in aluminum metal matrix composites. Graphite or siliconcarbide particles were first dispersed in aluminum-base alloys via a mechanically stirred vortex. Then, 100-mm-diameter and 120-mm-long samples were cast in steel dies and used for directional solidification. The processing variables controlled were the direction and velocity of solidification and the temperature gradient at the interface. The material variables monitored were the interface energy, the liquid/particle density difference, the particle/liquid thermal conductivity ratio, and the volume fraction of particles. These properties were changed by selecting combinations of particles (graphite or silicon carbide) and alloys (Al-Cu, Al-Mg, Al-Ni). A model which considers process thermodynamics, process kinetics (including the role of buoyant forces), and thermophysical properties was developed. Based on solidification direction and velocity, and on materials properties, four types of behavior were predicted. Sessile drop experiments were also used to determine some of the interface energies required in calculation with the proposed model. Experimental results compared favorably with model predictions.

  19. Comparison of fine particle measurements from a direct-reading instrument and a gravimetric sampling method.

    Science.gov (United States)

    Kim, Jee Young; Magari, Shannon R; Herrick, Robert F; Smith, Thomas J; Christiani, David C

    2004-11-01

    Particulate air pollution, specifically the fine particle fraction (PM2.5), has been associated with increased cardiopulmonary morbidity and mortality in general population studies. Occupational exposure to fine particulate matter can exceed ambient levels by a large factor. Due to increased interest in the health effects of particulate matter, many particle sampling methods have been developed In this study, two such measurement methods were used simultaneously and compared. PM2.5 was sampled using a filter-based gravimetric sampling method and a direct-reading instrument, the TSI Inc. model 8520 DUSTTRAK aerosol monitor. Both sampling methods were used to determine the PM2.5 exposure in a group of boilermakers exposed to welding fumes and residual fuel oil ash. The geometric mean PM2.5 concentration was 0.30 mg/m3 (GSD 3.25) and 0.31 mg/m3 (GSD 2.90)from the DUSTTRAK and gravimetric method, respectively. The Spearman rank correlation coefficient for the gravimetric and DUSTTRAK PM2.5 concentrations was 0.68. Linear regression models indicated that log, DUSTTRAK PM2.5 concentrations significantly predicted loge gravimetric PM2.5 concentrations (p gravimetric PM2.5 concentrations was found to be modified by surrogate measures for seasonal variation and type of aerosol. PM2.5 measurements from the DUSTTRAK are well correlated and highly predictive of measurements from the gravimetric sampling method for the aerosols in these work environments. However, results from this study suggest that aerosol particle characteristics may affect the relationship between the gravimetric and DUSTTRAK PM2.5 measurements. Recalibration of the DUSTTRAK for the specific aerosol, as recommended by the manufacturer, may be necessary to produce valid measures of airborne particulate matter.

  20. Transportable aerosol sampling station with fixed volume (15 l) DMPA-15

    International Nuclear Information System (INIS)

    Giolu, G.; Guta, V.

    1999-01-01

    The mobile installation is used for air-sampling operations with fixed intake volumes, to be analysed by laboratories of routine environmental air monitoring. The station consists of several units, installed on a two-wheel mobile carriage-type platform: - a double - diaphragm pump (ensuring oil separation) that provides air intake and its evacuation to the air-analysers. The sampling and control unit has the following functions: - intake ensured by the pump that aspirates fixed volumes of air from the ambient atmosphere and feeding with it an inflatable rubber chamber. Air intake is automatically stopped as the cushion is filled up completely. A separation clamp is provided to seal up the cushion; - exhaust - allows the residual air to be evacuated from the cushion, ensuring its 'self-cleaning'; - shut down, manually operated; - analyse, the aerosol containing sample is aspirated from the inflatable rubber chamber and evacuated through a flow regulator to the analyser; - stop, canceling any previous commands. A relay unit controls the pneumatic lines and a pressure relay provides automatic stop of air intake process. The following technical features are given: - The fixed air volume in the chamber, 15 l - the air flow at the exit from the flow-meter, 0 - 15 l/min; - power requirements, 220 V/ 50 Hz; - power consumption, max. 1,5 kW; - overall dimensions, 460 x 500 x 820 mm; - weight, 53 kg. (authors)

  1. Analysis format and evaluation methods for effluent particle sampling systems in nuclear facilities

    International Nuclear Information System (INIS)

    Schwendiman, L.C.; Glissmeyer, J.A.

    1976-06-01

    Airborne effluent sampling systems for nuclear facilities are frequently designed, installed, and operated without a systematic approach which discloses and takes into account all the circumstances and conditions which would affect the validity and adequacy of the sample. Without a comprehensive check list or something similar, the designer of the system may not be given the important information needed to provide a good design. In like manner, an already operating system may be better appraised. Furthermore, the discipline of a more formal approach may compel the one who will use the system to make sure he knows what he wants and can thus give the designer the needed information. An important consideration is the criteria to be applied to the samples to be taken. This analysis format consists of a listing of questions and statements calling forth the necessary information required to analyze a sampling system. With this information developed, one can proceed with an evaluation, the methodology of which is also discussed in the paper. Errors in probe placement, failure to sample at the proper rate, delivery line losses, and others are evaluated using mathematical models and empirically derived relationships. Experimental methods are also described for demonstrating that quality sampling will be achieved. The experiments include using a temporary, simple, but optimal sample collection system to evaluate the more complex systems. The use of tracer particles injected in the stream is also discussed. The samples obtained with the existing system are compared with those obtained by the temporary, optimal system

  2. In-Situ Systematic Error Correction for Digital Volume Correlation Using a Reference Sample

    KAUST Repository

    Wang, B.

    2017-11-27

    The self-heating effect of a laboratory X-ray computed tomography (CT) scanner causes slight change in its imaging geometry, which induces translation and dilatation (i.e., artificial displacement and strain) in reconstructed volume images recorded at different times. To realize high-accuracy internal full-field deformation measurements using digital volume correlation (DVC), these artificial displacements and strains associated with unstable CT imaging must be eliminated. In this work, an effective and easily implemented reference sample compensation (RSC) method is proposed for in-situ systematic error correction in DVC. The proposed method utilizes a stationary reference sample, which is placed beside the test sample to record the artificial displacement fields caused by the self-heating effect of CT scanners. The detected displacement fields are then fitted by a parametric polynomial model, which is used to remove the unwanted artificial deformations in the test sample. Rescan tests of a stationary sample and real uniaxial compression tests performed on copper foam specimens demonstrate the accuracy, efficacy, and practicality of the presented RSC method.

  3. In-Situ Systematic Error Correction for Digital Volume Correlation Using a Reference Sample

    KAUST Repository

    Wang, B.; Pan, B.; Lubineau, Gilles

    2017-01-01

    The self-heating effect of a laboratory X-ray computed tomography (CT) scanner causes slight change in its imaging geometry, which induces translation and dilatation (i.e., artificial displacement and strain) in reconstructed volume images recorded at different times. To realize high-accuracy internal full-field deformation measurements using digital volume correlation (DVC), these artificial displacements and strains associated with unstable CT imaging must be eliminated. In this work, an effective and easily implemented reference sample compensation (RSC) method is proposed for in-situ systematic error correction in DVC. The proposed method utilizes a stationary reference sample, which is placed beside the test sample to record the artificial displacement fields caused by the self-heating effect of CT scanners. The detected displacement fields are then fitted by a parametric polynomial model, which is used to remove the unwanted artificial deformations in the test sample. Rescan tests of a stationary sample and real uniaxial compression tests performed on copper foam specimens demonstrate the accuracy, efficacy, and practicality of the presented RSC method.

  4. Magnetic particles for in vitro molecular diagnosis: From sample preparation to integration into microsystems.

    Science.gov (United States)

    Tangchaikeeree, Tienrat; Polpanich, Duangporn; Elaissari, Abdelhamid; Jangpatarapongsa, Kulachart

    2017-10-01

    Colloidal magnetic particles (MPs) have been developed in association with molecular diagnosis for several decades. MPs have the great advantage of easy manipulation using a magnet. In nucleic acid detection, these particles can act as a capture support for rapid and simple biomolecule separation. The surfaces of MPs can be modified by coating with various polymer materials to provide functionalization for different applications. The use of MPs enhances the sensitivity and specificity of detection due to the specific activity on the surface of the particles. Practical applications of MPs demonstrate greater efficiency than conventional methods. Beyond traditional detection, MPs have been successfully adopted as a smart carrier in microfluidic and lab-on-a-chip biosensors. The versatility of MPs has enabled their integration into small single detection units. MPs-based biosensors can facilitate rapid and highly sensitive detection of very small amounts of a sample. In this review, the application of MPs to the detection of nucleic acids, from sample preparation to analytical readout systems, is described. State-of-the-art integrated microsystems containing microfluidic and lab-on-a-chip biosensors for the nucleic acid detection are also addressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Partial molar volume of n-alcohols at infinite dilution in water calculated by means of scaled particle theory.

    Science.gov (United States)

    Graziano, Giuseppe

    2006-04-07

    The partial molar volume of n-alcohols at infinite dilution in water is smaller than the molar volume in the neat liquid phase. It is shown that the formula for the partial molar volume at infinite dilution obtained from the scaled particle theory equation of state for binary hard sphere mixtures is able to reproduce in a satisfactory manner the experimental data over a large temperature range. This finding implies that the packing effects play the fundamental role in determining the partial molar volume at infinite dilution in water also for solutes, such as n-alcohols, forming H bonds with water molecules. Since the packing effects in water are largely related to the small size of its molecules, the latter feature is the ultimate cause of the decrease in partial molar volume associated with the hydrophobic effect.

  6. Fast and effective determination of strontium-90 in high volumes water samples

    International Nuclear Information System (INIS)

    Basarabova, B.; Dulanska, S.

    2014-01-01

    A simple and fast method was developed for determination of 90 Sr in high volumes of water samples from vicinity of nuclear power facilities. Samples were taken from the environment near Nuclear Power Plants in Jaslovske Bohunice and Mochovce in Slovakia. For determination of 90 Sr was used solid phase extraction using commercial sorbent Analig R Sr-01 from company IBC Advanced Technologies, Inc.. Determination of 90 Sr was performed with dilute solution of HNO 3 (1.5-2 M) and also tested in base medium with NaOH. For elution of 90 Sr was used eluent EDTA with pH in range 8-9. To achieve fast determination, automation was applied, which brings significant reduction of separation time. Concentration of water samples with evaporation was not necessary. Separation was performed immediately after filtration of analyzed samples. The aim of this study was development of less expensive, time unlimited and energy saving method for determination of 90 Sr in comparison with conventional methods. Separation time for fast-flow with volume of 10 dm 3 of water samples was 3.5 hours (flow-rate approximately 3.2 dm 3 / 1 hour). Radiochemical strontium yield was traced by using radionuclide 85 Sr. Samples were measured with HPGe detector (High-purity Germanium detector) at energy E φ = 514 keV. By using Analig R Sr-01 yields in range 72 - 96 % were achieved. Separation based on solid phase extraction using Analig R Sr-01 employing utilization of automation offers new, fast and effective method for determination of 90 Sr in water matrix. After ingrowth of yttrium samples were measured by Liquid Scintillation Spectrometer Packard Tricarb 2900 TR with software Quanta Smart. (authors)

  7. Particle melting and particle/plasma interactions in DC and RF plasmas: a modeling study. (Volumes I and II)

    International Nuclear Information System (INIS)

    Wei, D.Y.C.

    1987-01-01

    Integral process models were developed to predict particle melting in both DC and RF plasmas. Specifically, a numerical model has been developed to predict the temperature history of particles injected in a low pressure DC plasma jet. The temperature and velocity fields of the plasma jet are predicted as a free jet by solving the parabolized Navier-Stokes equations using a spatial marching scheme. Correction factors were introduced to take into account non continuum effects encountered in the low pressure environment. The plasma jet profiles as well as the particle/plasma interactions under different jet pressure ratios (from underexpanded to overexpanded) were investigated. The flow and temperature fields in the RF plasma torch are calculated using the axisymmetric Navier-Stokes equations based on the primitive variables, along with pseudo two-dimensional electromagnetic field equations. Particle trajectories and heat transfer characteristics in both DC and RF plasmas are calculated using predicted plasma jet profiles. Particle melting efficiencies in both DC and RF plasmas are evaluated and compared using model alloy systems. Based on the theoretical considerations, an alternative route of plasma spraying process (hybrid plasma spraying process) is proposed. An evaluation of particle melting in hybrid plasma jets had indicated that further improvement in deposit properties could be made

  8. Particle integrity, sampling, and application of a DNA-tagged tracer for aerosol transport studies

    Energy Technology Data Exchange (ETDEWEB)

    Kaeser, Cynthia Jeanne [Michigan State Univ., East Lansing, MI (United States)

    2017-07-21

    formulations of two different food-grade sugars (maltodextrin and erythritol) to humidity as high as 66% had no significant effect on the DNA label’s degradation or the particle’s aerodynamic diameter, confirming particle stability under such conditions. In summary, confirmation of the DNATrax particles’ size and label integrity under variable conditions combined with experiment multiplexing and high resolution sampling provides a powerful experimental design for modeling aerosol transport through occupied indoor and outdoor locations.

  9. Green Ocean Amazon 2014/15 High-Volume Filter Sampling: Atmospheric Particulate Matter of an Amazon Tropical City and its Relationship to Population Health Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Machado, C. M. [Federal Univ. of Amazonas (Brazil); Santos, Erickson O. [Federal Univ. of Amazonas (Brazil); Fernandes, Karenn S. [Federal Univ. of Amazonas (Brazil); Neto, J. L. [Federal Univ. of Amazonas (Brazil); Souza, Rodrigo A. [Univ. of the State of Amazonas (Brazil)

    2016-08-01

    Manaus, the capital of the Brazilian state of Amazonas, is developing very rapidly. Its pollution plume contains aerosols from fossil fuel combustion mainly due to vehicular emission, industrial activity, and a thermal power plant. Soil resuspension is probably a secondary source of atmospheric particles. The plume transports from Manaus to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARM site at Manacapuru urban pollutants as well as pollutants from pottery factories along the route of the plume. Considering the effects of particulate matter on health, atmospheric particulate matter was evaluated at this site as part of the ARM Facility’s Green Ocean Amazon 2014/15 (GoAmazon 2014/15) field campaign. Aerosol or particulate matter (PM) is typically defined by size, with the smaller particles having more health impact. Total suspended particulate (TSP) are particles smaller than 100 μm; particles smaller than 2.5 μm are called PM2.5. In this work, the PM2.5 levels were obtained from March to December of 2015, totaling 34 samples and TSP levels from October to December of 2015, totaling 17 samples. Sampling was conducted with PM2.5 and TSP high-volume samplers using quartz filters (Figure 1). Filters were stored during 24 hours in a room with temperature (21,1ºC) and humidity (44,3 %) control, in order to do gravimetric analyses by weighing before and after sampling. This procedure followed the recommendations of the Brazilian Association for Technical Standards local norm (NBR 9547:1997). Mass concentrations of particulate matter were obtained from the ratio between the weighted sample and the volume of air collected. Defining a relationship between particulate matter (PM2.5 and TSP) and respiratory diseases of the local population is an important goal of this project, since no information exists on that topic.

  10. Transfer function design based on user selected samples for intuitive multivariate volume exploration

    KAUST Repository

    Zhou, Liang; Hansen, Charles

    2013-01-01

    Multivariate volumetric datasets are important to both science and medicine. We propose a transfer function (TF) design approach based on user selected samples in the spatial domain to make multivariate volumetric data visualization more accessible for domain users. Specifically, the user starts the visualization by probing features of interest on slices and the data values are instantly queried by user selection. The queried sample values are then used to automatically and robustly generate high dimensional transfer functions (HDTFs) via kernel density estimation (KDE). Alternatively, 2D Gaussian TFs can be automatically generated in the dimensionality reduced space using these samples. With the extracted features rendered in the volume rendering view, the user can further refine these features using segmentation brushes. Interactivity is achieved in our system and different views are tightly linked. Use cases show that our system has been successfully applied for simulation and complicated seismic data sets. © 2013 IEEE.

  11. Transfer function design based on user selected samples for intuitive multivariate volume exploration

    KAUST Repository

    Zhou, Liang

    2013-02-01

    Multivariate volumetric datasets are important to both science and medicine. We propose a transfer function (TF) design approach based on user selected samples in the spatial domain to make multivariate volumetric data visualization more accessible for domain users. Specifically, the user starts the visualization by probing features of interest on slices and the data values are instantly queried by user selection. The queried sample values are then used to automatically and robustly generate high dimensional transfer functions (HDTFs) via kernel density estimation (KDE). Alternatively, 2D Gaussian TFs can be automatically generated in the dimensionality reduced space using these samples. With the extracted features rendered in the volume rendering view, the user can further refine these features using segmentation brushes. Interactivity is achieved in our system and different views are tightly linked. Use cases show that our system has been successfully applied for simulation and complicated seismic data sets. © 2013 IEEE.

  12. Aerosol Sampling System for Collection of Capstone Depleted Uranium Particles in a High-Energy Environment

    International Nuclear Information System (INIS)

    Holmes, Thomas D.; Guilmette, Raymond A.; Cheng, Yung-Sung; Parkhurst, MaryAnn; Hoover, Mark D.

    2009-01-01

    The Capstone Depleted Uranium Aerosol Study was undertaken to obtain aerosol samples resulting from a kinetic-energy cartridge with a large-caliber depleted uranium (DU) penetrator striking an Abrams or Bradley test vehicle. The sampling strategy was designed to (1) optimize the performance of the samplers and maintain their integrity in the extreme environment created during perforation of an armored vehicle by a DU penetrator, (2) collect aerosols as a function of time post-impact, and (3) obtain size-classified samples for analysis of chemical composition, particle morphology, and solubility in lung fluid. This paper describes the experimental setup and sampling methodologies used to achieve these objectives. Custom-designed arrays of sampling heads were secured to the inside of the target in locations approximating the breathing zones of the vehicle commander, loader, gunner, and driver. Each array was designed to support nine filter cassettes and nine cascade impactors mounted with quick-disconnect fittings. Shielding and sampler placement strategies were used to minimize sampler loss caused by the penetrator impact and the resulting fragments of eroded penetrator and perforated armor. A cyclone train was used to collect larger quantities of DU aerosol for chemical composition and solubility. A moving filter sample was used to obtain semicontinuous samples for depleted uranium concentration determination. Control for the air samplers was provided by five remotely located valve control and pressure monitoring units located inside and around the test vehicle. These units were connected to a computer interface chassis and controlled using a customized LabVIEW engineering computer control program. The aerosol sampling arrays and control systems for the Capstone study provided the needed aerosol samples for physicochemical analysis, and the resultant data were used for risk assessment of exposure to DU aerosol

  13. A rapid method for estimation of Pu-isotopes in urine samples using high volume centrifuge.

    Science.gov (United States)

    Kumar, Ranjeet; Rao, D D; Dubla, Rupali; Yadav, J R

    2017-07-01

    The conventional radio-analytical technique used for estimation of Pu-isotopes in urine samples involves anion exchange/TEVA column separation followed by alpha spectrometry. This sequence of analysis consumes nearly 3-4 days for completion. Many a times excreta analysis results are required urgently, particularly under repeat and incidental/emergency situations. Therefore, there is need to reduce the analysis time for the estimation of Pu-isotopes in bioassay samples. This paper gives the details of standardization of a rapid method for estimation of Pu-isotopes in urine samples using multi-purpose centrifuge, TEVA resin followed by alpha spectrometry. The rapid method involves oxidation of urine samples, co-precipitation of plutonium along with calcium phosphate followed by sample preparation using high volume centrifuge and separation of Pu using TEVA resin. Pu-fraction was electrodeposited and activity estimated using 236 Pu tracer recovery by alpha spectrometry. Ten routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range 47-88% with a mean and standard deviation of 64.4% and 11.3% respectively. With this newly standardized technique, the whole analytical procedure is completed within 9h (one working day hour). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Automated high-volume aerosol sampling station for environmental radiation monitoring

    International Nuclear Information System (INIS)

    Toivonen, H.; Honkamaa, T.; Ilander, T.; Leppaenen, A.; Nikkinen, M.; Poellaenen, R.; Ylaetalo, S.

    1998-07-01

    An automated high-volume aerosol sampling station, known as CINDERELLA.STUK, for environmental radiation monitoring has been developed by the Radiation and Nuclear Safety Authority (STUK), Finland. The sample is collected on a glass fibre filter (attached into a cassette), the airflow through the filter is 800 m 3 /h at maximum. During the sampling, the filter is continuously monitored with Na(I) scintillation detectors. After the sampling, the large filter is automatically cut into 15 pieces that form a small sample and after ageing, the pile of filter pieces is moved onto an HPGe detector. These actions are performed automatically by a robot. The system is operated at a duty cycle of 1 d sampling, 1 d decay and 1 d counting. Minimum detectable concentrations of radionuclides in air are typically 1Ae10 x 10 -6 Bq/m 3 . The station is equipped with various sensors to reveal unauthorized admittance. These sensors can be monitored remotely in real time via Internet or telephone lines. The processes and operation of the station are monitored and partly controlled by computer. The present approach fulfils the requirements of CTBTO for aerosol monitoring. The concept suits well for nuclear material safeguards, too

  15. Sampling of high amounts of bioaerosols using a high-volume electrostatic field sampler

    DEFF Research Database (Denmark)

    Madsen, A. M.; Sharma, Anoop Kumar

    2008-01-01

    For studies of the biological effects of bioaerosols, large samples are necessary. To be able to sample enough material and to cover the variations in aerosol content during and between working days, a long sampling time is necessary. Recently, a high-volume transportable electrostatic field...... and 315 mg dust (net recovery of the lyophilized dust) was sampled during a period of 7 days, respectively. The sampling rates of the electrostatic field samplers were between 1.34 and 1.96 mg dust per hour, the value for the Gravikon was between 0.083 and 0.108 mg dust per hour and the values for the GSP...... samplers were between 0.0031 and 0.032 mg dust per hour. The standard deviations of replica samplings and the following microbial analysis using the electrostatic field sampler and GSP samplers were at the same levels. The exposure to dust in the straw storage was 7.7 mg m(-3) when measured...

  16. Differentiating gold nanorod samples using particle size and shape distributions from transmission electron microscope images

    Science.gov (United States)

    Grulke, Eric A.; Wu, Xiaochun; Ji, Yinglu; Buhr, Egbert; Yamamoto, Kazuhiro; Song, Nam Woong; Stefaniak, Aleksandr B.; Schwegler-Berry, Diane; Burchett, Woodrow W.; Lambert, Joshua; Stromberg, Arnold J.

    2018-04-01

    Size and shape distributions of gold nanorod samples are critical to their physico-chemical properties, especially their longitudinal surface plasmon resonance. This interlaboratory comparison study developed methods for measuring and evaluating size and shape distributions for gold nanorod samples using transmission electron microscopy (TEM) images. The objective was to determine whether two different samples, which had different performance attributes in their application, were different with respect to their size and/or shape descriptor distributions. Touching particles in the captured images were identified using a ruggedness shape descriptor. Nanorods could be distinguished from nanocubes using an elongational shape descriptor. A non-parametric statistical test showed that cumulative distributions of an elongational shape descriptor, that is, the aspect ratio, were statistically different between the two samples for all laboratories. While the scale parameters of size and shape distributions were similar for both samples, the width parameters of size and shape distributions were statistically different. This protocol fulfills an important need for a standardized approach to measure gold nanorod size and shape distributions for applications in which quantitative measurements and comparisons are important. Furthermore, the validated protocol workflow can be automated, thus providing consistent and rapid measurements of nanorod size and shape distributions for researchers, regulatory agencies, and industry.

  17. Relationship between LIBS Ablation and Pit Volume for Geologic Samples: Applications for in situ Absolute Geochronology

    Science.gov (United States)

    Devismes, D.; Cohen, Barbara A.

    2014-01-01

    In planetary sciences, in situ absolute geochronology is a scientific and engineering challenge. Currently, the age of the Martian surface can only be determined by crater density counting. However this method has significant uncertainties and needs to be calibrated with absolute ages. We are developing an instrument to acquire in situ absolute geochronology based on the K-Ar method. The protocol is based on the laser ablation of a rock by hundreds of laser pulses. Laser Induced Breakdown Spectroscopy (LIBS) gives the potassium content of the ablated material and a mass spectrometer (quadrupole or ion trap) measures the quantity of 40Ar released. In order to accurately measure the quantity of released 40Ar in cases where Ar is an atmospheric constituent (e.g., Mars), the sample is first put into a chamber under high vacuum. The 40Arquantity, the concentration of K and the estimation of the ablated mass are the parameters needed to give the age of the rocks. The main uncertainties with this method are directly linked to the measures of the mass (typically some µg) and of the concentration of K by LIBS (up to 10%). Because the ablated mass is small compared to the mass of the sample, and because material is redeposited onto the sample after ablation, it is not possible to directly measure the ablated mass. Our current protocol measures the ablated volume and estimates the sample density to calculate ablated mass. The precision and accuracy of this method may be improved by using knowledge of the sample's geologic properties to predict its response to laser ablation, i.e., understanding whether natural samples have a predictable relationship between laser energy deposited and resultant ablation volume. In contrast to most previous studies of laser ablation, theoretical equations are not highly applicable. The reasons are numerous, but the most important are: a) geologic rocks are complex, polymineralic materials; b) the conditions of ablation are unusual (for example

  18. Effect of Volume Fraction of Particle on Wear Resistance of Al2O3/Steel Composites at Elevated Temperature

    Institute of Scientific and Technical Information of China (English)

    BAO Chong-gao; WANG En-ze; GAO Yi-min; XING Jian-dong

    2005-01-01

    Based on previous work,abrasive wear resistance of Al2 O3/steel composites with different Al2 O3 parti cle volume fraction (VOF) at 900 C was investigated.The experimental results showed that a suitable particle VOF is important to protect the metal matrix from wear at elevated temperature.Both too high and too low particle VOF lead to a poor abrasive wear because a bulk matrix is easily worn off by grits when it exceeds the suitable VOF and also because when VOF is low,the Al2O3 particles are easily dug out by grits during wearing as well.When the particle VOF is 39%,the wear resistance of tested composites is excellent.

  19. Tracer techniques for urine volume determination and urine collection and sampling back-up system

    Science.gov (United States)

    Ramirez, R. V.

    1971-01-01

    The feasibility, functionality, and overall accuracy of the use of lithium were investigated as a chemical tracer in urine for providing a means of indirect determination of total urine volume by the atomic absorption spectrophotometry method. Experiments were conducted to investigate the parameters of instrumentation, tracer concentration, mixing times, and methods for incorporating the tracer material in the urine collection bag, and to refine and optimize the urine tracer technique to comply with the Skylab scheme and operational parameters of + or - 2% of volume error and + or - 1% accuracy of amount of tracer added to each container. In addition, a back-up method for urine collection and sampling system was developed and evaluated. This back-up method incorporates the tracer technique for volume determination in event of failure of the primary urine collection and preservation system. One chemical preservative was selected and evaluated as a contingency chemical preservative for the storage of urine in event of failure of the urine cooling system.

  20. The Complete Local Volume Groups Sample - I. Sample selection and X-ray properties of the high-richness subsample

    Science.gov (United States)

    O'Sullivan, Ewan; Ponman, Trevor J.; Kolokythas, Konstantinos; Raychaudhury, Somak; Babul, Arif; Vrtilek, Jan M.; David, Laurence P.; Giacintucci, Simona; Gitti, Myriam; Haines, Chris P.

    2017-12-01

    We present the Complete Local-Volume Groups Sample (CLoGS), a statistically complete optically selected sample of 53 groups within 80 Mpc. Our goal is to combine X-ray, radio and optical data to investigate the relationship between member galaxies, their active nuclei and the hot intra-group medium (IGM). We describe sample selection, define a 26-group high-richness subsample of groups containing at least four optically bright (log LB ≥ 10.2 LB⊙) galaxies, and report the results of XMM-Newton and Chandra observations of these systems. We find that 14 of the 26 groups are X-ray bright, possessing a group-scale IGM extending at least 65 kpc and with luminosity >1041 erg s-1, while a further three groups host smaller galaxy-scale gas haloes. The X-ray bright groups have masses in the range M500 ≃ 0.5-5 × 1013 M⊙, based on system temperatures of 0.4-1.4 keV, and X-ray luminosities in the range 2-200 × 1041 erg s-1. We find that ∼53-65 per cent of the X-ray bright groups have cool cores, a somewhat lower fraction than found by previous archival surveys. Approximately 30 per cent of the X-ray bright groups show evidence of recent dynamical interactions (mergers or sloshing), and ∼35 per cent of their dominant early-type galaxies host active galactic nuclei with radio jets. We find no groups with unusually high central entropies, as predicted by some simulations, and confirm that CLoGS is in principle capable of detecting such systems. We identify three previously unrecognized groups, and find that they are either faint (LX, R500 < 1042 erg s-1) with no concentrated cool core, or highly disturbed. This leads us to suggest that ∼20 per cent of X-ray bright groups in the local universe may still be unidentified.

  1. Measurement of double differential cross sections of charged particle emission reactions by incident DT neutrons. Correction for energy loss of charged particle in sample materials

    International Nuclear Information System (INIS)

    Takagi, Hiroyuki; Terada, Yasuaki; Murata, Isao; Takahashi, Akito

    2000-01-01

    In the measurement of charged particle emission spectrum induced by neutrons, correcting the energy loss of charged particle in sample materials becomes a very important inverse problem. To deal with this inverse problem, we have applied the Bayesian unfolding method to correct the energy loss, and tested the performance of the method. Although this method is very simple, it was confirmed from the test that the performance was not inferior to other methods at all, and therefore the method could be a powerful tool for charged particle spectrum measurement. (author)

  2. AutoGNI, the Robot Under the Aircraft Floor: An Automated System for Sampling Giant Aerosol Particles by Impaction in the Free Airstream Outside a Research Aircraft

    Science.gov (United States)

    Jensen, J. B.; Schwenz, K.; Aquino, J.; Carnes, J.; Webster, C.; Munnerlyn, J.; Wissman, T.; Lugger, T.

    2017-12-01

    Giant sea-salt aerosol particles, also called Giant Cloud Condensation Nuclei (GCCN), have been proposed as a means of rapidly forming precipitation sized drizzle drops in warm marine clouds (e.g., Jensen and Nugent, 2017). Such rare particles are best sampled from aircraft in air below cloud base, where normal laser optical instruments have too low sample volume to give statistically significant samples of the large particle tail. An automated sampling system (the AutoGNI) has been built to operate from inside a pressurized aircraft. Under the aircraft floor, a pressurized vessel contains 32 custom-built polycarbonate microscope slides. Using robotics with 5 motor drives and 18 positioning switches, the AutoGNI can take slides from their holding cassettes, pass them onto a caddy in an airfoil that extends 200 mm outside the aircraft, where they are exposed in the free airstream, thus avoiding the usual problems with large particle losses in air intakes. Slides are typically exposed for 10-30 s in the marine boundary layer, giving sample volumes of about 100-300 L or more. Subsequently the slides are retracted into the pressure vessel, stored and transported for laboratory microscope image analysis, in order to derive size-distribution histograms. While the aircraft is flying, the AutoGNI system is remotely controlled from a laptop on the ground, using an encrypted commercial satellite connection to the NSF/NCAR GV research aircraft's main server, and onto the AutoGNI microprocessor. The sampling of such GCCN is becoming increasingly important in order to provide complete input data for model calculations of aerosol-cloud interactions and their feedbacks in climate prediction. The AutoGNI has so far been sampling sea-salt GCCN in the Magellan Straight during the 2016 ORCAS project and over the NW Pacific during the 2017 ARISTO project, both from the NSF/NCAR GV research aircraft. Sea-salt particle sizes of 1.4 - 32 μm dry diameter have been observed.

  3. Ice nucleating particles from a large-scale sampling network: insight into geographic and temporal variability

    Science.gov (United States)

    Schrod, Jann; Weber, Daniel; Thomson, Erik S.; Pöhlker, Christopher; Saturno, Jorge; Artaxo, Paulo; Curtius, Joachim; Bingemer, Heinz

    2017-04-01

    The number concentration of ice nucleating particles (INP) is an important, yet under quantified atmospheric parameter. The temporal and geographic extent of observations worldwide remains relatively small, with many regions of the world (even whole continents and oceans), almost completely unrepresented by observational data. Measurements at pristine sites are particularly rare, but all the more valuable because such observations are necessary to estimate the pre-industrial baseline of aerosol and cloud related parameters that are needed to better understand the climate system and forecast future scenarios. As a partner of BACCHUS we began in September 2014 to operate an INP measurement network of four sampling stations, with a global geographic distribution. The stations are located at unique sites reaching from the Arctic to the equator: the Amazonian Tall Tower Observatory ATTO in Brazil, the Observatoire Volcanologique et Sismologique on the island of Martinique in the Caribbean Sea, the Zeppelin Observatory at Svalbard in the Norwegian Arctic and the Taunus Observatory near Frankfurt, Germany. Since 2014 samples were collected regularly by electrostatic precipitation of aerosol particles onto silicon substrates. The INP on the substrate are activated and analyzed in the isothermal static diffusion chamber FRIDGE at temperatures between -20°C and -30°C and relative humidity with respect to ice from 115 to 135%. Here we present data from the years 2015 and 2016 from this novel INP network and from selected campaign-based measurements from remote sites, including the Mt. Kenya GAW station. Acknowledgements The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) project BACCHUS under grant agreement No 603445 and the Deutsche Forschungsgemeinschaft (DFG) under the Research Unit FOR 1525 (INUIT).

  4. Design and relevant sample calculations for a neutral particle energy diagnostic based on time of flight

    Energy Technology Data Exchange (ETDEWEB)

    Cecconello, M

    1999-05-01

    Extrap T2 will be equipped with a neutral particles energy diagnostic based on time of flight technique. In this report, the expected neutral fluxes for Extrap T2 are estimated and discussed in order to determine the feasibility and the limits of such diagnostic. These estimates are based on a 1D model of the plasma. The input parameters of such model are the density and temperature radial profiles of electrons and ions and the density of neutrals at the edge and in the centre of the plasma. The atomic processes included in the model are the charge-exchange and the electron-impact ionization processes. The results indicate that the plasma attenuation length varies from a/5 to a, a being the minor radius. Differential neutral fluxes, as well as the estimated power losses due to CX processes (2 % of the input power), are in agreement with experimental results obtained in similar devices. The expected impurity influxes vary from 10{sup 14} to 10{sup 11} cm{sup -2}s{sup -1}. The neutral particles detection and acquisition systems are discussed. The maximum detectable energy varies from 1 to 3 keV depending on the flight distances d. The time resolution is 0.5 ms. Output signals from the waveform recorder are foreseen in the range 0-200 mV. An 8-bit waveform recorder having 2 MHz sampling frequency and 100K sample of memory capacity is the minimum requirement for the acquisition system 20 refs, 19 figs.

  5. The component content of active particles in a plasma-chemical reactor based on volume barrier discharge

    Science.gov (United States)

    Soloshenko, I. A.; Tsiolko, V. V.; Pogulay, S. S.; Terent'yeva, A. G.; Bazhenov, V. Yu; Shchedrin, A. I.; Ryabtsev, A. V.; Kuzmichev, A. I.

    2007-02-01

    In this paper the results of theoretical and experimental studies of the component content of active particles formed in a plasma-chemical reactor composed of a multiple-cell generator of active particles, based on volume barrier discharge, and a working chamber are presented. For calculation of the content of uncharged plasma components an approach is proposed which is based on averaging of the power introduced over the entire volume. Advantages of such an approach lie in an absence of fitting parameters, such as the dimensions of microdischarges, their surface density and rate of breakdown. The calculation and the experiment were accomplished with the use of dry air (20% relative humidity) as the plasma generating medium. Concentrations of O3, HNO3, HNO2, N2 O5 and NO3 were measured experimentally in the discharge volume and working chamber for the residence time of particles on a discharge of 0.3 s and more and discharge specific power of 1.5 W cm-3. It has been determined that the best agreement between the calculation and the experiment occurs at calculated gas medium temperatures in the discharge plasma of about 400-425 K, which correspond to the experimentally measured rotational temperature of nitrogen. In most cases the calculated concentrations of O3, HNO3, HNO2, N2O5 and NO3 for the barrier discharge and the working chamber are in fairly good agreement with the respective measured values.

  6. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    Energy Technology Data Exchange (ETDEWEB)

    El-Gamal, S. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11711 Cairo (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Arts and Sciences, Najran University, Najran (Saudi Arabia); Centre for Advanced Materials and Nano-Engineering, Najran University, Najran 11001 (Saudi Arabia); Abdel-Hady, E.E. [Physics Department, Faculty of Science, Minia University, BO 61519, Minia (Egypt)

    2015-09-15

    The alpha particle track diameter dependence of the free volume holes size (V{sub f}) in DAM–ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 °C). The obtained results revealed that the values of ortho-positronium lifetime τ{sub 3} and V{sub f} increases while I{sub 3} slightly increases as T increases for the two detectors. The values of τ{sub 3}, V{sub f} and I{sub 3} are higher in CR-39 than DAM–ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently V{sub f} increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and V{sub f} in the polymer. A relationship between V{sub f} and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed.

  7. The component content of active particles in a plasma-chemical reactor based on volume barrier discharge

    International Nuclear Information System (INIS)

    Soloshenko, I A; Tsiolko, V V; Pogulay, S S; Terent'yeva, A G; Bazhenov, V Yu; Shchedrin, A I; Ryabtsev, A V; Kuzmichev, A I

    2007-01-01

    In this paper the results of theoretical and experimental studies of the component content of active particles formed in a plasma-chemical reactor composed of a multiple-cell generator of active particles, based on volume barrier discharge, and a working chamber are presented. For calculation of the content of uncharged plasma components an approach is proposed which is based on averaging of the power introduced over the entire volume. Advantages of such an approach lie in an absence of fitting parameters, such as the dimensions of microdischarges, their surface density and rate of breakdown. The calculation and the experiment were accomplished with the use of dry air (20% relative humidity) as the plasma generating medium. Concentrations of O 3 , HNO 3 , HNO 2 , N 2 O 5 and NO 3 were measured experimentally in the discharge volume and working chamber for the residence time of particles on a discharge of 0.3 s and more and discharge specific power of 1.5 W cm -3 . It has been determined that the best agreement between the calculation and the experiment occurs at calculated gas medium temperatures in the discharge plasma of about 400-425 K, which correspond to the experimentally measured rotational temperature of nitrogen. In most cases the calculated concentrations of O 3 , HNO 3 , HNO 2 , N 2 O 5 and NO 3 for the barrier discharge and the working chamber are in fairly good agreement with the respective measured values

  8. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    Energy Technology Data Exchange (ETDEWEB)

    Plionis, Alexander A [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory; Lamont, Stephen P [Los Alamos National Laboratory

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  9. Measuring Blood Glucose Concentrations in Photometric Glucometers Requiring Very Small Sample Volumes.

    Science.gov (United States)

    Demitri, Nevine; Zoubir, Abdelhak M

    2017-01-01

    Glucometers present an important self-monitoring tool for diabetes patients and, therefore, must exhibit high accuracy as well as good usability features. Based on an invasive photometric measurement principle that drastically reduces the volume of the blood sample needed from the patient, we present a framework that is capable of dealing with small blood samples, while maintaining the required accuracy. The framework consists of two major parts: 1) image segmentation; and 2) convergence detection. Step 1 is based on iterative mode-seeking methods to estimate the intensity value of the region of interest. We present several variations of these methods and give theoretical proofs of their convergence. Our approach is able to deal with changes in the number and position of clusters without any prior knowledge. Furthermore, we propose a method based on sparse approximation to decrease the computational load, while maintaining accuracy. Step 2 is achieved by employing temporal tracking and prediction, herewith decreasing the measurement time, and, thus, improving usability. Our framework is tested on several real datasets with different characteristics. We show that we are able to estimate the underlying glucose concentration from much smaller blood samples than is currently state of the art with sufficient accuracy according to the most recent ISO standards and reduce measurement time significantly compared to state-of-the-art methods.

  10. Air-deployable oil spill sampling devices review phase 2 testing. Volume 1

    International Nuclear Information System (INIS)

    Hawke, L.; Dumouchel, A.; Fingas, M.; Brown, C.E.

    2007-01-01

    SAIC Canada tested air deployable oil sampling devices for the Emergencies Science and Technology Division of Environment Canada in order to determine the applicability and status of these devices. The 3 devices tested were: Canada's SABER (sampling autonomous buoy for evidence recovery), the United States' POPEIE (probe for oil pollution evidence in the environment); and, Sweden's SAR Floatation 2000. They were tested for buoyancy properties, drift behaviour and sampler sorbent pickup ratios. The SAR and SABER both had lesser draft and greater freeboard, while the POPEIE had much greater draft than freeboard. All 3 devices could be used for oil sample collection in that their drift characteristics would allow for the SABER and SAR devices to be placed upwind of the slick while the POPEIE device could be placed downwind of an oil spill. The sorbent testing revealed that Sefar sorbent and Spectra sorbent used in the 3 devices had negative pickup ratios for diesel but performance improved as oil viscosity increased. Both sorbents are inert and capable of collecting oil in sufficient volumes for consistent fingerprinting analysis. 10 refs., 8 tabs., 8 figs

  11. Monte Carlo simulation of VHTR particle fuel with chord length sampling

    International Nuclear Information System (INIS)

    Ji, W.; Martin, W. R.

    2007-01-01

    The Very High Temperature Gas-Cooled Reactor (VHTR) poses a problem for neutronic analysis due to the double heterogeneity posed by the particle fuel and either the fuel compacts in the case of the prismatic block reactor or the fuel pebbles in the case of the pebble bed reactor. Direct Monte Carlo simulation has been used in recent years to analyze these VHTR configurations but is computationally challenged when space dependent phenomena are considered such as depletion or temperature feedback. As an alternative approach, we have considered chord length sampling to reduce the computational burden of the Monte Carlo simulation. We have improved on an existing method called 'limited chord length sampling' and have used it to analyze stochastic media representative of either pebble bed or prismatic VHTR fuel geometries. Based on the assumption that the PDF had an exponential form, a theoretical chord length distribution is derived and shown to be an excellent model for a wide range of packing fractions. This chord length PDF was then used to analyze a stochastic medium that was constructed using the RSA (Random Sequential Addition) algorithm and the results were compared to a benchmark Monte Carlo simulation of the actual stochastic geometry. The results are promising and suggest that the theoretical chord length PDF can be used instead of a full Monte Carlo random walk simulation in the stochastic medium, saving orders of magnitude in computational time (and memory demand) to perform the simulation. (authors)

  12. PIXE identification of fine and coarse particles of aerosol samples and their distribution across Beirut

    Energy Technology Data Exchange (ETDEWEB)

    Roumie, M., E-mail: mroumie@cnrs.edu.lb [Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut (Lebanon); Saliba, N., E-mail: ns30@aub.edu.lb [Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut (Lebanon); Nsouli, B., E-mail: bnsouli@cnrs.edu.lb [Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut (Lebanon); Younes, M., E-mail: myriam_younis@hotmail.com [Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut (Lebanon); Noun, M., E-mail: manale_noun@hotmail.com [Accelerator Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, P.O. Box 11-8281, Beirut (Lebanon); Massoud, R., E-mail: rm84@aub.edu.lb [Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut (Lebanon)

    2011-12-15

    This study is the first national attempt to assess the levels of PMs in Beirut city and consequently understand air pollution distribution. Aerosol sampling was carried out using three PM{sub 10} and three PM{sub 2.5} samplers which were installed at three locations lying along the SE-NW direction over Beirut. The sampling of PM{sub 10} and PM{sub 2.5} was done during a period extending from May till December 2009. The random collection of the particles (1 in 6 days) was carried out on Teflon filters, for a period of 24-h. The elemental analysis of particulate matter was performed using proton induced X-ray emission technique PIXE at the Lebanese 1.7 MV Tandem-Pelletron accelerator of Beirut. Na, Mg, Al, Si, P, S and Cl were quantified using 1 MeV proton beam, while K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb were determined using 3 MeV-energy of proton beam.

  13. The ionisation loss of relativistic charged particles in thin gas samples and its use for particle identification. I

    International Nuclear Information System (INIS)

    Cobb, J.H.; Allison, W.W.M.; Bunch, J.N.

    1976-01-01

    A brief review shows a significant discrepancy between available data and theoretical predictions on the ionisation loss of charged particles in thin gas-filled proportional counters. The discrepancy related both to the increase of the most probable loss at relativistic velocities (relativistic rise) and to the spectrum of such losses at a given velocity (the Landau distribution). The origin of this relativistic rise is discussed in simple terms and related to the phenomena of transition radiation and Cherenkov radiation. It is shown that the failure of the prediction is due to the small number of ionising collisions in a gas. This problem is overcome by using a Monte Carlo method rather than a continuous integral over the spectrum of single collision processes. A specific mode of the atomic form factors is used with a modified Born approximation to yield the differential cross sections needed for the calculation. The new predictions give improved agreement with experiment and are used to investigate the problem of identifying particles of known momenta in the relativistic region. It is shown that by measuring the ionisation loss of each particle several hundred times over 5m or more, kaon, pion and proton separation with good confidence level may be achieved. Many gases are considered and a comparison is made. The results are also compared with the velocity resolution achievable by measuring primary ionisation. (Auth.)

  14. Laser-Assisted Sampling Techniques in Combination with ICP-MS: A Novel Approach for Particle Analysis at the IAEA Environmental Samples Laboratory

    International Nuclear Information System (INIS)

    Dzigal, N.; Chinea-Cano, E.

    2015-01-01

    Researchers have found many applications for lasers. About two decades ago, scientists started using lasers as sample introduction instruments for mass spectrometry measurements. Similarly, lasers as micro-dissection tools have also been increasingly on demand in the fields of life sciences, materials science, forensics, etc. This presentation deals with the interception of these aforementioned laser-assisted techniques to the field of particle analysis. Historically, the use of a nanosecond laser to ablate material has been used in materials science. Recently, it has been proven that in the analysis of particulate materials the disadvantages associated with the utilization of nanosecond lasers such as overheating and melting of the sample are suppressed when using femtosecond lasers. Further, due to the length of a single laser shot, fs-LA allows a more controlled ablation to occur and therefore the sample plasma is more homogeneous and less mass-fractionation events are detected. The use of laser micro-dissection devices enables the physical segmentation of microsized artefacts previously performed by a laborious manual procedure. By combining the precision of the laser cutting inherent to the LMD technique together with a particle identification methodology, one can increase the efficiency of single particle isolation. Further, besides the increase in throughput of analyses, this combination enhances the signal-to-noise ratio by removing matrix particles effectively. Specifically, this contribution describes the use of an Olympus+MMI laser microdissection device in improving the sample preparation of environmental swipe samples and the installation of an Applied Spectra J200 fs-LA/LIBS (laser ablation/laser inducedbreakdown spectroscopy) system as a sample introduction device to a quadrupole mass spectrometer, the iCap Q from Thermofisher Scientific at the IAEA Environmental Samples Laboratory are explored. Preliminary results of the ongoing efforts for the

  15. A high volume sampling system for isotope determination of volatile halocarbons and hydrocarbons

    Directory of Open Access Journals (Sweden)

    E. Bahlmann

    2011-10-01

    Full Text Available The isotopic composition of volatile organic compounds (VOCs can provide valuable information on their sources and fate not deducible from mixing ratios alone. In particular the reported carbon stable isotope ratios of chloromethane and bromomethane from different sources cover a δ13C-range of almost 100‰ making isotope ratios a very promising tool for studying the biogeochemistry of these compounds. So far, the determination of the isotopic composition of C1 and C2 halocarbons others than chloromethane is hampered by their low mixing ratios.

    In order to determine the carbon isotopic composition of C1 and C2 halocarbons with mixing ratios as low as 1 pptv (i a field suitable cryogenic high volume sampling system and (ii a chromatographic set up for processing these samples have been developed and validated. The sampling system was tested at two different sampling sites, an urban and a coastal location in Northern Germany. The average δ13C-values for bromomethane at the urban site were −42.9 ± 1.1‰ and agreed well with previously published results. But at the coastal site bromomethane was substantially enriched in 13C by almost 10‰. Less pronounced differences were observed for chlorodifluoromethane, 1,1,1-trichloroethane and chloromethane. We suggest that these differences are related to the turnover of these compounds in ocean surface waters. Furthermore we report first carbon isotope ratios for iodomethane (−40.4‰ to −79.8‰, bromoform (−13.8‰ to 22.9‰, and other halocarbons.

  16. Paul Scherrer Institut Scientific Report 2001. Volume I: Particles and Matter

    International Nuclear Information System (INIS)

    Gobrecht, J.; Gaeggeler, H.; Herlach, D.; Junker, K.; Kubik, P.; Meisel, E.; Zehnder, A.

    2002-03-01

    This scientific report comprises the activities of the following laboratories of PSI: for particle physics, for astrophysics, for muon spin spectroscopy, for micro- and nano- technology, for radio- and environmental chemistry,and for beam physics in the field of particles and matter sciences

  17. Atomic data for controlled fusion research. Volume III. Particle interactions with surfaces

    International Nuclear Information System (INIS)

    Thomas, E.W.

    1985-02-01

    This report provides a handbook of data concerning particle solid interactions that are relevant to plasma-wall interactions in fusion devices. Published data have been collected, assessed, and represented by a single functional relationship which is presented in both tabular and graphical form. Mechanisms reviewed here include sputtering, secondary electron emission, particle reflection, and trapping

  18. Portable sample preparation and analysis system for micron and sub-micron particle characterization using light scattering and absorption spectroscopy

    Science.gov (United States)

    Stark, Peter C [Los Alamos, NM; Zurek, Eduardo [Barranquilla, CO; Wheat, Jeffrey V [Fort Walton Beach, FL; Dunbar, John M [Santa Fe, NM; Olivares, Jose A [Los Alamos, NM; Garcia-Rubio, Luis H [Temple Terrace, FL; Ward, Michael D [Los Alamos, NM

    2011-07-26

    There is provided a method and device for remote sampling, preparation and optical interrogation of a sample using light scattering and light absorption methods. The portable device is a filtration-based device that removes interfering background particle material from the sample matrix by segregating or filtering the chosen analyte from the sample solution or matrix while allowing the interfering background particles to be pumped out of the device. The segregated analyte is then suspended in a diluent for analysis. The device is capable of calculating an initial concentration of the analyte, as well as diluting the analyte such that reliable optical measurements can be made. Suitable analytes include cells, microorganisms, bioparticles, pathogens and diseases. Sample matrixes include biological fluids such as blood and urine, as well as environmental samples including waste water.

  19. Relationship between haemoglobin concentration and packed cell volume in cattle blood samples

    Directory of Open Access Journals (Sweden)

    Paa-Kobina Turkson

    2015-02-01

    Full Text Available A convention that has been adopted in medicine is to estimate haemoglobin (HB concentration as a third of packed cell volume (PCV or vice versa. The present research set out to determine whether a proportional relationship exists between PCV and Hb concentration in cattle blood samples, and to assess the validity of the convention of estimating Hb concentration as a third of PCV. A total of 440 cattle in Ghana from four breeds (Ndama, 110; West African Short Horn, 110; Zebu, 110 and Sanga, 110 were bled for haematological analysis, specifically packed cell volume, using the microhaematocrit technique and haemoglobin concentration using the cyanmethaemoglobin method. Means, standard deviations, standard errors of mean and 95% confidence intervals were calculated. Trendline analyses generated linear regression equations from scatterplots. For all the cattle, a significant and consistent relationship (r = 0.74 was found between Hb concentration and PCV (%. This was expressed as Hb concentration (g/dL = 0.28 PCV + 3.11. When the Hb concentration was estimated by calculating it as a third of PCV, the relationship was expressed in linear regression as Hb concentration (g/dL = 0.83 calculated Hb + 3.11. The difference in the means of determined (12.2 g/dL and calculated (10.9 g/dL Hb concentrations for all cattle was significant (p < 0.001, whereas the difference in the means of determined Hb and corrected calculated Hb was not significant. In conclusion, a simplified relationship of Hb (g/dL = (0.3 PCV + 3 may provide a better estimate of Hb concentration from the PCV of cattle.

  20. Electro-Optic Sampling of Transient Electric Fields from Charged Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, Michael James [Rochester U.

    2000-01-01

    The passage of a relativistic charged particle beam bunch through a structure is accompanied by transient electromagnetic fields. By causality, these fields must be behind the bunch, and are called "wakefields." The wakefields act back on the beam, and cause instabilities such as the beam break-up instability, and the headtail instability, which limit the luminosity of linear colliders. The wakefields are particularly important for short bunches with high charge. A great deal of effort is devoted to analytical and numerical calculations of wakefields, and wakefield effects. Experimental numbers are needed. In this thesis, we present measurements of the transient electric fields induced by a short high-charge electron bunch passing through a 6-way vacuum cross. These measurements are performed in the time domain using electro-optic sampling with a time resolution of approximately 5 picoseconds. With different orientations of the electro-optic crystal, we have measured different vector components of the electric field. The Fourier transform of the time-domain data yields the product of the beam impedance with the excitation spectrum of the bunch. Since the bunch length is known from streak camera measurements, the k loss factor is directly obtained. There is reasonably good agreement between the experimental k loss factor with calculations from the code MAFIA. To our knowledge, this is the first direct measurement of the k loss factor for bunch lengths shorter than one millimeter ( nns). We also present results of magnetic bunch compression (using a dipole chicane) of a high-charge photoinjector beam for two different UV laser pulse lengths on the pholocalhode. Al best compression, a 13.87 nC bunch was compressed to 0.66 mm (2.19 ps) rms, or a peak current of 3 kA. Other results from the photoinjeclor are given, and the laser system for pholocalhode excitation and electro-optic sampling is described.

  1. Tomographic Particle Image Velocimetry using Pulsed, High Power LED Volume Illumination

    OpenAIRE

    Buchmann, N. A.; Willert, C.; Soria, J.

    2011-01-01

    This paper investigates the use of high-power light emitting diode (LED) illumination in Particle Image Velocimetry (PIV) as an alternative to traditional laser-based illumination. The solid-state LED devices can provide averaged radiant power in excess of 10W and by operating the LEDs with short current pulses, considerably higher than in continuous operation, light pulses of sufficient energy suitable for imaging micron-sized particles can be generated. The feasibility of this LED-based ill...

  2. Particle characterization at rural, suburban and urban aerosol sampling sites in Hungary

    International Nuclear Information System (INIS)

    Borbely-Kiss, I.; Koltay, E.; Szabo, G.; Meszaros, E.; Molnar, A.; Bozo, L.

    1994-01-01

    The study of atmospheric aerosols originating from natural and anthropogenic processes is of basic importance for a detailed understanding of the physics and chemistry of the atmosphere. Particle Induced X-ray Emission (PIXE) technique has been used by the authors for studying regularly the elemental composition of rural, suburban, and urban aerosols collected at six sampling sites in Hungary. Observed data presented in terms of concentrations and regional signature values and evaluated wind sector partition and in transport modelling revealed the natural/anthropogenic contribution to the moderate air pollution here. Dry deposition velocities have been deduced for elements V, Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb. Model calculations based on annual emission data and observed elemental concentrations resulted in total dry and wet deposition masses of the above elements to the territory of the country. At the same time, deduced budget data for the emission and deposition of the constituents indicated whether the country represents a net source or a sink for the above mentioned elements in the regional aerosol transport between neighbouring countries. Evidences have been found for intrusion events of Saharan aerosol to the atmosphere of Hungary. Part of the data collected recently will be evaluated in the frame-work of an international co-ordinated research programme. (author)

  3. Dependence of the Internal Structure on Water/Particle Volume Ratio in an Amphiphilic Janus Particle-Water-Oil Ternary System: From Micelle-like Clusters to Emulsions of Spherical Droplets.

    Science.gov (United States)

    Noguchi, Tomohiro G; Iwashita, Yasutaka; Kimura, Yasuyuki

    2017-01-31

    Amphiphilic Janus particles (AJP), composed of hydrophilic and hydrophobic hemispheres, are one of the simplest anisotropic colloids, and they exhibit higher surface activities than particles with homogeneous surface properties. Consequently, a ternary system of AJP, water, and oil can form extremely stable Pickering emulsions, with internal structures that depend on the Janus structure of the particles and the system composition. However, the detail of these structures has not been fully explored, especially for the composition range where the amount of the minority liquid phase and AJP are comparable, where one would expect the Janus characteristics to be directly reflected. In this study, we varied the volume ratio of the particles and the minority liquid phase, water, by 2 orders of magnitude around the comparable composition range, and observed the resultant structures at the resolution of the individual particle dimensions by optical microscopy. When the volume ratio of water is smaller than that of the Janus particles, capillary interactions between the hydrophilic hemispheres of the particles induce micelle-like clusters in which the hydrophilic sides of the particles face inward. With increasing water content, these clusters grow into a rodlike morphology. When the water volume exceeds that of the particles, the structure transforms into an emulsion state composed of spherical droplets, colloidosomes, because of the surface activity of particles at the liquid-liquid interface. Thus, we found that a change in volume fraction alters the mechanism of structure formation in the ternary system, and large resulting morphological changes in the self-assembled structures reflect the anisotropy of the particles. The self-assembly shows essential commonalities with that in microemulsions of surfactant molecules, however the AJP system is stabilized only kinetically. Analysis of the dependence of the emulsion droplet size on composition shows that almost all the

  4. Relationship Between LIBS Ablation and Pit Volume for Geologic Samples: Applications for the In Situ Absolute Geochronology

    Science.gov (United States)

    Devismes, Damien; Cohen, Barbara; Miller, J.-S.; Gillot, P.-Y.; Lefevre, J.-C.; Boukari, C.

    2014-01-01

    These first results demonstrate that LIBS spectra can be an interesting tool to estimate the ablated volume. When the ablated volume is bigger than 9.10(exp 6) cubic micrometers, this method has less than 10% of uncertainties. Far enough to be directly implemented in the KArLE experiment protocol. Nevertheless, depending on the samples and their mean grain size, the difficulty to have homogeneous spectra will increase with the ablated volume. Several K-Ar dating studies based on this approach will be implemented. After that, the results will be shown and discussed.

  5. Survival of alpha particle irradiated cells as a function of the shape and size of the sensitive volume (nucleus)

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Roeske, J.C.

    1995-01-01

    Microdosimetry is the study of the stochastic variation of energy deposited within sub-cellular targets. As such, the size and shape of the critical target (i.e. cell nucleus) are essential when considering microdosimetric quantities. In this work, a microdosimetric analysis examines the expected cell survival as a function of the size and shape of the cell nucleus under conditions of irradiation emitting alpha particles. The results indicate that, in general, cell survival is relatively insensitive to changes in the shape of the cell nucleus when the volume is held constant. However, cell survival is a strong function of the variation in the size of the target. These results are useful when analysing the results of cell survival experiments for alpha particle emitters. (Author)

  6. Sampling artifacts in measurement of elemental and organic carbon: Low-volume sampling in indoor and outdoor environments

    Science.gov (United States)

    Olson, David A.; Norris, Gary A.

    Experiments were completed to determine the extent of artifacts from sampling elemental carbon (EC) and organic carbon (OC) under sample conditions consistent with personal sampling. Two different types of experiments were completed; the first examined possible artifacts from oils used in personal environmental monitor (PEM) impactor plates, and the second examined artifacts from microenvironmental sampling using different sampling media combinations (quartz, Teflon, XAD denuder, and electrostatic precipitator). The effectiveness of front and backup filters was evaluated for most sampling configurations. Mean total carbon concentrations from sampling configurations using impactor oils were not statistically different from the control case (using a sharp cut cyclone). Three microenvironments were tested (kitchen, library, and ambient); carbon concentrations were highest in the kitchen using a front quartz filter (mean OC of 16.4 μg m -3). The lowest front quartz filter concentrations were measured in the library using XAD denuders (mean OC of 3.6 μg m -3). Denuder removal efficiencies (average of 82% for total carbon) were lower compared with previous ambient studies and may indicate that indoor sources influenced denuder efficiency during sample collection. The highest carbon concentrations from backup quartz filters were measured using the Teflon-quartz combination.

  7. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine

    Directory of Open Access Journals (Sweden)

    Drobek Christoph

    2015-09-01

    Full Text Available Particle Image Velocimetry (PIV measurements of a water-jet for water-assisted liposuction (WAL are carried out to investigate the distribution of velocity and therefore momentum and acting force on the human sub-cutaneous fat tissue. These results shall validate CFD simulations and force sensor measurements of the water-jet and support the development of a new WAL device that is able to harvest low volumes of fat tissue for regenerative medicine even gentler than regular WAL devices.

  8. Paul Scherrer Institute Scientific Report 1998. Volume I: Particles and Matter

    Energy Technology Data Exchange (ETDEWEB)

    Baltensperger, U; Herlach, D; Kettle, P -R; Lorenzen, R [eds.

    1999-09-01

    The new department Particles and Matter, created 1 October 1998 aims to strengthen the two pillars of PSI, research at large facilities and research with interdisciplinary teams. Particle Physics and Astrophysics at PSI have an established tradition in the field of particle and Xray detectors and both co-operate with the Laboratory for Micro and Nano Technology. The research of the latter is focussed on Si/SiGe and Si/SiC nano structures, with the aim of both understanding their nano technology properties and eventually producing light from silicon, and on interdisciplinary molecular nano technology. The Laboratory for Radio and Environmental Chemistry concentrates on the chemical analysis of super heavy elements and their homologues produced with ion beams at the proton accelerator and at the spallation neutron source (SINQ), and on the investigation of agglomerates formed from nanoparticles (aerosols) in the atmosphere for environmental and climate research. (author) figs., tabs., refs.

  9. Paul Scherrer Institute Scientific Report 1998. Volume I: Particles and Matter

    International Nuclear Information System (INIS)

    Baltensperger, U.; Herlach, D.; Kettle, P.-R.; Lorenzen, R.

    1999-01-01

    The new department Particles and Matter, created 1 October 1998 aims to strengthen the two pillars of PSI, research at large facilities and research with interdisciplinary teams. Particle Physics and Astrophysics at PSI have an established tradition in the field of particle and Xray detectors and both co-operate with the Laboratory for Micro and Nano Technology. The research of the latter is focussed on Si/SiGe and Si/SiC nano structures, with the aim of both understanding their nano technology properties and eventually producing light from silicon, and on interdisciplinary molecular nano technology. The Laboratory for Radio and Environmental Chemistry concentrates on the chemical analysis of super heavy elements and their homologues produced with ion beams at the proton accelerator and at the spallation neutron source (SINQ), and on the investigation of agglomerates formed from nanoparticles (aerosols) in the atmosphere for environmental and climate research. (author)

  10. Particle System Based Adaptive Sampling on Spherical Parameter Space to Improve the MDL Method for Construction of Statistical Shape Models

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2013-01-01

    Full Text Available Minimum description length (MDL based group-wise registration was a state-of-the-art method to determine the corresponding points of 3D shapes for the construction of statistical shape models (SSMs. However, it suffered from the problem that determined corresponding points did not uniformly spread on original shapes, since corresponding points were obtained by uniformly sampling the aligned shape on the parameterized space of unit sphere. We proposed a particle-system based method to obtain adaptive sampling positions on the unit sphere to resolve this problem. Here, a set of particles was placed on the unit sphere to construct a particle system whose energy was related to the distortions of parameterized meshes. By minimizing this energy, each particle was moved on the unit sphere. When the system became steady, particles were treated as vertices to build a spherical mesh, which was then relaxed to slightly adjust vertices to obtain optimal sampling-positions. We used 47 cases of (left and right lungs and 50 cases of livers, (left and right kidneys, and spleens for evaluations. Experiments showed that the proposed method was able to resolve the problem of the original MDL method, and the proposed method performed better in the generalization and specificity tests.

  11. Paul Scherrer Institute Scientific Report 1999. Volume I: Particles and Matter

    International Nuclear Information System (INIS)

    Gobrecht, J.; Gaeggeler, H.; Herlach, D.; Junker, K.; Kettle, P.-R.; Kubik, P.; Zehnder, A.

    2000-01-01

    Although originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. The highlight of research this year was the first-ever determination of the chemical properties of the superheavy element 107 Bohrium. This was undertaken, by an international team led by H. Gaeggeler of PSI's Laboratory for Radiochemistry. Bohrium was produced by bombarding a Berkelium target with Neon ions from the Injector I cyclotron and six atoms were detected after having passed through an online gas chromatography device. At the Laboratory for Particle Physics the focus has shifted from nuclear physics to elementary particle physics with about a fifty-fifty split between investigations of rare processes or particle decays using the high intensity muon, pion and recently also polarized neutron beams of PSI, and research at the highest energy frontier at CERN (Geneva) and DESY (Hamburg). Important space instrumentation has been contributed by the Laboratory for Astrophysics to the European Space Agency and NASA satellite programmes. The Laboratory for Micro and Nanotechnology continued to focus on research into molecular nanotechnology and SiGeC nanostructures, the latter with the aim of producing silicon based optoelectronics. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided

  12. Paul Scherrer Institute Scientific Report 1999. Volume I: Particles and Matter

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, J; Gaeggeler, H; Herlach, D; Junker, K; Kettle, P -R; Kubik, P; Zehnder, A [eds.

    2000-07-01

    lthough originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. The highlight of research this year was the first-ever determination of the chemical properties of the superheavy element {sup 107} Bohrium. This was undertaken, by an international team led by H. Gaeggeler of PSI's Laboratory for Radiochemistry. Bohrium was produced by bombarding a Berkelium target with Neon ions from the Injector I cyclotron and six atoms were detected after having passed through an online gas chromatography device. At the Laboratory for Particle Physics the focus has shifted from nuclear physics to elementary particle physics with about a fifty-fifty split between investigations of rare processes or particle decays using the high intensity muon, pion and recently also polarized neutron beams of PSI, and research at the highest energy frontier at CERN (Geneva) and DESY (Hamburg). Important space instrumentation has been contributed by the Laboratory for Astrophysics to the European Space Agency and NASA satellite programmes. The Laboratory for Micro and Nanotechnology continued to focus on research into molecular nanotechnology and SiGeC nanostructures, the latter with the aim of producing silicon based optoelectronics. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided.

  13. Spatial variation in void volume during charged particle bombardment: the effects of injected interstitials

    International Nuclear Information System (INIS)

    Lee, E.H.; Mansur, L.K.; Yoo, M.H.

    1979-01-01

    Experimental observations of the void volume at several depths along the range of 4 MeV Ni ions in 316 stainless steel are reported. The specimens were first preconditioned by neutron irradiation at temperatures of 450 and 584 0 C to fluences of approximately 8 x 10 26 n/m -2 . The void volume after ion bombardment to 60 dpa at the peak damage depth is significantly lower at the peak damage depth than in the region between that and the free surface. The ratio of the step height to void volume at the depth of peak energy deposition between regions masked from and exposed to the beam is strongly dependent on bombardment temperature. The reduction of void volume near the peak damage depth is larger for the 584 0 C than for the 450 0 C preconditioned material. These observations are consistent with recent theoretical results which account for the injection of the bombarding ions as self-interstitials. The theory necessary to understand the effect is developed

  14. Tire-tread and bitumen particle concentrations in aerosol and soil samples

    DEFF Research Database (Denmark)

    Fauser, Patrik; Tjell, Jens Christian; Mosbæk, Hans

    2002-01-01

    % of the mass of airborne particulate tire debris have aerodynamic diameters smaller than 1 mum. The mean aerodynamic diameter is about I gm for the bitumen particles. This size range enables the possibility for far range transport and inhalation by humans. Soil concentrations in the vicinity of a highway...... indicate an approximate exponential decrease with increasing distance from the road. Constant values are reached after about 5 m for the tire particles and 10 m for the bitumen particles. Concentrations in soil that has not been touched for at least 30 years show a decrease in tire concentration...

  15. Documentation of particle-size analyzer time series, and discrete suspended-sediment and bed-sediment sample data collection, Niobrara River near Spencer, Nebraska, October 2014

    Science.gov (United States)

    Schaepe, Nathaniel J.; Coleman, Anthony M.; Zelt, Ronald B.

    2018-04-06

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, monitored a sediment release by Nebraska Public Power District from Spencer Dam located on the Niobrara River near Spencer, Nebraska, during the fall of 2014. The accumulated sediment behind Spencer Dam ordinarily is released semiannually; however, the spring 2014 release was postponed until the fall. Because of the postponement, the scheduled fall sediment release would consist of a larger volume of sediment. The larger than normal sediment release expected in fall 2014 provided an opportunity for the USGS and U.S. Army Corps of Engineers to improve the understanding of sediment transport during reservoir sediment releases. A primary objective was to collect continuous suspended-sediment data during the first days of the sediment release to document rapid changes in sediment concentrations. For this purpose, the USGS installed a laser-diffraction particle-size analyzer at a site near the outflow of the dam to collect continuous suspended-sediment data. The laser-diffraction particle-size analyzer measured volumetric particle concentration and particle-size distribution from October 1 to 2 (pre-sediment release) and October 5 to 9 (during sediment release). Additionally, the USGS manually collected discrete suspended-sediment and bed-sediment samples before, during, and after the sediment release. Samples were collected at two sites upstream from Spencer Dam and at three bridges downstream from Spencer Dam. The resulting datasets and basic metadata associated with the datasets were published as a data release; this report provides additional documentation about the data collection methods and the quality of the data.

  16. Elemental analysis of samples of biological origin relative to their protein content by means of charged particle bombardment

    International Nuclear Information System (INIS)

    Szoekefalvi-Nagy, Z.; Demeter, I.; Varga, L.; Hollos-Nagy, K.; Keszthelyi, L.

    1981-04-01

    The particle excited X-ray emission (PIXE) and the 14 N(d,p) 15 N nuclear reaction is combined for simultaneous elemental composition and nitrogen content determination in biological samples. Using the correlation between nitrogen and proton content the elemental composition is related to the protein content of the sample. The principles and main characteristics of the method are described and illustrative applications are also given. (author)

  17. Sampling of illicit drugs for quantitative analysis--part II. Study of particle size and its influence on mass reduction.

    Science.gov (United States)

    Bovens, M; Csesztregi, T; Franc, A; Nagy, J; Dujourdy, L

    2014-01-01

    The basic goal in sampling for the quantitative analysis of illicit drugs is to maintain the average concentration of the drug in the material from its original seized state (the primary sample) all the way through to the analytical sample, where the effect of particle size is most critical. The size of the largest particles of different authentic illicit drug materials, in their original state and after homogenisation, using manual or mechanical procedures, was measured using a microscope with a camera attachment. The comminution methods employed included pestle and mortar (manual) and various ball and knife mills (mechanical). The drugs investigated were amphetamine, heroin, cocaine and herbal cannabis. It was shown that comminution of illicit drug materials using these techniques reduces the nominal particle size from approximately 600 μm down to between 200 and 300 μm. It was demonstrated that the choice of 1 g increments for the primary samples of powdered drugs and cannabis resin, which were used in the heterogeneity part of our study (Part I) was correct for the routine quantitative analysis of illicit seized drugs. For herbal cannabis we found that the appropriate increment size was larger. Based on the results of this study we can generally state that: An analytical sample weight of between 20 and 35 mg of an illicit powdered drug, with an assumed purity of 5% or higher, would be considered appropriate and would generate an RSDsampling in the same region as the RSDanalysis for a typical quantitative method of analysis for the most common, powdered, illicit drugs. For herbal cannabis, with an assumed purity of 1% THC (tetrahydrocannabinol) or higher, an analytical sample weight of approximately 200 mg would be appropriate. In Part III we will pull together our homogeneity studies and particle size investigations and use them to devise sampling plans and sample preparations suitable for the quantitative instrumental analysis of the most common illicit

  18. Inert gases in a terra sample - Measurements in six grain-size fractions and two single particles from Lunar 20.

    Science.gov (United States)

    Heymann, D.; Lakatos, S.; Walton, J. R.

    1973-01-01

    Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.

  19. Coupling of a 3-D vortex particle-mesh method with a finite volume near-wall solver

    Science.gov (United States)

    Marichal, Y.; Lonfils, T.; Duponcheel, M.; Chatelain, P.; Winckelmans, G.

    2011-11-01

    This coupling aims at improving the computational efficiency of high Reynolds number bluff body flow simulations by using two complementary methods and exploiting their respective advantages in distinct parts of the domain. Vortex particle methods are particularly well suited for free vortical flows such as wakes or jets (the computational domain -with non zero vorticity- is then compact and dispersion errors are negligible). Finite volume methods, however, can handle boundary layers much more easily due to anisotropic mesh refinement. In the present approach, the vortex method is used in the whole domain (overlapping domain technique) but its solution is highly underresolved in the vicinity of the wall. It thus has to be corrected by the near-wall finite volume solution at each time step. Conversely, the vortex method provides the outer boundary conditions for the near-wall solver. A parallel multi-resolution vortex particle-mesh approach is used here along with an Immersed Boundary method in order to take the walls into account. The near-wall flow is solved by OpenFOAM® using the PISO algorithm. We validate the methodology on the flow past a sphere at a moderate Reynolds number. F.R.S. - FNRS Research Fellow.

  20. Apparatus for observing a sample with a particle beam and an optical microscope

    NARCIS (Netherlands)

    2010-01-01

    An apparatus for observing a sample (1) with a TEM column and an optical high resolution scanning microscope (10). The sample position when observing the sample with the TEM column differs from the sample position when observing the sample with the optical microscope in that in the latter case the

  1. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling.

    Science.gov (United States)

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C; Joyce, Kevin P; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  2. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling

    Science.gov (United States)

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C.; Joyce, Kevin P.; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing (R=0.98 for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining R=0.73 compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to R=0.93. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple pK_{ {a}} correction improved agreement with experiment from R=0.54 to R=0.66, despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  3. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    Science.gov (United States)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  4. Plasma volume changes during hypoglycaemia: the effect of arterial blood sampling

    DEFF Research Database (Denmark)

    Hilsted, J; Bendtsen, F; Christensen, N J

    1990-01-01

    To investigate whether previously reported changes in venous blood volume and composition induced by acute hypoglycaemia in humans are representative for the entire body we measured erythrocyte 51Cr content, haematocrit, plasma volume, intravascular albumin content and transcapillary escape rate...... hypoglycaemia. The magnitude of the changes in arterial and venous blood were not significantly different. These results indicate that the above changes in blood volume and composition are whole-body phenomena: furthermore, the major part of the changes are likely to occur in tissues other than upper extremity...

  5. Paul Scherrer Institute Scientific Report 2000. Volume I: Particles and Matter

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, J; Gaeggeler, H; Herlach, D; Junker, K; Kettle, P -R; Kubik, P; Zehnder, A [eds.

    2001-07-01

    Although originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. One of the characteristic developments in the Department for Particles and Matter at PSI in 2000 has been a stronger collaboration within the institute. Excellent examples are the collaboration of scientists and technicians from Particle Physics, Micro- and Nanotechnology and SLS to produce pixel detectors for use at SLS, the development of advanced x-ray optics for SLS and other light sources by people from Nanotechnology, an increased collaboration between Radiochemistry and Ion Beam Physics. Also collaborations beyond the department are increasing in strength where we like to mention common users meetings of the Muon Spin Rotation ({mu}SR) and Neutron Scattering communities, the help of the detector group of Particle Physics for instruments at SINQ, and the collaboration between Molecular Nanotechnology and Electrochemistry from the General Energy Department. Links to the industry have also been strengthened. One of the highlights of this year is the demonstration of the first electrically stimulated light emission from SiGe-heterostructures with a largely recognized publication in Science and several spontaneous reactions from semiconductor industries. Also other techniques and devices could be transferred to industry as for instance superconducting tunnel junction detectors developed for astrophysics with application in photon Time-of-Flight Mass Spectrometry to mention one. Progress in 2000 in all these topical areas is described in this report. A list of scientific publications in 2000 is also provided.

  6. Paul Scherrer Institute Scientific Report 2000. Volume I: Particles and Matter

    International Nuclear Information System (INIS)

    Gobrecht, J.; Gaeggeler, H.; Herlach, D.; Junker, K.; Kettle, P.-R.; Kubik, P.; Zehnder, A.

    2001-01-01

    Although originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. One of the characteristic developments in the Department for Particles and Matter at PSI in 2000 has been a stronger collaboration within the institute. Excellent examples are the collaboration of scientists and technicians from Particle Physics, Micro- and Nanotechnology and SLS to produce pixel detectors for use at SLS, the development of advanced x-ray optics for SLS and other light sources by people from Nanotechnology, an increased collaboration between Radiochemistry and Ion Beam Physics. Also collaborations beyond the department are increasing in strength where we like to mention common users meetings of the Muon Spin Rotation (μSR) and Neutron Scattering communities, the help of the detector group of Particle Physics for instruments at SINQ, and the collaboration between Molecular Nanotechnology and Electrochemistry from the General Energy Department. Links to the industry have also been strengthened. One of the highlights of this year is the demonstration of the first electrically stimulated light emission from SiGe-heterostructures with a largely recognized publication in Science and several spontaneous reactions from semiconductor industries. Also other techniques and devices could be transferred to industry as for instance superconducting tunnel junction detectors developed for astrophysics with application in photon Time-of-Flight Mass Spectrometry to mention one. Progress in 2000 in all these topical areas is described in this report. A list of scientific publications in 2000 is also provided

  7. Paul Scherrer Institute Scientific Report 1999. Volume I: Particles and Matter

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, J.; Gaeggeler, H.; Herlach, D.; Junker, K.; Kettle, P.-R.; Kubik, P.; Zehnder, A. [eds.

    2000-07-01

    lthough originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. The highlight of research this year was the first-ever determination of the chemical properties of the superheavy element {sup 107} Bohrium. This was undertaken, by an international team led by H. Gaeggeler of PSI's Laboratory for Radiochemistry. Bohrium was produced by bombarding a Berkelium target with Neon ions from the Injector I cyclotron and six atoms were detected after having passed through an online gas chromatography device. At the Laboratory for Particle Physics the focus has shifted from nuclear physics to elementary particle physics with about a fifty-fifty split between investigations of rare processes or particle decays using the high intensity muon, pion and recently also polarized neutron beams of PSI, and research at the highest energy frontier at CERN (Geneva) and DESY (Hamburg). Important space instrumentation has been contributed by the Laboratory for Astrophysics to the European Space Agency and NASA satellite programmes. The Laboratory for Micro and Nanotechnology continued to focus on research into molecular nanotechnology and SiGeC nanostructures, the latter with the aim of producing silicon based optoelectronics. Progress in 1999 in these topical areas is described in this report. A list of scientific publications in 1999 is also provided.

  8. Paul Scherrer Institute Scientific Report 2000. Volume I: Particles and Matter

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, J.; Gaeggeler, H.; Herlach, D.; Junker, K.; Kettle, P.-R.; Kubik, P.; Zehnder, A. [eds.

    2001-07-01

    Although originally planned for fundamental research in nuclear physics, the particle beams of pions, muons, protons and neutrons are now used in a large variety of disciplines in both natural science and medicine. The beams at PSI have the world's highest intensities and therefore allow certain experiments to be performed, which would not be possible elsewhere. One of the characteristic developments in the Department for Particles and Matter at PSI in 2000 has been a stronger collaboration within the institute. Excellent examples are the collaboration of scientists and technicians from Particle Physics, Micro- and Nanotechnology and SLS to produce pixel detectors for use at SLS, the development of advanced x-ray optics for SLS and other light sources by people from Nanotechnology, an increased collaboration between Radiochemistry and Ion Beam Physics. Also collaborations beyond the department are increasing in strength where we like to mention common users meetings of the Muon Spin Rotation ({mu}SR) and Neutron Scattering communities, the help of the detector group of Particle Physics for instruments at SINQ, and the collaboration between Molecular Nanotechnology and Electrochemistry from the General Energy Department. Links to the industry have also been strengthened. One of the highlights of this year is the demonstration of the first electrically stimulated light emission from SiGe-heterostructures with a largely recognized publication in Science and several spontaneous reactions from semiconductor industries. Also other techniques and devices could be transferred to industry as for instance superconducting tunnel junction detectors developed for astrophysics with application in photon Time-of-Flight Mass Spectrometry to mention one. Progress in 2000 in all these topical areas is described in this report. A list of scientific publications in 2000 is also provided.

  9. Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples

    Science.gov (United States)

    Song, Dan; Yang, Rong; Wang, Chongwen; Xiao, Rui; Long, Feng

    2016-01-01

    A novel nanosilver-deposited silica-coated Fe3O4 magnetic particle (Fe3O4@SiO2@Ag) with uniform size, good SERS activity and magnetic responsiveness was synthesized using amination polymer. The Fe3O4@SiO2@Ag magnetic particles have been successfully applied for ultrasensitive SERS detection of malachite green (MG) in water samples. The mechanism is that MG can be adsorbed on the silver surface of nanosilver-coated magnetic particles via one nitrogen atom, and the Raman signal intensity of MG is significantly enhanced by the nanosilver layer formed on the magnetic particles. The developed sensing system exhibited a sensitive response to MG in the range of 10 fM to 100 μM with a low limit of detection (LOD) 2 fM under optimal conditions. The LOD was several orders of magnitude lower than those of other methods. This SERS-based sensor showed good reproducibility and stability for MG detection. The silver-coated magnetic particles could easily be regenerated as SERS substrates only using low pH solution for multiple sensing events. The recovery of MG added to several water samples at different concentrations ranged from 90% to 110%. The proposed method facilitates the ultrasensitive analysis of dyes to satisfy the high demand for ensuring the safety of water sources. PMID:26964502

  10. Plasma volume changes during hypoglycaemia: the effect of arterial blood sampling

    DEFF Research Database (Denmark)

    Hilsted, J; Bendtsen, Flemming; Christensen, N J

    1990-01-01

    To investigate whether previously reported changes in venous blood volume and composition induced by acute hypoglycaemia in humans are representative for the entire body we measured erythrocyte 51Cr content, haematocrit, plasma volume, intravascular albumin content and transcapillary escape rate...... hypoglycaemia. The magnitude of the changes in arterial and venous blood were not significantly different. These results indicate that the above changes in blood volume and composition are whole-body phenomena: furthermore, the major part of the changes are likely to occur in tissues other than upper extremity...... of albumin in arterial and venous blood in seven healthy subjects before and during insulin-induced hypoglycaemia. In both vascular sites blood 51Cr content and the haematocrit increased, plasma volume and intravascular albumin content decreased and the transcapillary escape rate of albumin increased during...

  11. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Field Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, P.; Biang, R.; Dolak, D.; Dunn, C.; Martino, L.; Patton, T.; Wang, Y.; Yuen, C.

    1995-03-01

    The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. J-Field is within the Edgewood Area of APG in Harford County, Maryland (Figure 1. 1). Since World War II activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA) (predecessor to the US Army Environmental Center [AEC]). As part of a subsequent USATHAMA -environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-002-1355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in data were collected to model, groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today.

  12. Gender moderates the association between dorsal medial prefrontal cortex volume and depressive symptoms in a subclinical sample.

    Science.gov (United States)

    Carlson, Joshua M; Depetro, Emily; Maxwell, Joshua; Harmon-Jones, Eddie; Hajcak, Greg

    2015-08-30

    Major depressive disorder is associated with lower medial prefrontal cortex volumes. The role that gender might play in moderating this relationship and what particular medial prefrontal cortex subregion(s) might be implicated is unclear. Magnetic resonance imaging was used to assess dorsal, ventral, and anterior cingulate regions of the medial prefrontal cortex in a normative sample of male and female adults. The Depression, Anxiety, and Stress Scale (DASS) was used to measure these three variables. Voxel-based morphometry was used to test for correlations between medial prefrontal gray matter volume and depressive traits. The dorsal medial frontal cortex was correlated with greater levels of depression, but not anxiety and stress. Gender moderates this effect: in males greater levels of depression were associated with lower dorsal medial prefrontal volumes, but in females no relationship was observed. The results indicate that even within a non-clinical sample, male participants with higher levels of depressive traits tend to have lower levels of gray matter volume in the dorsal medial prefrontal cortex. Our finding is consistent with low dorsal medial prefrontal volume contributing to the development of depression in males. Future longitudinal work is needed to substantiate this possibility. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Estimating marine aerosol particle volume and number from Maritime Aerosol Network data

    Directory of Open Access Journals (Sweden)

    A. M. Sayer

    2012-09-01

    Full Text Available As well as spectral aerosol optical depth (AOD, aerosol composition and concentration (number, volume, or mass are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The "average solution" MODIS dataset agrees more closely with MAN than the "best solution" dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data. However, without accurate AOD data and prior knowledge of

  14. Planck/SDSS Cluster Mass and Gas Scaling Relations for a Volume-Complete redMaPPer Sample

    Science.gov (United States)

    Jimeno, Pablo; Diego, Jose M.; Broadhurst, Tom; De Martino, I.; Lazkoz, Ruth

    2018-04-01

    Using Planck satellite data, we construct Sunyaev-Zel'dovich (SZ) gas pressure profiles for a large, volume-complete sample of optically selected clusters. We have defined a sample of over 8,000 redMaPPer clusters from the Sloan Digital Sky Survey (SDSS), within the volume-complete redshift region 0.100 trend towards larger break radius with increasing cluster mass. Our SZ-based masses fall ˜16% below the mass-richness relations from weak lensing, in a similar fashion as the "hydrostatic bias" related with X-ray derived masses. Finally, we derive a tight Y500-M500 relation over a wide range of cluster mass, with a power law slope equal to 1.70 ± 0.07, that agrees well with the independent slope obtained by the Planck team with an SZ-selected cluster sample, but extends to lower masses with higher precision.

  15. Rapid determination of benzene derivatives in water samples by trace volume solvent DLLME prior to GC-FID

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Chun Peng; Wei, Chao Hai; Feng, Chun Hua [South China Univ. of Technology, Guangzhou Higher Education Mega Center (China). College of Environmental Science and Engineering; Guangdong Regular Higher Education Institutions, Guangzhou (China). Key Lab. of Environmental Protection and Eco-Remediation

    2012-05-15

    An inexpensive, simple and environmentally friendly method based on dispersive liquid liquid microextraction (DLLME) for rapid determination of benzene derivatives in water samples was proposed. A significant improvement of DLLME procedure was achieved. Trace volume ethyl acetate (60 {mu}L) was exploited as dispersion solvent instead of common ones such as methanol and acetone, the volume of which was more than 0.5 mL, and the organic solvent required in DLLME was reduced to a great extent. Only 83-{mu}L organic solvent was consumed in the whole analytic process and the preconcentration procedure was less than 10 min. The advantageous approach coupled with gas chromatograph-flame ionization detector was proposed for the rapid determination of benzene, toluene, ethylbenzene and xylene isomers in water samples. Results showed that the proposed approach was an efficient method for rapid determination of benzene derivatives in aqueous samples. (orig.)

  16. Final report on Phase II remedial action at the former Middlesex Sampling Plant and associated properties. Volume 2

    International Nuclear Information System (INIS)

    1985-04-01

    Volume 2 presents the radiological measurement data taken after remedial action on properties surrounding the former Middlesex Sampling Plant during Phase II of the DOE Middlesex Remedial Action Program. Also included are analyses of the confirmatory radiological survey data for each parcel with respect to the remedial action criteria established by DOE for the Phase II cleanup and a discussion of the final status of each property. Engineering details of this project and a description of the associated health physics and environmental monitoring activities are presented in Volume 1

  17. A proposal on alternative sampling-based modeling method of spherical particles in stochastic media for Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Hyun; Lee, Jae Yong; KIm, Do Hyun; Kim, Jong Kyung [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Noh, Jae Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    Chord length sampling method in Monte Carlo simulations is a method used to model spherical particles with random sampling technique in a stochastic media. It has received attention due to the high calculation efficiency as well as user convenience; however, a technical issue regarding boundary effect has been noted. In this study, after analyzing the distribution characteristics of spherical particles using an explicit method, an alternative chord length sampling method is proposed. In addition, for modeling in finite media, a correction method of the boundary effect is proposed. Using the proposed method, sample probability distributions and relative errors were estimated and compared with those calculated by the explicit method. The results show that the reconstruction ability and modeling accuracy of the particle probability distribution with the proposed method were considerably high. Also, from the local packing fraction results, the proposed method can successfully solve the boundary effect problem. It is expected that the proposed method can contribute to the increasing of the modeling accuracy in stochastic media.

  18. Determination of neonicotinoid insecticides and strobilurin fungicides in particle phase atmospheric samples by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Raina-Fulton, Renata

    2015-06-03

    A liquid chromatography-tandem mass spectrometry method has been developed for the determination of neonicotinoids and strobilurin fungicides in the particle phase fraction of atmosphere samples. Filter samples were extracted with pressurized solvent extraction, followed by a cleanup step with solid phase extraction. Method detection limits for the seven neonicotinoid insecticides and six strobilurin fungicides were in the range of 1.0-4.0 pg/m(3). Samples were collected from June to September 2013 at two locations (Osoyoos and Oliver) in the southern Okanagan Valley Agricultural Region of British Columbia, where these insecticides and fungicides are recommended for use on tree fruit crops (apples, pears, cherries, peaches, apricots) and vineyards. This work represents the first detection of acetamiprid, imidacloprid, clothianidin, kresoxim-methyl, pyraclostrobin, and trifloxystrobin in particle phase atmospheric samples collected in the Okanagan Valley in Canada. The highest particle phase atmospheric concentrations were observed for imidacloprid, pyraclostrobin, and trifloxystrobin at 360.0, 655.6, and 1908.2 pg/m(3), respectively.

  19. A proposal on alternative sampling-based modeling method of spherical particles in stochastic media for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Lee, Jae Yong; KIm, Do Hyun; Kim, Jong Kyung; Noh, Jae Man

    2015-01-01

    Chord length sampling method in Monte Carlo simulations is a method used to model spherical particles with random sampling technique in a stochastic media. It has received attention due to the high calculation efficiency as well as user convenience; however, a technical issue regarding boundary effect has been noted. In this study, after analyzing the distribution characteristics of spherical particles using an explicit method, an alternative chord length sampling method is proposed. In addition, for modeling in finite media, a correction method of the boundary effect is proposed. Using the proposed method, sample probability distributions and relative errors were estimated and compared with those calculated by the explicit method. The results show that the reconstruction ability and modeling accuracy of the particle probability distribution with the proposed method were considerably high. Also, from the local packing fraction results, the proposed method can successfully solve the boundary effect problem. It is expected that the proposed method can contribute to the increasing of the modeling accuracy in stochastic media

  20. Combining theory and observations. A sample study of the interplay between cosmology and particle physics

    International Nuclear Information System (INIS)

    Kulkarni, Suchita C.

    2011-01-01

    We look at various methods of exploring the connection between particle physics and cosmology. We focus on various aspects of dark matter analysis. We begin with the smallest scales and look at collider phenomenology first. We discuss how the analysis of CP-properties of particles within Supersymmetry, one of the most accepted theories giving us a dark matter candidate. For this matter we take a specific case of the CP-violation in the super-partner of the tau lepton, the stau. Going slightly more towards astroparticle physics, we next study can the dark matter in the Universe be semi-relativistic. Thus, we use our prior knowledge of the cosmic scale properties of dark matter to draw implications for particle physics. In the next step, we look at large scales and examine the evolution of relationship between dark matter haloes and the background dark matter density fields. We use methods similar to field theory techniques of particle physics to understand this evolution of mapping. (orig.)

  1. Passive Sampling to Capture the Spatial Variability of Coarse Particles by Composition in Cleveland, OH

    Science.gov (United States)

    Passive samplers deployed at 25 sites for three week-long intervals were used to characterize spatial variability in the mass and composition of coarse particulate matter (PM10-2.5) in Cleveland, OH in summer 2008. The size and composition of individual particles deter...

  2. Combining theory and observations. A sample study of the interplay between cosmology and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Suchita C.

    2011-08-08

    We look at various methods of exploring the connection between particle physics and cosmology. We focus on various aspects of dark matter analysis. We begin with the smallest scales and look at collider phenomenology first. We discuss how the analysis of CP-properties of particles within Supersymmetry, one of the most accepted theories giving us a dark matter candidate. For this matter we take a specific case of the CP-violation in the super-partner of the tau lepton, the stau. Going slightly more towards astroparticle physics, we next study can the dark matter in the Universe be semi-relativistic. Thus, we use our prior knowledge of the cosmic scale properties of dark matter to draw implications for particle physics. In the next step, we look at large scales and examine the evolution of relationship between dark matter haloes and the background dark matter density fields. We use methods similar to field theory techniques of particle physics to understand this evolution of mapping. (orig.)

  3. Optimizing human semen cryopreservation by reducing test vial volume and repetitive test vial sampling

    DEFF Research Database (Denmark)

    Jensen, Christian F S; Ohl, Dana A; Parker, Walter R

    2015-01-01

    OBJECTIVE: To investigate optimal test vial (TV) volume, utility and reliability of TVs, intermediate temperature exposure (-88°C to -93°C) before cryostorage, cryostorage in nitrogen vapor (VN2) and liquid nitrogen (LN2), and long-term stability of VN2 cryostorage of human semen. DESIGN......: Prospective clinical laboratory study. SETTING: University assisted reproductive technology (ART) laboratory. PATIENT(S): A total of 594 patients undergoing semen analysis and cryopreservation. INTERVENTION(S): Semen analysis, cryopreservation with different intermediate steps and in different volumes (50......-1,000 μL), and long-term storage in LN2 or VN2. MAIN OUTCOME MEASURE(S): Optimal TV volume, prediction of cryosurvival (CS) in ART procedure vials (ARTVs) with pre-freeze semen parameters and TV CS, post-thaw motility after two- or three-step semen cryopreservation and cryostorage in VN2 and LN2. RESULT...

  4. Prediction of the Soil Water Characteristic from Soil Particle Volume Fractions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Tuller, Markus

    2012-01-01

    Modelling water distribution and flow in partially saturated soils requires knowledge of the soil-water characteristic (SWC). However, measurement of the SWC is challenging and time-consuming, and in some cases not feasible. This study introduces two predictive models (Xw-model and Xw......*-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...

  5. Hanford Environmental Information System (HEIS). Volume 7: Sample and Data Tracking subject area

    International Nuclear Information System (INIS)

    1994-06-01

    The Hanford Environmental Information System (HEIS) Sample and Data Tracking subject area allows insertion of tracking information into a central repository where the data is immediately available for viewing. For example, a technical coordinator is able to view the current status of a particular sampling effort, from sample collection to data package validation dates. Four major types of data comprise the Sample and Data Tracking subject area: data about the mechanisms that groups a set of samples for a particular sampling effort; data about how constituents are grouped and assigned to a sample; data about when, where, and how samples are sent to a laboratory for analysis; and data bout the status of a sample's constituent analysis requirements, i.e., whether the analysis results have been returned from the laboratory

  6. Selected topics in particle accelerators: Proceedings of the CAP meetings. Volume 5

    International Nuclear Information System (INIS)

    Parsa, Z.

    1995-01-01

    This Report includes copies of transparencies and notes from the presentations made at the Center for Accelerator Physics at Brookhaven National Laboratory Editing and changes to the authors' contributions in this Report were made only to fulfill the publication requirements. This volume includes notes and transparencies on nine presentations: ''The Energy Exchange and Efficiency Consideration in Klystrons'', ''Some Properties of Microwave RF Sources for Future Colliders + Overview of Microwave Generation Activity at the University of Maryland'', ''Field Quality Improvements in Superconducting Magnets for RHIC'', ''Hadronic B-Physics'', ''Spiking Pulses from Free Electron Lasers: Observations and Computational Models'', ''Crystalline Beams in Circular Accelerators'', ''Accumulator Ring for AGS ampersand Recent AGS Performance'', ''RHIC Project Machine Status'', and ''Gamma-Gamma Colliders.''

  7. Selected topics in particle accelerators: Proceedings of the CAP meetings. Volume 3

    International Nuclear Information System (INIS)

    Parsa, Z.

    1995-01-01

    This Report includes copies of transparencies and notes from the presentations made at the Center for Accelerator Physics at Brookhaven National Laboratory. Editing and changes to authors' contributions in this Report were made only to fulfill the publication requirements. This volume includes notes and transparencies on eight presentations: ''Inverse Cherenkov Laser Acceleration of Electron Beams'', ''High Brightness Field Emission Cathodes'', ''QCD/Teraflop Collaboration: The Future of Supercomputing'', ''Report on Dipole R ampersand D'', ''Reaching Maximum Luminosity in Hadron Colliders at 10-100 TeV'', ''STAR Collaboration Project Status Report: Quarks and Gluons'', ''PHENIX Collaboration Project Status Report'', and ''Update on Status of BNL Relativistic Heavy Ion Collider (RHIC) Project: RHIC Design Issues.''

  8. Selected topics in particle accelerators: Proceedings of the CAP meetings. Volume 4

    International Nuclear Information System (INIS)

    Parsa, Z.

    1995-01-01

    This Report includes copies of transparencies and notes from the presentations made at the Center for Accelerator Physics at Brookhaven National Laboratory. Editing and changes to the authors' contributions in this Report were made only to fulfill the publication requirements. This volume includes notes and transparencies on eight presentations: ''Application of Accelerator-Driven Spallation Targets - Including Tritium Production and Nuclear Waste Transmutation'', ''BNL 5 MW Pulsed Spallation Neutron Source Study'', ''Designing and Understanding of Magnets with the Help of Conformal Mapping'', ''Laser - Electron Beam Scattering Coherent Compton X-Ray Sources'', ''The LHC Project'', ''Optimization of the Photocathode-Linac Separation for the ATF [Accelerator Test Facility] Injection System'', ''On CEBAF Commissioning: First Results'', and ''The Proposed Booster Application Facility at BNL''. An Appendix lists dates, topics, and speakers from October 1989 to December 1994

  9. Measuring the critical current in superconducting samples made of NT-50 under pulse irradiation by high-energy particles

    International Nuclear Information System (INIS)

    Vasilev, P.G.; Vladimirova, N.M.; Volkov, V.I.; Goncharov, I.N.; Zajtsev, L.N.; Zel'dich, B.D.; Ivanov, V.I.; Kleshchenko, E.D.; Khvostov, V.B.

    1981-01-01

    The results of tests of superconducting samples of an uninsulated wire of the 0.5 mm diameter, containing 1045 superconducting filaments of the 10 μm diameter made of NT-50 superconductor in a copper matrix, are given. The upper part of the sample (''closed'') is placed between two glass-cloth-base laminate plates of the 50 mm length, and the lower part (''open'') of the 45 mm length is immerged into liquid helium. The sample is located perpendicular to the magnetic field of a superconducting solenoid and it is irradiated by charged particle beams at the energy of several GeV. The measurement results of permissible energy release in the sample depending on subcriticality (I/Isub(c) where I is an operating current through the sample, and Isub(c) is a critical current for lack of the beam) and the particle flux density, as well as of the maximum permissible fluence depending on subcriticality. In case of the ''closed'' sample irradiated by short pulses (approximately 1 ms) for I/Isub(c) [ru

  10. Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring

    Science.gov (United States)

    Kristin Bunte; Steven R. Abt

    2001-01-01

    This document provides guidance for sampling surface and subsurface sediment from wadable gravel-and cobble-bed streams. After a short introduction to streams types and classifications in gravel-bed rivers, the document explains the field and laboratory measurement of particle sizes and the statistical analysis of particle-size distributions. Analysis of particle...

  11. An immunomagnetic separator for concentration of pathogenic micro-organisms from large volume samples

    International Nuclear Information System (INIS)

    Rotariu, Ovidiu; Ogden, Iain D.; MacRae, Marion; Badescu, Vasile; Strachan, Norval J.C.

    2005-01-01

    The standard method of immunomagnetic separation of pathogenic bacteria from food and environmental matrices processes 1 ml volumes. Pathogens present at low levels ( 50 ml). Preliminary results show that between 70 and 113 times more Escherchia coli O157 are recovered compared with the standard 1 ml method

  12. Curvature computation in volume-of-fluid method based on point-cloud sampling

    Science.gov (United States)

    Kassar, Bruno B. M.; Carneiro, João N. E.; Nieckele, Angela O.

    2018-01-01

    This work proposes a novel approach to compute interface curvature in multiphase flow simulation based on Volume of Fluid (VOF) method. It is well documented in the literature that curvature and normal vector computation in VOF may lack accuracy mainly due to abrupt changes in the volume fraction field across the interfaces. This may cause deterioration on the interface tension forces estimates, often resulting in inaccurate results for interface tension dominated flows. Many techniques have been presented over the last years in order to enhance accuracy in normal vectors and curvature estimates including height functions, parabolic fitting of the volume fraction, reconstructing distance functions, coupling Level Set method with VOF, convolving the volume fraction field with smoothing kernels among others. We propose a novel technique based on a representation of the interface by a cloud of points. The curvatures and the interface normal vectors are computed geometrically at each point of the cloud and projected onto the Eulerian grid in a Front-Tracking manner. Results are compared to benchmark data and significant reduction on spurious currents as well as improvement in the pressure jump are observed. The method was developed in the open source suite OpenFOAM® extending its standard VOF implementation, the interFoam solver.

  13. Sampling, testing and modeling particle size distribution in urban catch basins.

    Science.gov (United States)

    Garofalo, G; Carbone, M; Piro, P

    2014-01-01

    The study analyzed the particle size distribution of particulate matter (PM) retained in two catch basins located, respectively, near a parking lot and a traffic intersection with common high levels of traffic activity. Also, the treatment performance of a filter medium was evaluated by laboratory testing. The experimental treatment results and the field data were then used as inputs to a numerical model which described on a qualitative basis the hydrological response of the two catchments draining into each catch basin, respectively, and the quality of treatment provided by the filter during the measured rainfall. The results show that PM concentrations were on average around 300 mg/L (parking lot site) and 400 mg/L (road site) for the 10 rainfall-runoff events observed. PM with a particle diameter of model showed that a catch basin with a filter unit can remove 30 to 40% of the PM load depending on the storm characteristics.

  14. Identification and verification of ultrafine particle affinity zones in urban neighbourhoods: sample design and data pre-processing.

    LENUS (Irish Health Repository)

    Harris, Paul

    2009-01-01

    A methodology is presented and validated through which long-term fixed site air quality measurements are used to characterise and remove temporal signals in sample-based measurements which have good spatial coverage but poor temporal resolution. The work has been carried out specifically to provide a spatial dataset of atmospheric ultrafine particle (UFP < 100 nm) data for ongoing epidemiologic cohort analysis but the method is readily transferable to wider epidemiologic investigations and research into the health effects of other pollutant species.

  15. SU-F-T-128: Dose-Volume Constraints for Particle Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R; Smith, W; Hendrickson, K; Meyer, J; Cao, N; Lee, E; Gopan, O; Sandison, G; Parvathaneni, U; Laramore, G [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: Determine equivalent Organ at Risk (OAR) tolerance dose (TD) constraints for MV x-rays and particle therapy. Methods: Equivalent TD estimates for MV x-rays are determined from an isoeffect, regression-analysis of published and in-house constraints for various fractionation schedules (n fractions). The analysis yields an estimate of (α/β) for an OAR. To determine equivalent particle therapy constraints, the MV x-ray TD(n) values are divided by the RBE for DSB induction (RBE{sub DSB}) or cell survival (RBE{sub S}). Estimates of (RBE{sub DSB}) are computed using the Monte Carlo Damage Simulation, and estimates of RBES are computed using the Repair-Misrepair-Fixation (RMF) model. A research build of the RayStation™ treatment planning system implementing the above model is used to estimate (RBE{sub DSB}) for OARs of interest in 16 proton therapy patient plans (head and neck, thorax, prostate and brain). Results: The analysis gives an (α/β) estimate of about 20 Gy for the trachea and heart and 2–4 Gy for the esophagus, spine, and brachial plexus. Extrapolation of MV x-ray constraints (n = 1) to fast neutrons using RBE{sub DSB} = 2.7 are in excellent agreement with clinical experience (n = 10 to 20). When conventional (n > 30) x-ray treatments are used as the reference radiation, fast neutron RBE increased to a maximum of 6. For comparison to a constant RBE of 1.1, the RayStation™ analysis gave estimates of proton RBE{sub DSB} from 1.03 to 1.33 for OARs of interest. Conclusion: The presented system of models is a convenient formalism to synthesize from multiple sources of information a set of self-consistent plan constraints for MV x-ray and hadron therapy treatments. Estimates of RBE{sub DSB} from the RayStation™ analysis differ substantially from 1.1 and vary among patients and treatment sites. A treatment planning system that incorporates patient and anatomy-specific corrections in proton RBE would create opportunities to increase the therapeutic

  16. Water pollution screening by large-volume injection of aqueous samples and application to GC/MS analysis of a river Elbe sample

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S.; Efer, J.; Engewald, W. [Leipzig Univ. (Germany). Inst. fuer Analytische Chemie

    1997-03-01

    The large-volume sampling of aqueous samples in a programmed temperature vaporizer (PTV) injector was used successfully for the target and non-target analysis of real samples. In this still rarely applied method, e.g., 1 mL of the water sample to be analyzed is slowly injected direct into the PTV. The vaporized water is eliminated through the split vent. The analytes are concentrated onto an adsorbent inside the insert and subsequently thermally desorbed. The capability of the method is demonstrated using a sample from the river Elbe. By means of coupling this method with a mass selective detector in SIM mode (target analysis) the method allows the determination of pollutants in the concentration range up to 0.01 {mu}g/L. Furthermore, PTV enrichment is an effective and time-saving method for non-target analysis in SCAN mode. In a sample from the river Elbe over 20 compounds were identified. (orig.) With 3 figs., 2 tabs.

  17. Interval-value Based Particle Swarm Optimization algorithm for cancer-type specific gene selection and sample classification

    Directory of Open Access Journals (Sweden)

    D. Ramyachitra

    2015-09-01

    Full Text Available Microarray technology allows simultaneous measurement of the expression levels of thousands of genes within a biological tissue sample. The fundamental power of microarrays lies within the ability to conduct parallel surveys of gene expression using microarray data. The classification of tissue samples based on gene expression data is an important problem in medical diagnosis of diseases such as cancer. In gene expression data, the number of genes is usually very high compared to the number of data samples. Thus the difficulty that lies with data are of high dimensionality and the sample size is small. This research work addresses the problem by classifying resultant dataset using the existing algorithms such as Support Vector Machine (SVM, K-nearest neighbor (KNN, Interval Valued Classification (IVC and the improvised Interval Value based Particle Swarm Optimization (IVPSO algorithm. Thus the results show that the IVPSO algorithm outperformed compared with other algorithms under several performance evaluation functions.

  18. Interval-value Based Particle Swarm Optimization algorithm for cancer-type specific gene selection and sample classification.

    Science.gov (United States)

    Ramyachitra, D; Sofia, M; Manikandan, P

    2015-09-01

    Microarray technology allows simultaneous measurement of the expression levels of thousands of genes within a biological tissue sample. The fundamental power of microarrays lies within the ability to conduct parallel surveys of gene expression using microarray data. The classification of tissue samples based on gene expression data is an important problem in medical diagnosis of diseases such as cancer. In gene expression data, the number of genes is usually very high compared to the number of data samples. Thus the difficulty that lies with data are of high dimensionality and the sample size is small. This research work addresses the problem by classifying resultant dataset using the existing algorithms such as Support Vector Machine (SVM), K-nearest neighbor (KNN), Interval Valued Classification (IVC) and the improvised Interval Value based Particle Swarm Optimization (IVPSO) algorithm. Thus the results show that the IVPSO algorithm outperformed compared with other algorithms under several performance evaluation functions.

  19. Pore volume and pore size distribution of cement samples measured by a modified mercury intrusion porosimeter

    International Nuclear Information System (INIS)

    Zamorani, E.; Blanchard, H.

    1987-01-01

    Important parameters for the characterization of cement specimens are mechanical properties and porosity. This work is carried out at the Ispra Establishment of the Joint Research Centre in the scope of the Radioactive Waste Management programme. A commercial Mercury Intrusion Porosimeter was modified in an attempt to improve the performance of the instrument and to provide fast processing of the recorded values: pressure-volume of pores. The dead volume of the instrument was reduced and the possibility of leakage from the moving parts eliminated. In addition, the modification allows an improvement of data acquisition thus increasing data accuracy and reproducibility. In order to test the improved performance of the modified instrument, physical characterizations of cement forms were carried out. Experimental procedures and results are reported

  20. Demonstration and determination of submicroscopic particles of uranium in environmental samples

    International Nuclear Information System (INIS)

    Sihelska, K.; Lorincik, J.; Sus, F.; Vesela, D.

    2016-01-01

    In this work laboratories of the Centrum vyzkumu Rez, Ltd are presented. Fission track analysis (FTA) is used for analysis of uranium in environmental samples. Treatment of samples for FTA is described and some results ar presented. The method of SIMS is used, too.

  1. Evaluation of the effects of insufficient blood volume samples on the performance of blood glucose self-test meters.

    Science.gov (United States)

    Pfützner, Andreas; Schipper, Christina; Ramljak, Sanja; Flacke, Frank; Sieber, Jochen; Forst, Thomas; Musholt, Petra B

    2013-11-01

    Accuracy of blood glucose readings is (among other things) dependent on the test strip being completely filled with sufficient sample volume. The devices are supposed to display an error message in case of incomplete filling. This laboratory study was performed to test the performance of 31 commercially available devices in case of incomplete strip filling. Samples with two different glucose levels (60-90 and 300-350 mg/dl) were used to generate three different sample volumes: 0.20 µl (too low volume for any device), 0.32 µl (borderline volume), and 1.20 µl (low but supposedly sufficient volume for all devices). After a point-of-care capillary reference measurement (StatStrip, NovaBiomedical), the meter strip was filled (6x) with the respective volume, and the response of the meters (two devices) was documented (72 determinations/meter type). Correct response was defined as either an error message indicating incomplete filling or a correct reading (±20% compared with reference reading). Only five meters showed 100% correct responses [BGStar and iBGStar (both Sanofi), ACCU-CHEK Compact+ and ACCU-CHEK Mobile (both Roche Diagnostics), OneTouch Verio (LifeScan)]. The majority of the meters (17) had up to 10% incorrect reactions [predominantly incorrect readings with sufficient volume; Precision Xceed and Xtra, FreeStyle Lite, and Freedom Lite (all Abbott); GlucoCard+ and GlucoMen GM (both Menarini); Contour, Contour USB, and Breeze2 (all Bayer); OneTouch Ultra Easy, Ultra 2, and Ultra Smart (all LifeScan); Wellion Dialog and Premium (both MedTrust); FineTouch (Terumo); ACCU-CHEK Aviva (Roche); and GlucoTalk (Axis-Shield)]. Ten percent to 20% incorrect reactions were seen with OneTouch Vita (LifeScan), ACCU-CHEK Aviva Nano (Roche), OmniTest+ (BBraun), and AlphaChek+ (Berger Med). More than 20% incorrect reactions were obtained with Pura (Ypsomed), GlucoCard Meter and GlucoMen LX (both Menarini), Elite (Bayer), and MediTouch (Medisana). In summary, partial and

  2. Characterization of hazardous waste sites: a methods manual. Volume 2. Available sampling methods (second edition)

    International Nuclear Information System (INIS)

    Ford, P.J.; Turina, P.J.; Seely, D.E.

    1984-12-01

    Investigations at hazardous waste sites and sites of chemical spills often require on-site measurements and sampling activities to assess the type and extent of contamination. This document is a compilation of sampling methods and materials suitable to address most needs that arise during routine waste site and hazardous spill investigations. The sampling methods presented in this document are compiled by media, and were selected on the basis of practicality, economics, representativeness, compatability with analytical considerations, and safety, as well as other criteria. In addition to sampling procedures, sample handling and shipping, chain-of-custody procedures, instrument certification, equipment fabrication, and equipment decontamination procedures are described. Sampling methods for soil, sludges, sediments, and bulk materials cover the solids medium. Ten methods are detailed for surface waters, groundwater and containerized liquids; twelve are presented for ambient air, soil gases and vapors, and headspace gases. A brief discussion of ionizing radiation survey instruments is also provided

  3. Probabilistic Requirements (Partial) Verification Methods Best Practices Improvement. Variables Acceptance Sampling Calculators: Empirical Testing. Volume 2

    Science.gov (United States)

    Johnson, Kenneth L.; White, K. Preston, Jr.

    2012-01-01

    The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. In this paper, the results of empirical tests intended to assess the accuracy of acceptance sampling plan calculators implemented for six variable distributions are presented.

  4. Correction for the absorption of plutonium alpha particles in filter paper used for dust sampling

    Energy Technology Data Exchange (ETDEWEB)

    Simons, J G

    1956-01-01

    This sample of air-borne dust collected on a filter paper when laboratory air is monitored for plutonium with the 1195 portable dust sampling unit may be regarded, for counting purposes, as a thick source with a non-uniform distribution of alpha-active plutonium. Experiments have been carried out to determine a correction factor to be applied to the observed count on the filter paper sample to correct for internal absorption in the paper and on the dust layer. From the results obtained it is recommended that a correction factor of 2 be used.

  5. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    International Nuclear Information System (INIS)

    Kamberaj, Hiqmet

    2015-01-01

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4,  5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias

  6. The new strategy for particle identification samples in Run 2 at LHCb

    CERN Multimedia

    Mathad, Abhijit

    2017-01-01

    For Run 2 of LHCb data taking, the selection of PID calibration samples is implemented in the high level trigger. A further processing is needed to provide background-subtracted samples to determine the PID performance, or to develop new algorithms for the evaluation of the detector performance in upgrade scenarios. This is achieved through a centralised production which makes efficient use of LHCb computing resources. This poster presents the major steps of the implementation.

  7. SyPRID sampler: A large-volume, high-resolution, autonomous, deep-ocean precision plankton sampling system

    Science.gov (United States)

    Billings, Andrew; Kaiser, Carl; Young, Craig M.; Hiebert, Laurel S.; Cole, Eli; Wagner, Jamie K. S.; Van Dover, Cindy Lee

    2017-03-01

    The current standard for large-volume (thousands of cubic meters) zooplankton sampling in the deep sea is the MOCNESS, a system of multiple opening-closing nets, typically lowered to within 50 m of the seabed and towed obliquely to the surface to obtain low-spatial-resolution samples that integrate across 10 s of meters of water depth. The SyPRID (Sentry Precision Robotic Impeller Driven) sampler is an innovative, deep-rated (6000 m) plankton sampler that partners with the Sentry Autonomous Underwater Vehicle (AUV) to obtain paired, large-volume plankton samples at specified depths and survey lines to within 1.5 m of the seabed and with simultaneous collection of sensor data. SyPRID uses a perforated Ultra-High-Molecular-Weight (UHMW) plastic tube to support a fine mesh net within an outer carbon composite tube (tube-within-a-tube design), with an axial flow pump located aft of the capture filter. The pump facilitates flow through the system and reduces or possibly eliminates the bow wave at the mouth opening. The cod end, a hollow truncated cone, is also made of UHMW plastic and includes a collection volume designed to provide an area where zooplankton can collect, out of the high flow region. SyPRID attaches as a saddle-pack to the Sentry vehicle. Sentry itself is configured with a flight control system that enables autonomous survey paths to low altitudes. In its verification deployment at the Blake Ridge Seep (2160 m) on the US Atlantic Margin, SyPRID was operated for 6 h at an altitude of 5 m. It recovered plankton samples, including delicate living larvae, from the near-bottom stratum that is seldom sampled by a typical MOCNESS tow. The prototype SyPRID and its next generations will enable studies of plankton or other particulate distributions associated with localized physico-chemical strata in the water column or above patchy habitats on the seafloor.

  8. Neutron multicounter detector for investigation of content and spatial distribution of fission materials in large volume samples

    International Nuclear Information System (INIS)

    Swiderska-Kowalczyk, M.; Starosta, W.; Zoltowski, T.

    1998-01-01

    The experimental device is a neutron coincidence well counter. It can be applied for passive assay of fissile - especially for plutonium bearing - materials. It consist of a set of 3 He tubes placed inside a polyethylene moderator; outputs from the tubes, first processed by preamplifier/amplifier/discriminator circuits, are then analysed using neutron correlator connected with a PC, and correlation techniques implemented in software. Such a neutron counter allows for determination of plutonium mass ( 240 Pu effective mass) in nonmultiplying samples having fairly big volume (up to 0.14 m 3 ). For determination of neutron sources distribution inside the sample, the heuristic methods based on hierarchical cluster analysis are applied. As an input parameters, amplitudes and phases of two-dimensional Fourier transformation of the count profiles matrices for known point sources distributions and for the examined samples, are taken. Such matrices are collected by means of sample scanning by detection head. During clustering process, counts profiles for unknown samples fitted into dendrograms using the 'proximity' criterion of the examined sample profile to standard samples profiles. Distribution of neutron sources in an examined sample is then evaluated on the basis of comparison with standard sources distributions. (author)

  9. Coordinates Analyses of Hydrated Interplanetary Dust Particles: Samples of Primitive Solar System Bodies

    Science.gov (United States)

    Keller, L. P.; Snead, C.; McKeegan, K. D.

    2016-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere fall into two major groups: an anhydrous group termed the "chondritic-porous (CP) IDPs and a hydrated group, the "chondritic-smooth (CS) IDPs, although rare IDPs with mineralogies intermediate between these two groups are known [1]. The CP-IDPs are widely believed to be derived from cometary sources [e.g. 2]. The hydrated CS-IDPs show mineralogical similarities to heavily aqueously altered carbonaceous chondrites (e.g. CI chondrites), but only a few have been directly linked to carbonaceous meteorite parent bodies [e.g. 3, 4]. Most CS-IDPs show distinct chemical [5] and oxygen isotopic composition differences [6-8] from primitive carbonaceous chondrites. Here, we report on our coordinated analyses of a suite of carbon-rich CS-IDPs focusing on their bulk compositions, mineralogy, mineral chemistry, and isotopic compositions.

  10. Assessment of gamma, beta and alpha-particle-emitting nuclides in marine samples

    International Nuclear Information System (INIS)

    Holm, E.

    1997-01-01

    Depending on the physical properties of radionuclides different systems must be used for their measurement. Most convenient is if gamma spectrometry can be used by germanium, Silicon or Scintillation detectors (eg. NaI). If, however, the main emission consists of beta or alpha particles or low-energy photons as is the case for radionuclides decaying by electron capture, radiochemical separation and specific source preparations must be undertaken. In such cases also the radiochemical yield must be determined. The radiochemical part mainly follows the lines presented by prof. T. Jaakkola, Department of Radiochemistry, Helsinki, Finland, at a course in radioecology in Lurid, 1991. For very long-lived radionuclides other methods such as mass spectrometry are superior although often associated with sophisticated expensive instrumentation. (author)

  11. Particle identification using digital pulse shape discrimination in a nTD silicon detector with a 1 GHz sampling digitizer

    Science.gov (United States)

    Mahata, K.; Shrivastava, A.; Gore, J. A.; Pandit, S. K.; Parkar, V. V.; Ramachandran, K.; Kumar, A.; Gupta, S.; Patale, P.

    2018-06-01

    In beam test experiments have been carried out for particle identification using digital pulse shape analysis in a 500 μm thick Neutron Transmutation Doped (nTD) silicon detector with an indigenously developed FPGA based 12 bit resolution, 1 GHz sampling digitizer. The nTD Si detector was used in a low-field injection setup to detect light heavy-ions produced in reactions of ∼ 5 MeV/A 7Li and 12C beams on different targets. Pulse height, rise time and current maximum have been obtained from the digitized charge output of a high bandwidth charge and current sensitive pre-amplifier. Good isotopic separation have been achieved using only the digitized charge output in case of light heavy-ions. The setup can be used for charged particle spectroscopy in nuclear reactions involving light heavy-ions around the Coulomb barrier energies.

  12. Saharan dust particles in snow samples of Alps and Apennines during an exceptional event of transboundary air pollution.

    Science.gov (United States)

    Telloli, Chiara; Chicca, Milvia; Pepi, Salvatore; Vaccaro, Carmela

    2017-12-21

    Southern European countries are often affected in summer by transboundary air pollution from Saharan dust. However, very few studies deal with Saharan dust pollution at high altitudes in winter. In Italy, the exceptional event occurred on February 19, 2014, colored in red the entire mountain range (Alps and Apennines) and allowed to characterize the particulate matter deposited on snow from a morphological and chemical point of view. Snow samples were collected after this event in four areas in the Alps and one in the Apennines. The particulate matter of the melted snow samples was analyzed by scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS) and by inductively coupled plasma mass spectrometry (ICP-MS). These analyses confirmed the presence of Saharan dust particle components in all areas with similar percentages, supported also by the positive correlations between Mg-Ca, Al-Ca, Al-Mg, and Al-K in all samples.

  13. Measurements of Plutonium and Americium in Soil Samples from Project 57 using the Suspended Soil Particle Sizing System (SSPSS)

    International Nuclear Information System (INIS)

    John L. Bowen; Rowena Gonzalez; David S. Shafer

    2001-01-01

    As part of the preliminary site characterization conducted for Project 57, soils samples were collected for separation into several size-fractions using the Suspended Soil Particle Sizing System (SSPSS). Soil samples were collected specifically for separation by the SSPSS at three general locations in the deposited Project 57 plume, the projected radioactivity of which ranged from 100 to 600 pCi/g. The primary purpose in focusing on samples with this level of activity is that it would represent anticipated residual soil contamination levels at the site after corrective actions are completed. Consequently, the results of the SSPSS analysis can contribute to dose calculation and corrective action-level determinations for future land-use scenarios at the site

  14. Nuclear waste calorimeter for very large drums with 385 litres sample volume

    Energy Technology Data Exchange (ETDEWEB)

    Jossens, G.; Mathonat, C. [SETARAM Instrumentation, Caluire (France); Bachelet, F. [CEA Valduc, Is sur Tille (France)

    2015-03-15

    Calorimetry is a very precise and well adapted tool for the classification of drums containing nuclear waste material depending on their level of activities (low, medium, high). A new calorimeter has been developed by SETARAM Instrumentation and the CEA Valduc in France. This new calorimeter is designed for drums having a volume bigger than 100 liters. It guarantees high operator safety by optimizing drum handling and air circulation for cooling, and optimized software for direct measurement of the quantity of nuclear material. The LVC1380 calorimeter makes it possible to work over the range 10 to 3000 mW, which corresponds to approximately 0.03 to 10 g of tritium or 3 to 955 g of {sup 241}Pu in a volume up to 385 liters. This calorimeter is based on the heat flow measurement using Peltier elements which surround the drum in the 3 dimensions and therefore measure all the heat coming from the radioactive stuff whatever its position inside the drum. Calorimeter's insulating layers constitute a thermal barrier designed to filter disturbances until they represent less than 0.001 Celsius degrees and to eliminate long term disturbances associated, for example, with laboratory temperature variations between day and night. A calibration device based on Joule effect has also been designed. Measurement time has been optimized but remains long compared with other methods of measurement such as gamma spectrometry but its main asset is to have a good accuracy for low level activities.

  15. On-chip polarimetry for high-throughput screening of nanoliter and smaller sample volumes

    Science.gov (United States)

    Bachmann, Brian O. (Inventor); Bornhop, Darryl J. (Inventor); Dotson, Stephen (Inventor)

    2012-01-01

    A polarimetry technique for measuring optical activity that is particularly suited for high throughput screening employs a chip or substrate (22) having one or more microfluidic channels (26) formed therein. A polarized laser beam (14) is directed onto optically active samples that are disposed in the channels. The incident laser beam interacts with the optically active molecules in the sample, which slightly alter the polarization of the laser beam as it passes multiple times through the sample. Interference fringe patterns (28) are generated by the interaction of the laser beam with the sample and the channel walls. A photodetector (34) is positioned to receive the interference fringe patterns and generate an output signal that is input to a computer or other analyzer (38) for analyzing the signal and determining the rotation of plane polarized light by optically active material in the channel from polarization rotation calculations.

  16. Chemical process to separate iron oxides particles in pottery sample for EPR dating

    Science.gov (United States)

    Watanabe, S.; Farias, T. M. B.; Gennari, R. F.; Ferraz, G. M.; Kunzli, R.; Chubaci, J. F. D.

    2008-12-01

    Ancient potteries usually are made of the local clay material, which contains relatively high concentration of iron. The powdered samples are usually quite black, due to magnetite, and, although they can be used for thermoluminescene (TL) dating, it is easiest to obtain better TL reading when clearest natural or pre-treated sample is used. For electron paramagnetic resonance (EPR) measurements, the huge signal due to iron spin-spin interaction, promotes an intense interference overlapping any other signal in this range. Sample dating is obtained by dividing the radiation dose, determined by the concentration of paramagnetic species generated by irradiation, by the natural dose so as a consequence, EPR dating cannot be used, since iron signal do not depend on radiation dose. In some cases, the density separation method using hydrated solution of sodium polytungstate [Na 6(H 2W 12O 40)·H 2O] becomes useful. However, the sodium polytungstate is very expensive in Brazil; hence an alternative method for eliminating this interference is proposed. A chemical process to eliminate about 90% of magnetite was developed. A sample of powdered ancient pottery was treated in a mixture (3:1:1) of HCl, HNO 3 and H 2O 2 for 4 h. After that, it was washed several times in distilled water to remove all acid matrixes. The original black sample becomes somewhat clearer. The resulting material was analyzed by plasma mass spectrometry (ICP-MS), with the result that the iron content is reduced by a factor of about 9. In EPR measurements a non-treated natural ceramic sample shows a broad spin-spin interaction signal, the chemically treated sample presents a narrow signal in g = 2.00 region, possibly due to a radical of (SiO 3) 3-, mixed with signal of remaining iron [M. Ikeya, New Applications of Electron Spin Resonance, World Scientific, Singapore, 1993, p. 285]. This signal increases in intensity under γ-irradiation. However, still due to iron influence, the additive method yielded too

  17. Liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy detection of laser ablation produced particles: A feasibility study

    International Nuclear Information System (INIS)

    Quarles, C. Derrick; Gonzalez, Jhanis; Choi, Inhee; Ruiz, Javier; Mao, Xianglei; Marcus, R. Kenneth; Russo, Richard E.

    2012-01-01

    The use of a liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma source as an alternative to conventional inductively coupled plasma (ICP) detection of laser ablation (LA) produced particles using a Nd:YAG laser at 1064 nm is demonstrated. This configuration utilizes a 180° geometry, which is different from the 40° geometry that was used to ionize ablated particles followed by mass spectrometric detection. The use of a hollow counter electrode (nickel, 0.3 cm o.d., 0.1 cm i.d.) was implemented to introduce ablated particles directly into the APGD plasma with helium as a carrier gas. The LS-APGD source was optimized using ablated copper as the test sample (helium carrier gas flow rate (0.30 L min −1 He), discharge current (60 mA), laser power (44 mJ), and solution electrode sheath gas (0.2 L min −1 He) and solution flow rates (10 μL min −1 5% HNO 3 )). Standard brass samples having known Zn/Cu percentages were ablated and analyzed using the LS-APGD source. As a comparison, the established technique of laser-induced breakdown spectroscopy (LIBS) was used to analyze the same set of brass standards under similar ablation conditions to the LS-AGPD measurements, yielding comparable results. The Zn/Cu ratio results for the LS-APGD and LIBS measurements showed good similarity to previous measurements using ICP-MS detection. The performance of the LS-APGD–OES microplasma, comparable to well established methods, with lower capital and operational overhead expenses, suggests a great deal of promise as an analytical excitation source. - Highlights: ► Particles formed by laser ablation are readily introduced to the LS-APGD microplasma. ► The low power microplasma has sufficient energy to vaporize laser produced particles. ► Qualitative analysis of brass alloys is performed using a simple OES ratio method. ► The qualitative performance of the LS-APGD microplasma is on-par with LIBS analysis.

  18. Density-viscosity product of small-volume ionic liquid samples using quartz crystal impedance analysis.

    Science.gov (United States)

    McHale, Glen; Hardacre, Chris; Ge, Rile; Doy, Nicola; Allen, Ray W K; MacInnes, Jordan M; Bown, Mark R; Newton, Michael I

    2008-08-01

    Quartz crystal impedance analysis has been developed as a technique to assess whether room-temperature ionic liquids are Newtonian fluids and as a small-volume method for determining the values of their viscosity-density product, rho eta. Changes in the impedance spectrum of a 5-MHz fundamental frequency quartz crystal induced by a water-miscible room-temperature ionic liquid, 1-butyl-3-methylimiclazolium trifluoromethylsulfonate ([C4mim][OTf]), were measured. From coupled frequency shift and bandwidth changes as the concentration was varied from 0 to 100% ionic liquid, it was determined that this liquid provided a Newtonian response. A second water-immiscible ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4mim][NTf2], with concentration varied using methanol, was tested and also found to provide a Newtonian response. In both cases, the values of the square root of the viscosity-density product deduced from the small-volume quartz crystal technique were consistent with those measured using a viscometer and density meter. The third harmonic of the crystal was found to provide the closest agreement between the two measurement methods; the pure ionic liquids had the largest difference of approximately 10%. In addition, 18 pure ionic liquids were tested, and for 11 of these, good-quality frequency shift and bandwidth data were obtained; these 12 all had a Newtonian response. The frequency shift of the third harmonic was found to vary linearly with square root of viscosity-density product of the pure ionic liquids up to a value of square root(rho eta) approximately 18 kg m(-2) s(-1/2), but with a slope 10% smaller than that predicted by the Kanazawa and Gordon equation. It is envisaged that the quartz crystal technique could be used in a high-throughput microfluidic system for characterizing ionic liquids.

  19. Ibuprofen analysis in blood samples by palladium particles-impregnated sodium montmorillonite electrodes: Validation using high performance liquid chromatography.

    Science.gov (United States)

    Loudiki, A; Boumya, W; Hammani, H; Nasrellah, H; El Bouabi, Y; Zeroual, M; Farahi, A; Lahrich, S; Hnini, K; Achak, M; Bakasse, M; El Mhammedi, M A

    2016-12-01

    The electrochemical detection of ibuprofen has been studied on Palladium-Montmorillonite (Mt) modified carbon paste electrode using differential pulse voltammetry. The optimization of the modifier preparation and the instrumental parameters was investigated. The results indicate that ibuprofen oxidation was favored in the presence of Pd-PdO particles. The quantitative determination of ibuprofen was statistically analyzed and validated using HPLC method. The detection and quantification limits, specificity and precision were found to be acceptable. Finally, the developed method was successfully applied for ibuprofen determination in human blood samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Investigation into Y-Ba-Cu-O samples by neutron scattering methods and other particles

    International Nuclear Information System (INIS)

    Lebedev, V.T.; Evmenenko, G.A.; Sibilev, A.I.; Lebedev, V.M.; Churin, S.A.

    1997-01-01

    The combination of surface-sensitive microanalysis and neutron small angle diffraction analysis as applied to a Y-Ba-Cu-O ceramic rod permits determining the composition by oxygen and heavy elements. The determination of chemical composition was accomplished as in initial ceramics so in a crystal and in transition areas. The ceramic region of the sample is shown to be nonuniform and to have a well developed granular surface [ru

  1. An Electromagnetic Gauge Technique for Measuring Shocked Particle Velocity in Electrically Conductive Samples

    Science.gov (United States)

    Cheng, David; Yoshinaka, Akio

    2014-11-01

    Electromagnetic velocity (EMV) gauges are a class of film gauges which permit the direct in-situ measurement of shocked material flow velocity. The active sensing element, typically a metallic foil, requires exposure to a known external magnetic field in order to produce motional electromotive force (emf). Due to signal distortion caused by mutual inductance between sample and EMV gauge, this technique is typically limited to shock waves in non-conductive materials. In conductive samples, motional emf generated in the EMV gauge has to be extracted from the measured signal which results from the combined effects of both motional emf and voltage changes from induced currents. An electromagnetic technique is presented which analytically models the dynamics of induced current between a copper disk moving as a rigid body with constant 1D translational velocity toward an EMV gauge, where both disk and gauge are exposed to a uniform external static magnetic field. The disk is modelled as a magnetic dipole loop where its Foucault current is evaluated from the characteristics of the fields, whereas the EMV gauge is modelled as a circuit loop immersed in the field of the magnetic dipole loop, the intensity of which is calculated as a function of space and, implicitly, time. Equations of mutual induction are derived and the current induced in the EMV gauge loop is solved, allowing discrimination of the motional emf. Numerical analysis is provided for the step response of the induced EMV gauge current with respect to the Foucault current in the moving copper sample.

  2. Automatic sampling technology in wide belt conveyor with big volume of coal flow

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J. [China Coal Research Institute, Beijing (China)

    2008-06-15

    The principle and technique of sampling in a wide belt conveyor with high coal flow was studied. The design method of the technology, the key parameters, the collection efficiency, the mechanical unit, power supply and control system and worksite facility were ascertained. 3 refs., 5 figs.

  3. Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis

    Science.gov (United States)

    Noble, Donald T.; Braymen, Steven D.; Anderson, Marvin S.

    1996-10-01

    A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point mad a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained.

  4. In situ sampling of small volumes of soil solution using modified micro-suction cups

    NARCIS (Netherlands)

    Shen, Jianbo; Hoffland, E.

    2007-01-01

    Two modified designs of micro-pore-water samplers were tested for their capacity to collect unbiased soil solution samples containing zinc and citrate. The samplers had either ceramic or polyethersulfone (PES) suction cups. Laboratory tests of the micro-samplers were conducted using (a) standard

  5. Sampling

    CERN Document Server

    Thompson, Steven K

    2012-01-01

    Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treat

  6. Measuring PM2.5, Ultrafine Particles, Nicotine Air and Wipe Samples Following the Use of Electronic Cigarettes.

    Science.gov (United States)

    Melstrom, Paul; Koszowski, Bartosz; Thanner, Meridith Hill; Hoh, Eunha; King, Brian; Bunnell, Rebecca; McAfee, Tim

    2017-09-01

    Few studies have examined the extent of inhalation or dermal contact among bystanders following short-term, secondhand e-cigarette exposure. Measure PM2.5 (particles e-cigarette exposure. E-cigarettes were used ad libitum by three experienced users for 2 hours during two separate sessions (disposable e-cigarettes, then tank-style e-cigarettes, or "tanks") in a 1858 ft3 room. We recorded: uncorrected PM2.5 (using SidePak); UF (using P-Trak); air nicotine concentrations (using air samplers; SKC XAD-4 canisters); ambient air exchange rate (using an air capture hood). Wipe samples were taken by wiping 100 cm2 room surfaces pre- and post- both sessions, and clean cloth wipes were worn during the exposure and collected at the end. Uncorrected PM2.5 and UF were higher (p e-cigarette use can produce: elevated PM2.5; elevated UF; nicotine in the air; and accumulation of nicotine on surfaces and clothing. Short-term indoor e-cigarette use produced accumulation of nicotine on surfaces and clothing, which could lead to dermal exposure to nicotine. Short-term e-cigarette use produced elevated PM2.5 and ultrafine particles, which could lead to secondhand inhalation of these particles and any chemicals associated with them by bystanders. We measured significant differences in PM2.5 and ultrafine particles between disposable e-cigarettes and tank-style e-cigarettes, suggesting a difference in the exposure profiles of e-cigarette products. Published by Oxford University Press on behalf of Society for Research on Nicotine and Tobacco 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Evaluation of sampling inhalable PM10 particulate matter (≤ 10 μm) using co-located high volume samplers

    International Nuclear Information System (INIS)

    Rajoy, R R S; Dias, J W C; Rego, E C P; Netto, A D Pereira

    2015-01-01

    This paper presents the results of the determination of the concentrations of atmospheric particulate matter ≤ 10 μm (PM10), collected simultaneously by six PM10 high volume samplers from two different manufacturers installed in the same location. Fifteen samples of 24 h were obtained with each equipment at a selected urban area of Rio de Janeiro city. The concentration of PM10 ranged between 10.73 and 54.04 μg m −3 . The samplers were considered comparable to each other, as the adopted methodology presented good repeatability

  8. Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate

    International Nuclear Information System (INIS)

    Pan, Chong; Wang, Hongping; Wang, Jinjun

    2013-01-01

    This work mainly deals with the proper orthogonal decomposition (POD) time coefficient method used for extracting phase information from quasi-periodic flow. The mathematical equivalence between this method and the traditional cross-correlation method is firstly proved. A two-dimensional circular cylinder wake flow measured by time-resolved particle image velocimetry within a range of Reynolds numbers is then used to evaluate the reliability of this method. The effect of both the sampling rate and Reynolds number on the identification accuracy is finally discussed. It is found that the POD time coefficient method provides a convenient alternative for phase identification, whose feasibility in low-sampling-rate measurement has additional advantages for experimentalists. (paper)

  9. Charged-particle track analysis, thermoluminescence and microcratering studies of lunar samples

    International Nuclear Information System (INIS)

    Durrani, S.A.

    1977-01-01

    Studies of lunar samples (from both Apollo and Luna missions) have been carried out, using track analysis and thermoluminescence (t.l.) techniques, with a view to shedding light on the radiation and temperature histories of the Moon. In addition, microcraters in lunar glasses have been studied in order to elucidate the cosmic-dust impact history of the lunar regolith. In tracks studies, the topics discussed include the stabilizing effect of the thermal annealing of fossil tracks due to the lunar temperature cycle; the 'radiation annealing' of fresh heavy-ion tracks by large doses of protons (to simulate the effect of lunar radiation-damage on track registration); and correction factors for the anisotropic etching of crystals which are required in reconstructing the exposure history of lunar grains. An abundance ratio of ca. (1.1 + 0.3) x 10 -3 has been obtained, by the differential annealing technique, for the nuclei beyond the iron group to those within that group in the cosmic rays incident on the Moon. The natural t.l. of lunar samples has been used to estimate their effective storage temperature and mean depth below the surface. The results of the study of natural and artificially produced microcraters have been studied. (author)

  10. Real-time viscosity and mass density sensors requiring microliter sample volume based on nanomechanical resonators.

    Science.gov (United States)

    Bircher, Benjamin A; Duempelmann, Luc; Renggli, Kasper; Lang, Hans Peter; Gerber, Christoph; Bruns, Nico; Braun, Thomas

    2013-09-17

    A microcantilever based method for fluid viscosity and mass density measurements with high temporal resolution and microliter sample consumption is presented. Nanomechanical cantilever vibration is driven by photothermal excitation and detected by an optical beam deflection system using two laser beams of different wavelengths. The theoretical framework relating cantilever response to the viscosity and mass density of the surrounding fluid was extended to consider higher flexural modes vibrating at high Reynolds numbers. The performance of the developed sensor and extended theory was validated over a viscosity range of 1-20 mPa·s and a corresponding mass density range of 998-1176 kg/m(3) using reference fluids. Separating sample plugs from the carrier fluid by a two-phase configuration in combination with a microfluidic flow cell, allowed samples of 5 μL to be sequentially measured under continuous flow, opening the method to fast and reliable screening applications. To demonstrate the study of dynamic processes, the viscosity and mass density changes occurring during the free radical polymerization of acrylamide were monitored and compared to published data. Shear-thinning was observed in the viscosity data at higher flexural modes, which vibrate at elevated frequencies. Rheokinetic models allowed the monomer-to-polymer conversion to be tracked in spite of the shear-thinning behavior, and could be applied to study the kinetics of unknown processes.

  11. Reduction of Powerplex(®) Y23 reaction volume for genotyping buccal cell samples on FTA(TM) cards.

    Science.gov (United States)

    Raziel, Aliza; Dell'Ariccia-Carmon, Aviva; Zamir, Ashira

    2015-01-01

    PowerPlex(®) Y23 is a novel kit for Y-STR typing that includes new highly discriminating loci. The Israel DNA Database laboratory has recently adopted it for routine Y-STR analysis. This study examined PCR amplification from 1.2-mm FTA punch in reduced volumes of 5 and 10 μL. Direct amplification and washing of the FTA punches were examined in different PCR cycle numbers. One short robotically performed wash was found to improve the quality and the percent of profiles obtained. The optimal PCR cycle number was determined for 5 and 10 μL reaction volumes. The percent of obtained profiles, color balance, and reproducibility were examined. High-quality profiles were achieved in 90% and 88% of the samples amplified in 5 and 10 μL, respectively, in the first attempt. Volume reduction to 5 μL has a vast economic impact especially for DNA database laboratories. © 2014 American Academy of Forensic Sciences.

  12. Efficient isotope ratio analysis of uranium particles in swipe samples by total-reflection x-ray fluorescence spectrometry and secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Esaka, Fumitaka; Watanabe, Kazuo; Fukuyama, Hiroyasu; Onodera, Takashi; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu

    2004-01-01

    A new particle recovery method and a sensitive screening method were developed for subsequent isotope ratio analysis of uranium particles in safeguards swipe samples. The particles in the swipe sample were recovered onto a carrier by means of vacuum suction-impact collection method. When grease coating was applied to the carrier, the recovery efficiency was improved to 48±9%, which is superior to that of conventionally-used ultrasoneration method. Prior to isotope ratio analysis with secondary ion mass spectrometry (SIMS), total reflection X-ray fluorescence spectrometry (TXRF) was applied to screen the sample for the presence of uranium particles. By the use of Si carriers in TXRF analysis, the detection limit of 22 pg was achieved for uranium. By combining these methods with SIMS, the isotope ratios of 235 U/ 238 U for individual uranium particles were efficiently determined. (author)

  13. Methods of pre-concentration of radionuclides from large volume samples

    International Nuclear Information System (INIS)

    Olahova, K.; Matel, L.; Rosskopfova, O.

    2006-01-01

    The development of radioanalytical methods for low level radionuclides in environmental samples is presented. In particular, emphasis is placed on the introduction of extraction chromatography as a tool for improving the quality of results as well as reducing the analysis time. However, the advantageous application of extraction chromatography often depends on the effective use of suitable preconcentration techniques, such as co-precipitation, to reduce the amount of matrix components which accompany the analysis interest. On-going investigations in this field relevant to the determination of environmental levels of actinides and 90 Sr are discussed. (authors)

  14. ARPA-E Impacts: A Sampling of Project Outcomes, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, Eric [Dept. of Energy (DOE), Washington DC (United States). Advanced Research Projects Agency-Energy (ARPA-E)

    2017-02-27

    The Advanced Research Projects Agency-Energy (ARPA-E) is demonstrating that a collaborative model has the power to deliver real value. The Agency’s first compilation booklet of impact sheets, published in 2016, began to tell the story of how ARPA-E has already made an impact in just seven years—funding a diverse and sophisticated research portfolio on advanced energy technologies that enable the United States to tackle our most pressing energy challenges. One year later our research investments continue to pay off, with a number of current and alumni project teams successfully commercializing their technologies and advancing the state of the art in transformative areas of energy science and engineering. There is no single measure that can fully illustrate ARPA-E’s success to date, but several statistics viewed collectively begin to reveal the Agency’s impact. Since 2009, ARPA-E has provided more than $1.5 billion in funding for 36 focused programs and three open funding solicitations, totaling over 580 projects. Of those, 263 are now alumni projects. Many teams have successfully leveraged ARPA-E’s investment: 56 have formed new companies, 68 have partnered with other government agencies to continue their technology development, and 74 teams have together raised more than $1.8 billion in reported funding from the private sector to bring their technologies to market. However, even when viewed together, those measures do not capture ARPA-E’s full impact. To best understand the Agency’s success, the specific scientific and engineering challenges that ARPA-E project teams have overcome must be understood. This booklet provides concrete examples of those successes, ranging from innovations that will bear fruit in the future to ones that are beginning to penetrate the market as products today. Importantly, half of the projects highlighted in this volume stem from OPEN solicitations, which the agency has run in 2009, 2012, and 2015. ARPA-E’s OPEN programs

  15. Analysis of plant hormones by microemulsion electrokinetic capillary chromatography coupled with on-line large volume sample stacking.

    Science.gov (United States)

    Chen, Zongbao; Lin, Zian; Zhang, Lin; Cai, Yan; Zhang, Lan

    2012-04-07

    A novel method of microemulsion electrokinetic capillary chromatography (MEEKC) coupled with on-line large volume sample stacking was developed for the analysis of six plant hormones including indole-3-acetic acid, indole-3-butyric acid, indole-3-propionic acid, 1-naphthaleneacetic acid, abscisic acid and salicylic acid. Baseline separation of six plant hormones was achieved within 10 min by using the microemulsion background electrolyte containing a 97.2% (w/w) 10 mM borate buffer at pH 9.2, 1.0% (w/w) ethyl acetate as oil droplets, 0.6% (w/w) sodium dodecyl sulphate as surfactant and 1.2% (w/w) 1-butanol as cosurfactant. In addition, an on-line concentration method based on a large volume sample stacking technique and multiple wavelength detection was adopted for improving the detection sensitivity in order to determine trace level hormones in a real sample. The optimal method provided about 50-100 fold increase in detection sensitivity compared with a single MEEKC method, and the detection limits (S/N = 3) were between 0.005 and 0.02 μg mL(-1). The proposed method was simple, rapid and sensitive and could be applied to the determination of six plant hormones in spiked water samples, tobacco leaves and 1-naphthylacetic acid in leaf fertilizer. The recoveries ranged from 76.0% to 119.1%, and good reproducibilities were obtained with relative standard deviations (RSDs) less than 6.6%.

  16. Recommended procedures for performance testing of radiobioassay laboratories: Volume 2, In vitro samples

    International Nuclear Information System (INIS)

    Fenrick, H.W.; MacLellan, J.A.

    1988-11-01

    Draft American National Standards Institute (ANSI) Standard N13.30 (Performance Criteria for Radiobioassay) was developed for the US Department of Energy and the US Nuclear Regulatory Commission to help ensure that bioassay laboratories provide accurate and consistent results. The draft standard specifies the criteria for defining the procedures necessary to establish a bioassay performance-testing laboratory and program. The bioassay testing laboratory will conduct tests to evaluate the performance of service laboratories. Pacific Northwest Laboratory helped develop testing procedures as part of an effort to evaluate the performance criteria by testing the existing measurement capabilities of various bioassay laboratories. This report recommends guidelines for the preparation, handling, storage, distribution, shipping, and documentation of in vitro test samples (artificial urine and fecal matter) for indirect bioassay. The data base and recommended records system for documenting radiobioassay performance at the service laboratories are also presented. 8 refs., 3 tabs

  17. Liquid-chromatographic analysis for cyclosporine with use of a microbore column and small sample volume.

    Science.gov (United States)

    Annesley, T; Matz, K; Balogh, L; Clayton, L; Giacherio, D

    1986-07-01

    This liquid-chromatographic assay requires 0.2 to 0.5 mL of whole blood, avoids the use of diethyl ether, and consumes only 10 to 20% of the solvents used in prior methods. Sample preparation involves an acidic extraction with methyl-t-butyl ether, performed in a 13 X 100 mm disposable glass tube, then a short second extraction of the organic phase with sodium hydroxide. After evaporation of the methyl-t-butyl ether, chromatography is performed on an "Astec" 2.0-mm (i.d.) octyl column. We compared results by this procedure with those by use of earlier larger-scale extractions and their respective 4.6-mm (i.d.) columns; analytical recoveries of cyclosporins A and D were comparable with previous findings and results for patients' specimens were equivalent, but the microbore columns provided greatly increased resolution and sensitivity.

  18. Use of Lagrangian transport models and Sterilized High Volume Sampling to pinpoint the source region of Kawasaki disease and determine the etiologic agent

    Science.gov (United States)

    Curcoll Masanes, Roger; Rodó, Xavier; Anton, Jordi; Ballester, Joan; Jornet, Albert; Nofuentes, Manel; Sanchez-Manubens, Judith; Morguí, Josep-Anton

    2015-04-01

    Kawasaki disease (KD) is an acute, coronary artery vasculitis of young children, and still a medical mystery after more than 40 years. A former study [Rodó et al. 2011] demonstrated that certain patterns of winds in the troposphere above the earth's surface flowing from Asia were associated with the times of the annual peak in KD cases and with days having anomalously high numbers of KD patients. In a later study [Rodó et al. 2014], we used residence times from an Air Transport Model to pinpoint the source region for KD. Simulations were generated from locations spanning Japan from days with either high or low KD incidence. In order to cope with stationarity of synoptic situations, only trajectories for the winter months, when there is the maximum in KD cases, were considered. Trajectories traced back in time 10 days for each dataset and location were generated using the flexible particle Lagrangian dispersion model (FLEXPART Version 8.23 [Stohl et al. 2005]) run in backward mode. The particles modeled were air tracers, with 10,000 particles used on each model run. The model output used was residence time, with an output grid of 0.5° latitude × longitude and a time resolution of 3 h. The data input used for the FLEXPART model was gridded atmospheric wind velocity from the European Center for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim at 1°). Aggregates of winter period back-trajectories were calculated for three different regions of Japan. A common source of wind air masses was located for periods with High Kawasaki disease. Knowing the trajectories of winds from the air transport models, a sampling methodology was developed in order to capture the possible etiological agent or other tracers that could have been released together. This methodology is based on the sterilized filtering of high volumes of the transported air at medium tropospheric levels by aircraft sampling and a later analyze these filters with adequate techniques. High purity

  19. Radiance and particle fluence

    International Nuclear Information System (INIS)

    Papiez, L.; Battista, J.J.

    1994-01-01

    The International Commission on Radiological Units and Measurements (ICRU) has defined fluence in terms of the number of the radiation particles crossing a small sampling sphere. A second definition has been proposed in which the length of track segments contained within any sampling volume are used to calculate the incident fluence. This approach is often used in Monte Carlo simulations of individual particle tracks, allowing the fluence to be scored in small volumes of any shape. In this paper we stress that the second definition generalizes the classical (ICRU) concept of fluence. We also identify the assumptions inherent in the two definitions of fluence and prove their equivalence for the case of straight-line particle trajectories. (author)

  20. Analysis of Three Compounds in Flos Farfarae by Capillary Electrophoresis with Large-Volume Sample Stacking

    Directory of Open Access Journals (Sweden)

    Hai-xia Yu

    2017-01-01

    Full Text Available The aim of this study was to develop a method combining an online concentration and high-efficiency capillary electrophoresis separation to analyze and detect three compounds (rutin, hyperoside, and chlorogenic acid in Flos Farfarae. In order to get good resolution and enrichment, several parameters such as the choice of running buffer, pH and concentration of the running buffer, organic modifier, temperature, and separation voltage were all investigated. The optimized conditions were obtained as follows: the buffer of 40 mM NaH2P04-40 mM Borax-30% v/v methanol (pH 9.0; the sample hydrodynamic injection of up to 4 s at 0.5 psi; 20 kV applied voltage. The diode-array detector was used, and the detection wavelength was 364 nm. Based on peak area, higher levels of selective and sensitive improvements in analysis were observed and about 14-, 26-, and 5-fold enrichment of rutin, hyperoside, and chlorogenic acid were achieved, respectively. This method was successfully applied to determine the three compounds in Flos Farfarae. The linear curve of peak response versus concentration was from 20 to 400 µg/ml, 16.5 to 330 µg/mL, and 25 to 500 µg/mL, respectively. The regression coefficients were 0.9998, 0.9999, and 0.9991, respectively.

  1. Laboratory analysis of soil hydraulic properties of TA-49 soil samples. Volume I: Report summary

    International Nuclear Information System (INIS)

    1995-04-01

    The Hydrologic Testing Laboratory at Daniel B. Stephens ampersand Associates, Inc. (DBS ampersand A) has completed laboratory tests on TA-49 soil samples as specified by Mr. Daniel A. James and summarized in Table 1. Tables 2 through 12 give the results of the specified analyses. Raw laboratory data and graphical plots of data (where appropriate) are contained in Appendices A through K. Appendix L lists the methods used in these analyses. A detailed description of each method is available upon request. Thermal properties were calculated using methods reviewed by Campbell and covered in more detail in Appendix K. Typically, soil thermal conductivities are determined using empirical fitting parameters (five in this case), Some assumptions are also made in the equations used to reduce the raw data. In addition to the requested thermal property measurements, calculated values are also presented as the best available internal check on data quality. For both thermal conductivities and specific heats, calculated and measured values are consistent and the functions often cross. Interestingly, measured thermal conductivities tend to be higher than calculated thermal conductivities around typically encountered in situ moisture contents (±5 percent). While we do not venture an explanation of the difference, sensitivity testing of any problem requiring nonisothermal modeling across this range is in order

  2. Solid-Phase Extraction and Large-Volume Sample Stacking-Capillary Electrophoresis for Determination of Tetracycline Residues in Milk

    Directory of Open Access Journals (Sweden)

    Gabriela Islas

    2018-01-01

    Full Text Available Solid-phase extraction in combination with large-volume sample stacking-capillary electrophoresis (SPE-LVSS-CE was applied to measure chlortetracycline, doxycycline, oxytetracycline, and tetracycline in milk samples. Under optimal conditions, the proposed method had a linear range of 29 to 200 µg·L−1, with limits of detection ranging from 18.6 to 23.8 µg·L−1 with inter- and intraday repeatabilities < 10% (as a relative standard deviation in all cases. The enrichment factors obtained were from 50.33 to 70.85 for all the TCs compared with a conventional capillary zone electrophoresis (CZE. This method is adequate to analyze tetracyclines below the most restrictive established maximum residue limits. The proposed method was employed in the analysis of 15 milk samples from different brands. Two of the tested samples were positive for the presence of oxytetracycline with concentrations of 95 and 126 µg·L−1. SPE-LVSS-CE is a robust, easy, and efficient strategy for online preconcentration of tetracycline residues in complex matrices.

  3. Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging.

    Science.gov (United States)

    Thériault, Gabrielle; Cottet, Martin; Castonguay, Annie; McCarthy, Nathalie; De Koninck, Yves

    2014-01-01

    Two-photon microscopy has revolutionized functional cellular imaging in tissue, but although the highly confined depth of field (DOF) of standard set-ups yields great optical sectioning, it also limits imaging speed in volume samples and ease of use. For this reason, we recently presented a simple and retrofittable modification to the two-photon laser-scanning microscope which extends the DOF through the use of an axicon (conical lens). Here we demonstrate three significant benefits of this technique using biological samples commonly employed in the field of neuroscience. First, we use a sample of neurons grown in culture and move it along the z-axis, showing that a more stable focus is achieved without compromise on transverse resolution. Second, we monitor 3D population dynamics in an acute slice of live mouse cortex, demonstrating that faster volumetric scans can be conducted. Third, we acquire a stereoscopic image of neurons and their dendrites in a fixed sample of mouse cortex, using only two scans instead of the complete stack and calculations required by standard systems. Taken together, these advantages, combined with the ease of integration into pre-existing systems, make the extended depth-of-field imaging based on Bessel beams a strong asset for the field of microscopy and life sciences in general.

  4. The X-Ray Weakness of GPS Radio Galaxies: A Volume-Limited Complete Sample

    Science.gov (United States)

    Mushotzky, Richard F. (Technical Monitor); Siemiginowska, Aneta (Principal Investigator)

    2004-01-01

    The XMM observations of Mkn 668 have been analyzed. We found soft X-ray signatures of a hot plasma (kT approximately 10^7 approximately K) and a hard X-ray emission from the nucleus. The X-ray spectrum above 2.5 approximately keV is characterized by a very flat (observed photon index, Gamma approximately 0.5) power-law continuum, alongside with a strong Fe-K-alpha neutral iron fluorescent line (EW approximately 600 approximately eV). The best explanation for the origin of this high energy X-ray emission is in terms of the Compton-reflection of the nuclear emission. The primary X-ray emission is obscured by a Compton-thick (N_H approximately 10^24 approximately cm-2) matter which becomes transparent at higher energies. The observed above 2.5-keV X-rays are mostly due to reflection which is indicated by a strong Fe-K-alpha line. This represents the second hard X-ray detection of the GPS galaxy ever (the first one being 1345+125; O Dea et al. 2000). Interestingly, the both such trend is confirmed by our on going XMM-Newton observations of a larger GPS sample, it would lead us to looking into the question on how the dense nuclear environment impacts the nature and evolution of a GPS source, and more generally, on the history of radio power in the universe. The paper summarizing the results has been submitted to Astronomy and Astrophysics in December 2003.

  5. New methods to interpolate large volume of data from points or particles (Mesh-Free) methods application for its scientific visualization

    International Nuclear Information System (INIS)

    Reyes Lopez, Y.; Yervilla Herrera, H.; Viamontes Esquivel, A.; Recarey Morfa, C. A.

    2009-01-01

    In the following paper we developed a new method to interpolate large volumes of scattered data, focused mainly on the results of the Mesh free Methods, Points Methods and the Particles Methods application. Through this one, we use local radial basis function as interpolating functions. We also use over-tree as the data structure that allows to accelerate the localization of the data that influences to interpolate the values at a new point, speeding up the application of scientific visualization techniques to generate images from large data volumes from the application of Mesh-free Methods, Points and Particle Methods, in the resolution of diverse models of physics-mathematics. As an example, the results obtained after applying this method using the local interpolation functions of Shepard are shown. (Author) 22 refs

  6. Determination of environmental levels of 239240Pu, 241Am, 137Cs, and 90Sr in large volume sea water samples

    International Nuclear Information System (INIS)

    Sutton, D.C.; Calderon, G.; Rosa, W.

    1976-06-01

    A method is reported for the determination of environmental levels of 239 240 Pu and 241 Am in approximately 60-liter size samples of seawater. 137 Cs and 90 Sr were also separated and determined from the same samples. The samples were collected at the sea surface and at various depths in the oceans through the facilities of the Woods Hole Oceanographic Institution. Plutonium and americium were separated from the seawater by iron hydroxide scavenging then treated with a mixture of nitric, hydrochloric, and perchloric acids. A series of anion exchange separations were used to remove interferences and purify plutonium and americium; then each was electroplated on platinum disks and measured by solid state alpha particle spectrometry. The overall chemical yields averaged 62 +- 9 and 69 +- 14 percent for 236 Pu, and 243 Am tracers, respectively. Following the iron hydroxide scavenge of the transuranics, cesium was removed from the acidified seawater matrix by adsorption onto ammonium phosphomolybdate. Cesium carrier and 137 Cs isolation was effected by ion exchange and precipitations were made using chloroplatinic acid. The samples were weighed to determine overall chemical yield then beta counted. Cesium recoveries averaged 75 +- 5 percent. After cesium was removed from the seawater matrix, the samples were neutralized with sodium hydroxide and ammonium carbonate was added to precipitate 85 Sr tracer and the mixed alkaline earth carbonates. Strontium was separated as the nitrate and scavenged by chromate and hydroxide precipitations. Yttrium-90 was allowed to build up for two weeks, then milked and precipitated as the oxalate, weighed, and beta counted. The overall chemical yields of 85 Sr tracer averaged 84 +- 16 percent. The recovery of the yttrium oxalate precipitates averaged 96 +- 3 percent

  7. Influence of mathematical filters in the volume measurement of a travertine sample using high resolution x-ray microtomography

    International Nuclear Information System (INIS)

    Machado, Alessandra S.; Lima, Inaya; Lopes, Ricardo T.

    2013-01-01

    X-ray transmission micro-computed tomography technique is a reality for characterization of pores spaces and fractures. Imaging rocks in three-dimensions this technique enables routine visualization of structures in samples, which can be spatially resolved down to the sub-micron scale. The image of micro-computed tomography is a mapping of the linear attenuation coefficient of one cross section of the sample in study. The main objective of this work is to describe the importance of using mathematical filters in the volume measurement of a travertine sample as, well as to evaluate the relevance of the filters, which were: Gaussian Blur, Unsharp Mask, Median, Uniform and Kuwahara. The results showed interesting differences both among the different filters and, mainly, in the same filter when using different radius and, also, for analysis of 2D space, as well as the resulting histograms. However the study showed that even with the evolution of the 'upgrades' of the image there is not a technique capable of solving 100% of the problems that a digital image might present and that the choice of filters must always determine the characteristics of the image emphasizing them within a specific application, always taking into consideration the image processing time. (author)

  8. Determination of a representative volume element based on the variability of mechanical properties with sample size in bread.

    Science.gov (United States)

    Ramírez, Cristian; Young, Ashley; James, Bryony; Aguilera, José M

    2010-10-01

    Quantitative analysis of food structure is commonly obtained by image analysis of a small portion of the material that may not be the representative of the whole sample. In order to quantify structural parameters (air cells) of 2 types of bread (bread and bagel) the concept of representative volume element (RVE) was employed. The RVE for bread, bagel, and gelatin-gel (used as control) was obtained from the relationship between sample size and the coefficient of variation, calculated from the apparent Young's modulus measured on 25 replicates. The RVE was obtained when the coefficient of variation for different sample sizes converged to a constant value. In the 2 types of bread tested, the tendency of the coefficient of variation was to decrease as the sample size increased, while in the homogeneous gelatin-gel, it remained always constant around 2.3% to 2.4%. The RVE resulted to be cubes with sides of 45 mm for bread, 20 mm for bagels, and 10 mm for gelatin-gel (smallest sample tested). The quantitative image analysis as well as visual observation demonstrated that bread presented the largest dispersion of air-cell sizes. Moreover, both the ratio of maximum air-cell area/image area and maximum air-cell height/image height were greater for bread (values of 0.05 and 0.30, respectively) than for bagels (0.03 and 0.20, respectively). Therefore, the size and the size variation of air cells present in the structure determined the size of the RVE. It was concluded that RVE is highly dependent on the heterogeneity of the structure of the types of baked products.

  9. Determination of hydroxylated polycyclic aromatic hydrocarbons by HPLC-photoionization tandem mass spectrometry in wood smoke particles and soil samples.

    Science.gov (United States)

    Avagyan, Rozanna; Nyström, Robin; Boman, Christoffer; Westerholm, Roger

    2015-06-01

    A simple and fast method for analysis of hydroxylated polycyclic aromatic hydrocarbons using pressurized liquid extraction and high performance liquid chromatography utilizing photoionization tandem mass spectrometry was developed. Simultaneous separation and determination of nine hydroxylated polycyclic aromatic hydrocarbons and two hydroxy biphenyls could be performed in negative mode with a run time of 12 min, including equilibration in 5 min. The calibration curves were in two concentration ranges; 1-50 ng/mL and 0.01-50 μg/mL, with coefficients of correlation R (2) > 0.997. The limits of detection and method quantification limits were in the range of 9-56 pg and 5-38 ng/g, respectively. A two-level full factorial experimental design was used for screening of conditions with the highest impact on the extraction. The extraction procedure was automated and suitable for a large number of samples. The extraction recoveries ranged from 70 to 102 % and the matrix effects were between 92 and 104 %. The overall method was demonstrated on wood smoke particles and soil samples with good analytical performance, and five OH-PAHs were determined in the concentration range of 0.19-210 μg/g. As far as we know, hydroxylated polycyclic aromatic hydrocarbons were determined in wood smoke and soil samples using photoionization mass spectrometry for the first time in this present study. Accordingly, this study shows that high performance liquid chromatography photoionization tandem mass spectrometry can be a good option for the determination of hydroxylated polycyclic aromatic hydrocarbons in complex environmental samples. Graphical Abstract The method developed in this study was used to determine hydroxylated polycyclic aromatic hydrocarbons in wood smoke and soil.

  10. Interfacial effect on physical properties of composite media: Interfacial volume fraction with non-spherical hard-core-soft-shell-structured particles.

    Science.gov (United States)

    Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu

    2015-11-02

    Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.

  11. Molecular Characterization of the Gas-Particle Interface of Soot Sampled from a Diesel Engine Using a Titration Method.

    Science.gov (United States)

    Tapia, A; Salgado, M S; Martín, María Pilar; Lapuerta, M; Rodríguez-Fernández, J; Rossi, M J; Cabañas, B

    2016-03-15

    Surface functional groups of two different types of combustion aerosols, a conventional diesel (EN 590) and a hydrotreated vegetable oil (HVO) soot, have been investigated using heterogeneous chemistry (i.e., gas-particle surface reactions). A commercial sample of amorphous carbon (Printex XE2-B) was analyzed as a reference substrate. A Knudsen flow reactor was used to carry out the experiments under molecular flow conditions. The selected gases for the titration experiments were: N(CH3)3 for the identification of acidic sites, NH2OH for the presence of carbonyl groups, CF3COOH and HCl for basic sites of different strength, and O3 and NO2 for reducing groups. Reactivity with N(CH3)3 indicates a lower density of acidic functionalities for Printex XE2-B in relation to diesel and HVO soot. Results for NH2OH experiments indicates that commercial amorphous carbon exhibits a lower abundance of available carbonyl groups at the interface compared to the results from diesel and HVO soot, the latter being the one with the largest abundance of carbonyl functions. Reactions with acids indicate the presence of weak basic oxides on the particle surface that preferentially interact with the strong acid CF3COOH. Finally, reactions with O3 and NO2 reveal that diesel and especially HVO have a significantly higher reactivity with both oxidizers compared to that of Printex XE2-B because they have more reducing sites by roughly a factor of 10 and 30, respectively. The kinetics of titration reactions have also been investigated.

  12. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis.

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-05

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A compact time-of-flight SANS instrument optimised for measurements of small sample volumes at the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Kynde, Søren, E-mail: kynde@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen (Denmark); Hewitt Klenø, Kaspar [Niels Bohr Institute, University of Copenhagen (Denmark); Nagy, Gergely [SINQ, Paul Scherrer Institute (Switzerland); Mortensen, Kell; Lefmann, Kim [Niels Bohr Institute, University of Copenhagen (Denmark); Kohlbrecher, Joachim, E-mail: Joachim.kohlbrecher@psi.ch [SINQ, Paul Scherrer Institute (Switzerland); Arleth, Lise, E-mail: arleth@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen (Denmark)

    2014-11-11

    The high flux at European Spallation Source (ESS) will allow for performing experiments with relatively small beam-sizes while maintaining a high intensity of the incoming beam. The pulsed nature of the source makes the facility optimal for time-of-flight small-angle neutron scattering (ToF-SANS). We find that a relatively compact SANS instrument becomes the optimal choice in order to obtain the widest possible q-range in a single setting and the best possible exploitation of the neutrons in each pulse and hence obtaining the highest possible flux at the sample position. The instrument proposed in the present article is optimised for performing fast measurements of small scattering volumes, typically down to 2×2×2 mm{sup 3}, while covering a broad q-range from about 0.005 1/Å to 0.5 1/Å in a single instrument setting. This q-range corresponds to that available at a typical good BioSAXS instrument and is relevant for a wide set of biomacromolecular samples. A central advantage of covering the whole q-range in a single setting is that each sample has to be loaded only once. This makes it convenient to use the fully automated high-throughput flow-through sample changers commonly applied at modern synchrotron BioSAXS-facilities. The central drawback of choosing a very compact instrument is that the resolution in terms of δλ/λ obtained with the short wavelength neutrons becomes worse than what is usually the standard at state-of-the-art SANS instruments. Our McStas based simulations of the instrument performance for a set of characteristic biomacromolecular samples show that the resulting smearing effects still have relatively minor effects on the obtained data and can be compensated for in the data analysis. However, in cases where a better resolution is required in combination with the large simultaneous q-range characteristic of the instrument, we show that this can be obtained by inserting a set of choppers.

  14. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    Science.gov (United States)

    Lusher, Amy L.; Tirelli, Valentina; O’Connor, Ian; Officer, Rick

    2015-01-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment. PMID:26446348

  15. Identifying sources of methane sampled in the Arctic using δ13C in CH4 and Lagrangian particle dispersion modelling.

    Science.gov (United States)

    Cain, Michelle; France, James; Pyle, John; Warwick, Nicola; Fisher, Rebecca; Lowry, Dave; Allen, Grant; O'Shea, Sebastian; Illingworth, Samuel; Jones, Ben; Gallagher, Martin; Welpott, Axel; Muller, Jennifer; Bauguitte, Stephane; George, Charles; Hayman, Garry; Manning, Alistair; Myhre, Catherine Lund; Lanoisellé, Mathias; Nisbet, Euan

    2016-04-01

    An airmass of enhanced methane was sampled during a research flight at ~600 m to ~2000 m altitude between the North coast of Norway and Svalbard on 21 July 2012. The largest source of methane in the summertime Arctic is wetland emissions. Did this enhancement in methane come from wetland emissions? The airmass was identified through continuous methane measurements using a Los Gatos fast greenhouse gas analyser on board the UK's BAe-146 Atmospheric Research Aircraft (ARA) as part of the MAMM (Methane in the Arctic: Measurements and Modelling) campaign. A Lagrangian particle dispersion model (the UK Met Office's NAME model) was run backwards to identify potential methane source regions. This was combined with a methane emission inventory to create "pseudo observations" to compare with the aircraft observations. This modelling was used to constrain the δ13C CH4 wetland source signature (where δ13C CH4 is the ratio of 13C to 12C in methane), resulting in a most likely signature of -73‰ (±4‰7‰). The NAME back trajectories suggest a methane source region of north-western Russian wetlands, and -73‰ is consistent with in situ measurements of wetland methane at similar latitudes in Scandinavia. This analysis has allowed us to study emissions from remote regions for which we do not have in situ observations, giving us an extra tool in the determination of the isotopic source variation of global methane emissions.

  16. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    Science.gov (United States)

    Lusher, Amy L.; Tirelli, Valentina; O'Connor, Ian; Officer, Rick

    2015-10-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

  17. Experimental studies on the group ignition of a cloud of coal particles: Volume 2, Pyrolysis and ignition modeling

    Energy Technology Data Exchange (ETDEWEB)

    Annamalai, K.; Ryan, W.

    1992-01-01

    The primary objectives of this work are to formulate a model to simulate transient coal pyrolysis, ignition, and combustion of a cloud of coal particles and to compare results of the program with those reported in the literature elsewhere.

  18. Capillary ion chromatography with on-column focusing for ultra-trace analysis of methanesulfonate and inorganic anions in limited volume Antarctic ice core samples.

    Science.gov (United States)

    Rodriguez, Estrella Sanz; Poynter, Sam; Curran, Mark; Haddad, Paul R; Shellie, Robert A; Nesterenko, Pavel N; Paull, Brett

    2015-08-28

    Preservation of ionic species within Antarctic ice yields a unique proxy record of the Earth's climate history. Studies have been focused until now on two proxies: the ionic components of sea salt aerosol and methanesulfonic acid. Measurement of the all of the major ionic species in ice core samples is typically carried out by ion chromatography. Former methods, whilst providing suitable detection limits, have been based upon off-column preconcentration techniques, requiring larger sample volumes, with potential for sample contamination and/or carryover. Here, a new capillary ion chromatography based analytical method has been developed for quantitative analysis of limited volume Antarctic ice core samples. The developed analytical protocol applies capillary ion chromatography (with suppressed conductivity detection) and direct on-column sample injection and focusing, thus eliminating the requirement for off-column sample preconcentration. This limits the total sample volume needed to 300μL per analysis, allowing for triplicate sample analysis with Application to composite ice-core samples is demonstrated, with coupling of the capillary ion chromatograph to high resolution mass spectrometry used to confirm the presence and purity of the observed methanesulfonate peak. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effect of NaOH on large-volume sample stacking of haloacetic acids in capillary zone electrophoresis with a low-pH buffer.

    Science.gov (United States)

    Tu, Chuanhong; Zhu, Lingyan; Ang, Chay Hoon; Lee, Hian Kee

    2003-06-01

    Large-volume sample stacking (LVSS) is an effective on-capillary sample concentration method in capillary zone electrophoresis, which can be applied to the sample in a low-conductivity matrix. NaOH solution is commonly used to back-extract acidic compounds from organic solvent in sample pretreatment. The effect of NaOH as sample matrix on LVSS of haloacetic acids was investigated in this study. It was found that the presence of NaOH in sample did not compromise, but rather help the sample stacking performance if a low pH background electrolyte (BGE) was used. The sensitivity enhancement factor was higher than the case when sample was dissolved in pure water or diluted BGE. Compared with conventional injection (0.4% capillary volume), 97-120-fold sensitivity enhancement in terms of peak height was obtained without deterioration of separation with an injection amount equal to 20% of the capillary volume. This method was applied to determine haloacetic acids in tap water by combination with liquid-liquid extraction and back-extraction into NaOH solution. Limits of detection at sub-ppb levels were obtained for real samples with direct UV detection.

  20. Mg II ABSORPTION CHARACTERISTICS OF A VOLUME-LIMITED SAMPLE OF GALAXIES AT z ∼ 0.1

    International Nuclear Information System (INIS)

    Barton, Elizabeth J.; Cooke, Jeff

    2009-01-01

    We present an initial survey of Mg II absorption characteristics in the halos of a carefully constructed, volume-limited subsample of galaxies embedded in the spectroscopic part of the Sloan Digital Sky Survey (SDSS). We observed quasars near sightlines to 20 low-redshift (z ∼ 0.1), luminous (M r + 5log h ≤-20.5) galaxies in SDSS DR4 and DR6 with the LRIS-B spectrograph on the Keck I telescope. The primary systematic criteria for the targeted galaxies are a redshift z ∼> 0.1 and the presence of an appropriate bright background quasar within a projected 75 h -1 kpc of its center, although we preferentially sample galaxies with lower impact parameters and slightly more star formation within this range. Of the observed systems, six exhibit strong (W eq (2796) ≥ 0.3 A) Mg II absorption at the galaxy's redshift, six systems have upper limits which preclude strong Mg II absorption, while the remaining observations rule out very strong (W eq (2796) ≥ 1-2 A) absorption. The absorbers fall at higher impact parameters than many non-absorber sightlines, indicating a covering fraction f c ∼ -1 kpc (f c ∼ 0.25). The data are consistent with a possible dependence of covering fraction and/or absorption halo size on the environment or star-forming properties of the central galaxy.

  1. Zirconia coated stir bar sorptive extraction combined with large volume sample stacking capillary electrophoresis-indirect ultraviolet detection for the determination of chemical warfare agent degradation products in water samples.

    Science.gov (United States)

    Li, Pingjing; Hu, Bin; Li, Xiaoyong

    2012-07-20

    In this study, a sensitive, selective and reliable analytical method by combining zirconia (ZrO₂) coated stir bar sorptive extraction (SBSE) with large volume sample stacking capillary electrophoresis-indirect ultraviolet (LVSS-CE/indirect UV) was developed for the direct analysis of chemical warfare agent degradation products of alkyl alkylphosphonic acids (AAPAs) (including ethyl methylphosphonic acid (EMPA) and pinacolyl methylphosphonate (PMPA)) and methylphosphonic acid (MPA) in environmental waters. ZrO₂ coated stir bar was prepared by adhering nanometer-sized ZrO₂ particles onto the surface of stir bar with commercial PDMS sol as adhesion agent. Due to the high affinity of ZrO₂ to the electronegative phosphonate group, ZrO₂ coated stir bars could selectively extract the strongly polar AAPAs and MPA. After systematically optimizing the extraction conditions of ZrO₂-SBSE, the analytical performance of ZrO₂-SBSE-CE/indirect UV and ZrO₂-SBSE-LVSS-CE/indirect UV was assessed. The limits of detection (LODs, at a signal-to-noise ratio of 3) obtained by ZrO₂-SBSE-CE/indirect UV were 13.4-15.9 μg/L for PMPA, EMPA and MPA. The relative standard deviations (RSDs, n=7, c=200 μg/L) of the corrected peak area for the target analytes were in the range of 6.4-8.8%. Enhancement factors (EFs) in terms of LODs were found to be from 112- to 145-fold. By combining ZrO₂ coating SBSE with LVSS as a dual preconcentration strategy, the EFs were magnified up to 1583-fold, and the LODs of ZrO₂-SBSE-LVSS-CE/indirect UV were 1.4, 1.2 and 3.1 μg/L for PMPA, EMPA, and MPA, respectively. The RSDs (n=7, c=20 μg/L) were found to be in the range of 9.0-11.8%. The developed ZrO₂-SBSE-LVSS-CE/indirect UV method has been successfully applied to the analysis of PMPA, EMPA, and MPA in different environmental water samples, and the recoveries for the spiked water samples were found to be in the range of 93.8-105.3%. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Effects of large volume injection of aliphatic alcohols as sample diluents on the retention of low hydrophobic solutes in reversed-phase liquid chromatography.

    Science.gov (United States)

    David, Victor; Galaon, Toma; Aboul-Enein, Hassan Y

    2014-01-03

    Recent studies showed that injection of large volume of hydrophobic solvents used as sample diluents could be applied in reversed-phase liquid chromatography (RP-LC). This study reports a systematic research focused on the influence of a series of aliphatic alcohols (from methanol to 1-octanol) on the retention process in RP-LC, when large volumes of sample are injected on the column. Several model analytes with low hydrophobic character were studied by RP-LC process, for mobile phases containing methanol or acetonitrile as organic modifiers in different proportions with aqueous component. It was found that starting with 1-butanol, the aliphatic alcohols can be used as sample solvents and they can be injected in high volumes, but they may influence the retention factor and peak shape of the dissolved solutes. The dependence of the retention factor of the studied analytes on the injection volume of these alcohols is linear, with a decrease of its value as the sample volume is increased. The retention process in case of injecting up to 200μL of upper alcohols is dependent also on the content of the organic modifier (methanol or acetonitrile) in mobile phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Radionuclides and particles in seawater with the large volume in situ filtration and concentration system in the coastal waters off Japan

    International Nuclear Information System (INIS)

    Aono, Tatsuo; Nakanishi, Takahiro; Okubo, Ayako; Zheng, Jian; Yamada, Masatoshi; Kusakabe, Masashi

    2008-01-01

    It is necessary to determine the radionuclides in dissolved and particulate state in order to clarify the distributions and behavior of these in seawater. Because the concentrations of radionuclides and particles are very low in the ocean, it is difficult to concentrate and fractionate the particulate matters with the filtration systems in seawater. The large volume in situ filtration and concentration system (LV-FiCS) was developed to collect various forms of trace radionuclides and particles in seawater. The LV-FiCS has been operated during several cruises in the coastal waters off Japan, and several m 3 of seawaters were filtered through different kinds of filters and then pass through the adsorbents to concentrate radionuclides simultaneously. This system could be shown the vertical profiles of thorium with the size-fractionated method and the behavior of these nuclides in the ocean. (author)

  4. Particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  5. Particle therapy

    International Nuclear Information System (INIS)

    Raju, M.R.

    1993-01-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics

  6. Laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF): performance, reference spectra and classification of atmospheric samples

    Science.gov (United States)

    Shen, Xiaoli; Ramisetty, Ramakrishna; Mohr, Claudia; Huang, Wei; Leisner, Thomas; Saathoff, Harald

    2018-04-01

    The laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF, AeroMegt GmbH) is able to identify the chemical composition and mixing state of individual aerosol particles, and thus is a tool for elucidating their impacts on human health, visibility, ecosystem, and climate. The overall detection efficiency (ODE) of the instrument we use was determined to range from ˜ (0.01 ± 0.01) to ˜ (4.23 ± 2.36) % for polystyrene latex (PSL) in the size range of 200 to 2000 nm, ˜ (0.44 ± 0.19) to ˜ (6.57 ± 2.38) % for ammonium nitrate (NH4NO3), and ˜ (0.14 ± 0.02) to ˜ (1.46 ± 0.08) % for sodium chloride (NaCl) particles in the size range of 300 to 1000 nm. Reference mass spectra of 32 different particle types relevant for atmospheric aerosol (e.g. pure compounds NH4NO3, K2SO4, NaCl, oxalic acid, pinic acid, and pinonic acid; internal mixtures of e.g. salts, secondary organic aerosol, and metallic core-organic shell particles; more complex particles such as soot and dust particles) were determined. Our results show that internally mixed aerosol particles can result in spectra with new clusters of ions, rather than simply a combination of the spectra from the single components. An exemplary 1-day ambient data set was analysed by both classical fuzzy clustering and a reference-spectra-based classification method. Resulting identified particle types were generally well correlated. We show how a combination of both methods can greatly improve the interpretation of single-particle data in field measurements.

  7. Grafting of allylimidazole and n-vinylcaprolactam as a thermosensitive polymer onto magnetic nano-particles for the extraction and determination of celecoxib in biological samples.

    Science.gov (United States)

    Morovati, Atefeh; Ahmad Panahi, Homayon; Yazdani, Farzaneh

    2016-11-20

    In this research, a novel method is reported for the surface grafting of n-vinylcaprolactam as a thermosensitive agent and allylimidazole with affinity toward celecoxib onto magnetic nano-particles. The grafted nano-particles were characterized by Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetric analysis. The surface morphology was studied using Scanning Electron Microscopy. The resulting grafted nano-particles were used for the determination of trace celecoxib in biological human fluids and pharmaceutical samples. The profile of celecoxib uptake by the modified magnetic nano-particles indicated good accessibility of the active sites in the grafted copolymer. It was found that the adsorption behavior could be fitted by the Langmuir adsorption isotherm model. Solid phase extraction for biological fluids such as urine and serum were investigated. In this study, urine extraction recovery of more than 95% was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis

    Science.gov (United States)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-01

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.

  9. Genotyping for DQA1 and PM loci in urine using PCR-based amplification: effects of sample volume, storage temperature, preservatives, and aging on DNA extraction and typing.

    Science.gov (United States)

    Vu, N T; Chaturvedi, A K; Canfield, D V

    1999-05-31

    Urine is often the sample of choice for drug screening in aviation/general forensic toxicology and in workplace drug testing. In some instances, the origin of the submitted samples may be challenged because of the medicolegal and socioeconomic consequences of a positive drug test. Methods for individualization of biological samples have reached a new boundary with the application of the polymerase chain reaction (PCR) in DNA profiling, but a successful characterization of the urine specimens depends on the quantity and quality of DNA present in the samples. Therefore, the present study investigated the influence of storage conditions, sample volume, concentration modes, extraction procedures, and chemical preservations on the quantity of DNA recovered, as well as the success rate of PCR-based genotyping for DQA1 and PM loci in urine. Urine specimens from male and female volunteers were divided and stored at various temperatures for up to 30 days. The results suggested that sample purification by dialfiltration, using 3000-100,000 molecular weight cut-off filters, did not enhance DNA recovery and typing rate as compared with simple centrifugation procedures. Extraction of urinary DNA by the organic method and by the resin method gave comparable typing results. Larger sample volume yielded a higher amount of DNA, but the typing rates were not affected for sample volumes between 1 and 5 ml. The quantifiable amounts of DNA present were found to be greater in female (14-200 ng/ml) than in male (4-60 ng/ml) samples and decreased with the elapsed time under both room temperature (RT) and frozen storage. Typing of the male samples also demonstrated that RT storage samples produced significantly higher success rates than that of frozen samples, while there was only marginal difference in the DNA typing rates among the conditions tested using female samples. Successful assignment of DQA1 + PM genotype was achieved for all samples of fresh urine, independent of gender

  10. Application of particle size distributions to total particulate stack samples to estimate PM2.5 and PM10 emission factors for agricultural sources

    Science.gov (United States)

    Particle size distributions (PSD) have long been used to more accurately estimate the PM10 fraction of total particulate matter (PM) stack samples taken from agricultural sources. These PSD analyses were typically conducted using a Coulter Counter with 50 micrometer aperture tube. With recent increa...

  11. Trace determination of heavy metal concentrations in fauna, flora and salt samples from Black Sea waters by charged particles - induced X-rays

    International Nuclear Information System (INIS)

    Badica, T.; Ciortea, C.; Dima, S.; Petrovici, A.; Popescu, I.; Serbanescu, O.

    1977-01-01

    Studies were performed on Black Sea pollution by charged particles induced X-rays spectra analysis, using alpha and 16 O beams. Fauna, flora and salt samples were analysed. We found some of the concentrations of pollutant elements to be below the accepted levels. (author)

  12. Estimating the two-particle $K$-matrix for multiple partial waves and decay channels from finite-volume energies

    DEFF Research Database (Denmark)

    Morningstar, Colin; Bulava, John; Singha, Bijit

    2017-01-01

    An implementation of estimating the two-to-two $K$-matrix from finite-volume energies based on the L\\"uscher formalism and involving a Hermitian matrix known as the "box matrix" is described. The method includes higher partial waves and multiple decay channels. Two fitting procedures for estimating...

  13. Sample Preparation and Extraction in Small Sample Volumes Suitable for Pediatric Clinical Studies: Challenges, Advances, and Experiences of a Bioanalytical HPLC-MS/MS Method Validation Using Enalapril and Enalaprilat

    Science.gov (United States)

    Burckhardt, Bjoern B.; Laeer, Stephanie

    2015-01-01

    In USA and Europe, medicines agencies force the development of child-appropriate medications and intend to increase the availability of information on the pediatric use. This asks for bioanalytical methods which are able to deal with small sample volumes as the trial-related blood lost is very restricted in children. Broadly used HPLC-MS/MS, being able to cope with small volumes, is susceptible to matrix effects. The latter restrains the precise drug quantification through, for example, causing signal suppression. Sophisticated sample preparation and purification utilizing solid-phase extraction was applied to reduce and control matrix effects. A scale-up from vacuum manifold to positive pressure manifold was conducted to meet the demands of high-throughput within a clinical setting. Faced challenges, advances, and experiences in solid-phase extraction are exemplarily presented on the basis of the bioanalytical method development and validation of low-volume samples (50 μL serum). Enalapril, enalaprilat, and benazepril served as sample drugs. The applied sample preparation and extraction successfully reduced the absolute and relative matrix effect to comply with international guidelines. Recoveries ranged from 77 to 104% for enalapril and from 93 to 118% for enalaprilat. The bioanalytical method comprising sample extraction by solid-phase extraction was fully validated according to FDA and EMA bioanalytical guidelines and was used in a Phase I study in 24 volunteers. PMID:25873972

  14. Sample Preparation and Extraction in Small Sample Volumes Suitable for Pediatric Clinical Studies: Challenges, Advances, and Experiences of a Bioanalytical HPLC-MS/MS Method Validation Using Enalapril and Enalaprilat

    Directory of Open Access Journals (Sweden)

    Bjoern B. Burckhardt

    2015-01-01

    Full Text Available In USA and Europe, medicines agencies force the development of child-appropriate medications and intend to increase the availability of information on the pediatric use. This asks for bioanalytical methods which are able to deal with small sample volumes as the trial-related blood lost is very restricted in children. Broadly used HPLC-MS/MS, being able to cope with small volumes, is susceptible to matrix effects. The latter restrains the precise drug quantification through, for example, causing signal suppression. Sophisticated sample preparation and purification utilizing solid-phase extraction was applied to reduce and control matrix effects. A scale-up from vacuum manifold to positive pressure manifold was conducted to meet the demands of high-throughput within a clinical setting. Faced challenges, advances, and experiences in solid-phase extraction are exemplarily presented on the basis of the bioanalytical method development and validation of low-volume samples (50 μL serum. Enalapril, enalaprilat, and benazepril served as sample drugs. The applied sample preparation and extraction successfully reduced the absolute and relative matrix effect to comply with international guidelines. Recoveries ranged from 77 to 104% for enalapril and from 93 to 118% for enalaprilat. The bioanalytical method comprising sample extraction by solid-phase extraction was fully validated according to FDA and EMA bioanalytical guidelines and was used in a Phase I study in 24 volunteers.

  15. Laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF: performance, reference spectra and classification of atmospheric samples

    Directory of Open Access Journals (Sweden)

    X. Shen

    2018-04-01

    Full Text Available The laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF, AeroMegt GmbH is able to identify the chemical composition and mixing state of individual aerosol particles, and thus is a tool for elucidating their impacts on human health, visibility, ecosystem, and climate. The overall detection efficiency (ODE of the instrument we use was determined to range from  ∼  (0.01 ± 0.01 to  ∼  (4.23 ± 2.36 % for polystyrene latex (PSL in the size range of 200 to 2000 nm,  ∼  (0.44 ± 0.19 to  ∼  (6.57 ± 2.38 % for ammonium nitrate (NH4NO3, and  ∼  (0.14 ± 0.02 to  ∼  (1.46 ± 0.08 % for sodium chloride (NaCl particles in the size range of 300 to 1000 nm. Reference mass spectra of 32 different particle types relevant for atmospheric aerosol (e.g. pure compounds NH4NO3, K2SO4, NaCl, oxalic acid, pinic acid, and pinonic acid; internal mixtures of e.g. salts, secondary organic aerosol, and metallic core–organic shell particles; more complex particles such as soot and dust particles were determined. Our results show that internally mixed aerosol particles can result in spectra with new clusters of ions, rather than simply a combination of the spectra from the single components. An exemplary 1-day ambient data set was analysed by both classical fuzzy clustering and a reference-spectra-based classification method. Resulting identified particle types were generally well correlated. We show how a combination of both methods can greatly improve the interpretation of single-particle data in field measurements.

  16. Prostate specific antigen in a community-based sample of men without prostate cancer: Correlations with prostate volume, age, body mass index, and symptoms of prostatism

    NARCIS (Netherlands)

    J.L.H.R. Bosch (Ruud); W.C.J. Hop (Wim); C.H. Bangma (Chris); W.J. Kirkels (Wim); F.H. Schröder (Fritz)

    1995-01-01

    textabstractThe correlation between both prostate specific antigen levels (PSA) and prostate specific antigen density (PSAD) and age, prostate volume parameters, body mass index, and the International Prostate Symptom Score (IPSS) were studied in a community‐based population. A sample of 502 men

  17. Densidade global de solos medida com anel volumétrico e por cachimbagem de terra fina seca ao ar Bulk density of soil samples measured in the field and through volume measurement of sieved soil

    Directory of Open Access Journals (Sweden)

    Bernardo Van Raij

    1989-01-01

    Full Text Available Em laboratórios de rotina de fertilidade do solo, a medida de quantidade de terra para análise é feita em volume, mediante utensílios chamados "cachimbos", que permitem medir volumes de terra. Admite-se que essas medidas reflitam a quantidade de terra existente em volume de solo similar em condições de campo. Essa hipótese foi avaliada neste trabalho, por doze amostras dos horizontes A e B de seis perfis de solos. A densidade em condições de campo foi avaliada por anel volumétrico e, no laboratório, por meio de cachimbos de diversos tamanhos. A cachimbagem revelou-se bastante precisa. Os valores de densidade global calculada variaram de 0,63 a 1,46g/cm³ para medidas de campo e de 0,91 a 1,33g/cm³ para medidas com cachimbos. Portanto, a medida de laboratório subestimou valores altos de densidade e deu resultados mais elevados para valores de campo mais baixos.In soil testing laboratories, soil samples for chemical analysis are usually measured by volume, using appropriate measuring spoons. It is tacitly assumed that such measurements would reflect amounts of soil existing in the same volume under field conditions. This hypothesis was tested, using 12 soil samples of the A and B horizons of six soil profiles. Bulk density in the field was evaluated through a cylindrical metal sampler of 50cm³ and in the laboratory using spoons of different sizes. Measurements of soil volumes by spoons were quite precise. Values of bulk density varied between 0.63 and 1.46g/cm³ for field measurements and between 0.91 and 1.33g/cm³ for laboratory measurements with spoons. Thus, laboratory measurements overestimated lower values of bulk densities and underestimated the higher ones.

  18. Lab-scale development of a high temperature aerosol particle sampling probe system for field measurements in thermochemical conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lindskog, M.; Malik, A.; Pagels, J.; Sanati, M. [Lund Univ., Lund (Sweden). Div. of Ergonomics and Aerosol Technology

    2010-07-01

    Thermochemical conversion of biomass requires both combustion in an oxygen rich environment and gasification in an oxygen deficient environment. Therefore, the mass concentration of fly ash from combustion processes is dominated by inorganic compounds, and the particulate matter obtained from gasification is dominated by carbonaceous compounds. The fine fly ash particles can initiate corrosion and fouling and also increases emissions of fine particulates to the atmosphere. This study involved the design of a laboratory scale setup consisting of a high temperature sampling probe and an aerosol generation system to study the formation of fine particle from biomass gasification processes. An aerosol model system using potassium chloride (KCl) as the ash compound and Di Octyl Sebacate oil (DOS) as the volatile organic part was used to test the high temperature sampling probe. Tests conducted at 200 degrees C showed good reproducibility of the aerosol generator. The tests also demonstrated suitable dilution ratios which enabled the denuder to absorb all of the gaseous organic compounds in the set up, thus enabling measurement of only the particle phase. Condensable organic concentrations of 1-68 mg/m{sup 3} were easily handled by the high temperature sampling probe system, indicating that the denuder worked well. Additional tests will be performed using an Aerosol Mass Spectrometer (AMST) to verify that the denuder can capture all of the gaseous organic compounds also when condensed onto agglomerated soot particles. 6 refs., 1 tab., 9 figs.

  19. Evaluation of in vitro cytoxicity and genotoxicity of size-fractionated air particles sampled during road tunnel construction.

    Science.gov (United States)

    Dominici, Luca; Guerrera, Elena; Villarini, Milena; Fatigoni, Cristina; Moretti, Massimo; Blasi, Paolo; Monarca, Silvano

    2013-01-01

    In tunnel construction, workers exposed to dust from blasting, gases, diesel exhausts, and oil mist have shown higher risk for pulmonary diseases. A clear mechanism to explain how these pollutants determine diseases is lacking, and alveolar epithelium's capacity to ingest inhaled fine particles is not well characterized. The objective of this study was to assess the genotoxic effect exerted by fine particles collected in seven tunnels using the cytokinesis-block micronuclei test in an in vitro model on type II lung epithelium A549 cells. For each tunnel, five fractions with different aerodynamic diameters of particulate matter were collected with a multistage cascade sampler. The human epithelial cell line A549 was exposed to 0.2 m(3)/mL equivalent of particulate for 24 h before testing. The cytotoxic effects of particulate matter on A549 cells were also evaluated in two different viability tests. In order to evaluate the cells' ability to take up fine particles, imaging with transmission electron microscopy of cells after exposure to particulate matter was performed. Particle endocytosis after 24 h exposure was observed as intracellular aggregates of membrane-bound particles. This morphologic evidence did not correspond to an increase in genotoxicity detected by the micronucleus test.

  20. Utilization of long duration high-volume sampling coupled to SPME-GC-MS/MS for the assessment of airborne pesticides variability in an urban area (Strasbourg, France) during agricultural application.

    Science.gov (United States)

    Liaud, Céline; Brucher, Michel; Schummer, Claude; Coscollà, Clara; Wolff, Hélène; Schwartz, Jean-Jacques; Yusà, Vicent; Millet, Maurice

    2016-10-02

    Atmospheric samples have been collected between 14 March and 12 September 2012 on a 2-week basis (15 days of sampling and exchange of traps each 7 days) in Strasbourg (east of France) for the analysis of 43 pesticides. Samples (particle and gas phases) were separately extracted using Accelerated Solvent Extraction (ASE) and pre-concentrated by Solid Phase Micro-Extraction (SPME) before analysis by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). Four SPME consecutive injections at distinct temperatures were made in order to increase the sensitivity of detection for the all monitored pesticides. Currently used detected pesticides can be grouped in four classes; those used in maize crops (acetochlor, benoxacor, dicamba, s-metolachlor, pendimethalin, and bromoxynil), in cereal crops (benoxacor, chlorothalonil, fenpropimorph, and propiconazole), in vineyards (tebuconazole), and as herbicides for orchards, meadows of green spaces (2,4-MCPA, trichlopyr). This is in accordance with the diversity of crops found in the Alsace region and trends observed are in accordance with the period of application of these pesticides. Variations observed permit also to demonstrate that the long time sampling duration used in this study is efficient to visualize temporal variations of airborne pesticides concentrations. Then, long time high-volume sampling could be a simple method permitting atmospheric survey of atmospheric contamination without any long analysis time and consequently low cost.

  1. Non-destructive alpha-particle activation analysis of P, Cl, K and Ca in marine macro-alga samples using synthetic multielement reference material as comparative standard

    International Nuclear Information System (INIS)

    Iwata, Y.; Naitoh, H.; Suzuki, N.

    1992-01-01

    A Synthetic Reference Material (SyRM) composed with accurately known amounts of 12 elements has been prepared. The elemental composition of the SyRM is closely similar to that of marine macro-algae sample. The elemental composition of the SyRM was regulated by the starting materials used for the synthesis. The SyRM was used as a comparative standard for non-destructive alpha-particle activation analysis of marine macro-alga samples. P, Cl, K and Ca were determined simultaneously without correction for alpha range due to difference in the elemental composition between the analytical samples and the comparative standard. (author) 19 refs.; 4 tabs

  2. Genotoxicity, inflammation and physico-chemical properties of fine particle samples from an incineration energy plant and urban air

    DEFF Research Database (Denmark)

    Sharma, Anoop Kumar; Jensen, Keld Alstrup; Rank, Jette

    2007-01-01

    in the receiving hall may be due to vehicle emissions and suspended waste particles. The inorganic content in the street and background air may have been influenced by break wear, road emissions and long-range transport. The results from a partial least-square regression analysis predicted that both PAHs...... in particle size distribution, chemical composition and the resulting biological effects when A549 cells were incubated with the PM. These characteristics and observations in the oven hall indicated that the PM source was oven exhaust, which was well combusted. (c) 2007 Elsevier B.V. All rights reserved....

  3. Solid phase extraction of large volume of water and beverage samples to improve detection limits for GC-MS analysis of bisphenol A and four other bisphenols.

    Science.gov (United States)

    Cao, Xu-Liang; Popovic, Svetlana

    2018-01-01

    Solid phase extraction (SPE) of large volumes of water and beverage products was investigated for the GC-MS analysis of bisphenol A (BPA), bisphenol AF (BPAF), bisphenol F (BPF), bisphenol E (BPE), and bisphenol B (BPB). While absolute recoveries of the method were improved for water and some beverage products (e.g. diet cola, iced tea), breakthrough may also have occurred during SPE of 200 mL of other beverages (e.g. BPF in cola). Improvements in method detection limits were observed with the analysis of large sample volumes for all bisphenols at ppt (pg/g) to sub-ppt levels. This improvement was found to be proportional to sample volumes for water and beverage products with less interferences and noise levels around the analytes. Matrix effects and interferences were observed during SPE of larger volumes (100 and 200 mL) of the beverage products, and affected the accurate analysis of BPF. This improved method was used to analyse bisphenols in various beverage samples, and only BPA was detected, with levels ranging from 0.022 to 0.030 ng/g for products in PET bottles, and 0.085 to 0.32 ng/g for products in cans.

  4. Micro- and nano-volume samples by electrothermal, near-torch vaporization sample introduction using removable, interchangeable and portable rhenium coiled-filament assemblies and axially-viewed inductively coupled plasma-atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Badiei, Hamid R.; Lai, Bryant; Karanassios, Vassili

    2012-11-15

    An electrothermal, near-torch vaporization (NTV) sample introduction for micro- or nano-volume samples is described. Samples were pipetted onto coiled-filament assemblies that were purposely developed to be removable and interchangeable and were dried and vaporized into a small-volume vaporization chamber that clips onto any ICP torch with a ball joint. Interchangeable assemblies were also constructed to be small-size (e.g., less than 3 cm long with max diameter of 0.65 cm) and light-weight (1.4 g) so that they can be portable. Interchangeable assemblies with volume-capacities in three ranges (i.e., < 1 {mu}L, 1-10 {mu}L and 10-100 {mu}L) were fabricated and used. The horizontally-operated NTV sample introduction was interfaced to an axially-viewed ICP-AES (inductively coupled plasma-atomic emission spectrometry) system and NTV was optimized using ICP-AES and 8 elements (Pb, Cd, Zn, V, Ba, Mg, Be and Ca). Precision was 1.0-2.3% (peak height) and 1.1-2.4% (peak area). Detection limits (obtained using 5 {mu}L volumes) expressed in absolute-amounts ranged between 4 pg for Pb to 0.3 fg ({approx} 5 million atoms) for Ca. Detection limits expressed in concentration units (obtained using 100 {mu}L volumes of diluted, single-element standard solutions) were: 50 pg/mL for Pb; 10 pg/mL for Cd; 9 pg/mL for Zn; 1 pg/mL for V; 0.9 pg/mL for Ba; 0.5 pg/mL for Mg; 50 fg/mL for Be; and 3 fg/mL for Ca. Analytical capability and utility was demonstrated using the determination of Pb in pg/mL levels of diluted natural water Certified Reference Material (CRM) and the determination of Zn in 80 nL volumes of the liquid extracted from an individual vesicle. It is shown that portable and interchangeable assemblies with dried sample residues on them can be transported without analyte loss (for the concentrations tested), thus opening up the possibility for 'taking part of the lab to the sample' applications, such as testing for Cu concentration-compliance with the lead

  5. Implicit and explicit schemes for mass consistency preservation in hybrid particle/finite-volume algorithms for turbulent reactive flows

    International Nuclear Information System (INIS)

    Popov, Pavel P.; Pope, Stephen B.

    2014-01-01

    This work addresses the issue of particle mass consistency in Large Eddy Simulation/Probability Density Function (LES/PDF) methods for turbulent reactive flows. Numerical schemes for the implicit and explicit enforcement of particle mass consistency (PMC) are introduced, and their performance is examined in a representative LES/PDF application, namely the Sandia–Sydney Bluff-Body flame HM1. A new combination of interpolation schemes for velocity and scalar fields is found to better satisfy PMC than multilinear and fourth-order Lagrangian interpolation. A second-order accurate time-stepping scheme for stochastic differential equations (SDE) is found to improve PMC relative to Euler time stepping, which is the first time that a second-order scheme is found to be beneficial, when compared to a first-order scheme, in an LES/PDF application. An explicit corrective velocity scheme for PMC enforcement is introduced, and its parameters optimized to enforce a specified PMC criterion with minimal corrective velocity magnitudes

  6. Equilibrium sorptive enrichment on poly(dimethylsiloxane) particles for trace analysis of volatile compounds in gaseous samples

    NARCIS (Netherlands)

    Baltussen, H.A.; David, F.; Sandra, P.J.F.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1999-01-01

    A novel approach for sample enrichment, namely, equilibrium sorptive enrichment (ESE), is presented. A packed bed of sorption (or partitioning) material is used to enrich volatiles from gaseous samples. Normally, air sampling is stopped before breakthrough occurs, but this approach is not very

  7. Photon event distribution sampling: an image formation technique for scanning microscopes that permits tracking of sub-diffraction particles with high spatial and temporal resolutions.

    Science.gov (United States)

    Larkin, J D; Publicover, N G; Sutko, J L

    2011-01-01

    In photon event distribution sampling, an image formation technique for scanning microscopes, the maximum likelihood position of origin of each detected photon is acquired as a data set rather than binning photons in pixels. Subsequently, an intensity-related probability density function describing the uncertainty associated with the photon position measurement is applied to each position and individual photon intensity distributions are summed to form an image. Compared to pixel-based images, photon event distribution sampling images exhibit increased signal-to-noise and comparable spatial resolution. Photon event distribution sampling is superior to pixel-based image formation in recognizing the presence of structured (non-random) photon distributions at low photon counts and permits use of non-raster scanning patterns. A photon event distribution sampling based method for localizing single particles derived from a multi-variate normal distribution is more precise than statistical (Gaussian) fitting to pixel-based images. Using the multi-variate normal distribution method, non-raster scanning and a typical confocal microscope, localizations with 8 nm precision were achieved at 10 ms sampling rates with acquisition of ~200 photons per frame. Single nanometre precision was obtained with a greater number of photons per frame. In summary, photon event distribution sampling provides an efficient way to form images when low numbers of photons are involved and permits particle tracking with confocal point-scanning microscopes with nanometre precision deep within specimens. © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.

  8. Comparison of the suitability of alkaline or enzymatic sample pre-treatment for characterization of silver nanoparticles in human tissue by single particle ICP-MS

    DEFF Research Database (Denmark)

    Vidmar, Janja; Buerki-Thurnherr, Tina; Löschner, Katrin

    2018-01-01

    and their size are required for studying NP accumulation in placental tissue. In the present study, we applied and compared two sample preparation techniques, alkaline and enzymatic treatment, followed by single particle ICP-MS (spICP-MS) analysis, for characterizing AgNPs spiked to human placental tissue. Both...... sample preparation approaches are currently used for AgNPs in biological tissues but have not been directly compared yet. We showed that the method using enzymatic tissue treatment followed by spICP-MS is efficient for determination of mass and number concentration and size distribution of AgNPs in human...... placental tissues. Properties of the AgNPs were preserved during enzymatic digestion and comparable with the primary particles. The matrix effect on the determination of Ag sensitivity and transport efficiency in spICP-MS analysis was systematically evaluated as well. The method was applied to human...

  9. Estimating the two-particle K-matrix for multiple partial waves and decay channels from finite-volume energies

    Directory of Open Access Journals (Sweden)

    Colin Morningstar

    2017-11-01

    Full Text Available An implementation of estimating the two-to-two K-matrix from finite-volume energies based on the Lüscher formalism and involving a Hermitian matrix known as the “box matrix” is described. The method includes higher partial waves and multiple decay channels. Two fitting procedures for estimating the K-matrix parameters, which properly incorporate all statistical covariances, are discussed. Formulas and software for handling total spins up to S=2 and orbital angular momenta up to L=6 are obtained for total momenta in several directions. First tests involving ρ-meson decay to two pions include the L=3 and L=5 partial waves, and the contributions from these higher waves are found to be negligible in the elastic energy range.

  10. Large-eddy simulations of 3D Taylor-Green vortex: comparison of Smoothed Particle Hydrodynamics, Lattice Boltzmann and Finite Volume methods

    International Nuclear Information System (INIS)

    Kajzer, A; Pozorski, J; Szewc, K

    2014-01-01

    In the paper we present Large-eddy simulation (LES) results of 3D Taylor- Green vortex obtained by the three different computational approaches: Smoothed Particle Hydrodynamics (SPH), Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM). The Smagorinsky model was chosen as a subgrid-scale closure in LES for all considered methods and a selection of spatial resolutions have been investigated. The SPH and LBM computations have been carried out with the use of the in-house codes executed on GPU and compared, for validation purposes, with the FVM results obtained using the open-source CFD software OpenFOAM. A comparative study in terms of one-point statistics and turbulent energy spectra shows a good agreement of LES results for all methods. An analysis of the GPU code efficiency and implementation difficulties has been made. It is shown that both SPH and LBM may offer a significant advantage over mesh-based CFD methods.

  11. Evaluation of the AGCU Expressmarker 16 and 22 PCR Amplification Kits Using Biological Samples Applied to FTA Micro Cards in Reduced Volume Direct PCR Amplification Reactions

    Directory of Open Access Journals (Sweden)

    Samantha J Ogden

    2015-01-01

    Full Text Available This study evaluated the performance of the  Wuxi AGCU ScienTech Incorporation (HuiShan, Wuxi, China AGCU Expressmarker 16 (EX 16 and 22 (EX22 short tandem repeat (STR amplification kits in reduced reaction volumes using direct polymerase chain reaction (PCR amplification workflows. The commercially available PowerPlex® 21 (PP21 System (Promega, Wisconsin, USA, which follows similar direct workflows, was used as a reference. Anticoagulate blood applied to chemically impregnated  FTA TM Micro Cards (GE Healthcare UK Limited, Amersham Place, Little Chalfont, Buckinghamshire, HP7 9NA, UK was used to represent a complex biological sample. Allelic concordance, first-pass success rate, average peak heights, heterozygous peak height ratios (HPHRs, and intracolor and intercolor peak height balance were determined. In reduced volume PCR reactions, the performances of both the EX16 and EX22 STR amplification kits were comparable to that of the PP21 System. The level of performance was maintained at PCR reaction volumes, which are 40% of that recommended. The EX22 and PP21 System kits possess comparable overlapping genome coverage. This study evaluated the performance of the AGCU EX16 and EX22 STR amplification kits in reduced PCR reaction volumes using direct workflows in combination with whole blood applied to FTA TM Micro Cards. Allelic concordance, first-pass success rate, average peak heights, HPHRs, and intracolor and intercolor peak height balance were determined. A concordance analysis was completed that compared the performance of the EX16 and EX22 kits using human blood applied to FTA Micro Cards in combination with full, half, and reduced PCR reaction volumes. The PP21 System (Promega was used as a reference kit. Where appropriate, the distributions of data were assessed using the Shapiro-Wilk test. For normally-distributed data, statistics were calculated using analysis of variance (ANOVA and for nonparametric data the Wilcoxon

  12. Site Plan Safety Submission for Sampling, Monitoring and Decontamination of Mustard Agent, South Plant, Rocky Mountain Arsenal. Volume 1

    Science.gov (United States)

    1988-10-01

    for sampling. After the sample is taken, the vessel or piping will be reclosed until confirmation of no contamination by bubbler sample analysis...contamination before reclosing the interior. All vessels and pipes broken or opened for bubble sampling will be closed to provide containment in case...and spilled. If such a release is detected, the pipe/vessel will be immediately reclosed . Plastic sheets will be placed near-by and immediately used to

  13. Magnetic properties of carbonyl iron particles in magnetorheological fluids

    International Nuclear Information System (INIS)

    Gorodkin, S R; James, R O; Kordonski, W I

    2009-01-01

    Knowledge of the magnetic properties of dispersed magnetic particles is a prerequisite to the design an MR fluid with desired performance. A term specific susceptibility is introduced for characterization of particle susceptibility. The study was performed with the Bartington MS2B magnetic susceptibility system on small samples volume. Specific magnetic susceptibility of iron particles was found to be a linear function of median particle size. Structural change in the fluid, including particle organization, led to susceptibility drift and may affect fluid performance. It was shown that susceptibility data can be used for evaluation of the concentration of carbonyl iron particles in MR fluids.

  14. Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI Study of Normal Brain Development.

    Science.gov (United States)

    2012-01-01

    Using a population-based sampling strategy, the National Institutes of Health (NIH) Magnetic Resonance Imaging Study of Normal Brain Development compiled a longitudinal normative reference database of neuroimaging and correlated clinical/behavioral data from a demographically representative sample of healthy children and adolescents aged newborn through early adulthood. The present paper reports brain volume data for 325 children, ages 4.5-18 years, from the first cross-sectional time point. Measures included volumes of whole-brain gray matter (GM) and white matter (WM), left and right lateral ventricles, frontal, temporal, parietal and occipital lobe GM and WM, subcortical GM (thalamus, caudate, putamen, and globus pallidus), cerebellum, and brainstem. Associations with cross-sectional age, sex, family income, parental education, and body mass index (BMI) were evaluated. Key observations are: 1) age-related decreases in lobar GM most prominent in parietal and occipital cortex; 2) age-related increases in lobar WM, greatest in occipital, followed by the temporal lobe; 3) age-related trajectories predominantly curvilinear in females, but linear in males; and 4) small systematic associations of brain tissue volumes with BMI but not with IQ, family income, or parental education. These findings constitute a normative reference on regional brain volumes in children and adolescents.

  15. Particle transport in a He-microchip plasma atomic emission system with an ultrasonic nebulizer for aqueous sample introduction

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Joosuck [Department of Chemistry, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of); Lim, H.B. [Department of Chemistry, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do, 448-701 (Korea, Republic of)], E-mail: plasma@dankook.ac.kr

    2008-11-15

    The transport efficiency of dried particles generated from an ultrasonic nebulizer (USN) was studied to improve the analytical performance of a lab-made, He-microchip plasma system, in which a quartz tube ({approx} 1 mm i.d.) was positioned inside the central channel of a poly(dimethylsiloxane) (PDMS) polymer chip. The polymer microchip plasma has the advantages of low cost, small size, easy handling and design, and self-ignition with long stabilization (> 24 h). However, direct introduction of aqueous solution into the microplasma for the detection of metals remains problematic due to plasma instability. In addition, the much smaller size of the system can cause signal suppression due to low transport efficiency. Therefore, knowledge of particle transport efficiency in this microplasma system is required to enhance the sensitivity and stability. The weight of transported particles in the range of 0.02 to 10 mg m{sup -3} was measured using a piezobalance with a precision of 0.4-17.8%, depending on the operating conditions. The significant effects of the USN operating conditions and the physical properties of the tubing, namely, length, inner diameter and surface characteristics, on the number of particles transported from the nebulizer to the microplasma were studied. When selected metals, such as Na, Mg and Pb, at a concentration of 5 mg L{sup -1} were nebulized, transported particles were obtained with a mass range of 0.5-5 mg m{sup -3}, depending on atomic weights. For application of the He-rf-microplasma, the atomic emission system was optimized by changing both the radio frequency (rf) power (60-200 W) and cooling temperature of the USN (- 12-9 deg. C). The limits of detection obtained for K, Na and Cu were 0.26, 0.22, and 0.28 mg L{sup -1}, respectively. These results confirmed the suitable stability and sensitivity of the He-rf-PDMS microchip plasma for application as an atomization source.

  16. Sampling strategies and materials for investigating large reactive particle complaints from Valley Village homeowners near a coal-fired power plant

    International Nuclear Information System (INIS)

    Chang, A.; Davis, H.; Frazar, B.; Haines, B.

    1997-01-01

    This paper will present Phase 3's sampling strategies, techniques, methods and substrates for assisting the District to resolve the complaints involving yellowish-brown staining and spotting of homes, cars, etc. These spots could not be easily washed off and some were permanent. The sampling strategies for the three phases were based on Phase 1 -- the identification of the reactive particles conducted in October, 1989 by APCD and IITRI, Phase 2 -- a study of the size distribution and concentration as a function of distance and direction of reactive particle deposition conducted by Radian and LG and E, and Phase 3 -- the determination of the frequency of soiling events over a full year's duration conducted in 1995 by APCD and IITRI. The sampling methods included two primary substrates -- ACE sheets and painted steel, and four secondary substrates -- mailbox, aluminum siding, painted wood panels and roof tiles. The secondary substrates were the main objects from the Valley Village complaints. The sampling technique included five Valley Village (VV) soiling/staining assessment sites and one southwest of the power plant as background/upwind site. The five VV sites northeast of the power plant covered 50 degrees span sector and 3/4 miles distance from the stacks. Hourly meteorological data for wind speeds and wind directions were collected. Based on this sampling technique, there were fifteen staining episodes detected. Nine of them were in summer, 1995

  17. Automation of registration of sample weights for high-volume neutron activation analysis at the IBR-2 reactor of FLNP, JINR

    International Nuclear Information System (INIS)

    Dmitriev, A.Yu.; Dmitriev, F.A.

    2015-01-01

    The 'Weight' software tool was created at FLNP JINR to automate the reading of analytical balance readouts and saving these values in the NAA database. The analytical balance connected to the personal computer is used to measure weight values. The 'Weight' software tool controls the reading of weight values and the exchange of information with the NAA database. The weighing process of a large amount of samples is reliably provided during high-volume neutron activation analysis. [ru

  18. 'Nano-immuno test' for the detection of live Mycobacterium avium subspecies paratuberculosis bacilli in the milk samples using magnetic nano-particles and chromogen.

    Science.gov (United States)

    Singh, Manju; Singh, Shoor Vir; Gupta, Saurabh; Chaubey, Kundan Kumar; Stephan, Bjorn John; Sohal, Jagdip Singh; Dutta, Manali

    2018-04-26

    Early rapid detection of Mycobacterium avium subspecies paratuberculosis (MAP) bacilli in milk samples is the major challenge since traditional culture method is time consuming and laboratory dependent. We report a simple, sensitive and specific nano-technology based 'Nano-immuno test' capable of detecting viable MAP bacilli in the milk samples within 10 h. Viable MAP bacilli were captured by MAP specific antibody-conjugated magnetic nano-particles using resazurin dye as chromogen. Test was optimized using true culture positive (10-bovine and 12-goats) and true culture negative (16-bovine and 25-goats) raw milk samples. Domestic livestock species in India are endemically infected with MAP. After successful optimization, sensitivity and specificity of the 'nano-immuno test' in goats with respect to milk culture was 91.7% and 96.0%, respectively. Whereas, it was 90.0% (sensitivity) and 92.6% (specificity) with respect to IS900 PCR. In bovine milk samples, sensitivity and specificity of 'nano-immuno test' with respect to milk culture was 90.0% and 93.7%, respectively. However, with respect to IS900 PCR, the sensitivity and specificity was 88.9% and 94.1%, respectively. Test was validated with field raw milk samples (goats-258 and bovine-138) collected from domestic livestock species to detect live/viable MAP bacilli. Of 138 bovine raw milk samples screened by six diagnostic tests, 81 (58.7%) milk samples were positive for MAP infection in one or more than one diagnostic tests. Of 81 (58.7%) positive bovine raw milk samples, only 24 (17.4%) samples were detected positive for the presence of viable MAP bacilli. Of 258 goats raw milk samples screened by six diagnostic tests, 141 (54.6%) were positive for MAP infection in one or more than one test. Of 141 (54.6%) positive raw milk samples from goats, only 48 (34.0%) were detected positive for live MAP bacilli. Simplicity and efficiency of this novel 'nano-immuno test' makes it suitable for wide-scale screening of milk

  19. A study of toxic emissions from a coal-fired power plant utilizing an ESP/Wet FGD system. Volume 1, Sampling, results, and special topics: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE-PETC in 1993 as mandated by the 1990 Clean Air Act. It is organized into 2 volumes; Volume 1 describes the sampling effort, presents the concentration data on toxic chemicals in several power plant streams, and reports the results of evaluations and calculations. The study involved solid, liquid, and gaseous samples from input, output, and process streams at Coal Creek Station Unit No. 1, Underwood, North Dakota (1100 MW mine-mouth plant burning lignite from the Falkirk mine located adjacent to the plant). This plant had an electrostatic precipitator and a wet scrubber flue gas desulfurization unit. Measurements were conducted on June 21--24, 26, and 27, 1993; chemicals measured were 6 major and 16 trace elements (including Hg, Cr, Cd, Pb, Se, As, Be, Ni), acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate), ammonia and cyanide, elemental C, radionuclides, VOCs, semivolatiles (incl. PAH, polychlorinated dioxins, furans), and aldehydes. Volume 2: Appendices includes process data log sheets, field sampling data sheets, uncertainty calculations, and quality assurance results.

  20. Finding Interstellar Particle Impacts on Stardust Aluminium Foils: The Safe Handling, Imaging, and Analysis of Samples Containing Femtogram Residues

    Science.gov (United States)

    Kearsley, A. T.; Westphal, A. J.; Stadermann, F. J.; Armes, S. P.; Ball, A. D.; Borg, J.; Bridges, J. C.; Brownlee, D. E.; Burchell, M. J.; Chater, R. J.; hide

    2010-01-01

    Impact ionisation detectors on a suite of spacecraft have shown the direction, velocity, flux and mass distribution of smaller ISP entering the Solar System. During the aphelion segments of the Stardust flight, a dedicated collector surface was oriented to intercept ISP of beta = 1, and returned to Earth in January 2006. In this paper we describe the probable appeareance and size of IS particle craters from initial results of experimental impacts and numerical simulation, explain how foils are being prepared and mounted for crater searching by automated acquisition of high magnification electron images (whilst avoiding contamination of the foils) and comment on appropriate analytical techniques for Preliminary Examination (PE).

  1. Ferromagnetic particles as a rapid and robust sample preparation for the absolute quantification of seven eicosanoids in human plasma by UHPLC-MS/MS.

    Science.gov (United States)

    Suhr, Anna Catharina; Bruegel, Mathias; Maier, Barbara; Holdt, Lesca Miriam; Kleinhempel, Alisa; Teupser, Daniel; Grimm, Stefanie H; Vogeser, Michael

    2016-06-01

    We used ferromagnetic particles as a novel technique to deproteinize plasma samples prior to quantitative UHPLC-MS/MS analysis of seven eicosanoids [thromboxane B2 (TXB2), prostaglandin E2 (PGE2), PGD2, 5-hydroxyeicosatetraenoic acid (5-HETE), 11-HETE, 12-HETE, arachidonic acid (AA)]. A combination of ferromagnetic particle enhanced deproteination and subsequent on-line solid phase extraction (on-line SPE) realized quick and convenient semi-automated sample preparation-in contrast to widely used manual SPE techniques which are rather laborious and therefore impede the investigation of AA metabolism in larger patient cohorts. Method evaluation was performed according to a protocol based on the EMA guideline for bioanalytical method validation, modified for endogenous compounds. Calibrators were prepared in ethanol. The calibration curves were found to be linear in a range of 0.1-80ngmL(-1) (TXB2, PGE2, PGD2), 0.05-40ngmL(-1) (5-HETE, 11-HETE), 0.5-400ngmL(-1) (12-HETE) and 25-9800ngmL(-1) (AA). Regarding all analytes and all quality controls, the resulting precision data (inter-assay 2.6 %-15.5 %; intra-assay 2.5 %-15.1 %, expressed as variation coefficient) as well as the accuracy results (inter-assay 93.3 %-125 %; intra-assay 91.7 %-114 %) were adequate. Further experiments addressing matrix effect, recovery and robustness, yielded also very satisfying results. As a proof of principle, the newly developed LC-MS/MS assay was employed to determine the capacity of AA metabolite release after whole blood stimulation in healthy blood donors. For this purpose, whole blood specimens of 5 healthy blood donors were analyzed at baseline and after a lipopolysaccharide (LPS) induced blood cell activation. In several baseline samples some eicosanoids levels were below the Lower Limit of Quantification. However, in the stimulated samples all chosen eicosanoids (except PGD2) could be quantified. These results, in context with those obtained in validation, demonstrate the

  2. β-Cyclodextrin/thermosensitive containing polymer brushes grafted onto magnetite nano-particles for extraction and determination of venlafaxine in biological and pharmaceutical samples.

    Science.gov (United States)

    Ahmad Panahi, Homayon; Alaei, Haniyeh Sadat

    2014-12-10

    In this paper, a novel nano-sorbent is fabricated by the surface grafting of poly[β-CD/allylamine-co-N-isopropylacrylamide] onto modified magnetite nano-particles by 3-mercaptopropyltrimethoxysilane. The polymer grafted magnetite nano-particles was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, scanning electron microscopy, and transmission electron microscopy. The feasibility of employing this nano-sorbent for extraction of trace venlafaxine in pharmaceutical samples and human biological fluids are investigated. The effect of various parameters such as pH, reaction temperature, and contact time was evaluated. The result revealed that the best sorption of venlafaxine by the magnetite nano-sorbent occurred at 35 °C at an optimum pH of 5. The kinetics of the venlafaxine shows accessibility of active sites in the grafted polymer onto the drug. The equilibrium data of venlafaxine by grafted magnetite nano-sorbent are well represented by the Langmuir and Freundlich isotherm models. The adsorption capacity of venlafaxine is found 142.8 mg g(-1) and indicated the homogeneous sites onto polymer grafted magnetite nano-sorbent surface. Nearly 80% of venlafaxine was released in simulated intestinal fluid, pH 7.4, in 30 h and 90% in simulated gastric fluid, pH 1.2, in 1 h. The venlafaxine loaded-polymer grafted magnetite nano-particles were successfully applied for the extraction in urine and pharmaceutical samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Probabilistic Requirements (Partial) Verification Methods Best Practices Improvement. Variables Acceptance Sampling Calculators: Derivations and Verification of Plans. Volume 1

    Science.gov (United States)

    Johnson, Kenneth L.; White, K, Preston, Jr.

    2012-01-01

    The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques. This recommended procedure would be used as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. This document contains the outcome of the assessment.

  4. High-throughput analysis using non-depletive SPME: challenges and applications to the determination of free and total concentrations in small sample volumes.

    Science.gov (United States)

    Boyacı, Ezel; Bojko, Barbara; Reyes-Garcés, Nathaly; Poole, Justen J; Gómez-Ríos, Germán Augusto; Teixeira, Alexandre; Nicol, Beate; Pawliszyn, Janusz

    2018-01-18

    In vitro high-throughput non-depletive quantitation of chemicals in biofluids is of growing interest in many areas. Some of the challenges facing researchers include the limited volume of biofluids, rapid and high-throughput sampling requirements, and the lack of reliable methods. Coupled to the above, growing interest in the monitoring of kinetics and dynamics of miniaturized biosystems has spurred the demand for development of novel and revolutionary methodologies for analysis of biofluids. The applicability of solid-phase microextraction (SPME) is investigated as a potential technology to fulfill the aforementioned requirements. As analytes with sufficient diversity in their physicochemical features, nicotine, N,N-Diethyl-meta-toluamide, and diclofenac were selected as test compounds for the study. The objective was to develop methodologies that would allow repeated non-depletive sampling from 96-well plates, using 100 µL of sample. Initially, thin film-SPME was investigated. Results revealed substantial depletion and consequent disruption in the system. Therefore, new ultra-thin coated fibers were developed. The applicability of this device to the described sampling scenario was tested by determining the protein binding of the analytes. Results showed good agreement with rapid equilibrium dialysis. The presented method allows high-throughput analysis using small volumes, enabling fast reliable free and total concentration determinations without disruption of system equilibrium.

  5. Assessment of the radionuclide composition of "hot particles" sampled in the Chernobyl nuclear power plant fourth reactor unit.

    Science.gov (United States)

    Bondarkov, Mikhail D; Zheltonozhsky, Viktor A; Zheltonozhskaya, Maryna V; Kulich, Nadezhda V; Maksimenko, Andrey M; Farfán, Eduardo B; Jannik, G Timothy; Marra, James C

    2011-10-01

    Fuel-containing materials sampled from within the Chernobyl Nuclear Power Plant (ChNPP) Unit 4 Confinement Shelter were spectroscopically studied for gamma and alpha content. Isotopic ratios for cesium, europium, plutonium, americium, and curium were identified, and the fuel burn-up in these samples was determined. A systematic deviation in the burn-up values based on the cesium isotopes in comparison with other radionuclides was observed. The studies conducted were the first ever performed to demonstrate the presence of significant quantities of 242Cm and 243Cm. It was determined that there was a systematic underestimation of activities of transuranic radionuclides in fuel samples from inside of the ChNPP Confinement Shelter, starting from 241Am (and going higher) in comparison with the theoretical calculations.

  6. Determination of uranium isotopic composition and 236U content of soil samples and hot particles using inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Boulyga, S F; Becker, J S

    2001-07-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The 236U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF-ICP-MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4 x 10(-4) and 10(-3) counts per atom were achieved for 238U in DF-ICP-QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH+/U+ was 1.2 x 10(-4) and 1.4 x 10(-4), respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 microg L(-1) NBS U-020 standard solution was 0.11% (238U/235U) and 1.4% (236U/238U) using a MicroMist nebulizer and 0.25% (235U/238U) and 1.9% (236U/P38U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the 236U/238U ratio ranged from 10(-5) to 10(-3). Results obtained with ICP-MS, alpha- and gamma-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples.

  7. Determination of uranium isotopic composition and 236U content of soil samples and hot particles using inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Becker, J.S.

    2001-01-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The 236 U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF-ICP-MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4 x 10 -4 and 10 -3 counts per atom were achieved for 238 U in DF-ICP-QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH + /U + was 1.2 x 10 -4 and 1.4 x 10 -4 , respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 μg L -1 NBS U-020 standard solution was 0.11% ( 238 U/ 235 U) and 1.4% ( 236 U/ 238 U) using a MicroMist nebulizer and 0.25% ( 235 U/ 238 U) and 1.9% ( 236 U/ 238 U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the 236 U/ 238 U ratio ranged from 10 -5 to 10 -3 . Results obtained with ICP-MS, α- and γ-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples. (orig.)

  8. Interactions of secondary particles with thorium samples in the setup QUINTA irradiated with 6 GeV deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Khushvaktov, J., E-mail: khushvaktov@jinr.ru [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute of Nuclear Physics ASRU, Tashkent (Uzbekistan); Adam, J. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Nuclear Physics Institute ASCR PRI (Czech Republic); Baldin, A.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute for Advanced Studies “OMEGA”, Dubna (Russian Federation); Chilap, V.V. [Center of Physical and Technical Projects “Atomenergomash”, Moscow (Russian Federation); Furman, V.I.; Sagimbaeva, F.; Solnyshkin, A.A.; Stegailov, V.I.; Tichy, P.; Tsoupko-Sitnikov, V.M.; Tyutyunnikov, S.I.; Vespalec, R. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Vrzalova, J. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Nuclear Physics Institute ASCR PRI (Czech Republic); Yuldashev, B.S. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Institute of Nuclear Physics ASRU, Tashkent (Uzbekistan); Wagner, V. [Nuclear Physics Institute ASCR PRI (Czech Republic); Zavorka, L.; Zeman, M. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-08-15

    The natural uranium assembly, QUINTA, was irradiated with 6 GeV deuterons. The {sup 232}Th samples were placed at the central axis of the setup QUINTA. The spectra of gamma rays emitted by the activated {sup 232}Th samples have been analysed and more than one hundred nuclei produced have been identified. For each of those products, reaction rates have been determined. The ratio of the weight of produced {sup 233}U to {sup 232}Th is presented. Experimental results were compared with the results of Monte Carlo simulations by FLUKA code.

  9. Interactions of secondary particles with thorium samples in the setup QUINTA irradiated with 6-GeV deuterons

    International Nuclear Information System (INIS)

    Khushvaktov, J.H.; Yuldashev, B.S.; Adam, J.; Vrzalova, J.; Baldin, A.A.; Chilap, V.V.; Furman, V.I.; Sagimbaeva, F.; Solnyshkin, A.A.; Stegailov, V.I.; Tichy, P.; Tsoupko-Sitnikov, V.M.; Tyutyunnikov, S.I.; Vespalec, R.; Zavorka, L.; Wagner, V.; Zeman, M.

    2016-01-01

    The natural uranium assembly, QUINTA, was irradiated with 6-GeV deuterons. The 232 Th samples were placed at the central axis of the setup QUINTA. The spectra of gamma rays emitted by the activated 232 Th samples have been analysed, and more than one hundred nuclei produced have been identified. For each of those products, reaction rates have been determined. The ratio of the weight of produced 233 U to that of 232 Th is presented. Experimental results were compared with the results of Monte Carlo simulations by the FLUKA code. [ru

  10. Characterization of cotton gin PM10 emissions based on EPA stack sampling methodologies and particle size distributions

    Science.gov (United States)

    A project to characterize cotton gin emissions in terms of stack sampling was conducted during the 2008 through 2011 ginning seasons. The impetus behind the project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. EPA AP-42 emission factors ar...

  11. Dynamics of glucagon secretion in mice and rats revealed using a validated sandwich ELISA for small sample volumes

    DEFF Research Database (Denmark)

    Albrechtsen, Nicolai Jacob Wewer; Kuhre, Rune Ehrenreich; Windeløv, Johanne Agerlin

    2016-01-01

    Glucagon is a metabolically important hormone, but many aspects of its physiology remain obscure, because glucagon secretion is difficult to measure in mice and rats due to methodological inadequacies. Here, we introduce and validate a low-volume, enzyme-linked immunosorbent glucagon assay...... according to current analytical guidelines, including tests of sensitivity, specificity, and accuracy, and compare it, using the Bland-Altman algorithm and size-exclusion chromatography, with three other widely cited assays. After demonstrating adequate performance of the assay, we measured glucagon...... and returning to basal levels at 6 min (mice) and 12 min (rats). d-Mannitol (osmotic control) was without effect. Ketamine/xylazine anesthesia in mice strongly attenuated (P assay. In conclusion, dynamic analysis...

  12. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) for rapid hygiene control of large-volume water samples.

    Science.gov (United States)

    Elsäßer, Dennis; Ho, Johannes; Niessner, Reinhard; Tiehm, Andreas; Seidel, Michael

    2018-04-01

    Hygiene of drinking water is periodically controlled by cultivation and enumeration of indicator bacteria. Rapid and comprehensive measurements of emerging pathogens are of increasing interest to improve drinking water safety. In this study, the feasibility to detect bacteriophage PhiX174 as a potential indicator for virus contamination in large volumes of water is demonstrated. Three consecutive concentration methods (continuous ultrafiltration, monolithic adsorption filtration, and centrifugal ultrafiltration) were combined to concentrate phages stepwise from 1250 L drinking water into 1 mL. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) is applied as rapid detection method. Field measurements were conducted to test the developed system for hygiene online monitoring under realistic conditions. We could show that this system allows the detection of artificial contaminations of bacteriophage PhiX174 in drinking water pipelines. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Separation and sampling of ice nucleation chamber generated ice particles by means of the counterflow virtual impactor technique for the characterization of ambient ice nuclei.

    Science.gov (United States)

    Schenk, Ludwig; Mertes, Stephan; Kästner, Udo; Schmidt, Susan; Schneider, Johannes; Frank, Fabian; Nillius, Björn; Worringen, Annette; Kandler, Konrad; Ebert, Martin; Stratmann, Frank

    2014-05-01

    In 2011, the German research foundation (DFG) research group called Ice Nuclei Research Unit (INUIT (FOR 1525, project STR 453/7-1) was established with the objective to achieve a better understanding concerning heterogeneous ice formation. The presented work is part of INUIT and aims for a better microphysical and chemical characterization of atmospheric aerosol particles that have the potential to act as ice nuclei (IN). For this purpose a counterflow virtual impactor (Kulkarni et al., 2011) system (IN-PCVI) was developed and characterized in order to separate and collect ice particles generated in the Fast Ice Nucleus Chamber (FINCH; Bundke et al., 2008) and to release their IN for further analysis. Here the IN-PCVI was used for the inertial separation of the IN counter produced ice particles from smaller drops and interstitial particles. This is realized by a counterflow that matches the FINCH output flow inside the IN-PCVI. The choice of these flows determines the aerodynamic cut-off diameter. The collected ice particles are transferred into the IN-PCVI sample flow where they are completely evaporated in a particle-free and dry carrier air. In this way, the aerosol particles detected as IN by the IN counter can be extracted and distributed to several particle sensors. This coupled setup FINCH, IN-PCVI and aerosol instrumentation was deployed during the INUIT-JFJ joint measurement field campaign at the research station Jungfraujoch (3580m asl). Downstream of the IN-PCVI, the Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA; Brands et al., 2011) was attached for the chemical analysis of the atmospheric IN. Also, number concentration and size distribution of IN were measured online (TROPOS) and IN impactor samples for electron microscopy (TU Darmstadt) were taken. Therefore the IN-PCVI was operated with different flow settings than known from literature (Kulkarni et al., 2011), which required a further characterisation of its cut

  14. Distribution of dead wood volume and mass in mediterranean Fagus sylvatica L. forests in Northern Iberian Peninsula. Implications for field sampling inventory

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, C.; Monleon, V.J.; Gómez, N.; Bravo, F.

    2016-07-01

    Aim of the study: The aim of this study was to 1) estimate the amount of dead wood in managed beech (Fagus sylvatica L.) stands in northern Iberian Peninsula and 2) evaluate the most appropriate volume equation and the optimal transect length for sampling downed wood. Area of study: The study area is the Aralar Forest in Navarra (Northern Iberian Peninsula). Material and methods: The amount of dead wood by component (downed logs, snags, stumps and fine woody debris) was inventoried in 51 plots across a chronosequence of stand ages (0-120 years old). Main results: The average volume and biomass of dead wood was 24.43 m3 ha-1 and 7.65 Mg ha-1, respectively. This amount changed with stand development stage [17.14 m3 ha-1 in seedling stage; 34.09 m3 ha-1 inpole stage; 22.54 m3 ha-1 in mature stage and 24.27 m3 ha-1 in regular stand in regeneration stage], although the differences were not statistically significant for coarse woody debris. However, forest management influenced the amount of dead wood, because the proportion of mass in the different components and the decay stage depended on time since last thinning. The formula based on intersection diameter resulted on the smallest coefficient of variation out of seven log-volume formulae. Thus, the intersection diameter is the preferred method because it gives unbiased estimates, has the greatest precision and is the easiest to implement in the field. Research highlights: The amount of dead wood, and in particular snags, was significantly lower than that in reserved forests. Results of this study showed that sampling effort should be directed towards increasing the number of transects, instead of increasing transect length or collecting additional piece diameters that do not increase the accuracy or precision of DWM volume estimation. (Author)

  15. Prospective evaluation of early treatment outcome in patients with meningiomas treated with particle therapy based on target volume definition with MRI and {sup 68}Ga-DOTATOC-PET

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E.; Welzel, Thomas; Habermehl, Daniel; Rieken, Stefan; Dittmar, Jan-Oliver; Kessel, Kerstin; Debus, Juergen [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)], e-mail: Stephanie.Combs@med.uni-heidelberg.de; Jaekel, Oliver [Heidelberg Ion Therapy Center (HIT), Heidelberg (Germany); Haberkorn, Uwe [Univ. Hospital of Heidelberg, Dept. of Nuclear Medicine, Heidelberg (Germany)

    2013-04-15

    Purpose: To evaluate early treatment results and toxicity in patients with meningiomas treated with particle therapy. Material and methods: Seventy patients with meningiomas were treated with protons (n = 38) or carbon ion radiotherapy (n = 26). Median age was 49 years. Median age at treatment was 55 years, 24 were male (34%), and 46 were female (66%). Histology was benign meningioma in 26 patients (37%), atypical in 23 patients (33%) and anaplastic in four patients (6%). In 17 patients (24%) with skull base meningiomas diagnosis was based on the typical appearance of a meningioma. For benign meningiomas, total doses of 52.2-57.6 GyE were applied with protons. For high-grade lesions, the boost volume was 18 GyE carbon ions, with a median dose of 50 GyE applied as highly conformal radiation therapy. Nineteen patients were treated as re-irradiation. Treatment planning with MRI and 68-Ga-DOTATOC-PET was evaluated. Results: Very low rates of side effects developed, including headaches, nausea and dizziness. No severe treatment-related toxicity was observed. Local control for benign meningiomas was 100%. Five of 27 patients (19%) developed tumor recurrence during follow-up. Of these, four patients had been treated as re-irradiation for recurrent high-risk meningiomas. Actuarial local control after re-irradiation of high-risk meningiomas was therefore 67% at six and 12 months. In patients treated with primary radiotherapy, only one of 13 patients (8%) developed tumor recurrence 17 months after radiation therapy (photon and carbon ion boost). Conclusion: Continuous prospective follow-up and development of novel study concepts are required to fully exploit the long-term clinical data after particle therapy for meningiomas. To date, it may be concluded that when proton therapy is available, meningioma patients can be offered a treatment at least comparable to high-end photon therapy.

  16. Deposition behavior of polystyrene latex particles on solid surfaces during migration through an artificial fracture in a granite rock sample

    International Nuclear Information System (INIS)

    Chinju, Hirofumi; Tanaka, Satoru; Kuno, Yoshio

    2001-01-01

    The deposition behavior of colloids during transport through heterogeneous media was observed by conducting column experiments to study migration of polystyrene latex particles (diameter=309 nm) through columns packed with artificially fractured granite rock (length=300 and 150 mm). The experiments were conducted under conditions of different ionic strengths and flow rates. The results were similar to those for colloid deposition in columns packed with glass beads reported previously; the colloid breakthrough curves showed three stages, characterized by different rates of change in the concentration of effluent. Colloid deposition on the fracture surfaces was described by considering strong and weak deposition sites. Scanning Electron Microscopy (SEM) observations indicated the existence of strong and weak sites on the fracture surfaces regardless of mineral composition. The observations also showed that the strong deposition sites tended to exist on surface irregularities such as cracks or protrusions. The degree of colloid deposition increased with increasing ionic strength and decreasing flow rate. The dependencies on ionic strength and flow rate agreed qualitatively with the DLVO theory and the previous experimental results, respectively. (author)

  17. Use of an internal sample attenuator in radioimmunoassay. Assay of triiodothyronine (T3) using starch particles containing entrapped charcoal and bismuth oxide in combination with free antibodies

    International Nuclear Information System (INIS)

    Eriksson, H.; Mattiasson, B.; Thorell, J.I.

    1981-01-01

    A radioimmunoassay for triiodothyronine involving no separate washing or separation steps is described. By using an internal sample attenuator, bismuth oxide, co-immobilized with the sorbent, charcoal, for the non-bound fraction of T 3 , a system was designed in which a suspension of starch spheres containing the sorbent and the attenuator was added after the immunological reaction had taken place. The particles sedimented and the whole test tube was counted in a gamma-counter. The coefficient of correlation between the results obtained with the present method and those from conventional procedures was 0.993. (Auth.)

  18. Radioactive particles revealed by electron microscopy. Chemical and physical properties of radioactive particles in aerosol samples emitted during the early stage of Fukushima Dai-ichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Adachi, Kouji

    2015-01-01

    Water-insoluble radioactive materials emitted during an early stage of the Fukushima Dai-ichi Nuclear Power Plant accident in 2011 were identified, and their chemical and physical properties were characterized as particulate matters. In this report, studies on radioactive particles collected from filter samples in Tsukuba on March 14–15, 2011 are summarized. Their compositions, chemical states, sizes, shapes, crystallinity, and hygroscopicity were analyzed using microscopic analyses such as electron microscopy and synchrotron with a micro-beam. The results indicate that they include Cs, Fe, and Zn as well as elements from fission products and are water insoluble, spherical-glassy particles with ca. 2 micrometer in size. Understanding of their detailed properties is significant to improve the numerical models during the accident and to understand their occurrences in soil as well as the accident itself. In addition to the water-insoluble radioactive materials, water-soluble radioactive materials, which were likely emitted in different events during the accident, should be investigated to have comprehensive understanding of the accident and its environmental effects. More samples from various environments such as soil will be needed, and more detailed chemical and physical analyses will help to understand their formation process, influences on human health, and long term decrements in ambient conditions. (author)

  19. NASTRAN thermal analyzer: Theory and application including a guide to modeling engineering problems, volume 2. [sample problem library guide

    Science.gov (United States)

    Jackson, C. E., Jr.

    1977-01-01

    A sample problem library containing 20 problems covering most facets of Nastran Thermal Analyzer modeling is presented. Areas discussed include radiative interchange, arbitrary nonlinear loads, transient temperature and steady-state structural plots, temperature-dependent conductivities, simulated multi-layer insulation, and constraint techniques. The use of the major control options and important DMAP alters is demonstrated.

  20. Characterization on the precipitate sample of cetyltrimethylammonium bromide adsorbed onto nanocube CaCO3 particles from aqueous-ammonia-rich solution

    International Nuclear Information System (INIS)

    Rivera Virtudazo, Raymond V.; Fuji, Masayoshi; Takai, Chika; Shirai, Takashi

    2012-01-01

    Physicochemical analysis on the precipitate samples of the cationic cetyltrimethylammonium bromide (CTAB) adsorbed onto nanocube CaCO 3 particles (NcCP) in aqueous ammonia rich (NH 4 + ) solution was initially examined. The amount of CTAB added to the (<100 nm) NcCP ranging from 0.04 to 88.5 mM was prepared under room temperature aqueous alkaline condition and characterized by thermogravimetry/differential thermogravimetric analysis (TGA/DTA), Raman spectroscopy (RS), scanning electron microscopy, transmission electron microscopy (TEM), gas chromatograph combined with mass spectrometer analysis (GC–MS), and powder X-ray diffraction pattern. RS, GC–MS, and TGA/DTA analyses indicate that only layer of CTAB molecules were present on the surface of the NcCP. Moreover, this thin sheet layer was morphologically observed by the TEM image (particularly at 88 mM concentration of CTAB). In general, adsorption of CTAB molecules onto NcCP under aqueous alkaline medium had no effect on the cubic crystal structure and particle morphology. The present study confirms the adsorption mechanism of cationic surfactant onto NcCP colloids model and contributes to the better understanding of the possible structural arrangement of the sorbed surfactant molecules onto the NcCP-aqueous alkaline interface by simple characterization method. This investigation is expected to create new, low-cost route to produce promising nanopowders and conversion to hollow particles with multi-component porous surface shell wall.

  1. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    Energy Technology Data Exchange (ETDEWEB)

    Knybel, Lukas [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic); VŠB-Technical University of Ostrava, Ostrava (Czech Republic); Cvek, Jakub, E-mail: Jakub.cvek@fno.cz [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic); Molenda, Lukas; Stieberova, Natalie; Feltl, David [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic)

    2016-11-15

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, and sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P<.001). Motion amplitudes >15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P<.001). Interfraction variations and baseline changes >3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe

  2. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    International Nuclear Information System (INIS)

    Knybel, Lukas; Cvek, Jakub; Molenda, Lukas; Stieberova, Natalie; Feltl, David

    2016-01-01

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, and sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P 15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P 3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe tumors; higher interfraction amplitude variability indicated tumors in contact

  3. Non-destructive depth profiling of solid samples by atomic and nuclear interactions induced by charged particles

    International Nuclear Information System (INIS)

    Demortier, Guy

    2003-01-01

    The study of complex materials (non-homogeneous matrices containing medium and/or heavy atoms as major elements) by Particle Induced X-Ray Emission (PIXE) requires the tailoring of the experimental set up to take into account the high X-ray intensity produced by these main elements present at the surface, as well as the expected low intensity from other elements 'buried' in the substrate. The determination of traces is therefore limited and the minimum detection limit is generally higher by at least two orders of magnitude in comparison with those achievable for low Z matrices (Z≤20). Additionally, those high Z matrices, having a high absorption capability, are not always homogeneous. The non-homogeneity may be, on the one hand, a layered structure (which is uneasy to profile by Rutherford Backscattering Spectroscopy (RBS) if the material contains elements of neighbouring atomic masses or if the layered structure extends on several microns). PIXE measurements at various incident energies (and with various projectiles (p, d, He 3 , He 4 )) are an alternative method to overcome those difficulties. The use of special filters to selectively decrease the intensity of the most intense X-ray lines, the accurate calculation of the characteristic X-ray intensity ratios (Kα/Kβ, Lα/Lβ) of individual elements, the computation of the secondary X-ray fluorescence induced in thick targets are amongst the most important parameters to be investigated in order to solve these analytical problems. Examples of Al, Si, Cu, Ag, Au based alloys as encountered in industrial and archaeological metallurgy are discussed. The non-destructive aspect of the ion beam techniques is proved by applying the method in vivo for the study of fluorine migration in tooth enamel. Preliminary results on the composition of the blocks of the pyramid of Cheops are presented in the scope of a complete revision of the procedure of its construction

  4. Volume integral equation for electromagnetic scattering: Rigorous derivation and analysis for a set of multilayered particles with piecewise-smooth boundaries in a passive host medium

    Science.gov (United States)

    Yurkin, Maxim A.; Mishchenko, Michael I.

    2018-04-01

    We present a general derivation of the frequency-domain volume integral equation (VIE) for the electric field inside a nonmagnetic scattering object from the differential Maxwell equations, transmission boundary conditions, radiation condition at infinity, and locally-finite-energy condition. The derivation applies to an arbitrary spatially finite group of particles made of isotropic materials and embedded in a passive host medium, including those with edges, corners, and intersecting internal interfaces. This is a substantially more general type of scatterer than in all previous derivations. We explicitly treat the strong singularity of the integral kernel, but keep the entire discussion accessible to the applied scattering community. We also consider the known results on the existence and uniqueness of VIE solution and conjecture a general sufficient condition for that. Finally, we discuss an alternative way of deriving the VIE for an arbitrary object by means of a continuous transformation of the everywhere smooth refractive-index function into a discontinuous one. Overall, the paper examines and pushes forward the state-of-the-art understanding of various analytical aspects of the VIE.

  5. Depth Distribution Studies of Carbon in Steel Surfaces by Means of Charged Particle Activation Analysis with an Account of Heat and Diffusion Effects in the Sample

    International Nuclear Information System (INIS)

    Brune, D.; Lorenzen, J.; Witalis, E.

    1972-05-01

    Depth distribution studies of carbon in steel and iron were carried out in the concentration range 0.05-1 %, using proton activation analysis. Surface content studies were performed in the concentration range 0.01-1 % using deuteron activation analysis. The following reactions were utilized: 12 C(p,γ) 13 N and 12 C(d,n) 13 N Evaluations of depth distribution were based on resonances in the excitation function. The carbon content was determined with the aid of the positron emitter, 13 N, using either single-peak or coincidence measurements. The heat dissipation in the irradiated region of the samples was calculated, and the temperature rise was measured using thermocouples. The temperature distribution within the hot zone subjected to irradiation by charged particles, together with the temperature distribution around this zone, was studied in order to estimate any effect this might have on the carbon diffusion. A device for automatic sample exchange which is remotely controlled is described

  6. Predicting Volume and Biomass Change from Multi-Temporal Lidar Sampling and Remeasured Field Inventory Data in Panther Creek Watershed, Oregon, USA

    Directory of Open Access Journals (Sweden)

    Krishna P. Poudel

    2018-01-01

    Full Text Available Using lidar for large-scale forest management can improve operational and management decisions. Using multi-temporal lidar sampling and remeasured field inventory data collected from 78 plots in the Panther Creek Watershed, Oregon, USA, we evaluated the performance of different fixed and mixed models in estimating change in aboveground biomass ( ∆ AGB and cubic volume including top and stump ( ∆ CVTS over a five-year period. Actual values of CVTS and AGB were obtained using newly fitted volume and biomass equations or the equations used by the Pacific Northwest unit of the Forest Inventory and Analysis program. Estimates of change based on fixed and mixed-effect linear models were more accurate than change estimates based on differences in LIDAR-based estimates. This may have been due to the compounding of errors in LIDAR-based estimates over the two time periods. Models used to predict volume and biomass at a given time were, however, more precise than the models used to predict change. Models used to estimate ∆ CVTS were not as accurate as the models employed to estimate ∆ AGB . Final models had cross-validation root mean squared errors as low as 40.90% for ∆ AGB and 54.36% for ∆ CVTS .

  7. Influence of external and internal conditions of detector sample treatment on the particle registration sensitivity of Solid State Nuclear Track Detectors of type CR-39

    International Nuclear Information System (INIS)

    Hermsdorf, Dietrich

    2012-01-01

    The sensitivity of charged particle registration with SSNTD is the most important parameter to decide about the applicability of those detectors in research, technology and environmental dosimetry. The sensitivity is strongly influenced by the treatment of detector samples before, during and after the exposure and the final evaluation process by chemical etching. Whereas changes in detection properties by external environmental influences are generally considered, the dependences on the etching conditions are ignored. Commonly the sensitivity is assumed to compensate variations in the etching conditions for track revealing. In the present work the validity of this hypothesis will be checked. In the frame of the existing database the sensitivity is not really independent on variations in etching temperatures and should be corrected for differences in the activation energies for stimulation of the bulk and track etching process. Differences in the concentration dependence may be of minor importance. Furthermore, the registration sensitivity depends on environmental conditions before, during and after the irradiation with particles under investigation. Such external parameters are the air pressure, the sample temperature and modification of bulk material by out-gassing in vacuum and exposure to γ-rays. However, the available database is insufficient and inaccurate to draw final conclusions on the detection properties of SSNTD under various external and internal conditions.

  8. Low volume sampling device for mass spectrometry analysis of gas formation in nickel-metalhydride (NiMH) batteries

    International Nuclear Information System (INIS)

    Kruesemann, P.V.E.; Mank, A.J.G.; Belfadhel-Ayeb, A.; Notten, P.H.L.

    2006-01-01

    Rechargeable nickel-metalhydride (NiMH) batteries have major advantages with respect to environmental friendliness and energy density compared to other battery systems. Research on thermodynamics and reaction kinetics is required to study the behaviour of these batteries, especially under severe operating conditions such as overcharging and (over)discharging. During these processes several reactions take place resulting in the formation of oxygen and hydrogen gas. Hence, the recombination processes should be well controlled to guarantee that the partial oxygen and hydrogen pressure inside the battery are kept low. Mass spectrometry is one of the analytical techniques capable of measuring the composition of gases released inside the battery during the charge and discharge processes. However, the sample gas needs to be withdrawn from the battery during the experiment. The gas consumption must be kept to a minimum otherwise the equilibrium inside the battery will be disturbed. A bench-top quadrupole mass spectrometer with a standard capillary by-pass inlet cannot be used for this purpose as its gas consumption is in the 1-10 ml/min range. In this paper, a new gas inlet device is presented that reduces gas consumption to a value <50 μl/h. The use of a capillary by-pass splitter and a discontinuous sampling procedure allow mass spectrometry to be used as a gas analysis tool in many applications in which small amounts of sample gas are involved. Experiments with standard AA-size NiMH batteries show that hydrogen release dominates during (over)charging at increased charging rates. Beside mass spectrometry, evolved gases are also analysed using Raman spectroscopy. Although some differences are observed, the results of similar experiments show a good agreement

  9. A propidium monoazide–quantitative PCR method for the detection and quantification of viable Enterococcus faecalis in large-volume samples of marine waters

    KAUST Repository

    Salam, Khaled W.; El-Fadel, Mutasem E.; Barbour, Elie K.; Saikaly, Pascal

    2014-01-01

    The development of rapid detection assays of cell viability is essential for monitoring the microbiological quality of water systems. Coupling propidium monoazide with quantitative PCR (PMA-qPCR) has been successfully applied in different studies for the detection and quantification of viable cells in small-volume samples (0.25-1.00 mL), but it has not been evaluated sufficiently in marine environments or in large-volume samples. In this study, we successfully integrated blue light-emitting diodes for photoactivating PMA and membrane filtration into the PMA-qPCR assay for the rapid detection and quantification of viable Enterococcus faecalis cells in 10-mL samples of marine waters. The assay was optimized in phosphate-buffered saline and seawater, reducing the qPCR signal of heat-killed E. faecalis cells by 4 log10 and 3 log10 units, respectively. Results suggest that high total dissolved solid concentration (32 g/L) in seawater can reduce PMA activity. Optimal PMA-qPCR standard curves with a 6-log dynamic range and detection limit of 102 cells/mL were generated for quantifying viable E. faecalis cells in marine waters. The developed assay was compared with the standard membrane filter (MF) method by quantifying viable E. faecalis cells in seawater samples exposed to solar radiation. The results of the developed PMA-qPCR assay did not match that of the standard MF method. This difference in the results reflects the different physiological states of E. faecalis cells in seawater. In conclusion, the developed assay is a rapid (∼5 h) method for the quantification of viable E. faecalis cells in marine recreational waters, which should be further improved and tested in different seawater settings. © 2014 Springer-Verlag Berlin Heidelberg.

  10. A propidium monoazide–quantitative PCR method for the detection and quantification of viable Enterococcus faecalis in large-volume samples of marine waters

    KAUST Repository

    Salam, Khaled W.

    2014-08-23

    The development of rapid detection assays of cell viability is essential for monitoring the microbiological quality of water systems. Coupling propidium monoazide with quantitative PCR (PMA-qPCR) has been successfully applied in different studies for the detection and quantification of viable cells in small-volume samples (0.25-1.00 mL), but it has not been evaluated sufficiently in marine environments or in large-volume samples. In this study, we successfully integrated blue light-emitting diodes for photoactivating PMA and membrane filtration into the PMA-qPCR assay for the rapid detection and quantification of viable Enterococcus faecalis cells in 10-mL samples of marine waters. The assay was optimized in phosphate-buffered saline and seawater, reducing the qPCR signal of heat-killed E. faecalis cells by 4 log10 and 3 log10 units, respectively. Results suggest that high total dissolved solid concentration (32 g/L) in seawater can reduce PMA activity. Optimal PMA-qPCR standard curves with a 6-log dynamic range and detection limit of 102 cells/mL were generated for quantifying viable E. faecalis cells in marine waters. The developed assay was compared with the standard membrane filter (MF) method by quantifying viable E. faecalis cells in seawater samples exposed to solar radiation. The results of the developed PMA-qPCR assay did not match that of the standard MF method. This difference in the results reflects the different physiological states of E. faecalis cells in seawater. In conclusion, the developed assay is a rapid (∼5 h) method for the quantification of viable E. faecalis cells in marine recreational waters, which should be further improved and tested in different seawater settings. © 2014 Springer-Verlag Berlin Heidelberg.

  11. SeaWiFS technical report series. Volume 4: An analysis of GAC sampling algorithms. A case study

    Science.gov (United States)

    Yeh, Eueng-Nan (Editor); Hooker, Stanford B. (Editor); Hooker, Stanford B. (Editor); Mccain, Charles R. (Editor); Fu, Gary (Editor)

    1992-01-01

    The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument will sample at approximately a 1 km resolution at nadir which will be broadcast for reception by realtime ground stations. However, the global data set will be comprised of coarser four kilometer data which will be recorded and broadcast to the SeaWiFS Project for processing. Several algorithms for degrading the one kilometer data to four kilometer data are examined using imagery from the Coastal Zone Color Scanner (CZCS) in an effort to determine which algorithm would best preserve the statistical characteristics of the derived products generated from the one kilometer data. Of the algorithms tested, subsampling based on a fixed pixel within a 4 x 4 pixel array is judged to yield the most consistent results when compared to the one kilometer data products.

  12. Influence of volume percentage of NanoTiB2 particles on tribological & mechanical behaviour of 6061-T6 Al alloy nano-surface composite layer prepared via friction stir process

    Directory of Open Access Journals (Sweden)

    V. Kishan

    2017-02-01

    Full Text Available The aim of present study is to analyze the influence of volume percentage (vol.% of nano-sized particles (TiB2: average size is 35 nm on microstructure, mechanical and tribological behavior of 6061-T6 Al alloy surface nano composite prepared via Friction stir process (FSP. The microstructure of the fabricated surface nanocomposites is examined using optical microscopy (OM and scanning electron microscope (SEM for distribution of TiB2 nano reinforcement particles, thickness of nano composite layer formed on the Aluminum alloy substrate and fracture features. The depth of surface nano composite layer is measured as 3683.82 μm along the cross section of stir zone of nano composite perpendicular to FSP. It was observed that increase in volume percentage of TiB2 particles, the microhardness is increased up to 132 Hv and it is greater than as-received Al alloy's microhardness (104 Hv. It is also observed that at 4 volume percentage higher tensile properties exhibited as compared with the 2 and 8 vol. %. It is found that high wear resistance exhibited at 4 volume percentage as-compared with the 2 and 8 vol. %. The observed wear and mechanical properties are interrelated with microstructure, fractography and worn morphology.

  13. Determination of uranium isotopic composition and {sup 236}U content of soil samples and hot particles using inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, S.F. [Radiation Physics and Chemistry Problems Inst., Minsk (Belarus); Becker, J.S. [Central Department for Analytical Chemistry, Research Centre Juelich (Germany)

    2001-07-01

    As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The {sup 236}U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF-ICP-MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4 x 10{sup -4} and 10{sup -3} counts per atom were achieved for {sup 238}U in DF-ICP-QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH{sup +}/U{sup +} was 1.2 x 10{sup -4} and 1.4 x 10{sup -4}, respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 {mu}g L{sup -1} NBS U-020 standard solution was 0.11% ({sup 238}U/{sup 235}U) and 1.4% ({sup 236}U/{sup 238}U) using a MicroMist nebulizer and 0.25% ({sup 235}U/{sup 238}U) and 1.9% ({sup 236}U/{sup 238}U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the {sup 236}U/{sup 238}U ratio ranged from 10{sup -5} to 10{sup -3}. Results obtained with ICP-MS, {alpha}- and {gamma}-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples. (orig.)

  14. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples

    Science.gov (United States)

    Czuba, Jonathan A.; Straub, Timothy D.; Curran, Christopher A.; Landers, Mark N.; Domanski, Marian M.

    2015-01-01

    Laser-diffraction technology, recently adapted for in-stream measurement of fluvial suspended-sediment concentrations (SSCs) and particle-size distributions (PSDs), was tested with a streamlined (SL), isokinetic version of the Laser In-Situ Scattering and Transmissometry (LISST) for measuring volumetric SSCs and PSDs ranging from 1.8-415 µm in 32 log-spaced size classes. Measured SSCs and PSDs from the LISST-SL were compared to a suite of 22 datasets (262 samples in all) of concurrent suspended-sediment and streamflow measurements using a physical sampler and acoustic Doppler current profiler collected during 2010-12 at 16 U.S. Geological Survey streamflow-gaging stations in Illinois and Washington (basin areas: 38 – 69,264 km2). An unrealistically low computed effective density (mass SSC / volumetric SSC) of 1.24 g/ml (95% confidence interval: 1.05-1.45 g/ml) provided the best-fit value (R2 = 0.95; RMSE = 143 mg/L) for converting volumetric SSC to mass SSC for over 2 orders of magnitude of SSC (12-2,170 mg/L; covering a substantial range of SSC that can be measured by the LISST-SL) despite being substantially lower than the sediment particle density of 2.67 g/ml (range: 2.56-2.87 g/ml, 23 samples). The PSDs measured by the LISST-SL were in good agreement with those derived from physical samples over the LISST-SL's measureable size range. Technical and operational limitations of the LISST-SL are provided to facilitate the collection of more accurate data in the future. Additionally, the spatial and temporal variability of SSC and PSD measured by the LISST-SL is briefly described to motivate its potential for advancing our understanding of suspended-sediment transport by rivers.

  15. Heteronuclear Micro-Helmholtz Coil Facilitates µm-Range Spatial and Sub-Hz Spectral Resolution NMR of nL-Volume Samples on Customisable Microfluidic Chips.

    Directory of Open Access Journals (Sweden)

    Nils Spengler

    Full Text Available We present a completely revised generation of a modular micro-NMR detector, featuring an active sample volume of ∼ 100 nL, and an improvement of 87% in probe efficiency. The detector is capable of rapidly screening different samples using exchangeable, application-specific, MEMS-fabricated, microfluidic sample containers. In contrast to our previous design, the sample holder chips can be simply sealed with adhesive tape, with excellent adhesion due to the smooth surfaces surrounding the fluidic ports, and so withstand pressures of ∼2.5 bar, while simultaneously enabling high spectral resolution up to 0.62 Hz for H2O, due to its optimised geometry. We have additionally reworked the coil design and fabrication processes, replacing liquid photoresists by dry film stock, whose final thickness does not depend on accurate volume dispensing or precise levelling during curing. We further introduced mechanical alignment structures to avoid time-intensive optical alignment of the chip stacks during assembly, while we exchanged the laser-cut, PMMA spacers by diced glass spacers, which are not susceptible to melting during cutting. Doing so led to an overall simplification of the entire fabrication chain, while simultaneously increasing the yield, due to an improved uniformity of thickness of the individual layers, and in addition, due to more accurate vertical positioning of the wirebonded coils, now delimited by a post base plateau. We demonstrate the capability of the design by acquiring a 1H spectrum of ∼ 11 nmol sucrose dissolved in D2O, where we achieved a linewidth of 1.25 Hz for the TSP reference peak. Chemical shift imaging experiments were further recorded from voxel volumes of only ∼ 1.5 nL, which corresponded to amounts of just 1.5 nmol per voxel for a 1 M concentration. To extend the micro-detector to other nuclei of interest, we have implemented a trap circuit, enabling heteronuclear spectroscopy, demonstrated by two 1H/13C 2D HSQC

  16. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland: Volume 2, Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S.; Martino, L.; Patton, T.

    1995-03-01

    J-Field encompasses about 460 acres at the southern end of the Gunpowder Neck Peninsula in the Edgewood Area of APG (Figure 2.1). Since World War II, the Edgewood Area of APG has been used to develop, manufacture, test, and destroy chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). For the purposes of this project, J-Field has been divided into eight geographic areas or facilities that are designated as areas of concern (AOCs): the Toxic Burning Pits (TBP), the White Phosphorus Burning Pits (WPP), the Riot Control Burning Pit (RCP), the Robins Point Demolition Ground (RPDG), the Robins Point Tower Site (RPTS), the South Beach Demolition Ground (SBDG), the South Beach Trench (SBT), and the Prototype Building (PB). The scope of this project is to conduct a remedial investigation/feasibility study (RI/FS) and ecological risk assessment to evaluate the impacts of past disposal activities at the J-Field site. Sampling for the RI will be carried out in three stages (I, II, and III) as detailed in the FSP. A phased approach will be used for the J-Field ecological risk assessment (ERA).

  17. A rheo-optical apparatus for real time kinetic studies on shear-induced alignment of self-assembled soft matter with small sample volumes

    Science.gov (United States)

    Laiho, Ari; Ikkala, Olli

    2007-01-01

    In soft materials, self-assembled nanoscale structures can allow new functionalities but a general problem is to align such local structures aiming at monodomain overall order. In order to achieve shear alignment in a controlled manner, a novel type of rheo-optical apparatus has here been developed that allows small sample volumes and in situ monitoring of the alignment process during the shear. Both the amplitude and orientation angles of low level linear birefringence and dichroism are measured while the sample is subjected to large amplitude oscillatory shear flow. The apparatus is based on a commercial rheometer where we have constructed a flow cell that consists of two quartz teeth. The lower tooth can be set in oscillatory motion whereas the upper one is connected to the force transducers of the rheometer. A custom made cylindrical oven allows the operation of the flow cell at elevated temperatures up to 200 °C. Only a small sample volume is needed (from 9 to 25 mm3), which makes the apparatus suitable especially for studying new materials which are usually obtainable only in small quantities. Using this apparatus the flow alignment kinetics of a lamellar polystyrene-b-polyisoprene diblock copolymer is studied during shear under two different conditions which lead to parallel and perpendicular alignment of the lamellae. The open device geometry allows even combined optical/x-ray in situ characterization of the alignment process by combining small-angle x-ray scattering using concepts shown by Polushkin et al. [Macromolecules 36, 1421 (2003)].

  18. Ultra-trace plutonium determination in small volume seawater by sector field inductively coupled plasma mass spectrometry with application to Fukushima seawater samples.

    Science.gov (United States)

    Bu, Wenting; Zheng, Jian; Guo, Qiuju; Aono, Tatsuo; Tagami, Keiko; Uchida, Shigeo; Tazoe, Hirofumi; Yamada, Masatoshi

    2014-04-11

    Long-term monitoring of Pu isotopes in seawater is required for assessing Pu contamination in the marine environment from the Fukushima Dai-ichi Nuclear Power Plant accident. In this study, we established an accurate and precise analytical method based on anion-exchange chromatography and SF-ICP-MS. This method was able to determine Pu isotopes in seawater samples with small volumes (20-60L). The U decontamination factor was 3×10(7)-1×10(8), which provided sufficient removal of interfering U from the seawater samples. The estimated limits of detection for (239)Pu and (240)Pu were 0.11fgmL(-1) and 0.08fgmL(-1), respectively, which corresponded to 0.01mBqm(-3) for (239)Pu and 0.03mBqm(-3) for (240)Pu when a 20L volume of seawater was measured. We achieved good precision (2.9%) and accuracy (0.8%) for measurement of the (240)Pu/(239)Pu atom ratio in the standard Pu solution with a (239)Pu concentration of 11fgmL(-1) and (240)Pu concentration of 2.7fgmL(-1). Seawater reference materials were used for the method validation and both the (239+240)Pu activities and (240)Pu/(239)Pu atom ratios agreed well with the expected values. Surface and bottom seawater samples collected off Fukushima in the western North Pacific since March 2011 were analyzed. Our results suggested that there was no significant variation of the Pu distribution in seawater in the investigated areas compared to the distribution before the accident. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Sampling of suspended particulate matter using particle traps in the Rhône River: Relevance and representativeness for the monitoring of contaminants.

    Science.gov (United States)

    Masson, M; Angot, H; Le Bescond, C; Launay, M; Dabrin, A; Miège, C; Le Coz, J; Coquery, M

    2018-05-10

    Monitoring hydrophobic contaminants in surface freshwaters requires measuring contaminant concentrations in the particulate fraction (sediment or suspended particulate matter, SPM) of the water column. Particle traps (PTs) have been recently developed to sample SPM as cost-efficient, easy to operate and time-integrative tools. But the representativeness of SPM collected with PTs is not fully understood, notably in terms of grain size distribution and particulate organic carbon (POC) content, which could both skew particulate contaminant concentrations. The aim of this study was to evaluate the representativeness of SPM characteristics (i.e. grain size distribution and POC content) and associated contaminants (i.e. polychlorinated biphenyls, PCBs; mercury, Hg) in samples collected in a large river using PTs for differing hydrological conditions. Samples collected using PTs (n = 74) were compared with samples collected during the same time period by continuous flow centrifugation (CFC). The grain size distribution of PT samples shifted with increasing water discharge: the proportion of very fine silts (2-6 μm) decreased while that of coarse silts (27-74 μm) increased. Regardless of water discharge, POC contents were different likely due to integration by PT of high POC-content phytoplankton blooms or low POC-content flood events. Differences in PCBs and Hg concentrations were usually within the range of analytical uncertainties and could not be related to grain size or POC content shifts. Occasional Hg-enriched inputs may have led to higher Hg concentrations in a few PT samples (n = 4) which highlights the time-integrative capacity of the PTs. The differences of annual Hg and PCB fluxes calculated either from PT samples or CFC samples were generally below 20%. Despite some inherent limitations (e.g. grain size distribution bias), our findings suggest that PT sampling is a valuable technique to assess reliable spatial and temporal trends of particulate

  20. Examination of quantitative accuracy of PIXE analysis for atmospheric aerosol particle samples. PIXE analysis of NIST air particulate on filter media

    International Nuclear Information System (INIS)

    Saitoh, Katsumi; Sera, Koichiro

    2005-01-01

    In order to confirm accuracy of the direct analysis of filter samples containing atmospheric aerosol particles collected on a polycarbonate membrane filter by PIXE, we carried out PIXE analysis on a National Institute of Standards and Technology (NIST, USA) air particulate on filter media (SRM 2783). For 16 elements with NIST certified values determined by PIXE analysis - Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb - quantitative values were 80-110% relative to NIST certified values except for Na, Al, Si and Ni. Quantitative values of Na, Al and Si were 140-170% relative to NIST certified values, which were all high, and Ni was 64%. One possible reason why the quantitative values of Na, Al and Si were higher than the NIST certified values could be the difference in the X-ray spectrum analysis method used. (author)

  1. Novel system using microliter order sample volume for measuring arterial radioactivity concentrations in whole blood and plasma for mouse PET dynamic study.

    Science.gov (United States)

    Kimura, Yuichi; Seki, Chie; Hashizume, Nobuya; Yamada, Takashi; Wakizaka, Hidekatsu; Nishimoto, Takahiro; Hatano, Kentaro; Kitamura, Keishi; Toyama, Hiroshi; Kanno, Iwao

    2013-11-21

    This study aimed to develop a new system, named CD-Well, for mouse PET dynamic study. CD-Well allows the determination of time-activity curves (TACs) for arterial whole blood and plasma using 2-3 µL of blood per sample; the minute sample size is ideal for studies in small animals. The system has the following merits: (1) measures volume and radioactivity of whole blood and plasma separately; (2) allows measurements at 10 s intervals to capture initial rapid changes in the TAC; and (3) is compact and easy to handle, minimizes blood loss from sampling, and delay and dispersion of the TAC. CD-Well has 36 U-shaped channels. A drop of blood is sampled into the opening of the channel and stored there. After serial sampling is completed, CD-Well is centrifuged and scanned using a flatbed scanner to define the regions of plasma and blood cells. The length measured is converted to volume because the channels have a precise and uniform cross section. Then, CD-Well is exposed to an imaging plate to measure radioactivity. Finally, radioactivity concentrations are computed. We evaluated the performance of CD-Well in in vitro measurement and in vivo (18)F-fluorodeoxyglucose and [(11)C]2-carbomethoxy-3β-(4-fluorophenyl) tropane studies. In in vitro evaluation, per cent differences (mean±SE) from manual measurement were 4.4±3.6% for whole blood and 4.0±3.5% for plasma across the typical range of radioactivity measured in mouse dynamic study. In in vivo studies, reasonable TACs were obtained. The peaks were captured well, and the time courses coincided well with the TAC derived from PET imaging of the heart chamber. The total blood loss was less than 200 µL, which had no physiological effect on the mice. CD-Well demonstrates satisfactory performance, and is useful for mouse PET dynamic study.

  2. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Science.gov (United States)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max L.; Christensen, Lance E.; Kelly, James F.

    2017-05-01

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of 2 picomoles at a 1 Hz data rate.

  3. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Energy Technology Data Exchange (ETDEWEB)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max; Christensen, Lance; Kelly, James F.

    2017-05-05

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L ~ 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of ~2 picomoles at a 1 Hz data rate.

  4. Extension of a dynamic headspace multi-volatile method to milliliter injection volumes with full sample evaporation: Application to green tea.

    Science.gov (United States)

    Ochiai, Nobuo; Sasamoto, Kikuo; Tsunokawa, Jun; Hoffmann, Andreas; Okanoya, Kazunori; MacNamara, Kevin

    2015-11-20

    An extension of multi-volatile method (MVM) technology using the combination of a standard dynamic headspace (DHS) configuration, and a modified DHS configuration incorporating an additional vacuum module, was developed for milliliter injection volume of aqueous sample with full sample evaporation. A prior step involved investigation of water management by weighing of the water residue in the adsorbent trap. The extended MVM for 1 mL aqueous sample consists of five different DHS method parameter sets including choice of the replaceable adsorbent trap. An initial two DHS sampling sets at 25°C with the standard DHS configuration using a carbon-based adsorbent trap target very volatile solutes with high vapor pressure (>10 kPa) and volatile solutes with moderate vapor pressure (1-10 kPa). Subsequent three DHS sampling sets at 80°C with the modified DHS configuration using a Tenax TA trap target solutes with low vapor pressure (88%) for 17 test aroma compounds and moderate recoveries (44-71%) for 4 test compounds. The method showed good linearity (r(2)>0.9913) and high sensitivity (limit of detection: 0.1-0.5 ng mL(-1)) even with MS scan mode. The improved sensitivity of the method was demonstrated with analysis of a wide variety of aroma compounds in brewed green tea. Compared to the original 100 μL MVM procedure, this extension to 1 mL MVM allowed detection of nearly twice the number of aroma compounds, including 18 potent aroma compounds from top-note to base-note (e.g. 2,3-butanedione, coumarin, furaneol, guaiacol, cis-3-hexenol, linalool, maltol, methional, 3-methyl butanal, 2,3,5-trimethyl pyrazine, and vanillin). Sensitivity for 23 compounds improved by a factor of 3.4-15 under 1 mL MVM conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Method of estimating maximum VOC concentration in void volume of vented waste drums using limited sampling data: Application in transuranic waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Connolly, M.J.

    1995-01-01

    A test program has been conducted at the Idaho National Engineering Laboratory to demonstrate that the concentration of volatile organic compounds (VOCs) within the innermost layer of confinement in a vented waste drum can be estimated using a model incorporating diffusion and permeation transport principles as well as limited waste drum sampling data. The model consists of a series of material balance equations describing steady-state VOC transport from each distinct void volume in the drum. The primary model input is the measured drum headspace VOC concentration. Model parameters are determined or estimated based on available process knowledge. The model effectiveness in estimating VOC concentration in the headspace of the innermost layer of confinement was examined for vented waste drums containing different waste types and configurations. This paper summarizes the experimental measurements and model predictions in vented transuranic waste drums containing solidified sludges and solid waste

  6. Depth Distribution Studies of Carbon in Steel Surfaces by Means of Charged Particle Activation Analysis with an Account of Heat and Diffusion Effects in the Sample

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Lorenzen, J [AB Atomenergi, Nykoeping (Sweden); Witalis, E [Swedish National Defence Research Inst., Stockholm (Sweden)

    1972-05-15

    Depth distribution studies of carbon in steel and iron were carried out in the concentration range 0.05-1 %, using proton activation analysis. Surface content studies were performed in the concentration range 0.01-1 % using deuteron activation analysis. The following reactions were utilized: {sup 12}C(p,{gamma}){sup 13}N and {sup 12}C(d,n){sup 13}N Evaluations of depth distribution were based on resonances in the excitation function. The carbon content was determined with the aid of the positron emitter, {sup 13}N, using either single-peak or coincidence measurements. The heat dissipation in the irradiated region of the samples was calculated, and the temperature rise was measured using thermocouples. The temperature distribution within the hot zone subjected to irradiation by charged particles, together with the temperature distribution around this zone, was studied in order to estimate any effect this might have on the carbon diffusion. A device for automatic sample exchange which is remotely controlled is described.

  7. Colorimetric assay for on-the-spot alcoholic strength sensing in spirit samples based on dual-responsive lanthanide coordination polymer particles with ratiometric fluorescence

    International Nuclear Information System (INIS)

    Deng, Jingjing; Shi, Guoyue; Zhou, Tianshu

    2016-01-01

    This study demonstrates a new strategy for colorimetric detection of alcoholic strength (AS) in spirit samples based on dual-responsive lanthanide infinite coordination polymer (Ln-ICP) particles with ratiometric fluorescence. The ICP used in this study are composed of two components: one is the supramolecular Ln-ICP network formed by the coordination between the ligand 2,2’-thiodiacetic acid (TDA) and central metal ion Eu"3"+; and the other is a fluorescent dye, i.e., coumarin 343 (C343), both as the cofactor ligand and as the sensitizer, doped into the Ln-ICP network through self-adaptive chemistry. Upon being excited at 300 nm, the red fluorescence of Ln-ICP network itself at 617 nm is highly enhanced due to the concomitant energy transfer from C343 to Eu"3"+, while the fluorescence of C343 at 495 nm is supressed. In pure ethanol solvent, the as-formed C343@Eu-TDA is well dispersed and quite stable. However, the addition of water into ethanolic dispersion of C343@Eu-TDA destructs Eu-TDA network structure, resulting in the release of C343 from ICP network into the solvent. Consequently, the fluorescence of Eu-TDA turns off and the fluorescence of C343 turns on, leading to the fluorescent color change of the dispersion from red to blue, which constitutes a new mechanism for colorimetric sensing of AS in commercial spirit samples. With the method developed here, we could clearly distinguish the AS of different spirit samples within a wide linear range from 10% vol to 100% vol directly by “naked eye” with the help of UV-lamp (365 nm). This study not only offers a new method for on-the-spot visible detection of AS, but also provides a strategy for dual-responsive sensing mode by rational designing the optical properties of the Ln-ICP network and the guest, respectively. - Highlights: • Dual responsive lanthanide coordination polymer particles C343@Eu-TDA were synthesized. • The guest molecular coumarin 343 sensitized the luminescence of Eu-TDA network

  8. Colorimetric assay for on-the-spot alcoholic strength sensing in spirit samples based on dual-responsive lanthanide coordination polymer particles with ratiometric fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jingjing, E-mail: jjdeng@des.ecnu.edu.cn [School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Shi, Guoyue [Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Zhou, Tianshu, E-mail: tszhou@des.ecnu.edu.cn [School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China)

    2016-10-26

    This study demonstrates a new strategy for colorimetric detection of alcoholic strength (AS) in spirit samples based on dual-responsive lanthanide infinite coordination polymer (Ln-ICP) particles with ratiometric fluorescence. The ICP used in this study are composed of two components: one is the supramolecular Ln-ICP network formed by the coordination between the ligand 2,2’-thiodiacetic acid (TDA) and central metal ion Eu{sup 3+}; and the other is a fluorescent dye, i.e., coumarin 343 (C343), both as the cofactor ligand and as the sensitizer, doped into the Ln-ICP network through self-adaptive chemistry. Upon being excited at 300 nm, the red fluorescence of Ln-ICP network itself at 617 nm is highly enhanced due to the concomitant energy transfer from C343 to Eu{sup 3+}, while the fluorescence of C343 at 495 nm is supressed. In pure ethanol solvent, the as-formed C343@Eu-TDA is well dispersed and quite stable. However, the addition of water into ethanolic dispersion of C343@Eu-TDA destructs Eu-TDA network structure, resulting in the release of C343 from ICP network into the solvent. Consequently, the fluorescence of Eu-TDA turns off and the fluorescence of C343 turns on, leading to the fluorescent color change of the dispersion from red to blue, which constitutes a new mechanism for colorimetric sensing of AS in commercial spirit samples. With the method developed here, we could clearly distinguish the AS of different spirit samples within a wide linear range from 10% vol to 100% vol directly by “naked eye” with the help of UV-lamp (365 nm). This study not only offers a new method for on-the-spot visible detection of AS, but also provides a strategy for dual-responsive sensing mode by rational designing the optical properties of the Ln-ICP network and the guest, respectively. - Highlights: • Dual responsive lanthanide coordination polymer particles C343@Eu-TDA were synthesized. • The guest molecular coumarin 343 sensitized the luminescence of Eu

  9. The ATLAS3D project - I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria

    Science.gov (United States)

    Cappellari, Michele; Emsellem, Eric; Krajnović, Davor; McDermid, Richard M.; Scott, Nicholas; Verdoes Kleijn, G. A.; Young, Lisa M.; Alatalo, Katherine; Bacon, R.; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie

    2011-05-01

    The ATLAS3D project is a multiwavelength survey combined with a theoretical modelling effort. The observations span from the radio to the millimetre and optical, and provide multicolour imaging, two-dimensional kinematics of the atomic (H I), molecular (CO) and ionized gas (Hβ, [O III] and [N I]), together with the kinematics and population of the stars (Hβ, Fe5015 and Mg b), for a carefully selected, volume-limited (1.16 × 105 Mpc3) sample of 260 early-type (elliptical E and lenticular S0) galaxies (ETGs). The models include semi-analytic, N-body binary mergers and cosmological simulations of galaxy formation. Here we present the science goals for the project and introduce the galaxy sample and the selection criteria. The sample consists of nearby (D 15°) morphologically selected ETGs extracted from a parent sample of 871 galaxies (8 per cent E, 22 per cent S0 and 70 per cent spirals) brighter than MK statistically representative of the nearby galaxy population. We present the size-luminosity relation for the spirals and ETGs and show that the ETGs in the ATLAS3D sample define a tight red sequence in a colour-magnitude diagram, with few objects in the transition from the blue cloud. We describe the strategy of the SAURON integral field observations and the extraction of the stellar kinematics with the pPXF method. We find typical 1σ errors of ΔV≈ 6 km s-1, Δσ≈ 7 km s-1, Δh3≈Δh4≈ 0.03 in the mean velocity, the velocity dispersion and Gauss-Hermite (GH) moments for galaxies with effective dispersion σe≳ 120 km s-1. For galaxies with lower σe (≈40 per cent of the sample) the GH moments are gradually penalized by pPXF towards zero to suppress the noise produced by the spectral undersampling and only V and σ can be measured. We give an overview of the characteristics of the other main data sets already available for our sample and of the ongoing modelling projects.

  10. Fundamental study of single biomass particle combustion

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, M.

    2013-06-01

    This thesis is a comprehensive study of single biomass particle combustion. The effect of particle shape and size and operating conditions on biomass conversion characteristics were investigated experimentally and theoretically. The experimental samples were divided in two groups: particles with regular shapes (spheres and cylinders) and particles with irregular shapes (almost flake-like). A CAMSIZER analyser (Retsch Technology GMBH) was used to determine the size and shape of the particles via Dynamical Digital Image Processing. The experiments were performed in a single particle reactor under well-defined conditions, and the complete combustion processes were recorded as video sequences by a CCD camera installed in the set-up. One of the project objectives is to simulate conditions reasonably close to the conditions in a power plant boiler, i.e., reasonably high temperatures (up to 1600 deg. C) and varying oxygen concentrations in the 5 to 20% range. A one-dimensional mathematical model was used to simulate all the intraparticle conversion processes (drying, recondensation, devolatilisation, char gasification/oxidation and heat/mass/momentum transfer) within single particles of different shapes and size under various conditions. The model also predicts the flame layer domain of a single particle. The model was validated by experimental results under different conditions; good agreement between the model predictions and the experimental data was observed. Both the experimental and modelling results showed that cylindrical particles lose mass faster than spherical particles of a similar volume (mass) and that the burnout time is reduced by increasing the particle aspect ratio (surface area to volume ratio). Very similar conversion times were observed for cylindrical particles with nearly identical surface area to volume ratios. Similar conversion times were also observed for two size classes of pulverised particles (with irregular shapes) made from the same type of

  11. Highly efficient electrocatalytic vapor generation of methylmercury based on the gold particles deposited glassy carbon electrode: A typical application for sensitive mercury speciation analysis in fish samples.

    Science.gov (United States)

    Shi, Meng-Ting; Yang, Xin-An; Qin, Li-Ming; Zhang, Wang-Bing

    2018-09-26

    A gold particle deposited glassy carbon electrode (Au/GCE) was first used in electrochemical vapor generation (ECVG) technology and demonstrated to have excellent catalytic property for the electrochemical conversion process of aqueous mercury, especially for methylmercury (CH 3 Hg + ), to gaseous mercury. Systematical research has shown that the highly consistent or distinct difference between the atomic fluorescence spectroscopy signals of CH 3 Hg + and Hg 2+ can be achieved by controlling the electrolytic parameters of ECVG. Hereby, a new green and accurate method for mercury speciation analysis based on the distinguishing electrochemical reaction behavior of Hg 2+ and CH 3 Hg +  on the modified electrode was firstly established. Furthermore, electrochemical impedance spectra and the square wave voltammetry displayed that the ECVG reaction of CH 3 Hg +  may belong to the electrocatalytic mechanism. Under the selected conditions, the limits of detection of Hg 2+ and CH 3 Hg +  are 5.3 ng L -1 and 4.4 ng L -1 for liquid samples and 0.53 pg mg -1 and 0.44 pg mg -1 for solid samples, respectively. The precision of the 5 measurements is less than 6% within the concentration of Hg 2+ and CH 3 Hg +  ranging from 0.2 to 15.0 μg L -1 . The accuracy and practicability of the proposed method was verified by analyzing the mercury content in the certified reference material and several fish as well as water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Sample size requirements for one-year treatment effects using deep gray matter volume from 3T MRI in progressive forms of multiple sclerosis.

    Science.gov (United States)

    Kim, Gloria; Chu, Renxin; Yousuf, Fawad; Tauhid, Shahamat; Stazzone, Lynn; Houtchens, Maria K; Stankiewicz, James M; Severson, Christopher; Kimbrough, Dorlan; Quintana, Francisco J; Chitnis, Tanuja; Weiner, Howard L; Healy, Brian C; Bakshi, Rohit

    2017-11-01

    The subcortical deep gray matter (DGM) develops selective, progressive, and clinically relevant atrophy in progressive forms of multiple sclerosis (PMS). This patient population is the target of active neurotherapeutic development, requiring the availability of outcome measures. We tested a fully automated MRI analysis pipeline to assess DGM atrophy in PMS. Consistent 3D T1-weighted high-resolution 3T brain MRI was obtained over one year in 19 consecutive patients with PMS [15 secondary progressive, 4 primary progressive, 53% women, age (mean±SD) 50.8±8.0 years, Expanded Disability Status Scale (median, range) 5.0, 2.0-6.5)]. DGM segmentation applied the fully automated FSL-FIRST pipeline ( http://fsl.fmrib.ox.ac.uk ). Total DGM volume was the sum of the caudate, putamen, globus pallidus, and thalamus. On-study change was calculated using a random-effects linear regression model. We detected one-year decreases in raw [mean (95% confidence interval): -0.749 ml (-1.455, -0.043), p = 0.039] and annualized [-0.754 ml/year (-1.492, -0.016), p = 0.046] total DGM volumes. A treatment trial for an intervention that would show a 50% reduction in DGM brain atrophy would require a sample size of 123 patients for a single-arm study (one-year run-in followed by one-year on-treatment). For a two-arm placebo-controlled one-year study, 242 patients would be required per arm. The use of DGM fraction required more patients. The thalamus, putamen, and globus pallidus, showed smaller effect sizes in their on-study changes than the total DGM; however, for the caudate, the effect sizes were somewhat larger. DGM atrophy may prove efficient as a short-term outcome for proof-of-concept neurotherapeutic trials in PMS.

  13. Radioactive particle resuspension research experiments on the Hanford Reservation

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1977-02-01

    Experiments were conducted from 1972 to 1975 at several Hanford Reservation study sites to determine whether radioactive particles from these sites were resuspended and transported by wind and to determine, if possible, any interrelationships between wind speed, direction, airborne soil, and levels of radioactivity on airborne particles. Samples of airborne particles were collected with high volume air samplers and cascade particle impactors using both upwind and downwind air sampling towers. Most samples were analyzed for 137 Cs; some samples were analyzed for 239 Pu, 238 Pu and 241 Am; a few samples were analyzed for 90 Sr. This report summarizes measured air concentration ranges for these radionuclides at the study sites and compares air concentrations with fallout levels measured in 300 Area near the Reservation boundary

  14. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Science.gov (United States)

    Tu, Peijun; Johnston, Murray V.

    2017-06-01

    Formation of secondary organic aerosol (SOA) is initiated by the oxidation of volatile organic compounds (VOCs) in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process) to be distinguished from those produced by particle phase reaction (a volume-limited process). In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O / C) ratio and carbon oxidation state (OSc) were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases). Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased), the average O / C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes important.

  15. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Directory of Open Access Journals (Sweden)

    P. Tu

    2017-06-01

    Full Text Available Formation of secondary organic aerosol (SOA is initiated by the oxidation of volatile organic compounds (VOCs in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process to be distinguished from those produced by particle phase reaction (a volume-limited process. In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O ∕ C ratio and carbon oxidation state (OSc were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases. Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased, the average O ∕ C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes

  16. Analytical Results for 35 Mine-Waste Tailings Cores and Six Bed-Sediment Samples, and An Estimate of the Volume of Contaminated Material at Buckeye Meadow on Upper Basin Creek, Northern Jefferson County, Montana

    Science.gov (United States)

    Fey, David L.; Church, Stan E.; Finney, Christopher J.

    1999-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acid-generation and toxic-metal solubilization. Flotation-mill tailings in the meadow below the Buckeye mine, hereafter referred to as the Buckeye mill-tailings site, have been identified as significant contributors to water quality degradation of Basin Creek, Montana. Basin Creek is one of three tributaries to the Boulder River in the study area; bed sediments and waters draining from the Buckeye mine have also been implicated. Geochemical analysis of 35 tailings cores and six bed-sediment samples was undertaken to determine the concentrations of Ag, As, Cd, Cu, Pb,and Zn present in these materials. These elements are environmentally significant, in that they can be toxic to fish and/or the invertebrate organisms that constitute their food. A suite of one-inch cores of dispersed flotation-mill tailings and underlying premining material was taken from a large, flat area north of Basin Creek near the site of the Buckeye mine. Thirty-five core samples were taken and divided into 204 subsamples. The samples were analyzed by ICP-AES (inductively coupled plasma-atomic emission spectroscopy) using a mixed-acid digestion. Results of the core analyses show that the elements listed above are present at moderate to very high concentrations (arsenic to 63,000 ppm, silver to 290 ppm, cadmium to 370 ppm, copper to 4,800 ppm, lead to 93,000 ppm, and zinc to 23,000 ppm). Volume calculations indicate that an estimated 8,400 metric tons of contaminated material are present at the site. Six bed-sediment samples were also subjected to the mixed-acid total digestion, and a warm (50°C) 2M HCl-1% H2O2 leach and analyzed by ICP-AES. Results indicate that bed sediments of Basin Creek are only slightly impacted by past mining above the Buckeye-Enterprise complex, moderately impacted at the upper (eastern

  17. Natural radionuclides in the environment. A contribution for the localization and characterization of natural hot particles in solid samples; Natuerliche Radionuklide in der Umwelt. Ein Beitrag zur Lokalisierung und Charakterisierung natuerlicher Heisser Teilchen in festen Proben

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, A.

    2006-07-01

    In the present thesis appearance, spreading, origin, and mineralogical properties of natural hot particles are studied and the radioecological relevance of these particles judged. For this first relevent quaestions on radioactivity in the environment and on hot particles are theoretically treated. In the following detailedly the method of the autoradiography and solid-state track detectors is considered, which make possible to quote the precise position, the number and distribution of radioactive particles on the cutting area or surface of a sample. Basing on these methodical considerations by laboratory experiments determined track pattern formations of alpha emitters are documentated and interpreted. Starting from the knowledge obtained from this in the further part of the thesis a detection technique is developed, by means of which it is possible, to determine and mark the position of natural hot particles in sold samples. Thereafter follows a description of the electron-microscopical studies for the identification of the localized natural hot particles. Using the developed detection technique, as well as the electron-microscopical methods, a broad spectrum of samples - anthropogeneous depositions (industrial residues, industry products, by-products) and natural depositions (rocks, sediments, minerals) - is studied.

  18. Waste Slurry Particle Properties for Use in Slurry Flow Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jewett, J. R.; Conrads, T. J.; Julyk, L. J.; Reynolds, D. A.; Jensen, L.; Kirch, N. W.; Estey, S. D.; Bechtold, D. B.; Callaway III, W. S.; Cooke, G. A.; Herting, D. L.; Person, J. C.; Duncan, J. B.; Onishi, Y.; Tingey, J. M.

    2003-02-26

    Hanford's tank farm piping system must be substantially modified to deliver high-level wastes from the underground storage tanks to the Waste Treatment Plant now under construction. Improved knowledge of the physical properties of the solids was required to support the design of the modified system. To provide this additional knowledge, particle size distributions for composite samples from seven high-level waste feed tanks were measured using two different laser lightscattering particle size analyzers. These measurements were made under a variety of instrumental conditions, including various flow rates through the sample loop, various stirring rates in the sample reservoir, and before and after subjecting the particles to ultrasonic energy. A mean value over all the tanks of 4.2 {micro}m was obtained for the volume-based median particle size. Additional particle size information was obtained from sieving tests, settling tests and microscopic observations.

  19. Magnetic particle translation as a surrogate measure for synovial fluid mechanics.

    Science.gov (United States)

    Shah, Yash Y; Maldonado-Camargo, Lorena; Patel, Neal S; Biedrzycki, Adam H; Yarmola, Elena G; Dobson, Jon; Rinaldi, Carlos; Allen, Kyle D

    2017-07-26

    The mechanics of synovial fluid vary with disease progression, but are difficult to quantify quickly in a clinical setting due to small sample volumes. In this study, a novel technique to measure synovial fluid mechanics using magnetic nanoparticles is introduced. Briefly, microspheres embedded with superparamagnetic iron oxide nanoparticles, termed magnetic particles, are distributed through a 100μL synovial fluid sample. Then, a permanent magnet inside a protective sheath is inserted into the synovial fluid sample. Magnetic particles translate toward the permanent magnet and the percentage of magnetic particles collected by the magnet in a given time can be related to synovial fluid viscosity. To validate this relationship, magnetic particle translation was demonstrated in three phases. First, magnetic particle translation was assessed in glycerol solutions with known viscosities, demonstrating that as fluid viscosity increased, magnetic particle translation decreased. Next, the relationship between magnetic particle translation and synovial fluid viscosity was assessed using bovine synovial fluid that was progressively degenerated via ultrasonication. Here, particle collection in a given amount of time increased as fluid degenerated, demonstrating that the relationship between particle collection and fluid mechanics holds in non-Newtonian synovial fluid. Finally, magnetic particle translation was used to assess differences between healthy and OA affected joints in equine synovial fluid. Here, particle collection in a given time was higher in OA joints relative to healthy horses (pfluid mechanics in limited volumes of synovial fluid sample. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Experimental studies on the group ignition of a cloud of coal particles: Volume 2, Pyrolysis and ignition modeling. Final report, August 15, 1988--October 15, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Annamalai, K.; Ryan, W.

    1992-01-01

    The primary objectives of this work are to formulate a model to simulate transient coal pyrolysis, ignition, and combustion of a cloud of coal particles and to compare results of the program with those reported in the literature elsewhere.

  1. Air sampling in the workplace

    International Nuclear Information System (INIS)

    Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R.; Wiblin, C.M.; McGuire, S.A.

    1993-09-01

    This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC's Regulatory Guide 8.25, Revision 1, ''Air sampling in the Workplace.'' That guide addresses air sampling to meet the requirements in NRC's regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed

  2. Active particles

    CERN Document Server

    Degond, Pierre; Tadmor, Eitan

    2017-01-01

    This volume collects ten surveys on the modeling, simulation, and applications of active particles using methods ranging from mathematical kinetic theory to nonequilibrium statistical mechanics. The contributing authors are leading experts working in this challenging field, and each of their chapters provides a review of the most recent results in their areas and looks ahead to future research directions. The approaches to studying active matter are presented here from many different perspectives, such as individual-based models, evolutionary games, Brownian motion, and continuum theories, as well as various combinations of these. Applications covered include biological network formation and network theory; opinion formation and social systems; control theory of sparse systems; theory and applications of mean field games; population learning; dynamics of flocking systems; vehicular traffic flow; and stochastic particles and mean field approximation. Mathematicians and other members of the scientific commu...

  3. Data extraction system for underwater particle holography

    Science.gov (United States)

    Nebrensky, J. J.; Craig, Gary; Hobson, Peter R.; Lampitt, R. S.; Nareid, Helge; Pescetto, A.; Trucco, Andrea; Watson, John

    2000-08-01

    Pulsed laser holography in an extremely powerful technique for the study of particle fields as it allows instantaneous, non-invasive high- resolution recording of substantial volumes. By relaying the real image one can obtain the size, shape, position and - if multiple exposures are made - velocity of every object in the recorded field. Manual analysis of large volumes containing thousands of particles is, however, an enormous and time-consuming task, with operator fatigue an unpredictable source of errors. Clearly the value of holographic measurements also depends crucially on the quality of the reconstructed image: not only will poor resolution degrade the size and shape measurements, but aberrations such as coma and astigmatism can change the perceived centroid of a particle, affecting position and velocity measurements. For large-scale applications of particle field holography, specifically the in situ recording of marine plankton with Holocam, we have developed an automated data extraction system that can be readily switched between the in-line and off-axis geometries and provides optimised reconstruction from holograms recorded underwater. As a videocamera is automatically stepped through the 200 by 200 by 1000mm sample volume, image processing and object tracking routines locate and extract particle images for further classification by a separate software module.

  4. Household vacuum cleaners vs. the high-volume surface sampler for collection of carpet dust samples in epidemiologic studies of children

    Directory of Open Access Journals (Sweden)

    Buffler Patricia A

    2008-02-01

    Full Text Available Abstract Background Levels of pesticides and other compounds in carpet dust can be useful indicators of exposure in epidemiologic studies, particularly for young children who are in frequent contact with carpets. The high-volume surface sampler (HVS3 is often used to collect dust samples in the room in which the child had spent the most time. This method can be expensive and cumbersome, and it has been suggested that an easier method would be to remove dust that had already been collected with the household vacuum cleaner. However, the household vacuum integrates exposures over multiple rooms, some of which are not relevant to the child's exposure, and differences in vacuuming equipment and practices could affect the chemical concentration data. Here, we compare levels of pesticides and other compounds in dust from household vacuums to that collected using the HVS3. Methods Both methods were used in 45 homes in California. HVS3 samples were collected in one room, while the household vacuum had typically been used throughout the home. The samples were analyzed for 64 organic compounds, including pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls (PCBs, using GC/MS in multiple ion monitoring mode; and for nine metals using conventional microwave-assisted acid digestion combined with ICP/MS. Results The methods agreed in detecting the presence of the compounds 77% to 100% of the time (median 95%. For compounds with less than 100% agreement, neither method was consistently more sensitive than the other. Median concentrations were similar for most analytes, and Spearman correlation coefficients were 0.60 or higher except for allethrin (0.15 and malathion (0.24, which were detected infrequently, and benzo(kfluoranthene (0.55, benzo(apyrene (0.55, PCB 105 (0.54, PCB 118 (0.54, and PCB 138 (0.58. Assuming that the HVS3 method is the "gold standard," the extent to which the household vacuum cleaner method yields relative risk

  5. Elementary particle theory

    CERN Document Server

    Stefanovich, Eugene

    2018-01-01

    This book introduces notation, terminology, and basic ideas of relativistic quantum theories. The discussion proceeds systematically from the principle of relativity and postulates of quantum logics to the construction of Poincaré invariant few-particle models of interaction and scattering. It is the first of three volumes formulating a consistent relativistic quantum theory of interacting charged particles.

  6. Concepts of particle physics

    International Nuclear Information System (INIS)

    Gottfried, K.; Weisskopf, V.F.

    1984-01-01

    This volume elucidates basic and well-established concepts of particle physics for the autodidact who is curious about recent developments in fundamental physics. Elementary quantum mechanics is a background must. Contents, abridged: The evolution of the particle concept before the advent of quantum mechanics. Nonrelativistic quantum mechanics and atomic physics. Relativistic quantum theory. Nuclear phenomena. Subnuclear phenomena. Index

  7. Cerenkov fiber sampling calorimeters

    International Nuclear Information System (INIS)

    Arrington, K.; Kefford, D.; Kennedy, J.; Pisani, R.; Sanzeni, C.; Segall, K.; Wall, D.; Winn, D.R.; Carey, R.; Dye, S.; Miller, J.; Sulak, L.; Worstell, W.; Efremenko, Y.; Kamyshkov, Y.; Savin, A.; Shmakov, K.; Tarkovsky, E.

    1994-01-01

    Clear optical fibers were used as a Cerenkov sampling media in Pb (electromagnetic) and Cu (hadron) absorbers in spaghetti calorimeters, for high rate and high radiation dose experiments, such as the forward region of high energy colliders. The fiber axes were aligned close to the direction of the incident particles (1 degree--7 degree). The 7 λ deep hadron tower contained 2.8% by volume 1.5 mm diameter core clear plastic fibers. The 27 radiation length deep electromagnetic towers had packing fractions of 6.8% and 7.2% of 1 mm diameter core quartz fibers as the active Cerenkov sampling medium. The energy resolution on electrons and pions, energy response, pulse shapes and angular studies are presented

  8. Switching field of partially exchange-coupled particles

    International Nuclear Information System (INIS)

    Oliva, M.I.; Bertorello, H.R.; Bercoff, P.G.

    2004-01-01

    The magnetization reversal of partially exchange-coupled particles is studied in detail. The starting point is the observation of a complicated phenomenology in the irreversible susceptibility and FORC distribution functions of Ba hexaferrite samples obtained by means of different sintering conditions. Several peaks in the first-order reversal curve (FORC) distribution functions were identified and associated with clusters with different number of particles. The switching fields of these clusters were related to an effective anisotropy constant Keff that depends on the number of particles in the cluster. Keff is linked to the exchange-coupled volume between two neighboring particles and as a weighted mean between the anisotropy constants of the coupled and uncoupled volumes. By using the modified Brown's equation αex=0.322 is obtained.In order to interpret these results, the switching field of a two-particle system with partial exchange coupling is studied. It is assumed that the spins reorientation across the contact plane between the particles is like a Bloch wall. The energy of the system is written in terms of the fraction of volume affected by exchange coupling and the switching fields for both particles are calculated. At small interaction volume fraction each particle inverts its magnetization independently from the other. As the fraction of exchange-coupled volume increases, cooperative effects appear and the two particles invert their magnetization in a cooperative way.The proposed model allows to interpret for the first time the empirical factor αex in terms of physical arguments and also explain the details observed in the FORC distribution function

  9. Optimization of solid state fermentation of sugar cane by Aspergillus niger considering particles size effect

    Energy Technology Data Exchange (ETDEWEB)

    Echevarria, J.; Rodriguez, L.J.A.; Delgado, G. (Instituto Cubano de Investigaciones de los Derivados de la Cana de Azucar (ICIDCA), La Habana (Cuba)); Espinosa, M.E. (Centro Nacional de Investigaciones Cientificas, La Habana (Cuba))

    1991-01-01

    The protein enrichment of sugar cane by solid state fermentation employing Aspergillus niger was optimized in a packed bed column using a two Factor Central Composit Design {alpha} = 2, considering as independent factors the particle diameter corresponding to different times of grinding for a sample and the air flow rate. It was significative for the air flow rate (optimum 4.34 VKgM) and the particle diameter (optimum 0.136 cm). The average particle size distribution, shape factor, specific surface, volume-surface mean diameter, number of particles, real and apparent density and holloweness for the different times of grinding were determined, in order to characterize the samples. (orig.).

  10. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution — ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  11. Statistical examination of particle in a turbulent, non-dilute particle suspension flow experimental measurements

    International Nuclear Information System (INIS)

    Souza, R.C.; Jones, B.G.

    1986-01-01

    An experimental study of particles suspended in fully developed turbulent water flow in a vertical pipe was done. Three series of experiments were conducted to investigate the statistical behaviour of particles in nondilute turbulent suspension flow, for two particle densities and particle sizes, and for several particle volume loadings ranging from 0 to 1 percent. The mean free fall velocity of the particles was determined at these various particle volume loadings, and the phenomenon of cluster formation was observed. The precise volume loading which gives the maximum relative settling velocity was observed to depend on particle density and size. (E.G.) [pt

  12. Hippocampal volume is positively associated with behavioural inhibition (BIS) in a large community-based sample of mid-life adults: the PATH through life study.

    Science.gov (United States)

    Cherbuin, Nicolas; Windsor, Tim D; Anstey, Kaarin J; Maller, Jerome J; Meslin, Chantal; Sachdev, Perminder S

    2008-09-01

    The fields of personality research and neuropsychology have developed with very little overlap. Gray and McNaughton were among the first to recognize that personality traits must have neurobiological correlates and developed models relating personality factors to brain structures. Of particular note was their description of associations between conditioning, inhibition and activation of behaviours, and specific neural structures such as the hippocampus, amygdala and the prefrontal cortex. The aim of this study was to determine whether personality constructs representing the behavioural inhibition and activation systems (BIS/BAS) were associated with volumetric measures of the hippocampus and amygdala in humans. Amygdalar and hippocampal volumes were measured in 430 brain scans of cognitively intact community-based volunteers. Linear associations between brain volumes and the BIS/BAS measures were assessed using multiple regression, controlling for age, sex, education, intra-cranial and total brain volume. Results showed that hippocampal volumes were positively associated with BIS sensitivity and to a lesser extent with BAS sensitivity. No association was found between amygdalar volume and either the BIS or BAS. These findings add support to the model of Gray and McNaughton, which proposes a role of the hippocampus in the regulation of defensive/approach behaviours and trait anxiety but suggest an absence of associations between amygdala volume and BIS/BAS measures.

  13. Loss in lung volume and changes in the immune response demonstrate disease progression in African green monkeys infected by small-particle aerosol and intratracheal exposure to Nipah virus.

    Directory of Open Access Journals (Sweden)

    Yu Cong

    2017-04-01

    Full Text Available Nipah virus (NiV is a paramyxovirus (genus Henipavirus that emerged in the late 1990s in Malaysia and has since been identified as the cause of sporadic outbreaks of severe febrile disease in Bangladesh and India. NiV infection is frequently associated with severe respiratory or neurological disease in infected humans with transmission to humans through inhalation, contact or consumption of NiV contaminated foods. In the work presented here, the development of disease was investigated in the African Green Monkey (AGM model following intratracheal (IT and, for the first time, small-particle aerosol administration of NiV. This study utilized computed tomography (CT and magnetic resonance imaging (MRI to temporally assess disease progression. The host immune response and changes in immune cell populations over the course of disease were also evaluated. This study found that IT and small-particle administration of NiV caused similar disease progression, but that IT inoculation induced significant congestion in the lungs while disease following small-particle aerosol inoculation was largely confined to the lower respiratory tract. Quantitative assessment of changes in lung volume found up to a 45% loss in IT inoculated animals. None of the subjects in this study developed overt neurological disease, a finding that was supported by MRI analysis. The development of neutralizing antibodies was not apparent over the 8-10 day course of disease, but changes in cytokine response in all animals and activated CD8+ T cell numbers suggest the onset of cell-mediated immunity. These studies demonstrate that IT and small-particle aerosol infection with NiV in the AGM model leads to a severe respiratory disease devoid of neurological indications. This work also suggests that extending the disease course or minimizing the impact of the respiratory component is critical to developing a model that has a neurological component and more accurately reflects the human

  14. Loss in lung volume and changes in the immune response demonstrate disease progression in African green monkeys infected by small-particle aerosol and intratracheal exposure to Nipah virus.

    Science.gov (United States)

    Cong, Yu; Lentz, Margaret R; Lara, Abigail; Alexander, Isis; Bartos, Christopher; Bohannon, J Kyle; Hammoud, Dima; Huzella, Louis; Jahrling, Peter B; Janosko, Krisztina; Jett, Catherine; Kollins, Erin; Lackemeyer, Matthew; Mollura, Daniel; Ragland, Dan; Rojas, Oscar; Solomon, Jeffrey; Xu, Ziyue; Munster, Vincent; Holbrook, Michael R

    2017-04-01

    Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that emerged in the late 1990s in Malaysia and has since been identified as the cause of sporadic outbreaks of severe febrile disease in Bangladesh and India. NiV infection is frequently associated with severe respiratory or neurological disease in infected humans with transmission to humans through inhalation, contact or consumption of NiV contaminated foods. In the work presented here, the development of disease was investigated in the African Green Monkey (AGM) model following intratracheal (IT) and, for the first time, small-particle aerosol administration of NiV. This study utilized computed tomography (CT) and magnetic resonance imaging (MRI) to temporally assess disease progression. The host immune response and changes in immune cell populations over the course of disease were also evaluated. This study found that IT and small-particle administration of NiV caused similar disease progression, but that IT inoculation induced significant congestion in the lungs while disease following small-particle aerosol inoculation was largely confined to the lower respiratory tract. Quantitative assessment of changes in lung volume found up to a 45% loss in IT inoculated animals. None of the subjects in this study developed overt neurological disease, a finding that was supported by MRI analysis. The development of neutralizing antibodies was not apparent over the 8-10 day course of disease, but changes in cytokine response in all animals and activated CD8+ T cell numbers suggest the onset of cell-mediated immunity. These studies demonstrate that IT and small-particle aerosol infection with NiV in the AGM model leads to a severe respiratory disease devoid of neurological indications. This work also suggests that extending the disease course or minimizing the impact of the respiratory component is critical to developing a model that has a neurological component and more accurately reflects the human condition.

  15. Indoor Air '93. Particles, microbes, radon

    International Nuclear Information System (INIS)

    Kalliokoski, P.; Jantunen, M.; Seppaenen, O.

    1993-01-01

    The conference was held in Helsinki, Finland, July 4-8, 1993. The proceedings of the conference were published in 6 volumes. The main topics of the volume 5 are: (1) particles, fibers and dust - their concentrations and sources in buildings, (2) Health effects of particles, (3) Need of asbestos replacement and encapsulation, (4) Seasonal and temporal variation of fungal and bacterial concentration, (5) The evaluation of microbial contamination of buildings, (6) New methods and comparison of different methods for microbial sampling and evaluation, (7) Microbes in building materials and HVAC-systems, (8) Prevention of microbial contamination in buildings, (9) Dealing with house dust mites, (10) Radon measurements and surveys in different countries, (11) The identification of homes with high radon levels, (12) The measurement methods and prediction of radon levels in buildings, and (13) Prevention of radon penetration from the soil

  16. Strength of mortar containing rubber tire particle

    Science.gov (United States)

    Jusoh, M. A.; Abdullah, S. R.; Adnan, S. H.

    2018-04-01

    The main focus in this investigation is to determine the strength consist compressive and tensile strength of mortar containing rubber tire particle. In fact, from the previous study, the strength of mortar containing waste rubber tire in mortar has a slightly decreases compare to normal mortar. In this study, rubber tire particle was replacing on volume of fine aggregate with 6%. 9% and 12%. The sample were indicated M0 (0%), M6 (6%), M9 (9%) and M12 (12%). In this study, two different size of sample used with cube 100mm x 100mm x 100mm for compressive strength and 40mm x 40mm x 160mm for flexural strength. Morphology test was conducted by using Scanning electron microscopic (SEM) were done after testing compressive strength test. The concrete sample were cured for day 3, 7 and 28 before testing. Results compressive strength and flexural strength of rubber mortar shown improved compare to normal mortar.

  17. Dilution effects on ultrafine particle emissions from Euro 5 and Euro 6 diesel and gasoline vehicles

    Science.gov (United States)

    Louis, Cédric; Liu, Yao; Martinet, Simon; D'Anna, Barbara; Valiente, Alvaro Martinez; Boreave, Antoinette; R'Mili, Badr; Tassel, Patrick; Perret, Pascal; André, Michel

    2017-11-01

    Dilution and temperature used during sampling of vehicle exhaust can modify particle number concentration and size distribution. Two experiments were performed on a chassis dynamometer to assess exhaust dilution and temperature on particle number and particle size distribution for Euro 5 and Euro 6 vehicles. In the first experiment, the effects of dilution (ratio from 8 to 4 000) and temperature (ranging from 50 °C to 150 °C) on particle quantification were investigated directly from tailpipe for a diesel and a gasoline Euro 5 vehicles. In the second experiment, particle emissions from Euro 6 diesel and gasoline vehicles directly sampled from the tailpipe were compared to the constant volume sampling (CVS) measurements under similar sampling conditions. Low primary dilutions (3-5) induced an increase in particle number concentration by a factor of 2 compared to high primary dilutions (12-20). Low dilution temperatures (50 °C) induced 1.4-3 times higher particle number concentration than high dilution temperatures (150 °C). For the Euro 6 gasoline vehicle with direct injection, constant volume sampling (CVS) particle number concentrations were higher than after the tailpipe by a factor of 6, 80 and 22 for Artemis urban, road and motorway, respectively. For the same vehicle, particle size distribution measured after the tailpipe was centred on 10 nm, and particles were smaller than the ones measured after CVS that was centred between 50 nm and 70 nm. The high particle concentration (≈106 #/cm3) and the growth of diameter, measured in the CVS, highlighted aerosol transformations, such as nucleation, condensation and coagulation occurring in the sampling system and this might have biased the particle measurements.

  18. Volume Tables and Point-Sampling Factors for Shortleaf Pines in Plantation on Abandoned Fields in Tennessee, Alabama, and Georgia Highlands

    Science.gov (United States)

    Glendon W. Smalley; David R. Bower

    1968-01-01

    The tables and equations published here provide ways to estimate total and merchantable cubic-foot volumes, both inside and outside bark, of shortleaf pines (Pinus echinata Mill.) planted on abandoned fields in the Ridge and Valley, Cumberland Plateau, Eastern Highland Rim, and Western Highland Rim regions of Tennessee, Alabama, and Georgia (fig. 1). There already are...

  19. Tomographic PIV: particles versus blobs

    International Nuclear Information System (INIS)

    Champagnat, Frédéric; Cornic, Philippe; Besnerais, Guy Le; Plyer, Aurélien; Cheminet, Adam; Leclaire, Benjamin

    2014-01-01

    We present an alternative approach to tomographic particle image velocimetry (tomo-PIV) that seeks to recover nearly single voxel particles rather than blobs of extended size. The baseline of our approach is a particle-based representation of image data. An appropriate discretization of this representation yields an original linear forward model with a weight matrix built with specific samples of the system’s point spread function (PSF). Such an approach requires only a few voxels to explain the image appearance, therefore it favors much more sparsely reconstructed volumes than classic tomo-PIV. The proposed forward model is general and flexible and can be embedded in a classical multiplicative algebraic reconstruction technique (MART) or a simultaneous multiplicative algebraic reconstruction technique (SMART) inversion procedure. We show, using synthetic PIV images and by way of a large exploration of the generating conditions and a variety of performance metrics, that the model leads to better results than the classical tomo-PIV approach, in particular in the case of seeding densities greater than 0.06 particles per pixel and of PSFs characterized by a standard deviation larger than 0.8 pixels. (paper)

  20. A new model for the simplification of particle counting data

    Directory of Open Access Journals (Sweden)

    M. F. Fadal

    2012-06-01

    Full Text Available This paper proposes a three-parameter mathematical model to describe the particle size distribution in a water sample. The proposed model offers some conceptual advantages over two other models reported on previously, and also provides a better fit to the particle counting data obtained from 321 water samples taken over three years at a large South African drinking water supplier. Using the data from raw water samples taken from a moderately turbid, large surface impoundment, as well as samples from the same water after treatment, typical ranges of the model parameters are presented for both raw and treated water. Once calibrated, the model allows the calculation and comparison of total particle number and volumes over any randomly selected size interval of interest.

  1. 3D imaging of magnetic particles using the 7-channel magnetoencephalography device without pre-magnetization or displacement of the sample

    Energy Technology Data Exchange (ETDEWEB)

    Polikarpov, M.A., E-mail: polikarpov_imp@mail.ru [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Ustinin, M.N.; Rykunov, S.D. [Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino (Russian Federation); Yurenya, A.Y. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Naurzakov, S.P.; Grebenkin, A.P. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Panchenko, V.Y. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation)

    2017-04-01

    SQUID-based magnetoencephalography device was used for the measurement of a magnetic noise generated by ferrofluid in the stationary standing vial. It was found that a free surface of the ferrofluid generates spontaneous magnetic field sufficient to detect the presence of nanoparticles in the experimental setup. The spatial distribution of elementary magnetic sources was reconstructed by the frequency-pattern analysis of multichannel time series. The localization of ferrofluids was performed based on the analysis of quasirandom time series in two cases of oscillation source. One of them was infrasound from outer noise, and another one was the human heartbeat. These results are prospective for 3D imaging of magnetic particles without pre-magnetization. - Highlights: • A new method of imaging of magnetic nanoparticles in human body is proposed. • The method uses quasi-random fluctuations of the particles in geomagnetic field. • The use of heartbeats as a source of such fluctuations is demonstrated.

  2. Sample preparation

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Sample preparation prior to HPLC analysis is certainly one of the most important steps to consider in trace or ultratrace analysis. For many years scientists have tried to simplify the sample preparation process. It is rarely possible to inject a neat liquid sample or a sample where preparation may not be any more complex than dissolution of the sample in a given solvent. The last process alone can remove insoluble materials, which is especially helpful with the samples in complex matrices if other interactions do not affect extraction. Here, it is very likely a large number of components will not dissolve and are, therefore, eliminated by a simple filtration process. In most cases, the process of sample preparation is not as simple as dissolution of the component interest. At times, enrichment is necessary, that is, the component of interest is present in very large volume or mass of material. It needs to be concentrated in some manner so a small volume of the concentrated or enriched sample can be injected into HPLC. 88 refs

  3. Effect of Particle Shape on Mechanical Behaviors of Rocks: A Numerical Study Using Clumped Particle Model

    Science.gov (United States)

    Rong, Guan; Liu, Guang; Zhou, Chuang-bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677

  4. Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model.

    Science.gov (United States)

    Rong, Guan; Liu, Guang; Hou, Di; Zhou, Chuang-Bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied.

  5. Sampling of ore

    International Nuclear Information System (INIS)

    Boehme, R.C.; Nicholas, B.L.

    1987-01-01

    This invention relates to a method of an apparatus for ore sampling. The method includes the steps of periodically removing a sample of the output material of a sorting machine, weighing each sample so that each is of the same weight, measuring a characteristic such as the radioactivity, magnetivity or the like of each sample, subjecting at least an equal portion of each sample to chemical analysis to determine the mineral content of the sample and comparing the characteristic measurement with desired mineral content of the chemically analysed portion of the sample to determine the characteristic/mineral ratio of the sample. The apparatus includes an ore sample collector, a deflector for deflecting a sample of ore particles from the output of an ore sorter into the collector and means for moving the deflector from a first position in which it is clear of the particle path from the sorter to a second position in which it is in the particle path at predetermined time intervals and for predetermined time periods to deflect the sample particles into the collector. The apparatus conveniently includes an ore crusher for comminuting the sample particle, a sample hopper means for weighing the hopper, a detector in the hopper for measuring a characteristic such as radioactivity, magnetivity or the like of particles in the hopper, a discharge outlet from the hopper and means for feeding the particles from the collector to the crusher and then to the hopper

  6. Assessment of the effect of population and diary sampling methods on estimation of school-age children exposure to fine particles.

    Science.gov (United States)

    Che, W W; Frey, H Christopher; Lau, Alexis K H

    2014-12-01

    Population and diary sampling methods are employed in exposure models to sample simulated individuals and their daily activity on each simulation day. Different sampling methods may lead to variations in estimated human exposure. In this study, two population sampling methods (stratified-random and random-random) and three diary sampling methods (random resampling, diversity and autocorrelation, and Markov-chain cluster [MCC]) are evaluated. Their impacts on estimated children's exposure to ambient fine particulate matter (PM2.5 ) are quantified via case studies for children in Wake County, NC for July 2002. The estimated mean daily average exposure is 12.9 μg/m(3) for simulated children using the stratified population sampling method, and 12.2 μg/m(3) using the random sampling method. These minor differences are caused by the random sampling among ages within census tracts. Among the three diary sampling methods, there are differences in the estimated number of individuals with multiple days of exposures exceeding a benchmark of concern of 25 μg/m(3) due to differences in how multiday longitudinal diaries are estimated. The MCC method is relatively more conservative. In case studies evaluated here, the MCC method led to 10% higher estimation of the number of individuals with repeated exposures exceeding the benchmark. The comparisons help to identify and contrast the capabilities of each method and to offer insight regarding implications of method choice. Exposure simulation results are robust to the two population sampling methods evaluated, and are sensitive to the choice of method for simulating longitudinal diaries, particularly when analyzing results for specific microenvironments or for exposures exceeding a benchmark of concern. © 2014 Society for Risk Analysis.

  7. Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 2A, Analytical data packages September--October 1991 sampling

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, L.A.; Rogers, V.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Riordan, C.J. [Metcalf and Eddy, Inc. (United States); Eidson, G.W.; Herring, M.K. [Normandeau Associates, Inc. (United States)

    1992-08-01

    Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991. This document is compiled solely of experimental data obtained from the sampling procedures.

  8. Analysis of water and soil from the wetlands of Upper Three Runs Creek. Volume 2B: Analytical data packages, January--February 1992 sampling

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, L.A.; Rogers, V.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Riordan, C.J. [Metcalf and Eddy (United States); Eidson, G.W.; Herring, M.K. [Normandeau Associates, Inc., Aiken, SC (United States)

    1992-08-01

    Shallow water and soils along Upper Three Runs Creek (UTRC) and associated wetlands between SRS Road F and Cato Road were sampled for nonradioactive and radioactive constituents. The sampling program is associated with risk evaluations being performed for various regulatory documents in these areas of the Savannah River Site (SRS). WSRC selected fifty sampling sites bordering the Mixed Waste Management Facility (MWMF), F- and H-Area Seepage Basins (FHSB), and the Sanitary Landfill (SL). The analytical results from this study provided information on the water and soil quality in UTRC and its associated wetlands. The analytical results from this investigation indicated that the primary constituents and radiological indicators detected in the shallow water and soils were tritium, gross alpha, radium 226, total radium and strontium 90. This investigation involved the collection of shallow water samples during the Fall of 1991 and the Spring of 1992 at fifty (50) sampling locations. Sampling was performed during these periods to incorporate high and low water table periods. Samples were collected from three sections along UTRC denoted as Phase I (MWMF), Phase II (FHSB) and Phase III (SL). One vibracored soil sample was also collected in each phase during the Fall of 1991. This document is compiled of experimental data obtained from the sampling procedures.

  9. Note: A 102 dB dynamic-range charge-sampling readout for ionizing particle/radiation detectors based on an application-specific integrated circuit (ASIC)

    Science.gov (United States)

    Pullia, A.; Zocca, F.; Capra, S.

    2018-02-01

    An original technique for the measurement of charge signals from ionizing particle/radiation detectors has been implemented in an application-specific integrated circuit form. The device performs linear measurements of the charge both within and beyond its output voltage swing. The device features an unprecedented spectroscopic dynamic range of 102 dB and is suitable for high-resolution ion and X-γ ray spectroscopy. We believe that this approach may change a widespread paradigm according to which no high-resolution spectroscopy is possible when working close to or beyond the limit of the preamplifier's output voltage swing.

  10. Synthesis and characterization of poly[N-isopropylacrylamide-co-1-(N,N-bis-carboxymethyl)amino-3-allylglycerol] grafted to magnetic nano-particles for the extraction and determination of fluvoxamine in biological and pharmaceutical samples.

    Science.gov (United States)

    Panahi, Homayon Ahmad; Tavanaei, Yasamin; Moniri, Elham; Keshmirizadeh, Elham

    2014-06-06

    In this research, a novel method is reported for the surface grafting of N-isopropylacrylamide as a thermosensitive agent and 1-(N,N-bis-carboxymethyl)amino-3-allylglycerol with an affinity toward fluvoxamine onto magnetic nano-particles modified by 3-mercaptopropyltrimethoxysilane. The grafted nano-particles were characterized by Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetric analysis. The surface morphology was studied with scanning electron microscopy and transmission electron microscopy. The resulting grafted nano-particles were used in solid phase extraction and determining of trace fluvoxamine in biological human fluids and pharmaceutical samples. The profile of the fluvoxamine uptake by the modified magnetic nano-particles indicated good accessibility of the active sites in the grafted copolymer. It was found that the adsorption behavior could be fitted by the Freundlich adsorption isotherm model. It was observed that a maximum amount of fluvoxamine was released at a temperature above the lower critical solution temperature of the polymer. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Analysis of multivariate stochastic signals sampled by on-line particle analyzers: Application to the quantitative assessment of occupational exposure to NOAA in multisource industrial scenarios (MSIS)

    International Nuclear Information System (INIS)

    De Ipiña, J M López; Vaquero, C; Gutierrez-Cañas, C; Pui, D Y H

    2015-01-01

    In multisource industrial scenarios (MSIS) coexist NOAA generating activities with other productive sources of airborne particles, such as parallel processes of manufacturing or electrical and diesel machinery. A distinctive characteristic of MSIS is the spatially complex distribution of aerosol sources, as well as their potential differences in dynamics, due to the feasibility of multi-task configuration at a given time. Thus, the background signal is expected to challenge the aerosol analyzers at a probably wide range of concentrations and size distributions, depending of the multisource configuration at a given time. Monitoring and prediction by using statistical analysis of time series captured by on-line particle analyzersin industrial scenarios, have been proven to be feasible in predicting PNC evolution provided a given quality of net signals (difference between signal at source and background). However the analysis and modelling of non-consistent time series, influenced by low levels of SNR (Signal-Noise Ratio) could build a misleading basis for decision making. In this context, this work explores the use of stochastic models based on ARIMA methodology to monitor and predict exposure values (PNC). The study was carried out in a MSIS where an case study focused on the manufacture of perforated tablets of nano-TiO 2 by cold pressing was performed. (paper)

  12. Dispersal of sticky particles

    Science.gov (United States)

    Reddy, Ramana; Kumar, Sanjeev

    2007-12-01

    In this paper, we show through simulations that when sticky particles are broken continually, particles are dispersed into fine dust only if they are present in a narrow range of volume fractions. The upper limit of this range is 0.20 in the 2D and 0.10 in the 3D space. An increase in the dimensionality of space reduces the upper limit nearly by a factor of two. This scaling holds for dispersal of particles in hyperdimensional space of dimensions up to ten, the maximum dimension studied in this work. The maximum values of volume fractions obtained are significantly lower than those required for close packing and random packing of discs in 2D and spheres in 3D space. These values are also smaller than those required for critical phenomena of cluster percolation. The results obtained are attributed to merger cascades of sticky particles, triggered by breakup events. A simple theory that incorporates this cascade is developed to quantitatively explain the observed scaling of the upper limit with the dimensionality of space. The theory also captures the dynamics of the dispersal process in the corresponding range of particle volume fractions. The theory suggests that cascades of order one and two predominantly decide the upper limit for complete dispersal of particles.

  13. Use of alkaline or enzymatic sample pretreatment prior to characterization of gold nanoparticles in animal tissue by single-particle ICPMS

    DEFF Research Database (Denmark)

    Löschner, Katrin; Brabrand, Myung Suk Jung; Sloth, Jens Jørgen

    2014-01-01

    , not much is known about the applicability of spICPMS for determination of NPs in complex matrices such as biological tissues. In the present study, alkaline and enzymatic treatments were applied to solubilize spleen samples from rats, which had been administered 60-nm gold nanoparticles (Au......NPs) intravenously. The results showed that similar size distributions of AuNPs were obtained independent of the sample preparation method used. Furthermore, the quantitative results for AuNP mass concentration obtained with spICPMS following alkaline sample pretreatment coincided with results for total gold...... concentration obtained by conventional ICPMS analysis of acid-digested tissue. The recovery of AuNPs from enzymatically digested tissue, however, was approximately four times lower. Spiking experiments of blank spleen samples with AuNPs showed that the lower recovery was caused by an inferior transport...

  14. Fractal aggregation and breakup of fine particles

    Directory of Open Access Journals (Sweden)

    Li Bingru

    2016-01-01

    Full Text Available Breakup may exert a controlling influence on particle size distributions and particles either are fractured or are eroded particle-by-particle through shear. The shear-induced breakage of fine particles in turbulent conditions is investigated using Taylor-expansion moment method. Their equations have been derived in continuous form in terms of the number density function with particle volume. It suitable for future implementation in computational fluid dynamics modeling.

  15. Heavy particle radiotherapy: prospects and pitfalls

    International Nuclear Information System (INIS)

    Faju, M.R.

    1980-01-01

    The use of heavy particles in radiotherapy of tumor volumes is examined. Particles considered are protons, helium ions, heavy ions, negative pions, and fast neutrons. Advantages and disadvantages are discussed

  16. Fluidic sampling

    International Nuclear Information System (INIS)

    Houck, E.D.

    1992-01-01

    This paper covers the development of the fluidic sampler and its testing in a fluidic transfer system. The major findings of this paper are as follows. Fluidic jet samples can dependably produce unbiased samples of acceptable volume. The fluidic transfer system with a fluidic sampler in-line will transfer water to a net lift of 37.2--39.9 feet at an average ratio of 0.02--0.05 gpm (77--192 cc/min). The fluidic sample system circulation rate compares very favorably with the normal 0.016--0.026 gpm (60--100 cc/min) circulation rate that is commonly produced for this lift and solution with the jet-assisted airlift sample system that is normally used at ICPP. The volume of the sample taken with a fluidic sampler is dependant on the motive pressure to the fluidic sampler, the sample bottle size and on the fluidic sampler jet characteristics. The fluidic sampler should be supplied with fluid having the motive pressure of the 140--150 percent of the peak vacuum producing motive pressure for the jet in the sampler. Fluidic transfer systems should be operated by emptying a full pumping chamber to nearly empty or empty during the pumping cycle, this maximizes the solution transfer rate

  17. Use of an Open Port Sampling Interface Coupled to Electrospray Ionization for the On-Line Analysis of Organic Aerosol Particles

    Science.gov (United States)

    Swanson, Kenneth D.; Worth, Anne L.; Glish, Gary L.

    2018-02-01

    A simple design for an open port sampling interface coupled to electrospray ionization (OPSI-ESI) is presented for the analysis of organic aerosols. The design uses minimal modifications to a Bruker electrospray (ESI) emitter to create a continuous flow, self-aspirating open port sampling interface. Considerations are presented for introducing aerosol to the open port sampling interface including aerosol gas flow and solvent flow rates. The device has been demonstrated for use with an aerosol of nicotine as well as aerosol formed in the pyrolysis of biomass. Upon comparison with extractive electrospray ionization (EESI), this device has similar sensitivity with increased reproducibility by nearly a factor of three. The device has the form factor of a standard Bruker/Agilent ESI emitter and can be used without any further instrument modifications.

  18. A rapid, accurate and robust particle-based assay for the simultaneous screening of plasma samples for the presence of five different anti-cytokine autoantibodies

    DEFF Research Database (Denmark)

    Guldager, Daniel Kring Rasmussen; von Stemann, Jakob Hjorth; Larsen, Rune

    2015-01-01

    suitable for larger screenings. Based on confirmed antibody binding characteristics and the resultant reactivity in this multiplex assay, a classification of the c-aAb levels was suggested. The screening results of the recipients who received blood transfusions indicate that more studies are needed...... plasma samples and pooled normal immunoglobulin preparations were used to validate the assay. Plasma samples from 98 transfusion recipients, half of whom presented with febrile reactions, were tested by the assay. RESULTS: The assay detected specific and saturable immunoglobulin G (IgG) binding to each...... cytokine autoantibodies quantities in the negative plasma samples ranged between 80% and 125%. The analytical intra- and inter-assay variations were 4% and 11%, respectively. Varying c-aAb levels were detectable in the transfusion recipients. There was no difference in c-aAb frequency between the patients...

  19. Particle detection systems and methods

    Science.gov (United States)

    Morris, Christopher L.; Makela, Mark F.

    2010-05-11

    Techniques, apparatus and systems for detecting particles such as muons and neutrons. In one implementation, a particle detection system employs a plurality of drift cells, which can be for example sealed gas-filled drift tubes, arranged on sides of a volume to be scanned to track incoming and outgoing charged particles, such as cosmic ray-produced muons. The drift cells can include a neutron sensitive medium to enable concurrent counting of neutrons. The system can selectively detect devices or materials, such as iron, lead, gold, uranium, plutonium, and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can concurrently detect any unshielded neutron sources occupying the volume from neutrons emitted therefrom. If necessary, the drift cells can be used to also detect gamma rays. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  20. A study of toxic emissions from a coal-fired power plant utilizing the SNOX innovative clean coal technology demonstration. Volume 1, Sampling/results/special topics: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electric utilities. The report is organized in two volumes. Volume 1: Sampling describes the sampling effort conducted as the basis for this study; Results presents the concentration data on HAPs in the several power plant streams, and reports the results of evaluations and calculations conducted with those data; and Special Topics report on issues such as comparison of sampling methods and vapor/solid distributions of HAPs. Volume 2: Appendices include quality assurance/quality control results, uncertainty analysis for emission factors, and data sheets. This study involved measurements of a variety of substances in solid, liquid, and gaseous samples from input, output, and process streams at the Innovative Clean Coal Technology Demonstration (ICCT) of the Wet Sulfuric Acid-Selective Catalytic Reduction (SNOX) process. The SNOX demonstration is being conducted at Ohio Edison`s Niles Boiler No. 2 which uses cyclone burners to burn bituminous coal. A 35 megawatt slipstream of flue gas from the boiler is used to demonstrate SNOX. The substances measured at the SNOX process were the following: 1. Five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; 2. Acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); 3. Ammonia and cyanide; 4. Elemental carbon; 5. Radionuclides; 6. Volatile organic compounds (VOC); 7. Semi-volatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH); and 8. Aldehydes.

  1. Use of GSR particle analysis program on an analytical SEM to identify sources of emission of airborne particles

    International Nuclear Information System (INIS)

    Chan, Y.C.; Trumper, J.; Bostrom, T.

    2002-01-01

    Full text: High concentrations of airborne particles, in particular PM 10 (particulate matter 10 , but has been little used in Australia for airborne particulates. Two sets of 15 mm PM 10 samples were collected in March and April 2000 from two sites in Brisbane, one within a suburb and one next to an arterial road. The particles were collected directly onto double-sided carbon tapes with a cascade impactor attached to a high-volume PM 10 sampler. The carbon tapes were analysed in a JEOL 840 SEM equipped with a Be-window energy-dispersive X-ray detector and Moran Scientific microanalysis system. An automated Gun Shot Residue (GSR) program was used together with backscattered electron imaging to characterise and analyse individual particulates. About 6,000 particles in total were analysed for each set of impactor samples. Due to limitations of useful pixel size, only particles larger than about 0.5 μm could be analysed. The size, shape and estimated elemental composition (from Na to Pb) of the particles were subjected to non-hierarchical cluster analysis and the characteristics of the clusters were related to their possible sources of emission. Both samples resulted in similar particle clusters. The particles could be classified into three main categories non-spherical (58% of the total number of analysed particles, shape factor >1 1), spherical (15%) and 'carbonaceous' (27%, ie with unexplained % of elemental mass >75%). Non-spherical particles were mainly sea salt and soil particles, and a small amount of iron, lead and mineral dust. The spherical particles were mainly sea salt particles and flyash, and a small amount of iron, lead and secondary sulphate dust. The carbonaceous particles included carbon material mixed with secondary aerosols, roadside dust, sea salt or industrial dust. The arterial road sample also contained more roadside dust and less secondary aerosols than the suburb sample. Current limitations with this method are the minimum particle size

  2. Charged particle beams

    CERN Document Server

    Humphries, Stanley

    2013-01-01

    Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.

  3. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry. Part 2: Investigation of MO+ ions, effect of sample morphology, transport gas, and binding agents

    International Nuclear Information System (INIS)

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-01-01

    Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO + ions also yield signal spikes, but these MO + spikes generally occur at different times from their atomic ion counterparts.

  4. Synthesis and characterization of poly[1-(N,N-bis-carboxymethyl)amino-3-allylglycerol-co-dimethylacrylamide] grafted to magnetic nano-particles for extraction and determination of letrozole in biological and pharmaceutical samples.

    Science.gov (United States)

    Ahmad Panahi, Homayon; Soltani, Elham Reza; Moniri, Elham; Tamadon, Atefeh

    2013-12-15

    In this paper, a new method is reported for the surface grafting of poly[1-(N,N-bis-carboxymethyl)amino-3-allylglycerol-co-dimethylacrylamide] onto magnetic nano-particles modified by 3-mercaptopropyltrimethoxysilane. The grafted nano-sorbent was characterized by Fourier transform infrared spectroscopy, elemental analysis, thermogravimetric analysis, and scanning electron microscopy. Agglomerated nano-particles with multi-pores were used for extraction and determination of trace letrozole in human biological fluids and pharmaceutical samples. The profile of the letrozole uptake by the magnetic nano-sorbent reflected good accessibility of the active sites in the grafted polymer. Scatchard analysis revealed that the sorption capacity of the functionalized nano-sorbent was 6.27 µmol g(-1) at an optimum pH of 4. The equilibrium adsorption data of letrozole by grafted magnetic nano-sorbent were analyzed by Langmuir, Freundlich, Temkin and Redlich-Peterson models. Conformation of the experimental data in the Langmuir isotherm model indicated the homogeneous binding site of functional polymer-grafted magnetic nano-sorbent surface. Nearly 89% of letrozole was released in simulated gastric fluid, pH 1.2, in 2h and 79% in simulated intestinal fluid, pH 7.4, in 30 h. These results show the utility of the letrozole loaded- polymer grafted magnetite nano-particles for enteric drug delivery. © 2013 Elsevier B.V. All rights reserved.

  5. Particle size distribution and total solids suspension in samples monitoring of capturing water for optimization of water injection filtration system; Monitoramento da quantidade de particulas e do total de solidos em suspensao em amostras de agua de captacao

    Energy Technology Data Exchange (ETDEWEB)

    Ramalhao, Adriano Gorga; Seno, Carlos Eduardo; Ribeiro, Alice [3M do Brasil, Sumare, SP (Brazil)

    2008-07-01

    There is a wide variation in the amount of particulate material in sea water by a great number of reasons. The most well-known contaminant is the organic material derived from seaweed or fish spawning causing seasonally sensitive variations in the water quality treated and injected for enhance oil recovery. This paper presents the results of one year the water monitoring form water sampled at 30 meters deep in the Roncador field, which is located 125 km from the coast with a depth of 1290 meters. It was observed the water seasonal variation with peaks in summer and winter. The monitoring was done through particle counting and distribution analysis and total solids in suspension. It was noted that even in peak with largest amount of particles and greater quantity of solid in suspension the particles had remained concentrated in the range bellow 25 {mu}m. For that reason the life of final filter elements may vary and pre-filters are many times ineffective and sometimes even bypassed due to frequent clogging and not to do the protecting job of the final filter. (author)

  6. Apparatus for blending small particles

    International Nuclear Information System (INIS)

    Bradley, R.A.; Reese, C.R.; Sease, J.D.

    1975-01-01

    An apparatus is described for blending small particles and uniformly loading the blended particles in a receptacle. Measured volumes of various particles are simultaneously fed into a funnel to accomplish radial blending and then directed onto the apex of a conical splitter which collects the blended particles in a multiplicity of equal subvolumes. Thereafter the apparatus sequentially discharges the subvolumes for loading in a receptacle. A system for blending nuclear fuel particles and loading them into fuel rod molds is described in a preferred embodiment

  7. STEALTH: a Lagrange explicit finite difference code for solids, structural, and thermohydraulic analysis. Volume 2: sample and verification problems. Computer code manual

    International Nuclear Information System (INIS)

    Hofmann, R.

    1982-08-01

    STEALTH sample and verification problems are presented to help users become familiar with STEALTH capabilities, input, and output. Problems are grouped into articles which are completely self-contained. The pagination in each article is A.n, where A is a unique alphabetic-character article identifier and n is a sequential page number which starts from 1 on the first page of text for each article. Articles concerning new capabilities will be added as they become available. STEALTH sample and verification calculations are divided into the following general categories: transient mechanical calculations dealing with solids; transient mechanical calculations dealing with fluids; transient thermal calculations dealing with solids; transient thermal calculations dealing with fluids; static and quasi-static calculations; and complex boundary interaction calculations

  8. Rare particles

    International Nuclear Information System (INIS)

    Kutschera, W.

    1984-01-01

    The use of Accelerator Mass Spectrometry (AMS) to search for hypothetical particles and known particles of rare processes is discussed. The hypothetical particles considered include fractionally charged particles, anomalously heavy isotopes, and superheavy elements. The known particles produced in rare processes discussed include doubly-charged negative ions, counting neutrino-produced atoms in detectors for solar neutrino detection, and the spontaneous emission of 14 C from 223 Ra. 35 references

  9. Determination of proguanil and metabolites in small sample volumes of whole blood stored on filter paper by high-performance liquid chromatography.

    Science.gov (United States)

    Kolawole, J A; Taylor, R B; Moody, R R

    1995-12-01

    A method is reported for the determination of proguanil and its two metabolites cycloguanil and 4-chlorophenylbiguanide in whole blood and plasma samples obtained by thumbprick and stored dry on filter paper. The sample preparation involves liquid extraction from the filter paper and subsequent solid-phase extraction using C8 Bond-Elut cartridges. Separation and quantification is by a previously reported ion-pairing high-performance liquid chromatographic system with ODS Hypersil as stationary phase and an 50:50 acetonitrile-pH 2 phosphate buffer mobile phase containing 200 mM sodium dodecylsulphate as ion-pairing agent. The analytical characteristics of the method are reported. Representative concentrations are shown as a function of time from a human subject after ingestion of a single 200-mg dose of proguanil hydrochloride. Typical ranges of concentration detected by the proposed method in human subjects were proguanil 12-900 ng/ml, cycloguanil 16-44 ng/ml and 4-chlorophenylbiguanide 1.5-10 ng/ml in whole blood.

  10. Superparamagnetic relaxation of weakly interacting particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Tronc, Elisabeth

    1994-01-01

    The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...

  11. Measuring momentum for charged particle tomography

    Science.gov (United States)

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  12. Air sampling by pumping through a filter: effects of air flow rate, concentration, and decay of airborne substances

    OpenAIRE

    Šoštarić, Marko; Petrinec, Branko; Babić, Dinko

    2016-01-01

    This paper tackles the issue of interpreting the number of airborne particles adsorbed on a filter through which a certain volume of sampled air has been pumped. This number is equal to the product of the pumped volume and particle concentration in air, but only if the concentration is constant over time and if there is no substance decomposition on the filter during sampling. If this is not the case, one must take into account the inconstancy of the concentration and the decay law for a give...

  13. Size Distributions and Characterization of Native and Ground Samples for Toxicology Studies

    Science.gov (United States)

    McKay, David S.; Cooper, Bonnie L.; Taylor, Larry A.

    2010-01-01

    This slide presentation shows charts and graphs that review the particle size distribution and characterization of natural and ground samples for toxicology studies. There are graphs which show the volume distribution versus the number distribution for natural occurring dust, jet mill ground dust, and ball mill ground dust.

  14. Size exclusion chromatography with superficially porous particles.

    Science.gov (United States)

    Schure, Mark R; Moran, Robert E

    2017-01-13

    A comparison is made using size-exclusion chromatography (SEC) of synthetic polymers between fully porous particles (FPPs) and superficially porous particles (SPPs) with similar particle diameters, pore sizes and equal flow rates. Polystyrene molecular weight standards with a mobile phase of tetrahydrofuran are utilized for all measurements conducted with standard HPLC equipment. Although it is traditionally thought that larger pore volume is thermodynamically advantageous in SEC for better separations, SPPs have kinetic advantages and these will be shown to compensate for the loss in pore volume compared to FPPs. The comparison metrics include the elution range (smaller with SPPs), the plate count (larger for SPPs), the rate production of theoretical plates (larger for SPPs) and the specific resolution (larger with FPPs). Advantages to using SPPs for SEC are discussed such that similar separations can be conducted faster using SPPs. SEC using SPPs offers similar peak capacities to that using FPPs but with faster operation. This also suggests that SEC conducted in the second dimension of a two-dimensional liquid chromatograph may benefit with reduced run time and with equivalently reduced peak width making SPPs advantageous for sampling the first dimension by the second dimension separator. Additional advantages are discussed for biomolecules along with a discussion of optimization criteria for size-based separations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Particle detection

    International Nuclear Information System (INIS)

    Charpak, G.

    2000-01-01

    In this article G.Charpak presents the principles on which particle detection is based. Particle accelerators are becoming more and more powerful and require new detectors able to track the right particle in a huge flux of particles. The gigantic size of detectors in high energy physics is often due to the necessity of getting a long enough trajectory in a magnetic field in order to deduce from the curvature an accurate account of impulses in the reaction. (A.C.)

  16. Strange particles

    International Nuclear Information System (INIS)

    Chinowsky, W.

    1989-01-01

    Work done in the mid 1950s at Brookhaven National Laboratory on strange particles is described. Experiments were done on the Cosmotron. The author describes his own and others' work on neutral kaons, lambda and theta particles and points out the theoretical gap between predictions and experimental findings. By the end of the decade, the theory of strange particles was better understood. (UK)

  17. An experimental and computational investigation of gas/particle flow in a vertical lifter

    Energy Technology Data Exchange (ETDEWEB)

    Mathisen, Anette

    2010-07-01

    Experimental and computational investigations of dilute gas/particle flow in a vertical lifter are performed. The effect of superficial gas velocity, particle density, particle size distribution and particle loading on particle velocities, particle fluctuations and particle cross-moment have been studied experimentally using laser Doppler anemometry (LDA) and particle image velocimetry (PIV). The results from the experimental investigation is compared with the computational investigation using FluentR. The experimental measurements are performed on a lab-scale vertical lifter, consisting of a fluidizing silo and a receiving tank with a glass pipe in which the solids phase is transported. The particles are placed in the fluidization tank and transport air enters at the bottom of the silo. The transport pipe is suspended above the inlet and as the transport air passes the opening, the particles are dragged into the air flow and transported upwards to the receiving tank. Fluidizing air is used to control the particle loading in the system and supplied through a distribution plate. The test section of the transport pipe is made of glass to enable the use of the optical laser based investigation techniques, LDA and PIV. Two types of powders are used, ZrO{sub 2} and glass, each with two different particle size distributions, average diameter of 260 and 530 micron and 120 and 518 micron, respectively. The experimental techniques LDA and PIV are used to investigate a dilute gas/particle vertical flow. The two techniques are also evaluated for use on this type of flow. LDA is a single point measurement technique, which means that one point is measured at a time. The acquisition stops when a pre-set criteria is reached, this can either be based on sample number or time. A measurement spanning over the whole cross-section of the pipe consists of several points. These points makes up a cross-sectional profile. PIV on the other hand is a whole field technique and consequently

  18. A stochastic model simulating the capture of pathogenic micro-organisms by superparamagnetic particles in an isodynamic magnetic field

    International Nuclear Information System (INIS)

    Rotariu, O; Strachan, N J C; Badescu, V

    2004-01-01

    The method of immunomagnetic separation (IMS) has become an established technique to concentrate and separate animal cells, biologically active compounds and pathogenic micro-organisms from clinical, food and environmental matrices. One drawback of this technique is that the analysis is only possible for small sample volumes. We have developed a stochastic model that involves numerical simulations to optimize the process of concentration of pathogenic micro-organisms onto superparamagnetic carrier particles (SCPs) in a gradient magnetic field. Within the range of the system parameters varied in the simulations, optimal conditions favour larger particles with higher magnetite concentrations. The dependence on magnetic field intensity and gradient together with concentration of particles and micro-organisms was found to be less important for larger SCPs but these parameters can influence the values of the collision time for small particles. These results will be useful in aiding the design of apparatus for immunomagnetic separation from large volume samples

  19. Definition of a magnetic susceptibility of conglomerates with magnetite particles. Particularities of defining single particle susceptibility

    Science.gov (United States)

    Sandulyak, A. A.; Sandulyak, A. V.; Ershova, V.; Pamme, N.; Ngmasom, B.; Iles, A.

    2017-11-01

    Data of a magnetic susceptibility of ferro-and the ferrimagnetic particles of many technogenic, natural, special media are especially demanded for the solution of various tasks connected with purposeful magnetic impact on these particles. One of productive approaches to definition of a magnetic susceptibility χ of these particles consists in receiving experimental data of a susceptibility of disperse samples 〈 χ 〉 with a disperse phase of these particles. The paper expounds and analyses the results of experiments on defining (by Faraday method in a magnetic field with intensity H = 90-730 kA/m) the magnetic susceptibility 〈 χ 〉 of disperse samples (conglomerates) with a given volume ratio γ of magnetite particles (γ = 0.0065-0.25). The corresponding families of concentration and field dependences are provided alongside with discussing the applicability of linear and exponential functions to describe these dependences. We consider the possibility of defining single particles susceptibility χ (with simultaneous obtaining field dependence of this susceptibility) by the commonly used relation χ = 〈 χ 〉 /γ both at relatively small (preferable for accuracy reasons) values γ - to γ = 0.02…0.025, as well as at increased values γ - up to γ = 0.25. The data χ are provided depending on H and correlating with known data at H matter magnetic susceptibility χm (for the case when the particles are traditionally likened to balls with the characteristic for them demagnetising factor equalling 1/3) complies with the anticipated inverse function χm ∼ 1/H in the studied area H (where magnetization M expressed as M = χH reaches saturation M = Const).

  20. Determination of 210Pb by direct gamma-ray spectrometry, beta counting via 210Bi and alpha-particle spectrometry via 210Po in coal, slag and ash samples from thermal power plant

    International Nuclear Information System (INIS)

    Seslak, Bojan; Vukanac, Ivana; Kandic, Aleksandar; Durasevic, Mirjana; Eric, Milic; Jevremovic, Aleksandar

    2017-01-01

    In order to compare three different techniques and estimate radiological impact, activity concentration of 210 Pb in coal, slag and ash samples from thermal power plant 'Nikola Tesla', Serbia, were measured, and results are presented in this study. Determination of 210 Pb was carried out in three ways: using HPGe gamma spectrometer and via in-growth of 210 Po and 210 Bi by alpha-particle spectrometry and proportional counting, respectively. The results obtained for three different techniques were compared. Statistical analysis and comparison of methods were carried out by combination of Z score and χ 2 statistical tests. Tests results, as well as values of measured activities concentrations obtained by alpha and gamma spectrometry, showed that gamma spectrometry is a valid alternative to time-consuming alpha spectrometry for low level activity measurements of 210 Pb. This remark is also valid even for gamma spectrometers with poor efficiency in low energy region. (author)

  1. Particle measurement systems and methods

    Science.gov (United States)

    Steele, Paul T [Livermore, CA

    2011-10-04

    A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.

  2. Particle tracking during Ostwald ripening using time-resolved laboratory X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Werz, T., E-mail: thomas.werz@uni-ulm.de [Ulm University, Institute of Micro and Nanomaterials, Albert-Einstein-Allee 47, 89081 (Germany); Baumann, M. [Ulm University, Institute of Micro and Nanomaterials, Albert-Einstein-Allee 47, 89081 (Germany); Wolfram, U. [Ulm University, Institute of Orthopaedic Research and Biomechanics, Helmholtzstrasse 14, 89081 (Germany); Krill, C.E. [Ulm University, Institute of Micro and Nanomaterials, Albert-Einstein-Allee 47, 89081 (Germany)

    2014-04-01

    Laboratory X-ray microtomography is investigated as a method for obtaining time-resolved images of microstructural coarsening of the semisolid state of Al–5 wt.% Cu samples during Ostwald ripening. Owing to the 3D imaging capability of tomography, this technique uniquely provides access to the growth rates of individual particles, thereby not only allowing a statistical characterization of coarsening—as has long been possible by conventional metallography—but also enabling quantification of the influence of local environment on particle boundary migration. The latter information is crucial to understanding growth kinetics during Ostwald ripening at high volume fractions of the coarsening phase. Automated image processing and segmentation routines were developed to close gaps in the network of particle boundaries and to track individual particles from one annealing step to the next. The particle tracking success rate places an upper bound of only a few percent on the likelihood of segmentation errors for any given particle. The accuracy of particle size trajectories extracted from the time-resolved tomographic reconstructions is correspondingly high. Statistically averaged coarsening data and individual particle growth rates are in excellent agreement with the results of prior experimental studies and with computer simulations of Ostwald ripening. - Highlights: • Ostwald ripening in Al–5 wt.% Cu measured by laboratory X-ray microtomography • Time-resolved measurement of individual particle growth • Automated segmentation routines developed to close gaps in particle boundary network • Particle growth/shrinkage rates deviate from LSW model prediction.

  3. Development of a solid-phase extraction system modified for preconcentration of emerging contaminants in large sample volumes from rivers of the lagoon system in the city of Rio de Janeiro, Brazil.

    Science.gov (United States)

    Lopes, Vitor Sergio Almeida; Riente, Roselene Ribeiro; da Silva, Alexsandro Araújo; Torquilho, Delma Falcão; Carreira, Renato da Silva; Marques, Mônica Regina da Costa

    2016-09-15

    A single method modified for monitoring of emerging contaminants in river water was developed for large sample volumes. Water samples from rivers of the lagoon system in the city of Rio de Janeiro (Brazil) were analyzed by the SPE-HPLC-MS-TOF analytical method. Acetaminophen was detected in four rivers in the concentration range of 0.09μgL(-1) to 0.14μgL(-1). Salicylic acid was also found in the four rivers in the concentration range of 1.65μgL(-1) to 4.81μgL(-1). Bisphenol-A was detected in all rivers in the concentration range of 1.37μgL(-1) to 39.86μgL(-1). Diclofenac was found in only one river, with concentration of 0.22μgL(-1). The levels of emerging organic pollutants in the water samples of the Jacarepaguá hydrographical basin are significant. The compounds are not routinely monitored and present potential risks to environmental health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. [Determination of short-chain chlorinated paraffins in ambient air using high-volume sampling combined with high resolutimi gas chromatography-electron capture negative ion-low resolution mass spectrometry].

    Science.gov (United States)

    Shi, Loimeng; Gao, Yuan; Hou, Xiaohong; Zhang, Haijun; Zhang, Yichi; Chen, Jiping

    2016-02-01

    An analytical method for quantifying short-chain chlorinated paraffins (SCCPs) in ambient air using high-volume sampling combined with high resolution gas chromatography-electron capture negative ion-low resolution mass spectrometry ( HRGC-ECNI-LRMS) was developed. An acidified silica gel column and a basic alumina column were used to optimize the cleanup procedures. The results showed a good linearity (R2>0. 99) between the total response factors and the degree of chlorination of SCCPs in the content range of 58. 1%-63. 3%. The limits of detection (S/N ≥3) and the limits of quantification (S/N ≥ 10) were 4. 2 and 12 µg, respectively. The method detection limit (MDL) for SCCPs was 0. 34 ng/m3 (n = 7). The recoveries of SCCPs in air samples were in the range of 81. 9% to 94. 2%. It is demonstrated that the method is suitable for the quantitative analysis of SCCPs in air samples.

  5. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  6. [Relationship between atmospheric particles and rain water chemistry character].

    Science.gov (United States)

    Huo, Ming-Qun; Sun, Qian; Xie, Peng; Bai, Yu-Hua; Liu, Zhao-Rong; Li, Ji-Long; Lu, Si-Hua

    2009-11-01

    Rain and atmospheric particle samples were collected in the rural area of Taian and Shenzhen in 2007, respectively. Rain sampling was carried out during the precipitation process and several samples were got from the beginning of one precipitation to the end. The chemical character changes during precipitation and the changes of concentration of particles before and after rain were studied in this research to understand the contribution of particles on the rain chemical character and the rain-out effect for particles. The volume-weighted mean pH of rainwater in Taian was 5.97 and the total concentration of ions was 1 187.96 microeq x L(-1). The mass concentration of PM10 in Taian was 131.76 microg/m3 and that of PM2.5 was 103.84 microg/m3. The volume-weighted mean pH of rainwater in Shenzhen was 4.72 and the total concentration of ions was 175.89 microeq x L(-1). The mass concentration of PM10 in Shenzhen was 56.66 microg/m3 and that of PM2.5 was 41.52 microg/m3. During precipitation process pH and ion concentration of rain decrease and it is shown the neutralizing effect happens. The difference between rainwater of Taian and Shenzhen is due to cloud water acidity, atmospheric particles character and atmospheric acid-basic gases concentration. The clean-up effect of Na+ and Ca2+ by rain is high and which of NH4+ and NO3- is low. The clean-up effect for mass concentration, ions concentration and element concentration of particles by rain are significant.

  7. Single-Particle Soot Photometer (SP2) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-02-01

    The SP2 is an instrument that measures, in situ, the time-dependent scattering and incandescence signals produced by individual BC-containing particles as they travel through a continuous-wave laser beam. Any particle traversing the laser beam will scatter light, and the BC component of a BC-containing particle will absorb some of the laser energy until its temperature is raised to the point at which it incandesces (hereafter we adopt the standard terminology of the SP2 community and denote any substance determined by the SP2 to be BC as refractory black carbon (rBC)). The amplitude of the rBC incandescence signal is related to the amount of refractory material contained in the illuminated particle. By binning the individual incandescence signals per unit sample volume, the mass concentration [ng/m3] of rBC can be derived. By binning the individual signals by volume equivalent diameter the size distribution (dN/dlogDVED) per unit time can be derived. The rBC mass loading per unit time and the rBC size distribution unit time are the core data products produced by the SP2. Additionally, the scattering channel can be used to provide information on the rBC particle population-based mixing states within ambient aerosols. However, this data product is produced on a requested-basis since additional detailed analysis and QC/QA must be conducted.

  8. Ligandless surfactant mediated solid phase extraction combined with Fe₃O₄ nano-particle for the preconcentration and determination of cadmium and lead in water and soil samples followed by flame atomic absorption spectrometry: multivariate strategy.

    Science.gov (United States)

    Jalbani, N; Soylak, M

    2014-04-01

    In the present study, a microextraction technique combining Fe3O4 nano-particle with surfactant mediated solid phase extraction ((SM-SPE)) was successfully developed for the preconcentration/separation of Cd(II) and Pb(II) in water and soil samples. The analytes were determined by flame atomic absorption spectrometry (FAAS). The effective variables such as the amount of adsorbent (NPs), the pH, concentration of non-ionic (TX-114) and centrifugation time (min) were investigated by Plackett-Burman (PBD) design. The important variables were further optimized by central composite design (CCD). Under the optimized conditions, the detection limits (LODs) of Cd(II) and Pb(II) were 0.15 and 0.74 µg/L, respectively. The validation of the proposed procedure was checked by the analysis of certified reference materials of TMDA 53.3 fortified water and GBW07425 soil. The method was successfully applied for the determination of Cd(II) and Pb(II) in water and soil samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Particle cosmology

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The understanding of the Universe at the largest and smallest scales traditionally has been the subject of cosmology and particle physics, respectively. Studying the evolution of the Universe connects today's large scales with the tiny scales in the very early Universe and provides the link between the physics of particles and of the cosmos. This series of five lectures aims at a modern and critical presentation of the basic ideas, methods, models and observations in today's particle cosmology.

  10. Laser-induced incandescence of suspended particles as a source of excitation of dye luminescence

    CERN Document Server

    Zelensky, S

    2003-01-01

    The interaction of pulsed YAG-Nd sup 3 sup + laser radiation with submicron light-absorbing particles suspended in an aqueous solution of Rhodamine 6G is investigated experimentally. The experiments demonstrate that the laser-induced incandescence of suspended particles excites the luminescence of the dissolved dye molecules. The mechanism of the luminescence excitation consists in the reabsorption of the thermal radiation within the volume of the sample cell. On the ground of this mechanism of excitation, a method of measurement of the luminescence quantum yield is proposed and realized. The method requires the knowledge of the geometrical parameters of the cell and does not require the use of reference samples.

  11. Robust statistical reconstruction for charged particle tomography

    Science.gov (United States)

    Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  12. Particle physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  13. Magnetic particles

    Science.gov (United States)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor)

    1989-01-01

    Magnetic polymer particles are formed by swelling porous, polymer particles and impregnating the particles with an aqueous solution of precursor magnetic metal salt such as an equimolar mixture of ferrous chloride and ferric chloride. On addition of a basic reagent such as dilute sodium hydroxide, the metal salts are converted to crystals of magnetite which are uniformly contained througout the pores of the polymer particle. The magnetite content can be increased and neutral buoyancy achieved by repetition of the impregnaton and neutralization steps to adjust the magnetite content to a desired level.

  14. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    Science.gov (United States)

    Degrendele, C.; Okonski, K.; Melymuk, L.; Landlová, L.; Kukučka, P.; Audy, O.; Kohoutek, J.; Čupr, P.; Klánová, J.

    2016-02-01

    This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine) had higher concentrations on coarse particles ( > 3.0 µm), which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (regardless the toxicity of the pesticide) and lower potential for long-range atmospheric transport.

  15. α-particle radioactivity of hot particles from the Esk estuary

    International Nuclear Information System (INIS)

    Hamilton, E.I.

    1981-01-01

    Transuranium radionuclides (Pu, Am and Cm) present in effluents discharged into the north-east Irish Sea by British Nuclear Fuels Limited, Windscale, Cumbria, UK, are found in sediment and biota of the Esk estuary approximately 10 km to the south. The site of the present investigation was at Newbiggin and the materials examined were suspended particulate debris samples at the sea surface, bottom sediments and some forms of biota collected in September 1977. It is shown here that hot particles (defined as small volumes of material emitting α particles recorded in a dielectric detector as dense clusters of tracks from a common origin) found in the estuary are likely to be original effluent debris derived from the processing of Magnox uranium fuel elements and not formed in situ as a result of natural processes common to the estuary. (author)

  16. Particle accelerator

    International Nuclear Information System (INIS)

    Ress, R.I.

    1976-01-01

    Charged particles are entrained in a predetermined direction, independent of their polarity, in a circular orbit by a magnetic field rotating at high speed about an axis in a closed cylindrical or toroidal vessel. The field may be generated by a cylindrical laser structure, whose beam is polygonally reflected from the walls of an excited cavity centered on the axis, or by high-frequency energization of a set of electromagnets perpendicular to the axis. In the latter case, a separate magnetostatic axial field limits the orbital radius of the particles. These rotating and stationary magnetic fields may be generated centrally or by individual magnets peripherally spaced along its circular orbit. Chemical or nuclear reactions can be induced by collisions between the orbiting particles and an injected reactant, or by diverting high-speed particles from one doughnut into the path of counterrotating particles in an adjoining doughnut

  17. Individual aerosol particles in and below clouds along a Mt. Fuji slope: Modification of sea-salt-containing particles by in-cloud processing

    Science.gov (United States)

    Ueda, S.; Hirose, Y.; Miura, K.; Okochi, H.

    2014-02-01

    Sizes and compositions of atmospheric aerosol particles can be altered by in-cloud processing by absorption/adsorption of gaseous and particulate materials and drying of aerosol particles that were formerly activated as cloud condensation nuclei. To elucidate differences of aerosol particles before and after in-cloud processing, aerosols were observed along a slope of Mt. Fuji, Japan (3776 m a.s.l.) during the summer in 2011 and 2012 using a portable laser particle counter (LPC) and an aerosol sampler. Aerosol samples for analyses of elemental compositions were obtained using a cascade impactor at top-of-cloud, in-cloud, and below-cloud altitudes. To investigate composition changes via in-cloud processing, individual particles (0.5-2 μm diameter) of samples from five cases (days) collected at different altitudes under similar backward air mass trajectory conditions were analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. For most cases (four cases), most particles at all altitudes mainly comprised sea salts: mainly Na with some S and/or Cl. Of those, in two cases, sea-salt-containing particles with Cl were found in below-cloud samples, although sea-salt-containing particles in top-of-cloud samples did not contain Cl. This result suggests that Cl in the sea salt was displaced by other cloud components. In the other two cases, sea-salt-containing particles on samples at all altitudes were without Cl. However, molar ratios of S to Na (S/Na) of the sea-salt-containing particles of top-of-cloud samples were higher than those of below-cloud samples, suggesting that sulfuric acid or sulfate was added to sea-salt-containing particles after complete displacement of Cl by absorption of SO2 or coagulation with sulfate. The additional volume of sulfuric acid in clouds for the two cases was estimated using the observed S/Na values of sea-salt-containing particles. The estimation revealed that size changes by in

  18. Association of polymorphisms in CYP19A1 and CYP3A4 genes with lower urinary tract symptoms, prostate volume, uroflow and PSA in a population-based sample.

    Science.gov (United States)

    Berges, Richard; Gsur, Andrea; Feik, Elisabeth; Höfner, Klaus; Senge, Theodor; Pientka, Ludger; Baierl, Andreas; Michel, Martin C; Ponholzer, Anton; Madersbacher, Stephan

    2011-04-01

    The known importance of testosterone for the development of benign prostatic hyperplasia (BPH) prompted us to test the hypothesis whether polymorphisms of two genes (CYP19A1 and CYP3A4) involved in testosterone metabolism are associated with clinical BPH-parameters. A random sample of the population-based Herne lower urinary tract symptoms cohort was analysed. All these men underwent a detailed urological work-up. Two polymorphisms in the CYP19A1 gene [rs700518 in exon 4 (A57G); rs10046 at the 3'UTR(C268T)] and one in the 3'UTR of CYP3A4 [rs2740574 (A392G)] were determined by TaqMan assay from genomic DNA of peripheral blood. These polymorphisms were correlated to clinical and laboratory BPH-parameters. A total of 392 men (65.4 ± 7.0 years; 52-79 years) were analysed. Mean International Prostate Symptom Score (IPSS; 7.5), Q (max) (15.4 ml/s), prostate volume (31 ml) and prostate specific antigen (PSA) (1.8 ng/ml) indicated a typical elderly population. Both polymorphisms in the CYP19A1 gene were not correlated to age, IPSS, Q (max), prostate volume and post-void residual volume. Serum PSA was higher in men carrying the heterozygous rs10046 genotype (2.0 ± 0.1 ng/ml) than in those with the CC-genotype (1.7 ± 0.2 ng/ml, P = 0.012). Men carrying one a mutated allele of the CYP3A4 gene had smaller prostates (27.0 ± 2.0 vs. 32 ± 0.8 ml, P = 0.02) and lower PSA levels (1.6 ± 0.3 vs. 1.9 ± 0.1 ng/ml). The inconsistent associations observed herein and for other gene polymorphisms warrant further studies. In general, the data regarding the association of gene polymorphism to BPH-parameters suggest that this disease is caused by multiple rather than a single genetic variant. A rigorous patient selection based on anatomo-pathological and hormonal profile may possible reduce the number of confounders for future studies thus enabling a more detailed assessment of the association between genetic factors and BPH-parameters.

  19. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    Science.gov (United States)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  20. An efficient, robust, and inexpensive grinding device for herbal samples like Cinchona bark

    DEFF Research Database (Denmark)

    Hansen, Steen Honoré; Holmfred, Else Skovgaard; Cornett, Claus

    2015-01-01

    An effective, robust, and inexpensive grinding device for the grinding of herb samples like bark and roots was developed by rebuilding a commercially available coffee grinder. The grinder was constructed to be able to provide various particle sizes, to be easy to clean, and to have a minimum...... of dead volume. The recovery of the sample when grinding as little as 50 mg of crude Cinchona bark was about 60%. Grinding is performed in seconds with no rise in temperature, and the grinder is easily disassembled to be cleaned. The influence of the particle size of the obtained powders on the recovery...

  1. An Efficient, Robust, and Inexpensive Grinding Device for Herbal Samples like Cinchona Bark.

    Science.gov (United States)

    Hansen, Steen Honoré; Holmfred, Else; Cornett, Claus; Maldonado, Carla; Rønsted, Nina

    2015-01-01

    An effective, robust, and inexpensive grinding device for the grinding of herb samples like bark and roots was developed by rebuilding a commercially available coffee grinder. The grinder was constructed to be able to provide various particle sizes, to be easy to clean, and to have a minimum of dead volume. The recovery of the sample when grinding as little as 50 mg of crude Cinchona bark was about 60%. Grinding is performed in seconds with no rise in temperature, and the grinder is easily disassembled to be cleaned. The influence of the particle size of the obtained powders on the recovery of analytes in extracts of Cinchona bark was investigated using HPLC.

  2. Scanning tomographic particle image velocimetry applied to a turbulent jet

    KAUST Repository

    Casey, T. A.; Sakakibara, J.; Thoroddsen, Sigurdur T

    2013-01-01

    planes in the depth direction by maintaining optimal particle image density and limiting the number of ghost particles. The total measurement volumes contain between 1 ×106 and 3 ×106 velocity vectors calculated from up to 1500 reconstructed depthwise

  3. Effective Ice Particle Densities for Cold Anvil Cirrus

    Science.gov (United States)

    Heymsfield, Andrew J.; Schmitt, Carl G.; Bansemer, Aaron; Baumgardner, Darrel; Weinstock, Elliot M.; Smith, Jessica

    2002-01-01

    This study derives effective ice particle densities from data collected from the NASA WB-57F aircraft near the tops of anvils during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) in southern Florida in July 2002. The effective density, defined as the ice particle mass divided by the volume of an equivalent diameter liquid sphere, is obtained for particle populations and single sizes containing mixed particle habits using measurements of condensed water content and particle size distributions. The mean effective densities for populations decrease with increasing slopes of the gamma size distributions fitted to the size distributions. The population-mean densities range from near 0.91 g/cu m to 0.15 g/cu m. Effective densities for single sizes obey a power-law with an exponent of about -0.55, somewhat less steep than found from earlier studies. Our interpretations apply to samples where particle sizes are generally below 200-300 microns in maximum dimension because of probe limitations.

  4. Radioactively induced noise in gas-sampling uranium calorimeters

    International Nuclear Information System (INIS)

    Gordon, H.A.; Rehak, P.

    1982-01-01

    The signal induced by radioactivity of a U 238 absorber in a cell of a gas-sampling uranium calorimeter was