WorldWideScience

Sample records for volume niobium microcomposite

  1. Mechanical behaviour of copper 15% volume niobium microcomposite wires

    Directory of Open Access Journals (Sweden)

    Marcello Filgueira

    2001-01-01

    Full Text Available Cu-Nb microcomposites are attractive in magnet pulsed field technology applications due to their anomalous mechanism of mechanical strength and high electrical conductivity. In this sense, recently it was conceived the use of Cu 15% vol. Nb wires to operate as a high tensile strength cable for a diamond cutting tool (diamond wires for marble and granite slabbing. The multifilamentary Cu 15% vol. Nb composite was obtained using a new processing route, starting with niobium bars bundled into copper tubes, without arc melting. Cold working techniques, such as swaging and wire drawing, combined with heat treatments such as sintering and annealing, and tube restacking were employed. The tensile property of the composite was measured as a function of the niobium filaments dimensions and morphology into the copper matrix, in the several processing steps. An ultimate tensile strength (UTS of 960 MPa was obtained for an areal reduction (R = Ao/A, with Ao-initial cross section area, and A-final cross section area of 4x10(8 X, in which the niobium filaments reached thickness less than 20 nm. The anomalous mechanical strength increase is attributed to the fact that the niobium filaments acts as a barrier to copper dislocations.

  2. National Low-Level Waste Management Program radionuclide report series. Volume 2, Niobium-94

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J.P.; Carboneau, M.L.

    1995-04-01

    The Purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to, state representatives and developers of low-level radioactive waste disposal facilities about the radiological chemical, and physical characteristics of selected radionuclides and their behavior in the low-level radioactive waste disposal facility environment. Extensive surveys of available literature provided information used to produce this series of reports and an introductory report. This report is Volume 11 of the series. It outlines the basic radiological, chemical, and physical characteristics of niobium-94, waste types and forms that contain it, and its behavior in environmental media such as soils, plants, groundwater, air, animals and the human body.

  3. Photocatalytic degradation of methyl orange using polymer-titania microcomposites.

    Science.gov (United States)

    Coutinho, Cecil A; Gupta, Vinay K

    2009-05-15

    Photodegradation of an organic dye was studied experimentally using novel polymer-titania microcomposites. These microcomposites were prepared from titanium dioxide (TiO(2)) nanoparticles embedded within cross-linked, thermally-responsive microgels of poly(N-isopropylacrylamide) and contained interpenetrating linear chains of poly(acrylic acid) that functionalize the nanoparticles of TiO(2). Because these microcomposites settle more than a hundred times faster than freely suspended TiO(2) nanoparticles, they are extremely useful for simple gravity separation of the photocatalyst in applications that employ titania nanoparticles. Methyl orange (MO) was used as a model contaminant to investigate the degradation kinetics using the microcomposites in aqueous suspensions. Kinetics of the photodegradation were evaluated by monitoring the changes in methyl orange concentration using UV-Vis spectroscopy. The photocatalytic behavior of functional microcomposites containing 65 wt% titania was studied and the influence of the solution pH as well as the total titania concentration in solution was explored. The results indicated that pH of the solution changes the surface interactions between the poly(acrylic acid), titania, and methyl orange and this interplay determined the overall degradation kinetics of the chemical contaminants. Nearly identical reaction rate constants were observed in acidic solutions for the microcomposites when compared to freely suspended titania. The latter showed higher rate constants than the microcomposites at a neutral pH. Release of the titania from the microcomposites was observed under basic conditions. Complete degradation of the microcomposites was observed after prolonged (7-13 h) UV irradiation. However, the microcomposites were easily regenerated by addition of microgels and no loss of photocatalytic activity was observed.

  4. Niobium and tantalum

    Science.gov (United States)

    Schulz, Klaus J.; Piatak, Nadine M.; Papp, John F.; Schulz, Klaus J.; DeYoung, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Niobium and tantalum are transition metals that are almost always found together in nature because they have very similar physical and chemical properties. Their properties of hardness, conductivity, and resistance to corrosion largely determine their primary uses today. The leading use of niobium (about 75 percent) is in the production of high-strength steel alloys used in pipelines, transportation infrastructure, and structural applications. Electronic capacitors are the leading use of tantalum for high-end applications, including cell phones, computer hard drives, and such implantable medical devices as pacemakers. Niobium and tantalum are considered critical and strategic metals based on the potential risks to their supply (because current production is restricted to only a few countries) and the significant effects that a restriction in supply would have on the defense, energy, high-tech industrial, and medical sectors.The average abundance of niobium and tantalum in bulk continental crust is relatively low—8.0 parts per million (ppm) niobium and 0.7 ppm tantalum. Their chemical characteristics, such as small ionic size and high electronic field strength, significantly reduce the potential for these elements to substitute for more common elements in rock-forming minerals and make niobium and tantalum essentially immobile in most aqueous solutions. Niobium and tantalum do not occur naturally as pure metals but are concentrated in a variety of relatively rare oxide and hydroxide minerals, as well as in a few rare silicate minerals. Niobium is primarily derived from the complex oxide minerals of the pyrochlore group ((Na,Ca,Ce)2(Nb,Ti,Ta)2(O,OH,F)7), which are found in some alkaline granite-syenite complexes (that is, igneous rocks containing sodium- or potassium-rich minerals and little or no quartz) and carbonatites (that is, igneous rocks that are more than 50 percent composed of primary carbonate minerals, by volume). Tantalum is derived mostly from the

  5. Thermite welding of Cu-Nb microcomposite wires

    Energy Technology Data Exchange (ETDEWEB)

    Visniakov, Nikolaj; Mikalauskas, Gediminas; Lukauskaite, Raimonda; Cernasejus, Olegas; Rudzinskas, Vitalijus [Vilnius Gediminas Technical Univ. (Lithuania). Faculty of Mechanics; Skamat, Jelena; Boris, Renata [Vilnius Gediminas Technical Univ. (Lithuania). Inst. of Thermal Insulation

    2017-10-15

    Thermite welding of Cu-Nb microcomposite wires was investigated. Suitable compositions of thermite material and slag were determined from the equation of the exothermic combustion synthesis reaction. The phase compositions of the thermite mixture and slag determined by X-ray diffraction analysis correspond to those assessed from the equation. According to non-destructive radiographic testing, the joint structure does not have welding defects. Microstructural examination of the joint cross-section with scanning electron microscopy showed that the Cu-Nb wire retained its shape and microstructure and only a thin surface layer of wire was melted during welding. The difference in electrical resistances of the conductor and welded joint was below 20 %. The thermite joint can withstand a maximum load equal to 62.5 % of the load-bearing capacity of microcomposite conductor.

  6. Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yin; Min, Daomin [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Li, Shengtao, E-mail: stli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Li, Zhen; Xie, Dongri [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Xuan [Key Laboratory of Engineering Dielectric and its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150040 (China); Lin, Shengjun [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Pinggao Group Company Ltd., State Grid High Voltage Switchgear Insulation Materials Laboratory, Pingdingshan 467001 (China)

    2017-06-01

    Highlights: • Epoxy resin microcomposites were irradiated by electron beam with energies of 10 and 20 keV. • Surface flashover voltage increase with the increase of electron beam energy. • Both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. • Deposition energy in epoxy resin microcomposites increases with electron beam energy, and surface trap properties are determined by deposition energy. • The influence of surface conductivity and trap distribution on flashover voltage is discussed. - Abstract: The influencing mechanism of electron beam irradiation on surface flashover of epoxy resin/Al{sub 2}O{sub 3} microcomposite was investigated. Epoxy resin/Al{sub 2}O{sub 3} microcomposite samples with a diameter of 50 mm and a thickness of 1 mm were prepared. The samples were irradiated by electron beam with energies of 10 and 20 keV and a beam current of 5 μA for 5 min. Surface potential decay, surface conduction, and surface flashover properties of untreated and irradiated samples were measured. Both the decay rate of surface potential and surface conductivity decrease with an increase in the energy of electron beam. Meanwhile, surface flashover voltage increase. It was found that both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. The increase in the energy and density of deep surface traps enhance the ability to capture primary emitted electrons. In addition, the decrease in surface conductivity blocks electron emission at the cathode triple junction. Therefore, electron avalanche at the interface between gas and an insulating material would be suppressed, eventually improving surface flashover voltage of epoxy resin microcomposites.

  7. NIOBIUM-TANTALUM SEPARATION

    Science.gov (United States)

    Wilhelm, H.A.; Foos, R.A.

    1959-01-27

    The usual method for the separation of tantalum and niobium consists of a selective solvent extraction from an aqueous hydrofluoric acid solution of the metals. A difficulty encountered in this process is the fact that the corrosion problems associated with hydrofluoric acid are serious. It has been found that the corrosion caused by the hydrofluoric acid may be substantially reduced by adding to the acidic solution an amine, such as phenyl diethanolamine or aniline, and adjusting pH value to between 4 and 6.

  8. Design of a superconducting low beta niobium resonator

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 78; Issue 4. Design of a superconducting low beta niobium resonator ... In this paper we present details of the electromagnetic design of the low beta resonator, briefly discuss the mechanical and engineering design, and present results from the measurements on the ...

  9. Argon ion sputtering of niobium and niobium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, Peter Francis [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1978-01-01

    Polycrystalline niobium was irradiated by a beam of 15-keV argon ions, and the effect of certain metallurgical and environmental conditions was studied. Macroscopic sputtering yields were measured for well-annealed niobium and also for Nb--V and Nb--O alloys, cold-worked and recovered niobium and for sputtering conducted in an oxygen atmosphere. In all cases, the resulting surface topography was characterized by scanning electron microscopy. Selected area electron channeling patterns were used to determine the texture of the annealed niobium and to correlate sputter-induced surface features with grain orientations. The surface chemistry of sputtered targets was checked with a scanning Auger microprobe. Results indicate that ion channeling and surface mobility are important in the 15-keV argon sputtering of niobium. The sputtering yield for annealed niobium was accurately described by modifying a sputtering theory for amorphous solids through use of a correction factor based on ion channeling which was calculated from the experimentally determined texture. The sputter topography was varied and, at times, complex. Surface features were dependent on crystallography, background pressure, temperature and the metallurgical conditions of cold work, recovery, annealing, interstitial solute and precipitation structure. The sputtering yield was also determined to be a function of the metallurgical conditions, the crystallography, and pressure. 62 figures, 10 tables.

  10. Precipitation of hydrides in high purity niobium after different treatments

    Energy Technology Data Exchange (ETDEWEB)

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  11. Niobium and tantalum: indispensable twins

    Science.gov (United States)

    Schulz, Klaus; Papp, John

    2014-01-01

    Niobium and tantalum are transition metals almost always paired together in nature. These “twins” are difficult to separate because of their shared physical and chemical properties. In 1801, English chemist Charles Hatchett uncovered an unknown element in a mineral sample of columbite; John Winthrop found the sample in a Massachusetts mine and sent it to the British Museum in London in 1734. The name columbium, which Hatchet named the new element, came from the poetic name for North America—Columbia—and was used interchangeably for niobium until 1949, when the name niobium became official. Swedish scientist Anders Ekberg discovered tantalum in 1802, but it was confused with niobium, because of their twinned properties, until 1864, when it was recognized as a separate element. Niobium is a lustrous, gray, ductile metal with a high melting point, relatively low density, and superconductor properties. Tantalum is a dark blue-gray, dense, ductile, very hard, and easily fabricated metal. It is highly conductive to heat and electricity and renowned for its resistance to acidic corrosion. These special properties determine their primary uses and make niobium and tantalum indispensable.

  12. Analysis of Microcomposite Cu-Nb Conductors Characteristics and Possibility of Their Joining

    Directory of Open Access Journals (Sweden)

    Gediminas Mikalauskas

    2017-01-01

    Full Text Available High magnetic fields systems is widely used in fundamental and applied research in variuos branches of science and industry. The most famous examples of such magnetic systems are tokomaks, stellators, superconducting magnets, CERN collider, ITER reactor, levitation systems. The key component of magnetic systems is inductor (solenoid. At this moment, the record magnetic fields reaches 100 T. The creation of a strong magnetic field is no longer enough just to improve designs for inductor (solenoid. Traditional electrotechnical materials and conductors can no longer withstand the huge mechanical and thermal loads, therefore, them changes to an entirely new advanced materials, for example Cu-Nb microcomposite conductors. These materials are characterized by a unique structure, excellent mechanical properties and good electrical conductivity. One of the most important and unresolved problems of high magnetic fields systems are reliable non-destructive joints and joining technologies creation. This paper reviews the strong magnetic fields systems design features, Cu-Nb conductors characteristics and structure, microcomposite conductor production specifics, application fields, joining problems and the available joining technologies.

  13. Hydrogen Reduction in MEP Niobium Studied by Secondary Ion Mass Spectrometry (SIMS

    Directory of Open Access Journals (Sweden)

    Tadeusz Hryniewicz

    2017-10-01

    Full Text Available Niobium, as pure metal and alloying element, is used in a variety of applications, among them in nuclear industries. Niobium is incorporated into nuclear fission reactors due to its enormous strength and low density. Surface finishing of niobium is often performed in electrochemical polishing processes in view of improving its smoothness, corrosion resistance and its surface cleanability. However, the presently used electropolishing process (EP is intrinsically linked to the subsurface hydrogenation of niobium, which measurably degrades its properties. This is why the annealing operation is used to remove hydrogen from electropolished niobium that is a costly and time-consuming process. The traditional electrolyte consisting of a mixture of 96% H2SO4/49% HF acids by volume in a 9:1 ratio has been substituted for the new one, being a mixture of 70% methanesulfonic acid with 49% hydrofluoric acid by volume in a 3:1 ratio. Moreover, the additional imposition of a magnetic field during the electropolishing process (MEP further increases hydrogen removal, when compared to the hydrogen content achieved by the electropolishing process alone. The aim of the study is to reveal a methodic approach and showing decreasing hydrogenation of niobium samples after consecutive steps of electrochemical polishing. Secondary ion mass spectrometry (SIMS was used to measure the hydrogen content in the surface layer of as-received AR niobium and in the samples after EP and MEP processes.

  14. Biocompatibility of Niobium Coatings

    Directory of Open Access Journals (Sweden)

    René Olivares-Navarrete

    2011-09-01

    Full Text Available Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainless steel substrates and tissue culture plastic were also studied, in order to give comparative information. No toxic response was observed for any of the surfaces, indicating that the Nb coatings act as a biocompatible, bioinert material. Cell morphology was also studied by immune-fluorescence and the results confirmed the healthy state of the cells on the Nb surface. X-ray diffraction analysis of the coating shows that the film is polycrystalline with a body centered cubic structure. The surface composition and corrosion resistance of both the substrate and the Nb coating were also studied by X-ray photoelectron spectroscopy and potentiodynamic tests. Water contact angle measurements showed that the Nb surface is more hydrophobic than the SS substrate.

  15. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  16. Fluxon Pinning in Niobium Films

    CERN Document Server

    Calatroni, Sergio; Darriulat, Pierre; Peck, M A; Valente, A M

    2001-01-01

    Resistive losses induced by the presence of trapped magnetic flux in niobium superconducting films have been studied using 1.5 GHz microwaves. They are measured to span a very broad spectrum depending on the film-substrate interface and on the gas used in the sputtering discharge. An interpretation in terms of pinning by noble gas clusters is considered.

  17. Gas-saturated solution process to obtain microcomposite particles of alpha lipoic acid/hydrogenated colza oil in supercritical carbon dioxide.

    Science.gov (United States)

    Mishima, Kenji; Honjo, Masatoshi; Sharmin, Tanjina; Ito, Shota; Kawakami, Ryo; Kato, Takafumi; Misumi, Makoto; Suetsugu, Tadashi; Orii, Hideaki; Kawano, Hiroyuki; Irie, Keiichi; Sano, Kazunori; Mishima, Kenichi; Harada, Takunori; Ouchi, Mikio

    2016-09-01

    Alpha lipoic acid (ALA), an active substance in anti-aging products and dietary supplements, need to be masked with an edible polymer to obscure its unpleasant taste. However, the high viscosity of the ALA molecules prevents them from forming microcomposites with masking materials even in supercritical carbon dioxide (scCO2). Therefore, the purpose of this study was to investigate and develop a novel production method for microcomposite particles for ALA in hydrogenated colza oil (HCO). Microcomposite particles of ALA/HCO were prepared by using a novel gas-saturated solution (PGSS) process in which the solid-dispersion method is used along with stepwise temperature control (PGSS-STC). Its high viscosity prevents the formation of microcomposites in the conventional PGSS process even under strong agitation. Here, we disperse the solid particles of ALA and HCO in scCO2 at low temperatures and change the temperature stepwise in order to mix the melted ALA and HCO in scCO2. As a result, a homogeneous dispersion of the droplets of ALA in melted HCO saturated with CO2 is obtained at high temperatures. After the rapid expansion of the saturated solution through a nozzle, microcomposite particles of ALA/HCO several micrometers in diameter are obtained.

  18. SRF MATERIALS OTHER THAN NIOBIUM

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Anne-Marie

    2008-02-12

    For the past three decades, bulk niobium has been the material of choice for SRF cavity applications. Alternative materials, mainly Nb compounds and A15 compounds have been investigated with moderate effort in the past. In the recent years, RF cavity performance has approached the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternative materials to niobium. A few laboratories around the world are now investigating superconductors with higher transition temperature Tc for application to SRF cavities. This paper gives an overview of the results obtained and challenges encountered for Nb compounds and A15 compounds, as well as for MgB2, for SRF cavity applications. An interesting alternative has been recently proposed by Alex Gurevich with the Superconductor-Insulator-Superconductor multilayer approach. This could potentially lead to further improvement in RF cavity performance using the benefit of the higher critical field Hc of higher-Tc superconductors without being limited with their lower Hc1.

  19. Hybrid inorganic-organic nano- and microcomposites based on silica sols and synthetic polyelectrolytes

    Directory of Open Access Journals (Sweden)

    2008-02-01

    Full Text Available Interaction between anionic (and cationic colloidal particles of silica having the particles diameters 12 and 22 nm with synthetic cationic (and anionic polyelectrolytes of various nature and structure was studied by potentiometric, conductimetric spectroturbidimetric and viscometric methods in aqueous solution. It was shown that the complexation of silica nanoparticles with linear polyelectrolytes leads to formation of mostly stoichiometric interpolyelectrolyte complexes (IPEC which precipitate from aqueous solution. Casting of water-soluble IPEC followed by thermal treatment gives thin composite films insoluble in water while ‘layer by layer’ (LbL deposition of polyelectrolyte components onto silica sols leads to formation of multilayered nano- and microcomposites. The possible mechanism of formation of LbL multilayers consisting of silica sol (SiO2 ‘cores’ and polyethyeleneimine-polyacrylic acid (PEI-PAA ‘shells’ was suggested. It was found that in diluted aqueous solution the radius of gyration, Rg and hydrodynamic radius, Rhmean of LbL particles are independent on LbL concentration and smaller than 100 nm. The zeta potential values of LbL particles are arranged between –10 and –30 mV. The average size of LbL particles estimated by scanning electron microscopy (SEM is in the range of 200–500 nm. Thermal treatment of LbL multilayers followed by etching of (SiO2 ‘core’ by HF leads to formation of a series of spherical nanocavities and blob-like microcavities.

  20. Synthesis and characterization of hybrid cured poly(ether-urethaneacrylate/titania microcomposites formed from tetraalkoxytitanate precursor

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available Hybrid poly(ether-urethaneacrylate (PEUA/titania (TiO2 microcomposites were prepared using a novel method that includes a swelling of different photo-crosslinked PEUA networks in concentrated tetraisopropoxytitanate (Ti(OiC3H74 or TIPT precursor solution in organic media followed by the hydrolysis of covalently bonded polyalkoxytitanate ([–OTi(OC3H72–]n chains and their aggregation to amorphous micro- and nano-scale sized TiO2 particles. A formation of polymer/titania hybrids was confirmed by complex investigations of the hybrids using infrared (IR spectroscopy, small angle X-ray scattering (SAXS analysis, scanning electron microscopy (SEM and gravimetry. The dependence of titania phase formation behavior versus functionality of the poly(ether-urethaneacrylate network was discussed. The presence of reactive groups in the organic network promotes the formation of surface-bonded ball-shaped type TiO2 inclusions as well as provides transparency to the hybrid film samples. The results obtained in this work can be applied for the development of polymer/TiO2 composite materials for multipurpose optical application and advanced sealants.

  1. Preparation of polyaniline/PbS core-shell nano/microcomposite and its application for photocatalytic H2 electrogeneration from H2O.

    Science.gov (United States)

    Rabia, Mohamed; Mohamed, H S H; Shaban, Mohamed; Taha, S

    2018-01-18

    Lead sulfide (PbS) and polyaniline (PANI) nano/microparticles were prepared. Then, PANI/PbS core-shell nano/microcomposites (I, II, and III) were prepared by oxidative polymerization of different aniline concentrations (0.01, 0.03, and 0.05 M), respectively, in the presence of 0.05 M PbS. FT-IR, XRD, SEM, HR-TEM, and UV-Vis analyses were carried out to characterize the samples. From the FT-IR data, there are redshifts in PbS and PANI nano/microparticles bands in comparison with PANI/PbS nano/microcomposites. The average crystallite sizes of PANI/PbS core-shell nano/microcomposites (I, II, and III) from XRD analyses were 46.5, 55, and 42.16 nm, respectively. From the optical analyses, nano/microcomposite (II) has the optimum optical properties with two band gaps values of 1.41 and 2.79 eV. Then, the nano/microcomposite (II) membrane electrode supported on ITO glass was prepared and applied on the photoelectrochemical (PEC) H2 generation from H2O. The characteristics current-voltage and current-time behaviors were measured at different wavelengths from 390 to 636 nm. Also, the incident photon-to-current conversion efficiency (IPCE) under monochromatic illumination condition was calculated. The optimum values for IPCE were 36.5 and 35.2% at 390 and 405 nm, respectively. Finally, a simple mechanism for PEC H2 generation from H2O using the nano/microcomposite (II) membrane electrode was mentioned.

  2. Quantitative 3D X-ray imaging of densification, delamination and fracture in a micro-composite under compression

    DEFF Research Database (Denmark)

    Bø Fløystad, Jostein; Skjønsfjell, Eirik Torbjørn Bakken; Guizar-Sicairos, Manuel

    2015-01-01

    Phase-contrast three-dimensional tomograms showing in unprecedented detail the mechanical response of a micro-composite subjected to a mechanical compression test are reported. The X-ray ptychography images reveal the deformation and fracture processes of a 10 μm diameter composite, consisting...... X-ray microscopy as a powerful tool for in situ studies of the mechanical properties of nanostructured devices, structures, and composites. Ptychographic X-ray microscopy can be used for quantitatively studying the mechanical properties of microscale composites. Phase-contrast three...

  3. Preparation of theophylline inhalable microcomposite particles by wet milling and spray drying: The influence of mannitol as a co-milling agent.

    Science.gov (United States)

    Malamatari, Maria; Somavarapu, Satyanarayana; Kachrimanis, Kyriakos; Bloxham, Mark; Taylor, Kevin M G; Buckton, Graham

    2016-11-30

    Inhalable theophylline particles with various amounts of mannitol were prepared by combining wet milling in isopropanol followed by spray drying. The effect of mannitol as a co-milling agent on the micromeritic properties, solid state and aerosol performance of the engineered particles was investigated. Crystal morphology modelling and geometric lattice matching calculations were employed to gain insight into the intermolecular interactions that may influence the mechanical properties of theophylline and mannitol. The addition of mannitol facilitated the size reduction of the needle-like crystals of theophylline and also their assembly in microcomposites by forming a porous structure of mannitol nanocrystals wherein theophylline particles are embedded. The microcomposites were found to be in the same crystalline state as the starting material(s) ensuring their long-term physical stability upon storage. Incorporation of mannitol resulted in microcomposite particles with smaller size, more spherical shape and increased porosity. The aerosol performance of the microcomposites was markedly enhanced compared to the spray-dried suspension of theophylline wet milled without mannitol. Overall, wet co-milling with mannitol in an organic solvent followed by spray drying may be used as a formulation approach for producing respirable particles of water-soluble drugs or drugs that are prone to crystal transformation in an aqueous environment (i.e. formation of hydrates). Copyright © 2016. Published by Elsevier B.V.

  4. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  5. Degreasing and cleaning superconducting RF Niobium cavities

    Energy Technology Data Exchange (ETDEWEB)

    Rauchmiller, Michael; Kellett, Ron; /Fermilab

    2011-09-01

    The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

  6. Mineral Resource of the Month: Niobium

    Science.gov (United States)

    Papp, John F.

    2014-01-01

    Niobium, also called columbium, is a transition metal with a very high melting point. It is in greatest demand in industrialized countries, like the United States, because of its defense-related uses in the aerospace, energy and transportation industries. Niobium is used mostly to make high-strength, low-alloy (HSLA) steel and stainless steel. HSLA steels are used in large-diameter pipes for oil and natural gas pipelines and automobile wheels.

  7. Mineral resource of the month: niobium (columbium)

    Science.gov (United States)

    Papp, John F.

    2007-01-01

    It’s not just diamonds associated with conflict in Africa. Coltan, short for columbite-tantalite (a blend of niobium — also called columbium — and tantalum minerals), is linked with the recent conflicts in the Congo that involved several African countries. The metallic ore, which is processed to separate out niobium and the very valuable tantalum (see Geotimes, August 2004), is believed to be smuggled out and sold to help finance the armed conflicts.

  8. Magnetic flux trapping in superconducting niobium

    CERN Document Server

    Benvenuti, Cristoforo; Campisi, I E; Darriulat, Pierre; Durand, C; Peck, M A; Russo, R; Valente, A M

    1997-01-01

    In a systematic study of the RF response of superconducting niobium cavities operated in their fundamental TM010 mode at 1.5 GHz, magnetic flux trapping has been used as a tool to diagnose the presenc e of pinning centres. In addition to bulk niobium cavities the study covers copper cavities, the inner walls of which are coated with 1.5 µm thick niobium films grown by magnetron sputtering in a nobl e gas atmosphere. The use of different gases (Xe, Kr, Ar and Ne) or gas mixtures has made it possible to vary the concentration of noble gas atoms in the films. Film contamination is characterised by an electron mean free path l calculated from the results of systematic measurements of the penetration depth at T = 0 K, l0, and from RRR measurements made on samples prepared under similar conditions as the cavity films.

  9. Using Mott-Schottky Equation for Studing the Influence of Impurities in Niobium on the Properties of Anodic Niobium Films

    Science.gov (United States)

    Skatkov, L.; Gomozov, V.; Tulskiy, G.; Senkevich, I.; Deribo, S.

    2017-08-01

    The aim of this work analysis of additive influence in niobium on formation of defects in anodic layers Nb2O5. It was shown that occurrence in niobium of minor amount of metal admixtures, which generate in electric field cations with a charge equal to the charge of oxygen vacancies, causes an increase in defect concentration in anodic niobium pentoxide (ANP).

  10. Field emission from crystalline niobium

    Directory of Open Access Journals (Sweden)

    Arti Dangwal Pandey

    2009-02-01

    Full Text Available Appreciable suppression of field emission (FE from metallic surfaces has been achieved by the use of improved surface cleaning techniques. In order to understand the effects of surface preparation on field emission, systematic measurements were performed on five single crystal and three large grain samples of high purity (RRR>300 niobium by means of atomic force microscope, x-ray diffraction, scanning electron microscope (SEM, and dc field emission scanning microscope. The samples were treated with buffered chemical polishing (BCP, half of those for 30  μm and others for 100  μm removal of surface layer, followed by a final high pressure water rinsing. These samples provided the emission at minimum surface fields of 150  MV/m and those with longer BCP treatment showed the onset of field emission at slightly higher fields. A low temperature (∼150°C heat treatment in a high vacuum (10^{-6}  mbar chamber for 14 hours, on a selected large grain Nb sample, gives the evidence for the grain boundary assisted FE at very high fields of 250 and 300  MV/m. Intrinsic field emission measurements on the present Nb surfaces revealed anisotropic values of work function for different orientations. Finally, an interesting correlation between sizes of all investigated emitters derived from SEM images with respect to their respective onset fields has been found, which might facilitate the quality control of superconducting radio-frequency cavities for linear accelerators.

  11. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-09-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  12. Design for a superconducting niobium RFQ structure

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kennedy, W.L.; Sagalovsky, L.

    1992-01-01

    This paper reports a design for a niobium superconducting RFQ operating at 192 Mhz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling cost for fabrication with niobium. Results of MAFIA numerical modeling, measurements on a copper model, and plans for a beam test are discussed.

  13. Muon spin rotation studies of niobium for superconducting rf applications

    Science.gov (United States)

    Grassellino, A.; Beard, C.; Kolb, P.; Laxdal, R.; Lockyer, N. S.; Longuevergne, D.; Sonier, J. E.

    2013-06-01

    In this work we investigate superconducting properties of niobium samples via application of the muon spin rotation/relaxation (μSR) technique. We employ for the first time the μSR technique to study samples that are cut out from large and small grain 1.5 GHz radio frequency (rf) single cell niobium cavities. The rf test of these cavities was accompanied by full temperature mapping to characterize the rf losses in each of the samples. Results of the μSR measurements show that standard cavity surface treatments like mild baking and buffered chemical polishing performed on the studied samples affect their surface pinning strength. We find an interesting correlation between high field rf losses and field dependence of the sample magnetic volume fraction measured via μSR. The μSR line width observed in zero-field-μSR measurements matches the behavior of Nb samples doped with minute amounts of Ta or N impurities. A lower and an upper bound for the upper critical field Hc2 of these cutouts is found.

  14. Niobium based coatings for dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, G., E-mail: enggiova@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Facultad de Quimica, Departamento de Ingenieria Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Arzate, H. [Laboratorio de Biologia Celular y Molecular, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, Mexico D.F. 04510 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Olaya, J.J. [Unidad de Materiales, Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Cra. 30 45-03 Bogota (Colombia)

    2011-01-15

    Niobium based thin films were deposited on stainless steel (SS) substrates to evaluate them as possible biocompatible surfaces that might improve the biocompatibility and extend the life time of stainless steel dental implants. Niobium nitride and niobium oxide thin films were deposited by reactive unbalanced magnetron sputtering under standard deposition conditions without substrate bias or heating. The biocompatibility of the surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human cementoblasts during different culture times, up to 7 days. The response of the films was compared to the bare substrate and pieces of Ti6Al4V; the most commonly used implant material for orthopedics and osteo-synthesis applications. The physicochemical properties of the films were evaluated by different means; X-ray diffraction, Rutherford backscattering spectroscopy and contact angle measurements. The results suggested that the niobium oxide films were amorphous and of stoichiometric Nb{sub 2}O{sub 5} (a-Nb{sub 2}O{sub 5}), while the niobium nitride films were crystalline in the FCC phase (c-NbN) and were also stoichiometric with an Nb to N ratio of one. The biological evaluation showed that the biocompatibility of the SS could be improved by any of the two films, but neither was better than the Ti6Al4V alloy. On the other hand, comparing the two films, the c-NbN seemed to be a better surface than the oxide in terms of the adhesion and proliferation of human cemetoblasts.

  15. Effect of visco-elastic silk-chitosan microcomposite scaffolds on matrix deposition and biomechanical functionality for cartilage tissue engineering.

    Science.gov (United States)

    Chameettachal, Shibu; Murab, Sumit; Vaid, Radhika; Midha, Swati; Ghosh, Sourabh

    2017-04-01

    Commonly used polymer-based scaffolds often lack visco-elastic properties to serve as a replacement for cartilage tissue. This study explores the effect of reinforcement of silk matrix with chitosan microparticles to create a visco-elastic matrix that could support the redifferentiation of expanded chondrocytes. Goat chondrocytes produced collagen type II and glycosaminoglycan (GAG)-enriched matrix on all the scaffolds (silk:chitosan 1:1, 1:2 and 2:1). The control group of silk-only constructs suffered from leaching out of GAG molecules into the medium. Chitosan-reinforced scaffolds retained a statistically significant (p < 0.02) higher amount of GAG, which in turn significantly increased (p < 0.005) the aggregate modulus (as compared to silk-only controls) of the construct akin to that of native tissue. Furthermore, the microcomposite constructs demonstrated highly pronounced hysteresis at 4% strain up to 400 cycles, mimicking the visco-elastic properties of native cartilage tissue. These results demonstrated a step towards optimizing the design of biomaterial scaffolds used for cartilage tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Field Emission Measurements from Niobium Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    M. BastaniNejad, P.A. Adderley, J. Clark, S. Covert, J. Hansknecht, C. Hernandez-Garcia, R. Mammei, M. Poelker

    2011-03-01

    Increasing the operating voltage of a DC high voltage photogun serves to minimize space charge induced emittance growth and thereby preserve electron beam brightness, however, field emission from the photogun cathode electrode can pose significant problems: constant low level field emission degrades vacuum via electron stimulated desorption which in turn reduces photocathode yield through chemical poisoning and/or ion bombardment and high levels of field emission can damage the ceramic insulator. Niobium electrodes (single crystal, large grain and fine grain) were characterized using a DC high voltage field emission test stand at maximum voltage -225kV and electric field gradient > 10MV/m. Niobium electrodes appear to be superior to diamond-paste polished stainless steel electrodes.

  17. Fast-neutron interaction with niobium

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Poenitz, W.P.; Smith, D.L.; Whalen, J.F.; Howerton, R.J.

    1985-01-01

    Results of a comprehensive study of the interaction of fast neutrons with niobium are presented, including measurement and interpretation of neutron total, differential-scattering and radiative-capture cross sections. The experimental results are interpreted in the context of the optical-statistical model, with attention to the Fermi-surface anomaly. Experimental results, physical interpretations and rigorous statistical methods are used to provide a comprehensive evaluated nuclear data file suitable for use in a wide range of applied neutronic calculations.

  18. Niobium pentoxide coating replacing zinc phosphate coating

    OpenAIRE

    RODRIGUES, P.R.P.; TERADA, M.; JUNIOR, O.R.A.; LOPES, A.C.; COSTA, I.; BANCZEK, E.P.

    2015-01-01

    A new coating made of niobium pentoxide, obtained through the sol-gel process, was developed for the carbon steel (SAE 1010). The corrosion protection provided by this coating was evaluated through electrochemical tests such as: open circuit potential, electrochemical impedance spectroscopy and anodic potentiodynamic polarization in NaCl 0,5 mol L-1 solution. The morphology and composition of the coatings were analyzed using scanning electronic microscopy, energy dispersive spectroscopy and X...

  19. Structural phase transitions in niobium oxide nanocrystals

    Science.gov (United States)

    Yuvakkumar, R.; Hong, Sun Ig

    2015-09-01

    Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition.

  20. ROUGHNESS ANALYSIS OF VARIOUSLY POLISHED NIOBIUM SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Ribeill, G.; Reece, C.

    2008-01-01

    Niobium superconducting radio frequency (SRF) cavities have gained widespread use in accelerator systems. It has been shown that surface roughness is a determining factor in the cavities’ effi ciency and maximum accelerating potential achievable through this technology. Irregularities in the surface can lead to spot heating, undesirable local electrical fi eld enhancement and electron multipacting. Surface quality is typically ensured through the use of acid etching in a Buffered Chemical Polish (BCP) bath and electropolishing (EP). In this study, the effects of these techniques on surface morphology have been investigated in depth. The surface of niobium samples polished using different combinations of these techniques has been characterized through atomic force microscopy (AFM) and stylus profi lometry across a range of length scales. The surface morphology was analyzed using spectral techniques to determine roughness and characteristic dimensions. Experimentation has shown that this method is a valuable tool that provides quantitative information about surface roughness at different length scales. It has demonstrated that light BCP pretreatment and lower electrolyte temperature favors a smoother electropolish. These results will allow for the design of a superior polishing process for niobium SRF cavities and therefore increased accelerator operating effi ciency and power.

  1. Preparation of Niobium Metal Powder by Two-Stage Magnesium Vapor Reduction of Niobium Pentoxide

    Directory of Open Access Journals (Sweden)

    T. Satish Kumar

    2013-01-01

    Full Text Available Magnesium vapor reduction of niobium pentoxide was studied using a laboratory system. Niobium powder was prepared by the magnesium vapor reduction at 1123 K for 5 hours and it contained about 8 mass % oxygen. However, the oxygen concentration could be decreased to 0.65% when it was prepared by double-step reduction by magnesium vapor and a chemical treatment. Controlled and diluted supply of magnesium vapor to the reaction front has averted excess heat generation at the reaction front and thereby fine particles were produced. Effects of various factors on the vapor reduction process were studied and discussed.

  2. Caracterização e propriedades catalíticas da zeolita HZSM5 modificada com nióbio Characterization and catalytical properties of hzsm5 zeolite modified by niobium

    Directory of Open Access Journals (Sweden)

    A. O. Florentino

    1997-02-01

    Full Text Available HZSM5 zeolite was modified by exchanging proton by niobium (V. Several samples were obtained with various degrees of exchange. Pore volumes and acidity were measured to characterize these exchanged zeolites. Catalytic properties were evaluated with two reaction tests: m-xylene transformation and n-heptane cracking. The introduction of niobium on HZSM5 zeolite decreases the diffusion coefficient of 2-methyl-pentane and increases the zeolite acidity. The sample containing niobium are initially more active in cracking of n-heptane and m-xylene isomerization than HZSM5 alone.

  3. Аnodic formation of nanoporous crystalline niobium oxide

    Directory of Open Access Journals (Sweden)

    LEONID SKATKOV

    2014-05-01

    Full Text Available The research results of anodic deposition of crystalline niobium oxide are presented in this work. The factors that have an impact on crystalline phase nucleation and its primary growth are revealed. Dependence of morphology and properties of nanoporous niobium oxide on modes of its formation is shown.

  4. Effect of niobium addition in support catalysts applied in satellite propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Soares, M.S., E-mail: marciosteinmetz@hotmail.com.br [Space Research National Institute, Combustion & Propulsion Associated Laboratory (Brazil); University of São Paulo, Lorena Engineering School, Materials Engineering Dept. (Brazil); Barbosa, R.D. [Space Research National Institute, Combustion & Propulsion Associated Laboratory (Brazil); University of São Paulo, Lorena Engineering School, Chemical Engineering Dept. (Brazil); Cruz, G.M. da; Rodrigues, J.A.J. [Space Research National Institute, Combustion & Propulsion Associated Laboratory (Brazil); Ribeiro, S. [University of São Paulo, Lorena Engineering School, Materials Engineering Dept. (Brazil)

    2017-03-01

    Catalysts composed of iridium as the active phase dispersed in aluminum oxide (Ir/Al{sub 2}O{sub 3}) are used in propulsion systems that employ hydrazine as monopropellant in the control of satellite orbit and attitude. The aluminum oxide (Al{sub 2}O{sub 3}) utilized as support must present high values of specific surface area, pore volume, and crush strength. The niobium effect was evaluated in this work, in its oxide form (Nb{sub 2}O{sub 5}), by 3 different methods: with the employment of a NbCl{sub 5} precursor solution, by wet impregnation and dry impregnation of an alumina obtained from a mixture of gibbsite and boehmite and by physical mixing of gibbsite and hydrated niobium oxide, both autoclaved separately. Aluminum oxides were prepared in both cases containing Nb{sub 2}O{sub 5} contents of 10, 20, and 30% w/w. The acid impregnating NbCl{sub 5} solution in the wet impregnation method caused a strong attack to the Al{sub 2}O{sub 3} support, altering and compromising its initial structure and morphology. This process did not occur in the supports prepared by dry impregnation. However, results indicated that the use of this methodology with Nb{sub 2}O{sub 5} contents of 20% and 30%, caused an extensive coverage of the support by Nb{sub 2}O{sub 5}, modifying the nature and amount of alumina sites responsible for anchorage of the iridium precursor. In the case of supports prepared through physical mixture (Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3}) from aluminum hydroxide and niobium acid precursor compounds, with both being previously autoclaved separately, the 20% and 30% Nb{sub 2}O{sub 5} contents presented the most promising properties, since the binder effect caused by amorphous Nb{sub 2}O{sub 5} increased the crush strength of the support, without compromising the aluminum oxide morphology and texture. Despite of existence of stronger acid sites due to the addition of niobium oxide to aluminum oxide, no increase in the acidity of the materials was observed due

  5. Electron heating by photon-assisted tunneling in niobium terahertz mixers with integrated niobium titanium nitride striplines

    NARCIS (Netherlands)

    Leone, B; Gao, [No Value; Klapwijk, TM; Jackson, BD; Laauwen, WM; de Lange, G

    2001-01-01

    We describe the gap voltage depression and current-voltage (I-V) characteristics in pumped niobium superconductor-insulator-superconductor junction with niobium titanium nitride tuning stripline by introducing an electron heating power contribution resulting from the photon-assisted tunneling

  6. Frequency Scaling from Copper to SC Niobium

    CERN Document Server

    D'Elia, A

    2010-01-01

    The linac of HIE-ISOLDE Project is based on two gap independently phased Quarter Wave Resonators (QWRs). The cavities are made in bulk Copper and subsequently Niobium sputtered. The working frequency in superconducting mode of operation is 101.28MHz at 4.5K. The purpose of this paper is to properly evaluate the scaled frequency of the Copper cavity at room temperature in air, in order to guide all the necessary steps in the production phase before going to the cryostat.

  7. Low-cycle fatigue of niobium

    Science.gov (United States)

    Meininger, J. M.; Gibeling, J. C.

    1992-11-01

    Commercially pure niobium (CPNb) and a niobium-1 pct zirconium (Nb-lZr) alloy were tested under low-cycle fatigue conditions at plastic strain amplitudes in the range of 0.02 pct ≤Δɛpl/2≤ 0.7 pct. At low temperatures, the cyclic deformation response of body-centered cubic (bcc) metals is strongly dependent on strain rate. Thus, it was necessary to test at slow (2 x 10su-4 s-1) and fast (2 x 10-2 s-1) strain rates in order to fully characterize the cyclic deformation at ambient temperature. Only cyclic hardening was observed for both metals under all testing conditions. As expected, higher cyclic stresses were recorded at the fast strain rate compared to the slow strain rate. The Nb-lZr alloy was always stronger than CPNb, although both metals had the same cyclic life at equal plastic strain amplitudes. Further, the strain rate had no effect on the cyclic life. At the fast strain rate, intergranular cracking occurred, and a microplastic plateau was observed in the cyclic stress-strain (CSS) curve for CPNb. At the slow strain rate, no definitely intergranular cracks were detected, and a microplastic plateau was not observed for CPNb. The results of these experiments are interpreted in terms of the influence of strain rate and solute content on the relative mobilities of edge and screw dislocations.

  8. Growth of niobium nitrides by nitrogen-niobium reaction at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Musenich, R. (Istituto Nazionale di Fisica Nucleare, via Dodecaneso 33, I-16141 Genoa (Italy)); Fabbricatore, P. (Istituto Nazionale di Fisica Nucleare, via Dodecaneso 33, I-16141 Genoa (Italy)); Gemme, G. (Istituto Nazionale di Fisica Nucleare, via Dodecaneso 33, I-16141 Genoa (Italy)); Parodi, R. (Istituto Nazionale di Fisica Nucleare, via Dodecaneso 33, I-16141 Genoa (Italy)); Viviani, M. (Istituto Nazionale di Fisica Nucleare, via Dodecaneso 33, I-16141 Genoa (Italy)); Zhang, B. (Istituto Nazionale di Fisica Nucleare, via Dodecaneso 33, I-16141 Genoa (Italy)); Buscaglia, V. (Istituto di Chimica Fisica Applicata dei Materiali, Consiglio Nazionale delle Ricerche, via De Marini 6, I-16149 Genoa (Italy)); Bottino, C. (Istituto di Chimica Fisica Applicata dei Materiali, Consiglio Nazionale delle Ricerche, via De Marini 6, I-16149 Genoa (Italy))

    1994-07-01

    The reaction between nitrogen and bulk niobium under high purity conditions was studied in the range 1100-1900 C at 150 kPa. Two different nitride layers are formed: an inner [beta] phase (Nb[sub 2]N) and an outer [delta] phase (NbN). The latter undergoes a transformation to [gamma]-NbN and [epsilon]-NbN during cooling down. Nitrogen dissolves in the niobium core forming [alpha] solid solution. Both the weight gain and the thickness of the nitride layers follow the parabolic rate law, indicating that the reaction is mainly dominated by diffusional transport through the nitrides. Two parabolic kinetic stages are observed, the first before [alpha] phase saturation and the second after saturation. Data analysis based on a multiphase, moving boundary diffusion model allows the calculation of the effective nitrogen diffusion coefficients, yielding the expressions D[sub [beta

  9. Bragg projection ptychography on niobium phase domains

    Science.gov (United States)

    Burdet, Nicolas; Shi, Xiaowen; Clark, Jesse N.; Huang, Xiaojing; Harder, Ross; Robinson, Ian

    2017-07-01

    Bragg projection ptychography (BPP) is a coherent x-ray diffraction imaging technique which combines the strengths of scanning microscopy with the phase contrast of x-ray ptychography. Here we apply it for high resolution imaging of the phase-shifted crystalline domains associated with epitaxial growth. The advantages of BPP are that the spatial extent of the sample is arbitrary, it is nondestructive, and it gives potentially diffraction limited spatial resolution. Here we demonstrate the application of BPP for revealing the domain structure caused by epitaxial misfit in a nanostructured metallic thin film. Experimental coherent diffraction data were collected from a niobium thin film, epitaxially grown on a sapphire substrate as the beam was scanned across the sample. The data were analyzed by BPP using a carefully selected combination of refinement procedures. The resulting image shows a close packed array of epitaxial domains, shifted with respect to each other due to misfit between the film and its substrate.

  10. Recent developments in high purity niobium metal production at CBMM

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Gustavo Giovanni Ribeiro, E-mail: Gustavo.abdo@cbmm.com.br; Sousa, Clovis Antonio de Faria, E-mail: Clovis@cbmm.com.br; Guimarães, Rogério Contato, E-mail: Rogerio.guimaraes@cbmm.com.br; Ribas, Rogério Marques, E-mail: Rogerio.ribas@cbmm.com.br; Vieira, Alaércio Salvador Martins, E-mail: Alaercio.vieira@cbmm.com.b; Menezes, Andréia Duarte, E-mail: Amenezes@cbmm.com.br; Fridman, Daniel Pallos, E-mail: Daniel.fridman@cbmm.com.br; Cruz, Edmundo Burgos, E-mail: Edmundo@cbmm.com.br [CBMM – Companhia Brasileira de Metalurgia e Mineração Córrego da Mata, s/n Araxá, Minas Gerais 38183-903 Brazil (Brazil)

    2015-12-04

    CBMM is a global supplier of high quality niobium products including pure niobium, the focus of this paper. CBMM’s position has been consolidated over three decades of producing high purity niobium metal ingots. The company supplies, among other products, commercial and reactor grade niobium ingots. One of the main uses of CBMM’s ingots is for the manufacture of particle accelerators (superconducting radio frequency – SRF – cavities), where the purity and homogeneity of niobium metal is essentially important for good performance. CBMM constantly strives to improve process controls and product quality, and is currently implementing innovations in production, research and development to further improve ingot quality. The main aim is to reduce the content of interstitial elements, such as nitrogen (N), oxygen (O), carbon (C), and hydrogen (H), starting with the raw materials through the final step of ingot production. CBMM held the first trial to produce the world’s largest-diameter niobium ingot (as cast 535 mm). The results of this initial trial presented very low levels of interstitial impurities (N, O, C, H), allowing the achievement of residual resistivity ratio (RRR) values very close to 300 in a six-melt process in an electron beam furnace. These values were reached with 850 ppm of tantalum. SRF cavities will be produced with this material in order to study the effect of low impurities and high RRR on the Q factor and accelerating gradient.

  11. Superconducting properties of niobium after electron beam welding

    Directory of Open Access Journals (Sweden)

    Prakash N. Potukuchi

    2011-12-01

    Full Text Available One of the major criteria for designing superconducting niobium resonant cavities is to minimize the peak surface electric and magnetic fields to maximize the achievable accelerating electric gradient. Even after addressing the extrinsic effects adequately, a large number of cavities perform below the theoretical gradient limit. The peak magnetic field for the first flux-line penetration in the superconducting state of niobium, which either severely degrades the cavity quality factor or results in complete thermal breakdown, is an important limitation. The flux-line penetration is known to depend on the microstructural properties of niobium which may get altered in the process of cavity fabrication. The most common technique of fabricating niobium cavities is to form their components using standard sheet metal techniques and join them by electron beam welding in vacuum. We present results of a study on the superconducting response through magnetization measurements in the electron beam welded region of niobium to understand the limitations (if any posed by the welding in achieving the highest gradient. We also present and discuss results on the performance of niobium quarter wave resonators incorporating such electron beam welds in the high magnetic field region.

  12. Evaluation of niobium dimethylamino-ethoxide for chemical vapour deposition of niobium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dabirian, Ali [Laboratory for Photonic Materials and Characterization, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 17, 1015 Lausanne (Switzerland); Kuzminykh, Yury, E-mail: yury.kuzminykh@empa.ch [Laboratory for Photonic Materials and Characterization, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 17, 1015 Lausanne (Switzerland); Laboratory for Advanced Materials Processing, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Wagner, Estelle; Benvenuti, Giacomo [3D-Oxides, 70 Rue G. Eiffel Technoparc, 01630 St Genis Pouilly (France); ABCD Technology, 12 route de Champ-Colin, 1260 Nyon (Switzerland); Rushworth, Simon [Tyndall National Institute, Lee Maltings, Dyke Parade, Cork (Ireland); Hoffmann, Patrik, E-mail: patrik.hoffmann@empa.ch [Laboratory for Photonic Materials and Characterization, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 17, 1015 Lausanne (Switzerland); Laboratory for Advanced Materials Processing, Empa, Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun (Switzerland)

    2014-11-28

    Chemical vapour deposition (CVD) processes depend on the availability of suitable precursors. Precursors that deliver a stable vapour pressure are favourable in classical CVD processes, as they ensure process reproducibility. In high vacuum CVD (HV-CVD) process vapour pressure stability of the precursor is of particular importance, since no carrier gas assisted transport can be used. The dimeric Nb{sub 2}(OEt){sub 10} does not fulfil this requirement since it partially dissociates upon heating. Dimethylamino functionalization of an ethoxy ligand of Nb(OEt){sub 5} acts as an octahedral field completing entity and leads to Nb(OEt){sub 4}(dmae). We show that Nb(OEt){sub 4}(dmae) evaporates as monomeric molecule and ensures a stable vapour pressure and, consequently, stable flow. A set of HV-CVD experiments were conducted using this precursor by projecting a graded molecular beam of the precursor onto the substrate at deposition temperatures from 320 °C to 650 °C. Film growth rates ranging from 8 nm·h{sup −1} to values larger than 400 nm·h{sup −1} can be obtained in this system illustrating the high level of control available over the film growth process. Classical CVD limiting conditions along with the recently reported adsorption–reaction limited conditions are observed and the chemical composition, and microstructural and optical properties of the films are related to the corresponding growth regime. Nb(OEt){sub 4}(dmae) provides a large process window of deposition temperatures and precursor fluxes over which carbon-free and polycrystalline niobium oxide films with growth rates proportional to precursor flux are obtained. This feature makes Nb(OEt){sub 4}(dmae) an attractive precursor for combinatorial CVD of niobium containing complex oxide films that are finding an increasing interest in photonics and photoelectrochemical water splitting applications. The adsorption–reaction limited conditions provide extremely small growth rates comparable to an

  13. Micro-composites formés d'une couche continue de zéolithe recouvrant un coeur de zéolithe – Etude des processus de formation

    OpenAIRE

    Bouizi, Younès

    2005-01-01

    The present thesis deals with the preparation and the mechanism of formation of core-shell zeolite micro-composites comprising a single crystal core and a polycrystalline shell. Several framework types (BEA, FAU, LTA, MFI, MOR, SOD) covering a broad range of chemical compositions were combined in the course of this study in order to determine the factors controlling the formation of the composites. Two approaches, a direct synthesis and a secondary growth after seeding of the core surface, we...

  14. Corrosion resistance of the substrates for the cryogenic gyroscope and electrodeposition of the superconductive niobium coatings

    Science.gov (United States)

    Dubrovskiy, A. R.; Okunev, M. A.; Makarova, O. V.; Kuznetsov, S. A.

    2017-05-01

    The interaction of different materials with the niobium containing melt was investigated. As substrate materials the ceramics, beryllium and carbopyroceram were chosen. Several spherical ceramic and beryllium samples were coated with protective molybdenum and niobium films by magnetron sputtering and PVD, respectively. After the experiment (exposition time 10 min) the exfoliation of molybdenum film from ceramic samples was observed due to interaction of the substrate with the melt. The niobium protective coatings reacted with the melt with niobium oxide formation. The beryllium samples regardless of the shape and the presence of the protective films were dissolved in the niobium containing melt due to more negative electrode potential comparing with niobium one. The carbopyroceram samples were exposed in the melt during 3 and 12 h. It was found that the carbopyroceram not corrodes in the niobium containing melt. The optimal regimes for electrodeposition of smooth uniform niobium coatings with the thickness up to 50 μm on carbopyroceram spheres were found.

  15. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...

  16. Niobium Titanium and Copper wire samples

    CERN Document Server

    2009-01-01

    Two wire samples, both for carrying 13'000Amperes. I sample is copper. The other is the Niobium Titanium wiring used in the LHC magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable ...

  17. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...

  18. Ferromagnetic Josephson junctions with niobium nitride

    Science.gov (United States)

    Yamashita, Taro; Makise, Kazumasa; Kawakami, Akira; Terai, Hirotaka

    Recently, novel physics and device applications in hybrid structures of superconductor (SC) and ferromagnet (FM), e.g., spin injection into SC, long-range Josephson effect, cryogenic memory, have been studied actively. Among various interesting phenomena in SC/FM structures, a π state (π junction) emerged in ferromagnetic Josephson junctions (SC/FM/SC) is attractive as a superconducting phase shifter for superconducting devices. In the present work, we developed the ferromagnetic Josephson junction in order to realize a quiet superconducting flux qubit with a π junction. Contrary to conventional flux qubits, the qubit with a π junction can be operated without an external magnetic field which is a noise source, and thus good coherence characteristics is expected. As a superconducting material, we adopted niobium nitride (NbN) with high superconducting critical temperature of 16 K, which can be grown epitaxially on a magnesium oxide substrate. Regarding the ferromagnetic material we used copper nickel (CuNi), and fabricated the NbN/CuNi/NbN junctions and then evaluated the dependences of the Josephson critical current on the temperature, thickness and so on. This research was supported by JST, PRESTO.

  19. Metabolic and environmental aspects of fusion reactor activation products: niobium

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, C.E.; Shank, K.E.

    1977-11-01

    A summary of the metabolic and environmental aspects of niobium is presented. The toxicological symptoms from exposure to niobium are given, along with lethal concentration values for acute and chronic exposures. Existing human data are presented; animal uptake and retention data are analyzed for various routes of administration. Recommended metabolic values are also presented along with comments concerning their use and appropriateness. The natural distribution of niobium is given for freshwater, seawater, and the biosphere. Concentration factors and retention of /sup 95/Nb in the environment are discussed with reference to: plant retention via leaf absorption; plant retention via root uptake; uptake in terrestrial animals from plants; uptake in freshwater organisms; uptake in marine organisms; and movement in soil. Conclusions are drawn regarding needs for future work in these areas. This review was undertaken because niobium is expected to be a key metal in the development of commercial fusion reactors. It is recognized that niobium will likely not be used in the first generation reactors as a structural material but will appear as an alloy in such materials as superconducting wire.

  20. Loading rate and test temperature effects on fracture of In Situ niobium silicide-niobium composites

    Science.gov (United States)

    Rigney, Joseph D.; Lewandowski, John J.

    1996-10-01

    Arc cast, extruded, and heat-treated in situ composites of niobium suicide (Nb5Si3) intermetallic with niobium phases (primary—Nbp and secondary—Nbs) exhibited high fracture resistance in comparison to monolithic Nb5Si3. In toughness tests conducted at 298 K and slow applied loading rates, the fracture process proceeded by the microcracking of the Nb5Si3 and plastic deformation of the Nbp and Nbs phases, producing resistance-curve behavior and toughnesses of 28 MPa√m with damage zone lengths less than 500 μm. The effects of changes in the Nbp yield strength and fracture behavior on the measured toughnesses were investigated by varying the loading rates during fracture tests at both 77 and 298 K. Quantitative fractography was utilized to completely characterize each fracture surface created at 298 K in order to determine the type of fracture mode ( i.e., dimpled, cleavage) exhibited by the Nbp. Specimens tested at either higher loading rates or lower test temperatures consistently exhibited a greater amount of cleavage fracture in the Nbp, while the Nbs, always remained ductile. However, the fracture toughness values determined from experiments spanning six orders of magnitude in loading rate at 298 and 77 K exhibited little variation, even under conditions when the majority of Nbp phases failed by cleavage at 77 K. The changes in fracture mode with increasing loading rate and/or decreasing test temperature and their effects on fracture toughness are rationalized by comparison to existing theoretical models.

  1. Superconducting DC and RF Properties of Ingot Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Pashupati Dhakal, Gianluigi Ciovati, Peter Kneisel, Ganapati Rao Myneni

    2011-07-01

    The thermal conductivity, DC magnetization and penetration depth of large-grain niobium hollow cylindrical rods fabricated from ingots, manufactured by CBMM subjected to chemical and heat treatment were measured. The results confirm the influence of chemical and heat-treatment processes on the superconducting properties, with no significant dependence on the impurity concentrations in the original ingots. Furthermore, RF properties, such as the surface resistance and quench field of the niobium rods were measured using a TE{sub 011} cavity. The hollow niobium rod is the center conductor of this cavity, converting it to a coaxial cavity. The quench field is limited by the critical heat flux through the rods' cooling channel.

  2. Sorption of niobium on boreal forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, Mervi; Hakanen, Martti; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry

    2015-07-01

    The sorption of niobium (Nb) was investigated on humus and mineral soil samples taken from various depths of a four-metre deep forest soil pit on Olkiluoto Island, southwestern Finland. Mass distribution coefficients, K{sub d}, were determined in batch sorption tests. The steady state of Nb sorption was observed in the mineral soil samples already after one week of equilibration, and sorption decreased with depth from a very high value of 185000 mL/g at 0.7 m to 54000 mL/g at 3.4 m. The reason behind this decrease is probably the tenfold reduction in the specific surface area of the soil at the same depth range. Distribution coefficients were clearly lower in the humus layer (1000 mL/g). The K{sub d} values determined in pure water at a pH range of 4.7-6.5 were at a high level (above 55000 mL/g), but decreased dramatically above pH 6.5, corresponding to the change in the major Nb species from the neutral Nb(OH){sub 5} to the low-sorbing anionic Nb(OH){sub 6}{sup -} and Nb(OH){sub 7}{sup 2-}. However, the K{sub d} values in the model soil solution were in the slightly alkaline range an order of magnitude higher than in pure water, which is probably caused by the formation of calcium niobate surface precipitate or electrostatic interaction between surface-sorbed calcium and solute Nb. Among nine soil constituent minerals kaolinite performed best in retaining Nb in both pure water and model soil solution at pH 8, whereas potassium feldspar showed the poorest sorption. The K{sub d} value for kaolinite was above 500000 mL/g in both solutions, while the respective potassium feldspar values were in the range of 120-220 mL/g.

  3. Simulation of nonlinear superconducting rf losses derived from characteristic topography of etched and electropolished niobium surfaces

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2016-03-01

    Full Text Available A simplified numerical model has been developed to simulate nonlinear superconducting radiofrequency (SRF losses on Nb surfaces. This study focuses exclusively on excessive surface resistance (R_{s} losses due to the microscopic topographical magnetic field enhancements. When the enhanced local surface magnetic field exceeds the superconducting critical transition magnetic field H_{c}, small volumes of surface material may become normal conducting and increase the effective surface resistance without inducing a quench. We seek to build an improved quantitative characterization of this qualitative model. Using topographic data from typical buffered chemical polish (BCP- and electropolish (EP-treated fine grain niobium, we have estimated the resulting field-dependent losses and extrapolated this model to the implications for cavity performance. The model predictions correspond well to the characteristic BCP versus EP high field Q_{0} performance differences for fine grain niobium. We describe the algorithm of the model, its limitations, and the effects of this nonlinear loss contribution on SRF cavity performance.

  4. Reactive Melt Infiltration of Silicon-Niobium Alloys in Microporous Carbons

    Science.gov (United States)

    Singh, M.; Behrendt, D. R.

    1994-01-01

    Studies of the reactive melt infiltration of silicon-niobium alloys in microporous carbon preforms prepared by the pyrolysis of a polymer precursor have been carried out using modeling, Differential Thermal Analysis (DTA), and melt infiltration. Mercury porosimetry results indicate a very narrow pore size distribution with virtually all the porosity within the carbon preforms open to infiltrants. The morphology and amount of the residual phases (niobium disilicide and silicon) in the infiltrated material can be tailored according to requirements by careful control of the properties (pore size and pore volume) of the porous carbon preforms and alloy composition. The average room temperature four-point flexural strength of a reaction-formed silicon carbide material (made by the infiltration of medium pore size carbon preform with Si - 5 at. % Nb alloy) is 290 +/- 40 MPa (42 +/- 6 ksi) and the fracture toughness is 3.7 +/- 0.3 MPa square root of m. The flexural strength decreases at high temperatures due to relaxation of residual thermal stresses and the presence of free silicon in the material.

  5. Effect of niobium on microstructure and mechanical properties of high carbon Fe-10.5 wt.% Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Baligidad, R.G

    2004-03-15

    The effect of niobium on the microstructure and mechanical properties of high carbon Fe-10.5 wt.% Al alloys has been investigated. The alloys were prepared by a combination of air induction melting with flux cover (AIMFC) and electroslag remelting (ESR). The ESR ingots were hot-forged and hot-rolled at 1373 K. The hot-rolled alloys were characterized. The ternary Fe-10.5 wt.% Al-(0.7 and 0.9 wt.%) C alloys exhibited two-phase microstructure of large volume fraction of Fe{sub 3}AlC{sub 0.5} precipitates in Fe-Al ({alpha}) matrix. Addition of niobium to Fe-10.5 wt.% Al-(0.7 and 0.9 wt.%) C alloys resulted in the precipitation of small volume fraction of niobium carbide precipitates in Fe-Al ({alpha}) matrix in addition to large volume fraction of Fe{sub 3}AlC{sub 0.5} precipitates. The addition of up to 2 wt.% Nb to high carbon Fe-10.5 wt.% Al alloys has no effect on the yield strength at both room temperature and 873 K as well as creep properties at 140 MPa and 873 K, but it has reduced the room temperature tensile elongation at higher (2 wt.%) concentration. In the present work, it has also been observed that alloys containing high (0.9 wt.%) carbon, exhibited higher yield strength at room temperature as compared to alloys containing low (0.7 wt.%) carbon. The increase in strength with small increase in carbon may be attributed to the significant increase in volume fraction of Fe{sub 3}AlC {sub 0.5} precipitates.

  6. Page 1 Studies on Niobium and Tantalum—1 205 REFERENCES ...

    Indian Academy of Sciences (India)

    Studies on Niobium and Tantalum—1 205. REFERENCES. Abegg and Bodlander ... Z. Amorg. Chem., 1899, 20, 471. Cordier and Murgier ... Compt. rend., 1941, 213, 836. : Edmister and Albritton ... J. Amer. Chem. Soc., 1932, 54, 438. Gernez ... Compt, rend., 1887, 104, 783; 105, 803; 1888, 106, 1527. Jorissen, et al.

  7. Effect of substitution of titanium by magnesium and niobium on ...

    Indian Academy of Sciences (India)

    Administrator

    Effect of substitution of titanium by magnesium and niobium on structure and piezoelectric properties in (Bi1/2Na1/2)TiO3 ceramics. ZHOU CHANG-RONG*, LIU XIN-YU, LI WEI-ZHOU† and YUAN CHANG-LAI. Department of Information Material Science and Engineering, Guilin University of Electronic Technology,. Guilin ...

  8. Effect of substitution of titanium by magnesium and niobium on ...

    Indian Academy of Sciences (India)

    Administrator

    Effect of substitution of titanium by magnesium and niobium on structure and piezoelectric properties in (Bi1/2. Na1/2. )TiO3 ceramics. ZHOU CHANG-RONG*, LIU XIN-YU, LI WEI-ZHOU. † and YUAN CHANG-LAI. Department of Information Material Science and Engineering, Guilin University of Electronic Technology,. Guilin ...

  9. Design of a superconducting low beta niobium resonator

    Indian Academy of Sciences (India)

    Abstract. The proposed high current injector for the superconducting Linac at the Inter-. University Accelerator Centre will have several accelerating structures, including a superconducting module which will contain low beta niobium resonators. A prototype resonator for the low beta module has been designed.

  10. Alternative Dissolution Methods for Analysis of Niobium containing ...

    African Journals Online (AJOL)

    Alternative Dissolution Methods for Analysis of Niobium containing Samples. ... South African Journal of Chemistry ... Inductively coupled plasma optical emission spectrometry was applied for the qualitative and quantitative analyses of the different high purity Nb containing samples such as Nb metal, Nb2O5 and NbF5.

  11. NMR study of niobium metal at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shaham, M.

    1979-08-01

    The Knight shift and spin-lattice relaxation time of niobium were measured at temperatures extending from room temperature to 1700 K. A quantitative interpretation of T/sub 1/T data is presented, as well as a K-chi analysis to determine the various contributions to the magnetic susceptibility. The activation energy for diffusion, observed in the relaxation data, is also determined.

  12. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  13. Carbochlorination kinetics of tantalum and niobium pentoxides

    Directory of Open Access Journals (Sweden)

    Allain, E.

    1999-08-01

    Full Text Available The carbochlorination kinetics of pure Nb2O5 and Ta2O5 by gas mixture (C12 + CO + N2 between 380 and 1,000 °C is studied. A calculation of the standard free energy of the carbochlorination reactions is made. A diagram of the phases stability is drawn. The influence of the gas flow, temperature and the pardal pressure of Cl2 and CO at temperatures below 650 °C on the reaction rate is studied. The apparent activation energy is approximately 75 and 110 kJ/mol for Nb2Os and Ta2O5, respectively. At temperatures above 650°C the Arrhenius diagram presents an anomaly which may be attributed to the decomposition of the COCl2 formed in situ. The apparent reaction order of the carbochlorination of these oxides against Cl2+CO is approximately 2. The carbochlorination rates of these oxides are much greater than those of chlorination by Cl2 + N2. The carbochlorination kinetics of tin furnace slag leaching concentrates containing tantalum and niobium compounds are also studied and compared with the carbochlorination kinetics of the pure oxides.

    En este trabajo se estudia la cinética de carbocloruración del Nb2O5 y del Ta2O5 por la mezcla de gases (Cl2 + CO + N2 entre 380 y 1000°C. Se hace un cálculo de la energía libre estándar de carbocloruración y se dibujan los diagramas de equilibrio de fases. Se estudia la influencia del flujo de gas, la temperatura y la presión parcial de Cl2 y CO a temperaturas por debajo de 650°C sobre la velocidad de reacción. La energía de activación es aproximadamente 75 y 110 kJ/mol para el Nb2O5 y el Ta2O5, respectivamente. A temperaturas por encima de 650°C, el diagrama de Arrhenius presenta una anomalía que puede ser atribuida a la

  14. Measurements of hydrogen content in bulk niobium by Thermal Desorption Spectroscopy

    CERN Document Server

    Hakovirta, M

    2001-01-01

    The hydrogen content of bulk niobium has been studied by Thermal Desorption Spectroscopy. The work has been focussed initially on the influence of the vacuum firing and the surface chemical treatment. It is planned to extend the investigation to niobium samples of different quality and origin to ascertain the interest of using the Thermal Desorption Spectroscopy technique to qualify the raw niobium sheets to be used for cavity manufacturing

  15. Niobium superconducting rf cavity fabrication by electrohydraulic forming

    CERN Document Server

    Cantergiani, E.; Léaux, F.; Perez Fontenla, A.T.; Prunet, S.; Dufay-Chanat, L.; Koettig, T.; Bertinelli, F.; Capatina, O.; Favre, G.; Gerigk, F.; Jeanson, A. C.; Fuzeau, J.; Avrillaud, G.; Alleman, D.; Bonafe, J.; Marty, P.

    2016-01-01

    Superconducting rf (SRF) cavities are traditionally fabricated from superconducting material sheets or made of copper coated with superconducting material, followed by trim machining and electron-beam welding. An alternative technique to traditional shaping methods, such as deep-drawing and spinning, is electrohydraulicforming (EHF). InEHF, half-cells areobtainedthrough ultrahigh-speed deformation ofblank sheets, using shockwaves induced in water by a pulsed electrical discharge. With respect to traditional methods, such a highly dynamic process can yield interesting results in terms of effectiveness, repeatability, final shape precision, higher formability, and reduced springback. In this paper, the first results of EHFon high purity niobium are presented and discussed. The simulations performed in order to master the multiphysics phenomena of EHF and to adjust its process parameters are presented. The microstructures of niobium half- cells produced by EHFand by spinning have been compared in terms of damage...

  16. Hydroforming SRF Three-cell Cavity from Seamless Niobium Tube

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Masashi [KEK, Tsukuba; Dohmae, Takeshi [KEK, Tsukuba; Hocker, Andy [Fermilab; Inoue, Hitoshi [KEK, Tsukuba; Park, Gunn-Tae [KEK, Tsukuba; Tajima, Tsuyoshi [Los Alamos; Umemori, Kensei [KEK, Tsukuba

    2016-06-01

    We are developing the manufacturing method for superconducting radio frequency (SRF) cavities by using a hydroforming instead of using conventional electron beam welding. We expect higher reliability and reduced cost with hydroforming. For successful hydroforming, high-purity seamless niobium tubes with good formability as well as advancing the hydroforming technique are necessary. Using a seamless niobium tube from ATI Wah Chang, we were able to successfully hydroform a 1.3 GHz three-cell TESLA-like cavity and obtained an Eacc of 32 MV/m. A barrel polishing process was omitted after the hydroforming. The vertical test was carried out with very rough inside surface. We got amazing and interesting result.

  17. A Single Crystal Niobium RF Cavity of the TESLA Shape

    Science.gov (United States)

    Singer, W.; Singer, X.; Kneisel, P.

    2007-08-01

    A fabrication method for single crystal niobium cavities of the TESLA shape was proposed on the basis of metallographic investigations and electron beam welding tests on niobium single crystals. These tests showed that a cavity can be produced without grain boundaries even in the welding area. An appropriate annealing allows the outgassing of hydrogen and stress relaxation of the material without destruction of the single crystal. A prototype single crystal single cell cavity was build. An accelerating gradient of 37.5 MV/m was reached after approximately 110 μm of Buffered Chemical Polishing (BCP) and in situ baking at 120°C for 6 hrs with a quality factor exceeding 2×1010 at 1.8 K. The developed fabrication method can be extended to fabrication of multi cell cavities.

  18. Superconducting properties of ultra-pure niobium welded joints

    Science.gov (United States)

    Demyanov, S. E.; Kaniukov, E. Yu.; Pobol, I. L.; Yurevich, S. V.; Baturitsky, M. A.; Shirkov, G. D.; Budagov, Yu. A.; Demin, D. L.; Azaryan, N. S.

    2015-07-01

    An optimal electron-beam welding operating regime for ultra-pure sheet niobium has been developed for use in a superconducting resonator for the International Linear Collider (ILC). The formation of weld joints is studied and their microstructure and microhardness are investigated taking the required geometry of the weld seams into account. Low-temperature electrical measurements in magnetic fields up to 2 T are used to determine the critical parameters of the superconducting transition in the weld area. From the standpoint of the superconducting properties of the resonator, the slight degradation in the characteristics of sheet niobium observed in the thermally affected area (about 10% on average) is not of fundamental importance.

  19. Synthesis and photocatalytic activity of electrospun niobium oxide nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Shishun [Institute of Electro Ceramics and Devices, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zuo, Ruzhong, E-mail: piezolab@hfut.edu.cn [Institute of Electro Ceramics and Devices, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Liu, Yi [Institute of Electro Ceramics and Devices, School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Wang, Yu [Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hong Kong (China)

    2013-03-15

    Graphical abstract: Different morphologies are obtained for the electrospun niobium oxide nanofibers with different phase structures. The nanofibers of the two phase structures present different band gap value and the light absorption. Hexagonal phase nanofibers show better photocatalytic activity compared with the orthorhombic nanofibers. Highlights: ► Niobium oxide nanofibers of two phase structures were fabricated by electrospinning. ► Photocatalytic properties of the niobium oxide nanofibers were first explored. ► Nanofibers of different phase structures showed different photocatalytic activities. ► Reasons for the differences in the photocatalysis were carefully discussed. - Abstract: Niobium oxide (Nb{sub 2}O{sub 5}) nanofibers have been synthesized by sol–gel based electrospinning technique. Pure hexagonal phase (H-Nb{sub 2}O{sub 5}) and orthorhombic phase (O-Nb{sub 2}O{sub 5}) nanofibers were obtained by thermally annealing the electrospun Nb{sub 2}O{sub 5}/polyvinylpyrrolidone composite fibers in air at 500 °C and 700 °C, respectively. The fibers were characterized using the X-ray diffraction, scanning electron microscopy, specific surface area analyzer and UV–vis diffuse reflectance spectroscopy. Photocatalytic activities of the obtained nanofibers were evaluated depending on the degradation of methyl orange. The results indicate that the heat-treatment temperature, the crystalline structure and the morphology affected the physical and chemical properties of the as-prepared Nb{sub 2}O{sub 5} nanofibers. The H-Nb{sub 2}O{sub 5} nanofibers obtained at lower temperature showed better potential for the application as a promising photocatalyst.

  20. Deformability of niobium and tin bronze during compression

    Science.gov (United States)

    Nikulin, S. A.; Rozhnov, A. B.; Aliev, R. M.; Rogachev, S. O.; Khatkevich, V. M.; Abdyukhanov, I. M.; Dergunova, E. A.; Traktirnikova, N. V.

    2015-10-01

    The deformability of Cu-14.5 wt % Sn-0.25 wt % Ti bronze and pure niobium (99.84%) is studied during compression tests. It is found that an increase in the strain rate or a decrease in the test temperature can improve the strength characteristics of both materials. The strength properties of bronze are more sensitive to a change in the temperature-rate deformation conditions.

  1. Prototype 350 MHz niobium spoke-loaded cavities.

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J. R.; Kedzie, M.; Mammosser, J.; Piller, C.; Shepard, K. W.

    1999-05-10

    This paper reports the development of 350 MHz superconducting cavities of a spoke-loaded geometry, intended for the velocity range 0.2 < v/c < 0.6. Two prototype single-cell cavities have been designed, one optimized for velocity v/c = 0.4, and the other for v/c = 0.29. Construction of the prototype niobium cavities is nearly complete. Details of the design and construction are discussed, along with the results of cold tests.

  2. Silicate Earth’s missing niobium may have been sequestered into asteroidal cores

    Science.gov (United States)

    Münker, Carsten; Fonseca, Raúl O. C.; Schulz, Toni

    2017-11-01

    Geochemical models describing the behaviour of niobium during Earth’s growth rely on the general paradigm that niobium was delivered by Earth’s asteroidal building blocks at chondritic abundances. This paradigm is based on the observation that niobium is traditionally regarded as a refractory and strongly lithophile element, and thus stored in the silicate portions of Earth and differentiated asteroids. However, Earth’s silicate mantle is instead selectively depleted in niobium, in marked contrast to the silicate mantles of many asteroids and smaller planets that apparently lack any significant depletion in niobium. Here we present results of high-precision measurements for niobium and other lithophile elements in representative meteorites from various small differentiated asteroids. Our data, along with the results of low-pressure experiments, show that in more reduced asteroids--such as Earth’s first building blocks--niobium is moderately chalcophile and more so than its geochemical twin tantalum by an order of magnitude. Accordingly, niobium can be sequestered into the cores of more reduced asteroids during differentiation via the segregation of sulfide melts in a carbon-saturated environment. We suggest that the niobium deficit in Earth’s silicate mantle may be explained by the Earth’s silicate mantle preferentially accreting the silicate portions of reduced asteroidal building blocks.

  3. The structure of niobium-doped MoSe2 and WSe2

    Directory of Open Access Journals (Sweden)

    Moussa Bougouma

    2008-08-01

    Full Text Available Polycrystalline niobium-doped molybdenum and tungsten diselenides were synthesized in silicatubes sealed under secondary vacuum. They were characterized by scanning electron microscopy, electrondiffraction, X-ray diffraction, chemical composition and EDX analyses. The morphology of niobium-dopedmolybdenum solid solutions was shown to depend strongly on the conditions of synthesis, whereas the structuralcharacterization did not.

  4. High Versatility of Niobium Alloyed AHSS

    Directory of Open Access Journals (Sweden)

    Kučerová L.

    2017-09-01

    Full Text Available The effect of processing parameters on the final microstructure and properties of advanced high strength CMnSiNb steel was investigated. Several processing strategies with various numbers of deformation steps and various cooling schedules were carried out, namely heat treatment without deformation, conventional quenching and TRIP steel processing with bainitic hold or continuous cooling. Obtained multiphase microstructures consisted of the mixture of ferrite, bainite, retained austenite and M-A constituent. They possessed ultimate tensile strength in the range of 780-970 MPa with high ductility A5mm above 30%. Volume fraction of retained austenite was for all the samples around 13%. The only exception was reference quenched sample with the highest strength 1186 MPa, lowest ductility A5mm = 20% and only 4% of retained austenite.

  5. Influence of Niobium on the Beginning of the Plastic Flow of Material during Cold Deformation

    Directory of Open Access Journals (Sweden)

    Stoja Rešković

    2013-01-01

    Full Text Available Investigations were conducted on low-carbon steel and the steel with same chemical composition with addition of microalloying element niobium. While tensile testing was carried out, the thermographic measurement was tacking place simultaneously. A specific behavior of niobium microalloyed steel was noticed. Test results have shown that, in the elastic deformation region, thermoelastic effect occurs, which is more pronounced in niobium microalloyed steel. Start of plastic flow in steel which is not microalloyed with niobium begins later in comparison to the microalloyed steel, and it is conducted so that, at the point of maximum stress, deformation zone is formed within which stresses grow. In steel microalloyed with niobium after proportionality limit, comes the occurrence of the localized increase in temperature and the occurrence of Lüders band, which propagate along the sample forming a deformation zone.

  6. THE INFLUENCE OF NIOBIUM ON THE ACIDITY AND STRUCTURE OF GAMMA-ALUMINA-SUPPORTED VANADIUM OXIDES

    Directory of Open Access Journals (Sweden)

    Sathler M.N.B.

    1998-01-01

    Full Text Available Gamma-alumina-supported niobium oxide was used as a support for vanadium oxides. The influence of the addition of niobium oxide was studied by looking for changes in the structure and acid-base character of superficial species. Vanadium oxide was deposited using the continuous adsorption method; niobium oxide was impregnated using the incipient wetness method. The catalysts were characterized by XPS, UV-visible and IR spectroscopy. Catalytic tests were performed using propane oxidation reaction at 400oC. For coverage below the monolayer, both vanadium and niobium oxides were observed in slightly condensed superficial species. The presence of vanadium oxide on the support was found to increase the Lewis acidity and create some Bronsted acidity. Higher catalytic activity and selectivity for propene were associated with vanadium oxides. The presence of niobium did not contribute to the modification of the chemical properties of superficial vanadium but did decrease the adsorption of vanadium on the alumina.

  7. Influence of electropolishing and anodic oxidation on morphology, chemical composition and corrosion resistance of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Maciej; Greń, Katarzyna [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Kukharenko, Andrey I. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Korotin, Danila M. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Michalska, Joanna [Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego Street 8, 40-019 Katowice (Poland); Szyk-Warszyńska, Lilianna; Mosiałek, Michał [Jerzy Haber Institute of Catalysis and Surface Chemistry PAS, Niezapominajek Street 8, 30-239 Kraków (Poland); Żak, Jerzy [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Pamuła, Elżbieta [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza Avenue 30, 30-059 Kraków (Poland); Kurmaev, Ernst Z. [Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Cholakh, Seif O. [Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Mira str. 19 (Russian Federation); Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2014-09-01

    The work presents results of the studies performed on electropolishing of pure niobium in a bath that contained: sulphuric acid, hydrofluoric acid, ethylene glycol and acetanilide. After the electropolishing, the specimens were subjected to anodic passivation in a 1 mol dm{sup −3} phosphoric acid solution at various voltages. The surface morphology, thickness, roughness and chemical composition of the resulting oxide layers were analysed. Thusly prepared niobium samples were additionally investigated in terms of their corrosion resistance in Ringer's solution. The electropolished niobium surface was determined to be smooth and lustrous. The anodisation led to the growth of barrier-like oxide layers, which were enriched in phosphorus species. - Highlights: • Pure niobium was electropolished and subsequently anodised in a H{sub 3}PO{sub 4} solution. • Phosphorus was successfully introduced into the oxide layers after the treatment. • Corrosion resistance of niobium in Ringer's solution was improved after anodising.

  8. Catalysts Promoted with Niobium Oxide for Air Pollution Abatement

    Directory of Open Access Journals (Sweden)

    Wendi Xiang

    2017-05-01

    Full Text Available Pt-containing catalysts are currently used commercially to catalyze the conversion of carbon monoxide (CO and hydrocarbon (HC pollutants from stationary chemical and petroleum plants. It is well known that Pt-containing catalysts are expensive and have limited availability. The goal of this research is to find alternative and less expensive catalysts to replace Pt for these applications. This study found that niobium oxide (Nb2O5, as a carrier or support for certain transition metal oxides, promotes oxidation activity while maintaining stability, making them candidates as alternatives to Pt. The present work reports that the orthorhombic structure of niobium oxide (formed at 800 °C in air promotes Co3O4 toward the oxidation of both CO and propane, which are common pollutants in volatile organic compound (VOC applications. This was a surprising result since this structure of Nb2O5 has a very low surface area (about 2 m2/g relative to the more traditional Al2O3 support, with a surface area of 150 m2/g. The results reported demonstrate that 1% Co3O4/Nb2O5 has comparable fresh and aged catalytic activity to 1% Pt/γ-Al2O3 and 1% Pt/Nb2O5. Furthermore, 6% Co3O4/Nb2O5 outperforms 1% Pt/Al2O3 in both catalytic activity and thermal stability. These results suggest a strong interaction between niobium oxide and the active component—cobalt oxide—likely by inducing an oxygen defect structure with oxygen vacancies leading to enhanced activity toward the oxidation of CO and propane.

  9. Microplasticity and fatigue in a damage tolerant niobium aluminide intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Soboyejo, W.O.; DiPasquale, J. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering; Srivatsan, T.S. [Univ. of Akron, OH (United States). Dept. of Mechanical Engineering; Konitzer, D. [General Electric Aircraft Engines, Cincinnati, OH (United States)

    1997-12-31

    In this paper, the micromechanisms of microplasticity and fatigue are elucidated for a damage tolerant niobium aluminide intermetallic deformed to failure under both monotonic and cyclic loading. Localized microplasticity is shown to occur by the formation of slip bands at stresses as low as 9% of the bulk yield stress. Formation and presence of slip bands is also observed upon application of the first cycle of fatigue load. The deformation and cracking phenomena are discussed in light of classical fatigue crack initiation and propagation models. The implications of microplasticity are elucidated for both fatigue crack initiation and crack growth.

  10. Monolithic gyroidal mesoporous mixed titanium-niobium nitrides.

    Science.gov (United States)

    Robbins, Spencer W; Sai, Hiroaki; DiSalvo, Francis J; Gruner, Sol M; Wiesner, Ulrich

    2014-08-26

    Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium-niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite heat treatment up to 600 °C, without a rigid carbon framework as a support. Furthermore, the gyroidal lattice parameters were varied by changing polymer molar mass. This synthesis strategy may prove useful in generating a variety of monolithic ordered mesoporous mixed oxides and nitrides for electrode and catalyst materials.

  11. Monolithic Gyroidal Mesoporous Mixed Titanium–Niobium Nitrides

    Science.gov (United States)

    2015-01-01

    Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium–niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite heat treatment up to 600 °C, without a rigid carbon framework as a support. Furthermore, the gyroidal lattice parameters were varied by changing polymer molar mass. This synthesis strategy may prove useful in generating a variety of monolithic ordered mesoporous mixed oxides and nitrides for electrode and catalyst materials. PMID:25122534

  12. Application of Niobium Low Carbon Low Alloy Structural Steel Approach

    Science.gov (United States)

    Jansto, Steven G.; Silvestre, Leonardo; Wang, Houxin

    Niobium Bearing Low Carbon Low Alloy (LCLA) value-added S355 structural steels reduces the overall material and construction costs for many high strength construction steel and heavy equipment applications. The recent development of the Nb-LCLA Approach is a value-added low cost approach for many structural steel applications including windtower supports, beams and other structural plate applications. Case examples are presented from Brazil, China and the USA. These Nb-bearing steels at lower carbon content compared to the traditional higher carbon normalize heat treated grades are more cost effective and reduce structural fabrication time through improved weldability as well.

  13. Anisotropic properties of superconducting niobium wire-networks

    Science.gov (United States)

    Hua, J.; Xiao, Z. L.; Imre, A.; Patel, U.; Ocola, L. E.; Novosad, V.; Welp, U.; Kwok, W. K.

    2008-03-01

    By utilizing focused ion beam (FIB) patterning technique we were able to fabricate hole-arrays with interhole spacing down to 150 nm into superconducting niobium (Nb) films. This enabled us to have a large temperature range to explore the properties of Nb wire networks in which the superconducting strips between neighboring holes are comparable to the superconducting coherence length. We studied the anisotropy of these superconducting networks by measuring the critical temperatures and magnetoresistances at various magnetic field directions respect to the film surface. The effect of film thickness, hole diameter, interhole-spacing and the symmetry of the hole lattice on the anisotropy will be reported.

  14. First prototype Copper-Niobium RF Superconducting Cavity

    CERN Multimedia

    1983-01-01

    This is the first RF superconducting cavity made of copper with a very thin layer of pure niobium deposited on the inner wall by sputtering. This new developpment lead to a considerable increase of performance and stability of superconducting cavities and to non-negligible economy. The work was carried out in the ISR workshop. This technique was adopted for the LEP II accelerating cavities. At the centre is Cristoforo Benvenuti, inventor of this important technology, with his assistants, Nadia Circelli and Max Hauer, carrying the sputtering electrode. See also 8209255, 8312339.

  15. Effect of niobium and carbon on microstructure and compressive yield strength of as cast ESR Fe-8.5Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baligidad, R.G.; Dutta, A.; Rao, A.S.

    2005-03-15

    The effect of niobium (1.5 and 3.5 wt-%) addition on the microstructure and mechanical properties of as cast ESR Fe-8.5Al-0.1C alloy has been studied. Alloys were prepared by a combination of air induction melting with flux cover (AIMFC) and electroslag remelting (ESR). As cast ESR alloys were characterised using an optical microscope, a scanning electron microscope (SEM) and an electron probe microanalyser (EPMA). Compression tests were carried out on as cast ESR alloy samples at temperatures up to 800{sup o}C. Addition of 1.5 wt-% Nb to Fe-8.5Al-0.1C alloy resulted in a marginal improvement in the compressive yield strength at test temperatures up to 1073 K, whereas addition of 3.5 wt-% Nb significantly improved the strength. This significant improvement in the room and high temperature compressive strength may be attributed to solid solution strengthening as well as precipitation hardening by the presence of fine and higher volume fractions of niobium and niobium carbide precipitates, in contrast to the relatively soft Fe{sub 3}AlC{sub 0.5} precipitates present in the Fe-8.5Al-0.1C alloy. (author)

  16. Synthesis of nanoparticeles in ductile iron with small additions of vanadium and niobium and its mechanical properties

    Directory of Open Access Journals (Sweden)

    E. Fraś

    2007-12-01

    Full Text Available It has been shown that the heat treatment of 1095oC/640 oC type of ferritic ductile iron with small addition of 0.08% vanadium permits to obtain of the rounded VC nanoparticles with an average size of 50 nm and 0.13 volume fraction. Results of investigations of influence of small vanadium up to 0.3%, niobium up to 0.16% and nitrogen up to 58 ppm additions and heat treatment of 1080oC-24h/640 oC and 1080oC-24h/600 oC type on structure and mechanical properties (tensile strength, yields strength and elongation of ductile iron are also presented in this work. It has been demonstrated that heat treatment and small additions of vanadium, and niobium as well as nitrogen enable to obtain material, which can be classified a EN-GJS-450-18 to EN-GJS-700-2 grade ductile iron.

  17. Niobium superconducting rf cavity fabrication by electrohydraulic forming

    Directory of Open Access Journals (Sweden)

    E. Cantergiani

    2016-11-01

    Full Text Available Superconducting rf (SRF cavities are traditionally fabricated from superconducting material sheets or made of copper coated with superconducting material, followed by trim machining and electron-beam welding. An alternative technique to traditional shaping methods, such as deep-drawing and spinning, is electrohydraulic forming (EHF. In EHF, half-cells are obtained through ultrahigh-speed deformation of blank sheets, using shockwaves induced in water by a pulsed electrical discharge. With respect to traditional methods, such a highly dynamic process can yield interesting results in terms of effectiveness, repeatability, final shape precision, higher formability, and reduced springback. In this paper, the first results of EHF on high purity niobium are presented and discussed. The simulations performed in order to master the multiphysics phenomena of EHF and to adjust its process parameters are presented. The microstructures of niobium half-cells produced by EHF and by spinning have been compared in terms of damage created in the material during the forming operation. The damage was assessed through hardness measurements, residual resistivity ratio (RRR measurements, and electron backscattered diffraction analyses. It was found that EHF does not worsen the damage of the material during forming and instead, some areas of the half-cell have shown lower damage compared to spinning. Moreover, EHF is particularly advantageous to reduce the forming time, preserve roughness, and to meet the final required shape accuracy.

  18. Niobium superconducting rf cavity fabrication by electrohydraulic forming

    Science.gov (United States)

    Cantergiani, E.; Atieh, S.; Léaux, F.; Perez Fontenla, A. T.; Prunet, S.; Dufay-Chanat, L.; Koettig, T.; Bertinelli, F.; Capatina, O.; Favre, G.; Gerigk, F.; Jeanson, A. C.; Fuzeau, J.; Avrillaud, G.; Alleman, D.; Bonafe, J.; Marty, P.

    2016-11-01

    Superconducting rf (SRF) cavities are traditionally fabricated from superconducting material sheets or made of copper coated with superconducting material, followed by trim machining and electron-beam welding. An alternative technique to traditional shaping methods, such as deep-drawing and spinning, is electrohydraulic forming (EHF). In EHF, half-cells are obtained through ultrahigh-speed deformation of blank sheets, using shockwaves induced in water by a pulsed electrical discharge. With respect to traditional methods, such a highly dynamic process can yield interesting results in terms of effectiveness, repeatability, final shape precision, higher formability, and reduced springback. In this paper, the first results of EHF on high purity niobium are presented and discussed. The simulations performed in order to master the multiphysics phenomena of EHF and to adjust its process parameters are presented. The microstructures of niobium half-cells produced by EHF and by spinning have been compared in terms of damage created in the material during the forming operation. The damage was assessed through hardness measurements, residual resistivity ratio (RRR) measurements, and electron backscattered diffraction analyses. It was found that EHF does not worsen the damage of the material during forming and instead, some areas of the half-cell have shown lower damage compared to spinning. Moreover, EHF is particularly advantageous to reduce the forming time, preserve roughness, and to meet the final required shape accuracy.

  19. Joining of alumina via copper/niobium/copper interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Robert A.; Chapman, Daniel R.; Danielson, David T.; Glaeser, Andreas M.

    2000-03-15

    Alumina has been joined at 1150 degrees C and 1400 degrees C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (approximately equal 240 plus/minus 20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized alumina bonds, bend tests at 800 degrees C-1100 degrees C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000 degrees C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.

  20. Plasma Treatment of Single-Cell Niobium SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    J. Upadhyay, M. Nikolić, S. Popović, L. Vušković, H.L. Phillips, A-M. Valente-Feliciano

    2011-03-01

    Superconducting radio frequency cavities of bulk Niobium are integral components of particle accelerators based on superconducting technology. Wet chemical processing is the commonly used procedure for impurities and surface defects removal and surface roughness improvement , both required to improve the RF performance of the cavity. We are studying plasma etching as an alternate technique to process these cavities. The uniformity of the plasma sheath at the inner wall of the cavity is one prerequisite for its uniform etching. We are developing electro-optic diagnostic techniques to assess the plasma uniformity. Multiple electro-optical probes are placed at different locations of the single cell cavity to diagnose the electrical and optical properties of the plasma. The electrical parameters are required to understand the kinetic nature of the plasma and the optical emission spectroscopy provides the spatial distribution of radicals in the plasma. The spatial variation of the plasma parameters inside the cavity and their effect on the etching of niobium samples placed at different locations in the cavity will be presented.

  1. Geophysical expression of a buried niobium and rare earth element deposit: the Elk Creek carbonatite, Nebraska, USA

    Science.gov (United States)

    Drenth, Benjamin J.

    2014-01-01

    The lower Paleozoic Elk Creek carbonatite is a 6–8-km-diameter intrusive complex buried under 200 m of sedimentary rocks in southeastern Nebraska. It hosts the largest known niobium deposit in the U.S. and a rare earth element (REE) deposit. The carbonatite is composed of several lithologies, the relations of which are poorly understood. Niobium mineralization is most enriched within a magnetite beforsite (MB) unit, and REE oxides are most concentrated in a barite beforsite unit. The carbonatite intrudes Proterozoic country rocks. Efforts to explore the carbonatite have used geophysical data and drilling. A high-resolution airborne gravity gradient and magnetic survey was flown over the carbonatite in 2012. The carbonatite is associated with a roughly annular vertical gravity gradient high and a subdued central low and a central magnetic high surrounded by magnetic field values lower than those over the country rocks. Geophysical, borehole, and physical property data are combined for an interpretation of these signatures. The carbonatite is denser than the country rocks, explaining the gravity gradient high. Most carbonatite lithologies have weaker magnetic susceptibilities than those of the country rocks, explaining why the carbonatite does not produce a magnetic high at its margin. The primary source of the central magnetic high is interpreted to be mafic rocks that are strongly magnetized and are present in large volumes. MB is very dense (mean density 3200  kg/m3) and strongly magnetized (median 0.073 magnetic susceptibility), producing a gravity gradient high and contributing to the aeromagnetic high. Barite beforsite has physical properties similar to most of the carbonatite volume, making it a poor geophysical target. Geophysical anomalies indicate the presence of dense and strongly magnetized rocks at depths below existing boreholes, either a large volume of MB or another unknown lithology.

  2. The Influence of Oxide on the Electrodeposition of Niobium from Alkali Fluoride Melts

    DEFF Research Database (Denmark)

    Christensen, Erik; Wang, Xingdong; Barner, Jens H. Von

    1994-01-01

    Electrodeposit of niobium metal from K2NbF7-LiF-NaF-KF-Na2O melts at 700-degrees-C has been investigated. It was found that the equilibrium oxidation state of niobium was four for initial O2-/Nb(V) ratios of up to at least one. On the other hand when a niobium metal sheet was used for the reduction...... than 30%. The highest current efficiencies obtained were around 95%. For oxide/Nb(V) molar ratios equal to or higher than one, partially nonmetallic surface layers were deposited....

  3. The use of niobium based catalysts for liquid fuel production

    Directory of Open Access Journals (Sweden)

    Frank Martin Reguera

    2004-06-01

    Full Text Available The catalytic properties of niobium based catalysts were investigated in the conversion of oleic acid to liquid fuels at atmospheric pressure and at 623 K. The catalytic tests were performed in a fixed bed and continuous flow reactor using an acid to catalyst ratio equal to 4 and N2 as carrier gas. The reaction products were analyzed by gas chromatography and acidity measurements. NH3 temperature programmed desorption, N2 adsorption-desorption (BET method and Xray diffraction were also performed in order to determine the structural and acidic properties of the catalysts. From the catalytic tests, it was detected the formation of compounds in the range of gasoline, diesel and lubricant oils. Higher catalytic activity and selectivity for diesel fuel were observed for the catalysts NbOPO4 and H3PO4/Nb2O5 that possesses higher acidities and surface areas.

  4. KAJIAN SIFAT OPTIK FILM TIPIS BST DIDADAH NIOBIUM DAN TANTALUM

    Directory of Open Access Journals (Sweden)

    Farida Huriawati

    2016-11-01

    Full Text Available In this research thin films of Barium Strontium Titanate (BST has been synthesis with different compositions Ba0,5Sr0,5TiO3 and Ba0,25Sr0,75TiO3 which doped by Nb2O5 (Niobium and Ta2O5 (Tantalum on Si (100 type-p substrate. Thin films were produced by chemical solution deposition technique (CSD and spin coating technique with annealing temperature at 850oC, 900oC dan 950oC. Rotation velocity at 3000 rpm and time of rotation is 30 seconds. Characterization of Films is optic Characterization (absorbance ana reflectance. From the Characterizations were obtained BNST thin film with 5% doping and anneling temperature at 8500C as photodiode light sensor which applied in electronic circuit.

  5. Mechanical Behavior of Additively Manufactured Uranium-6 wt. pct. Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Wu, A. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wraith, M. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Burke, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hamza, A. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, D. W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clausen, B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hsiung, L. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McKeown, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lindvall, R. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sedillo, E. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Teslich, N. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Torres, S. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Urabe, D. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Freeman, D. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alexander, P. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Iniguez, M. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ryerson, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ancheta, D. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lotscher, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Young, E. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Evans, C. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Florando, J. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gallegos, G. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Margraff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hrousis, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Campbell, G. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-15

    This report describes an effort to process uranium-6 weight% niobium using laser powder bed fusion. The chemistry, crystallography, microstructure and mechanical response resulting from this process are discussed with particular emphasis on the effect of the laser powder bed fusion process on impurities. In an effort to achieve homogenization and uniform mechanical behavior from different builds, as well as to induce a more conventional loading response, we explore post-processing heat treatments on this complex alloy. Elevated temperature heat treatment for recrystallization is evaluated and the effect of recrystallization on mechanical behavior in laser powder bed fusion processed U-6Nb is discussed. Wrought-like mechanical behavior and grain sizes are achieved through post-processing and are reported herein.

  6. Secondary electron emission from plasma processed accelerating cavity grade niobium

    Science.gov (United States)

    Basovic, Milos

    by different techniques. Specifically, this work provides the results of SEY from the plasma cleaned cavity grade niobium (Nb) samples. Pure niobium is currently the material of choice for the fabrication of Superconducting Radio Frequency (SRF) cavities. The effect of plasma processing with two different gases will be examined in two groups of samples. The first group of samples is made from cavity grade niobium. The second group of samples is made from the same material, but include a welded joint made by electron beam welding, since in niobium SRF cavities the peak electric and magnetic field are seen in close proximity to the welded joints. Both groups of samples will be exposed to nitrogen (N2) and a mixture of argon with oxygen (Ar/O2) plasma. It is the goal of this research to determine the SEY on these two groups of samples before and after plasma processing as a function of the energy of primary electrons. The SEY as a function of the angle of incidence of the primary electrons is tested on the samples treated with Ar/O2 plasma.

  7. Occupational exposures to thorium in two Brazilian niobium plants

    Energy Technology Data Exchange (ETDEWEB)

    Dias da Cunha, K.; Lipsztein, J.L.; Barros Leite, C.V

    1998-07-01

    The worker exposure to thorium-bearing airborne particulate was estimated in two Brazilian plants that process niobium minerals, one in the Amazon Forest (Plant A) and the other in the State of Goias (Plant B). The aerosol particle size and the thorium concentrations in the respirable fractions of aerosol concentrations were determined. Results indicate that in Plant A, the MMAD (Mass Median Aerodynamic Diameter) of particles containing thorium were in the range 1.1 to 1.8 {mu}m: in Plant B they were in the range 1.1 to 3.4 {mu}m. The thorium faeces concentrations before the vacation were higher than thorium faeces concentrations in the control group. After the vacation the thorium faeces concentrations were similar to the thorium faeces concentrations in the control group. These results indicate that the thorium incorporation by the workers are mostly due to ingestion. (author)

  8. Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons.

    Energy Technology Data Exchange (ETDEWEB)

    Patel, U.; Avci, S.; Xiao, Z. L.; Hua, J.; Yu, S. H.; Ito, Y.; Divan, R.; Ocola, L. E.; Zheng, C.; Claus, H.; Hiller, J.; Welp, U.; Miller, D. J.; Kwok, W. K.; Northern Illinois Univ.

    2007-10-15

    Superconducting niobium nitride wires and ribbons with transverse dimensions down to tens of nanometers were synthesized by annealing NbSe{sub 3} nanostructure precursors in flowing ammonia gas at temperatures up to 1000 C. Their critical temperatures increase with increasing annealing temperatures and reach 9-11.2 K when sintered at 950 C or above. X-ray diffraction analyses identified Nb{sub 4}N{sub 5} and Nb{sub 5}N{sub 6} phases, dominating at annealing temperatures below and above 950 C, respectively. Transport measurements show magnetoresistance oscillations at temperatures near the superconducting transition due to vortex-row confinement effects and voltage jumps in current-voltage characteristics at low temperatures attributed to hot-spot behavior.

  9. Magnetoresistance anisotropy of a one-dimensional superconducting niobium strip.

    Science.gov (United States)

    Hua, J; Xiao, Z L; Imre, A; Yu, S H; Patel, U; Ocola, L E; Divan, R; Koshelev, A; Pearson, J; Welp, U; Kwok, W K

    2008-08-15

    We investigated confinement effects on the resistive anisotropy of a superconducting niobium strip with a rectangular cross section. When its transverse dimensions are comparable to the superconducting coherence length, the angle dependent magnetoresistances at a fixed temperature can be scaled as R(theta,H) = R(H/Hctheta) where Hctheta =Hc0(cos2theta + gamma(-2)sin2theta)(-1/2) is the angular dependent critical field, gamma is the width to thickness ratio, and Hc0 is the critical field in the thickness direction at theta=0 degrees . The results can be understood in terms of the anisotropic diamagnetic energy for a given field in a one-dimensional superconductor.

  10. Magnetoresistance anisotropy of a one-dimensional superconducting niobium strip.

    Energy Technology Data Exchange (ETDEWEB)

    Hua, J.; Xiao, Z. L.; Imre, A.; Yu, S. H.; Patel, U.; Ocola, L. E.; Divan, R.; Koshelev, A.; Pearson, J.; Welp, U.; Kwok, W. K.; Northern Illinois Univ.

    2008-01-01

    We investigated confinement effects on the resistive anisotropy of a superconducting niobium strip with a rectangular cross section. When its transverse dimensions are comparable to the superconducting coherence length, the angle dependent magnetoresistances at a fixed temperature can be scaled as R({theta},H) = R(H/H{sub c{theta}}) where H{sub c{theta}} = H{sub c0}(cos{sup 2} {theta} + {gamma}{sup -2} sin{sup 2}{theta}){sup -1/2} is the angular dependent critical field, {gamma} is the width to thickness ratio, and H{sub c0} is the critical field in the thickness direction at {theta} = 0{sup o}. The results can be understood in terms of the anisotropic diamagnetic energy for a given field in a one-dimensional superconductor.

  11. Synthesis and superconducting properties of niobium nitride nanowires and nanoribbons

    Science.gov (United States)

    Patel, U.; Avci, S.; Xiao, Z. L.; Hua, J.; Yu, S. H.; Ito, Y.; Divan, R.; Ocola, L. E.; Zheng, C.; Claus, H.; Hiller, J.; Welp, U.; Miller, D. J.; Kwok, W. K.

    2007-10-01

    Superconducting niobium nitride wires and ribbons with transverse dimensions down to tens of nanometers were synthesized by annealing NbSe3 nanostructure precursors in flowing ammonia gas at temperatures up to 1000°C. Their critical temperatures increase with increasing annealing temperatures and reach 9-11.2K when sintered at 950°C or above. X-ray diffraction analyses identified Nb4N5 and Nb5N6 phases, dominating at annealing temperatures below and above 950°C, respectively. Transport measurements show magnetoresistance oscillations at temperatures near the superconducting transition due to vortex-row confinement effects and voltage jumps in current-voltage characteristics at low temperatures attributed to hot-spot behavior.

  12. Magnetoresistance Anisotropy of a One-Dimensional Superconducting Niobium Strip

    Science.gov (United States)

    Hua, J.; Xiao, Z. L.; Imre, A.; Yu, S. H.; Patel, U.; Ocola, L. E.; Divan, R.; Koshelev, A.; Pearson, J.; Welp, U.; Kwok, W. K.

    2008-08-01

    We investigated confinement effects on the resistive anisotropy of a superconducting niobium strip with a rectangular cross section. When its transverse dimensions are comparable to the superconducting coherence length, the angle dependent magnetoresistances at a fixed temperature can be scaled as R(θ,H)=R(H/Hcθ) where Hcθ=Hc0(cos⁡2θ+γ-2sin⁡2θ)-1/2 is the angular dependent critical field, γ is the width to thickness ratio, and Hc0 is the critical field in the thickness direction at θ=0°. The results can be understood in terms of the anisotropic diamagnetic energy for a given field in a one-dimensional superconductor.

  13. Anisotropic magnetoresistance of a one-dimensional superconducting niobium strip

    Science.gov (United States)

    Hua, Jiong; Xiao, Zhili; Imre, Alexandra; Yu, Suhong; Patel, Umesh; Ocola, Leo; Divan, Ralu; Koshelev, Alexei; Pearson, John; Welp, Ulrich; Kwok, Wai-Kwong

    2009-03-01

    We investigated confinement effects on the resistive anisotropy of a superconducting niobium strip with a rectangular cross-section. When the strip's transverse dimensions are comparable to the superconducting coherence length, we find the angle dependent magentoresistances at a fixed temperature can be scaled as R(θ, H) = R(H /Hcθ) where Hcθ = Hc0 (cos^2θ+γ-2sin^2θ)-1/2 is the angular dependent critical field, γ = w/d is the width to thickness ratio of the strip, and Hc0 is the out-plane critical field at θ = 0 . Our results can be understood in terms of the anisotropic diamagnetic energy of a one-dimensional superconductor in a magnetic field.

  14. Secondary Electron Emission from Plasma Processed Accelerating Cavity Grade Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Basovic, Milos [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    by different techniques. Specifically, this work provides the results of SEY from the plasma cleaned cavity grade niobium (Nb) samples. Pure niobium is currently the material of choice for the fabrication of Superconducting Radio Frequency (SRF) cavities. The effect of plasma processing with two different gases will be examined in two groups of samples. The first group of samples is made from cavity grade niobium. The second group of samples is made from the same material, but include a welded joint made by electron beam welding, since in niobium SRF cavities the peak electric and magnetic field are seen in close proximity to the welded joints. Both groups of samples will be exposed to nitrogen (N2) and a mixture of argon with oxygen (Ar/O2) plasma. It is the goal of this research to determine the SEY on these two groups of samples before and after plasma processing as a function of the energy of primary electrons. The SEY as a function of the angle of incidence of the primary electrons is tested on the samples treated with Ar/O2 plasma.

  15. Indium doped niobium phosphates as intermediate temperature proton conductors

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Qingfeng; Anfimova, Tatiana

    2013-01-01

    that the indium doping promoted formation of the cubic Nb2P4O15 phase instead of the monoclinic Nb5P7O30 phase in the pristine niobium phosphates and enhanced the preservation of OH functional groups in the phosphates. The preserved OH functionalities in the phosphates after the heat treatment at 650 °C...... contributed to the anhydrous proton conductivity. The Nb0.9In0.1 phosphate exhibited a proton conductivity of five times higher than that of the un-doped analog at 250 °C. The conductivity was stabilized at a level of above 0.02 S cm−1 under dry atmosphere at 250 °C during the stability evaluation for 3 days....

  16. Morphology study of niobium pentoxide; Estudo da morfologia do pentoxido de niobio

    Energy Technology Data Exchange (ETDEWEB)

    Romero, R.P.P.; Panta, P.C.; Araujo, A.O. de; Bergmann, C.P., E-mail: pantaromero@yahoo.com.br [Universidade Federal do Rio Grande do Sul (LACER/UFRGS), Porto Alegre, RS (Brazil). Laboratorio de Materiais Ceramicos

    2016-07-01

    Currently, Niobium pentoxide (Nb{sub 2}O{sub 5}) has been studied due to physical properties and their use in obtaining electronic ceramics, optical lenses, pH sensors, special filters for TV receivers, among other applications. This study investigated the morphology of the niobium pentoxide obtained by hydrothermal synthesis from the precursor pentachloride niobium (NbCl{sub 5}), where the synthesis was carried out at a temperature of 150 and 200 °C for 130 min and the product obtained was calcined at temperatures 600, 800 and 1000 °C for 60 min. The following characterizations were performed for analysis of the material, among them, X-ray diffraction (XRD) for analysis of the crystal structure, thermal gravimetric analysis (TGA) for detecting the existing functional groups and scanning electron microscopy (SEM) for morphology of material. As a result, different morphologies were obtained and consequently different niobium pentoxide properties studied. (author)

  17. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    Science.gov (United States)

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  18. NIOBIUM PENTACHLORIDE PROMOTED SYNTHESIS OF TETRAHYDROPIRIDINES BY MULTICOMPONENT REACTION Niobpentachlorid BEWORBEN Synthese von TETRAHYDROPIRIDINES BY Mehrkomponentenreaktion

    OpenAIRE

    Lucas Michelão Martins, Bruno Henrique Sacoman Torquato da Silva, Manoel Lima de Menezes and Luiz Carlos da Silva-Filho

    2013-01-01

    One-pot multicomponent synthesis of tetrahydropyridine derivatives between aniline derivatives, benzaldehyde and two different β-keto ester (methyl and ethyl acetoacetate) using niobium pentachloride as catalyst under mild conditions, providing good yields.

  19. Physical and mechanical properties of single and large crystal high-RRR niobium

    Energy Technology Data Exchange (ETDEWEB)

    Ganapati Myneni

    2005-07-10

    High RRR bulk niobium SRF cavities are the building blocks of the latest and future particle accelerators, free electron lasers (FEL's) and energy recovery linacs (ERL's.). These cavities are fabricated from high purity (RRR) poly crystalline niobium sheets via deep drawing, e-beam welding and surface treatment to obtain high accelerating gradients and quality factors. However, the starting bulk RRR niobium properties are not yet optimized with respect to both cost reduction and achievement of ultimate performance. A major limitation in achieving the highest performance can possibly be attributed to imperfections at or near the grain boundaries. Recently, at Jefferson Lab single/large grain RRR niobium cavities are developed using customized RRR ingots with optimized amounts of impurities such as Tantalum and minimizing the interstitial contents (O, C, N and H).

  20. Resonant multiphoton fragmentation spectrum of niobium dimer cation.

    Science.gov (United States)

    Aydin, M; Lombardi, John R

    2009-03-26

    Resonant multiphoton fragmentation spectra of niobium dimer cation (Nb2(+)) have been obtained by utilizing laser vaporization of a Nb metal target. Ions are mass-selected with a time-of-flight mass spectrometer followed by a mass gate and then fragmented with a pulsed dye laser, and the resulting fragment ions are detected with a second time-of-flight reflectron mass spectrometer and multichannel plate. Photon resonances are detected by monitoring ion current as a function of fragmentation laser wavelength. A rich but complex spectrum of the cation is obtained. The bands display a characteristic multiplet structure that may be interpreted as due to transitions from the ground state X4Sigma(Omega g)- to several excited states, (B/D)4Pi(Omega u) and 4Sigma(Omega u)-. The ground state X4sigma(+/-1/2g)- is derived from the electron configuration pi(u)4 1sigma(g)2 2sigma(g)1 delta(g)2. The two spin-orbit components are split by 145 cm(-1) due to a strong second-order isoconfigurational spin-orbit interaction with the low-lying 2Sigma(+/-1/2g)+ state. The vibrational frequencies of the ground state and the excited-state of Nb2(+) are identified as well as molecular spin-orbit constants (A(SO)) in the excited state. The electronic structure of niobium dimer cation was investigated using density functional theory. For the electronic ground state, the predicted spectroscopic properties were in good agreement with experiment. Calculations on excited states reveal congested manifolds of quartet and doublet electronic states in the range 0-30,000 cm(-1), reflecting the multitude of possible electronic promotions among the 4d- and 5s-based molecular orbitals. Comparisons are drawn between Nb2(+) and the prevalent isoelectronic molecules V2(+)/NbV(+)/Nb2/V2/NbV2.

  1. 10-fold enhancement in light-driven water splitting using niobium oxynitride microcone array films

    KAUST Repository

    Shaheen, Basamat

    2016-03-26

    We demonstrate, for the first time, the synthesis of highly ordered niobium oxynitride microcones as an attractive class of materials for visible-light-driven water splitting. As revealed by the ultraviolet photoelectron spectroscopy (UPS), photoelectrochemical and transient photocurrent measurements, the microcones showed enhanced performance (~1000% compared to mesoporous niobium oxide) as photoanodes for water splitting with remarkable stability and visible light activity. © 2016 Elsevier B.V. All rights reserved.

  2. On the stabilization of niobium(V) solutions by zirconium(IV) and hafnium(IV)

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    Niobium cannot be separated from zirconium or hafnium when these elements occur together in solution with common anions such as chloride and sulphate. This is ascribed to the co-polymerization of niobium(V) and the hydrolysed ionic species of zirconium(IV) and hafnium(IV) to form colloidal partic...... particles. In hydrochloric acid the particles are positively charged, whereas in sulphate solution the Zr- and Hf-sulphate complexes confer a negative charge. The two cases are considered separately....

  3. Niobium quarter-wave cavity for the New Delhi booster linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P.N. [Nuclear Science Centre, New Delhi (India)

    1997-09-01

    This paper reports the completion of development of a 97 Mhz niobium coaxial quarter-wave cavity to be used in a booster linac for the New Delhi 16UD pellatron electrostatic accelerator. A prototype cavity, which incorporates a niobium-bellows tuning device, has been completed and operated at 4.2 K at accelerating gradients above 4 MV/m for extended periods of time.

  4. Effect of strain path on deformation texture of superconducting niobium sheet

    OpenAIRE

    Zamiri, Amir

    2014-01-01

    The texture of high purity superconducting niobium sheets plays an important role in the physical and mechanical properties of high purity niobium sheet that are important for manufacturing of superconducting accelerator cavities. In a particular batch of sheet metal, orientation imaging microscopy showed an inhomogeneous texture from the surface to the mid-thickness of the sheet consisting a gamma fiber, {111}), cube fiber, {100}), and also some components on the alpha fiber, {hkl}. With uni...

  5. [Niobium filtration in dental radiology. Effects on image quality and on dosage].

    Science.gov (United States)

    Bianchi, S D; Giovannetti, P; Albrito, F

    1997-06-01

    The necessity of reducing the radiation dose to the patient in diagnostic radiology according to the ALARA guideline established by the ICRP has stimulated the research on additional filtration systems capable of removing the low-energy photons increasing the dose and worsening image quality. Very few literature studies deal with the effects of niobium filtration on image quality in dental radiography with the use of modulation transfer function (MTF) and square wave response function (SWRF). Only one study has considered those effects measuring dose absorption in an anthropomorphic phantom. 1) to study the effects of a 30 microns additional niobium filter on image quality using the SWRF; 2) to compare the doses absorbed in vivo during a complete radiographic survey of the mouth, both with and without niobium filtration. Qualitative studies led us to conclude that niobium filtration does not significantly worsen radiographic image quality. The following doses were measured in the exposures with niobium filtration: 1678 microGy to 6000 microGy (intraoral doses) and 75 microGy to 3643 microGy (skin doses). The comparison with the doses measured during the exposures made with conventional filtration indicates that dose reduction is not significantly advantageous relative to risk reduction. In conclusion, additional niobium filtration is not advisable in dental radiology, also because of the filter cost and of the increased wear of the unit.

  6. Niobium carbide synthesis from niobium oxide: Study of the synthesis conditions, kinetics, and solid-state transformation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira da Silva, V.L.S.; Schmal, M. [Universidade Federal do Rio de Janeiro (Brazil); Oyama, S.T. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1996-04-01

    The carburization of B-niobium oxide (B-Nb{sub 2}O{sub 5}) to niobium carbide (NbC) in 20% (v/v)CH{sub 4}/H{sub 2} was studied at temperature-programmed conditions, the reaction required high temperatures, greater than 1370K, and variations of heating rate (0.04-0.17 K s{sup {minus}1}) and molar space velocity (400-1600 h{sup {minus}1}) had only a minor effect on the product specific surface are (S{sub g}). In the course of the transformation S{sub g} increased from 1 m{sup 2}g{sup {minus}1} to about 20 m{sup 2}g{sup {minus}1}, and scanning electron microscopy showed the development of macropores of about 100 nm. The progress of the reaction was followed by mass spectroscopic analysis of the gaseous products, which identified two distinct stages. X-ray diffraction analysis of reaction intermediates showed that in the first stage B-Nb{sub 2}O{sub 5} was reduced to NbO{sub 2}, and in the second stage NbO{sub 2} was simultaneously reduced and carburized to NbC. The first reduction occurred by a nucleation mechanism with an activation energy of 100 kJ mol{sup {minus}1}. Independent experiments with NbO indicated that it was not involved in the reaction pathway. However, X-ray photoelectron spectroscopy revealed the presence of an oxycarbide phase which was probably the intermediate in the final transformation. The oxycarbide phase transformed rapidly to the product NbC and was not observable as a bulk phase by XRD.

  7. Niobium Carbide Synthesis from Niobium Oxide: Study of the Synthesis Conditions, Kinetics, and Solid-State Transformation Mechanism

    Science.gov (United States)

    Teixeira da Silva, V. L. S.; Schmal, M.; Oyama, S. T.

    1996-04-01

    The carburization of B-niobium oxide (B-Nb2O5) to niobium carbide (NbC) in 20% (v/v) CH4/H2was studied at temperature-programmed conditions. The reaction required high temperatures, greater than 1370 K, and variations of heating rate (0.04-0.17 K s-1) and molar space velocity (400-1600 h-1) had only a minor effect on the product specific surface area (Sg). In the course of the transformationSgincreased from 1 m2g-1to about 20 m2g-1, and scanning electron microscopy showed the development of macropores of about 100 nm. The progress of the reaction was followed by mass spectroscopic analysis of the gaseous products, which identified two distinct stages. X-ray diffraction analysis of reaction intermediates showed that in the first stage B-Nb2O5was reduced to NbO2, and in the second stage NbO2was simultaneously reduced and carburized to NbC. The first reduction occurred by a nucleation mechanism with an activation energy of 100 kJ mol-1. Independent experiments with NbO indicated that it was not involved in the reaction pathway. However, X-ray photoelectron spectroscopy revealed the presence of an oxycarbide phase which was probably the intermediate in the final transformation. Overall the reaction took place by the following steps:[formula]The oxycarbide phase transformed rapidly to the product NbC and was not observable as a bulk phase by XRD.

  8. Proposal of a new biokinetic model for niobium; Proposta de um novo modelo biocinetico para o niobio

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Roges

    2006-07-01

    There are two niobium isotopes generated in nuclear power plants: 95 Nb and 94 Nb. Workers and members of the public are subjects to intake these radionuclides in accident situation. For dose calculation purpose, it is very important to develop a model that describes in a more realistic way the kinetics of niobium inside of the human body. Presently the model adopted by ICRP (ICRP, 1989) is based on animal studies and describes the behavior of niobium in human being in a simple manner. The new model proposal describes the kinetics of the niobium from the intake into the blood until the excretion, doing this in a more realistic form and considering not only data from animals but data from human beings as well. For this objective, a workers group of a niobium extraction and processing industry exposed to stable niobium (93 Nb) in oxide insoluble form with associated uranium, was monitored for uranium and niobium determination in urinary and fecal excretion, by mass spectrometry. Based in the ratios of the niobium concentration in urinary and faecal excretion of this workers and animal data study, a new biokinetic model for niobium was proposed, with the followings modifications relative to ICRP model: a new compartment that represents muscular tissue; the fractions which are deposited into the compartment are modified; a third component in the retention equation of the bone tissue; introduction of recirculation between organs and blood. The new model was applied for a case of accidental intake and described adequately the experimental data.

  9. On the reliable determination of the magnetic field for first flux-line penetration in technical niobium material

    Energy Technology Data Exchange (ETDEWEB)

    Ganapati Rao Myneni

    2007-09-05

    We present a way to reliably determine the field for first penetration H$_P$ in various kinds of bulk samples of niobium material used in the technical applications like fabrication of superconducting RF-cavities. Special attention is given to the role of flux line pinning in the determination of H$_P$. It is observed that the pinning properties and H$_P$ can change (or can be altered) significantly with the chemical treatment of bulk niobium. A correlation is proposed between H$_P$ of the niobium materials and the anomalous high-field Q-drop observed in the superconducting RF-cavities fabricated using such niobium material.

  10. Doped niobium superconducting nanowire single-photon detectors

    Science.gov (United States)

    Jia, Tao; Kang, Lin; Zhang, Labao; Zhao, Qingyuan; Gu, Min; Qiu, Jian; Chen, Jian; Jin, Biaobing

    2014-09-01

    We designed and fabricated a special doped niobium (Nb*) superconducting nanowire single-photon detector (SNSPD) on MgO substrate. The superconductivity of this ultra-thin Nb* film was further improved by depositing an ultra-thin aluminum nitride protective layer on top. Compared with traditional Nb films, Nb* films present higher T C and J C. We investigated the dependence of the characteristics of devices, such as cut-off wavelength, response bandwidth, and temperature, on their geometrical dimensions. Results indicate that reduction in both the width and thickness of Nb* nanowires extended the cut-off wavelength and improved the sensitivity. The Nb* SNSPD (50 nm width and 4.5 nm thickness) exhibited single-photon sensitivities at 1,310, 1,550, and 2,010 nm. We also demonstrated an enhancement in the detection efficiency by a factor of 10 in its count rate by lowering the working temperature from 2.26 K to 315 mK.

  11. Superconducting niobium nitride films deposited by unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Olaya, J.J. [Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Ciudad Universitaria, Carrera 30 Numero 45-03, Bogota (Colombia); Huerta, L. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, CU Coyoacan, Mexico D.F. 04510 (Mexico); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, CU Coyoacan, Mexico D.F. 04510 (Mexico)], E-mail: ser42@iim.unam.mx; Escamilla, R. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, CU Coyoacan, Mexico D.F. 04510 (Mexico)

    2008-10-01

    Niobium nitride (NbN) thin films were deposited under different configurations of the magnetic field using a magnetron sputtering system. The magnetic field configuration varied from balanced to unbalanced leading to different growth conditions and film properties. The aim of the paper was to identify correlations between deposition conditions, film properties and the electrical properties, specially the superconductive critical temperature (T{sub C}). The results suggested that there is a critical deposition condition, having an optimum ion-atom arrival ratio that promotes a well ordered and textured nanocrystalline structure (cubic phase) with the minimum residual stress and only under this condition a high critical temperature (16K) was obtained. Lower T{sub C} values around 12K were obtained for the NbN samples having a lower degree of structural perfection and texture, and a larger fraction of intergranular voids. On the other hand, analysis of valence-band spectra showed that the contribution of the Nb 4d states remained essentially constant while the higher T{sub C} was correlated to a higher contribution of the N 2p states.

  12. Reactive growth of niobium silicides in bulk diffusion couples

    Energy Technology Data Exchange (ETDEWEB)

    Milanese, Chiara; Buscaglia, Vincenzo; Maglia, Filippo; Anselmi-Tamburini, Umberto

    2003-09-15

    The diffusion-controlled growth of niobium silicides (NbSi{sub 2} and Nb{sub 5}Si{sub 3}) was studied in Nb/Si and Nb/NbSi{sub 2} bulk diffusion couples annealed at 1200-1350 degree sign C for 2-24 h. Both compounds were found to grow as parallel layers, according to the parabolic rate law. The concept of the integrated diffusion coefficient is used to describe the growth kinetics of the two silicides. The corresponding activation energy is 263 kJ/mol for Nb{sub 5}Si{sub 3} and 304 kJ/mol for NbSi{sub 2}. The activation energy (in eV) scales as 0.98T{sub m}(K)/1000 for Nb{sub 5}Si{sub 3} and as 1.4T{sub m}(K)/1000 for NbSi{sub 2} in agreement with the general behavior observed for many transition metal silicides. The position of the Kirkendall plane inside the Nb{sub 5}Si{sub 3} layer developed in Nb/NbSi{sub 2} couples indicates that, in the present temperature range, the diffusion of Si in Nb{sub 5}Si{sub 3} is considerably faster than that of Nb.

  13. Advance in Vertical Buffered Electropolishing on Niobium for Particle Accelerators*

    Energy Technology Data Exchange (ETDEWEB)

    A.T. Wu, S. Jin, J.D. Mammosser, C.E. Reece, R.A. Rimmer,L. Lin, X.Y. Lu, K. Zhao

    2011-09-01

    Niobium (Nb) is the most popular material that has been employed for making superconducting radio frequency (SRF) cavities to be used in various particle accelerators over the last couple of decades. One of the most important steps in fabricating Nb SRF cavities is the final chemical removal of 150 {mu}m of Nb from the inner surfaces of the SRF cavities. This is usually done by either buffered chemical polishing (BCP) or electropolishing (EP). Recently a new Nb surface treatment technique called buffered electropolishing (BEP) has been developed at Jefferson Lab. It has been demonstrated that BEP can produce the smoothest surface finish on Nb ever reported in the literature while realizing a Nb removal rate as high as 10 {mu}m/min that is more than 25 and 5 times quicker than those of EP and BCP(112) respectively. In this contribution, recent advance in optimizing and understanding BEP treatment technique is reviewed. Latest results from RF measurements on BEP treated Nb single cell cavities by our unique vertical polishing system will be reported.

  14. Pulsed laser deposition of niobium nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Farha, Ashraf Hassan, E-mail: ahass006@odu.edu; Elsayed-Ali, Hani E., E-mail: helsayed@odu.edu [Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States); Applied Research Center, Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Department of Physics, Faculty of Science, Ain Shams University, Cairo 11566 (Egypt); Ufuktepe, Yüksel, E-mail: ufuk@cu.edu.tr [Department of Physics, University of Cukurova, 01330 Adana (Turkey); Myneni, Ganapati, E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2015-12-04

    Niobium nitride (NbN{sub x}) films were grown on Nb and Si(100) substrates using pulsed laser deposition. NbN{sub x} films were deposited on Nb substrates using PLD with a Q-switched Nd:YAG laser (λ = 1064 nm, ∼40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, nitrogen background pressures and deposition substrate temperatures. When all the fabrication parameters are fixed, except for the laser fluence, the surface roughness, nitrogen content, and grain size increase with increasing laser fluence. Increasing nitrogen background pressure leads to a change in the phase structure of the NbN{sub x} films from mixed β-Nb{sub 2}N and cubic δ-NbN phases to single hexagonal β-Nb{sub 2}N. The substrate temperature affects the preferred orientation of the crystal structure. The structural and electronic, properties of NbN{sub x} deposited on Si(100) were also investigated. The NbN{sub x} films exhibited a cubic δ-NbN with a strong (111) orientation. A correlation between surface morphology, electronic, and superconducting properties was found. The observations establish guidelines for adjusting the deposition parameters to achieve the desired NbN{sub x} film morphology and phase.

  15. Study of MgB2 Films on Niobium Substrate

    Science.gov (United States)

    Zhuang, Chenggang; Yao, Dan; Li, Fen; Zhang, Kaicheng; Feng, Qingrong; Gan, Zizhao

    2006-03-01

    We have successfully fabricated polycrystalline MgB2 films on metal niobium by using the hybrid physical-chemical vapor deposition technique. TC (onset) of these samples ranged from 38.5 K to 39.4 K, with δT, 0.1 K ˜ 0.3 K. The observed TC was the highest among all the MgB2 films over metal substrates reported to date. Thicknesses of the films were about 1.0 μm. XRD indicated that lattice constants approached the values of the bulk. The film surface was visible with hexagonal plate-shaped MgB2 crystallites but not dense enough, shown by SEM observation. A line scanning spectra of EDX on the cutting cross section exhibited that there was an oxygen-rich region at the interface. Also, the diffusion of the Mg atoms deeply into the film has resulted in the tenacity and adherence of the film to the substrate. TEM investigation proved the existence of this buffer layer, ˜100 nm. Estimated using magnetic hysteresis loops and Bean model, JC was above 2.30 x 10^4 A/cm^2 at 10 K in zero field. The synthesis of MgB2/Nb films with thickness above one micron, showing certain tenacity, is an important and significant step towards the application of the 2^nd generation MgB2 superconductor wires or tapes.

  16. Evaluation of Niobium as Candidate Electrode Material for DC High Voltage Photoelectron Guns

    Science.gov (United States)

    BastaniNejad, M.; Mohamed, Abdullah; Elmustafa, A. A.; Adderley, P.; Clark, J.; Covert, S.; Hansknecht, J.; Hernandez-Garcia, C.; Poelker, M.; Mammei, R.; hide

    2012-01-01

    The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirror-like finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain) that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium) could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18:7 MV/m.

  17. Evaluation of niobium as candidate electrode material for dc high voltage photoelectron guns

    Directory of Open Access Journals (Sweden)

    M. BastaniNejad

    2012-08-01

    Full Text Available The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirrorlike finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (<10  pA at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18.7  MV/m.

  18. Energy dependence of the optical model of neutron scattering from niobium

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Lawson, R.D.

    1985-05-01

    Neutron differential-elastic-scattering cross sections of niobium were measured from 1.5 to 10.0 MeV at intervals of less than or equal to200 keV below 4.0 MeV, and of approx. =500 keV from 4.0 to 10.0 MeV. Ten to more than fifty differential-cross-section values were determined at each incident energy, distributed over the angular range approx. =20 to 160/sup 0/. The observed values were interpreted in the context of the spherical optical-statistical model. It was found that the volume integral of the real potential decreased with energy whereas the integral of the imaginary part increased. The energy dependence in both cases was consistent with a linear variation. There is a dispersion relationship between the real and imaginary potentials, and when this was used, in conjunction with the experimental imaginary potential, it was possible to predict the observed energy dependence of the real potential to a good degree of accuracy, thus supporting the consistency of the data and its analysis. The real-potential well depths needed to give the correct binding energies of the 2d/sub 5/2/, 3s/sub 1/2/, 2d/sub 3/2/ and 1g/sub 7/2/ particle states and of the 1g/sub 9/2/ hole state are in reasonable agreement with those given by a linear extrapolation of the scattering potential. However, the well depths needed to give the observed binding of the 2p/sub 3/2/, 1f/sub 5/2/ and 2p/sub 1/2/ hole states are about 10% less than the extrapolated values. 40 refs., 5 figs.

  19. Nanofabrication Technology for Production of Quantum Nano-Electronic Devices Integrating Niobium Electrodes and Optically Transparent Gates

    Science.gov (United States)

    2018-01-01

    TECHNICAL REPORT 3086 January 2018 Nanofabrication Technology for Production of Quantum Nano-electronic Devices Integrating Niobium Electrodes...work described in this report was performed for the by the Advanced Concepts and Applied Research Branch (Code 71730) and the Science and Technology ...Applied Sciences Division iii EXECUTIVE SUMMARY This technical report demonstrates nanofabrication technology for Niobium heterostructures and

  20. The oxidative coupling of methane and the oxidative dehydrogenation of ethane over a niobium promoted lithium doped magnesium oxide catalyst

    NARCIS (Netherlands)

    Swaan, H.M.; Swaan, H.M.; Li, X.; Seshan, Kulathuiyer; van Ommen, J.G.; Ross, J.R.H.; Ross, J.R.H.

    1993-01-01

    The promoting effect of niobium in a Li/MgO catalyst for the oxidative coupling of methane (OCM) and for the oxidative dehydrogenation of ethane (ODHE) has been studied in some detail. It has been found that a Li/Nb/MgO catalyst with 16 wt % niobium showed the highest activity for the C2 production

  1. Micro-composite superconducting Ag/Bi sub 4 Sr sub 3 Ca sub 3 Cu sub 4 O sub 16+x prepared by oxidation of a liquid quenched alloy precursor. [Bi-Sr-Ca-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Luo, J.S.; Faudot, F.; Chevalier, J.P.; Michel, D. (CNRS, Centre d' Etudes de Chimie Metallurgique, 94 - Vitry (France))

    1990-10-15

    We have studied the effects of the addition of silver in the Bi{sub 4}Sr{sub 3}Ca{sub 3}Cu{sub 4}O{sub 16+x} (4334) phase by oxidation of the metallic precursors prepared by planar flow casting. Silver is found to significantly improve the alloy ductibility as well as the casting process. After oxidation at 800deg C in air, the superconducting 4334 phases are readily obtained. Metallic silver precipitates around the oxide, without measurable solubility, thus leading to the formation of a 4334/Ag micro-composite. A layered superconducting oxide and metallic silver ''sandwich'' microstructure, partially maintaining the flexibility of the composite, is obtained for 50 wt% Ag addition. DTA suggests that the addition of silver results in a eutectic like melting near 820deg C. This prohibits the formation of the 2223 phase, with 110 K superconducting transition, which occurs through annealing above 860deg C. (orig.).

  2. Determining distribution coefficient of Ir, Ta, W in niobium and of Ta in tungsten by activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuchar, L.; Wozniakova, B.; Drapala, J. (Vysoka Skola Banska, Ostrava (Czechoslovakia). Katedra Nezeleznych Kovu a Jaderne Metalurgie)

    1978-01-01

    Using the activation analysis the distribution of Ir, Ta, W in niobium and tungsten during the electron beam zone melting was studied. The activation analyses were carried out by UJV Rez, the samples were prepared by the frozen zone method. The effective distribution coefficient of Ta in tungsten was found to be ksub(ef)=0.83. The equilibrium distribution coefficients of Ir, Ta, W in niobium were calculated from the experimental values of the effective distribution coefficients: k/sub 0/ = 0.415 for Ir in niobium, k/sub 0/ = 1.23 for Ta in niobium and k/sub 0/ = 1.61 for W in niobium. The experimental values are in good agreement with theoretical assumptions and they confirmed the periodical dependence of the distribution coefficients of admixtures on the atomic number of an admixture.

  3. Characterization of Niobium Platings Obtained from NaCl-KCl Melts

    DEFF Research Database (Denmark)

    Gillesberg, Bo; Barner, Jens H. Von; Bjerrum, Niels

    1998-01-01

    -uniform in thickness. At temperatures below 550°C no niobium metal could be identified in the product.When metallic nickel was used as substrate intermetallic compounds (e.g. NbNi3) were formed in the interface between the substrate and the deposit. This resulted in poor adherence of the deposit. In the case of AISI......316 stainless steel substrates no intermetallic phases were observed. Further an excellent adhesion of the deposited niobium layer was obtained.Deposits (on nickel substrates) from NaCl-KCl melts at 750°C with oxide added (molar ratio O/Nb greater than 0.5) were thin and consisted of niobium-nickel...

  4. CRADA 2009S001: Investigation of the Supercondcuting RF Properties of Large Grain Ingot Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Terry; Hollister, Jerry L.; Kolka, Ahren; Myneni, Ganapati Rao

    2012-12-18

    This CRADA intended to explore the properties of large grain ingot niobium by fabricating four single cell TESLA shaped accelerating cavities. Once the cavities were fabricated, SRF performance would be measured. Niowave received four discs of large grain ingot niobium from JLAB in February 2009. Niowave cut samples from each disc and tested the RRR. After the RRR was measured with disappointing results, the project lost interest. A no cost extension was signed in July 2009 to allow progress until June 2010, but ultimately no further work was accomplished by either party. No firm conclusions were drawn, as further investigations were not made. Large grain ingot niobium has shown real potential for high accelerating gradient superconducting cavities. However, this particular CRADA did not gather enough data to reach any conclusions in this regard.

  5. Niobium carbide and tin precipitation in continuously cast microalloyed steels

    Science.gov (United States)

    Stock, Julian

    With high yield strength, toughness and good weldability, microalloyed steels are widely used in the automotive, pipeline and transportation industries. Microalloying elements such as niobium (Nb), titanium (Ti) and vanadium (V) in concentrations of less than 0.1 wt. pct. are typical. For optimal benefits in the final product, it is usually desired for Ti to form fine precipitates during and after solidification and for Nb to be in solution prior to hot-rolling. Vanadium precipitates at lower temperatures and is less involved in the solidification/casting process. In one aspect of the investigation, the effects of cooling rate on the titanium nitride (TiN) precipitation size distribution were investigated in a Ti-added low-carbon steel. Prior research reported an inverse relationship between the average TiN precipitation size and the post-solidification cooling rate and the present work was undertaken to examine this behavior over a wider range of cooling rates. Using the GleebleRTM 3500's casting simulation capabilities along with controlled cooling rates, the TiN precipitation behavior in thick-slab, thin-slab and thin-strip material was simulated using a commercially produced 0.04C, 1.23Mn steel with near-stoichiometric Ti and N levels. Transmission electron microscopy (TEM) investigation of carbon extraction replicas was carried out to characterize the influence of cooling rates on precipitate size distributions. Decreasing particle sizes with increasing cooling rates were found. Average particle sizes as low as 6.7 nm were present in thin-strip simulations and might be of interest, as fine particles could contribute to strengthening of rapidly cooled steels. In a second aspect of the investigation, niobium carbide (NbC) precipitation during the compact strip production (CSP) process was investigated in two Nb-added low-carbon steels. Instead of industrial sampling, the GleebleRTM was used for casting simulations using two CMn(Nb) steels with high and low- Nb

  6. Multiwall carbon nanotube Josephson junctions with niobium contacts

    Energy Technology Data Exchange (ETDEWEB)

    Pallecchi, Emiliano

    2009-02-17

    The main goal of this thesis is the investigation of dissipationless supercurrent in multiwall carbon nanotubes embedded in a controlled environment. The experimental observation of a dissipationless supercurrent in gated carbon nanotubes remains challenging because of its extreme sensitivity to the environment and to noise fluctuations. We address these issues by choosing niobium as a superconductor and by designing an optimized on chip electromagnetic environment. The environment is meant to reduce the suppression of the supercurrent and allows to disentangle the effects of thermal fluctuations from the intrinsic behavior of the junction. This is crucial for the extraction of the value critical current from the measured data. When the transparency of the contacts is high enough we observed a fully developed supercurrent and we found that it depends on the gate voltage in a resonant manner. In average the critical current increases when the gate is tuned more negative, reflecting the increase of the transparency of the contacts, while the resonant behavior is due to quantum interference effects. We measured the temperature dependence of the switching current and we analyzed the data with an extended RCSJ model that allow to extract the critical current from the experimental data. The measured critical currents are very high with respect to previous reports on gated devices. At positive gate voltage the contacts transparency is lowered and Coulomb blockade is observed. This allows to use Coulomb blockade measurements to further characterize the nanotube and to study the physics of a quantum dot coupled to superconducting leads. The last part of this thesis is dedicated to the measurements of a carbon nanotube Josephson junction in the Coulomb blockade regime. (orig.)

  7. Spectral investigations of Sm3+-doped niobium phosphate glasses

    Science.gov (United States)

    Srihari, T.; Jayasankar, C. K.

    2017-04-01

    Phosphate glasses modified with niobium and doped with different concentrations of Sm3+ ions (P2O5+K2O + Al2O3+Nb2O5+Sm2O3) were prepared by conventional melt quenching technique. Structural and optical characterizations have been carried out through X-ray diffraction (XRD), absorption, excitation, emission and decay measurements. With the help of well known Judd-Ofelt theory (JO), various radiative properties such as radiative transition probabilities (AR), branching ratios (βR) and radiative lifetime (τR) for certain luminescent levels of Sm3+ ions have been determined. The emission spectra consists of four emission bands in the visible region that corresponds to the 4G5/2 → 6HJ (J = 5/2, 7/2, 9/2 and 11/2) transitions of Sm3+ ions. The stimulated emission cross-section found to be higher for 4G5/2 → 6H7/2 (11.52 × 10-22 cm2) and 4G5/2 → 6H9/2 (13.75 × 10-22 cm2) transitions. Experimental lifetimes (τexp), quantum efficiencies (η), energy transfer parameter (Q) and donor-acceptor interaction parameter (CDA) for all these glasses were evaluated under the frame work of Inokuti-Hirayama model. From the analyzed spectroscopic properties, such as quantum efficiency (98%) and CIE chromaticity coordinates, it is suggested that the 1.0 mol % of Sm3+ ions doped glasses are most suitable for the development of gain media for visible orange-red lasers.

  8. Niobium Complexes As Lewis Acid and Radical Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Tikkanen

    2005-10-01

    The reaction of lithium pentaphenylcyclopentadiende (Li C{sub 5}Ph{sub 5}) with niobium pentachloride in dichloromethane or toluene produces insoluble red-orange solids whose C/H/Cl analyses are not consistent with C{sub 5}Ph{sub 5}NbCl{sub 4}. Addition of an acetonitrile solution of LiC{sub 5}Ph{sub 5} with NbCl{sub 5} gives C{sub 5}Ph{sub 5}NbCl{sub 4} observed as a transient product by NMR spectroscopy, which then abstracts H from the acetonitrile solvent to give HC{sub 5}Ph{sub 5} and presumably NbCl{sub 4}CH{sub 2}CN. Reversal of the order of addition gives the {center_dot}C{sub 5}Ph{sub 5} radical as characterized by MS and EPR spectroscopy. Attempts to prepare the trimethylsilyl derivative Me{sub 3}SiC{sub 5}Ph{sub 5} (a less reducing cyclopentadienyl group) were unsuccessful. Reaction was observed only in tetrahydrofuran, producing only Me{sub 3}SiO(CH{sub 2}){sub 4}C{sub 5}Ph{sub 4}(m-C{sub 6}H{sub 4}(CH3)) characterized by {sup 1}H, {sup 13}C NMR and mass spectroscopy. The trimethylsilyltetraphenylcyclopentadienyl derivative, Me{sub 3}Si(H)C{sub 5}Ph{sub 4}, was characterized by {sup 1}H, {sup 13}C NMR and mass spectroscopy. This compound reacts with NbCl{sub 5} to give HCl and ClSiMe{sub 3} and a mixture of HC{sub 5}Ph{sub 4}NbCl{sub 4} and Me{sub 3}SiC{sub 5}Ph{sub 4}NbCl{sub 4}.

  9. New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis.

    Science.gov (United States)

    Aufray, Maëlenn; Menuel, Stéphane; Fort, Yves; Eschbach, Julien; Rouxel, Didier; Vincent, Brice

    2009-08-01

    This work presents a new synthesis of nano-sized lithium niobate particles by a low temperature three steps procedure. The complete protocol implies a LiH induced reduction of NbCl5 followed by in situ spontaneous oxidation into low valence niobium nano-oxides. These niobium oxides are exposed to air atmosphere leading to pure Nb2O5 formation. Finally, the stable Nb2O5 is converted into lithium niobate LiNbO3 nanoparticles during the controlled hydrolysis of the LiH excess. The nano-sized lithium niobate particles as well as their formation processes were characterized using X-ray photoelectron spectroscopy.

  10. Enhanced proton conductivity of niobium phosphates by interfacing crystal grains with an amorphous functional phase

    DEFF Research Database (Denmark)

    Huang, Yunjie; Yu, Lele; Li, Haiyan

    2016-01-01

    conductivities. An activation process was developed to convert the phosphates into crystal grains with a phosphorus rich amorphous phase along the grain boundaries. As a result, the obtained niobium phosphates showed considerably enhanced and stable proton conductivities. The activation effect was prominent when...... the high surface area amorphous phosphate was used as the precursor. At 250 °C thus obtained niobium phosphate showed a high and stable conductivity of 0.03 S cm−1 under dry atmosphere and of 0.06 S cm−1 at a water partial pressure of 0.12 atm....

  11. Influence of electron beam welding on the surface resistance of bulk niobium

    Energy Technology Data Exchange (ETDEWEB)

    Lueckhof, Marian; Knobloch, Jens [Universitaet Siegen, Siegen (Germany); Helmholtz Zentrum Berlin, Berlin (Germany); Aull, Sarah; Venturini Delsolaro, Walter [CERN, Geneva (Switzerland)

    2016-07-01

    Along the production processes of SRF cavities, electron beam welding (EBW) is a production step that is predominantly used nowadays in cavity assembling. EBW changes the material properties and hence might influence the surface resistance of bulk niobium significantly. The talk presents results from RF measurements performed on a niobium sample with an EBW on the surface as a function of temperature. The measurements were performed with CERN's Quadrupole Resonator, allowing to extract the surface resistance with high precision as a function of temperature and the applied RF fields.

  12. Development of niobium spoke cavities for a superconducting light-ion Linac.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-11-18

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2< v/c <0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of light ions, at intensities sufficient for a production beam for a radioactive beam facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed.

  13. Development of niobium spoke cavities for a superconducting light-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W; Kedzie, M; Delayen, J R; Piller, C

    1998-08-01

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2 < v/c < 0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of ions, at intensities sufficient for a production beam for a radioactive facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed.

  14. Study of the residual surface resistance of niobium films at 1.5 GHz

    CERN Document Server

    Calatroni, Sergio; Darriulat, Pierre; Peck, M A; Valente, A M; Van't Hof, C A

    2001-01-01

    Potential contributions to the residual surface resistance of niobium films exposed to 1.5 GHz microwaves are reviewed and studied. These include the oxidation of the film surface, the formation of hydride precipitates, the contamination by noble gas atoms and the presence of macroscopic film defects such as those resulting from the roughness of the substrate. Particular attention is given to the dependence of the residual resistance on the amplitude of the microwave. Results similar to those obtained for bulk niobium provide strong evidence against the conjecture that the small size of the film grains should be a fundamental limitation to the production of films having a low residual resistance.

  15. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    Science.gov (United States)

    Liu, Chain T.; Takeyama, Masao

    1994-01-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250.degree. C. and improved room temperature ductility. The alloys contain a Cr.sub.2 Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements.

  16. Niobium Solar Mobile Project — High Strength Niobium Microalloyed Steel as a Solution to Improve Electric Super Scooter and Motorcycle Performance

    Science.gov (United States)

    Richards, Terry; Kauppi, Erik; Flanagan, Lauren; Ribeio, Eduardo A. A. G.; Nogueira, Marcos A. Stuart; McCourtney, Ian

    This paper presents the advantages of replacing mild steel with high strength niobium microalloyed steel in the structure of Electric Super Scooters, Electric Cargo Motorcycles and Solar Charging Stations. The Mini-Fleet-in-a-Box concept was developed by Current Motor to guarantee mobility, efficiency and solar generated electricity. With the adoption of niobium microalloyed high strength steel for more than 90% of the Super Scooter and Motorcycle structures, it was possible to redesign the frame, resulting in a 31% weight reduction and a very modern and functional body. Together with a new powertrain, these changes were responsible for increasing Motorcycle autonomy by more than 15%, depending on average speed. The new frame design reduced the number of high strain points in the frame, increasing the safety of the project. The Solar Charging Station was built using the container concept and designed with high strength niobium microalloyed steel, which resulted in a weight reduction of 25%. CBMM's facility in Araxá, Brazil was selected in the second half of 2013 as the demonstration site to test the efficiency of the Super Scooter and Solar Charging Station. Each Super Scooter has run more than 2,000 km maintenance-free with an autonomy of more than 100 km per charge.

  17. Examination of total cross section resonance structure of niobium and silicon in neutron transmission experiments

    Science.gov (United States)

    Andrianova, Olga; Lomakov, Gleb; Manturov, Gennady

    2017-09-01

    The neutron transmission experiments are one of the main sources of information about the neutron cross section resonance structure and effect in the self-shielding. Such kind of data for niobium and silicon nuclides in energy range 7 keV to 3 MeV can be obtained from low-resolution transmission measurements performed earlier in Russia (with samples of 0.027 to 0.871 atom/barn for niobium and 0.076 to 1.803 atom/barn for silicon). A significant calculation-to-experiment discrepancy in energy range 100 to 600 keV and 300 to 800 keV for niobium and silicon, respectively, obtained using the evaluated nuclear data library ROSFOND, were found. The EVPAR code was used for estimation the average resonance parameters in energy range 7 to 600 keV for niobium. For silicon a stochastic optimization method was used to modify the resolved resonance parameters in energy range 300 to 800 keV. The improved ROSFOND evaluated nuclear data files were tested in calculation of ICSBEP integral benchmark experiments.

  18. Characterization of high-purity niobium structures fabricated using the electron beam melting process

    Science.gov (United States)

    Terrazas Najera, Cesar Adrian

    Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120microm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam AB. Superconducting radio frequency (SRF) cavities are key components that are used in linear accelerators and other light sources for studies of elemental physics. Currently, cavity fabrication is done by employing different forming processes including deep-drawing and spinning. In both of the latter techniques, a feedstock high-purity niobium sheet with a thickness ranging from 3-4 mm is mechanically deformed and shaped into the desired geometry. In this manner, half cavities are formed that are later joined by electron beam welding (EBW). The welding step causes variability in the shape of the cavity and can also introduce impurities at the surface of the weld interface. The processing route and the purity of niobium are also of utmost importance since the presence of impurities such as inclusions or defects can be detrimental for the SRF properties of cavities. The focus of this research was the use of the EBM process in the manufacture of high purity niobium parts with potential SRF applications. Reactor grade niobium was plasma atomized and used as the precursor material for fabrication using EBM. An Arcam A2 system was utilized for the fabrication. The system had all internal components of the fabrication chamber replaced and was cleaned to prevent contamination of niobium powder. A mini-vat, developed at

  19. Physical Properties of Niobium and Specifications for Fabrication of Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Antoine, C.; Foley, M.; Dhanaraj, N.; /Fermilab

    2011-07-01

    It is important to distinguish among the properties of niobium, the ones that are related to the cavity's SRF performances, the formability of the material, and the mechanical behavior of the formed cavity. In general, the properties that dictate each of the above mentioned characteristics have a detrimental effect on one another and in order to preserve the superconducting properties without subduing the mechanical behavior, a balance has to be established. Depending on the applications, some parameters become less important and an understanding of the physical origin of the requirements might help in this optimization. SRF applications require high purity niobium (high RRR), but pure niobium is very soft from fabrication viewpoint. Moreover conventional fabrication techniques tend to override the effects of any metallurgical process meant to strengthen it. As those treatments dramatically affect the forming of the material they should be avoided. These unfavorable mechanical properties have to be accounted for in the design of the cavities rather than in the material specification. The aim of this paper is to review the significance of the important mechanical properties used to characterize niobium and to present the optimal range of values. Most of the following information deals with the specification of sheets for cell forming unless otherwise noted.

  20. An unprecedented tetranuclear niobium aqua ion with a capping μ4-sulfido ligand

    DEFF Research Database (Denmark)

    Ooi, Bee Lean; Søtofte, Inger

    2005-01-01

    A new niobium aqua ion, with an unprecedented metal-metal bonded tetranuclear Nb4(μ4-S)(μ2-O)54+ core, is obtained upon treatment of Zn-reduced ethanolic solutions of NbCl5 with HCl in the presence of a sulfide source. The red aqua ion, obtained upon cation-exchange chromatography, forms readily ...

  1. Surface polishing of niobium for superconducting radio frequency (SRF) cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang [College of William and Mary, Williamsburg, VA (United States)

    2014-08-01

    Niobium cavities are important components in modern particle accelerators based on superconducting radio frequency (SRF) technology. The interior of SRF cavities are cleaned and polished in order to produce high accelerating field and low power dissipation on the cavity wall. Current polishing methods, buffered chemical polishing (BCP) and electro-polishing (EP), have their advantages and limitations. We seek to improve current methods and explore laser polishing (LP) as a greener alternative of chemical methods. The topography and removal rate of BCP at different conditions (duration, temperature, sample orientation, flow rate) was studied with optical microscopy, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). Differential etching on different crystal orientations is the main contributor to fine grain niobium BCP topography, with gas evolution playing a secondary role. The surface of single crystal and bi-crystal niobium is smooth even after heavy BCP. The topography of fine grain niobium depends on total removal. The removal rate increases with temperature and surface acid flow rate within the rage of 0~20 °C, with chemical reaction being the possible dominate rate control mechanism. Surface flow helps to regulate temperature and avoid gas accumulation on the surface. The effect of surface flow rate on niobium EP was studied with optical microscopy, atomic force microscopy (AFM), and power spectral density (PSD) analysis. Within the range of 0~3.7 cm/s, no significant difference was found on the removal rate and the macro roughness. Possible improvement on the micro roughness with increased surface flow rate was observed. The effect of fluence and pulse accumulation on niobium topography during LP was studied with optical microscopy, SEM, AFM, and PSD analysis. Polishing on micro scale was achieved within fluence range of 0.57~0.90 J/cm2, with pulse accumulation adjusted accordingly. Larger area treatment was proved possible by

  2. New porous titanium–niobium oxide for photocatalytic degradation of bromocresol green dye in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chaleshtori, Maryam Zarei, E-mail: mzarei@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Hosseini, Mahsa; Edalatpour, Roya [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Masud, S.M. Sarif [Department of Chemistry, University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States); Chianelli, Russell R., E-mail: chianell@utep.edu [Materials Research and Technology Institute (MRTI), University of Texas at El Paso, 500W. University Ave., El Paso, TX 79968 (United States)

    2013-10-15

    Graphical abstract: The photocatalytic activity of different porous titanium–niobium oxides was evaluated toward degradation of bromocresol green (BG) under UV light. A better catalytic activity was observed for all samples at lower pH. Catalysts have a stronger ability for degradation of BG in acid media than in alkaline media. - Highlights: • Different highly structured titanium–niobium oxides have been prepared using improved methods of synthesis. • Photo-degradation of bromocresol green dye (BG) with nanostructure titanium–niobium oxide catalysts was carried out under UV light. • The photo-catalytic activity of all catalysts was higher in lower pH. • Titanium–niobium oxide catalysts are considerably stable and reusable. - Abstract: In this study, high surface area semiconductors, non porous and porous titanium–niobium oxides derived from KTiNbO{sub 5} were synthesized, characterized and developed for their utility as photocatalysts for decontamination with sunlight. These materials were then used in the photocatalytic degradation of bromocresol green dye (BG) in aqueous solution using UV light and their catalytic activities were evaluated at various pHs. For all catalysts, the photocatalytic degradation of BG was most efficient in acidic solutions. Results show that the new porous oxides have large porous and high surface areas and high catalytic activity. A topotactic dehydration treatment greatly improves catalyst performance at various pHs. Stability and long term activity of porous materials (topo and non-topo) in photocatalysis reactions was also tested. These results suggest that the new materials can be used to efficiently purify contaminated water.

  3. Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.; Jo, Hwan R.; Lynch, Christopher S., E-mail: cslynch@seas.ucla.edu [Department of Mechanical and Aerospace Engineering, The University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095 (United States); Sahul, Raffi; Hackenberger, Wes [TRS Technologies, 2820 East College Avenue, State College, Pennsylvania 16801 (United States)

    2015-06-28

    Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops were open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.

  4. DEPOSITION OF NIOBIUM AND OTHER SUPERCONDUCTING MATERIALS WITH HIGH POWER IMPULSE MAGNETRON SPUTTERING: CONCEPT AND FIRST RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    High Current Electronics Institute, Tomsk, Russia; Anders, Andre; Mendelsberg, Rueben J.; Lim, Sunnie; Mentink, Matthijs; Slack, Jonathan L.; Wallig, Joseph G.; Nollau, Alexander V.; Yushkov, Georgy Yu.

    2011-07-24

    Niobium coatings on copper cavities have been considered as a cost-efficient replacement of bulk niobium RF cavities, however, coatings made by magnetron sputtering have not quite lived up to high expectations due to Q-slope and other issues. High power impulse magnetron sputtering (HIPIMS) is a promising emerging coatings technology which combines magnetron sputtering with a pulsed power approach. The magnetron is turned into a metal plasma source by using very high peak power density of ~ 1 kW/cm{sup 2}. In this contribution, the cavity coatings concept with HIPIMS is explained. A system with two cylindrical, movable magnetrons was set up with custom magnetrons small enough to be inserted into 1.3 GHz cavities. Preliminary data on niobium HIPIMS plasma and the resulting coatings are presented. The HIPIMS approach has the potential to be extended to film systems beyond niobium, including other superconducting materials and/or multilayer systems.

  5. Effect of low temperature baking on the RF properties of niobium superconducting cavities for particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Gianluigi Ciovati

    2004-03-01

    Radio-frequency superconducting (SRF) cavities are widely used to accelerate a charged particle beam in particle accelerators. The performance of SRF cavities made of bulk niobium has significantly improved over the last ten years and is approaching the theoretical limit for niobium. Nevertheless, RF tests of niobium cavities are still showing some ''anomalous'' losses that require a better understanding in order to reliably obtain better performance. These losses are characterized by a marked dependence of the surface resistance on the surface electromagnetic field and can be detected by measuring the quality factor of the resonator as a function of the peak surface field. A low temperature (100 C-150 C) ''in situ'' bake under ultra-high vacuum has been successfully applied as final preparation of niobium RF cavities by several laboratories over the last few years. The benefits reported consist mainly of an improvement of the cavity quality factor at low field and a recovery from ''anomalous'' losses (so-called ''Q-drop'') without field emission at higher field. A series of experiments with a CEBAF single-cell cavity have been carried out at Jefferson Lab to carefully investigate the effect of baking at progressively higher temperatures for a fixed time on all the relevant material parameters. Measurements of the cavity quality factor in the temperature range 1.37 K-280 K and resonant frequency shift between 6 K-9.3 K provide information about the surface resistance, energy gap, penetration depth and mean free path. The experimental data have been analyzed with the complete BCS theory of superconductivity. The hydrogen content of small niobium samples inserted in the cavity during its surface preparation was analyzed with Nuclear Reaction Analysis (NRA). The single-cell cavity has been tested at three different temperatures before and after baking to gain some insight on thermal

  6. Heat-Resistance of the Powder Cobalt Alloys Reinforced by Niobium or Titanium Carbide

    Directory of Open Access Journals (Sweden)

    Cherepova, T.S.

    2016-01-01

    Full Text Available The characteristics of heat-resistance of powder cobalt alloys at 1100 °C were investigated. These alloys were developed for the protection of workers banding shelves GTE blades from wear. The alloys were prepared by hot pressing powders of cobalt, chromium, aluminum, iron and niobium or titanium carbides. The values of heat resistance alloys containing carbides between 30 and 70% (vol. depend on the type made of carbide alloys: alloys with titanium carbide superior in heat-resistant alloy of niobium carbide. The most significant factor affecting on the heat-resistant alloys, is porosity: with its increase the parameters decline regardless of the type and content of carbide. The optimum composition of powder heat resisting alloys of titanium carbide with a melting point above 1300 °C were determined for use in the aircraft engine.

  7. Observation of Stable Low Surface Resistance in Large-Grain Niobium SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Huang, Shichun [Institute of Modern Physics (IMP)/Chinese Academy of Sciences (CAS), Lanzhou (China)

    2016-05-01

    Low surface resistance, or high unloaded quality factor (Q0), superconducting radio frequency (SRF) cavities are being pursued actively nowadays as their application in large-scale CW SRF accelerators can save capital and operational cost in cryogenics. There are different options in realization of such cavities. One of them is the large-grain (LG) niobium cavity. In this contribution, we present new experimental results in evaluation of LG niobium cavities cooled down in the presence of an external magnetic field. High Q0 values are achieved even with an ambient magnetic field of up to 100 mG. More over, it is observed that these high Q0 values are super-robust against repeated quench, literally not affected at all after the cavity being deliberately quenched for hundreds of times in the presence of an ambient magnetic field of up to 200 mG.

  8. Characterization of rechargeable lithium cells. Part 1. Lithium/niobium triselenide chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.C.; Cason-Smith, D.M.; Smith, P.H.; James, S.D.

    1994-08-16

    The Naval Surface Warfare Center is evaluating industry's emerging lithium rechargeable battery technology for use in underwater vehicle applications. The battery industry typically characterizes cells for consumer applications requiring low rate cycling at room temperature and rarely provides high rate, low temperature data. High rate and low temperature performance of ATT's lithium/niobium triselenide(Li/NbSe3)AA cells is reported here. At 25 deg C and 1O mA/sq cm (approximately the 3C rate), delivered energy densities were as high as 30 Wh/lb. However, these lithium cells proved vulnerable to performance loss in low temperature (O deg C), high discharge rate cycling. Lithium/niobium triselenide, NbSe3, Lithium batteries, Rechargeable AA cells.

  9. Modifications of Superconducting Properties of Niobium Caused by Nitrogen Doping Recipes for High Q Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Vostrikov, Alexander [Fermilab; Checchin, Mattia [Fermilab; Grassellino, Anna [Fermilab; Kim, Young-Kee [U. Chicago (main); Romanenko, Alexander [Fermilab

    2015-06-01

    A study is presented on the superconducting properties of niobium used for the fabrication of the SRF cavities after treating by recently discovered nitrogen doping methods. Cylindrical niobium samples have been subjected to the standard surface treatments applied to the cavities (electro-polishing, l 20°C bake) and compared with samples treated by additional nitrogen doping recipes routinely used to reach ultra-high quality factor values (>3· 1010 at 2 K, 16 MV/m). The DC magnetization curves and the complex magnetic AC susceptibility have been measured. Evidence for the lowered field of first flux penetration after nitrogen doping is found suggesting a correlation with the lowered quench fields. Superconducting critical temperatures Tc = 9.25 K are found to be in agreement with previous measurements, and no strong effect on the critical surface field (Bd) from nitrogen doping was found.

  10. Microstructure and wear resistance of high chromium cast iron containing niobium

    Directory of Open Access Journals (Sweden)

    Zhang Zhiguo

    2014-05-01

    Full Text Available In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the alloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.

  11. Niobium thin film coating on a 500-MHz copper cavity by plasma deposition

    Energy Technology Data Exchange (ETDEWEB)

    Haipeng Wang; Genfa Wu; H. Phillips; Robert Rimmer; Anne-Marie Valente; Andy Wu

    2005-05-16

    A system using an Electron Cyclotron Resonance (ECR) plasma source for the deposition of a thin niobium film inside a copper cavity for superconducting accelerator applications has been designed and is being constructed. The system uses a 500-MHz copper cavity as both substrate and vacuum chamber. The ECR plasma will be created to produce direct niobium ion deposition. The central cylindrical grid is DC biased to control the deposition energy. This paper describes the design of several subcomponents including the vacuum chamber, RF supply, biasing grid and magnet coils. Operational parameters are compared between an operating sample deposition system and this system. Engineering work progress toward the first plasma creation will be reported here.

  12. Surface characterization of alumina reinforced with niobium carbide obtained by polymer precursor

    Directory of Open Access Journals (Sweden)

    Wilson Acchar

    2006-09-01

    Full Text Available Active filler controlled pyrolysis of polymers (AFCOP is a recent method for obtaining near-net shaped ceramic bodies. Alumina based composites have been developed for use as cutting tools, so knowledge of the surface composition is extremely important because it is directly related to the hardness and wear resistance Samples containing a fixed concentration of 60 wt. (% of polysiloxane and a mixture of metallic niobium and alumina powder were homogenized, uniaxially warm pressed at 80 °C and subsequently pyrolyzed in flowing argon at 1200, 1400 and 1500 °C. Analysis of the surface composition was carried out by X ray photoelectron spectroscopy, infrared spectroscopy, X ray diffraction and scanning electron microscopy. The results have indicated that the formation of the phases on the surface depends strongly on the niobium/carbon ratio in the raw materials.

  13. Structural and superconducting properties of sputter-deposited niobium films for applications in RF accelerating cavities

    CERN Document Server

    Peck, M A

    2000-01-01

    The present work presents the results of a systematic study of superconducting and structural properties of niobium films sputter deposited onto the inner walls of radiofrequency copper resonators. The measured superconducting quantities include the surface resistance, the critical temperature, the penetration depth and the upper and lower critical fields. In addition to films grown with different discharge gases (Xe, Kr, Ar, Ne and Ar-Ne mixtures) and to films grown on substrates prepared under different conditions, the study also includes massive niobium cavities. The surface resistance is analysed in terms of its dependence on the temperature and on the rf field amplitude and, when possible, compared to theoretical predictions. In general, good agreement with BCS theory is observed. All experimental results are presented in the form of a simple, but adequate parameterisation. The residual resistance is observed to be essentially uncorrelated with the other variables, but strongly dependent on the macroscop...

  14. Fabrication of niobium superconducting accelerator cavity by electron beam welded joints

    Science.gov (United States)

    Saha, T. K.; Mondal, J.; Mittal, K. C.; Bhushan, K. G.; Bapat, A. V.

    2012-11-01

    Fabrication of superconducting cavities has been taken up as a part of the development of accelerator driven sub critical system (ADSS) by Bhabha Atomic Research Centre. Large grain (RRR>99) pure niobium was chosen as the material for the cavity. Niobium,for its application as superconductor requires extremely high quality joints, feasible only by electron beam welding at high vacuum environment. An indigenously developed 100kV, 4kW high vacuum electron beam welding machine has been utilized to carry out the welding operations. Planning of the weld sequences was chalked out. Holding fixtures for the cavity, consists of seven numbers of joints have been fabricated beforehand. A few coupons were welded for optimization of the weld parameters and for inspection of the weld purity by indigenously developed secondary ion mass spectroscopy. The report describes the welding equipment and the stage wise joining operations of the cavity in details and also discusses the qualification testing of the welded cavity.

  15. Gas and RRR distribution in high purity Niobium EB welded in Ultra-High Vacuum

    Science.gov (United States)

    Anakhov, S.; Singer, X.; Singer, W.; Wen, H.

    2006-05-01

    Electron beam (EB) welding in UHV (ultra-high vacuum, 10-5÷10-8 mbar) is applied in the standard fabrication of high gradient niobium superconducting radio frequency (SRF) cavities of TESLA design. The quality of EB welding is critical for cavity performance. Experimental data of gas content (H2, O2, N2) and RRR (residual resistivity ratio) measurements in niobium (Nb) welding seams are presented. EB welding in UHV conditions allow to preserve low gas content (1÷3 wt. ppm hydrogen and 5÷7 ppm oxygen and nitrogen), essential for high values of RRR — 350÷400 units. Gas content redistribution in the electron beam welded and heat affected region take place in the welding process. Correlation between gas solubility parameters, RRR and thermal conductivity are presented. Mechanisms of gas solubility in EB welding process are discussed.

  16. Determination of Activities of Niobium in Cu-Nb Melts Containing Dilute Nb

    Science.gov (United States)

    Wang, Daya; Yan, Baijun; Sichen, Du

    2015-04-01

    The activity coefficients of niobium in Cu-Nb melts were measured by equilibrating solid NbO2 with liquid copper under controlled oxygen potentials in the temperature range of 1773 K to 1898 K (1500 °C to 1625 °C). Either CO-CO2 gas mixture or H2-CO2 gas mixture was employed to obtain the desired oxygen partial pressures. Cu-Nb system was found to follow Henry's law in the composition range studied. The temperature dependence of Henry's constant in the Cu-Nb melts could be expressed as follows: The partial molar excess Gibbs energy change of niobium in Cu-Nb melts can be expressed as follows:

  17. Nanoporous niobium nitride (Nb2N) with enhanced electrocatalytic performance for hydrogen evolution

    Science.gov (United States)

    Li, Yan; Zhang, Jianli; Qian, Xingyue; Zhang, Yue; Wang, Yining; Hu, Rudan; Yao, Chao; Zhu, Junwu

    2018-01-01

    The transition metal nitrides (TMNs) with nanoporous structure have shown great promise as potential electrocatalysts for the hydrogen evolution reaction (HER). Herein, self-organized nanoporous Nb2N was first successfully synthesized through the anodization of niobium in mixed oxalic acid/HF electrolyte, followed by a simple annealing treatment in the ammonia atmosphere. Due to the highly ordered nanoporous structure with abundant active sites and the enhanced electrical conductivity, the Nb2N exhibits a high catalytic current (326.3 mA cm-2) and low onset potential (96.3 mV), which is almost 3.9 times and 4.2 times better than that of Nb2O5, respectively. Meanwhile, the Nb2N also presents low Tafel slope (92 mV dec-1), and excellent cycling durability. More importantly, this study will provide more opportunities for designing and fabricating niobium compounds as an innovative HER catalysts.

  18. Use of Niobium High Strength Steels with 450 MPA Yield Strength for Construction

    Science.gov (United States)

    Silvestre, Leonardo; Langenberg, Peter; Amaral, Thiago; Carboni, Marcelo; Meira, Marcos; Jordão, Alexandre

    This paper presents an actual case of a new industrial building at CBMM's plant in Araxá, Brazil as an example of lean design using microalloyed steels. The structure consists mostly of microalloyed ASTM A572 steel grades 65 and 50 instead of the conventional carbon manganese ASTM A36 steel. The application of grade 65 with more than 450 MPa of yield strength is an innovative solution for this type of construction in South America. A complete welding evaluation performed on the low carbon, niobium microalloyed grade 65 steel showed the welding properties and benefits. Niobium's effect of increasing strength and toughness simultaneously resulted in relevant savings in total steel consumption for the project. The paper also quantifies the expected savings in costs, energy and carbon dioxide emissions.

  19. Niobium coaxial quarter-wave cavities for the New Delhi booster linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P.N. [Nuclear Science Centre, New Delhi (India)

    1993-07-01

    This paper reports the design and construction status of a prototype superconducting niobium accelerating structure consisting of a pair of quarter-wave coaxial-line cavities which are strongly coupled with a superconducting loop. Quarter-wave resonators are two-gap accelerating structures and are relatively short, so that a large number of independently-phased cavities is required for a linac. Strongly coupling several cavities can reduce the number of independently-phased elements, but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss m velocity acceptance. Design details for the niobium cavity pair and the results of preliminary tests of multipacting behavior are discussed.

  20. Niobium phosphates as an intermediate temperature proton conducting electrolyte for fuel cells

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Qingfeng; Jensen, Annemette Hindhede

    2012-01-01

    A new proton conductor based on niobium phosphates was synthesized using niobium pentoxide and phosphoric acid as precursors. The existence of hydroxyl groups in the phosphates was confirmed and found to be preserved after heat treatment at 500 °C or higher, contributing to an anhydrous proton...... conductivity of 1.6 × 10−2 S cm−1 at 250 °C. The conductivity increased with water content in the atmosphere and reached 5.8 × 10−2 S cm−1 under pure water vapour at the same temperature. The conductivity showed good stability in the low water partial pressure range of up to 0.05 atm. The metal phosphates...

  1. Heat-Resistance of the Powder Cobalt Alloys Reinforced by Niobium or Titanium Carbide

    OpenAIRE

    Cherepova, T.S.; Dmitrieva, G.P.; V.K. Nosenko

    2016-01-01

    The characteristics of heat-resistance of powder cobalt alloys at 1100 °C were investigated. These alloys were developed for the protection of workers banding shelves GTE blades from wear. The alloys were prepared by hot pressing powders of cobalt, chromium, aluminum, iron and niobium or titanium carbides. The values of heat resistance alloys containing carbides between 30 and 70% (vol.) depend on the type made of carbide alloys: alloys with titanium carbide superior in heat-resistant alloy o...

  2. Cleaning of niobium surface by plasma of diffuse discharge at atmospheric pressure

    Science.gov (United States)

    Tarasenko, V. F.; Erofeev, M. V.; Shulepov, M. A.; Ripenko, V. S.

    2017-07-01

    Elements composition of niobium surface before and after plasma treatment by runaway electron preionized diffuse discharge was investigated in atmospheric pressure nitrogen flow by means of an Auger electron spectroscopy. Surface characterizations obtained from Auger spectra show that plasma treatment by diffuse discharge after exposure of 120000 pulses provides ultrafine surface cleaning from carbon contamination. Moreover, the surface free energy of the treated specimens increased up to 3 times, that improve its adhesion property.

  3. Apatite grown in niobium by two-step plasma electrolytic oxidation.

    Science.gov (United States)

    Pereira, Bruno Leandro; Lepienski, Carlos Maurício; Mazzaro, Irineu; Kuromoto, Neide Kazue

    2017-08-01

    Plasma electrolytic oxidation (PEO) of niobium plates were done electrochemically in two steps with electrolytes containing phosphorous and calcium being observed the formation of crystalline apatite. All samples were submitted to a first step of PEO using an electrolyte containing phosphate ions. The second oxidization step was made using three different electrolytes. Some samples were oxidized by PEO in electrolyte containing calcium, while in other samples it was used two mixtures of phosphoric acid and calcium acetate monohydrate solutions. Three different surface layers were obtained. The morphology and chemical composition of the films were analyzed by scanning electronic microscopy (SEM), and energy dispersive spectroscopy (EDS) respectively. It was observed that all samples submitted to two-step oxidation shown porous surface and a calcium and phosphorus rich layer. Average surface roughness (Ra) was measured by a profilometer remaining in the sub-micrometric range. The contact angle by sessile drop technique, using 1μL of distilled water was performed with an optical goniometer. It was verified a higher hydrophilicity in all surfaces compared to the polished niobium. Orthorhombic Nb 2 O 5 was identified by XRD in the oxide layer. Crystalline apatite was identified by XRD in surfaces after the second oxidation made with the Ca-rich electrolyte and a mixture of an electrolyte richer in Ca compared to P. These results indicate that a two-step oxidized niobium surface present great features for applications in the osseointegration processes: favorable chemical composition that increase the biocompatibility, the formation of crystalline niobium pentoxide (orthorhombic), high hydrophilicity and formation of crystalline calcium phosphate (apatite) under adequate electrolyte composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Laser-pulsed Plasma Chemistry: Laser-initiated Plasma Oxidation Of Niobium

    OpenAIRE

    Marks R.F.; Pollak R.A.; Avouris Ph.; Lin C.T.; Thefaine Y.J.

    1983-01-01

    We report the first observation of the chemical modification of a solid surface exposed to an ambient gas plasma initiated by the interaction of laser radiation with the same surface. A new technique, which we designate laser-pulsed plasma chemistry (LPPC), is proposed for activating heterogeneous chemical reactions at solid surfaces in a gaseous ambient by means of a plasma initiated by laser radiation. Results for niobium metal in one atmosphere oxygen demonstrate single-pulse, self-limitin...

  5. Studies of Deformation in Niobium by X-Ray Topographic Methods.

    Science.gov (United States)

    1985-01-01

    STANDARDS-|1%3-A ! iL STUDIES OF DEFORMATION IN NIOBIUM BY X-RAY TOPOGRAPHIC METHODS CV S.R. Stock, Haydn Chen and H,K, Birnbaum University of...Rt. Stock*, Haydn Chen and H. K. Birnbaum J icatio. -: Department of Metallurgy and Mining Engineering By - and Materials Research Laboratory... Haydn Chen and H. K. Birnbaum, "Equi-Inclination Contour Mapping of Strain Fields," in press in Applications of X-Ray . Topographic Methods to Materials

  6. Interface magnetic anisotropy in cobalt clusters embedded in a platinum or niobium matrix

    OpenAIRE

    Jamet, M.; Negrier, M.; Dupuis, V.; Tuaillon-Combes, J.; Melinon, P.; Perez, A.; Wernsdorfer, W.; Barbara, B.; Vogel, J.; Baguenard, B.

    2000-01-01

    A low concentration of cobalt clusters with a fcc structure and containing almost one thousand atoms are embedded in two different metallic matrices: platinum and niobium. Samples have been prepared using a co-deposition technique. Cobalt clusters preformed in the gas phase and matrix atoms are simultaneously deposited on a silicon substrate under Ultra High Vacuum conditions. This original technique allows to prepare nanostructured systems from miscible elements such as Co/Pt and Co/Nb in wh...

  7. Influence of Ta Content in High Purity Niobium on Cavity Performance Preliminary Results*

    CERN Document Server

    Kneisel, P

    2004-01-01

    In a previous paper* a program designed to study the influence of the residual tantalum content on the superconducting properties of pure niobium metal for RF cavities was outlined. The main rationale for this program was based on a potential cost reduction for high purity niobium, if a less strict limit on the chemical specification for Ta content, which is not significantly affecting the RRR–value, could be tolerated for high performance cavities. Four ingots with different Ta contents have been melted and transformed into sheets. In each manufacturing step the quality of the material has been monitored by employing chemical analysis, neutron activation analysis, thermal conductivity measurements and evaluation of the mechanical properties. The niobium sheets have been scanned for defects by an eddy current device. From three of the four ingots—Ta contents 100, 600 and 1,200 wppm—two single cell cavities each of the CEBAF variety have been fabricated and a series of tests on each ...

  8. Once upon a time, there was a brittle but superconducting niobium-tin…

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    The production of the new niobium-tin cables for the high-performance superconducting magnets of the HL-LHC is now in full swing at CERN.   The Rutherford cabling machine is operating in the superconducting laboratory, in Building 163. (Photo: Max Brice/CERN) Extraordinary research needs extraordinary machines: the upgrade project of the LHC, the High-Luminosity LHC (HL-LHC), has the goal of achieving instantaneous luminosities a factor of five larger than the LHC nominal value, and it relies on magnetic fields reaching the level of 12 Tesla. The superconducting niobium-titanium (Nb-Ti) used in the LHC magnets can only bear magnetic fields of up to 9-10 Tesla. Therefore, an alternative solution for the superconducting magnets materials was needed. The key innovative technology to develop superconducting magnets beyond 10 Tesla has been found in the niobium-tin (Nb3Sn)  compound. This compound was actually discovered in 1954, eight years before Nb-Ti, but when the LHC was built, ...

  9. Surface studies of niobium chemically polished under conditions for superconducting radiofrequency cavity production

    Energy Technology Data Exchange (ETDEWEB)

    Hui Tian; Michael Kelley; Charles Reece

    2005-11-14

    The performance of niobium superconducting radiofrequency accelerator cavities is strongly impacted by the topmost several nanometers of the active (interior) surface, especially by the final surface conditioning treatments. We examined the effect of the most commonly employed treatment, buffered chemical polishing (BCP), on polycrystalline niobium sheet over a range of realistic solution flow rates using electron back scatter diffraction (EBSD), stylus profilometry, atomic force microscopy, laboratory XPS and synchrotron (variable photon energy) XPS, seeking to collect statistically significant data sets. We found that the predominant general surface orientation is (100), but others are also present and at the atomic-level details of surface plane orientation are more complex. The post-etch surface exhibits micron-scale roughness, whose extent does not change with treatment conditions. The outermost surface consists of a few-nm thick layer of niobium pentoxide, whose thickness increases with solution flow rate to a maximum of 1.3 - 1.4 times that resulting from static solution. The standard deviation of the roughness measurements is ?? 30% and that of the surface composition is ?? 5%.

  10. Adsorption of sulfur compound utilizing rice husk ash modified with niobium

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Rodrigo M.; Pessoa Júnior, Wanison A.G. [Laboratório de Catálise Química e Materiais (CATAMA), Instituto de Ciências Exatas, Universidade Federal do Amazonas (UFAM), Av. Gen. Rodrigo Otávio Jordão Ramos, 6200, 69077-000 Manaus, AM (Brazil); Braga, Valdeilson S. [Laboratório de Catálise, Centro das Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Professor José Seabra de Lemos, 316, Recanto dos Pássaros, 47808-021 Barreira, BA (Brazil); Barros, Ivoneide de C.L., E-mail: iclbarros@gmail.com [Laboratório de Catálise Química e Materiais (CATAMA), Instituto de Ciências Exatas, Universidade Federal do Amazonas (UFAM), Av. Gen. Rodrigo Otávio Jordão Ramos, 6200, 69077-000 Manaus, AM (Brazil)

    2015-11-15

    Graphical abstract: - Highlights: • Adsorbents based in RHA modified with niobium were prepared by impregnation. • The impregnation modified the particle size and topology of RHA particles. • The adsorbents were applied in sulfur removal in model liquid fuels. • The larger sulfur removal (>50%) was achieved using RHA with 5 wt.% niobium oxide. • The adsorbent show great selectivity in adsorption experiments. - Abstract: Adsorbents based in rice husk ash (RHA) modified with niobium pentoxide were prepared for impregnation methods and applied in sulfur removal in liquid fuels. The solids were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen physisorption and thermal analysis; they show that there was no qualitative change in the amorphous structure of the RHA; however, the method of impregnation could modify the particle size and topology of RHA particles. The larger sulfur removal (>50%) was achieved using RHA with 5 wt.% Nb{sub 2}O{sub 5} at a dosage of 10 g L{sup −1}, after 4 h of contact with the model fuel. The kinetic study of adsorption of thiophene showed that the models of pseudo-second order and intra-particle diffusion best fit the experimental data. The adsorption experiments with the thiophenic derivatives compounds show a large selectivity of the adsorbent.

  11. Effects of hydrogen on the single crystalline elastic constants of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Schlader, Daniel Michael [Iowa State Univ., Ames, IA (United States)

    1977-06-01

    A special hydriding system was designed and constructed to satisfy conditions for hydriding niobium. This system controlled the temperature and hydrogen atmosphere surrounding the niobium while ultrasonic measurements were recorded. Ultrasonic wave velocities were determined by measurement of the times for ultrasonic pulses to transit and then echo through known dimensions of test specimens. The method which was employed is commonly known as the pulse-echo-overlap method. This study confirmed the general trends of earlier investigations. In this study C' continued to decrease and C44 continued to increase up to 4.69 atomic percent hydrogen which is the maximum concentration which has yet been examined. In the case of the niobium-hydrogen system the Snoek effect may well be a contributory factor to the decrease of C' with increasing hydrogen concentration. However, crystallographic considerations preclude this effect from contributing a concentration dependence to C44 or B. The observation of the present work implies that other factors must also be contributing to the overall behavior.

  12. Recent Developments in Niobium Containing Austenitic Stainless Steels for Thermal Power Plants

    Science.gov (United States)

    de Oliveira, Mariana Perez; Zhang, Wei; Yu, Hongyao; Bao, Hansheng; Xie, Xishan

    The challenge of growing continuously in a sustainable way is the main driver to improve efficiency in the use of natural resources. The increasing demand for energy has made thermal power based countries to set audacious programs to increase efficiency of thermal power generation. In China, coal-burning accounts nowadays for approximately 65% of the total primary energy supply being responsible for around 25% of the countries' CO2 emission, this coal-based energy supply scenario is believed to continue until 2020. Therefore, the country has invested strongly in the last years in the construction of more efficient power plants. To attend higher operating temperatures and steam pressures, the application of higher performance materials is mandatory, presenting improved mechanical resistance — to stand the higher pressures applied — and having sufficient high temperature and corrosion resistance with the best cost-benefit relation possible. The present work addresses some research developments made in niobium containing austenitic stainless steels for super heaters and re-heater tubes in the past years as a joint effort between industry and academia to understand mechanisms and optimize the steel chemical composition, improving its performance. Niobium role has been studied in detail in heat resistant stainless steels TP347H, Super 304 and HR3C, a summary of such studies is presented in this paper. Niobium improves high temperature properties as it precipitates as nano-size MX and NbCrN, well dispersed in the matrix, hindering dislocation movement, increasing precipitation strengthening and creep resistance.

  13. The oxidation of TaBe sub 12 and NbBe sub 12 coatings on niobium

    Energy Technology Data Exchange (ETDEWEB)

    Courtright, E.L.

    1990-01-01

    The oxidation behavior of tantalum and niobium beryllide coatings on niobium were evaluated. Intermetallic bond layers consisting of Ir{sub 3}Ta and Ir{sub 3}Nb were used to butter the large thermal expansion mismatch between the beryllide coatings and underlying niobium substrate. All coatings were applied by Triode Sputtering except for a final environmental protection layer of stabilized zirconia deposited by RF Diode using a ceramic target. Severe delamination and spalling occurred during cyclic oxidation exposure, even at temperatures as low as 925{degrees}C, indicating that the bond layer did not prevent the differential expansion stresses from reaching the delamination failure threshold, particularly at the edges and corners. Hot pressed samples of the two beryllide compounds were also exposed to a similar cyclic oxidation history, but, in contrast to the coatings, exhibited excellent oxidation resistance to temperatures as high as 1370{degrees}C. 9 refs., 8 figs., 1 tab.

  14. Influence of niobium substitution on structural and opto-electrical properties of BNKT piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Vidhi [Electroceramics Research Group, Department of Physics, Birla Institute of Technology, Mesra, Ranchi (India); Ghosh, S.K., E-mail: saritghosh@gmail.com [Electroceramics Research Group, Department of Physics, Birla Institute of Technology, Mesra, Ranchi (India); Hussain, Ali [School of Advanced Materials Engineering, Changwon National University, Gyeong-Nam, 641-773 (Korea, Republic of); Rout, S.K., E-mail: skrout@bitmesra.ac.in [Electroceramics Research Group, Department of Physics, Birla Institute of Technology, Mesra, Ranchi (India)

    2016-07-25

    Lead free niobium modified piezoelectric ceramics Bi{sub 0.5}Na{sub 0.25}K{sub 0.25}Nb{sub x}Ti{sub 1-x}O{sub 3} (BNKT) (x = 0.0, 0.015 and 0.025) compositions along with their structural and opto-electrical properties are investigated. At room temperature Rietveld refinement analysis on x-ray diffraction data revealed the evidence of tetragonal (P4mm) + cubic (Pm3m) mixed phases at 0.015Nb-BNKT composition and at higher niobium concentration it moves towards cubic phase. Presence of local disorder controls the Raman active vibrational modes along with excitation and emission spectra in these materials. The temperature dependence dielectric constant is investigated in the frequency range of 1 kHz–100 kHz. The broadening of dielectric peak and frequency dependence behavior indicated a relaxor property in these materials. Induced A-site vacancies and coexistence of tetragonal-pseudocubic phases lower the depolarization temperature (T{sub d}) with niobium concentration. The structural mix phases have been correlated with the piezoelectric coefficients and the composition x = 0.015 depicts the better piezoelectric properties amongst the studied compositions which is endorsed to the mixed symmetry of tetragonal and cubic phases. - Highlights: • Coexistence of polar and non-polar phases in Nb doped BNKT materials. • Structural instability and lattice disorder controls the opto-electrical properties. • Broadening and shifting of dielectric peaks highlighted the relaxor behavior. • High value of ferroelectric and piezoelectric coefficients at x = 0.015 composition.

  15. An initial demonstration of hierarchically porous niobium alkylphosphonates coordination polymers as potent radioanalytical separation materials.

    Science.gov (United States)

    Lv, Kai; Yang, Chu-Ting; Han, Jun; Hu, Sheng; Wang, Xiao-Lin

    2017-06-30

    Combining the merits of soft-templating and perchlorate oxidation methods, the first-case investigation of niobium alkylphosphonates has uncovered their unique morphology, backbone composition, thermal behavior and huge potentiality as radioanalytical separation materials. These hierarchically porous solids are random aggregates of densely stacked nanolayers perforated with worm-like holes or vesicular voids, manifesting the massif-, tower-like "polymer brush" elevated up to ∼150nm driven by the minimal surface free energy principle. These coordination polymers consist of distorted niobium (V) ions strongly linked with tetrahedral alkylphosphonate building units, exposing uncoordinated phosphonate moieties and defective metal sites. Despite the amorphous features, they demonstrate multimodal porosity covering continuous micropores, segregated mesopores and fractional macropores, beneficial for the sequestration by active Lewis acid-base center. Evidenced by the maximum distribution coefficients of thorium, lanthanides reaching 9.0×10(4), 9.5×10(4)mLg(-1) and large separation factor at pH≤1 20-element cocktail, this category of niobium alkylphosphonates are capable of harvesting thorium, lanthanides directly from the radionuclide surrogate, comparable to or even surpass the performance of the metal (IV) arylphosphonates counterparts. They also display appreciable SFEu/Sm ∼20 in 1molL(-1) HNO3, shedding light on dual approaches to achieve the isolation of americium from curium. A combinatorial radioanalytical separation protocol has been proposed to enrich thorium and europium, revealing facile utilization of these highly stable, phosphonated hybrids in sustainable development of radioanalytical separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of niobium on corrosion resistance to sulfuric acid of 430 ferritic stainless steel

    OpenAIRE

    Neusa Alonso-Falleiros; Stephan Wolynec

    1998-01-01

    The influence of niobium on corrosion resistance to 0.5M H2SO4 of 17% Cr ferritic stainless steels, to which it was added in amounts larger than that necessary to stabilize the interstitial elements, was investigated. Their performance was compared to that of other two Fe-17%Cr alloys, one without additions and another containing 0.93% molybdenum. Through weight and electrochemical measurements and through morphologic examination of corroded surface it was found that the corrosion of these al...

  17. Leakage Current Degradation Due to Ion Drift and Diffusion in Tantalum and Niobium Oxide Capacitors

    Directory of Open Access Journals (Sweden)

    Kuparowitz Martin

    2017-06-01

    Full Text Available High temperature and high electric field applications in tantalum and niobium capacitors are limited by the mechanism of ion migration and field crystallization in a tantalum or niobium pentoxide insulating layer. The study of leakage current (DCL variation in time as a result of increasing temperature and electric field might provide information about the physical mechanism of degradation. The experiments were performed on tantalum and niobium oxide capacitors at temperatures of about 125°C and applied voltages ranging up to rated voltages of 35 V and 16 V for tantalum and niobium oxide capacitors, respectively. Homogeneous distribution of oxygen vacancies acting as positive ions within the pentoxide layer was assumed before the experiments. DCL vs. time characteristics at a fixed temperature have several phases. At the beginning of ageing the DCL increases exponentially with time. In this period ions in the insulating layer are being moved in the electric field by drift only. Due to that the concentration of ions near the cathode increases producing a positively charged region near the cathode. The electric field near the cathode increases and the potential barrier between the cathode and insulating layer decreases which results in increasing DCL. However, redistribution of positive ions in the insulator layer leads to creation of a ion concentration gradient which results in a gradual increase of the ion diffusion current in the direction opposite to the ion drift current component. The equilibrium between the two for a given temperature and electric field results in saturation of the leakage current value. DCL vs. time characteristics are described by the exponential stretched law. We found that during the initial part of ageing an exponent n = 1 applies. That corresponds to the ion drift motion only. After long-time application of the electric field at a high temperature the DCL vs. time characteristics are described by the exponential

  18. Atomic structure evolution during solidification of liquid niobium from ab initio molecular dynamics simulations.

    Science.gov (United States)

    Debela, T T; Wang, X D; Cao, Q P; Zhang, D X; Wang, S Y; Wang, C Z; Jiang, J Z

    2014-02-05

    Atomic structure transitions of liquid niobium during solidification, at different temperatures from 3200 to 1500 K, were studied by using ab initio molecular dynamics simulations. The local atomic structure variations with temperature are investigated by using the pair-correlation function, the structure factor, the bond-angle distribution function, the Honeycutt-Anderson index, Voronoi tessellation and the cluster alignment methods. Our results clearly show that, upon quenching, the icosahedral short-range order dominates in the stable liquid and supercooled liquid states before the system transforms to crystalline body-center cubic phase at a temperature of about 1830 K.

  19. Tensile behavior of tungsten/niobium composites at 1300--1600 K

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hee Mann (Cleveland State Univ., OH (USA)); Titran, R.H. (National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center)

    1989-01-01

    The tensile behavior of continuous-tungsten-fiber-reinforced niobium composites (W/Nb), fabricated by an arc-spray process, was studied in the 1300 to 1600 K temperature range. The tensile properties of the fiber and matrix components as well as the composites were measured and were compared to rule of mixtures (ROM) predictions. The deviation from the ROM was found to depend upon the chemistry of the tungsten alloy fibers, with positive deviations for ST300/Nb (i.e., stronger composite strength than the ROM) and negative or zero deviations for 218/Nb. 16 refs., 13 figs., 5 tabs.

  20. Enhancement in Quality Factor of SRF Niobium Cavities by Material Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Pashupati [JLAB; Ciovati, Gianluigi [JLAB; Kneisel, Peter K. [JLAB; Myneni, Ganapati Rao [JLAB

    2015-06-01

    An increase in the quality factor of superconducting radiofrequency cavities is achieved by minimizing the surface resistance during processing steps. The surface resistance is the sum of temperature independent residual resistance and temperature/material dependent Bardeen-Cooper-Schrieffer (BCS) resistance. High temperature heat treatment usually reduces the impurities concentration from the bulk niobium, lowering the residual resistance. The BCS part can be reduced by selectively doping non-magnetic impurities. The increase in quality factor, termed as Q-rise, was observed in cavities when titanium or nitrogen thermally diffused in the inner cavity surface.

  1. Mesoporous Niobium Oxide Spheres as an Effective Catalyst for the Transamidation of Primary Amides with Amines

    KAUST Repository

    Ghosh, Subhash Chandra

    2014-02-06

    Mesoporous niobium oxide spheres (MNOS), conveniently prepared by a novel antisolvent precipitation approach, have been shown to be an effective catalyst for the transamidation of primary amides with amines. This novel transamidation can be efficiently carried out under solvent-free conditions and is applicable to a wide range of primary amides and amines to provide N-alkyl amides in good to excellent yields. The catalyst is highly stable and reusable. The application of this transamidation reaction has been demonstrated in the synthesis of antidepressant drug moclobemide and other druglike compounds. © 2014 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  2. Thermal and quantum phase slips in niobium-nitride nanowires based on suspended carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Kohei; Takagi, Tasuku; Hashimoto, Takayuki [Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522 (Japan); Moriyama, Satoshi, E-mail: MORIYAMA.Satoshi@nims.go.jp; Komatsu, Katsuyoshi [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Morita, Yoshifumi, E-mail: morita@gunma-u.ac.jp [Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515 (Japan); Miki, Norihisa [Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522 (Japan); Tanabe, Takasumi [Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522 (Japan); Maki, Hideyuki, E-mail: maki@appi.keio.ac.jp [Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522 (Japan); JST-PRESTO, Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2016-05-30

    Superconducting nanowires have attracted considerable attention due to their unique quantum-mechanical properties, as well as their potential as next-generation quantum nanodevices, such as single-photon detectors, phase-slip (PS) qubits, and other hybrid structures. In this study, we present the results of one-dimensional (1D) superconductivity in nanowires fabricated by coating suspended carbon nanotubes with a superconducting thin niobium nitride (NbN) film. In the resistance-temperature characteristic curves, hallmarks of 1D superconductivity with PS events are observed with unconventional negative magnetoresistance. We also confirm that a crossover occurs between thermal and quantum PSs as the temperature is lowered.

  3. Novel niobium carbide/carbon porous nanotube electrocatalyst supports for proton exchange membrane fuel cell cathodes

    Science.gov (United States)

    Nabil, Y.; Cavaliere, S.; Harkness, I. A.; Sharman, J. D. B.; Jones, D. J.; Rozière, J.

    2017-09-01

    Niobium carbide/carbon nanotubular porous structures have been prepared using electrospinning and used as electrocatalyst supports for proton exchange membrane fuel cells. They were functionalised with 3.1 nm Pt particles synthesised by a microwave-assisted polyol method and characterised for their electrochemical properties. The novel NbC-based electrocatalyst demonstrated electroactivity towards the oxygen reduction reaction as well as greater stability over high potential cycling than a commercial carbon-based electrocatalyst. Pt/NbC/C was integrated at the cathode of a membrane electrode assembly and characterised in a single fuel cell showing promising activity and power density.

  4. Niobium Pentachloride Activation of Enone Derivatives: Diels-Alder and Conjugate Addition Products

    Directory of Open Access Journals (Sweden)

    Gil Valdo José da Silva

    2002-05-01

    Full Text Available Niobium pentachloride has proven to be a powerful activating agent for Diels-Alder or conjugate addition reactions of cycloenones. The Diels-Alder product was obtained only with an unsubstituted enone (cyclohexenone and the highly reactive diene cyclopentadiene; substituents in the b-position of enones seem to prevent Diels-Alder reaction: oxygenated substituents favor the formation of vinyl chlorides (ethyl ether or dichloromethane as solvents or enol ethers (ethyl acetate as solvent, while a methyl substituent prevents any kind of transformation with NbCl5. Less reactive dienes, furan and 2-methylfuran gave the conjugate addition products of the furan ring to the enone system.

  5. Niobium(V) chloride as catalyst in Diels-Alder reaction of furan ring

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Deborah A. dos; Rodrigues, Ludmila R.; Arpini, Bruno H.; Lacerda Junior, Valdemar; Greco, Sandro J.; Santos, Reginaldo B. dos; Neto, Alvaro C.; Castro, Eustaquio V.R. de, E-mail: vljuniorqui@gmail.com [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Dept. de Quimica; Romao, Wanderson [Instituto Federal de Educacao, Ciencia e Tecnologia (IFES), Vila Velha, ES (Brazil)

    2014-05-15

    According to the relevant literature, the Diels-Alder reaction of furan without a catalyst can last several weeks and shows a low yield due to the diene’s low reactivity. The use of Lewis acid catalysts or high pressures is described as an effective method for improving the reaction yields. This paper describes our recent study on the use of niobium pentachloride as the catalyst in Diels-Alder reactions between furan and several reactive dienophiles, among which methyl acrylate showed good yields, especially at lower temperatures. Other dienophiles have shown lower yields because of problems such as byproduct formation and the high reversibility of the reaction. (author)

  6. JACoW N-doped niobium accelerating cavities: Analyzing model applicability

    CERN Document Server

    Eichhorn, Ralf; Weingarten, Wolfgang

    2017-01-01

    The goal of this research was to analyse data from multiple cavities in order to test the viability of a model for surface resistance proposed previously. The model intends to describe the behaviour of the quality factor with respect to the RF field strength, while exploring the physical cause of this phenomenon; the model is pretty general, but will be checked here specifically for N-doped niobium cavities. The data were obtained from two single-cell 1.3 GHz cavities manufactured and tested at Jefferson Lab in Newport News, VA, USA.

  7. Electron Beam Welding of a Depleted Uranium Alloy to Niobium Using a Calibrated Electron Beam Power Density Distribution

    Science.gov (United States)

    Elmer, J. W.; Teruya, A. T.; Terrill, P. E.

    2000-08-01

    Electron beam test welds were made joining flat plates of commercially pure niobium to a uranium-6wt%Nb (binary) alloy. The welding parameters and joint design were specifically developed to minimize mixing of the niobium with the U-6%Nb alloy. A Modified Faraday Cup (MFC) technique using computer-assisted tomography was employed to determine the precise power distribution of the electron beam so that the welding parameters could be directly transferred to other welding machines and/or to other facilities.

  8. Properties of Copper Cavities Coated with Niobium Using Different Discharge Gases

    CERN Document Server

    Benvenuti, Cristoforo; Campisi, I E; Darriulat, Pierre; Marino, M; Peck, M A; Russo, R; Valente, A M

    1997-01-01

    Experimental evidence is presented showing that in conformity with theoretical expectations, discharge gas atoms are trapped in sputtered films whenever a gas of atomic mass smaller than that of the c athode is used. In such a case, discharge gas atoms may be reflected by the cathode as high energy neutrals and get incorporated in the growing film. Niobium films have been produced using Ne, Ar, Kr, Xe and then analysed for rare gas content by thermal extraction. The gas concentrations are found to vary from the several percent range for Ne down to the ppm level for Kr and Xe. The noble gas conce ntration in the film influences the RRR and, in the case of high concentration, also the critical temperature. To study the effect of the implanted noble gas on the superconducting RF parameters, seve ral 1.5 GHz copper cavities have been niobium-coated using the different discharge gases. The noble gases trapped in the film affect the penetration depth, the temperature dependent losses (RBCS), the losses induced by t...

  9. NANO-SQUIDs based on niobium Dayem bridges for nanoscale applications

    Science.gov (United States)

    Granata, C.; Vettoliere, A.; Walke, P.; Esposito, E.; Nappi, C.; Silvestrini, P.; Ruggiero, B.; Russo, M.

    2010-06-01

    We report on the design, the fabrication and the performance of an integrated magnetic nano-sensor based on niobium dc-SQUID (Superconducting QUantum Interference Device) for nanoscale applications is presented. The nano-sensors are based on nanometric niobium constrictions (Dayem bridges) inserted in a square loop having a side length of 200 nm. Measurements of voltage-flux characteristic, flux to voltage transfer factor and noise performances are reported. In small signal mode, the sensors have shown a magnetic flux noise spectral density of 1.5 μΦ0/Hz1/2 corresponding to a spin sensitivity in unit of Bohr magneton of 60 spin/Hz1/2. Supercurrent decay measurements of these devices are also reported. Such measurements provide useful information for applications which employ the SQUID as a trigger where the sensor works on the zero voltage state. The experimental data, have shown an intrinsic current fluctuation less than 0.2% of the critical current at liquid helium temperature, corresponding to an intrinsic sensor magnetic flux resolution of a few mΦ0. In view of the nano-SQUID employments in the detection of small spin populations, the authors calculated the spin sensitivity and the magnetic response relative to the single spin, as a function of its position within the SQUID hole. The results show that the SQUID response depends strongly on the spin position.

  10. Void-swelling and precipitation in a neutron-irradiated, niobium-stabilised austenitic stainless steel

    Science.gov (United States)

    Williams, T. M.; Titchmarsh, J. M.; Arkell, D. R.

    1982-06-01

    Unstressed specimens of FV548 niobium-stabilised austenitic steel in three heat-treatment conditions (1150°C solutiontreated, 20% cold-worked, and 850°C aged) have been neutron-irradiated in the Dounreay Fast Reactor in the temperature range 380°-738°C and to displacement doses of up to 30 dpa. The irradiated specimens have been examined using transmission electron microscopy and EDX techniques to establish the void-swelling and precipitation behaviour under neutron irradiation. Where possible, the observations are compared with results obtained on type 316 steel. The similarities and differences in the behaviour of the two steels are used in an attempt to understand the factors affecting the precipitation under irradiation and the void-swelling behaviour of FV548 and type 316 steels. Irradiation is shown to enhance the formation of some precipitate phases (e.g. G-phase and carbides of the M 6C type) while having no effect on others (e.g. Sigma phase and M 23C 6). It is concluded that fine intragranular dispersions of niobium carbide particles play a major role in suppressing void-swelling in neutron-irradiated FV548 steel at relatively high irradiation temperatures.

  11. NOVEL CHARACTERIZATION OF THE ELECTROPOLISHING OF NIOBIUM WITH SULFURIC AND HYDROFLUORIC ACID MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Hui Tian; Charles Reece; Michael Kelley; Sean Corcoran

    2008-02-12

    Niobium surfaces are commonly electropolished in an effort to obtain optimally smooth surfaces for high-field SRF cavity applications. We report the first use of controlled electrochemical analysis techniques to characterize electropolishing of Nb in a sulfuric and hydrofluoric acid electrolyte. Through the use of a reference electrode we are able to clearly distinguish the anode, cathode polarization potentials as well as the electrolyte voltage drop that sum to the applied power supply voltage. We then separate the temperature and HF concentration dependence of each. We also report the first use of Electrochemical Impedance Spectroscopy (EIS) on this system. EIS results are consistent with a presence of a compact salt film at the Nb/electrolyte interface that is responsible for the limiting current. Microscopic understanding of the basic Nb EP mechanism is expected to provide an appropriate foundation with which to optimize the preparation of high-field niobium cavity surfaces. The implication of EIS for monitoring Nb surface during electropolishing shows this technology could be potentially used as a source of on-line feedback.

  12. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers

    Science.gov (United States)

    Cheaito, Ramez; Hattar, Khalid; Gaskins, John T.; Yadav, Ajay K.; Duda, John C.; Beechem, Thomas E.; Ihlefeld, Jon F.; Piekos, Edward S.; Baldwin, Jon K.; Misra, Amit; Hopkins, Patrick E.

    2015-03-01

    We study the interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. Our results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.

  13. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheaito, Ramez; Gaskins, John T.; Duda, John C.; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Hattar, Khalid; Beechem, Thomas E.; Ihlefeld, Jon F.; Piekos, Edward S. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Yadav, Ajay K. [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Baldwin, Jon K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Misra, Amit [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2015-03-02

    We study the interplay between the contributions of electron thermal flux and interface scattering to the Kapitza conductance across metal-metal interfaces through measurements of thermal conductivity of copper-niobium multilayers. Thermal conductivities of copper-niobium multilayer films of period thicknesses ranging from 5.4 to 96.2 nm and sample thicknesses ranging from 962 to 2677 nm are measured by time-domain thermoreflectance over a range of temperatures from 78 to 500 K. The Kapitza conductances between the Cu and Nb interfaces in multilayer films are determined from the thermal conductivities using a series resistor model and are in good agreement with the electron diffuse mismatch model. Our results for the thermal boundary conductance between Cu and Nb are compared to literature values for the thermal boundary conductance across Al-Cu and Pd-Ir interfaces, and demonstrate that the interface conductance in metallic systems is dictated by the temperature derivative of the electron energy flux in the metallic layers, rather than electron mean free path or scattering processes at the interface.

  14. Stoichiometry and thickness dependence of superconducting properties of niobium nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, Melissa R., E-mail: mrbeebe@email.wm.edu; Beringer, Douglas B.; Burton, Matthew C.; Yang, Kaida; Lukaszew, R. Alejandra [Department of Physics, The College of William & Mary, Small Hall, 300 Ukrop Way, Williamsburg, Virginia 23185 (United States)

    2016-03-15

    The current technology used in linear particle accelerators is based on superconducting radio frequency (SRF) cavities fabricated from bulk niobium (Nb), which have smaller surface resistance and therefore dissipate less energy than traditional nonsuperconducting copper cavities. Using bulk Nb for the cavities has several advantages, which are discussed elsewhere; however, such SRF cavities have a material-dependent accelerating gradient limit. In order to overcome this fundamental limit, a multilayered coating has been proposed using layers of insulating and superconducting material applied to the interior surface of the cavity. The key to this multilayered model is to use superconducting thin films to exploit the potential field enhancement when these films are thinner than their London penetration depth. Such field enhancement has been demonstrated in MgB{sub 2} thin films; here, the authors consider films of another type-II superconductor, niobium nitride (NbN). The authors present their work correlating stoichiometry and superconducting properties in NbN thin films and discuss the thickness dependence of their superconducting properties, which is important for their potential use in the proposed multilayer structure. While there are some previous studies on the relationship between stoichiometry and critical temperature T{sub C}, the authors are the first to report on the correlation between stoichiometry and the lower critical field H{sub C1}.

  15. Distribution coefficients of caesium, chlorine, iodine, niobium, selenium and technetium on Olkiluoto soils

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, M.; Lusa, M.; Virtanen, S.; Vaelimaa, I.; Hakanen, M.; Lehto, J. [Univ. of Helsinki, Lab. of Radiochemistry (Finland); Lahdenperae, A.-M. [Saanio and Riekkola Oy, Helsinki (Finland)

    2014-02-15

    Retention of caesium, chlorine, iodine, niobium, selenium and technetium was investigated on soil samples from Olkiluoto using laboratory batch sorption experiments. Distribution coefficients were measured for both dried and sieved and untreated (wet, not sieved) mineral soil and humus in aerobic and anaerobic conditions. Mineralogical composition of the samples was determined by XRD-analysis. Caesium was sorbed efficiently on mineral soil samples and less efficiently on humus. Sorption decreased with decreasing cation exchange capacity and clay fraction content. The effect of competing cations decreased in the order Cs{sup +}>NH{sub 4}{sup +}>K{sup +}>Ca{sup 2+}>Na{sup +}. Chlorine was not retained by mineral soil samples, and the sorption was weak on humus. The sorption of iodine was the strongest on humus and the weakest on the untreated mineral soil samples in the anaerobic conditions. In the mineral soil samples, the sorption decreased with decreasing organic matter content and increasing pH. The retention of niobium on soil samples was the most efficient among the studied elements. The retention was high regardless of the aeration conditions. Sorption on humus was smaller. Selenium was retained efficiently on humus. Sorption on mineral soil samples was stronger in aerobic conditions. Sorption increased with time. Technetium was sorbed well on humus and anaerobic, untreated mineral soil samples. Sorption increased with increasing organic matter content and decreasing redox potential. The results from the sorption experiments are used in the site specific radionuclide migration modelling. (orig.)

  16. Preparation of niobium carbide powder by electrochemical reduction in molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Song, Qiushi [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China); Xu, Qian, E-mail: qianxu201@mail.neu.edu.cn [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Meng, Jingchun; Lou, Taiping; Ning, Zhiqiang [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China); Qi, Yang [College of Science, Northeastern University, Shenyang 110819 (China); Yu, Kai [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China)

    2015-10-25

    The niobium carbide powder was prepared via electrochemical reduction of the mixture of Nb{sub 2}O{sub 5} and carbon in molten CaCl{sub 2}–NaCl. The reaction pathway from the sintered precursor to the final product has been investigated. The effect of the working temperature on the reduction of the Nb{sub 2}O{sub 5}/C composite precursor was considered. The role of carbon during the electrochemical reduction of the composite pellet was discussed. The samples were analysed by XRD and SEM. The results indicated that the NbC powder was approximately 200 nm after the reduction. Nb{sub 2}O{sub 5} was gradually reduced to Nb, and NbC was subsequently obtained by the reaction of carbon with Nb metal. In addition, Nb{sub 2}O{sub 5} could spontaneously react with CaO in the melt to form a serious of calcium niobates. The participation of carbon was available for the efficiency of electro-reduction of Nb{sub 2}O{sub 5}. - Graphical abstract: Niobium carbide powder was electrochemically prepared in molten salt, and the reduction pathway was illustrated schematically. - Highlights: • NbC powder was prepared electrochemically in molten salt. • The working temperature was lower than that of carbothermic reduction. • The reduction pathway was discussed compared to direct electro-deoxidation of Nb{sub 2}O{sub 5}.

  17. Acetalization of acetone with glycerol catalyzed by niobium-aluminum mixed oxides synthesized by a sol–gel process

    NARCIS (Netherlands)

    Rodrigues, Raphael; Mandelli, Dalmo; Gonçalves, Norberto S.; Pescarmona, Paolo P.; Carvalho, Wagner A.

    2016-01-01

    Niobium-aluminum-based catalysts were synthesized by a sol–gel process and successfully applied to the reaction of acetalization of acetone with glycerol yielding 2,2-dimethyl-1,3-dioxolane-4-methanol (solketal) and 2,2-dimethyl-1,3-dioxan-5-ol. The synthesis procedure was developed using

  18. Titanium niobium nitride knee implants are not inferior to chrome cobalt components for primary total knee arthroplasty.

    Science.gov (United States)

    Thienpont, Emmanuel

    2015-12-01

    Metal allergy in total knee arthroplasty (TKA) is still a controversial topic. Oxinium, ceramic or titanium niobium nitride (TiNbN) coated implants are available for some knee systems. The hypothesis of this study was that the use of TiNbN-coated components would not lead to inferior results compared to conventional implants and that none of the allergic patients receiving TiNbN-coated implants would require revision for metal allergy. This study was a retrospective, 2 to 1 matched pairs study with 40 titanium niobium nitride-coated TKA compared with 80 conventional cobalt chrome implants. No demographic differences between these groups were observed. The mean follow-up for this study was 2 years. No differences in clinical, radiological, or patient-reported outcome measurements were observed between the two groups. No patients have been revised at this short- to medium-term outcome evaluation. Metal allergy leading to contact or systemic dermatitis is especially linked to chrome and cobalt allergy. Nickel allergy because of knee implants rarely gives cutaneous symptoms, but could potentially lead to peri-prosthetic osteolysis and loosening. The use of titanium niobium nitride implants in case of a positive history of metal allergy could avoid this devastating complication. The use of titanium niobium nitride-coated implants for primary knee osteoarthritis shows similar clinical and radiological outcomes as conventional TKA without revision for loosening at short- to medium-term follow-up. Level of evidence Level IV study.

  19. Unprecedented quality factors at accelerating gradients up to 45 MVm-1 in niobium superconducting resonators via low temperature nitrogen infusion

    Science.gov (United States)

    Grassellino, A.; Romanenko, A.; Trenikhina, Y.; Checchin, M.; Martinello, M.; Melnychuk, O. S.; Chandrasekaran, S.; Sergatskov, D. A.; Posen, S.; Crawford, A. C.; Aderhold, S.; Bice, D.

    2017-09-01

    We report the finding of new surface treatments that permits one to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface ‘infusion’ conditions that systematically (a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; (b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have more than two times the state-of-the-art Q at 2 K for accelerating fields >35 MVm-1. Moreover, very high accelerating gradients ˜45 MVm-1 are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.

  20. An efficient method to modulate the structure, morphology and properties of WO{sub 3} through niobium doping

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Aihua [Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008 (China); Xie, Changsheng, E-mail: csxie@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Nanomaterial and Smart Sensor Research Laboratory, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Huang, Fei [Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008 (China); Zhang, Shunping [State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Shaoliang [Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008 (China)

    2014-10-15

    Highlights: • Nb-doped WO{sub 3} micro- and nanostructures have been synthesized by a facile hydrothermal method. • Nb doping in WO{sub 3} structure results in phase transformation and morphology evolution. • Band gap increases from 2.72 to 2.78 eV after 0–5 at% Nb doping in WO{sub 3} structure. • A balance between defect oxygen and absorbed oxygen results in steady-state photocurrent at 2 at% niobium doping. - Abstract: Doped tungsten oxide has been reported to provide enhanced photocatalytic and photoelectronic properties in catalyst and smart window applications. Here Nb-doped WO{sub 3} was synthesized to investigate the effect of doping on composition, structure and optical properties. It is shown that niobium ion implantation in WO{sub 3} structure results in the morphological evolution from nanosheet into nanoparticle. 5 at% niobium ion doping induces the phase transformation from monoclinic γ-WO{sub 3} to monoclinic ε-WO{sub 3}. UV–vis spectrum shows that niobium implantation results in the increase of the band gap and the shift of absorption edge. Photoelectric measurement indicates that photocurrent increases firstly and then decreases under UV irradiation. The results reported in this study will be useful in formulating optimum doping process to enhance desired photoelectric properties.

  1. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, D.; Wren, A.W.; Misture, S.T.; Mellott, N.P., E-mail: mellott@alfred.edu

    2016-01-01

    Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb{sub 2}O{sub 5}) and titanium (TiO{sub 2}) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb{sub 2}O{sub 5} at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO{sub 2} an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb{sub 2}O{sub 5} (450 °C), hexagonal-Nb{sub 2}O{sub 5} (525 °C), orthorhombic-Nb{sub 2}O{sub 5} (650 °C), amorphous-TiO{sub 2} (275 °C) and tetragonal TiO{sub 2} (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb{sub 2}O{sub 5} (525 °C) and TiO{sub 2} (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO{sub 2} (122%) samples when compared to the growing cell population while Nb{sub 2}O{sub 5} samples exhibited a range of viability (64–105%), partially dependent on materials atomic structure. - Highlights: • Niobium and titanium oxides were prepared to determine the effect of structure on bioactivity. • Simulated body fluid testing resulted in positive surface chemical and morphological changes. • Amorphous, rod-like CaP deposits were observed on the surfaces. • Niobium oxide exhibited a range of viability partially dependent on materials atomic structure.

  2. Surface-enhanced Raman scattering activity of niobium surface after irradiation with femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Victor G. [Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia (Bulgaria); Georgi Nadjakov Institute of Solid State Physics, BAS, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Vlakhov, Emil S. [Georgi Nadjakov Institute of Solid State Physics, BAS, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Stan, George E.; Socol, Marcela [National Institute of Material Physics, 105 bis Atomistilor Street, 077125 Magurele-Ilfov (Romania); Zamfirescu, Marian; Albu, Catalina; Mihailescu, Natalia; Negut, Irina; Luculescu, Catalin; Ristoscu, Carmen; Mihailescu, Ion N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele-Ilfov (Romania)

    2015-11-28

    The chemical modification of the niobium (Nb) surface after irradiation with femtosecond laser pulses was investigated by scanning electron microscopy coupled with energy dispersive spectroscopy, atomic force microscopy, grazing incidence X-ray diffraction, and micro-Raman spectroscopy. The physical-chemical analyses indicated that the laser treatment results in oxidation of the Nb surface, as well as in the formation of Nb hydrides. Remarkably, after the samples' washing in ethanol, a strong Surface-Enhanced Raman Scattering (SERS) signal originating from the toluene residual traces was evidenced. Further, it was observed that the laser irradiated Nb surface is able to provide a SERS enhancement of ∼1.3 × 10{sup 3} times for rhodamine 6G solutions. Thus, for the first time it was shown that Nb/Nb oxide surfaces could exhibit SERS functionality, and so one can expect applications in biological/biochemical screening or for sensing of dangerous environmental substances.

  3. Surface-enhanced Raman scattering activity of niobium surface after irradiation with femtosecond laser pulses

    Science.gov (United States)

    Ivanov, Victor G.; Vlakhov, Emil S.; Stan, George E.; Zamfirescu, Marian; Albu, Catalina; Mihailescu, Natalia; Negut, Irina; Luculescu, Catalin; Socol, Marcela; Ristoscu, Carmen; Mihailescu, Ion N.

    2015-11-01

    The chemical modification of the niobium (Nb) surface after irradiation with femtosecond laser pulses was investigated by scanning electron microscopy coupled with energy dispersive spectroscopy, atomic force microscopy, grazing incidence X-ray diffraction, and micro-Raman spectroscopy. The physical-chemical analyses indicated that the laser treatment results in oxidation of the Nb surface, as well as in the formation of Nb hydrides. Remarkably, after the samples' washing in ethanol, a strong Surface-Enhanced Raman Scattering (SERS) signal originating from the toluene residual traces was evidenced. Further, it was observed that the laser irradiated Nb surface is able to provide a SERS enhancement of ˜1.3 × 103 times for rhodamine 6G solutions. Thus, for the first time it was shown that Nb/Nb oxide surfaces could exhibit SERS functionality, and so one can expect applications in biological/biochemical screening or for sensing of dangerous environmental substances.

  4. Effect of frequency on amplitude-dependent internal friction in niobium

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Naoki [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)]. E-mail: ide@nitech.ac.jp; Atsumi, Tomohiro [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nishino, Yoichi [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2006-12-20

    Amplitude-dependent internal friction (ADIF) was measured in a polycrystalline niobium using four modes of flexural vibration from the fundamental to the third-order resonance at room temperature. The ADIF was detected in each vibration mode. The internal-friction versus strain-amplitude curve of the ADIF shifted to a larger strain-amplitude range as frequency increased. The stress-strain curves were derived from the ADIF data, and the microplastic flow stress defined as the stress required to produce a plastic strain of 1 x 10{sup -9} was read from the stress-strain curves. It was found that the microplastic flow stress was proportional to the frequency.

  5. Subharmonic energy-gap structure and heating effects in superconducting niobium point contacts

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Hansen, Jørn Bindslev

    1989-01-01

    superconducting weak links that includes the heating effects self-consistently. Our model is combined with that of Octavio, Blonder, Klapwijk, and Tinkham [Phys. Rev. B 27, 6739 (1983)], which is based on the idea of multiple Andreev scattering in the contact. The shape and the temperature variation......We present experimental data of the temperature-dependent subharmonic energy-gap structure (SGS) in the current-voltage (I-V) curves of superconducting niobium point contacts. The observed SGS is modified by heating effects. We construct a model of the quasiparticle conductance of metallic...... of the calculated SGS is found to be in good agreement with the experimental curves for contacts with resistance larger than 5 Ω....

  6. Non-contact measurements of creep properties of niobium at 1985 °C

    Science.gov (United States)

    Lee, J.; Wall, J. J.; Rogers, J. R.; Rathz, T. J.; Choo, H.; Liaw, P. K.; Hyers, R. W.

    2015-01-01

    The stress exponent in the power-law creep of niobium at 1985 °C was measured by a non-contact technique using an electrostatic levitation facility at NASA MSFC. This method employs a distribution of stress to allow the stress exponent to be determined from each test, rather than from the curve fit through measurements from multiple samples that is required by conventional methods. The sample is deformed by the centripetal acceleration from the rapid rotation, and the deformed shapes are analyzed to determine the strain. Based on a mathematical proof, which revealed that the stress exponent was determined uniquely by the ratio of the polar to equatorial strains, a series of finite-element analyses with the models of different stress exponents were also performed to determine the stress exponent corresponding to the measured strain ratio. The stress exponent from the ESL experiment showed a good agreement with those from the literature and the conventional creep test.

  7. Metallurgical analysis and RF losses in superconducting niobium thin film cavities

    CERN Document Server

    Bloess, D; Mahner, E; Nakai, H; Weingarten, Wolfgang; Bosland, P; Mayer, J; Van Loyen, L

    1996-01-01

    Copper cavities with a thin niobium film as used in the large electron positron collider LEP would be also attractive for future linear colliders, provided the decrease of the Q-value with the accelerating gradient can be reduced. We aim at extracting the important parameters that govern this decrease. The dependence on the RF frequency is studied by exciting 500 MHz and 1500 MHz cavities in different modes. In addition we combined RF measurements for two 1500 MHz cavities of different RF performance with microscopic tests (AFM, TEM) on samples cut out of the same cavities. Their micro-structural characterisation in plan-view allows to extract the grain size and the defect densities.

  8. Flux pinning characteristics in cylindrical ingot niobium used in superconducting radio frequency cavity fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Dhavale Ashavai, Pashupati Dhakal, Anatolii A Polyanskii, Gianluigi Ciovati

    2012-04-01

    We present the results of from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low temperature baking as they are typically applied to SRF cavities. The magnetization data were fitted using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FG samples which implies a lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.

  9. Laser polishing of niobium for superconducting radio-frequency accelerator applications

    Directory of Open Access Journals (Sweden)

    Liang Zhao

    2014-08-01

    Full Text Available Interior surfaces of niobium cavities used in superconducting radio frequency accelerators are now obtained by buffered chemical polish and/or electropolish. Laser polishing is a potential alternative, having advantages of speed, freedom from noxious chemistry and availability of in-process inspection. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damage. Computational modeling was used to estimate the surface temperature and gain insight into the mechanism of laser polishing. Power spectral density analysis of surface topography measurements shows that laser polishing can produce smooth topography similar to that obtained by electropolish. This is a necessary first step toward introducing laser polishing as an alternative to the currently practiced chemical polishing.

  10. Etching mechanism of niobium in coaxial Ar/Cl2 radio frequency plasma

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Janardan [Old Dominion Univ., Norfolk, VA (United States); Im, Do [Old Dominion Univ., Norfolk, VA (United States); Popovic, Svetozar [Old Dominion Univ., Norfolk, VA (United States); Valente-Feliciano, Anne -Marie [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Phillips, H. Larry [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Vuskovic, Leposova [Old Dominion Univ., Norfolk, VA (United States)

    2015-03-18

    The understanding of the Ar/Cl2 plasma etching mechanism is crucial for the desired modification of inner surface of the three dimensional niobium (Nb) superconductive radio frequency cavities. Uniform mass removal in cylindrical shaped structures is a challenging task because the etch rate varies along the direction of gas flow. The study is performed in the asymmetric coaxial radio-frequency (rf) discharge with two identical Nb rings acting as a part of the outer electrode. The dependence of etch rate uniformity on pressure, rf power, dc bias, Cl2 concentration, diameter of the inner electrode, temperature of the outer cylinder, and position of the samples in the structure is determined. Furthermore, to understand the plasma etching mechanisms, we have studied several factors that have important influence on the etch rate and uniformity, which include the plasma sheath potential, Nb surface temperature, and the gas flow rate.

  11. Effect of Niobium on Phase Transformations, Mechanical Properties and Corrosion of Supermartensitic Stainless Steel

    Science.gov (United States)

    de Oliveira, Mariana Perez; Calderón-Hernández, José Wilmar; Magnabosco, Rodrigo; Hincapie-Ladino, Duberney; Alonso-Falleiros, Neusa

    2017-04-01

    The influence of niobium addition in a supermartensitic stainless steel with 13Cr-5Ni-2Mo has been studied. The steel with Nb tempered at 600 °C for 2 h showed improved mechanical resistance properties and lower degree of sensitization, without compromising elongation and pitting corrosion resistance, when compared to the reference steel. In order to understand the Nb effect in such steel, mainly regarding phase transformation, different tempering time intervals have been studied. The better performance of the SM2MoNb is attributed to the hindering effect that Nb has in the kinetics of the phase transformations during tempering, delaying the precipitation start and coarsening stages of the present phases.

  12. Comparison of Deformation in High-Purity Single/Large Grain and Polycrystalline Niobium Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ganapati Rao Myneni; Peter Kneisel

    2005-07-10

    The current approach for the fabrication of superconducting radio frequency (SRF) cavities is to roll and deep draw sheets of polycrystalline high-purity niobium. Recently, a new technique was developed at Jefferson Laboratory that enables the fabrication of single-crystal high-purity Nb SRF cavities. To better understand the differences between SRF cavities fabricated out of fine-grained polycrystalline sheet in the standard manner and single crystal cavities fabricated by the new technique, two half-cells were produced according to the two different procedures and compared using a variety of analytical techniques including optical microscopy, scanning laser confocal microscopy, profilometry, and X-ray diffraction. Crystallographic orientations, texture, and residual stresses were determined in the samples before and after forming and this poster presents the results of this ongoing study.

  13. Fluxon induced surface resistance and field emission in niobium films at 1.5 GHz

    CERN Document Server

    Benvenuti, Cristoforo; Darriulat, Pierre; Peck, M A; Valente, A M; Van't Hof, C A

    2001-01-01

    The surface resistance of superconducting niobium films induced by the presence of trapped magnetic flux, presumably in the form of a pinned fluxon lattice, is shown to be modified by the presence of a field emitting impurity or defect. The modification takes the form of an additional surface resistance proportional to the density of the fluxon lattice and increasing linearly with the amplitude of the microwave above a threshold significantly lower than the field emission threshold. Such an effect, a precursor of electron emission, is observed for the first time in a study using radiofrequency cavities operating at their fundamental 1.5 GHz frequency. The measured properties of the additional surface resistance severely constrain possible explanations of the observed effect. (23 refs).

  14. Titanium–35niobium alloy as a potential material for biomedical implants: In vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Perez de Andrade, Dennia; Marotta Reis de Vasconcellos, Luana; Chaves Silva Carvalho, Isabel; Ferraz de Brito Penna Forte, Lilibeth; Souza Santos, Evelyn Luzia de [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil); Falchete do Prado, Renata, E-mail: renatafalchete@hotmail.com [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil); Santos, Dalcy Roberto dos; Alves Cairo, Carlos Alberto [Division of Materials, Air and Space Institute, CTA, Praça Mal. do Ar Eduardo Gomes, 14, São José dos Campos 12904-000, SP (Brazil); Rodarte Carvalho, Yasmin [Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, UNESP — Univ Estadual Paulista, State University of São Paulo (UNESP), Av. Engenheiro Francisco José Longo, 777, São José dos Campos 12245-000, SP (Brazil)

    2015-11-01

    Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium–niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti–35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150 μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti–35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti–35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti–35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants. - Highlights: • Powder metallurgy is effective in producing porous biomaterials. • Ti–35Nb alloy improved mineralized matrix formation. • Porous surface favored a multidirectional pattern of cell spreading. • Porous surface Ti–35Nb alloy appears to be more favorable to bone formation than existing alloys.

  15. Investigation of hydrostatic extrusion and other deformation modes for the fabrication of multifilamentary niobium--tin superconductors by a powder metallurgy approach

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, G.E.

    1977-06-01

    Various aspects of a powder metallurgy approach to fabricate filamentary niobium-tin superconducting wire were investigated. Difficulties occurred due to lack of complete tin infiltration of the sintered niobium rod, formation of intermetallics during infiltration, and both cladding and core fracture during mechanical reduction. The influence of sintering time, infiltration temperature, and deformation mode was investigated. Progress is reported on the clarification of the role of several of the important process parameters.

  16. Heterogeneous precipitation of niobium carbide in the ferrite by Monte Carlo simulations; Cinetique de precipitation heterogene du carbure de niobium dans la ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Hin, C

    2005-12-15

    The precipitation of niobium carbides in industrial steels is commonly used to control the recrystallization process or the amount of interstitial atoms in solid solution. It is then important to understand the precipitation kinetics and especially the competition between homogeneous and heterogeneous precipitation, since both of them have been observed experimentally, depending on they alloy composition, microstructure and thermal treatments. We propose Monte Carlo simulations of NbC precipitation in {open_square}-iron, based on a simple atomic description of the main parameters which control the kinetic pathway: - Realistic diffusion properties, with a rapid diffusion of C atoms by interstitial jumps and a slower diffusion of Fe and Nb atoms by vacancy jumps; - A model of grain boundaries which reproduces the segregation properties of Nb and C; - A model of dislocation which interacts with solute atoms through local segregation energies and long range elastic field; - A point defect source which drives the vacancy concentration towards its equilibrium value. Depending on the precipitation conditions, Monte Carlo simulations predict different kinetic behaviors, including a transient precipitation of metastable carbides, an early segregation stage of C, wetting phenomena at grain boundaries and on dislocations and a competition between homogeneous and heterogeneous NbC precipitation. Concerning the last point, we highlight that long range elastic field due to dislocation favors clearly the heterogeneous precipitation on dislocations. To understand this effect, we have developed a heterogeneous nucleation model including the calculation of the local concentration of solute atoms around the dislocation, the change of the solubility limit relative to the solubility limit in bulk and the energy of precipitates in an elastic field. We have concluded that elastic field favors the heterogeneous precipitation through the fall in nucleation barrier. (author)

  17. Physical properties and structure of large grain/single crystal niobium for superconducting RF cavities Physical properties and structure of large grain/single crystal niobium for superconducting RF cavities

    Science.gov (United States)

    Ermakov, A.; Jelezov, I.; Singer, X.; Singer, W.; Viswanathan, G. B.; Levit, V.; Fraser, H. L.; Wen, H.; Spiwek, M.

    2008-02-01

    The R&D program on superconducting cavities fabricated from electron beam melted large grain/single crystal (LG/SC) niobium discs explores it's potential for production of approximately 1000 cavities for the European XFEL. Thermal, electrical, mechanical properties, crystal orientation and structure are investigated with the aim to make the fabrication procedure more efficient. In opposite to fine grain niobium the thermal conductivity of LG/SC has a pronounced maximum at 2K. Calculation found a correlation between thermal conductivity enhancement and phonon scattering at the grain boundaries. Detected enhancement is very susceptible to plastic deformation that can cause the complete elimination of the low temperature peak. The final annealing at 800°C of cavities made from large grain niobium is necessary for hydrogen outgassing, as well as for the thermal conductivity enhancement due to stress relaxation and recovery of crystal defects introduced at the cavity fabrication. The effects of annealing temperature up to 1200°C, heating rate, and holding time on the structure recovery after rolling are also established. Total elongation at the uniaxial tensile tests for LG is very high (50 - 110%) and depends significantly on the load direction, because only very few grains are in the gage length. The elongation after fracture by bi-axial testing (bulging test) for LG is lower (electron beam welding tests on, niobium single crystals show that an appropriate disc enlargement and annealing can be done without destruction of the single crystal. These tests showed that a cavity can be produced without grain boundaries even in the welding area. On base of the results a fabrication method of single crystal cavities is proposed.

  18. Organometallic Trinuclear Niobium Cluster Complex in Aqueous Solution: Synthesis and Characterization of Niobium Complexes Containing Nb-3(mu-eta(2):eta(2) (perpendicular to)-NCCH3)(mu(2)-O)(3)(6+) Cluster Core

    DEFF Research Database (Denmark)

    Joensen, H.A.N.; Hansson, G. K.; Kozlova, S.G.

    2010-01-01

    by reaction with aqueous hydrochloric acid affords, after suitable workup, the isolation of the organometallic [Nb-3(mu-eta(2):eta(2)-NCCH3)O-3(H2O)(9)](6+) aqua ion by cation-exchange chromatography. The purple niobium aqua ion in 2 M HCl shows a small peak at 365 nm (epsilon similar to 511 M-1 cm(-1) per Nb...

  19. Evaluation of powder metallurgical processing routes for multi-component niobium silicide-based high-temperature alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seemueller, Hans Christoph Maximilian

    2016-03-22

    Niobium silicide-based composites are potential candidates to replace nickel-base superalloys for turbine applications. The goal of this work was to evaluate the feasibility and differences in ensuing properties of various powder metallurgical processing techniques that are capable of manufacturing net-shape turbine components. Two routes for powder production, mechanical alloying and gas atomization were combined with compaction via hot isostatic pressing and powder injection molding.

  20. Density functional theory investigation of negative differential resistance and efficient spin filtering in niobium-doped armchair graphene nanoribbons.

    Science.gov (United States)

    Kumar, Jitendra; Nemade, Harshal B; Giri, P K

    2017-11-08

    Using density functional theory calculations in combination with a non-equilibrium Green's function method, we explore the transport properties of a niobium-doped (∼3.57%) armchair graphene nanoribbon of dimer length 7 in a two-terminal device configuration. The band structure of the supercell with niobium atoms showed spin splitting near the Fermi level. The spin-dependent transport properties and spin-resolved band structure of electrodes with applied bias values were calculated to understand the spin filter and the negative differential resistance (NDR) effect. The spin filter efficiency of the device was found to be more than 95% in the applied voltage range of 0.15 V to 0.5 V for the antiparallel configuration, and the device is suitable as an efficient spin filter at room temperature. The parallel configuration has a higher range, 0 V to 0.5 V, with an efficiency more than 70%. The peak-to-valley ratios in the parallel configuration for spin-up and spin-down currents were 4.5 and 17.8, respectively, while in the antiparallel configuration, the values were 4.57 and 37.5, respectively. The combined NDR characteristic showed figure of merit with a peak current density of ∼6 mA μm(-1) and a PVR of ∼4.6, useful for logical application. Our findings open a new way to produce multifunctional spintronic devices based on niobium-doped armchair graphene nanoribbons.

  1. Accurate X-ray diffraction studies of KTiOPO{sub 4} single crystals doped with niobium

    Energy Technology Data Exchange (ETDEWEB)

    Novikova, N. E., E-mail: natnov@ns.crys.ras.ru; Sorokina, N. I.; Alekseeva, O. A.; Verin, I. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Scientific Research Center (Russian Federation); Kharitonova, E. P.; Orlova, E. I.; Voronkova, V. I. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-01-15

    Single crystals of potassium titanyl phosphate doped with 4% of niobium (КТР:4%Nb) and 6% of niobium (KTP:6%Nb) are studied by accurate X-ray diffraction at room temperature. The niobium atoms are localized near the Ti1 and Ti2 atomic positions, and their positions are for the first time refined independent of the titanium atomic positions. Maps of difference electron density in the vicinity of K1 and K2 atomic positions are analyzed. It is found that in the structure of crystal КТР:4%Nb, additional positions of K atoms are located farther from the main positions and from each other than in КТР and KTP:6%Nb crystals. The nonuniform distribution of electron density found in the channels of the КТР:4%Nb structure is responsible for ~20% increase in the signal of second harmonic generation.

  2. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Tadić, Nenad [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Radić, Nenad [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Stefanov, Plamen [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, 1113 Sofia (Bulgaria); Grbić, Boško [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Vasilić, Rastko [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2015-11-15

    Graphical abstract: - Highlights: • Anodic luminescence is correlated to the existence of morphological defects in the oxide. • Spectrum under spark discharging reveals only oxygen and hydrogen lines. • Oxide films formed under spark discharging are crystallized and composed of Nb{sub 2}O{sub 5}. • Photocatalytic activity and photoluminescence of Nb{sub 2}O{sub 5} films increase with time. - Abstract: This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb{sub 2}O{sub 5} hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  3. Niobium Carbide-Reinforced Al Matrix Composites Produced by High-Energy Ball Milling

    Science.gov (United States)

    Travessa, Dilermando Nagle; Silva, Marina Judice; Cardoso, Kátia Regina

    2017-06-01

    Aluminum and its alloys are key materials for the transportation industry as they contribute to the development of lightweight structures. The dispersion of hard ceramic particles in the Al soft matrix can lead to a substantial strengthening effect, resulting in composite materials exhibiting interesting mechanical properties and inspiring their technological use in sectors like the automotive and aerospace industries. Powder metallurgy techniques are attractive to design metal matrix composites, achieving a homogeneous distribution of the reinforcement into the metal matrix. In this work, pure aluminum has been reinforced with particles of niobium carbide (NbC), an extremely hard and stable refractory ceramic. Its use as a reinforcing phase in metal matrix composites has not been deeply explored. Composite powders produced after different milling times, with 10 and 20 vol pct of NbC were produced by high-energy ball milling and characterized by scanning electron microscopy and by X-ray diffraction to establish a relationship between the milling time and size, morphology, and distribution of the particles in the composite powder. Subsequently, an Al/10 pct NbC composite powder was hot extruded into cylindrical bars. The strength of the obtained composite bars is comparable to the commercial high-strength, aeronautical-grade aluminum alloys.

  4. Influence of niobium pentoxide addition on the properties of glass ionomer cements

    Science.gov (United States)

    Garcia, Isadora Martini; Leitune, Vicente Castelo Branco; Balbinot, Gabriela De Souza; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2016-01-01

    Abstract Objective: To determine the influence of niobium pentoxide (Nb2O5) addition on the physical and chemical properties of glass ionomer cements (GICs). Materials and methods: Five, 10 or 20 wt.% of Nb2O5 were incorporated into commercial GICs (Maxxion R, Vitro Molar, Vitro Fil R) and one group of each GIC remained without Nb2O5 (control groups). The GICs were evaluated by Knoop hardness, compressive strength, acid erosion, particle size and radiopacity. Data were analyzed by two-way ANOVA followed by Tukey's test. Results: The addition of 10% and 20% reduced the microhardness of two GICs (p .05). Nb2O5 did not influence Maxxion R and Vitro Fil R regarding the acid erosion test (p > .05). Vitro Molar increased its acid erosion with 10% of Nb2O5 (p .05). Conclusion: The addition of 5 wt.% Nb2O5 did not affect the tested physical and chemical properties of the GICs and improved the radiopacity of one of the cements. These materials are therefore suitable for further testing of biomimetic remineralization properties. PMID:28642924

  5. Spatially uniform resistance switching of low current, high endurance titanium–niobium-oxide memristors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Suhas [Hewlett Packard Labs, Palo Alto, CA (United States); Davila, Noraica [Hewlett Packard Labs, Palo Alto, CA (United States); Wang, Ziwen [Stanford Univ., CA (United States); Huang, Xiaopeng [Hewlett Packard Labs, Palo Alto, CA (United States); Strachan, John Paul [Hewlett Packard Labs, Palo Alto, CA (United States); Vine, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); David Kilcoyne, A. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nishi, Yoshio [Stanford Univ., CA (United States); Stanley Williams, R. [Hewlett Packard Labs, Palo Alto, CA (United States)

    2016-11-24

    Here we analyzed micrometer-scale titanium-niobium-oxide prototype memristors, which exhibited low write-power (< 3 μW) and energy (< 200 fJ per bit per μm2), low read-power (~nW), and high endurance ( > millions of cycles). To understand their physico-chemical operating mechanisms, we performed in operando synchrotron X-ray transmission nanoscale spectromicroscopy using an ultra-sensitive time-multiplexed technique. We observed only spatially uniform material changes during cell operation, in sharp contrast to the frequently detected formation of a localized conduction channel in transition-metal-oxide memristors. We also associated the response of assigned spectral features distinctly to non-volatile storage (resistance change) and writing of information (application of voltage and Joule heating). Lastly, these results provide critical insights into high-performance memristors that will aid in device design, scaling and predictive circuit-modeling, all of which are essential for the widespread deployment of successful memristor applications.

  6. Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Olaya, J.J. [Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Bogota Colombia (Colombia); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D. F. 04510 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Mexico D. F. 04510 (Mexico)], E-mail: muhl@servidor.unam.mx

    2008-10-01

    Niobium nitride (NbN) coatings have many interesting properties such as chemical inertness, excellent mechanical properties, high electrical conductivity, high melting point, and a superconducting transition temperature between 16 and 17 K. For this reason, these compounds have many potential thin film applications. In this work we compare the properties of NbN{sub x} films deposited using well-characterized balanced and unbalanced magnetron sputtering systems. Samples of NbN were deposited in the two systems under almost identical deposition conditions, that is, the same substrate temperature, plasma power, gas pressure, substrate to target distance and Ar/N{sub 2} ratio. Prior to the film preparation both the magnetic field geometry and the characteristics of the plasma were determined. The microstructure and composition of the deposits were analyzed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The corrosion resistance and the micro-abrasion wear resistance were measured by anodic polarization potentiodynamic studies and by ball cratering, respectively. The NbN films grown using the highly unbalanced magnetron configuration had a preferential (111) crystal orientation and a composite hardness of up to 2400 HV{sub 0.025}. While the films deposited using the balanced magnetron had a mixed crystalline orientation and a hardness of 2000 HV{sub 0.025}. The results demonstrate the strong effect of magnetic field configuration on the ion bombardment, and the resultant coating characteristics.

  7. Characterization of Human Gingival Fibroblasts on Zirconia Surfaces Containing Niobium Oxide

    Directory of Open Access Journals (Sweden)

    Young-Dan Cho

    2015-09-01

    Full Text Available It was indicated that tetragonal zirconia polycrystal (TZP containing yttria (Y2O3 and niobium oxide (Nb2O5 ((Y,Nb-TZP could be an adequate dental material to be used at esthetically important sites. The (Y,Nb-TZP was also proved to possess its osteogenic potential comparable with those conventional dental implant material, titanium (Ti. The objective of the current study was to characterize cellular response of human gingival fibroblasts (HGFs to smooth and rough surfaces of the (Y,Nb-TZP disc, which were obtained by polishing and sandblasting, respectively. Various microscopic, biochemical, and molecular techniques were used to investigate the disc surfaces and cellular responses for the experimental (Y,Nb-TZP and the comparing Ti groups. Sandblasted rough (Y,Nb-TZP (Zir-R discs had the highest surface roughness. HGFs cultured on polished (Y,Nb-TZP (Zir showed a rounded cell morphology and light spreading at 6 h after seeding and its proliferation rate significantly increased during seven days of culture compared to other surfaces. The mRNA expressions of type I collagen, integrin α2 and β1 were significantly stimulated for the Zir group at 24 h after seeding. The current findings, combined with the previous results, indicate that (Y,Nb-TZP provides appropriate surface condition for osseointegration at the fixture level and for peri-implant mucosal sealing at the abutment level producing a suitable candidate for dental implantation with an expected favorable clinical outcome.

  8. Study of micron-thick MgB{sub 2} films on niobium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Chenggang; Yao Dan; Li Fen; Zhang Kaicheng; Feng Qingrong; Gan Zizhao [School of Physics and State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Peking University, Beijing 100871 (China)

    2007-03-15

    1 {mu}m thick polycrystalline MgB{sub 2} films have been grown on commercial niobium sheets using the hybrid physical-chemical vapour deposition technique (HPCVD). Their zero-resistance transition temperature T{sub c}{sup 0} ranges from 38 to 39 K and the transition temperature width {delta}T{sub c} is about 0.1-0.2 K. The films are composed of regular plate-shaped MgB{sub 2} crystallites and have lattice constants about the bulk values. Some diffusion regions were observed at the interface between the film and the substrate by a line scanning spectra of energy-dispersive x-ray spectroscopy (EDX) on the cross section, which might enhance the adhesion of the coated layer to the substrate. The critical current densities, J{sub c}, of these films, calculated by the Bean model, are greater than 5 x 10{sup 6} A cm{sup -2} at 10 K in zero field. Although tiny cracks in the film were created by bending the sample on a curved surface with a radius of 1.4 mm, however, T{sub c}{sup 0} of the bent film was not affected and remained about 39 K, which indicates that the sample has a certain ductibility.

  9. Synthesis and Characterization of Nano-Particles of Niobium Pentoxide with Orthorhombic Symmetry

    Directory of Open Access Journals (Sweden)

    Miryam Rincón Joya

    2017-04-01

    Full Text Available In this work, a set of nanoparticles of Nb2O5 nanoparticles were grown by both the Pechini and the sol-gel methods. The amorphous materials were calcined at 650 #xB0;C or at 750 °C. X-ray diffraction, scanning electron microscopy, luminescence and Raman spectroscopy were used in order to characterize the materials. From the study, it is possible to state that the method of production of nanoparticles, beyond the temperature of synthesis, has a great influence on whether the phase produced is hexagonal or orthorhombic. Additionally, compared to de Sol-gel method, the Pechini method produced samples with smaller particle sizes. The photoluminescence spectra of niobium pentoxide nanostructure materials show that the emission peaks are positioned between 334 to 809 nm and there is a change of intensity which varies depending on the synthesis route used. High pressure Raman spectra at room temperature were obtained from two samples grown by the sol-gel method. Up to 6 GPa, where it is possible to observe the Raman bands, no modification other than the increase of disorder was observed, and this can be associated with a change of phase.

  10. Sub-picowatt resolution calorimetry with niobium nitride thin-film thermometer.

    Science.gov (United States)

    Dechaumphai, Edward; Chen, Renkun

    2014-09-01

    High-resolution calorimetry has many important applications such as probing nanoscale thermal transport and studying the thermodynamics of biological and chemical systems. In this work, we demonstrated a calorimeter with an unprecedentedly high resolution at room temperature using a high-performance resistive thermometry material, niobium nitride (NbN(x)). Based on a theoretical analysis, we first showed that the heat flux resolution of a resistive-thermometry based calorimeter depends on the parasitic thermal conductance of the device and the temperature coefficient of resistance (TCR) of the thermometer, when the noise is limited by the Johnson noise. Based on this analysis, we then developed a calorimeter using NbNx as the thermometry material because it possesses both high TCR (~0.67%/K) and a low thermal conductivity (k ~ 1.1 W/m K). This calorimeter, when used with the modulated heating scheme, demonstrated an unprecedentedly high power resolution of 0.26 pW at room temperature. In addition, NbNx based resistive thermometry can also be extended to cryogenic temperature, where the TCR is shown to be significantly higher.

  11. Large scale synthesis of niobium disulfide as a transparent transition metal dichalcogenide electrode

    Science.gov (United States)

    Bark, Hunyoung; Lee, Changgu

    Atomically thin transition metal dichalcogenides(TMDC) semiconductor such as MoS2 and WSe2 is considered as a promising candidate for future flexible and transparent electronic devices. However, direct metal contact to atomically thin transition metal dichalcogenides(TMDC) semiconductor shows high contact resistance, which suppress electrical performance like electron mobility. NbS2, one of the transition metal dichalcogenides(TMDC) conductor, is an important material because it is expected to form schottky barrier-free contact with transition metal dichalcogenides(TMDC) semiconductor. Here, we synthesize large scale niobium disulfide film as a transparent transition metal dichalcogenide electrode. Synthesized NbS2 film shows corresponding Raman shift and binding energy and has good crystallinity. NbS2 film can be easily patterned and shows uniform conductivity in large area. Large scale transparent NbS2 electrode applied to large scale MoS2 grown by chemical vapor deposition on quartz substrate. Ion-gel gated MoS2 transistor which uses NbS2 as an electrode shows 104 on/off ratio and 1 5cm2/Vs electron mobility which is better than metal contact MoS2 transistor.

  12. Characterization of ZSM-5 modified with niobium pentoxide: the study of thiophene adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Rodrigo M.; Barros, Ivoneide de C.L., E-mail: ibarros@ufam.edu.br [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Inst. de Ciencias Exatas; Dias, Jose A.; Dias, Silvia C.L. [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Quimica

    2013-01-15

    ZSM-5 adsorbents impregnated with Nb{sub 2}O{sub 5} were applied in the sulfur removal in the form of thiophene, refractory substance of difficult removal of liquid fuels. For this purpose, a model fuel containing iso-octane contaminated with thiophene in concentrations of 877.5 to 1155 ppmw was prepared. The samples were characterized by X-ray diffractometry (XRD), Fourier transform infrared (FTIR) and Fourier transform-Raman (FT-Raman) spectroscopies for confirmation of the adsorbents, being prioritized the adsorption study with that containing 5 wt.% of niobium pentoxide, because it showed a greater capacity for removal of thiophene. The best results of adsorption were achieved at 353 K, a longer time to reach equilibrium was observed. Under these conditions, the best kinetic fitting was achieved using the equation of pseudo-second order, demonstrating the domain of the phenomenon of chemisorption. While under lower temperatures, the diffusion model presented a better approximation of the experimental results. Also, the increasing of temperature did enhance spontaneous processes. (author)

  13. Effects of the Fabrication and Preparation Processes on the SEY of Niobium SRF Cavities

    Science.gov (United States)

    Basovic, Milos; Samolov, Ana; Popovic, Svetozar; Vuskovic, Lepsha

    2014-10-01

    We are reporting progress on effects of the plasma treated surface on the Secondary Electron Yield (SEY) of Niobium (Nb) samples. Fabrication and preparation processes affect intrinsic quality factor (Q factor) to a great extent contributing to multipacting. Multipacting is a resonant phenomenon occurring as an electron buildup and degrading the maximum Q factor achievable by cavity. Apart from the initial impurities of the Nb sheet metal used for cavity fabrication, additional inclusions on the surface of the cavity are added by forming and welding of the components. Operation of the cavities is affected by these inclusions in such a way that it decreases the overall performance of the accelerators. Performance of the cavities can be improved by manipulating the parameters or by mitigating the consequences of the fabrication and preparation processes. We are testing the influence of the electron beam welding and various surface treatments on Nb samples by measuring the SEY of coin-like samples with the surface treated in several different methods. The system is designed to measure energy distribution of SEY of the samples under several incident angles. Comparison is being made between non-treated and treated surface, as well as effects of each treatment on SEY of the surface. Our aim is to show which of the surface treatments or combination of them are beneficial to reducing SEY of the cavity surface.

  14. Nanohydroxyapatite coating on a titanium-niobium alloy by a hydrothermal process.

    Science.gov (United States)

    Xiong, Jianyu; Li, Yuncang; Hodgson, Peter D; Wen, Cui'e

    2010-04-01

    A novel one-step hydrothermal coating process was used to produce nanohydroxyapatite (nano-HA) coating on a titanium-niobium (TiNb) alloy substrate in a newly designed solution containing calcium and phosphate ions. The morphology of the coating was studied using scanning electron microscopy. The phase identification of the coating was carried out using X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy and transmission electron microscopy. The reaction between the surface of TiNb alloy and the solution during the hydrothermal process was studied by X-ray photoelectron spectroscopy. Results show that the coating formed on the surface of TiNb alloy was composed of nano-HA particles. During the hydrothermal process, TiO(2) and Nb(2)O(5) formed on the TiNb alloy surface and hydrated to Ti(OH)(4) and Nb(OH)(5), respectively. Calcium phosphate nucleated and grew into a layer of nano-HA particles on the surface of TiNb alloy under the hydrothermal conditions. The crystallinity of the nano-HA coating was improved with the increase in hydrothermal treatment temperature and time duration. Nano-HA coating with good crystallinity was produced on the TiNb alloy via the hydrothermal process at a temperature of 200 degrees C for 12 h. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  15. Development of vertical electropolishing process applied on 1300 and 704 MHz superconducting niobium resonators

    Directory of Open Access Journals (Sweden)

    F. Eozénou

    2014-08-01

    Full Text Available An advanced setup for vertical electropolishing of superconducting radio-frequency niobium elliptical cavities has been installed at CEA Saclay. Cavities are vertically electropolished with circulating standard HF-HF-H_{2}SO_{4} electrolytes. Parameters such as voltage, cathode shape, acid flow, and temperature have been investigated. A low voltage (between 6 and 10 V depending on the cavity geometry, a high acid flow (25  L/min, and a low acid temperature (20° C are considered as promising parameters. Such a recipe has been tested on single-cell and nine-cell International Linear Collider (ILC as well as 704 MHz five-cell Super Proton Linac (SPL cavities. Single-cell cavities showed similar performances at 1.6 K being either vertically or horizontally electropolished. The applied baking process provides similar benefit. An asymmetric removal is observed with faster removal in the upper half-cells. Multicell cavities (nine-cell ILC and five-cell SPL cavities exhibit a standard Q_{0} value at low and medium accelerating fields though limited by power losses due to field emitted electrons.

  16. Anodization-based process for the fabrication of all niobium nitride Josephson junction structures

    Directory of Open Access Journals (Sweden)

    Massimiliano Lucci

    2017-03-01

    Full Text Available We studied the growth and oxidation of niobium nitride (NbN films that we used to fabricate superconductive tunnel junctions. The thin films were deposited by dc reactive magnetron sputtering using a mixture of argon and nitrogen. The process parameters were optimized by monitoring the plasma with an optical spectroscopy technique. This technique allowed us to obtain NbN as well as good quality AlN films and both were used to obtain NbN/AlN/NbN trilayers. Lift-off lithography and selective anodization of the NbN films were used, respectively, to define the main trilayer geometry and/or to separate electrically, different areas of the trilayers. The anodized films were characterized by using Auger spectroscopy to analyze compounds formed on the surface and by means of a nano-indenter in order to investigate its mechanical and adhesion properties. The transport properties of NbN/AlN/NbN Josephson junctions obtained as a result of the above described fabrication process were measured in liquid helium at 4.2 K.

  17. Vertically Aligned Niobium Nanowire Arrays for Fast-Charging Micro-Supercapacitors.

    Science.gov (United States)

    Mirvakili, Seyed M; Hunter, Ian W

    2017-07-01

    Planar micro-supercapacitors are attractive for system on chip technologies and surface mount devices due to their large areal capacitance and energy/power density compared to the traditional oxide-based capacitors. In the present work, a novel material, niobium nanowires, in form of vertically aligned electrodes for application in high performance planar micro-supercapacitors is introduced. Specific capacitance of up to 1 kF m(-2) (100 mF cm(-2) ) with peak energy and power density of 2 kJ m(-2) (6.2 MJ m(-3) or 1.7 mWh cm(-3) ) and 150 kW m(-2) (480 MW m(-3) or 480 W cm(-3) ), respectively, is achieved. This remarkable power density, originating from the extremely low equivalent series resistance value of 0.27 Ω (2.49 µΩ m(2) or 24.9 mΩ cm(2) ) and large specific capacitance, is among the highest for planar micro-supercapacitors electrodes made of nanomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fabrication and Characterization of a W-Band Cylindrical Dielectric Resonator Antenna-Coupled Niobium Microbolometer

    Directory of Open Access Journals (Sweden)

    M. Abdel-Rahman

    2015-01-01

    Full Text Available We report on the fabrication and characterization of a novel antenna-coupled detector configuration for detection at 94 GHz, a coplanar waveguide- (CPW- fed, slot-excited twin dielectric resonator antenna- (DRA- coupled niobium (Nb microbolometer. The antenna is based on two low permittivity cylindrical dielectric resonators (CDRs excited by rectangular slots placed below the CDRs. The antenna resonant currents are fed to an Nb microbolometer by the means of a CPW feed. The ceramic DRA structure is manufactured using a novel fabrication process that enables patterning an SU-8–Alumina (Al2O3 nanopowder composite using conventional photolithography. The detector measured a voltage responsivity of 0.181 V/W at a modulation frequency of 150 Hz. The detector measured a time constant of 1.94 μs. The antenna radiation pattern of the developed detector configuration was measured and shows a good agreement with the simulation.

  19. Synthesis of mesoporous niobium nitride nanobelt arrays and their capacitive properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Biao; Xiao, Xiang; Su, Jianjun [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Zhang, Xuming, E-mail: xumzhang@wust.edu.cn [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Peng, Xiang [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Fu, Jijiang, E-mail: fujijiang@wust.edu.cn [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2016-10-15

    Highlights: • Nb{sub 4}N{sub 5} NBAs was fabricated by hydrothermal reaction, protonation and nitridation. • The Nb foil provides the source of Nb and works as the conductive substrate. • Nb{sub 4}N{sub 5} NBAs electrode delivers good specific capacitance and rate performance. • The good capacitive property is attributable to high porosity and conductivity. - Abstract: Mesoporous niobium nitride nanobelt arrays (Nb{sub 4}N{sub 5} NBAs) are fabricated directly on Nb foils by a hydrothermal reaction in KOH, protonation treatment in HNO{sub 3}, and calcination in an NH{sub 3} ambient. The morphology, composition and pore structure of the Nb{sub 4}N{sub 5} NBAs are characterized in details. In addition, the mesoporous Nb{sub 4}N{sub 5} NBAs electrode has good specific capacitance (37.4 mF cm{sup −2}, or 124 F g{sup −1}) and delivers excellent rate performance due to the high porosity and good electron conductivity boding well for application to next-generation energy storage systems.

  20. Laser-pulsed plasma chemistry: Laser-initiated plasma oxidation of niobium

    Science.gov (United States)

    Marks, R. F.; Pollak, R. A.; Avouris, Ph.; Lin, C. T.; Théfaine, Y. J.

    1983-03-01

    We report the first observation of the chemical modification of a solid surface exposed to an ambient gas plasma initiated by the interaction of laser radiation with the same surface. A new technique, which we designate laser-pulsed plasma chemistry (LPPC), is proposed for activating heterogeneous chemical reactions at solid surfaces in a gaseous ambient by means of a plasma initiated by laser radiation. Results for niobium metal in one atmosphere oxygen demonstrate single-pulse, self-limiting oxide growth induced by a pulsed CO2 laser. X-ray photoelectron spectroscopy (XPS or ESCA) was used to monitor surface chemical composition changes and thickness control of thin (1 to 5 nm) reaction product layers. The dependence of single-pulse oxide growth upon laser fluence is observed to be monotonic for oxide thicknesses up to 5 nm. Composition of the oxide Nb2O5-δ, formed by such an optically driven plasma, is similar to that formed by low-temperature oxidation processes such as rf plasma oxidation; however, the valence defect δ of the LPPC oxide is a least two to five times lower. Interdiffusion at the oxide/metal interface becomes important at higher irradiances and is activated by direct optical coupling with the solid or by plasma-mediated thermal coupling. Under ultrahigh vacuum, CO2 laser irradiances greater than 0.9 J cm-2 per pulse thin the surface oxide.

  1. Sol-Gel Synthesis and Characterization of Cubic Bismuth Zinc Niobium Oxide Nanopowders

    Directory of Open Access Journals (Sweden)

    Ganchimeg Perenlei

    2014-01-01

    Full Text Available Bismuth zinc niobium oxide (BZN was successfully synthesized by a diol-based sol-gel reaction utilizing metal acetate and alkoxide precursors. Thermal analysis of a liquid suspension of precursors suggests that the majority of organic precursors decompose at temperatures up to 150°C, and organic free powders form above 350°C. The experimental results indicate that a homogeneous gel is obtained at about 200°C and then converts to a mixture of intermediate oxides at 350–400°C. Finally, single-phased BZN powders are obtained between 500 and 900°C. The degree of chemical homogeneity as determined by X-ray diffraction and EDS mapping is consistent throughout the samples. Elemental analysis indicates that the atomic ratio of metals closely matches a Bi1.5ZnNb1.5O7 composition. Crystallite sizes of the BZN powders calculated from the Scherrer equation are about 33–98 nm for the samples prepared at 500–700°C, respectively. The particle and crystallite sizes increase with increased sintering temperature. The estimated band gap of the BZN nanopowders from optical analysis is about 2.60–2.75 eV at 500-600°C. The observed phase formations and measured results in this study were compared with those of previous reports.

  2. Tests of a niobium split-ring superconducting heavy ion accelerating structure

    Energy Technology Data Exchange (ETDEWEB)

    Benaroya, R.; Bollinger, L.M.; Jaffey, A.H.; Khoe, T.K.; Olesen, M.C.; Scheibelhut, C.H.; Shepard, K.W.; Wesolowski, W.A.

    1976-01-01

    A niobium split-ring accelerating structure designed for use in the Argonne superconducting heavy-ion energy booster was successfully tested. The superconducting resonator has a resonant frequency of 97 MHz and an optimum particle velocity ..beta.. = 0.11. Ultimate performance is expected to be limited by peak surface fields, which in this structure are 4.7 E/sub a/ electric and 170 E/sub a/ (Gauss) magnetic, where E/sub a/ is the effective accelerating gradient in MV/m. The rf losses in two demountable superconducting joints severely limited performance in initial tests. Following independent measurements of the rf loss properties of several types of demountable joints, one demountable joint was eliminated and the other modified. Subsequently, the resonator could be operated continuously at E/sub a/ = 3.6 MV/m (corresponding to an energy gain of 1.3 MeV per charge) with 10W rf input power. Maximum field level was limited by electron loading. The mechanical stability of the resonator under operating conditions is excellent: vibration induced eigenfrequency noise is less than 120 Hz peak to peak, and the radiation pressure induced frequency shift is ..delta..f/f = 1.6 x 10/sup -6/ E/sub a//sup 2/.

  3. Niobium Coatings for the HIE-ISOLDE QWR Superconducting Accelerating Cavities

    CERN Document Server

    Jecklin, N; Delaup, B; Ferreira, L; Mondino, I; Sublet, A; Therasse, M; Venturini Desolaro, W

    2013-01-01

    The HIE-ISOLDE (High Intensity and Energy at ISOLDE) project is the upgrade of the existing ISOLDE (Isotope Separator On Line DEvice) facility at CERN, which is dedicated to the production of a large variety of radioactive ion beams for nuclear physics experiments. A new linear accelerator made of 20 ȕ=10.3% and 12 ȕ=6.3% quarter-wave resonators (QWR) superconducting (SC) accelerating cavities at 101 MHz will be built, and in a first phase two cryomodules of 5 high-ȕ cavities each are scheduled to accelerate first beams in 2015. The cavities are made of a copper substrate, with a sputter-coated superconductive niobium (Nb) layer, operated at 4.5 K with an accelerating field of 6 MV/m at 10W Radio-Frequency (RF) losses (Q=4.5· 108). In this paper we will discuss the baseline surface treatment and coating procedure which allows obtaining the required performance, as well as the steps undertaken in order to prepare series production of the required number of cavities guaranteeing their quality and functional...

  4. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient.

    Science.gov (United States)

    Tan, Teng; Wolak, M A; Xi, X X; Tajima, T; Civale, L

    2016-10-24

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.

  5. Effects of Niobium Microalloying on Microstructure and Properties of Hot-Dip Galvanized Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Mohrbacher, Hardy [NiobelCon bvba, Brussels (Belgium)

    2010-04-15

    Niobium microalloying is effective in hot-rolled and cold-rolled steels by providing a fine-grained microstructure resulting in increased strength. To optimize the strengthening effect, alloy design and hot-rolling conditions have to be adapted. As a key issue the dissolution and precipitation characteristics of Nb are discussed in particular with regard to the run-out table conditions. It is then considered how the hot-rolled microstructure and the solute state of Nb interact with the hot-dip galvanizing cycle. The adjusted conditions allow controlling the morphology and distribution of phases in the cold-rolled annealed material. Additional precipitation hardening can be achieved as well. The derived options can be readily applied to produce conventional HSLA and IF high strength steels as well as to modem multiphase steels. It will be explained how important application properties such as strength, elongation, bendability, weldability and delayed cracking resistance can be influenced in a controlled and favorable way. Examples of practical relevance and experience are given.

  6. Sub-picowatt resolution calorimetry with niobium nitride thin-film thermometer

    Energy Technology Data Exchange (ETDEWEB)

    Dechaumphai, Edward; Chen, Renkun, E-mail: rkchen@ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2014-09-15

    High-resolution calorimetry has many important applications such as probing nanoscale thermal transport and studying the thermodynamics of biological and chemical systems. In this work, we demonstrated a calorimeter with an unprecedentedly high resolution at room temperature using a high-performance resistive thermometry material, niobium nitride (NbN{sub x}). Based on a theoretical analysis, we first showed that the heat flux resolution of a resistive-thermometry based calorimeter depends on the parasitic thermal conductance of the device and the temperature coefficient of resistance (TCR) of the thermometer, when the noise is limited by the Johnson noise. Based on this analysis, we then developed a calorimeter using NbN{sub x} as the thermometry material because it possesses both high TCR (∼0.67%/K) and a low thermal conductivity (k ∼ 1.1 W/m K). This calorimeter, when used with the modulated heating scheme, demonstrated an unprecedentedly high power resolution of 0.26 pW at room temperature. In addition, NbN{sub x} based resistive thermometry can also be extended to cryogenic temperature, where the TCR is shown to be significantly higher.

  7. Real structure influence on the electron-phonon coupling properties of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Schierning, G.; Fendrich, M. [Nanostrukturtechnik, Faculty of Engineering and Center for NanoIntegration, University of Duisburg-Essen, Duisburg (Germany); Theissmann, R. [Research Services/Analytical Intelligence, Kronos International, Inc., Leverkusen (Germany)

    2015-07-15

    We performed density functional theory calculations using niobium (Nb) as a model system of a conventional superconductor, to correlate the distortion of twin defects with the electron-phonon coupling properties. Calculations using different settings of the Nb elementary cell (relaxed, distorted, super cell with zig-zag twin defect) showed that only by including real structure elements into the setting, the Eliashberg spectral function representing the electron-phonon coupling properties was derived convincingly. Based on these density functional theory calculations of the electron-phonon coupling properties of Nb, we suggest a model for a combined superconducting/charge density wave ground state which uses a lattice distortion induced into the crystal by two-dimensional defects as modulated background potential of the charge density wave phase. The coexistence of both phases is hereby necessary for a fine-tuning of the Fermi surface within the small local domain of the defect to match the wavelength of the lattice distortion and the Fermi wavelength by pairing fermions to bosons. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Rose Bengal sensitized niobium pentaoxide photoanode for dye sensitized solar cell application

    Science.gov (United States)

    Beedri, Niyamat I.; Sayyed, Suhail A. A. R.; Jadkar, Sandesh R.; Pathan, Habib M.

    2017-05-01

    The present work deals with the study of Nb2O5 photoanode with low cost rose Bengal dye for dye sensitized solar cell (DSSC) application. Chemical route was used for preparation of nano-crystalline niobium pentaoxide (Nb2O5) and doctor blade method was employed for deposition of Nb2O5 films. The morphological and structural analysis of Nb2O5 photoanodes were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. The SEM micrograph shows spherical granular grains with porous structure useful for dye adsorption. The XRD analysis shows the formation of pure orthorhombic phase of Nb2O5. The band gap value for Nb2O5 photoanode was calculated as 3.2 eV using diffused reflectance spectroscopy (DRS). As an alternative to conventional ruthenium dye, we used rose Bengal (4, 5, 6, 7-tetrachloro- 20, 40, 50, 70 tetra-iodo-fluorescein) dye, which acts as a photo-sensitizer for DSSCs. The absorbance spectra of the rose Bengal dye was investigated by UV-visible spectrophotometer. The cell shows open circuit voltage (Voc), short circuit photocurrent (Jsc) and fill factor around 0.53V, 0.13mA /cm2 and 22% respectively.

  9. Investigations of Residual Stresses and Mechanical Properties of Single Crystal Niobium for SRF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Gnäupel-Herold; Ganapati Rao Myneni; Richard E. Ricker

    2007-06-01

    This work investigates properties of large grained, high purity niobium with respect to the forming of superconducting radio frequency (SRF) cavities from such large grained sheets. The yield stresses were examined using tensile specimens that were essentially single crystals in orientations evenly distributed in the standard projection triangle. No distinct yield anisotropy was found, however, vacuum annealing increased the yield strength by a factor 2..3. The deep drawing forming operation of the half cells raises the issues of elastic shape changes after the release of the forming tool (springback) and residual stresses, both of which are indicated to be negligible. This is a consequence of the low yield stress (< 100 MPa) and the large thickness (compared to typical thicknesses in sheet metal forming). However, the significant anisotropy of the transversal plastic strains after uniaxial deformation points to potentially critical thickness variations for large grained / single crystal half cells, thus raising the issue of controlling grain orientation or using single crystal sheet material.

  10. Multi-physics transient simulation of monolithic niobium dioxide-tantalum dioxide memristor-selector structures

    Science.gov (United States)

    Sevic, John F.; Kobayashi, Nobuhiko P.

    2017-10-01

    Self-assembled niobium dioxide (NbO2) thin-film selectors self-aligned to tantalum dioxide (TaO2) memristive memory cells are studied by a multi-physics transient solution of the heat equation coupled to the nonlinear current continuity equation. While a compact model can resolve the quasi-static bulk negative differential resistance (NDR), a self-consistent coupled transport formulation provides a non-equilibrium picture of NbO2-TaO2 selector-memristor operation ab initio. By employing the drift-diffusion transport approximation, a finite element method is used to study the dynamic electrothermal behavior of our experimentally obtained selector-memristor devices, showing that existing conditions are suitable for electroformation of NbO2 selector thin-films. Both transient and steady-state simulations support our theory, suggesting that the phase change due to insulator-metal transition is responsible for NbO2 selector NDR in our as-fabricated selector-memristor devices. Simulation results further suggest that TiN nano-via may play a central role in electroforming, as its dimensions and material properties establish the mutual electrothermal interaction between TiN nano-via and the selector-memristor.

  11. Deformation of zirconium – niobium alloy E635 in sub-microsecond shock waves

    Directory of Open Access Journals (Sweden)

    Kazakov D.N.

    2015-01-01

    Full Text Available Strength characteristics of zirconium - niobium alloy E635 were measured under shock - wave loading conditions at normal and elevated temperatures and results of these measurements are presented. Measurements were taken in conditions when samples were impacted by plane shock waves with the pressure up to 13 GPa and duration from ∼0.05 μs up to 1 μs. Free-surface velocity profiles were recorded with the help of VISAR and PDV laser Doppler velocimeters having nanosecond time resolution. Evolution of elastic precursors with samples thickness varying from 0.5 up to 8 mm is also considered. Measured attenuation of the elastic precursor was used to determine plastic strain rate behind the precursor front. Temperature effect on the value of dynamic elastic limit and spall strength at normal and elevated temperatures is studied. This work is implemented with the support of the State Atomic Energy Corporation “Rosatom” under State Contract H.4x.44.90.13.1111.

  12. Preliminary study of sintering of metallic niobium processed for mechanical milling; Estudo preliminar da sinterizacao de niobio metalico processado por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, H.M.; Vurobi Junior, S.; Cintho, O.M., E-mail: lenatamura@interponta.com.b [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Sandim, H.R.Z.; Leite, G.S. [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia

    2010-07-01

    In present study was preliminary study of mechanical milling influence on preparing of metallic niobium powder for sintering. Sample of metallic niobium in powder passing in sieve no. 635 mesh was processed by mechanical milling in SPEX mill for 8 hours using power grinding of 7:1 and a nitrogen atmosphere. The powder was annealed at different temperatures, 900 deg C, 1000 deg C, 1100 deg C and 1200 deg C for 1 hour in an atmosphere of hydrogen and argon to study their crystallization, which then were formed into blank for analysis of the curves compressibility. These samples were also subjected to x-ray diffraction in that their data were compared between the annealing temperatures. We also evaluate the compressibility curves of niobium samples with and without grinding these samples were subjected to x-ray diffraction and fluorescence. (author)

  13. High temperature thermodynamics and vaporization of the zirconium--niobium--oxygen system

    Energy Technology Data Exchange (ETDEWEB)

    Rinehart, G.H.

    1978-05-18

    The vaporization behavior of the Zr--Nb--O system was studied by means of successive vaporization, Knudsen effusion-target collection experiments, and mass spectrometric analysis of the vapors effusing from a Knudsen crucible. The successive vaporization experiments were performed on two ternary samples in open crucibles. X-ray powder diffraction patterns of the residues and x-ray fluorescence analysis of the condensates and residues indicated the preferential vaporization of niobium-containing species with the composition of the residue subsequently becoming closer to that of congruently vaporizing ZrO/sub 2-x/. The Knudsen effusion-target collection experiments were employed on two samples, pure NbO/sub 2/(s) and a two-phase ZrO/sub 2/--NbO/sub 2/ mixture, in order to obtain information on the activity of NbO/sub 2/ in the two-phase mixture. Second law enthalpies and entropies of sublimation as well as third law enthalpies were obtained for both systems. The vaporization behaviors of five compositions in the Zr--Nb--O system, NbO/sub 2/, NbO, a ZrO/sub 2/--NbO/sub 2/ two-phase mixture, Nb/sub 2/O/sub 5/, and Zr/sub 6/Nb/sub 2/O/sub 17/, were investigated. Above Nb/sub 2/O/sub 5/ and the fully oxidized Zr/sub 6/Nb/sub 2/O/sub 17/ oxygen is preferentially lost; over NbO/sub 2/, the two-phase ZrO/sub 2/--NbO/sub 2/ system, and NbO the principal gaseous species is NbO/sub 2/.

  14. Mechanical and microstructural behaviour during bonding of alumina to niobium by liquid state diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Lemus R, J.; Ramirez R, M. I.; Verduzco M, J. A.; Zarate M, J., E-mail: jlruiz@umich.mx [Universidad Michoacana de San Nicolas de Hidalgo, Instituto de Investigacion en Metalurgia y Materiales, Francisco Mujica s/n, 58000 Morelia, Michoacan (Mexico)

    2015-10-15

    The objective of this work was to study various aspects of liquid state diffusion bonding of cylindrical samples of Al{sub 2}O{sub 3} and commercially pure niobium (99.7%) by brazing using a 25 μm thick 70/Cu-30/Zn (wt %) alloy as joining element. Initially, sintering of alumina powder was carried out in order to produce a 7 mm diameter samples at 1550 degrees C by 60 minutes. Joining experiments were carried out on Al{sub 2}O{sub 3}/Cu-Zn/Nb/Cu-Zn/Al{sub 2}O{sub 3} sandwich-like combinations at temperature of 920, 950 and 980 degrees C using vary holding times under Ar. The experimental results show a successful joining of Al{sub 2}O{sub 3} to Nb at 950 and 980 degrees C, however not at 920 degrees C. Joining of Al{sub 2}O{sub 3}/Cu-Zn/Nb/Cu-Zn/Al{sub 2}O{sub 3} occurred by the formation of a homogeneous diffusion zone with no interfacial cracking or porosity at the interface. Scanning electron microscopy (Sem) micrographs show the layer formed in the reaction zone. It was observed that the width of the reaction zone increases with bonding temperature and time. Electron probe microanalysis (Epma) revealed that at any particular bonding temperature, Nb travel into the Cu-Zn joining element forming a circular precipitate phase near to the Al{sub 2}O{sub 3} ceramic. Shears test evaluation show results vary from 57 to 127 MPa in samples joined at 980 degrees C and time vary from 10 to 35 minutes, respectively. (Author)

  15. Study of Thermocurrents in ILC cavities via measurements of the Seebeck Effect in niobium, titanium, and stainless steel thermocouples

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, Victoria [Univ. of Wisconsin, Madison, WI (United States)

    2014-01-01

    The goals of Fermilab’s Superconductivity and Radio Frequency Development Department are to engineer, fabricate, and improve superconducting radio frequency (SCRF) cavities in the interest of advancing accelerator technology. Improvement includes exploring possible limitations on cavity performance and mitigating such impediments. This report focuses on investigating and measuring the Seebeck Effect observed in cavity constituents titanium, niobium, and stainless steel arranged in thermocouples. These junctions exist between cavities, helium jackets, and bellows, and their connection can produce a loop of electrical current and magnetic flux spontaneously during cooling. The experimental procedure and results are described and analyzed. Implications relating the results to cavity performance are discussed.

  16. A low energy muon spin rotation and point contact tunneling study of niobium films prepared for superconducting cavities

    Science.gov (United States)

    Junginger, Tobias; Calatroni, S.; Sublet, A.; Terenziani, G.; Prokscha, T.; Salman, Z.; Suter, A.; Proslier, T.; Zasadzinski, J.

    2017-12-01

    Point contact tunneling and low energy muon spin rotation are used to probe, on the same samples, the surface superconducting properties of micrometer thick niobium films deposited onto copper substrates using different sputtering techniques: diode, dc magnetron and HIPIMS. The combined results are compared to radio-frequency tests performances of RF cavities made with the same processes. Degraded surface superconducting properties are found to correlate to lower quality factors and stronger Q-slope. In addition, both techniques find evidence for surface paramagnetism on all samples and particularly on Nb films prepared by HIPIMS.

  17. Cycloaddition of CO 2 to challenging N -tosyl aziridines using a halogen-free niobium complex: Catalytic activity and mechanistic insights

    KAUST Repository

    Arayachukiat, Sunatda

    2017-11-06

    An efficient and facile approach to the regioselective synthesis of N-tosyloxazolidinones from the corresponding N-tosylaziridines and CO2 was developed using dual catalytic systems involving an early transition metal coordination compound as a Lewis acid and a nucleophilic cocatalyst. Among the screened Lewis acids, halogen-free niobium pentaethoxide (Nb(OEt)5) displayed the best catalytic activity when used in the presence of tetrabutylammonium iodide (TBAI). Systematic DFT calculations, supported by catalytic experiments, demonstrate that CO2 insertion is the rate determining step for this process and it is highly dependent on the steric hindrance at the niobium center.

  18. From Nano- to Meso-Scale Order in Block Copolymer Self-Assembly-Derived Gyroidal Mesoporous Niobium Nitride

    Science.gov (United States)

    Beaucage, Peter; Robbins, Spencer; Sethna, James; Disalvo, Francis J.; van Dover, R. Bruce; Gruner, Sol M.; Wiesner, Ulrich

    Niobium nitride is of academic and technological interest in fields including electrochemical energy storage and conversion and low-temperature superconductivity. Mesostructured nitrides can be obtained via sol-gel synthesis routes to oxides followed by conversion to nitrides via reactive heat treatment. In many applications of niobium nitride, the high specific surface area and pore accessibility available from block copolymer and oxide nanoparticle self-assembly could significantly improve material performance. Furthermore, mesoscale crystallographic order derived from block copolymer self-assembly could allow exploration of emergent properties in mesostructured superconductors. We report the first synthesis of gyroidal NbN superconductors from gyroidal block copolymer self-assembly-derived Nb2O5. The resulting materials have a mesoscale lattice with the I4132 (alt. gyroid) structure and d spacings between 27 and 36 nm. The materials are superconducting with a Tc of about 8 K. We expect that block copolymer-inorganic hybrid co-assembly will be a scalable, tunable platform for exploration of the impacts of mesoscale order and porosity on superconducting properties, and will discuss recent efforts to vary the structure type and grain structure of the mesoscale lattice.

  19. Enhancement of photoconversion efficiency in dye-sensitized solar cells exploiting pulsed laser deposited niobium pentoxide blocking layers

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Adriano, E-mail: adriano.sacco@iit.it [Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Di Bella, Maurizio Salvatore [Department of Energy, Information Engineering and Mathematical Models (DEIM), Thin Films Laboratory, Università di Palermo, Viale delle Scienze, Building 9, 90128 Palermo (Italy); Gerosa, Matteo [Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Chiodoni, Angelica; Bianco, Stefano [Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Mosca, Mauro; Macaluso, Roberto; Calì, Claudio [Department of Energy, Information Engineering and Mathematical Models (DEIM), Thin Films Laboratory, Università di Palermo, Viale delle Scienze, Building 9, 90128 Palermo (Italy); Pirri, Candido Fabrizio [Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-01-01

    Among all the photovoltaic technologies developed so far, dye-sensitized solar cells are considered as a promising alternative to the expensive and environmentally unfriendly crystalline silicon-based solar cells. One of the possible strategies employed to increase their photovoltaic efficiency is to reduce the charge recombination at the cell conductive substrate through the use of a compact blocking layer. In this paper, we report on the fabrication and characterization of dye-sensitized solar cells employing niobium pentoxide (Nb{sub 2}O{sub 5}) thin film blocking layer deposited through the pulsed laser deposition technique on conductive substrates. The careful selection of the optimal film thickness led to a 30% enhancement of the photoconversion efficiency with respect to reference cells fabricated without blocking layer. Open circuit voltage decay and electrochemical impedance spectroscopy techniques proved that the effective suppression of the charge recombination occurring at the substrate/electrolyte interface represents the main reason for the improvement of the photovoltaic efficiency. - Highlights: • Niobium pentoxide thin films were fabricated through pulsed laser deposition. • The deposited films were employed as recombination blocking layer in DSCs. • The selection of the optimal film thickness led to the enhancement of the efficiency.

  20. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao

    2012-03-20

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Study of the aluminothermic reduction of niobium pentoxide through thermal analysis experiments and high energy milling processing

    Directory of Open Access Journals (Sweden)

    Claudio Parra De Lazzari

    2007-06-01

    Full Text Available Aluminothermic reduction of niobium pentoxide was studied through thermal analysis techniques such as differential thermal analysis (DTA and thermogravimetry (TG as well as through high energy milling processing. Reactants mixtures were composed by powders of Nb2O5 and Al. In the case of DTA-TG experiments, different molar ratios Nb2O5:Al were heated in a dynamic atmosphere of synthetic air under controlled conditions. The high energy milling runs were carried out via SPEX vibratory mill under argon atmosphere and with milling power equal to 7:1 (ratio of mass of balls to mass of mixture with 10 pct excess of Al over the stoichiometric mass of aluminum necessary. In both kinds of experiments, X ray diffraction was used in order to identify the products of reaction. From DTA-TG experiments, it was possible to determine the experimental value of the enthalpy change (-595.9 kJ.mol-1, which is near to the theoretical one. From the milling experiments, it was possible to verify the possibility of the occurance of aluminothermic reducion of niobium pentoxide via this kind of processing.

  2. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  3. Geology, market and supply chain of niobium and tantalum—a review

    Science.gov (United States)

    Mackay, Duncan A. R.; Simandl, George J.

    2014-12-01

    Tantalum (Ta) and niobium (Nb) are essential metals in modern society. Their use in corrosion prevention, micro-electronics, specialty alloys and high-strength low-alloy (HSLA) steel earns them a strategic designation in most industrialised countries. The Ta market is unstable due in part to historic influx of `conflict' columbite-tantalite concentrate, or "Coltan," that caused Ta mines in Australia and Canada to be placed on care and maintenance. More recently, the growing appetite of modern society for consumer goods made of `conflict-free' minerals or metals has put pressure on suppliers. Pegmatites, rare-element-enriched granites, related placer deposits and weathered crusts overlying carbonatite and peralkaline complexes account for the majority of Ta production. Several carbonatite-related deposits (e.g. Upper Fir and Crevier, Canada) are being considered for potential co-production of Ta and Nb. Pyrochlore (Nb-Ta), columbite-tantalite (Nb-Ta), wodginite (Ta, Nb and Sn) and microlite (Ta and Nb) are the main ore minerals. Approximately 40 % of Ta used in 2012 came from Ta mines, 30 % from recycling, 20 % from tin slag refining and 10 % from secondary mine concentrates. Due to rapid industrialisation and increased use of Nb in steel making in countries such as China and India, demand for Nb is rising. Weathered crusts overlying carbonatite complexes in Brazil and one hard rock carbonatite deposit in Canada account for about 92 and 7 % of Nb world mine production, respectively. Since the bulk of the production is geographically and politically restricted to a single country, security of supply is considered at risk. Other prospective resources of Nb, beside carbonatites and associated weathered crusts, are peralkaline complexes (e.g. Nechalacho; where Nb is considered as a potential co-product of REE and zirconium). Economically, significant deposits of Ta and Nb contain pyrochlore, columbite-tantalite, fersmite, loparite and strüverite. Assuming continued

  4. Unprecedented quality factors at accelerating gradients up to 45 MVm -1 in niobium superconducting resonators via low temperature nitrogen infusion

    Energy Technology Data Exchange (ETDEWEB)

    Grassellino, A.; Romanenko, A.; Trenikhina, Y.; Checchin, M.; Martinello, M.; Melnychuk, O. S.; Chandrasekaran, S.; Sergatskov, D. A.; Posen, S.; Crawford, A. C.; Aderhold, S.; Bice, D.

    2017-08-14

    We report the finding of new surface treatments that permit to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface infusion conditions that systematically a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have larger than two times the state of the art Q at 2K for accelerating fields > 35 MV/m. Moreover, very high accelerating gradients ~ 45 MV/m are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.

  5. Effects of processing conditions and ambient environment on the microstructure and fracture strength of copper/niobium/copper interlayer joints for alumina

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Robert Alan [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Partial transient liquid phase (PTLP) bonding is a technique which can be used to join ceramics with metals and is used to form niobium-based joints for alumina. The principal advantage to PTLP bonding is that it enables refractory joints to be fabricated at temperatures below those typically required by solid state diffusion bonding. A thorough review of the important parameters (chemical compatibility, thermal expansion match, sufficient wettability of the liquid phase on the solid phases) in choosing a joining material for ceramics by the PTLP method is provided. As in conventional PTLP joining, the current study uses thin (=3 μm) copper layers sandwiched between the alumina (bulk) and niobium (127 μm). However, unlike the case of copper/nickel/copper obium is limited. Consequently, the copper is not entirely dissolved in the process, resulting in a two phase (copper-rich and niobium-rich phases) microstructure. Different processing conditions (temperature and applied load) result in different morphologies of the copper-rich and niobium-rich phases at the interface. These different microstructures exhibit distinct strength characteristics. Extended annealing of as-processed joints can influence the strengths differently depending on the ambient partial oxygen pressure at the annealing temperature. The focus of this work is to correlate processing conditions, microstructure, and resulting joint strength. Under optimum processing conditions (1400°C, 2.2 MPa), joints with strengths in excess of 200 MPa at 1200°C are fabricated.

  6. Diphenylacetylene complexes of niobium, molybdenum, tungsten, and rhenium. Crystal structure of (NbCl/sub 3/(Ph-C triple bond C-Ph))/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Hey, E.; Weller, F.; Dehnicke, K. (Marburg Univ. (Germany, F.R.). Fachbereich Chemie)

    1984-07-01

    Synthesis and IR spectra of diphenylacetylene complexes of niobium, molybdenum, tungsten, and rhenium are reported. The chloro complexes are formed in the reactions of the pentachlorides of niobium, molybdenum, rhenium, and tungsten hexachloride, respectively, with diphenyl acetylene. The bromo and iodo complexes are obtained by halogen exchange with boron halides, and further derivatives are obtained by reactions of PPh/sub 4/Cl or AsPh/sub 4/Cl and PPh/sub 3/ with the corresponding starting materials. The crystal structure of the niobium complex was determined by the aid of X-ray diffraction data (R = 5.9% for 1548 independent, observed reflexions). The complex crystallizes triclinic in the space group P1 with one tetrameric molecule (NbCl/sub 3/(Ph-C triple bond C-Ph))/sub 4/ per unit cell. The cell dimensions at 20/sup 0/C are a = 1074 pm, b = 1390 pm, c = 1299 pm, ..cap alpha.. = 104.3/sup 0/, ..beta.. = 108.0/sup 0/, ..gamma.. = 108.7/sup 0/. The complex occurs as a centrosymmetric tetramer, which can be regarded as a distorted double hexahedron with two corners missing. Association is effected by chloro bridges in which the chlorine atoms have coordination number two and three. The diphenylacetylene ligands are bonded to the niobium atoms side-on with almost equal Nb-C bond lengths of average value 205 pm. Thus the Nb atoms achieve coordination number seven.

  7. Effect of antimony substitution for niobium on the crystal structure, piezoelectric and dielectric properties of (K0.5Na0.5)NbO3 ceramics

    DEFF Research Database (Denmark)

    Mgbemere, H E; Schneider, G A; Stegk, Tobias

    2010-01-01

    The effect of antimony (Sb) substitution for niobium (Nb) on potassium sodium niobate (KNN) ceramic was investigated with respect to the densification behaviour at different sintering temperatures, microstructure and electrical properties. A small amount of Sb5+ was added while simultaneously...

  8. Production of Seamless Superconducting Radio Frequency Cavities from Ultra-fine Grained Niobium, Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Roy Crooks, Ph.D., P.E.

    2009-10-31

    The positron and electron linacs of the International Linear Collider (ILC) will require over 14,000, nine-cell, one meter length, superconducting radio frequency (SRF) cavities [ILC Reference Design Report, 2007]. Manufacturing on this scale will benefit from more efficient fabrication methods. The current methods of fabricating SRF cavities involve deep drawing of the halves of each of the elliptical cells and joining them by high-vacuum, electron beam welding, with at least 19 circumferential welds per cavity. The welding is costly and has undesirable effects on the cavity surfaces, including grain-scale surface roughening at the weld seams. Hydroforming of seamless tubes avoids welding, but hydroforming of coarse-grained seamless tubes results in strain-induced surface roughening. Surface roughness limits accelerating fields, because asperities prematurely exceed the critical magnetic field and become normal conducting. This project explored the technical and economic feasibility of an improved processing method for seamless tubes for hydroforming. Severe deformation of bulk material was first used to produce a fine structure, followed by extrusion and flow-forming methods of tube making. Extrusion of the randomly oriented, fine-grained bulk material proceeded under largely steady-state conditions, and resulted in a uniform structure, which was found to be finer and more crystallographically random than standard (high purity) RRR niobium sheet metal. A 165 mm diameter billet of RRR grade niobium was processed into five, 150 mm I.D. tubes, each over 1.8 m in length, to meet the dimensions used by the DESY ILC hydroforming machine. Mechanical properties met specifications. Costs of prototype tube production were approximately twice the price of RRR niobium sheet, and are expected to be comparable with economies of scale. Hydroforming and superconducting testing will be pursued in subsequent collaborations with DESY and Fermilab. SRF Cavities are used to construct

  9. Influence of niobium on the hardening phenomenon and wear in the manganese steel (12% Mn destined for the railway

    Directory of Open Access Journals (Sweden)

    Maouche Hichem

    2014-06-01

    Full Text Available This study relates to the manufacture of austenitic manganese steel for the heart switching crossings of railways in all industrial countries where heavy loads are moved by rail. This steel is characterized by a high surface hardness service yard caused by the phenomenon of hardening. According to the microstructure formed after quenching, the transformation of austenite into martensite during working, determine the operating life. The rate of transformation of austenite into martensite can force a compromise between ductility and wear resistance of the steel in order to withstand large forces without breaking. The objective of this study is to improve the resistance to abrasion and friction to cast state and after heat treatment by the addition of niobium. This study permitted to develop a new shade of manganese steel can be integrated into the production of heart of railway switches with better lifecycle.

  10. Complex Formation and Liquid-Liquid Extraction in the Niobium(V – 2,4-Dihydroxythiophenol– Hydrophobic Amines System

    Directory of Open Access Journals (Sweden)

    ALI Z. ZALOV

    2015-12-01

    Full Text Available The formation and solvent extraction of new ion-association com¬ple- ¬xes between anionic chelat of niobium(V with 2,4-dihydroxy¬thio¬phenol (DHTP and hydrophobic amines (HAs. The HAs were aniline (An, N-methyl¬aniline (MAn, N,N-dimethylaniline (DAn. The optimum conditions for the extraction of mixed ligand complexes (MLC (organic solvent, extraction time, acidity of the aqueous phase, concentration of reagents, some key constants {association constant (β, extraction constant (Kex} and analytical characteristics were determined. The molar absorptivities of MLC were calculated ε =(3.5-3.9 × 104 L mol–1 cm–1 . The Beer’s law was applicable in the range of 2.2-100 μg/mL.

  11. Electrical properties of lead-free Fe-doped niobium-rich potassium lithium tantalate niobate single crystals

    Science.gov (United States)

    Li, Yang; Li, Jun; Zhou, Zhongxiang; Guo, Ruyan; Bhalla, Amar S.

    2013-12-01

    Lead-free, 0.025 wt% Fe-doped niobium-rich potassium lithium tantalate niobate Fe: K0.95Li0.05Ta1-xNbxO3 single crystals have been grown by the top-seeded melt growth method. All the transition temperatures have been determined by the dielectric constant and loss-dependent temperature. The spontaneous polarizations computed by the integration of pyroelectric coefficients over all the temperatures are consistent with the results of the P-E hysteresis loops. The piezoelectric constants and electromechanical coupling factors are attractive among lead-free piezoelectric materials. With suitable Fe-doping, the electrical properties of KLTN single crystals have been improved overall and can be compared to those of the current important lead-based piezoelectric materials.

  12. Upconversion emission in Er{sup 3+}-doped lead niobium germanate thin-film glasses produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahoz, F.; Haro-Gonzalez, P.; Rivera-Lopez, F.; Gonzalez-Perez, S.; Martin, I.R. [University of La Laguna, Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, La Laguna, Tenerife (Spain); Capuj, N.E. [University of La Laguna, Departamento de Fisica Basica, La Laguna, Tenerife (Spain); Afonso, C.N.; Gonzalo, J. [CSIC, Laser Processing Group, Instituto de Optica, Madrid (Spain); Fernandez, J.; Balda, R. [Escuela Superior de Ingenieros, Departamento de Fisica Aplicada I, Bilbao (Spain); Centro Mixto CSIC-UPV/EHU and DIPC, Donostia (Spain)

    2008-11-15

    Thin films of Er{sup 3+}-doped lead-niobium germanate have been produced by pulsed laser deposition from Er{sup 3+}-doped 25PbO{sub 2}-25Nb{sub 2}O{sub 5}-50GeO{sub 2} (mol%) transparent glasses with an Er content in the range 0.5-3 wt%. The room-temperature infrared to visible upconversion properties of these thin films have been investigated under 800-nm laser excitation. An energy transfer upconversion mechanism has been identified to be responsible for the population of the {sup 4}S{sub 3/2}:{sup 2}H{sub 11/2} excited level, from which an intense green emission occurs. A rate equation analysis supports the proposed mechanism. (orig.)

  13. Comparison of inert-gas-fusion and modified Kjeldahl techniques for determination of nitrogen in niobium alloys

    Science.gov (United States)

    Merkle, E. J.; Graab, J. W.; Davis, W. F.

    1974-01-01

    This report compares results obtained for the determination of nitrogen in a selected group of niobium-base alloys by the inert-gas-fusion and the Kjeldahl procedures. In the inert-gas-fusion procedure the sample is heated to approximately 2700 C in a helium atmosphere in a single-use graphite crucible. A platinum flux is used to facilitate melting of the sample. The Kjeldahl method consisted of a rapid decomposition with a mixture of hydrofluoric acid, phosphoric acid, and potassium chromate; distillation in the presence of sodium hydroxide; and highly sensitive spectrophotometry with nitroprusside-catalyzed indophenol. In the 30- to 80-ppm range, the relative standard deviation was 5 to 7 percent for the inert-gas-fusion procedure and 2 to 8 percent for the Kjeldahl procedure. The agreement of the nitrogen results obtained by the two techniques is considered satisfactory.

  14. Swift heavy ion irradiation induced phase transformation in undoped and niobium doped titanium dioxide composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Subodh K., E-mail: subodhkgtm@gmail.com [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Chettah, Abdelhak [LGMM Laboratory, Université 20 Août 1955-Skikda, BP 26, 21000 Skikda (Algeria); Singh, R.G. [Department of Physics, Bhagini Nivedita College, Delhi University, Delhi 110043 (India); Ojha, Sunil; Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2016-07-15

    Study reports the effect of swift heavy ion (SHI) irradiation induced phase transformation in undoped and Niobium doped anatase TiO{sub 2} composite thin films. Investigations were carried out at different densities of electronic excitations (EEs) using 120 MeV Ag and 130 MeV Ni ions irradiations. Films were initially annealed at 900 °C and results revealed that undoped films were highly stable in anatase phase, while the Nb doped films showed the composite nature with the weak presence of Niobium penta-oxide (Nb{sub 2}O{sub 5}) phase. The effect at low density of EEs in undoped film show partial anatase to rutile phase transformation; however doped film shows only further growth of Nb{sub 2}O{sub 5} phase beside the anatase to rutile phase transformation. At higher density of EEs induced by Ag ions, registered continuous ion track of ∼3 nm in lattice which leads to nano-crystallization followed by decomposition/amorphization of rutile TiO{sub 2} and Nb{sub 2}O{sub 5} phases in undoped and doped films, respectively. However, Ni ions are only induced discontinuous sequence of ion tracks with creation of damage and disorder and do not show amorphization in the lattice. The in-elastic thermal spike calculations were carried out for anatase TiO{sub 2} phase to understand the effect of EEs on anatase to rutile phase transformation followed by amorphization in NTO films in terms of continuous and discontinuous track formation by SHI irradiation.

  15. Direct determination of fluorine in niobium oxide using slurry sampling electrothermal high-resolution continuum source molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Mao Dong; Becker-Ross, Helmut [Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Okruss, Michael, E-mail: michael.okruss@isas.de [Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Geisler, Sebastian; Florek, Stefan [Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Richter, Silke; Meckelburg, Angela [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Str. 11, 12489 Berlin (Germany)

    2014-04-01

    Aiming for a round-robin test, a new method for the direct determination of fluorine in niobium oxide has been developed. It is based on the use of high-resolution molecular absorption spectra of calcium mono-fluoride (CaF) generated in the graphite tube, combined with the slurry sampling technique. The absorption measurement was performed at the 606.44 nm CaF rotational line. By using graphite tubes with zirconium carbide (ZrC) modified platform, the molecular absorption sensitivity of CaF has been improved by a factor of 20, and no additional chemical modifier was necessary. Generally, non-spectral interferences were observed in the presence of HCl, H{sub 2}SO{sub 4}, and H{sub 3}PO{sub 4}. For HCl, additional spectral interference occurred due to an overlap of the absorption spectra of CaF and CaCl. However, due to the absence of these mentioned substances in the current material, such interferences do not exist for this application. The characteristic mass found for the CaF 606.44 nm line was 0.1 ng; the limit of detection was 5 mg fluorine per kg solid sample (3σ criterion). The results obtained by the method were within the range of certified values. Comparing to the classical method such as the pyrohydrolysis-photometric method, the developed new method showed clear advantages regarding sensitivity and specificity. The time requirement for one sample analysis was strongly shortened from several hours to only some minutes. - Highlights: • First time determination of fluorine in niobium oxide using the slurry sampling technique • Application of calcium fluoride molecular absorption in graphite tube with ZrC modification • Higher specificity, better sensitivity, and huge time saving compared with the classical method based on pyrohydrolysis • New method verified by successful participation in round robin test.

  16. Comparative analysis of niobium and vanadium carbide efficiency in the high energy mechanical milling of aluminum bronze alloy

    Directory of Open Access Journals (Sweden)

    Alexandre Nogueira Ottoboni Dias

    Full Text Available Abstract This study aims to analyze the efficiency of niobium and vanadium carbides in the high energy mechanical milling of aluminum bronze alloy. Two series of experiments were made following the same steps for both niobium carbide (NbC and vanadium carbide (VC additions: 30 g of chips were weighed and placed in a stainless steel jar with 3 % of carbide and 1 % of stearic acid for a mass/sphere relationship of 1:10. The milling was realized using a planetary ball mill for 10, 30 and 50 hours in an inert argon atmosphere at 300 rpm. Results shown in laser diffraction indicate a great reduction in the particle sizes of powders when VC is used. For 30 hours milling, D50 values ranged from 1580 µm with NbC to 182.3 µm with VC addition. The D50 values ranged from 251.5 µm with NbC to 52.26 µm with VC addition, for 50 hours milling. The scanning electron microscopy showed that in 10 hours of milling, the energy was not sufficient to achieve the shear of chips in both cases. For 30 hours, it's possible to observe particles with sizes between 100 µm and 800 µm with NbC addition while for the same milling time, with VC it's possible to see particles with different sizes, but with many shapes of fine particulates. For 50 hours milling, particles achieved the smaller sizes between 50 and 200 µm with NbC and ranging from 5 until 50 µm with VC addition.

  17. Thermal conductivity of large-grain niobium and its effect on trapped ...

    Indian Academy of Sciences (India)

    Research Articles Volume 78 Issue 4 April 2012 pp 635-649 ... A qualitative discussion is presented explaining the reason for such deviation from the theory. ... Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India; Jefferson Lab, 12000 Jefferson Ave, Newport News, VA ...

  18. Proposal to negotiate an amendment to an existing contract for the supply of Niobium-Titanium alloy bars for the LHC

    CERN Document Server

    2004-01-01

    This document concerns the proposal to negotiate an amendment to an existing contract for the supply of Niobium-Titanium alloy bars for the LHC. For the reasons explained in this document, the Finance Committee is invited to approve an amendment to an existing contract with the firm WAH CHANG (USA) for the supply of an additional 64.2 tonnes of Niobium-Titanium alloy bars for an amount exceeding the previously approved amount by up to 6 707 932 US dollars (8 349 363 Swiss francs), not subject to revision, bringing the total to a maximum amount of up to 51 786 805 US dollars (64 459 036 Swiss francs). The amount in Swiss francs has been calculated using the present rate of exchange. The firm has declared the following origin of the materials covered by this adjudication proposal: US - 100%.

  19. Extraction of elements with dithizone and diethylammonium-N,N'-diethyldithiocarbamate from hydrofluoric acid solutions and its applications to the analysis of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Caletka, R.; Krivan, V.

    1982-03-01

    By means of the radiotracer technique, the behaviour of 36 elements was investigated in the extraction with dithizone and diethylammonium-N,N'-diethyldithiocarbamate from hydrofluoric acid solutions (3-30 M HF) in chloroform and carbon tetrachloride. The obtained distribution coefficients show that under certain extraction conditions Ag, As, Au, Bi, Cu, Hg, Pd, Pt, Sb and Se can be quantitatively extracted into the organic phase while other elements are unextractable with each of both the chelating agents. On this basis, a procedure for the separation of Ag, Au, Cu, Pd and Se from the niobium matrix was worked out. The extraction was performed with both chelating agents from 20 M HF in chloroform. The yields were found to be between 95.5% (Se) and 99.6% (Ag) for dithizone, and they were similar for diethylammonium-N,N'-diethyldithiocarbamate. The decontamination factor for niobium is better than 10/sup 5/.

  20. 2. Home 3. Journals 4. Bulletin of Materials Science 5. Volume 33 6 ...

    Indian Academy of Sciences (India)

    Administrator

    composites. 43. Concrete composite. Study on durability of natural fibre concrete composites using mechanical strength and microstructural properties. 719 .... Na1⋅9Li0⋅1Ti3O7 ceramics. 691. FTIR. Effects of SiO2 and TiO2 fillers on thermal and dielectric properties of eco-friendly bismuth glass microcomposites of.

  1. Fabrication and photovoltaic performance of niobium doped TiO{sub 2} hierarchical microspheres with exposed {001} facets and high specific surface area

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongqiang; Ran, Huili [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); State Centre for International Cooperation on Designer Low-Carbon and Environmental Materials, Zhengzhou University, Zhengzhou 450001 (China); Fan, Jiajie, E-mail: fanjiajie@zzu.edu.cn [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); State Centre for International Cooperation on Designer Low-Carbon and Environmental Materials, Zhengzhou University, Zhengzhou 450001 (China); Zhang, Xiaoli; Mao, Jing [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); State Centre for International Cooperation on Designer Low-Carbon and Environmental Materials, Zhengzhou University, Zhengzhou 450001 (China); Shao, Guosheng [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); State Centre for International Cooperation on Designer Low-Carbon and Environmental Materials, Zhengzhou University, Zhengzhou 450001 (China); Institute for Renewable Energy and Environmental Technologies, University of Bolton, Bolton BL3 5AB (United Kingdom)

    2017-07-15

    Highlights: • Nb-doped hierarchical TiO{sub 2} microsphere DSSCs show enhanced performance. • Nb{sup 5+} dopant replaces Ti{sup 4+} cation in TiO{sub 2} lattice. • Electrons transport was enhanced due to the down-shifted conduction band minimum. • Exposed (001) facets and high specific surface area allows high dye-loading. - Abstract: The niobium doped hierarchical anatase TiO{sub 2} microspheres, which are consist of a serried nano-thorns and plicate nano-ribbons with exposed {001} facets, were synthesized using hydrothermal method followed by heat treatment. The effects of niobium on the microstructures and photovoltaic performances of the dye-sensitized solar cells (DSSCs) were studied. The results revealed that Nb{sup 5+} doping replaces Ti{sup 4+} cations in TiO{sub 2} lattice, and the bandgap of the films varies with increasing Nb doping concentration because of the downshift of the conduction band minimum (CBM). The niobium-doped TiO{sub 2} DSSCs with moderate loadings show enhanced performance comparing with their pure TiO{sub 2} counterparts. Optimally, the conversion efficiency of the Nb-3.5 (Nb 3.5 mol%) DSSC is 4.99%. This is higher than that (4.39%) of pure TiO{sub 2} cells by 13.7%. This is due to the fact that the Nb-doped solar cells have increased the number of the photo-induced electrons because of their exposed (001) facets and higher specific surface area; and enhanced electrons collection and transport because of the downshifted CBM of the Nb-doped TiO{sub 2}. However, heavy Nb doping results in the decrease of the performance of the niobium-doped cells due to the excessive defects within the Nb-TiO{sub 2} samples resulting in enhanced charge recombination at defects.

  2. Aging of the HF-H_{2}SO_{4} electrolyte used for the electropolishing of niobium superconducting radio frequency cavities: Origins and cure

    Directory of Open Access Journals (Sweden)

    F. Eozénou

    2010-08-01

    Full Text Available Electropolishing (EP in the HF-H_{2}SO_{4} electrolyte is the most desirable surface treatment for niobium superconducting radio frequency cavities yet demonstrated, in terms of performance and surface finish. However, the efficiency of the electrolyte declines quickly with time (decrease in removal rate, deterioration of the niobium surface, increased sulfur generation. Previous studies at CEA Saclay have highlighted the impact of the water content in EP mixtures rather than the content of dissolved niobium. Knowledge of the electrochemical system was improved thanks to studies using a rotating disk electrode (RDE. Measurements with a RDE give precious information concerning mass transport of the different ionic groups present in the solution. The performed measurements prove that EP is controlled by the diffusion of fluorine ions and the value of the related diffusion coefficient D_{F-} was estimated for different mixtures. Electrochemical impedance spectroscopy (EIS measurements were also performed with different EP mixtures. Both volt ampere metric and EIS measurements prove the central role of fluorine during EP and show that EP mechanisms evolve with the aging of the bath. Another major problem related to electrolytes is the formation of impurities such as sulfur. We have proved that working at a reduced voltage of 5 V does not alter cavity performance and makes it possible to reduce the undesirable particulate contamination in electrolytes and to increase their lifetime.

  3. Study of thermal phenomena in niobium superconducting cavities when stiffened by thermal spray coating; Etude des phenomenes thermiques dans les cavites acceleratrices supraconductrices en niobium rigidifiees par projection thermique

    Energy Technology Data Exchange (ETDEWEB)

    Bousson, S

    2000-02-01

    The first objective of this thesis is to study a new superconducting cavity stiffening method based on thermal spraying. The principle is to add on the cavity external walls a copper layer using the thermal spraying process. Several tests on samples allowed to measure the thermal and mechanical properties of the layers deposited by several different processes. Measurements performed on 3 and 1.3 GHz niobium cavities, before and after copper deposition, proved the interest and feasibility of the method. The study showed the need to have very dense layers (porosity reduced to the minimum in order to have good mechanical characteristics), and not oxidised (to reduce the coating thermal resistance). As a conclusion, the spraying process performed under controlled atmosphere seems to be the most suited for superconducting cavity stiffening. The tools and analysing methods which have been developed for this study allowed to investigate other phenomena involved in the cavity thermal stability, and particularly the quench, a phenomenon often studied but not in its dynamic. A model is proposed in this thesis to analyse the quench dynamic behaviour using only the fast RF signal measurement during a quench. It has been shown that the quench propagation velocity depends essentially on the accelerating field and the niobium thermal conductivity. A study on the thermometer response time used as diagnostics on cavities proved that the transients during a quench are not efficiently measured with Allen-Bradley sensors: for this application Cernox thermometers are to be preferred due to their lower time response. The development of a thermometer acquisition device for the 3 GHz cavities, used for the study on cavity stiffening, has been adapted for anomalous heating measurements on high gradient 1.3 GHz cavities. It has been possible to prove that anomalous RF losses are responsible of the quality factor degradation, that they are not localised in a small of the cavity, but

  4. Niobium (V) doped bioceramics: evaluation of the hydrothermal route modified with citric acid and urea to obtain modified hydroxyapatite; Bioceramicas aditivadas com niobio (V): avaliacao da rota hidrotermica modificada com acido citrico e ureia para obtencao de hidroxiapatitas modificadas

    Energy Technology Data Exchange (ETDEWEB)

    Simomukay, E.; Souza, E.C.F. de; Antunes, S.R.M.; Borges, C.P.F.; Michel, M.D.; Antunes, A.C. [Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, PR (Brazil)

    2016-01-15

    Synthetic hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}; HA) has become a widely used ceramic material for bone reconstruction due to its biocompatibility with the bone tissue. This biocompatibility as well as other physical and chemical properties of the hydroxyapatite can be modified by the addition of different ions to its structure. Niobium (V) ion has not been commonly used in the hydroxyapatite synthesis. The objective of this study was to evaluate the use of hydrothermal route in the niobium (V) doped hydroxyapatite synthesis. The route used the niobium ammonium oxalate (NH{sub 4}H{sub 2}[NbO(C{sub 2}O{sub 4}){sub 3}].3H{sub 2}O) complex as a niobium (V) ion precursor. The addition of citric acid and urea in the hydrothermal route is used for the control of synthesis pH and precipitation rate. Pure sample and sample added with 5.3 ppm of niobium (V) ion were prepared. The coexistence of other phases besides the hydroxyapatite was not observed in any of the samples through the use of X-ray diffraction and infrared spectroscopy (FTIR) techniques. The FTIR technique revealed the presence of hydroxyapatite characteristic functional groups. The scanning electron microscopy analysis showed the formation of agglomerates composed of round particles, confirmed by the transmission electron microscopy technique. The X-ray fluorescence spectroscopic analysis detected the presence of niobium in the doped sample. The results showed that niobium (V) doped hydroxyapatite can be synthesized by means of hydrothermal route, which may be considered as huge potential for future application in bioceramics. (author)

  5. Cooperative effect by monopodal silica-supported niobium com-plexes pairs enhancing catalytic cyclic carbonate production

    KAUST Repository

    D'Elia, Valerio

    2015-05-07

    Recent discoveries highlighted the activity and the intriguing mechanistic features of NbCl5 as a molecular catalyst for the cycloaddition of CO2 and epoxides under ambient conditions. This has inspired the preparation of novel silica supported Nb-species by reacting a molecular niobium precursor [NbCl5•OEt2] with silica dehydroxylated at 700 °C (SiO2-700) or at 200 oC (SiO2-200) to generate diverse surface complexes. The product of the reaction between SiO2-700 and [NbCl5•OEt2] was identified as a monopodal supported surface species [≡SiONbCl4•OEt2] (1a). The reactions of SiO2-200 with the niobium precursor, according to two different protocols, generated surface complexes 2a and 3a presenting significant, but different, populations of the monopodal surface complex along with bipodal [(≡SiO)2NbCl3•OEt2]. 93Nb SSNMR spectra of 1a-3a and 31P SSNMR on their PMe3 derivatives (1b-3b) led to the unambiguous assignment of 1a as a single site, monopodal Nb-species while 2a and 3a were found to present two distinct surface-supported components, with 2a being mostly monopodal [≡SiONbCl4•OEt2] and 3a being mostly bipodal [≡S ONbCl3•OEt2]. Double-quantum/single-quantum 31P NMR correlation experiment carried out on 2b supported the existence of vicinal Nb centers on the silica surface for this species. 1a-3a were active heterogeneous catalysts for the synthesis of propylene carbonate from CO2 and propylene oxide under mild catalytic conditions; the performance of 2a was found to significantly surpass that of 1a and 3a. With the support of a systematic DFT study carried out on model silica surfaces, the observed differences in catalytic efficiency were correlated with an unprece-dented cooperative effect between two neighboring Nb centers on the surface of 2a. This is in an excellent agreement with our previous discoveries regarding the mechanism of the NbCl5 catalyzed cycloaddition in the homogeneous phase.

  6. Wear-resistance of Aluminum Matrix Microcomposite Materials

    Directory of Open Access Journals (Sweden)

    M. Kandeva

    2011-03-01

    Full Text Available A procedure is developed for the study of wear of aluminum alloys AlSi7 obtained by casting, reinforced by TiC microparticles, before and after heat treatment. Tribological study is realized under conditions of friction on counterbody with fixed abrasive. Experimental results were obtained for mass wear, wear rate, wear intensity and wear-resistance of the alloys with different wt% of microparticles.

  7. Niobium and chromium rich coatings tailored by laser alloying: XRD analysis at high temperatures

    Directory of Open Access Journals (Sweden)

    Adilson Rodrigues da Costa

    2004-03-01

    Full Text Available Laser treatment technologies have been widely used to modify superficial layers of different materials. In this work we prepare Nb and Cr rich coatings according to laser alloying technique using cast iron as substrate material. Nb and Cr are intensive used in order to overcome challenges like good chemical and mechanical performance at high temperatures. Following laser alloying the surface-modified samples were submitted to an "in situ" XRD analysis under controlled high temperature and atmosphere. The phase transitions registered point to transformations that do not implies formation of fragile phases or cracks induced by high volumes modifications.

  8. Judd-Ofelt analysis and spectral properties of Dy3+ ions doped niobium containing tellurium calcium zinc borate glasses

    Science.gov (United States)

    Ravi, O.; Reddy, C. Madhukar; Reddy, B. Sudhakar; Deva Prasad Raju, B.

    2014-02-01

    Niobium containing tellurium calcium zinc borate (TCZNB) glasses doped with different concentrations of Dy3+ ions were prepared by the melt quenching method and their optical properties have been studied. The Judd-Ofelt (J-O) intensity parameters Ωt (t=2, 4 and 6) were calculated using the least square fit method. Based on the magnitude of Ω2 parameter the hypersensitivity of 6H15/2→6F11/2 has also been discussed. From the evaluated J-O intensity parameters as well as from the emission and lifetime measurements, radiative transition properties such as radiative transition probability rates and branching ratios were calculated for 4F9/2 excited level. It is found that for Dy3+ ion, the transition 4F9/2→6H13/2 shows highest emission cross-section at 1.0 mol% TCZNB glass matrix. From the visible luminescence spectra, yellow to blue (Y/B) intensity ratios and chromaticity color coordinates were also estimated. The TCZNB glasses exhibit good luminescence properties and are suitable for generation of white light.

  9. Integration of a niobium oxide selector on a tantalum oxide memristor by local oxidation using Joule heating

    Science.gov (United States)

    Díaz León, Juan J.; Norris, Kate J.; Sevic, John F.; Kobayashi, Nobuhiko P.

    2016-09-01

    Memristive devices are two-terminal electrical switches with electrical resistance that depends on a state variable equivalent to electrical charge. In practice, multiple memristive devices are arranged into a crossbar array to form such components as memory and logic. For reliable operation of the crossbar array, electrical current sneak paths need to be eliminated by combining a highly nonlinear component, known as selector, with a memristive device. This ensures the explicit selection of an intended memristive device without disturbing the states of surrounding devices. However, integrating a selector onto a memristive device at the circuit level is not an appealing option for large scale integration. In this paper, a monolithic structure that contains a memristive device and a self-aligned selector is presented. A niobium oxide (NbO2) selector is built directly on a tantalum oxide (TaOx) memristive device by fist depositing an Nb layer on a TaOx memristive device and then forming NbO2 at the Nb/TaOx interface. Discussion will focus on an experimental and theoretical assessment on the electrothermal behavior of the Nb/TaOx structure that results in NbO2/TaOx selector/memristive devices.

  10. Niobium carbo-nitride precipitation behavior in a high nitrogen 15Cr-15Ni heat resistant austenitic stainless steel

    Science.gov (United States)

    Ha, Vu The; Jung, Woo Sang

    2011-10-01

    A high nitrogen 15Cr-15Ni niobium-stabilized austenitic alloy has been produced and subjected to a special heat treatment consisting of 5 hours of solution treatment at 1270 °C followed by hot rolling, quenching and subsequent aging at temperatures of 700 °C to 800 °C. It was found that fine dispersion of nano-sized thermally stable primary Nb(C,N) precipitates had already formed in the as-cast condition. The particles were presented at all examined stages of the TMT process (as-homogenized, as-solution treated and as-aged conditions). Secondary precipitates Nb(C,N) were densely formed during subsequent aging; these precipitates had sizes of 4 nm to 5 nm. Both the primary and secondary Nb(C,N) particles showed excellent thermal stability within the temperature range of 700 °C to 800 °C. The creep properties of the studied alloy at 750 °C were superior when compared to those of commercial type 347 stainless steel.

  11. Chemical characterization and bioactivity of epoxy resin and Portland cement-based sealers with niobium and zirconium oxide radiopacifiers.

    Science.gov (United States)

    Viapiana, Raqueli; Guerreiro-Tanomaru, Juliane Maria; Hungaro-Duarte, Marco Antonio; Tanomaru-Filho, Mário; Camilleri, Josette

    2014-09-01

    The purpose of this study was to characterize and to evaluate the bioactivity potential of experimental root canal sealers (ES) based on Portland cement, epoxy resin with nano- and micro-particles of niobium or zirconium oxide used as radiopacifiers in comparison to AH Plus and MTA Fillapex. Specimens of the sealers (10 mm in diameter×1 mm thick) were prepared and the radiopacity was evaluated according to ISO 6876 (2012) specifications. Characterization of the sealers was performed under the scanning electron microscope (SEM) immediately after setting and after immersion for 28 days in Hank's balanced salt solution (HBSS). In addition X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy were also performed. The pH and calcium ion release were measured after 1, 7, 14, 21 and 28 days after completion of seating using a digital pH meter and an atomic absorption spectrophotometer, respectively. The experimental sealers exhibited an average radiopacity of 2.5 mm thickness of aluminum, which was similar to MTA Fillapex (P>0.05) and inferior to AH Plus (Pepoxy resin and radiopacifier exhibited a degree of bioactivity although no evidence of cement hydration was demonstrated on material characterization. The radiopacifier particle size had limited effect on the sealer microstructure and chemical properties. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Effect of high energy milling time of the aluminum bronze alloy obtained by powder metallurgy with niobium carbide addition

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Alexandre Nogueira Ottoboni; Silva, Aline da; Rodrigues, Carlos Alberto; Melo, Mirian de Lourdes Noronha Motta; Rodrigues, Geovani; Silva, Gilbert, E-mail: aottoboni@yahoo.com.br [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil)

    2017-05-15

    The aluminum bronze alloy is part of a class of highly reliable materials due to high mechanical strength and corrosion resistance being used in the aerospace and shipbuilding industry. It's machined to produce parts and after its use cycle, it's discarded, but third process is considered expensive and besides not being correct for environment reasons. Thus, reusing this material through the powder metallurgy (PM) route is considered advantageous. The aluminum bronze chips were submitted to high energy ball milling process with 3% of niobium carbide (NbC) addition. The NbC is a metal-ceramic composite with a ductile-brittle behaviour. It was analyzed the morphology of powders by scanning electron microscopy as well as particle size it was determined. X ray diffraction identified the phases and the influence of milling time in the diffractogram patterns. Results indicates that milling time and NbC addition improves the milling efficiency significantly and being possible to obtain nanoparticles. (author)

  13. Nanoporous titanium niobium oxide and titanium tantalum oxide compositions and their use in anodes of lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng; Guo, Bingkun; Sun, Xiao-Guang; Qiao, Zhenan

    2017-10-31

    Nanoporous metal oxide framework compositions useful as anodic materials in a lithium ion battery, the composition comprising metal oxide nanocrystals interconnected in a nanoporous framework and having interconnected channels, wherein the metal in said metal oxide comprises titanium and at least one metal selected from niobium and tantalum, e.g., TiNb.sub.2-x Ta.sub.xO.sub.y (wherein x is a value from 0 to 2, and y is a value from 7 to 10) and Ti.sub.2Nb.sub.10-vTa.sub.vO.sub.w (wherein v is a value from 0 to 2, and w is a value from 27 to 29). A novel sol gel method is also described in which sol gel reactive precursors are combined with a templating agent under sol gel reaction conditions to produce a hybrid precursor, and the precursor calcined to form the anodic composition. The invention is also directed to lithium ion batteries in which the nanoporous framework material is incorporated in an anode of the battery.

  14. Electrochemical and electrocatalytic studies of toluidine blue immobilized on a silica gel surface coated with niobium oxide

    Directory of Open Access Journals (Sweden)

    Santos Antonio S.

    2002-01-01

    Full Text Available The electrochemical behavior of toluidine blue (TB adsorbed on a silica surface modified with niobium oxide (SN was investigated using a modified carbon paste electrode. The presence of SN gave the electrode high stability, avoiding the leaching out of the mediator from the electrode surface. The formal potential (E0' of the adsorbed TB was --113 mV vs. SCE, indicating a shift of almost 100 mV towards more positive potential values, compared to TB dissolved in aqueous solution or adsorbed on carbon paste. The stability and formal potential remained constant upon changing the solution pH in the range 5 to 8. In these solution pH values the electrocatalytic activity remained almost constant with a sensitivity of 1.2 10-4 A L mol-1 cm-2 and a K Mapp of 4.9 10-5 mol L-1. A linear response range for NADH concentration between 2.0 10-4 and 4.0 10-3 mol L-1 at pH 7.0, with a detection limit of 3.4 10-5 mol L-1 was observed for the sensor. A response time of 2 s and a precision of 1.0 %, expressed as relative standard deviation for 10 replicates, were observed for the sensor developed.

  15. Domain formation in the type-II/1 superconductor niobium: Interplay of pinning, geometry, and attractive vortex-vortex interaction

    Science.gov (United States)

    Reimann, Tommy; Schulz, Michael; Mildner, David F. R.; Bleuel, Markus; Brûlet, Annie; Harti, Ralph P.; Benka, Georg; Bauer, Andreas; Böni, Peter; Mühlbauer, Sebastian

    2017-10-01

    Vortex attraction which can cause a bundling of vortices has been observed in a multitude of type-II superconductors. While its underlying mechanisms have been extensively studied, the morphology of the emerging vortex superstructure has only been rarely considered. Here, we present a comprehensive experimental study on the type-II/1 superconductor niobium which focuses on the transformation of its homogeneous vortex lattice into an inhomogeneous domain structure at the onset of vortex attraction. By means of small-angle neutron scattering, ultra-small-angle neutron scattering, and neutron grating interferometry, the vortex lattice and the micrometer-scale vortex domain structure as well as its distribution could be investigated. In particular, we focus on the transformation of the vortex lattice at the transition to the intermediate mixed state, which is characterized by vortex attraction. We have found that the phase separation of the vortex lattice into an irregular domain structure takes place via a process showing strong similarity to spinodal decomposition. While pinning disorders the domain morphology, the characteristic length scale of the domain structure is governed by an interplay of field distortion energy and domain surface tension. Finally, geometric barriers in the disk-shaped samples provoke an inhomogeneous distribution of domains on the macroscopic scale.

  16. Effects of processing history on the evolution of surface damage layer and dislocation substructure in large grain niobium cavities

    Directory of Open Access Journals (Sweden)

    D. Kang

    2015-12-01

    Full Text Available Large grain niobium (Nb is being investigated for fabricating superconducting radiofrequency cavities as an alternative to the traditional approach using fine grain polycrystalline Nb sheets. Past studies have identified a surface damage layer on fine grain cavities due to deep drawing and demonstrated the necessity for chemical etching on the surface. However, the origin of and depth of the damage layer are not well understood, and similar exploration on large grain cavities is lacking. In this work, electron backscatter diffraction (EBSD was used to examine the cross sections at the equator and iris of a half cell deep drawn from a large grain Nb ingot slice. The results indicate that the damage (identified by a high density of geometrically necessary dislocations depends on crystal orientations, is different at the equator and iris, and is present through the full thickness of a half cell in some places. After electron backscatter diffraction, the specimens were heat treated at 800 °C or 1000 °C for two hours, and the same areas were reexamined. A more dramatic decrease in dislocation content was observed at the iris than the equator, where some regions exhibited no change. The specimens were then etched and examined again, to determine if the subsurface region behaved differently than the surface. Little change in the dislocation substructure was observed, suggesting that the large grain microstructure is retained with a normal furnace anneal.

  17. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2010-12-01

    Full Text Available The performance of superconducting radio-frequency (SRF resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots” were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD, and optical microscopy. Pits with clearly discernible crystal facets were observed in both “hotspot” and “coldspot” specimens. The pits were found in-grain, at bicrystal boundaries, and on tricrystal junctions. They are interpreted as etch pits induced by crystal defects (e.g. dislocations. All coldspots examined had a qualitatively lower density of etch pits or relatively smooth tricrystal boundary junctions. EBSD mapping revealed the crystal orientation surrounding the pits. Locations with high pit density are correlated with higher mean values of the local average misorientation angle distributions, indicating a higher geometrically necessary dislocation content. In addition, a survey of the samples by energy dispersive x-ray analysis did not show any significant contamination of the samples’ surface. The local magnetic field enhancement produced by the sharp-edge features observed on the samples is not sufficient to explain the observed degradation of the cavity quality factor, which starts at peak surface magnetic field as low as 20 mT.

  18. Development of Low Carbon Niobium Bearing High Strength F-B Dual Phase Steel with High Hole Expansion Property

    Science.gov (United States)

    Zhang, Lin; Xia, Ming-sheng; Xiong, Zi-liu; Du, Yan-bing; Qiao, Zhi-ming; Zhang, Hong-bo

    In the study a low carbon niobium bearing high strength F-B dual phase automobile steel with high hole expansion property has been investigated. Steels of different chemical composition have been investigated by simulation experiments of controlled rolling and cooling process to study the influences of chemical elements, especially for C,Nb and Ti, and cooling pattern on the mechanical properties, flangeability and microstructure of strips. So-called 3-stages cooling pattern was adopted in simulation experiments, combining ultra fast cooling in first stage, air cooling in middle stage and fast cooling in the last stage, and at the end of run-out table the temperature of rolled pieces drop to below Bs point. Optical microstructure and SEM morphology have been observed. Results indicate that it is possible to obtain dual phase microstructure of polygonal ferrite plus bainite in adopting 3-stages cooling pattern. The low temperature coiling method using 3-step controlled cooling pattern after hot rolling is effective to produce low carbon Nb bearing steel with high balance of strength-ductility-flangeability, in addition, higher carbon content of steel tend to be detrimental to flangeability of steel, due to much carbide precipitation at ferrite boundary. Based on the results of simulation experiments mill trial has been carried out and hot rolled high strength steel with tensile strength higher as 600Mpa and hole expansion ratio higher as 100% has been developed successfully.

  19. Activation cross sections of deuteron induced reactions on niobium in the 30–50 MeV energy range

    Energy Technology Data Exchange (ETDEWEB)

    Ditrói, F., E-mail: ditroi@atomki.hu [Institute for Nuclear Research, Hungarian, Acad. Sci., Debrecen (Hungary); Tárkányi, F.; Takács, S. [Institute for Nuclear Research, Hungarian, Acad. Sci., Debrecen (Hungary); Hermanne, A. [Cyclotron Laboratory, Vrije Universitet, Brussel (Belgium); Ignatyuk, A.V. [Institute for Physics and Power Engineering (IPPE), Obninsk (Russian Federation)

    2016-04-15

    Highlights: • Deuteron induced nuclear reactions on natural niobium up to 50 MeV. • Stacked foil irradiation technique. • Comparison of results with the ALICE-D, EMPIRE-D and TENDL-2015 calculations. • Application of radioisotopes in medicine and industry. - Abstract: Activation cross-sections of deuterons induced reactions on Nb targets were determined with the aim of different applications and comparison with theoretical models. We present the experimental excitation functions of {sup 93}Nb(d,x){sup 93m,90}Mo, {sup 92m,91m,90}Nb, {sup 89,88}Zr and {sup 88,87m,87g}Y in the energy range of 30–50 MeV. The results were compared with earlier measurements and with the cross-sections calculated by means of the theoretical model codes ALICE-D, EMPIRE-D and TALYS (on-line TENDL-2014 and TENDL-2015 libraries). Possible applications of the radioisotopes are discussed in detail.

  20. Thermal annealing behavior of niobium-implanted {alpha}-Al{sub 2}O{sub 3} under reducing environment

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Jianer; Naramoto, Hiroshi; Aoki, Yasushi; Yamamoto, Shunya; Gan Mingle; Takeshita, Hidefumi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Thermal annealing behavior is studied in {alpha}-Al{sub 2}O{sub 3} implanted with {sup 93}Nb{sup +} using RBS/channeling technique and optical absorption spectrometry. The samples with <0001> and <112-bar0> orientations are implanted with 300 keV and 400 keV {sup 93}Nb{sup +} ions. Thermal annealing under reducing environment (Ar+3%H{sub 2}) is employed in the temperature range from 600 to 1000degC to explore unusual materials phase. The annealing up to 1000degC for an hour does not show any essential change in RBS/channeling spectra in two kinds of samples but the significant decrease in the visible region is observed in optical absorption spectra. After annealing at 1000degC for 10 hours, the recovery of the lattice damage is detected by RBS/channeling analysis especially in (112-bar0) sample. In the optical absorption spectra, new absorption envelope appears in the ultraviolet region. The results are related to the formation of niobium metal fine particles, and the sharp distribution is realized especially in (0001) sample. (author)

  1. Renormalized Volume

    Science.gov (United States)

    Gover, A. Rod; Waldron, Andrew

    2017-09-01

    We develop a universal distributional calculus for regulated volumes of metrics that are suitably singular along hypersurfaces. When the hypersurface is a conformal infinity we give simple integrated distribution expressions for the divergences and anomaly of the regulated volume functional valid for any choice of regulator. For closed hypersurfaces or conformally compact geometries, methods from a previously developed boundary calculus for conformally compact manifolds can be applied to give explicit holographic formulæ for the divergences and anomaly expressed as hypersurface integrals over local quantities (the method also extends to non-closed hypersurfaces). The resulting anomaly does not depend on any particular choice of regulator, while the regulator dependence of the divergences is precisely captured by these formulæ. Conformal hypersurface invariants can be studied by demanding that the singular metric obey, smoothly and formally to a suitable order, a Yamabe type problem with boundary data along the conformal infinity. We prove that the volume anomaly for these singular Yamabe solutions is a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. Recently, Graham proved that the first variation of the volume anomaly recovers the density obstructing smooth solutions to this singular Yamabe problem; we give a new proof of this result employing our boundary calculus. Physical applications of our results include studies of quantum corrections to entanglement entropies.

  2. Study of the electrochemical behavior of the niobium in relation to the hydrogen cyclical charge and uncharge; Estudo do comportamento eletroquimico do niobio em relacao ao carregamento e descarregamento ciclicos de hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.G.S.G. da; Ponte, H.A.; Pashchuk, A. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico. Lab. de Eletroquimica de Superficie e Corrosao (LESK)], e-mail: aleksantos@hotmail.com

    2006-07-01

    One of the greatest problems found in the oil industry is the control of the deterioration at the steels structures of the units that compose the process petroleum refine. This deterioration is related the mechanisms involving processes of hydrogen embrittlement. The work had as objective to study the electrochemical behavior of the niobium (Nb) with relation to the charging and uncharging of hydrogen, to evaluate the potential to use of the Nb in the construction of electrochemical hydrogen probes. For this study techniques of cronopotenciometry and potential of open circuit (OCP) for the pure Nb submitted the different hydrogen charging conditions had been used. The gotten partial results indicate the viability to use of the niobium as hydrogen probe, however, it is necessary one better understanding of the mechanisms of hydrogen interaction with the niobium. (author)

  3. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst

    Science.gov (United States)

    Shao, Yi; Xia, Qineng; Dong, Lin; Liu, Xiaohui; Han, Xue; Parker, Stewart F.; Cheng, Yongqiang; Daemen, Luke L.; Ramirez-Cuesta, Anibal J.; Yang, Sihai; Wang, Yanqin

    2017-07-01

    Lignin is the only large-volume renewable source of aromatic chemicals. Efficient depolymerization and deoxygenation of lignin while retaining the aromatic functionality are attractive but extremely challenging. Here we report the selective production of arenes via direct hydrodeoxygenation of organosolv lignin over a porous Ru/Nb2O5 catalyst that enabled the complete removal of the oxygen content from lignin. The conversion of birch lignin to monomer C7-C9 hydrocarbons is nearly quantitative based on its monomer content, with a total mass yield of 35.5 wt% and an exceptional arene selectivity of 71 wt%. Inelastic neutron scattering and DFT calculations confirm that the Nb2O5 support is catalytically unique compared with other traditional oxide supports, and the disassociation energy of Caromatic-OH bonds in phenolics is significantly reduced upon adsorption on Nb2O5, resulting in its distinct selectivity to arenes. This one-pot process provides a promising approach for improved lignin valorization with general applicability.

  4. Tuning Mesenchymal Stem Cell Response onto Titanium-Niobium-Hafnium Alloy by Recombinant Fibronectin Fragments.

    Science.gov (United States)

    Herranz-Diez, C; Mas-Moruno, C; Neubauer, S; Kessler, H; Gil, F J; Pegueroles, M; Manero, J M; Guillem-Marti, J

    2016-02-03

    Since metallic biomaterials used for bone replacement possess low bioactivity, the use of cell adhesive moieties is a common strategy to improve cellular response onto these surfaces. In recent years, the use of recombinant proteins has emerged as an alternative to native proteins and short peptides owing to the fact that they retain the biological potency of native proteins, while improving their stability. In the present study, we investigated the biological effect of two different recombinant fragments of fibronectin, spanning the 8-10th and 12-14th type III repeats, covalently attached to a new TiNbHf alloy using APTES silanization. The fragments were studied separately and mixed at different concentrations and compared to a linear RGD, a cyclic RGD and the full-length fibronectin protein. Cell culture studies using rat mesenchymal stem cells demonstrated that low to medium concentrations (30% and 50%) of type III 8-10th fragment mixed with type III 12-14th fragment stimulated cell spreading and proliferation compared to RGD peptides and the fragments separately. On the other hand, type III 12-14th fragment alone or mixed at low volume percentages ≤50% with type III 8-10th fragment increased alkaline phosphatase levels compared to the other molecules. These results are significant for the understanding of the role of fibronectin recombinant fragments in cell responses and thus to design bioactive coatings for biomedical applications.

  5. NIR fluorescence spectroscopic investigations of Er{sup 3+}-ions doped borate based tellurium calcium zinc niobium oxide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, O. [Department of Instrumentation, Sri Venkateswara University, Tirupati 517502 (India); Dhoble, S.J. [Department of Physics, RTM Nagpur University, Nagpur 440033 (India); Ramesh, B.; Devarajulu, G. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Reddy, C. Madhukar [Department of Physics, AP Model School, Yerravaripalem 517194 (India); Linganna, K. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Reddy, G. Rajasekhar [Department of Instrumentation, Sri Venkateswara University, Tirupati 517502 (India); Raju, B. Deva Prasad, E-mail: drdevaprasadraju@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Department of Future Studies, Sri Venkateswara University, Tirupati 517502 (India)

    2015-08-15

    A series of Er{sup 3+} ions doped tellurium calcium zinc niobium borate glasses were prepared by the melt quenching technique. The prepared samples were investigated by optical absorption and near infrared fluorescence spectroscopic studies. The obtained Judd–Ofelt intensity parameters Ω{sub λ} (λ=2, 4 and 6) were determined through experimental and calculated oscillator strengths obtained from absorption spectra and their results are studied and compared with reported literature. The stark-level energies of {sup 4}I{sub 13/2} excited and {sup 4}I{sub 15/2} ground states were evaluated by using both the absorption and emission measurements. The effect of Er{sup 3+} ion concentration on the emission intensity of {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition was discussed. Intense and broad 1.53 µm infrared fluorescence is observed at 980 nm diode laser excitation. Photoluminescence (PL) and its decay behavior studies were carried out for the transition {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} at 1.53 µm emission. The broad emission together with higher values of the bandwidth (81 nm), stimulated emission cross-section (32.25×10{sup −22} cm{sup 2}) and lifetime (530 µs for 1.0 mol% of Er{sup 3+}) of level {sup 4}I{sub 13/2} make these glasses attractive for broadband amplifiers. From the analysis of spectroscopic data, the present glass is a prospective photonic material for practical applications in the visible and NIR region. - Highlights: • In this study we prepared TCZNB glasses doped with Er{sup 3+} ions. • Glasses are characterized with absorption, emission and lifetime analysis. • Judd–Ofelt theory is used to calculate radiative properties. • TCZNB glasses could be used as NIR lasers.

  6. Integration of optically active Neodymium ions in Niobium devices (Nd:Nb): quantum memory for hybrid quantum entangled systems

    Science.gov (United States)

    Nayfeh, O. M.; Chao, D.; Djapic, N.; Sims, P.; Liu, B.; Sharma, S.; Lerum, L.; Fahem, M.; Dinh, V.; Zlatanovic, S.; Lynn, B.; Torres, C.; Higa, B.; Moore, J.; Upchurch, A.; Cothern, J.; Tukeman, M.; Barua, R.; Davidson, B.; Ramirez, A. D.; Rees, C. D.; Anant, V.; Kanter, G. S.

    2017-08-01

    Optically active rare-earth Neodymium (Nd) ions are integrated in Niobium (Nb) thin films forming a new quantum memory device (Nd:Nb) targeting long-lived coherence times and multi-functionality enabled by both spin and photon storage properties. Nb is implanted with Nd spanning 10-60 keV energy and 1013-1014 cm-2 dose producing a 1- 3% Nd:Nb concentration as confirmed by energy-dispersive X-ray spectroscopy. Scanning confocal photoluminescence (PL) at 785 nm excitation are made and sharp emission peaks from the 4F3/2 -< 4I11/2 Nd3+ transition at 1064-1070 nm are examined. In contrast, un-implanted Nb is void of any peaks. Line-shapes at room temperature are fit with Lorentzian profiles with line-widths of 4-5 nm and 1.3 THz bandwidth and the impacts of hyperfine splitting via the metallic crystal potential are apparent and the co-contribution of implant induced defects. With increasing Nd from 1% to 3%, there is a 0.3 nm red shift and increased broadening to a 4.8 nm linewidth. Nd:Nb is photoconductive and responds strongly to applied fields. Furthermore, optically detected magnetic resonance (ODMR) measurements are presented spanning near-infrared telecom band. The modulation of the emission intensity with magnetic field and microwave power by integration of these magnetic Kramer type Nd ions is quantified along with spin echoes under pulsed microwave π-π/2 excitation. A hybrid system architecture is proposed using spin and photon quantum information storage with the nuclear and electron states of the Nd3+ and neighboring Nb atoms that can couple qubit states to hyperfine 7/2 spin states of Nd:Nb and onto NIR optical levels excitable with entangled single photons, thus enabling implementation of computing and networking/internet protocols in a single platform.

  7. The impact of niobium on the microstructure, texture and magnetic properties of strip-cast grain oriented silicon steel

    Science.gov (United States)

    Fang, F.; Lan, M. F.; Lu, X.; Zhang, Y. X.; Wang, Y.; Yuan, G.; Cao, G. M.; Xu, Y. B.; Misra, R. D. K.; Wang, G. D.

    2017-11-01

    We elucidate here the impact of niobium in ultra-low carbon grain oriented electrical steel (GOES) in terms of microstructure, texture, precipitation and magnetic properties that was processed by twin roll strip casting. Coarse and complex MnS + NbN precipitates, and fine NbN were nucleated at the grain boundaries and in the interior of the grain in the as-cast strip, which contributed to a small degree of grain refinement together with relatively random texture, and AlN precipitation was suppressed during the strip casting process. NbN continuously precipitated during the entire process and exhibited high stability during the reheating cycle, which provided stronger inhibiting force in comparison to AlN precipitates. As a consequence, fine and homogeneous inhibitors were obtained in the primary annealed sheet in the presence of Nb under cold rolling and annealing parameters used in the present study. On considering the effect of NbN particles or Nb in solution on the deformation and recrystallization behavior, the primary annealed Nb-containing sheet exhibited significantly more homogeneous microstructure in relation to Nb-free GOES, with grain size in the range of ∼8-12 μm, and was characterized by relatively more pronounced γ-fiber and weak Goss texture, beneficial for the abnormal growth of Goss grains. Furthermore, Nb-containing GOES experienced complete abnormal growth during secondary recrystallization annealing, such that the enhanced magnetic induction (B8 as high as 1.88 T) was obtained. In summary, the present study underscores that NbN can be used as an effective inhibitor in ultra-low carbon grain oriented electrical steel using strip casting technology.

  8. A comparative study of the cytotoxicity and corrosion resistance of nickel-titanium and titanium-niobium shape memory alloys.

    Science.gov (United States)

    McMahon, Rebecca E; Ma, Ji; Verkhoturov, Stanislav V; Munoz-Pinto, Dany; Karaman, Ibrahim; Rubitschek, Felix; Maier, Hans J; Hahn, Mariah S

    2012-07-01

    Nickel-titanium (NiTi) shape memory alloys (SMAs) are commonly used in a range of biomedical applications. However, concerns exist regarding their use in certain biomedical scenarios due to the known toxicity of Ni and conflicting reports of NiTi corrosion resistance, particularly under dynamic loading. Titanium-niobium (TiNb) SMAs have recently been proposed as an alternative to NiTi SMAs due to the biocompatibility of both constituents, the ability of both Ti and Nb to form protective surface oxides, and their superior workability. However, several properties critical to the use of TiNb SMAs in biomedical applications have not been systematically explored in comparison with NiTi SMAs. These properties include cytocompatibility, corrosion resistance, and alterations in alloy surface composition in response to prolonged exposure to physiological solutions. Therefore, the goal of the present work was to comparatively investigate these aspects of NiTi (49.2 at.% Ti) and TiNb (26 at.% Nb) SMAs. The results from the current studies indicate that TiNb SMAs are less cytotoxic than NiTi SMAs, at least under static culture conditions. This increased TiNb cytocompatibility was correlated with reduced ion release as well as with increased corrosion resistance according to potentio-dynamic tests. Measurements of the surface composition of samples exposed to cell culture medium further supported the reduced ion release observed from TiNb relative to NiTi SMAs. Alloy composition depth profiles also suggested the formation of calcium phosphate deposits within the surface oxide layers of medium-exposed NiTi but not of TiNb. Collectively, the present results indicate that TiNb SMAs may be promising alternatives to NiTi for certain biomedical applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Piezoelectric and ferroelectric properties of lead-free niobium-rich potassium lithium tantalate niobate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun, E-mail: lijuna@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Li, Yang [Department of chemistry, Harbin Institute of Technology, Harbin 150001 (China); Zhou, Zhongxiang [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Guo, Ruyan; Bhalla, Amar S. [Multifunctional Electronic Materials and Device Research Lab, Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio 78249 (United States)

    2014-01-01

    Graphical abstract: - Highlights: • Lead-free K{sub 0.95}Li{sub 0.05}Ta{sub 1−x}Nb{sub x}O{sub 3} single crystals were grown using the top-seeded melt growth method. • The piezoelectric and ferroelectric properties of as-grown crystals were systematically investigated. • The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ≈ 70%, k{sub 31} ≈ 70%, k{sub 33} ≈ 77%, d{sub 31} ≈ 230 pC/N, d{sub 33} ≈ 600 pC/N. • The coercive fields of P–E hysteresis loops are quite small, about or less than 1 kV/mm. - Abstract: Lead-free potassium lithium tantalate niobate single crystals with the composition of K{sub 0.95}Li{sub 0.05}Ta{sub 1−x}Nb{sub x}O{sub 3} (abbreviated as KLTN, x = 0.51, 0.60, 0.69, 0.78) were grown using the top-seeded melt growth method. Their piezoelectric and ferroelectric properties in as-grown crystals have been systematically investigated. The phase transitions and Curie temperatures were determined from dielectric and pyroelectric measurements. Piezoelectric coefficients and electromechanical coupling factors in thickness mode, length-extensional mode and longitudinal mode were obtained. The piezoelectric properties are very attractive, e.g. for x = 0.60 composition, k{sub t} ≈ 70%, k{sub 31} ≈ 70%, k{sub 33} ≈ 77%, d{sub 31} ≈ 230 pC/N, d{sub 33} ≈ 600 pC/N are comparable to the lead-based PZT composition. The polarization versus electric field hysteresis loops show saturated shapes. In short, lead-free niobium-rich KLTN system possesses comparable properties to those in important lead-based piezoelectric material nowadays.

  10. Influence of a niobium coating on sulfidation resistance of FeCr and FeCrY alloys; Influencia de um revestimento de niobio sobre a resistencia a sulfetacao das ligas FeCr e FeCrY

    Energy Technology Data Exchange (ETDEWEB)

    Geribola, Gulherme Altomari

    2014-07-01

    Niobium and niobium based alloys are currently used in many industrial applications because they offer excellent resistance to degradation in various corrosive environments. These media include gaseous atmospheres at high temperatures such as those found in existing coal gasifying plants in power plants for energy generation. These atmospheres are complex gas mixtures that contain sulfur and oxygen, among other compounds. Sulphides are thermodynamically less stable, have lower melting points and often have larger deviations from stoichiometry compared to the corresponding oxides. Although there are studies regarding the use of refractory metals in high temperature sulphidizing atmospheres, the use of niobium compounds has not been adequately evaluated and there is very little studies available in the literature about its use as a protective coating. The aim of this study was to evaluate the effect of a niobium film, deposited by magnetron sputtering on the isothermal sulphidation behavior of Fe-20Cr and Fe-20Cr-1Y alloys. The sulphidation tests were carried out at 500, 600 and 700 deg C for 2h in H{sub 2}/2% H2S atmosphere. The sulphidation resistance was determined by mass gain per unit area. The sulphidation behavior of the coated and uncoated alloys was similar at 500 deg C, and none of the alloys scaled. At 700 deg C FeCr alloy scaled in the form of a fine powder, while the reaction product formed on the alloy FeCrY scaled in the form of plates. The effect of niobium became pronounced at 700 deg C. The reaction product layer formed on the coated alloy was thinner and more plastic than that formed on the uncoated alloy. The mass gain per unit area of the coated alloys decreased significantly and they did not scaled. (author)

  11. Superheating in coated niobium

    Science.gov (United States)

    Junginger, T.; Wasserman, W.; Laxdal, R. E.

    2017-12-01

    Using muon spin rotation it is shown that the field of first flux penetration {H}{entry} in Nb is enhanced by about 30% if coated with an overlayer of Nb3Sn or MgB2. This is consistent with an increase from the lower critical magnetic field {H}{{c}1} up to the superheating field {H}{sh} of the Nb substrate. In the experiments presented here coatings of Nb3Sn and MgB2 with a thickness between 50 and 2000 nm have been tested. {H}{entry} does not depend on material or thickness. This suggests that the energy barrier at the boundary between the two materials prevents flux entry up to {H}{sh} of the substrate. A mechanism consistent with these findings is that the proximity effect recovers the stability of the energy barrier for flux penetration, which is suppressed by defects for uncoated samples. Additionally, a low temperature baked Nb sample has been tested. Here a 6% increase of {H}{entry} was found, also pushing {H}{entry} beyond {H}{{c}1}.

  12. Superheating in coated niobium

    OpenAIRE

    T. Junginger; Wasserman, W.; Laxdal, R. E.

    2017-01-01

    Using muon spin rotation it is shown that the field of first flux penetration H_entry in Nb is enhanced by about 30% if coated with an overlayer of Nb_3Sn or MgB_2. This is consistent with an increase from the lower critical magnetic field H_c1 up to the superheating field H_sh of the Nb substrate. In the experiments presented here coatings of Nb_3Sn and MgB_2 with a thickness between 50 and 2000nm have been tested. H_entry does not depend on material or thickness. This suggests that the ener...

  13. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  14. Single Site Silica Supported Tetramethyl Niobium by the SOMC Strategy: Synthesis, Characterization and Structure-Activity Relationship in Ethylene Oligomerization Reaction

    KAUST Repository

    Hamieh, Ali Imad Ali

    2017-06-06

    Silica supported Tetramethyl niobium complex [(≡SiO)NbMe4] 2 has been isolated by surface alkylation of [(≡SiO-)NbCl3Me] 1 with dimethyl zinc in pentane. 1 can be easily synthesized by grafting of NbCl3Me2 on to the surface of partially dehydroxylated silica by the SOMC strategy. Precise structural analysis was carried out by the FTIR, advance solid state NMR, elemental analysis and mass balance techniques (gas quantification after treating 2 with degassed water) . Complex 1 was found to be active in the ethylene oligomerization to produce up to C30, whereas to our surprise complex 2 selectively dimerizes ethylene into 1-butene in the absence of a co-catalyst at the same conversion levels.

  15. Niobium(v) chloride and imidazolium bromides as efficient dual catalyst systems for the cycloaddition of carbon dioxide and propylene oxide

    KAUST Repository

    Wilhelm, Michael E.

    2014-02-19

    The application of niobium(v) chloride and several imidazolium bromides as catalyst systems for the cycloaddition of propylene oxide (PO) with carbon dioxide to propylene carbonate (PC) is reported. A set of 31 different imidazolium bromides has been synthesized with varying substituents at all five imidazolium ring atoms, of which 17 have not been reported before. The impact of different substitution patterns (steric and electronic changes and solubility in PO) at the imidazolium ring on the catalytic activity was investigated. The optimisation of the catalyst structure allows for the valorisation of carbon dioxide under mild reaction conditions with high reaction rates in very good yield and selectivity for PC. This journal is © the Partner Organisations 2014.

  16. Atomic and electronic structure of free niobium nanoclusters: Simulation of the M{sub 4,5}-XANES spectrum of Nb{sub 13}{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsova, Antonina N., E-mail: akravtsova@sfedu.ru [Research Center for Nanoscale Structure of Matter, Southern Federal University, Sorge str. 5, 344090 Rostov-on-Don (Russian Federation); Lomachenko, Kirill A. [Research Center for Nanoscale Structure of Matter, Southern Federal University, Sorge str. 5, 344090 Rostov-on-Don (Russian Federation); Department of Chemistry and NIS Centre of Excellence, University of Turin, Via P. Giuria 7, 10125 Turin (Italy); Soldatov, Alexander V., E-mail: soldatov@sfedu.ru [Research Center for Nanoscale Structure of Matter, Southern Federal University, Sorge str. 5, 344090 Rostov-on-Don (Russian Federation); Meyer, Jennifer; Niedner-Schatteburg, Gereon [Technische Universität Kaiserslautern, Fachbereich Chemie und Forschungszentrum OPTIMAS, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern (Germany); Peredkov, Sergey [Helmholtz-Zentrum Berlin für Materialien und Energie, Wilhelm-Conrad-Röntgen-Campus Adlershof, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, Berlin (Germany); Eberhardt, Wolfgang [Technische Universität Berlin, IOAP, Straße des 17. Juni 135, 10623 Berlin (Germany); Neeb, Matthias, E-mail: matthias.neeb@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie, Wilhelm-Conrad-Röntgen-Campus Adlershof, Elektronenspeicherring BESSY II, Albert-Einstein-Straße 15, Berlin (Germany)

    2014-08-15

    Highlights: • M{sub 4,5}-XANES spectra have been calculated for several structural models of free Nb{sub 13}{sup +} cluster. • Theoretical M{sub 4,5}-XANES have been compared with the experimental spectrum of free Nb{sub 13}{sup +}. • Icosahedral structure of Nb{sub 13}{sup +} shows better agreement with experiment than the “amorphous” one. • Distance between Nb atoms in the icosahedral cluster is distinctly reduced as compared to the bulk phase. - Abstract: The atomic and electronic structure of free niobium nanoclusters has been studied on the basis of X-ray absorption near-edge structure (XANES) spectroscopy and density functional theory. M{sub 4,5}-XANES spectra have been calculated for several structural models of the 13-atomic niobium cluster. The calculations have been done on the basis of both full multiple scattering theory within the muffin-tin approximation for a potential and full-potential finite difference method. The comparison of the experimental M{sub 4,5}-edge XANES spectrum (Peredkov et al., J. Electron Spectros. Relat. Phenomena 184 (2011) 113–118) with the simulated X-ray absorption spectra of Nb{sub 13}{sup +} hints to a highly-symmetric icosahedral structure of the cluster. An internuclear distance of 2.2 ± 0.1 Å between neighboring “surface” atoms of the icosahedron and 2.09 Å between the central “bulk” atom and “surface” atoms, respectively, has been found upon comparison of the experimental and theoretical XANES spectra.

  17. The International Linear Collider Technical Design Report - Volume 4: Detectors

    CERN Document Server

    Behnke, Ties; Burrows, Philip N.; Fuster, Juan; Peskin, Michael; Stanitzki, Marcel; Sugimoto, Yasuhiro; Yamada, Sakue; Yamamoto, Hitoshi

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  18. The International Linear Collider - Volume 1: Executive Summary

    CERN Document Server

    Brau, James E.; Foster, Brian; Fuster, Juan; Harrison, Mike; Paterson, James McEwan; Peskin, Michael; Stanitzki, Marcel; Walker, Nicholas; Yamamoto, Hitoshi

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  19. The International Linear Collider Technical Design Report - Volume 2: Physics

    CERN Document Server

    Barklow, Tim; Fujii, Keisuke; Gao, Yuanning; Hoang, Andre; Kanemura, Shinya; List, Jenny; Logan, Heather E; Nomerotski, Andrei; Perelstein, Maxim; Peskin, Michael E; Pöschl, Roman; Reuter, Jürgen; Riemann, Sabine; Savoy-Navarro, Aurore; Servant, Geraldine; Tait, Tim M P

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  20. The International Linear Collider Technical Design Report - Volume 2: Physics

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Howard [Univ. of Oklahoma, Norman, OK (United States); Barklow, Tim [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fujii, Keisuke [National Lab. for High Energy Physics (KEK), Tokai (Japan); Gao, Yuanning [Unlisted; Hoang, Andre [Univ. of Vienna (Austria); Kanemura, Shinya [Univ. of Toyama (Japan); List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Logan, Heather E. [Carleton Univ., Ottawa, ON (Canada); Nomerotski, Andrei [Univ. of Oxford (United Kingdom); Perelstein, Maxim [Cornell Univ., Ithaca, NY (United States); Peskin, Michael E. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Pöschl, Roman [Univ. Paris-Sud, Orsay (France). Linear Accelerator Lab. (LAL); Reuter, Jürgen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Riemann, Sabine [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Savoy-Navarro, Aurore [CNRS/IN2P3. Univ. Paris (France). Observatoire de Paris. AstroParticule et Cosmologie (APC); Servant, Geraldine [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tait, Tim P. [Univ. of California, Los Angeles, CA (United States); Yu, Jaehoon [Univ. of Science and Technology of China, Hefei (China)

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  1. The International Linear Collider Technical Design Report - Volume 4: Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Ties [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  2. Influence of precipitating agent in the preparation of hydrous niobium oxide by the method of homogeneous precipitation; Influencia do agente precipitante na preparacao do oxido de niobio (V) hidratado pelo metodo da precipitacao em solucao homogenea

    Energy Technology Data Exchange (ETDEWEB)

    Tagliaferro, Geronimo Virginio; Silva, Maria Lcia C.P. da; Silva, Gilberto L.J.P. da [Faculdade de Engenharia Quimica de Lorena, SP (Brazil). Dept. de Engenharia Quimica]. E-mail: mlcaetano@dequi.faenquil.br

    2005-04-01

    This work reports the preparation, characterization and study of the ion exchange behavior of hydrous niobium oxide prepared by a homogeneous precipitation method. The precipitating agent was obtained in aqueous solution by thermal decomposition of urea or ammonium carbonate. The compounds were chemically and physically characterized by X-ray diffractometry, thermal analysis (TG/DTG), surface area measurements and ion exchange behavior with sodium. The materials prepared with ammonium carbonate presented a higher degree of crystallinity and better ion exchange capacity with sodium than materials prepared with urea. In the homogeneous precipitation method, materials were obtained with specific surface area of 123 - 224 m{sup 2} g{sup -1}. A variation of the preparation process produced hydrous niobium oxide with a different degree of hydration and specific surface area. This provided materials with different physico-chemical properties. (author)

  3. Study of complex equilibria in niobium(V) and vanadium(V) systems with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol, tartrate and hydrogen peroxide using RP-HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Oszwaldowski, S.; Jarosz, M. [Politechnika Warszawska, Warsaw (Poland)

    1997-12-01

    Complex equilibria in multiligand niobium(V) systems with 2-(5-bromo-2-pyridilazo)-5-diethyl aminophenol (5-Br-PADAP), tartrate and hydrogen peroxide and vanadium(V) with 5-Br-PADP and tartrate were evaluated by reversed-phase high-performance liquid chromatography (RP-HPLC) using C{sub 18} column and VIS detection at 590 nm. In Nb(V)-H{sub 2}O{sub 2}-tartrate-(5-Br{sub P}ADAP) system formation of multiligand niobium complex, non-reactive towards 5-Br-PADAP, was postulated. For V(V) system distribution of metal ion between V(V)-(5-Br-PADAP) binary and V(V)-tartrate-(5-Br-PADAP) ternary complexes were evaluated. On this base it was proved, that coloured ternary vanadium complex is only an intermediate stage in the formation of stable V(V)-tartrate binary complex. (author). 14 refs, 7 figs.

  4. Study of the surface crystallization and resistance to dissolution of niobium phosphate glasses for nuclear waste immobilization; Estudo da cristalizacao superficial e da resistencia a dissolucao de vidros niobofosfatos visando a imobilizacao de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Heveline

    2008-07-01

    The surface crystallization and the dissolution rate of three phosphate glass compositions containing different amounts of niobium oxide were studied. The glasses were named Nb30, Nb37, and Nb44 according to the nominal content of niobium oxide in the glass composition. The three compositions were evaluated keeping the P{sub 2}O{sub 5}/K{sub 2}O ratio constant and varying the amount of Nb{sub 2}O{sub 5}. These glasses were produced by melting appropriate chemical compounds at 1500 deg C for 0.5 hour. The crystalline phases which were nucleated on the glass surface after heat treatment were determined by X-ray diffraction. The crystalline structures depend on the amount of niobium oxide in the glass composition. The crystal morphologies were observed by using an optical microscope, and their characteristics are specific for each kind of crystalline phase. The crystal growth rate and the surface nuclei density were determined for each glass composition, and they depend on each crystalline phase nucleated on the surface. From the differential thermal analysis curves it was determined that the Nb44 glass containing 46.5 mol por cent of niobium oxide is the most thermally stable against crystallization when compared to the Nb30 and Nb37 glasses. According to the activation energies determined for crystal growth on the surface of each glass type, the Nb44 glass can also be considered the most resistant one against crystallization. The dissolution rate for the Nb44 glass after 14 days immersed in an aqueous solution with pH equals to 7 at 90 deg C is the lowest (9.0 x 10{sup -7} g. cm{sup -2} . day{sup -1}) when compared to the other two glass compositions. The dissolution rates in acidic and neutral solutions of all studied glasses meet the international standards for materials which can be used in the immobilization of nuclear wastes. (author)

  5. Multivariate volume rendering

    Energy Technology Data Exchange (ETDEWEB)

    Crawfis, R.A.

    1996-03-01

    This paper presents a new technique for representing multivalued data sets defined on an integer lattice. It extends the state-of-the-art in volume rendering to include nonhomogeneous volume representations. That is, volume rendering of materials with very fine detail (e.g. translucent granite) within a voxel. Multivariate volume rendering is achieved by introducing controlled amounts of noise within the volume representation. Varying the local amount of noise within the volume is used to represent a separate scalar variable. The technique can also be used in image synthesis to create more realistic clouds and fog.

  6. Mean nuclear volume

    DEFF Research Database (Denmark)

    Mogensen, O.; Sørensen, Flemming Brandt; Bichel, P.

    1999-01-01

    We evaluated the following nine parameters with respect to their prognostic value in females with endometrial cancer: four stereologic parameters [mean nuclear volume (MNV), nuclear volume fraction, nuclear index and mitotic index], the immunohistochemical expression of cancer antigen (CA125...

  7. Chromium–niobium co-doped vanadium dioxide films: Large temperature coefficient of resistance and practically no thermal hysteresis of the metal–insulator transition

    Directory of Open Access Journals (Sweden)

    Kenichi Miyazaki

    2016-05-01

    Full Text Available We investigated the effects of chromium (Cr and niobium (Nb co-doping on the temperature coefficient of resistance (TCR and the thermal hysteresis of the metal–insulator transition of vanadium dioxide (VO2 films. We determined the TCR and thermal-hysteresis-width diagram of the V1−x−yCrxNbyO2 films by electrical-transport measurements and we found that the doping conditions x ≳ y and x + y ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a V0.90Cr0.06Nb0.04O2 film grown on a TiO2-buffered SiO2/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO2-based uncooled bolometers.

  8. Chromium–niobium co-doped vanadium dioxide films: Large temperature coefficient of resistance and practically no thermal hysteresis of the metal–insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Kenichi, E-mail: kenichi-miyazaki@denso.co.jp, E-mail: k.shibuya@aist.go.jp [Denso Corporation, Aichi 470-0111 (Japan); University of Tsukuba, Tsukuba 305-8571 (Japan); Shibuya, Keisuke, E-mail: kenichi-miyazaki@denso.co.jp, E-mail: k.shibuya@aist.go.jp; Sawa, Akihito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565 (Japan); Suzuki, Megumi; Sakai, Kenichi [Denso Corporation, Aichi 470-0111 (Japan); Fujita, Jun-ichi [University of Tsukuba, Tsukuba 305-8571 (Japan)

    2016-05-15

    We investigated the effects of chromium (Cr) and niobium (Nb) co-doping on the temperature coefficient of resistance (TCR) and the thermal hysteresis of the metal–insulator transition of vanadium dioxide (VO{sub 2}) films. We determined the TCR and thermal-hysteresis-width diagram of the V{sub 1−x−y}Cr{sub x}Nb{sub y}O{sub 2} films by electrical-transport measurements and we found that the doping conditions x ≳ y and x + y ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a V{sub 0.90}Cr{sub 0.06}Nb{sub 0.04}O{sub 2} film grown on a TiO{sub 2}-buffered SiO{sub 2}/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO{sub 2}-based uncooled bolometers.

  9. Interinstrumental transfer of a fast short-end injection capillary electrophoresis method: Application to the separation of niobium, tantalum, and their substituted ions.

    Science.gov (United States)

    De Cock, Bart; Oliver, James D; Delaunay, Nathalie; Deblonde, Gauthier; Mangelings, Debby; Vander Heyden, Yvan

    2017-08-01

    The interinstrumental transfer of a short-end CE method was studied. A model separation of the hexameric forms of niobium, tantalum, and their substituted ions (Nb6-x Tax with 0 ≤ x ≤ 6) was selected as test case. The method was first optimized on a Beckman instrument and in a second step transferred to an Agilent instrument. The transfer needed updated guidelines that tackled differences in effective capillary length, 8.5 (Agilent) versus 10 cm (Beckman), because of instrumental different capillary cartridges. Differences in effective length lead to migration time and separation efficiency inequalities, illustrated by a decrease in resolution between the substituted ions. The difference in effective length was overcome by adapting the lift offset parameter of the Agilent instrument. The lift offset default setting is 4 mm and by increasing this parameter both the inlet and outlet lifts are lowered and thus the detection window can be displaced and consequently the effective length was increased. The decrease in effective length difference and the effect on the separation efficiency was investigated and led finally to a restored separation of the substituted ions. The adaptation of the lift offset parameter during short-end injection methods was added to earlier developed guidelines to facilitate interinstrumental method transfer of CE methods. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Final report to the strategic environmental research and development program on near-net shape casting of uranium-6% niobium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gourdin, W.H.

    1996-01-01

    Fabrication methods traditionally used in the fabrication of depleted uranium parts within the Department of Energy (DOE) are extremely wasteful, with only 3% of the starting material actually appearing as finished product. The current effort, funded by the Strategic Environmental Research and Development Program (SERDP) at Los Alamos National Laboratory (LANL), Sandia National Laboratories, Albuquerque (SNLA), and Lawrence Livermore National Laboratory (LLNL), was conceived as a means to drastically reduce this inefficiency and the accompanying waste by demonstrating the technology to cast simple parts close to their final shape in molds made from a variety of materials. As a part of this coordinated study, LLNL was given, and has achieved, two primary objectives: (1) to demonstrate the feasibility of using refractory metal for reusable molds in the production of castings of uranium-6 wt% niobium alloy (U-6Nb); and (2) to demonstrate the utility of detailed simulations of thermal and fluid flow characteristics in the understanding and improvement of the near-net shape casting process. In both cases, our efforts were focused on a flat plate castings, which serve as simple prototypical parts. This report summarizes the results of LLNL work in each area.

  11. Thin film properties of sputtered niobium silicide on SiO/sub 2/, Si/sub 3/N/sub 4/, and N/sup +/ poly-Si

    Energy Technology Data Exchange (ETDEWEB)

    Chow, T.P.; Lu, W.J.; Steckl, A.J.; Baliga, B.J.

    1986-01-01

    Thin film properties of niobium silicide sputtered from a slightly silicon-rich (Si/Nb approx. = 2.3), cold-pressed alloy target onto SiO/sub 2/, Si/sub 3/N/sub 4/, and n doped poly-Si have been investigated. The structural and compositional properties were examined with x-ray diffraction, Rutherford backscattering spectrometry (RBS), and secondary ion mass spectrometry (SIMS). X-ray diffraction revealed that NbSi/sub 2/ was the predominant silicide phase present, unlike those films reported previously, which contained significant amounts of an intermediate silicide phase (Nb/sub 5/Si/sub 3/). These films had a SiNb ratio of 2.1 as determined from RBS and contained lower levels of common contaminants (such as N/sub 2/, O/sub 2/, and carbon). Isochronal and isothermal annealing showed that the major decrease in resistivity occurred in the first 5 min, and a resistivity value of approx. =70 ..mu cap omega..-cm was obtained after annealing at 1000/sup 0/C. During annealing, phosphorus was found to diffuse through NbSi/sub 2/ rapidly, similar to other refractory silicides.

  12. Numerical Investigation of the Role of Volumetric Transformation Strain on the Relaxation Stress and the Corresponding Hydrogen Interstitial Concentration in Niobium Matrix

    Directory of Open Access Journals (Sweden)

    Burak Bal

    2017-01-01

    Full Text Available The effects of relaxation stress on the hydrogen concentration in Niobium- (Nb- H media were investigated by iterative numerical modeling approach. To calculate the transformation strain, relaxation stress, and corresponding relaxed hydrogen concentration around an edge dislocation, a new third-order polynomial formulation was utilized in the model. With the aid of this polynomial, hydrogen induced relaxation stress never exceeds the dislocation stress, which indicates that the total stress field never turns to compressive state and diverges the results. The current model calculates the hydrogen concentration not only in the vicinity of an edge dislocation but also far away from the dislocation. Furthermore, the effect of relaxation stress on the interaction energy was also captured in the model. Overall, the current findings shed light on the complicated hydrogen embrittlement mechanisms of metallic materials by demonstrating that hydrogen induced relaxation has a significant effect on the hydrogen atom concentration and the interaction energy between the existing internal stress field and the solute hydrogen atom.

  13. Structural characterization of niobium oxide thin films grown on SrTiO3 (111) and (La,Sr)(Al,Ta)O3 (111) substrates

    Science.gov (United States)

    Dhamdhere, Ajit R.; Hadamek, Tobias; Posadas, Agham B.; Demkov, Alexander A.; Smith, David J.

    2016-12-01

    Niobium oxide thin films have been grown by molecular beam epitaxy on SrTiO3 (STO) (111) and (La0.18Sr0.82)(Al0.59Ta0.41)O3 (LSAT) (111) substrates. Transmission electron microscopy (TEM) confirmed the formation of high quality films with coherent interfaces. Films grown with higher oxygen pressure on STO (111) resulted in a (110)-oriented NbO2 phase with a distorted rutile structure, which can be described as body-centered tetragonal. The a lattice parameter of NbO2 was determined to be ˜13.8 Å in good agreement with neutron diffraction results published in the literature. Films grown on LSAT (111) at lower oxygen pressure produced the NbO phase with a defective rock salt cubic structure. The NbO lattice parameter was determined to be a ≈ 4.26 Å. The film phase/structure identification from TEM was in good agreement with in situ x-ray photoelectron spectroscopy measurements that confirmed the dioxide and monoxide phases, respectively. The atomic structure of the NbO2/STO and NbO/LSAT interfaces was determined based on comparisons between high-resolution electron micrographs and image simulations.

  14. A NOVEL OCTAHEDRAL NIOBIUM OXYCHLORIDE CLUSTER BUILT FROM INTERCONNECTED Nb6Cl12O4 UNITS: Cs2Sc3Nb1227O8

    Directory of Open Access Journals (Sweden)

    Fakhili Gulo

    2011-11-01

    Full Text Available A novel octahedral niobium cluster oxychloride compound, Cs2Sc3Nb12Cl27O8 was synthesized by solid-state route techniques from stoichiometric mixture of CsCl, Sc2O3, Nb, NbCl5, and Nb2O5, heated at 700 °C for two days. The crystal structure was determined by single crystal X-ray diffraction method. It crystallizes in orthorhombic system with space group of Pnma, a = 17.5206(1 Å, b = 29.6899(3 Å, c = 9.2114(1 Å, and V = 4791.63(8 Å3. The structure is based on  unit in which four oxygen ligands selectively occupy inner positions arranged in sets of three and one on opposite side of the Nb6 octahedron. Each cluster shares three apical-chlorine ligands with three adjacent clusters to form layers with topology similar to that of graphite. The cluster units are also connected to each other by both cesium and scandium atoms to form a three-dimensional framework. This compound exhibits 14 valence electrons per cluster.

  15. DFT insights into the electronic and optical properties of fluorine-doped monoclinic niobium pentoxide (B-Nb{sub 2}O{sub 5}:F)

    Energy Technology Data Exchange (ETDEWEB)

    El-Shazly, Tamer S.; Rehim, Sayed S.A. [Ain-Shams University, Chemistry Department, Faculty of Science, Cairo (Egypt); Hassan, Walid M.I. [Cairo University, Chemistry Department, Faculty of Science, Giza (Egypt); Allam, Nageh K. [American University in Cairo, Energy Materials Lab (EML), School of Sciences and Engineering, New Cairo (Egypt)

    2016-09-15

    We report on the effect of fluorine doping on the electronic structure and optical properties of monoclinic niobium pentoxide (B-Nb{sub 2}O{sub 5}) as revealed by the first principles calculations. Density functional theory (DFT) along with generalized gradient approximation (GGA) at the revised Perdew-Burke-Ernzerhof (PBEsol) exchange-correlation functional was used in this study. The band calculations revealed that the studied materials are indirect bandgap semiconductors, with bandgap energies of 2.67 and 2.28 eV for the undoped and F-doped B-Nb{sub 2}O{sub 5}, respectively. Upon doping B-Nb{sub 2}O{sub 5}, the Fermi level shifts towards the conduction band, allowing optical absorption in the visible region with enhanced transmittance in the wavelength range 400-1000 nm. The calculated static refractive index of the undoped B-Nb{sub 2}O{sub 5} is in good agreement with the reported experimental value, which is enhanced upon F-incorporation resulting in cladding properties for the F-doped B-Nb{sub 2}O{sub 5}. Also, the effective mass of free charge carriers increased upon F-doping. The enhanced properties were attributed to the effect of the excessive valent electron of the incorporated F atom. (orig.)

  16. Front matter: Volume 10385

    Science.gov (United States)

    Assoufid, Lahsen; Ohashi, Haruhiko; Asundi, Anand K.

    2017-09-01

    This PDF file contains the front matter associated with SPIE Proceedings Volume 10385, including the Title Page, Copyright information, Table of Contents, Introduction, and Conference Committee listing.

  17. Effort towards symmetric removal and surface smoothening of 1.3-GHz niobium single-cell cavity in vertical electropolishing using a unique cathode

    Science.gov (United States)

    Chouhan, Vijay; Kato, Shigeki; Nii, Keisuke; Yamaguchi, Takanori; Sawabe, Motoaki; Hayano, Hitoshi; Ida, Yoshiaki

    2017-08-01

    A detailed study on vertical electropolishing (VEP) of a 1.3-GHz single-cell niobium coupon cavity, which contains six coupons and four viewports at different positions, is reported. The cavity was vertically electropolished using a conventional rod and three types of unique cathodes named as Ninja cathodes, which were designed to have four retractable blades made of either an insulator or a metal or a combination of both. This study reveals the effect of the cathodes and their rotation speed on uniformity in removal thickness and surface morphology at different positions inside the cavity. Removal thickness was measured at several positions of the cavity using an ultrasonic thickness gauge and the surface features of the coupons were examined by an optical microscope and a surface profiler. The Ninja cathode with partial metallic blades was found to be effective not only in reducing asymmetric removal, which is one of the major problems in VEP and might be caused by the accumulation of hydrogen (H2 ) gas bubbles on the top iris of the cavity, but also in yielding a smooth surface of the entire cavity. A higher rotation speed of the Ninja cathode prevents bubble accumulation on the upper iris, and might result in a viscous layer of similar thickness in the cavity cell. Moreover, a higher electric field at the equator owing to the proximity of partial metallic blades to the equator surface resulted in a smooth surface. The effects of H2 gas bubbles and stirring were also observed in lab EP experiments.

  18. Effort towards symmetric removal and surface smoothening of 1.3-GHz niobium single-cell cavity in vertical electropolishing using a unique cathode

    Directory of Open Access Journals (Sweden)

    Vijay Chouhan

    2017-08-01

    Full Text Available A detailed study on vertical electropolishing (VEP of a 1.3-GHz single-cell niobium coupon cavity, which contains six coupons and four viewports at different positions, is reported. The cavity was vertically electropolished using a conventional rod and three types of unique cathodes named as Ninja cathodes, which were designed to have four retractable blades made of either an insulator or a metal or a combination of both. This study reveals the effect of the cathodes and their rotation speed on uniformity in removal thickness and surface morphology at different positions inside the cavity. Removal thickness was measured at several positions of the cavity using an ultrasonic thickness gauge and the surface features of the coupons were examined by an optical microscope and a surface profiler. The Ninja cathode with partial metallic blades was found to be effective not only in reducing asymmetric removal, which is one of the major problems in VEP and might be caused by the accumulation of hydrogen (H_{2} gas bubbles on the top iris of the cavity, but also in yielding a smooth surface of the entire cavity. A higher rotation speed of the Ninja cathode prevents bubble accumulation on the upper iris, and might result in a viscous layer of similar thickness in the cavity cell. Moreover, a higher electric field at the equator owing to the proximity of partial metallic blades to the equator surface resulted in a smooth surface. The effects of H_{2} gas bubbles and stirring were also observed in lab EP experiments.

  19. Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries

    Science.gov (United States)

    Hwang, Keebum; Sohn, Hiesang; Yoon, Songhun

    2018-02-01

    Mesostructured niobium (Nb)-doped TiO2-carbon (Nb-TiO2-C) composites are synthesized by a hydrothermal process for application as anode materials in Li-ion batteries. The composites have a hierarchical porous structure with the Nb-TiO2 nanoparticles homogenously distributed throughout the porous carbon matrix. The Nb content is controlled (0-10 wt%) to investigate its effect on the physico-chemical properties and electrochemical performance of the composite. While the crystalline/surface structure varied with the addition of Nb (d-spacing of TiO2: 0.34-0.36 nm), the morphology of the composite remained unaffected. The electrochemical performance (cycle stability and rate capability) of the Nb-TiO2-C composite anode with 1 wt% Nb doping improved significantly. First, a full cut-off potential (0-2.5 V vs. Li/Li+) of Nb-doped composite anode (1 wt%) provides a higher energy utilization than that of the un-doped TiO2-C anode. Second, Nb-TiO2-C composite anode (1 wt%) exhibits an excellent long-term cycle stability (100% capacity retention, 297 mAh/g at 0.5 C after 100 cycles and 221 mAh/g at 2 C after 500 cycles) and improved rate-capability (192 mAh/g at 5 C), respectively (1 C: 150 mA/g). The superior electrochemical performance of Nb-TiO2-C (1 wt%) could be attributed to the synergistic effect of improved electronic conductivity induced by optimal Nb doping (1 wt%) and lithium-ion penetration (high diffusion kinetics) through unique pore structures.

  20. The cross-section data from neutron activation experiments on niobium in the NPI p-7Li quasi-monoenergetic neutron field

    Directory of Open Access Journals (Sweden)

    Simakov S.P.

    2010-10-01

    Full Text Available The reaction of protons on 7Li target produces the high-energy quasi- monoenergetic neutron spectrum with the tail to lower energies. Proton energies of 19.8, 25.1, 27.6, 30.1, 32.6, 35.0 and 37.4 MeV were used to obtain quasi-monoenergetic neutrons with energies of 18, 21.6, 24.8, 27.6, 30.3, 32.9 and 35.6 MeV, respectively. Nb cross-section data for neutron energies higher than 22.5 MeV do not exist in the literature. Nb is the important material for fusion applications (IFMIF as well. The variable-energy proton beam of NPI cyclotron is utilized for the production of neutron field using thin lithium target. The carbon backing serves as the beam stopper. The system permits to produce neutron flux density about 109  n/cm2/s in peak at 30 MeV neutron energy. The niobium foils of 15 mm in diameter and approx. 0.75 g weight were activated. The nuclear spectroscopy methods with HPGe detector technique were used to obtain the activities of produced isotopes. The large set of neutron energies used in the experiment allows us to make the complex study of the cross-section values. The reactions (n,2n, (n,3n, (n,4n, (n,He3, (n,α and (n,2nα are studied. The cross-sections data of the (n,4n and (n,2nα are obtained for the first time. The cross-sections of (n,2n and (n,α reactions for higher neutron energies are strongly influenced by low energy tail of neutron spectra. This effect is discussed. The results are compared with the EAF-2007 library.

  1. BEGINNING INDONESIAN, VOLUME 3.

    Science.gov (United States)

    DYEN, ISIDORE

    VOLUME 3 OF A 4 VOLUME WORK ON BEGINNING INDONESIAN CONTAINS LESSONS 13-18 OF A TOTAL OF 24. THESE SIX LESSONS PROVIDE DRILLS IN BASIC INDONESIAN SENTENCE PATTERNS INVOLVING THE USE OF THE PASSIVE VOICE, PRONUNCIATION TECHNIQUES, ORTHOGRAPHY, FINAL VOWELS, AND FINAL SYLLABLES. LANGUAGE DRILLS ARE ALSO PROVIDED CONCERNING THE MONTHS OF THE YEAR AND…

  2. BEGINNING INDONESIAN. VOLUME 1.

    Science.gov (United States)

    DYEN, ISIDORE

    VOLUME 1 OF A 4-VOLUME WORK ON BEGINNING INDONESIAN CONTAINS THE FIRST 6 LESSONS OF A TOTAL OF 24. THESE SIX LESSONS PROVIDE DRILLS IN BASIC INDONESIAN SENTENCE PATTERNS INVOLVING THE USE OF TERMS OF ADDRESS, POLITE FORMULAS AND RESPONSES, AUXILIARIES, COMMANDS, AND ABSOLUTE EXPRESSIONS. RELATED REPORTS ARE ED 010 456 THROUGH ED 010 459. (GD)…

  3. BEGINNING INDONESIAN. VOLUME 2.

    Science.gov (United States)

    DYEN, ISIDORE

    VOLUME 2 OF A 4-VOLUME WORK ON BEGINNING INDONESIAN CONTAINS LESSONS 7-12 OF A TOTAL OF 24. THESE SIX LESSONS PROVIDE DRILLS IN BASIC INDONESIAN SENTENCE PATTERNS INVOLVING THE USE OF DIFFICULT VERBS, THE ACTIVE VOICE, INVERTED NARRATIVE CLAUSES, INTERROGATIVE WORDS, AND COUNTING METHODS. RELATED REPORTS ARE ED 010 456 THROUGH ED 010 459. (GD)

  4. Ovarian volume throughout life

    DEFF Research Database (Denmark)

    Kelsey, Thomas W; Dodwell, Sarah K; Wilkinson, A Graham

    2013-01-01

    to about 2.8 mL (95% CI 2.7-2.9 mL) at the menopause and smaller volumes thereafter. Our model allows us to generate normal values and ranges for ovarian volume throughout life. This is the first validated normative model of ovarian volume from conception to old age; it will be of use in the diagnosis...... cancer. To date there is no normative model of ovarian volume throughout life. By searching the published literature for ovarian volume in healthy females, and using our own data from multiple sources (combined n=59,994) we have generated and robustly validated the first model of ovarian volume from...... conception to 82 years of age. This model shows that 69% of the variation in ovarian volume is due to age alone. We have shown that in the average case ovarian volume rises from 0.7 mL (95% CI 0.4-1.1 mL) at 2 years of age to a peak of 7.7 mL (95% CI 6.5-9.2 mL) at 20 years of age with a subsequent decline...

  5. Variable volume combustor

    Science.gov (United States)

    Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul

    2017-01-17

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.

  6. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume......- serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle....... Understanding the structure/function relationship of TRPV4 is essential for future development of specific TRPV4 agonist for treatment of diseases causes by dysfunctional TRPV4. E.g. two inherited bone dysplasias have recently been demonstrated in humans to originate from TRPV4 mutations....

  7. Volume regulation in epithelia

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Hoffmann, Else Kay

    2016-01-01

    We review studies on regulatory volume decrease (RVD) and regulatory volume increase (RVI) of major ion and water transporting vertebrate epithelia. The rate of RVD and RVI is faster in cells of high osmotic permeability like amphibian gallbladder and mammalian proximal tubule as compared...... function of iso-osmotic fluid transport that depends on Na+ recirculation. The causative relationship is discussed for a fluid-absorbing and a fluid-secreting epithelium of which the Na+ recirculation mechanisms have been identified. A large number of transporters and ion channels involved in cell volume...... regulation are cloned. The volume-regulated anion channel (VRAC) exhibiting specific electrophysiological characteristics seems exclusive to serve cell volume regulation. This is contrary to K+ channels as well as cotransporters and exchange mechanisms that may serve both transepithelial transport and cell...

  8. Bronchoscopic lung volume reduction

    Directory of Open Access Journals (Sweden)

    M. I. Polkey

    2006-12-01

    Full Text Available Surgical lung volume reduction can improve exercise performance and forced expiratory volume in one second in patients with emphysema. However, the procedure is associated with a 5% mortality rate and a nonresponse rate of 25%. Accordingly, interest has focused on alternative ways of reducing lung volume. Two principle approaches are used: collapse of the diseased area using blockers placed endobronchially and the creation of extrapulmonary pathways. Preliminary data from the former approach suggest that it can be successful and that the magnitude of success is related to reduction in dynamic hyperinflation.

  9. Nota Editorial Volume X

    OpenAIRE

    Galinha,Iolanda Costa

    2014-01-01

    Neste momento de fecho do volume X da Psique, esta nota editorial tem como primeira finalidade agradecer aos especialistas em Psicologia, envolvidos no processo de revisão, selecção, e reformulação dos artigos publicados neste volume da Psique. Referimo-nos, naturalmente, ao Conselho Editorial da Psique, que foi o responsável por nos apoiar de perto neste processo ambicioso de promover, em simultâneo, a celeridade e a qualidade dos artigos a publicar neste volume da Psique. ...

  10. Environmental chemistry: Volume A

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  11. Integers annual volume 2013

    CERN Document Server

    Landman, Bruce

    2014-01-01

    ""Integers"" is a refereed online journal devoted to research in the area of combinatorial number theory. It publishes original research articles in combinatorics and number theory. This work presents all papers of the 2013 volume in book form.

  12. Bronchoscopic Lung Volume Reduction

    Directory of Open Access Journals (Sweden)

    Armin Ernst

    2011-01-01

    Full Text Available The application of lung volume reduction surgery in clinical practice is limited by high postoperative morbidity and stringent selection criteria. This has been the impetus for the development of bronchoscopic approaches to lung volume reduction. A range of different techniques such as endobronchial blockers, airway bypass, endobronchial valves, thermal vapor ablation, biological sealants, and airway implants have been employed on both homogeneous as well as heterogeneous emphysema. The currently available data on efficacy of bronchoscopic lung volume reduction are not conclusive and subjective benefit in dyspnoea scores is a more frequent finding than improvements on spirometry or exercise tolerance. Safety data are more promising with rare procedure-related mortality, few serious complications, and short hospital length of stay. The field of bronchoscopic lung volume reduction continues to evolve as ongoing prospective randomized trials build on earlier feasibility data to clarify the true efficacy of such techniques.

  13. Development of a capillary electrophoresis method for the analysis in alkaline media as polyoxoanions of two strategic metals: Niobium and tantalum.

    Science.gov (United States)

    Deblonde, Gauthier J-P; Chagnes, Alexandre; Cote, Gérard; Vial, Jérôme; Rivals, Isabelle; Delaunay, Nathalie

    2016-03-11

    Tantalum (Ta) and niobium (Nb) are two strategic metals essential to several key sectors, like the aerospace, gas and oil, nuclear and electronic industries, but their separation is really difficult due to their almost identical chemical properties. Whereas they are currently produced by hydrometallurgical processes using fluoride-based solutions, efforts are being made to develop cleaner processes by replacing the fluoride media by alkaline ones. However, methods to analyze Nb and Ta simultaneously in alkaline samples are lacking. In this work, we developed a capillary zone electrophoresis (CE) method able to separate and quantify Nb and Ta directly in alkaline media. This method takes advantage of the hexaniobate and hexatantalate ions which are naturally formed at pH>9 and absorb in the UV domain. First, the detection conditions, the background electrolyte (BGE) pH, the nature of the BGE co-ion and the internal standard (IS) were optimized by a systematic approach. As the BGE counter-ion nature modified the speciation of both ions, sodium- and lithium-based BGE were tested. For each alkaline cation, the BGE ionic strength and separation temperature were optimized using experimental designs. Since changes in the migration order of IS, Nb and Ta were observed within the experimental domain, the resolution was not a monotonic function of ionic strength and separation temperature. This forced us to develop an original data treatment for the prediction of the optimum separation conditions. Depending on the consideration of either peak widths or peak symmetries, with or without additional robustness constraints, four optima were predicted for each tested alkaline cation. The eight predicted optima were tested experimentally and the best experimental optimum was selected considering analysis time, resolution and robustness. The best separation was obtained at 31.0°C and in a BGE containing 10mM LiOH and 35mM LiCH3COO.The separation voltage was finally optimized

  14. Reachable volume RRT

    KAUST Repository

    McMahon, Troy

    2015-05-01

    © 2015 IEEE. Reachable volumes are a new technique that allows one to efficiently restrict sampling to feasible/reachable regions of the planning space even for high degree of freedom and highly constrained problems. However, they have so far only been applied to graph-based sampling-based planners. In this paper we develop the methodology to apply reachable volumes to tree-based planners such as Rapidly-Exploring Random Trees (RRTs). In particular, we propose a reachable volume RRT called RVRRT that can solve high degree of freedom problems and problems with constraints. To do so, we develop a reachable volume stepping function, a reachable volume expand function, and a distance metric based on these operations. We also present a reachable volume local planner to ensure that local paths satisfy constraints for methods such as PRMs. We show experimentally that RVRRTs can solve constrained problems with as many as 64 degrees of freedom and unconstrained problems with as many as 134 degrees of freedom. RVRRTs can solve problems more efficiently than existing methods, requiring fewer nodes and collision detection calls. We also show that it is capable of solving difficult problems that existing methods cannot.

  15. Altitude Acclimatization and Blood Volume: Effects of Exogenous Erythrocyte Volume Expansion

    National Research Council Canada - National Science Library

    Sawka, M

    1996-01-01

    ...: (a) altitude acclimatization effects on erythrocyte volume and plasma volume; (b) if exogenous erythrocyte volume expansion alters subsequent erythrocyte volume and plasma volume adaptations; (c...

  16. The International Linear Collider Technical Design Report - Volume 1: Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Ties [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Brau, James E. [Univ. of Oregon, Eugene, OR (United States); Foster, Brian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Fuster, Juan [Univ. of Valencia (Spain); Harrison, Mike [Brookhaven National Lab. (BNL), Upton, NY (United States); Paterson, James McEwan [SLAC National Accelerator Lab., Menlo Park, CA (United States); Peskin, Michael [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanitzki, Marcel [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Walker, Nicholas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yamamoto, Hitoshi [Tohoku Univ., Sendai (Japan)

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  17. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \\& in the Technical Design Phase

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  18. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  19. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    CERN Document Server

    Adolphsen, Chris; Barish, Barry; Buesser, Karsten; Burrows, Philip; Carwardine, John; Clark, Jeffrey; Durand, Helene Mainaud; Dugan, Gerry; Elsen, Eckhard; Enomoto, Atsushi; Foster, Brian; Fukuda, Shigeki; Gai, Wei; Gastal, Martin; Geng, Rongli; Ginsburg, Camille; Guiducci, Susanna; Harrison, Mike; Hayano, Hitoshi; Kershaw, Keith; Kubo, Kiyoshi; Kuchler, Victor; List, Benno; Liu, Wanming; Michizono, Shinichiro; Nantista, Christopher; Osborne, John; Palmer, Mark; Paterson, James McEwan; Peterson, Thomas; Phinney, Nan; Pierini, Paolo; Ross, Marc; Rubin, David; Seryi, Andrei; Sheppard, John; Solyak, Nikolay; Stapnes, Steinar; Tauchi, Toshiaki; Toge, Nobu; Walker, Nicholas; Yamamoto, Akira; Yokoya, Kaoru

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  20. EVALUATION OF THERMAL PROTECTIVE SYSTEMS FOR ADVANCED AEROSPACE VEHICLES. VOLUME II: APPENDICES.

    Science.gov (United States)

    AEROSPACE CRAFT, TABLES(DATA), GRAPHICS, OXIDES, BERYLLIUM, HAFNIUM COMPOUNDS, SPINEL, ZIRCONIUM COMPOUNDS, NITRIDES, CARBIDES, BORIDES , SILICIDES...GRAPHITE, NIOBIUM, MOLYBDENUM , TANTALUM, TUNGSTEN, THERMAL PROPERTIES, THERMAL PROPERTIES, SPECIFIC HEAT.

  1. HARNESSING BIG DATA VOLUMES

    Directory of Open Access Journals (Sweden)

    Bogdan DINU

    2014-04-01

    Full Text Available Big Data can revolutionize humanity. Hidden within the huge amounts and variety of the data we are creating we may find information, facts, social insights and benchmarks that were once virtually impossible to find or were simply inexistent. Large volumes of data allow organizations to tap in real time the full potential of all the internal or external information they possess. Big data calls for quick decisions and innovative ways to assist customers and the society as a whole. Big data platforms and product portfolio will help customers harness to the full the value of big data volumes. This paper deals with technical and technological issues related to handling big data volumes in the Big Data environment.

  2. Aperiodic Volume Optics

    Science.gov (United States)

    Gerke, Tim D.

    Presented in this thesis is an investigation into aperiodic volume optical devices. The three main topics of research and discussion are the aperiodic volume optical devices that we call computer-generated volume holograms (CGVH), defects within periodic 3D photonic crystals, and non-periodic, but ordered 3D quasicrystals. The first of these devices, CGVHs, are designed and investigated numerically and experimentally. We study the performance of multi-layered amplitude computer-generated volume holograms in terms of efficiency and angular/frequency selectivity. Simulation results show that such aperiodic devices can increase diffraction efficiency relative to periodic amplitude volume holograms while maintaining angular and wavelength selectivity. CGVHs are also designed as voxelated volumes using a new projection optimization algorithm. They are investigated using a volumetric diffraction simulation and a standard 3D beam propagation technique as well as experimentally. Both simulation and experiment verify that the structures function according to their design. These represent the first diffractive structures that have the capacity for generating arbitrary transmission and reflection wave fronts and that provide the ability for multiplexing arbitrary functionality given different illumination conditions. Also investigated and discussed in this thesis are 3D photonic crystals and quasicrystals. We demonstrate that these devices can be fabricated using a femtosecond laser direct writing system that is particularly appropriate for fabrication of such arbitrary 3D structures. We also show that these devices can provide 3D partial bandgaps which could become complete bandgaps if fabricated using high index materials or by coating lower index materials with high index metals. Our fabrication method is particularly suited to the fabrication of engineered defects within the periodic or quasi-periodic systems. We demonstrate the potential for fabricating defects within

  3. Mean nuclear volume

    DEFF Research Database (Denmark)

    Mogensen, O.; Sørensen, Flemming Brandt; Bichel, P.

    1999-01-01

    We evaluated the following nine parameters with respect to their prognostic value in females with endometrial cancer: four stereologic parameters [mean nuclear volume (MNV), nuclear volume fraction, nuclear index and mitotic index], the immunohistochemical expression of cancer antigen (CA125...... (range 5.0-8.4 years). Cox regression analysis (automatic forward selection) showed the MNV to be the most significant prognostic parameter followed by the P-stage. Patients who had localized tumors or tumors with small nuclei had a better probability of surviving than did women with advanced tumors...

  4. Volume holographic memory

    Directory of Open Access Journals (Sweden)

    Cornelia Denz

    2000-05-01

    Full Text Available Volume holography represents a promising alternative to existing storage technologies. Its parallel data storage leads to high capacities combined with short access times and high transfer rates. The design and realization of a compact volume holographic storage demonstrator is presented. The technique of phase-coded multiplexing implemented to superimpose many data pages in a single location enables to store up to 480 holograms per storage location without any moving parts. Results of analog and digital data storage are shown and real time optical image processing is demonstrated.

  5. Defense Small Business Innovation Research Program (SBIR) Volume 2. Navy Abstracts of Phase 1 Awards, 1987

    Science.gov (United States)

    1988-04-01

    BUOYANT MICROCAPSULES FILLED WITH A FLUORESCENT DYE SOLUTION WILL BE USED AS THE PARTICLES. A SHEET OF LASER LIGHT WILL SMALL BUSINESS INNOVATION...OCEAN. NIOBIUM-TITANIUM, NIOBIUM-TIN, AND THE NEWER LANTHANUM- COPPER -BARIUM-OXYGEN COMPOUND WILL BE EVALUATED AS SUPERCONDUCTORS. A COPPER MATRIX...PANELS WILL BE FABRICATED USING NEW HIGH K (?X COPPER ) PITCH FIBERS IN A SILICON CARBIDE MATRIX. DEMONSTRATION OF RF BARRIERS AND DIELECTRIC INSULATION

  6. Thermal conductivity of niobium diselenide

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, F. Jr.

    1976-10-01

    Thermal conductivity measurements have been used to study the temperature dependence of the various scattering mechanisms present in single crystals of NbSe in a temperature range from 1 to 10/sup 0/K. Phonons are found to contribute a substantial fraction of the conduction in this temperature range and, in general, the results agree well with standard theoretical models for three-dimensional metals. The presence of van der Waals boundaries beween the layers introduces no significant boundary scattering for phonons. In addition to the usual electron and point defect scattering terms which are present in the phonon conductivity, a term which has a linear temperature dependence was found. This linear term may be caused by stacking fault scattering centers. A linear field dependence of the electrical magnetoresistance is reported and it is suggested this term may arise from magnetic breakdown at energy gaps in the Fermi surface induced by charge-density waves as suggested by Overhauser. It is noted that the ratio of the superconducting to normal state thermal conductivity is consistent with a BCS-like superconducting energy gap.

  7. Mechanical Properties of Niobium Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Dhakal, Pashupati [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Matalevich, Joseph R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Myneni, Ganapati Rao [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The mechanical stability of bulk Nb cavity is an important aspect to be considered in relation to cavity material, geometry and treatments. Mechanical properties of Nb are typically obtained from uniaxial tensile tests of small samples. In this contribution we report the results of measurements of the resonant frequency and local strain along the contour of single-cell cavities made of ingot and fine-grain Nb of different purity subjected to increasing uniform differential pressure, up to 6 atm. Measurements have been done on cavities subjected to different heat treatments. Good agreement between finite element analysis simulations and experimental data in the elastic regime was obtained with a single set of values of Young’s modulus and Poisson’s ratio. The experimental results indicate that the yield strength of medium-purity ingot Nb cavities is higher than that of fine-grain, high-purity Nb.

  8. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance; Desenvolvimento de uma liga de ferro fundido branco alto cromo com niobio, tratada termicamente, para resistencia ao desgaste abrasivo

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Alessandro Fraga

    1997-07-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  9. Application of factorial design and Doehlert matrix for determination of trace lead in environmental samples by on-line column preconcentration FAAS using silica gel chemically modified with niobium(V) oxide.

    Science.gov (United States)

    Roux, Kalya Cravo Di Pietro; Maltez, Heloisa França; Carletto, Jeferson Schneider; Martendal, Edmar; Carasek, Eduardo

    2008-03-01

    In this study a new method for Pb determination in water using solid phase extraction coupled to a flow injection system and flame atomic absorption spectrometry was developed. The sorbent used for Pb preconcentration and extraction was silica gel chemically modified with niobium(V) oxide. Flow and chemical variables of the system were optimized through a multivariate procedure. The factors selected were buffer type, eluent concentration, and sample and eluent flow rates. It was verified that the aforementioned factors as well as their interactions were statistically significant at the 95% confidence level. The effect of foreign ions was evaluated using a fractionary factorial experimental design. The detection limit was 0.35 microg L(-1) and the precision was 1.6%. Results for recovery tests using different environmental samples were between 90 and 104%. Certified reference materials were analyzed in order to check the accuracy of the proposed method.

  10. Liter - Metric Volume.

    Science.gov (United States)

    Sisk, Diane

    This autoinstructional program, developed as part of a general science course, is offered for students in the middle schools. Mathematics of fractions and decimals is considered to be prerequisite knowledge. The behavioral objectives are directed toward mastery of determining volumes of solid objects using the water displacement method as well as…

  11. Another year, another volume

    Science.gov (United States)

    Bill Block

    2012-01-01

    This issue represents the final one in volume 76 of Journal of Wildlife Management. As this one is pretty much in the books, one cannot help but wonder what the future holds for the journal. Lenny Brennan is putting together a piece for Wildlife Society Bulletin to examine how The Wildlife Society publications have changed through time. He solicited input from past and...

  12. Mean Platelet Volume

    African Journals Online (AJOL)

    Department of Chest Disease, Bolu, Turkey. E-mail: abanttip14@gmail.com. Telephone number: +903742534618. Fax number: +903742534615 effective and should have wide spread acceptance. At present, none of the available diagnostic tests meets all these criteria. The mean platelet volume (MPV) is potentially one of.

  13. Volume 9 Number 2

    African Journals Online (AJOL)

    OLUWOLE

    Volume 9 Number 2 May 2010 PP. 131 – 136 ... The study assessed the effectiveness of Songhai-Delta fish culture training programme. A structured ..... The high adoption of these technologies might be due to the fact that these farmers are fish farmers and would like to adopt improved technologies that would meet their ...

  14. Study of uranium - 20 Wt per cent plutonium-niobium alloys (1963); Etude d'alliages U-Pu-Nb a 20 pour cent en poids de plutonium (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, J.; Barthelemy, P.; Boucher, R. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1963-07-01

    U-Pu-Nb alloys containing 20 wt per cent Pu and 10 - 20 - 30 - 40 - 50 or 60 wt per cent Nb have been studied principally to determine the feasibility of their use as fuel element. The fabrication, casting and homogenisation presented certain difficulties due specially to niobium. The transformation temperatures, thermal expansion coefficients and nature of phases have been determined by thermal analysis, dilatometry, micrography and X Rays diffraction. For similar compositions, U-Pu-Mo and U-Pu-Nb alloys have many common points concerning the presence of zeta phase (up to 40 wt per cent Nb), the coefficients of expansion, the good behaviour during thermal cycling and the good resistance to air oxidation in spite of zeta phase. In consequence, irradiation tests in EL{sub 3} reactor (Saclay) will be carried out in the near future. (authors) [French] Les alliages a 20 pour cent de plutonium, 10 - 20 - 30 - 40 - 50 - 60 pour cent de niobium et le complement en uranium ont ete etudies du point de vue de leur possibilite d'emploi comme combustible. Les problemes d'elaboration, de mise en forme et d'homogeneisation sont presentes. Ils sont relativement delicats. On a determine par analyse thermique, dilatometrie, micrographie et diffraction des rayons X les temperatures de transformation a l'etat solide, les coefficients de dilatation et la nature des phases. Pour des teneurs analogues, on retrouve de nombreux points communs avec les alliages U-Pu-Mo: presence de la phase zeta des U-Pu a temperature moyenne, coefficients de dilatation analogues, bonne tenue en cyclage thermique et bonne resistance a l'oxydation dans l'air malgre la presence de la phase zeta. Des essais d'irradiation dans EL{sub 3} vont etre entrepris. (auteurs)

  15. Analysis of micro-composition of biological tissue by means of induced radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, C.A.; Dunn, R.W.

    1948-05-24

    The use of radioactive isotopes as tracers promises a wealth of information regarding the biochemical role of most elements and their components. Usually a radioactive sample of the element to be studied is administered to the plant or animal in a convenient form, and its distribution and rate of exchange are determined in later assays. This technique has, however, certain limitations, two of which will be discussed here: (1) radioactive isotopes are not generally useful for measurements of the concentration of elements in the body or its parts. They can be used only to give a measure of the rate of exchange of the elements and (2) the use of radioactive isotopes for tracer experiments requires that the radiation dose delivered to the tissue should be small in order not to disturb normal biological function.

  16. Thermochemical behaviour of Ru(II) complex–SiO2 microcomposites

    Indian Academy of Sciences (India)

    WINTEC

    city of the matrix produced, thus, improving the device performance in liquid media (McDonagh et al 1998). ... 2.2 Thermal and structural characterization. The differential scanning calorimetry study of the depo- ... of TA SDT Q600 thermogravimeter in static air at a heat- ing rate of 20°C/min. DTA, TG and DTG curves of the ...

  17. Thermochemical behaviour of Ru (II) complex–SiO 2 microcomposites

    Indian Academy of Sciences (India)

    Author Affiliations. S Anastasova1 M Milanova1 I Manolov2 T Czeppe3 D Todorovsky1. Faculty of Chemistry, University of Sofia, 1. J. Bourchier Blvd., Sofia 1164, Bulgaria; Faculty of Pharmacy, Medical University of Sofia, 2, Dunav St., BG-1000 Sofia, Bulgaria; Institute of Metallurgy and Material Science, Polish Academy of ...

  18. IMPROVING AIRCRAFT PARTS DUE TO USING NANO-COMPOSITE AND MICRO-COMPOSITE MATERIAL

    Directory of Open Access Journals (Sweden)

    Hassany Merhdad Boer

    2017-01-01

    Full Text Available In this paper it is investigated how to make composite carbon nanofiber/ epoxy resin and carbon micro-fiber / epoxy resin. Also, these materials' features are compared and it is shown how effective and benefitial are the received products containing carbon nano- and micro-fibers.In this study, epoxy composites were prepared in order to improve their mechanical and electrical properties. Ergo, carbon nanofibers and carbon microfibers were used as fillers. On the one hand, purchased microfibers were incorporatedinto the epoxy resin to produce epoxy/carbon microfiber composites via mechanical mixing at 1800 rpm in different concentrations (0.0125, 0.0225, 0.05, and 0.1.On the other hand, carbon nanofibers were prepared via electrospining method at room temperature, then epoxy/carbon nanofiber nanocomposites were prepared at mixing temperature of 60 °C at 1200 rpm at different concentrations (0.0125, 0.05, and 0.1.Morphology of samples was investigated via Field Emission Scanning Electron Microscopy (FESEM. Mechanical properties of samples were investigated via tensile and bending tests. Tensile test results revealed that incorporation of 0.0125 wt% carbon naofibers increased the epoxy resins modulus about 200%. Bending strength of sample containing 0.1wt% carbon microfibers had the most increment (from 20 to 100 MPa.

  19. Micro-Composite Fabrication via Field-Aided Laminar Composite (FALCom) Processing

    Science.gov (United States)

    2012-09-01

    transmission electron microscope (TEM) can be seen in figure 1. In the image, the ring -like structures are the cross- sectional ends of the MWCNTs (1...Polymers. J. Mat. Res. 1997, 12 (9), 2345–2356. 11. Kim, G. H.; Shkel, Y. M.; Rowlands , R. E. Field-Aided Micro-Tailoring of Polymeric Nanocomposites...In Proceedings of SPIE, 2003. 12. Shkel, Y. M.; Kim, G. H.; Rowlands , R. E. Analysis of Functionally Graded Composites Fabricated by Field Aided

  20. Small-Volume Injections: Evaluation of Volume Administration Deviation From Intended Injection Volumes.

    Science.gov (United States)

    Muffly, Matthew K; Chen, Michael I; Claure, Rebecca E; Drover, David R; Efron, Bradley; Fitch, William L; Hammer, Gregory B

    2017-10-01

    In the perioperative period, anesthesiologists and postanesthesia care unit (PACU) nurses routinely prepare and administer small-volume IV injections, yet the accuracy of delivered medication volumes in this setting has not been described. In this ex vivo study, we sought to characterize the degree to which small-volume injections (≤0.5 mL) deviated from the intended injection volumes among a group of pediatric anesthesiologists and pediatric postanesthesia care unit (PACU) nurses. We hypothesized that as the intended injection volumes decreased, the deviation from those intended injection volumes would increase. Ten attending pediatric anesthesiologists and 10 pediatric PACU nurses each performed a series of 10 injections into a simulated patient IV setup. Practitioners used separate 1-mL tuberculin syringes with removable 18-gauge needles (Becton-Dickinson & Company, Franklin Lakes, NJ) to aspirate 5 different volumes (0.025, 0.05, 0.1, 0.25, and 0.5 mL) of 0.25 mM Lucifer Yellow (LY) fluorescent dye constituted in saline (Sigma Aldrich, St. Louis, MO) from a rubber-stoppered vial. Each participant then injected the specified volume of LY fluorescent dye via a 3-way stopcock into IV tubing with free-flowing 0.9% sodium chloride (10 mL/min). The injected volume of LY fluorescent dye and 0.9% sodium chloride then drained into a collection vial for laboratory analysis. Microplate fluorescence wavelength detection (Infinite M1000; Tecan, Mannedorf, Switzerland) was used to measure the fluorescence of the collected fluid. Administered injection volumes were calculated based on the fluorescence of the collected fluid using a calibration curve of known LY volumes and associated fluorescence.To determine whether deviation of the administered volumes from the intended injection volumes increased at lower injection volumes, we compared the proportional injection volume error (loge [administered volume/intended volume]) for each of the 5 injection volumes using a linear

  1. Excess Molar Volumes and Partial Molar Volumes of Binary Systems ...

    African Journals Online (AJOL)

    NJD

    Excess molar volumes have been evaluated from density measurements over the entire composition range for binary systems of an ionic liquid ... was used to fit the excess molar volume data and the partial molar volumes were determined from the Redlich-Kister coefficients. ... ture below the boiling point of water. Most of ...

  2. Environmental Report 1996, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Harrach, R.J.

    1996-01-01

    This is Volume 2 of the Lawrence Livermore National Laboratory`s (LLNL`s) annual Environmental Report 1996, prepared for the US Department of Energy. Volume 2 supports Volume 1 summary data and is essentially a detailed data report that provides individual data points, where applicable. Volume 2 includes information on monitoring of air, air effluents, sewerable water, surface water, ground water, soil and sediment, vegetation and foodstuff, environmental radiation, and quality assurance.

  3. REFLECTION AND REFRACTION, VOLUME 2.

    Science.gov (United States)

    KLAUS, DAVID J.; AND OTHERS

    THIS VOLUME 2 OF A TWO-VOLUME SET PROVIDES AUTOINSTRUCTION IN PHYSICS. THE UNITS COVERED IN THIS VOLUME ARE (1) REFLECTION OF LIGHT, (2) PHOTOMETRY, (3) POLARIZATION, (4) REFRACTION OF LIGHT, (5) SNELL'S LAW, (6) LENSES, FOCUS, AND FOCAL POINTS, (7) IMAGE FORMATION, AND (8) ABERRATIONS, THE EYE, AND MAGNIFICATION. THE INTRODUCTION AND UNITS ON…

  4. Installation Restoration Program (IRP) Stage 3. McClellan Air Force Base. Operable Unit B. Preliminary Assessment Summary Report. Volume 3. Appendices C, D & E

    Science.gov (United States)

    1991-10-01

    Isoortylthloglycolate Isopropyl alcohol lactic acid lanthanum lanthanum chloride lanthanum nitrate lanthanum oxide lead lead chloride lead nitrate lithium ... lithium chloride lithium fluoride lithium iodide lithium nitrate lutetium oxide magnesium magnesium chloride magnesium nitrate magnesium oxide malonlc acid...nitrate nickalous n;trate nioblum niobium oxalate niobium oxide nitric acid nttrobenzene nitroguanidlne orotic acid oxalic acid p-amlnobenzoic acid p

  5. Influência do agente precipitante na preparação do óxido de nióbio (V hidratado pelo método da precipitação em solução homogênea Influence of precipitating agent in the preparation of hydrous niobium oxide by the method of homogeneous precipitation

    Directory of Open Access Journals (Sweden)

    Geronimo Virginio Tagliaferro

    2005-03-01

    Full Text Available This work reports the preparation, characterization and study of the ion exchange behavior of hydrous niobium oxide prepared by a homogeneous precipitation method. The precipitating agent was obtained in aqueous solution by thermal decomposition of urea or ammonium carbonate. The compounds were chemically and physically characterized by X-ray diffractometry, thermal analysis (TG/DTG, surface area measurements and ion exchange behavior with sodium. The materials prepared with ammonium carbonate presented a higher degree of crystallinity and better ion exchange capacity with sodium than materials prepared with urea. In the homogeneous precipitation method, materials were obtained with specific surface area of 123 - 224 m² g-1. A variation of the preparation process produced hydrous niobium oxide with a different degree of hydration and specific surface area. This provided materials with different physico-chemical properties.

  6. A versatile entry into aqueous niobium chemistry: isolation and structure of the intermediate Nb4(mu2-O)2(mu2-OC2H5)4Cl2(OC2H5)4(HOC2H5)4

    DEFF Research Database (Denmark)

    Ooi, Bee Lean; Søtofte, Inger

    2004-01-01

    The reduction of ethanolic solutions of niobium pentachloride with zinc, followed by treatment with aqueous acids serves as a versatile entry into the aqueous solution chemistry of niobium. From the zinc-reduced solution, the major intermediate, Nb4(mu2-O)2(mu2-OC2H5)4Cl4(OC2H5)4(HOC2H5)4......¬symmetric tetrameric Nb(IV) complex, consisting of a pair of edge-sharing bi-octahedral Nb2(mu2-OC2H5)4Cl2(OC2H5)2(HOC2H5)2 units that are joined by two axial oxo ligands. The Nb-Nb distance of 2.7458(3) Å is consistent with a single metal-metal bond....

  7. Influência do agente precipitante na preparação do óxido de nióbio (V) hidratado pelo método da precipitação em solução homogênea Influence of precipitating agent in the preparation of hydrous niobium oxide by the method of homogeneous precipitation

    OpenAIRE

    Geronimo Virginio Tagliaferro; Maria Lúcia C. P. da Silva; Gilberto L. J. P. da Silva

    2005-01-01

    This work reports the preparation, characterization and study of the ion exchange behavior of hydrous niobium oxide prepared by a homogeneous precipitation method. The precipitating agent was obtained in aqueous solution by thermal decomposition of urea or ammonium carbonate. The compounds were chemically and physically characterized by X-ray diffractometry, thermal analysis (TG/DTG), surface area measurements and ion exchange behavior with sodium. The materials prepared with ammonium carbona...

  8. Environmental report 1995. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Harrach, R.J.; Failor, R.A.; Gallegos, G.M. [and others

    1996-09-01

    This is Volume 2 of the Lawrence Livermore National Laboratory`s (LLNL`s) annual Environmental Report 1995. This volume is intended to support summary data from Volume 1 and is essentially a detailed data report that provides additional data points, where applicable. Some summary data are also included in Volume 2, and more detailed accounts are given of sample collection and analytical methods. Volume 2 includes information in eight chapters on monitoring of air, air effluent, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation, as well as three chapters on ground water protection, compliance self-monitoring and quality assurance.

  9. Volume of an Industrial Autoclave

    Directory of Open Access Journals (Sweden)

    Nicholas Madaffari

    2010-01-01

    Full Text Available We were able to determine the volume of an industrial autoclave sterilization tank using a technique learned in calculus. By measuring the dimensions of the tank and roughly estimating the equation of curvature at the ends of the tank, we were able to revolve half of the end of the tank around the x axis to get its fluid volume. Adding the two volumes of the ends and the volume of the cylindrical portion on the tank yielded the total volume.

  10. Generalized Partial Volume

    DEFF Research Database (Denmark)

    Darkner, Sune; Sporring, Jon

    2011-01-01

    Mutual Information (MI) and normalized mutual information (NMI) are popular choices as similarity measure for multimodal image registration. Presently, one of two approaches is often used for estimating these measures: The Parzen Window (PW) and the Generalized Partial Volume (GPV). Their theoret...... of view as well as w.r.t. computational complexity. Finally, we present algorithms for both approaches for NMI which is comparable in speed to Sum of Squared Differences (SSD), and we illustrate the differences between PW and GPV on a number of registration examples....

  11. External bulb variable volume maser

    Science.gov (United States)

    Reinhardt, V. S.; Cervenka, P. O. (Inventor)

    1978-01-01

    A maser functioning as a frequency standard stable to one part in 10 to the 14th power includes a variable volume, constant surface area storage bulb having a fixed volume portion located in a resonant cavity from which the frequency standard is derived. A variable volume portion of the bulb, exterior to the resonant cavity, has a maximum volume on the same order of magnitude as the fixed volume bulb portion. The cavity has a length to radius ratio of at least 3:1 so that the operation is attained without the need for a feedback loop. A baffle plate, between the fixed and variable volume bulb portions, includes apertures for enabling hydrogen atoms to pass between the two bulb portions and is an electromagnetic shield that prevents coupling of the electromagnetic field of the cavity into the variable volume bulb portion.

  12. The International Linear Collider Technical Design Report - Volume 3.I: Accelerator R&D in the Technical Design Phase

    CERN Document Server

    Adolphsen, Chris; Barish, Barry; Buesser, Karsten; Burrows, Philip; Carwardine, John; Clark, Jeffrey; Durand, Hélène Mainaud; Dugan, Gerry; Elsen, Eckhard; Enomoto, Atsushi; Foster, Brian; Fukuda, Shigeki; Gai, Wei; Gastal, Martin; Geng, Rongli; Ginsburg, Camille; Guiducci, Susanna; Harrison, Mike; Hayano, Hitoshi; Kershaw, Keith; Kubo, Kiyoshi; Kuchler, Victor; List, Benno; Liu, Wanming; Michizono, Shinichiro; Nantista, Christopher; Osborne, John; Palmer, Mark; Paterson, James McEwan; Peterson, Thomas; Phinney, Nan; Pierini, Paolo; Ross, Marc; Rubin, David; Seryi, Andrei; Sheppard, John; Solyak, Nikolay; Stapnes, Steinar; Tauchi, Toshiaki; Toge, Nobu; Walker, Nicholas; Yamamoto, Akira; Yokoya, Kaoru

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  13. Volume 6, Issue 1

    Directory of Open Access Journals (Sweden)

    Karen Nelson

    2015-03-01

    Full Text Available The International Journal of the First Year in Higher Education (Int J FYHE explores the transition experience of the first year student but this issue, Volume 6 Issue 1, has several unique characteristics. As a publication, it has a significant transition feature of its own: This issue is the last under this title and the current journal is to undergo a transformation, re-emerging with a new title and look in time for the inaugural STARS Conference in Melbourne, Australia in July 2015.   These are exciting times, not only for our editorial team, but also for prospective authors as the new journal will broaden the current First Year focus to that of enhancing students’ tertiary experiences across their entire learning journey in all its multiplicity and complexity.

  14. The physics of volume rendering

    Science.gov (United States)

    Peters, Thomas

    2014-11-01

    Radiation transfer is an important topic in several physical disciplines, probably most prominently in astrophysics. Computer scientists use radiation transfer, among other things, for the visualization of complex data sets with direct volume rendering. In this article, I point out the connection between physical radiation transfer and volume rendering, and I describe an implementation of direct volume rendering in the astrophysical radiation transfer code RADMC-3D. I show examples for the use of this module on analytical models and simulation data.

  15. Direct volume estimation without segmentation

    Science.gov (United States)

    Zhen, X.; Wang, Z.; Islam, A.; Bhaduri, M.; Chan, I.; Li, S.

    2015-03-01

    Volume estimation plays an important role in clinical diagnosis. For example, cardiac ventricular volumes including left ventricle (LV) and right ventricle (RV) are important clinical indicators of cardiac functions. Accurate and automatic estimation of the ventricular volumes is essential to the assessment of cardiac functions and diagnosis of heart diseases. Conventional methods are dependent on an intermediate segmentation step which is obtained either manually or automatically. However, manual segmentation is extremely time-consuming, subjective and highly non-reproducible; automatic segmentation is still challenging, computationally expensive, and completely unsolved for the RV. Towards accurate and efficient direct volume estimation, our group has been researching on learning based methods without segmentation by leveraging state-of-the-art machine learning techniques. Our direct estimation methods remove the accessional step of segmentation and can naturally deal with various volume estimation tasks. Moreover, they are extremely flexible to be used for volume estimation of either joint bi-ventricles (LV and RV) or individual LV/RV. We comparatively study the performance of direct methods on cardiac ventricular volume estimation by comparing with segmentation based methods. Experimental results show that direct estimation methods provide more accurate estimation of cardiac ventricular volumes than segmentation based methods. This indicates that direct estimation methods not only provide a convenient and mature clinical tool for cardiac volume estimation but also enables diagnosis of cardiac diseases to be conducted in a more efficient and reliable way.

  16. Volume and Surface-Enhanced Volume Negative Ion Sources

    CERN Document Server

    Stockli, M.P.

    2013-12-16

    H- volume sources and, especially, caesiated H- volume sources are important ion sources for generating high-intensity proton beams, which then in turn generate large quantities of other particles. This chapter discusses the physics and technology of the volume production and the caesium-enhanced (surface) production of H- ions. Starting with Bacal's discovery of the H- volume production, the chapter briefly recounts the development of some H- sources, which capitalized on this process to significantly increase the production of H- beams. Another significant increase was achieved in the 1990s by adding caesiated surfaces to supplement the volume-produced ions with surface-produced ions, as illustrated with other H- sources. Finally, the focus turns to some of the experience gained when such a source was successfully ramped up in H- output and in duty factor to support the generation of 1 MW proton beams for the Spallation Neutron Source.

  17. FT-ICR study on hydrogenation of niobium cluster cations Nbn+ (n=2-15) in seeded supersonic jet and multiple-collision-induced dissociation of NbnHm+ hydrides

    Science.gov (United States)

    Vakhtin, Andrei B.; Sugawara, Ko-ichi

    1999-12-01

    Hydrogenation of niobium cluster cations Nbn+ (n=2-15) in a seeded supersonic jet of H2/He and multiple-collision-induced dissociation (MCID) of the resulting NbnHm+ hydrides have been studied using a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The nascent NbnHm+ hydrides trapped in the FT-ICR cell have broad m distributions with no apparent prevalence of odd or even m. A pulse of argon applied to the trapped clusters causes a dramatic squeezing of the initial m distribution (through the collision-induced removal of weakly bound H2 molecules), favoring several particular hydrides for each cluster size n, e.g., Nb7H8+, Nb7H11+, and Nb7H12+ for n=7. The maximum m values of these stable hydrides are close to the stoichiometric composition of NbH2 for the clusters with nMCID of the NbnHm+ clusters occurs through the sequential desorption of H2 molecules yielding NbnH+ and Nbn+ as final dissociation products for odd and even m, respectively. Based on the experiments on the MCID of Nb12H18+, an explanation is suggested for different reactivities of the Nb12+ clusters toward H2 in the ICR and fast-flow-reactor experiments.

  18. Finding related functional neuroimaging volumes

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai

    2004-01-01

    We describe a content-based image retrieval technique for finding related functional neuroimaging experiments by voxelization of sets of stereotactic coordinates in Talairach space, comparing the volumes and reporting related volumes in a sorted list. Voxelization is accomplished by convolving ea...

  19. Modern Written Arabic, Volume II.

    Science.gov (United States)

    Naja, A. Nashat; Snow, James A.

    This second volume of Modern Written Arabic builds on the previous volume and is the second step designed to teach members of the Foreign Service to read the modern Arabic press. The student will gain recognitional mastery of an extensive set of vocabulary items and will be more intensively exposed to wider and more complex morphological and…

  20. Pragmatics & Language Learning. Volume 14

    Science.gov (United States)

    Bardovi-Harlig, Kathleen, Ed.; Félix-Brasdefer, J. César, Ed.

    2016-01-01

    This volume contains a selection of papers presented at the 2014 International Conference of Pragmatics and Language Learning at Indiana University. It includes fourteen papers on a variety of topics, with a diversity of first and second languages, and a wide range of methods used to collect pragmatic data in L2 and FL settings. This volume is…

  1. Animation framework using volume visualization

    Science.gov (United States)

    Fang, Wenxuan; Wang, Hongli

    2004-03-01

    As the development of computer graphics, scientific visualization and advanced imaging scanner and sensor technology, high quality animation making of volume data set has been a challenging in industries. A simple animation framework by using current volume visualization techniques is proposed in this paper. The framework consists of two pipelines: one is surface based method by using marching cubes algorithm, the other is volume rendering method by using shear-warp method. The volume visualization results can not only be used as key frame sources in the animation making, but also can be directly used as animation when the volume visualization is in stereoscopic mode. The proposed framework can be applied into fields such as medical education, film-making and archaeology.

  2. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering.

    Science.gov (United States)

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2014-12-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  3. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    KAUST Repository

    Sicat, Ronell Barrera

    2014-12-31

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  4. Volume Segmentation and Ghost Particles

    Science.gov (United States)

    Ziskin, Isaac; Adrian, Ronald

    2011-11-01

    Volume Segmentation Tomographic PIV (VS-TPIV) is a type of tomographic PIV in which images of particles in a relatively thick volume are segmented into images on a set of much thinner volumes that may be approximated as planes, as in 2D planar PIV. The planes of images can be analysed by standard mono-PIV, and the volume of flow vectors can be recreated by assembling the planes of vectors. The interrogation process is similar to a Holographic PIV analysis, except that the planes of image data are extracted from two-dimensional camera images of the volume of particles instead of three-dimensional holographic images. Like the tomographic PIV method using the MART algorithm, Volume Segmentation requires at least two cameras and works best with three or four. Unlike the MART method, Volume Segmentation does not require reconstruction of individual particle images one pixel at a time and it does not require an iterative process, so it operates much faster. As in all tomographic reconstruction strategies, ambiguities known as ghost particles are produced in the segmentation process. The effect of these ghost particles on the PIV measurement is discussed. This research was supported by Contract 79419-001-09, Los Alamos National Laboratory.

  5. Plasma volume changes during hypoglycaemia

    DEFF Research Database (Denmark)

    Hilsted, J; Bendtsen, F; Christensen, N J

    1990-01-01

    To investigate whether previously reported changes in venous blood volume and composition induced by acute hypoglycaemia in humans are representative for the entire body we measured erythrocyte 51Cr content, haematocrit, plasma volume, intravascular albumin content and transcapillary escape rate...... of albumin in arterial and venous blood in seven healthy subjects before and during insulin-induced hypoglycaemia. In both vascular sites blood 51Cr content and the haematocrit increased, plasma volume and intravascular albumin content decreased and the transcapillary escape rate of albumin increased during...

  6. Plasma volume changes during hypoglycaemia

    DEFF Research Database (Denmark)

    Hilsted, J; Frandsen, Henrik Lund; Christensen, N J

    1991-01-01

    -induced hypoglycaemia with total autonomic blockade (alpha-adrenoceptor blockade combined with beta-adrenoceptor blockade and atropine); and insulin-induced hypoglycaemia without any autonomic blockade. In the experiments without autonomic blockade the peripheral venous hematocrit increased, plasma volume decreased......, intravascular albumin content decreased and the transcapillary escape rate of albumin increased. In both experiments with autonomic blockade the increase in venous haematocrit was abolished, yet plasma volume decreased, intravascular albumin content decreased and the transcapillary escape rate of albumin...... increased in these experiments. Thus, the changes in plasma volume and composition in response to hypoglycaemia are due to the combined actions of adrenaline and of insulin....

  7. Bare-Hand Volume Cracker for Raw Volume Data Analysis

    Directory of Open Access Journals (Sweden)

    Bireswar Laha

    2016-09-01

    Full Text Available Analysis of raw volume data generated from different scanning technologies faces a variety of challenges, related to search, pattern recognition, spatial understanding, quantitative estimation, and shape description. In a previous study, we found that the Volume Cracker (VC 3D interaction (3DI technique mitigated some of these problems, but this result was from a tethered glove-based system with users analyzing simulated data. Here, we redesigned the VC by using untethered bare-hand interaction with real volume datasets, with a broader aim of adoption of this technique in research labs. We developed symmetric and asymmetric interfaces for the Bare-Hand Volume Cracker (BHVC through design iterations with a biomechanics scientist. We evaluated our asymmetric BHVC technique against standard 2D and widely used 3D interaction techniques with experts analyzing scanned beetle datasets. We found that our BHVC design significantly outperformed the other two techniques. This study contributes a practical 3DI design for scientists, documents lessons learned while redesigning for bare-hand trackers, and provides evidence suggesting that 3D interaction could improve volume data analysis for a variety of visual analysis tasks. Our contribution is in the realm of 3D user interfaces tightly integrated with visualization, for improving the effectiveness of visual analysis of volume datasets. Based on our experience, we also provide some insights into hardware-agnostic principles for design of effective interaction techniques.

  8. Organ volume estimation using SPECT

    CERN Document Server

    Zaidi, H

    1996-01-01

    Knowledge of in vivo thyroid volume has both diagnostic and therapeutic importance and could lead to a more precise quantification of absolute activity contained in the thyroid gland. In order to improve single-photon emission computed tomography (SPECT) quantitation, attenuation correction was performed according to Chang's algorithm. The dual-window method was used for scatter subtraction. We used a Monte Carlo simulation of the SPECT system to accurately determine the scatter multiplier factor k. Volume estimation using SPECT was performed by summing up the volume elements (voxels) lying within the contour of the object, determined by a fixed threshold and the gray level histogram (GLH) method. Thyroid phantom and patient studies were performed and the influence of 1) fixed thresholding, 2) automatic thresholding, 3) attenuation, 4) scatter, and 5) reconstruction filter were investigated. This study shows that accurate volume estimation of the thyroid gland is feasible when accurate corrections are perform...

  9. APCOM 87. Volume 1 - mining

    Energy Technology Data Exchange (ETDEWEB)

    Wade, L.; Kersten, R.W.O.; Cutland, J.R. (eds.)

    1987-01-01

    35 papers are presented in this volume under the following session headings: rock mechanics; shafts; mine planning theory; expert systems in mining; mine planning case studies; ventilation; computer applications in education; and control of mining operations.

  10. Anadromous fish inventory: Summary volume

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Summary volume, with discussion, on anadromous fish inventories, species lists, histories of fisheries, habitat, key spawning and rearing areas, runs/escapements,...

  11. The Volume of Earth's Lakes

    Science.gov (United States)

    Cael, B. B.

    How much water do lakes on Earth hold? Global lake volume estimates are scarce, highly variable, and poorly documented. We develop a mechanistic null model for estimating global lake mean depth and volume based on a statistical topographic approach to Earth's surface. The volume-area scaling prediction is accurate and consistent within and across lake datasets spanning diverse regions. We applied these relationships to a global lake area census to estimate global lake volume and depth. The volume of Earth's lakes is 199,000 km3 (95% confidence interval 196,000-202,000 km3) . This volume is in the range of historical estimates (166,000-280,000 km3) , but the overall mean depth of 41.8 m (95% CI 41.2-42.4 m) is significantly lower than previous estimates (62 - 151 m). These results highlight and constrain the relative scarcity of lake waters in the hydrosphere and have implications for the role of lakes in global biogeochemical cycles. We also evaluate the size (area) distribution of lakes on Earth compared to expectations from percolation theory. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 2388357.

  12. Lasing transition at 1.06 μm emission in Nd(3)(+) -doped borate-based tellurium calcium zinc niobium oxide glasses for high-power solid-state lasers.

    Science.gov (United States)

    Ravi, O; Prasad, K; Jain, Rajiv; Venkataswamy, M; Chaurasia, Shivanand; Deva Prasad Raju, B

    2017-08-01

    The spectroscopic properties of Tellurium Calcium Zinc Niobium oxide Borate (TCZNB) glasses of composition (in mol%) 10TeO2  + 15CaO + 5ZnO + 10 Nb2 O5  + (60 - x)B2 O3  + Nd2 O3 (x = 0.1, 0.5, 1.0 or 1.5 mol%) have been investigated experimentally. The three phenomenological intensity parameters Ω2 , Ω4, Ω6 have been calculated using the Judd-Ofelt theory and in turn radiative properties such as radiative transition probabilities, emission cross-sections, branching ratios and radiative lifetimes have been estimated. The trend found in the JO intensity parameter is Ω2  > Ω6  > Ω4 If Ω6  > Ω4 , the glass system is favourable for the laser emission (4) F3/2  → (4) I11/2 in the infrared (IR) wavelength. The experimental values of branching ratio of (4) F3/2  → (4) I11/2 transition indicate favourable lasing action with low threshold power. The evaluated total radiative transition probabilities (AT ), stimulated emission cross-section (σe ) and gain bandwidth parameters (σe  × Δλp ) were compared with earlier reports. An energy level analysis has been carried out considering the experimental energy positions of the absorption and emission bands. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Technological characterization of a mineral deposit. A case study: the niobium of Catalao I, Goias State, Brazil; Caracterizacao tecnologica de um deposito mineral. Um estudo de caso: o niobio de Catalao I, Goias

    Energy Technology Data Exchange (ETDEWEB)

    Sant`Agostino, Lilia Mascarenhas

    1996-12-31

    This thesis presents a contribution to the subject of ore technological characterization integrated to orebody context, regarding sample, ore characteristics, ore types definition and distribution through the mineral occurrence, and ore reserves modeling using technological parameters. A professional experience in this specialization based a conceptual discussion of the matter, supported by a practical approach. The initial approach is the subject definition, and it`s importance for technological and economical feasibility studies, in all phases of mining research and development, as a tool for beneficiation alternatives definition. The multidisciplinary aspect of the knowledge involved for ore characterization is remarked, considering that is an interface segment to be conduced interactively with others. It is an applied mineralogy, that needs some geological and some ore dressing imputes. After the general considerations about importance and applicability, it follows a methodological approach of laboratory procedures and analytical techniques, as a result of practical experience acquired in the study of several ores. The main points discussed are related with criterion to organized laboratory preparation scheme and to select appropriated analytical techniques, without detailing them, for what some specialized bibliography is indicated. Finalizing the theoretical explanation, there is a concise description about computers resources for 3D orebody modeling, and integrated software applied for geology and mining. For illustration, it is exposed a complex ore case study: niobium mineralization associated with the alkaline-carbonatitic occurrence of Catalao I, located in Goias State, Brazil. Besides the explanation of laboratory procedures and methods applied, results treatment and interpretation are emphasized, under both characterization and economic point of view. (author) 135 refs., 57 figs., 38 tabs.

  14. The Effect of Niobium Doping on the Electrical Properties of 0.4(Bi0.5K0.5TiO3-0.6BiFeO3 Lead-Free Piezoelectric Ceramics

    Directory of Open Access Journals (Sweden)

    John G. Fisher

    2015-12-01

    Full Text Available Ceramics in the system (Bi0.5K0.5TiO3-BiFeO3 have good electromechanical properties and temperature stability. However, the high conductivity inherent in BiFeO3-based ceramics complicates measurement of the ferroelectric properties. In the present work, doping with niobium (Nb is carried out to reduce the conductivity of (Bi0.5K0.5TiO3-BiFeO3. Powders of composition 0.4(K0.5Bi0.5Ti1−xNbxO3-0.6BiFe1−xNbxO3 (x = 0, 0.01 and 0.03 are prepared by the mixed oxide method and sintered at 1050 °C for 1 h. The effect of Nb doping on the structure is examined by X-ray diffraction. The microstructure is examined by scanning electron microscopy. The variation in relative permittivity with temperature is measured using an impedance analyzer. Ferroelectric properties are measured at room temperature using a Sawyer Tower circuit. Piezoelectric properties are measured using a d33 meter and a contact type displacement sensor. All the samples have high density, a rhombohedral unit cell and equiaxed, micron-sized grains. All the samples show relaxor-like behavior. Nb doping causes a reduction in conductivity by one to two orders of magnitude at 200 °C. The samples have narrow P-E loops reminiscent of a linear dielectric. The samples all possess bipolar butterfly S-E loops characteristic of a classic ferroelectric material. Nb doping causes a decrease in d33 and Smax/Emax.

  15. Mixed-dicyclopentadienyl niobium and tantalum complexes: synthesis and reactivity X-ray molecular structures of Ta(η-C5Me5)(η5-C5H4SiMe3)Cl2 and Ta(η5-C5Me5){η5-C5H3(SiMe3)2}H3

    OpenAIRE

    Castro Correro, Aurora; Gómez Rubio, Manuel; Gómez Sal, Ma Pilar; Manzanero Castillo, Antonio; Royo Gracia, Pascual

    1996-01-01

    MCp* Cl,, (Cp* = $-C,Me,) reacts with LiCp (Cp = C,H,(SiMe,) (Cp’); C,H,(SiMe,), (Cp”)) and sodium amalgam, in I : I : 1 molar ratio to give the paramagnetic dicyclopentadienyl niobium and tantalum(W) complexes, MCp * CpCI,, (M = Nb, Cp = Cp’ 1; Cp” 2; M = Ta, Cp = Cp’ 3; Cp” 4). Reactions of 3 and 4 with l/2 equivalent of PCl, afford the diamagnetic trichlorocomplexes TaCp* CpCI,, (Cp = Cp’ 5; Cp” 6). while oxidation with dry 0, gives the diamagnetic dinuclear complexes [TaCp* CpCI,...

  16. Control volume based hydrocephalus research

    Science.gov (United States)

    Cohen, Benjamin; Voorhees, Abram; Wei, Timothy

    2008-11-01

    Hydrocephalus is a disease involving excess amounts of cerebral spinal fluid (CSF) in the brain. Recent research has shown correlations to pulsatility of blood flow through the brain. However, the problem to date has presented as too complex for much more than statistical analysis and understanding. This talk will highlight progress on developing a fundamental control volume approach to studying hydrocephalus. The specific goals are to select physiologically control volume(s), develop conservation equations along with the experimental capabilities to accurately quantify terms in those equations. To this end, an in vitro phantom is used as a simplified model of the human brain. The phantom's design consists of a rigid container filled with a compressible gel. The gel has a hollow spherical cavity representing a ventricle and a cylindrical passage representing the aquaducts. A computer controlled piston pump supplies pulsatile volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity, and volume change as functions of time. Independent pressure measurements and flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients.

  17. Dictionary Based Segmentation in Volumes

    DEFF Research Database (Denmark)

    Emerson, Monica Jane; Jespersen, Kristine Munk; Jørgensen, Peter Stanley

    2015-01-01

    We present a method for supervised volumetric segmentation based on a dictionary of small cubes composed of pairs of intensity and label cubes. Intensity cubes are small image volumes where each voxel contains an image intensity. Label cubes are volumes with voxelwise probabilities for a given...... label. The segmentation process is done by matching a cube from the volume, of the same size as the dictionary intensity cubes, to the most similar intensity dictionary cube, and from the associated label cube we get voxel-wise label probabilities. Probabilities from overlapping cubes are averaged...... and hereby we obtain a robust label probability encoding. The dictionary is computed from labeled volumetric image data based on weighted clustering. We experimentally demonstrate our method using two data sets from material science – a phantom data set of a solid oxide fuel cell simulation for detecting...

  18. Cell swelling and volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay

    1992-01-01

    The extracellular space in the brain is typically 20% of the tissue volume and is reduced to at least half its size under conditions of neural insult. Whether there is a minimum size to the extracellular space was discussed. A general model for cell volume regulation was presented, followed...... by a discussion on how many of the generally involved mechanisms are identified in neural cells and (or) in astrocytes. There seems to be clear evidence suggesting that parallel K+ and Cl- channels mediate regulatory volume decrease in primary cultures of astrocytes, and a stretch-activated cation channel has...... been reported. The role of the different channels was discussed. A taurine leak pathway is clearly activated after cell swelling both in astrocytes and in neurones. The relations between the effect of glutamate and cell swelling were discussed. Discussion on the clearance of potassium from...

  19. The relative volume growth of minimal submanifolds

    DEFF Research Database (Denmark)

    Markvorsen, Steen; Palmer, V.

    2002-01-01

    The volume growth of certain well-defined subsets of minimal submanifolds in riemannian spaces are compared with the volume growth of balls and spheres ill space forms of constant curvature.......The volume growth of certain well-defined subsets of minimal submanifolds in riemannian spaces are compared with the volume growth of balls and spheres ill space forms of constant curvature....

  20. 40 CFR 791.48 - Production volume.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Production volume. 791.48 Section 791... (CONTINUED) DATA REIMBURSEMENT Basis for Proposed Order § 791.48 Production volume. (a) Production volume.... (b) For the purpose of determining fair reimbursement shares, production volume shall include amounts...

  1. Rockets and People. Volume 1

    Science.gov (United States)

    Chertok, Boris E; Siddiqi, Asif A. (Editor)

    2005-01-01

    Much has been written in the West on the history of the Soviet space program but few Westerners have read direct first-hand accounts of the men and women who were behind the many Russian accomplishments in exploring space.The memoirs of Academician Boris Chertok, translated from the original Russian, fills that gap.Chertok began his career as an electrician in 1930 at an aviation factory near Moscow.Twenty-seven years later, he became deputy to the founding figure of the Soviet space program, the mysterious Chief Designer Sergey Korolev. Chertok s sixty-year-long career and the many successes and failures of the Soviet space program constitute the core of his memoirs, Rockets and People. These writings are spread over four volumes. This is volume I. Academician Chertok not only describes and remembers, but also elicits and extracts profound insights from an epic story about a society s quest to explore the cosmos. In Volume 1, Chertok describes his early years as an engineer and ends with the mission to Germany after the end of World War II when the Soviets captured Nazi missile technology and expertise. Volume 2 takes up the story with the development of the world s first intercontinental ballistic missile ICBM) and ends with the launch of Sputnik and the early Moon probes. In Volume 3, Chertok recollects the great successes of the Soviet space program in the 1960s including the launch of the world s first space voyager Yuriy Gagarin as well as many events connected with the Cold War. Finally, in Volume 4, Chertok meditates at length on the massive Soviet lunar project designed to beat the Americans to the Moon in the 1960s, ending with his remembrances of the Energiya-Buran project.

  2. Excess Molar Volumes and Partial Molar Volumes of Binary Systems ...

    African Journals Online (AJOL)

    Excess molar volumes have been evaluated from density measurements over the entire composition range for binary systems of an ionic liquid (IL) and an alcohol at T = (298.15, 303.15 and 313.15) K. The IL is 1-butyl-3-methylimidazolium methylsulphate [BMIM]+[MeSO4]– and the alcohols are methanol, ethanol or ...

  3. Be the Volume: A Classroom Activity to Visualize Volume Estimation

    Science.gov (United States)

    Mikhaylov, Jessica

    2011-01-01

    A hands-on activity can help multivariable calculus students visualize surfaces and understand volume estimation. This activity can be extended to include the concepts of Fubini's Theorem and the visualization of the curves resulting from cross-sections of the surface. This activity uses students as pillars and a sheet or tablecloth for the…

  4. United States Air Force Summer Faculty Research Program (1986). Program Technical Report. Volume 2

    Science.gov (United States)

    1986-12-01

    for Crippled Children, Chicago Unit. At Shriners I have continued to develop instrumented methods for evaluating spasticity and hypertonicity. I have...acceptable. Another aspect of the program aims at assessing high temperature electrical resistivity of several dispersion strengthened conductors with...electrical resistivity measurements on dispersion strengthened materials including copper-niobium, copper-alumina, aluminum-silicon carbide, and aluminum

  5. History of Geophysics Volume 1

    Science.gov (United States)

    This is the first volume in an annual series that presents articles concerning the social and intellectual history of the geophysical sciences, broadly defined. It is a collection of materials that originally appeared in the journals of AGU, selected from issues published during the past 15 years. An objective of the series is to interest a wide and diverse audience, including professional geophysicists and AGU members, students of the geosciences, historians, and those concerned with public or policy aspects of the sciences. The volume is offered at a very reasonable price with these audiences in mind.

  6. MPCV Exercise Operational Volume Analysis

    Science.gov (United States)

    Godfrey, A.; Humphreys, B.; Funk, J.; Perusek, G.; Lewandowski, B. E.

    2017-01-01

    In order to minimize the loss of bone and muscle mass during spaceflight, the Multi-purpose Crew Vehicle (MPCV) will include an exercise device and enough free space within the cabin for astronauts to use the device effectively. The NASA Digital Astronaut Project (DAP) has been tasked with using computational modeling to aid in determining whether or not the available operational volume is sufficient for in-flight exercise.Motion capture data was acquired using a 12-camera Smart DX system (BTS Bioengineering, Brooklyn, NY), while exercisers performed 9 resistive exercises without volume restrictions in a 1g environment. Data were collected from two male subjects, one being in the 99th percentile of height and the other in the 50th percentile of height, using between 25 and 60 motion capture markers. Motion capture data was also recorded as a third subject, also near the 50th percentile in height, performed aerobic rowing during a parabolic flight. A motion capture system and algorithms developed previously and presented at last years HRP-IWS were utilized to collect and process the data from the parabolic flight [1]. These motions were applied to a scaled version of a biomechanical model within the biomechanical modeling software OpenSim [2], and the volume sweeps of the motions were visually assessed against an imported CAD model of the operational volume. Further numerical analysis was performed using Matlab (Mathworks, Natick, MA) and the OpenSim API. This analysis determined the location of every marker in space over the duration of the exercise motion, and the distance of each marker to the nearest surface of the volume. Containment of the exercise motions within the operational volume was determined on a per-exercise and per-subject basis. The orientation of the exerciser and the angle of the footplate were two important factors upon which containment was dependent. Regions where the exercise motion exceeds the bounds of the operational volume have been

  7. Evaluation of coated columbian alloy heat shields for space shuttle thermal protection system application. Volume 1: Phase 1 - Environmental criteria and material characterization, October 1970 - March 1972

    Science.gov (United States)

    Black, W. E.

    1972-01-01

    The studies presented are directed toward establishing criteria for a niobium alloy thermal protection system for the space shuttle. Evaluation of three niobium alloys and two silicon coatings for heat shield configurations culminated in the selection of two coating/substrate combinations for environmental criteria and material characterization tests. Specimens were exposed to boost and reentry temperatures, pressure, and loads simulating a space shuttle orbiter flight profile.

  8. Dictionary Based Segmentation in Volumes

    DEFF Research Database (Denmark)

    Emerson, Monica Jane; Jespersen, Kristine Munk; Jørgensen, Peter Stanley

    Method for supervised segmentation of volumetric data. The method is trained from manual annotations, and these annotations make the method very flexible, which we demonstrate in our experiments. Our method infers label information locally by matching the pattern in a neighborhood around a voxel ...... to a dictionary, and hereby accounts for the volume texture....

  9. PATRAM '80. Proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, H.W. (ed.)

    1980-01-01

    Volume 2 contains papers from the following sessions: Safeguards-Related Problems; Neutronics and Criticality; Operations and Systems Experience II; Plutonium Systems; Intermediate Storage in Casks; Operations and Systems Planning; Institutional Issues; Structural and Thermal Evaluation I; Poster Session B; Extended Testing I; Structural and Thermal Evaluation II; Extended Testing II; and Emergency Preparedness and Response. Individual papers were processed. (LM)

  10. Plasma volume in acute hypoxia

    DEFF Research Database (Denmark)

    Poulsen, T D; Klausen, T; Richalet, J P

    1998-01-01

    Exposure to acute hypoxia is associated with changes in body fluid homeostasis and plasma volume (PV). This study compared a dye dilution technique using Evans' blue (PV[Evans']) with a carbon monoxide (CO) rebreathing method (PV[CO]) for measurements of PV in ten normal subjects at sea level...

  11. PATRAM '80. Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, H.W. (ed.)

    1980-01-01

    Volume 1 contains papers from the following sessions: Plenary Session; Regulations, Licensing and Standards; LMFBR Systems Concepts; Risk/Safety Assessment I; Systems and Package Design; US Institutional Issues; Risk/Safety Assessment II; Leakage, Leak Rate and Seals; Poster Session A; Operations and Systems Experience I; Manufacturing Processes and Materials; and Quality Assurance and Maintenance. Individual papers were processed. (LM)

  12. Archives of ALGA, volume 1

    OpenAIRE

    2004-01-01

    Volume 1 contains 3 articles: Nail H. Ibragimov, Equivalence groups and invariants of linear and non-linear equations; Nail H. Ibragimov and Sergey V. Meleshko, Linearization of third-order ordinary differential equations; Nail H. Ibragimov, Gazanfer Ünal and Claes Jogreús, Group analysis of stochastic differential systems: Approximate symmetries and conservation laws.

  13. Archives of ALGA. Volume 2

    OpenAIRE

    2005-01-01

    Volume 2 contains 3 articles: Ilir Berisha, Translation of Bäcklunds paper ”Surfaces of constant negative curvature”; Johan Erlandsson, "Survey of mathematical models in biology from point of view of Lie group analysis"; Niklas Säfström, "Group analysis of a tumour growth model"

  14. Archives of ALGA, volume 5

    OpenAIRE

    2008-01-01

    Volume 5 contains 3 articles by N.Ibragimov, an article by R. Khamitova and the English translation of V.P.Ermakov's article "Second order differential equations:conditions of complete integrability". www.bth.se/alga Choose ALGA publications

  15. Super resolution volume rendering hardware

    NARCIS (Netherlands)

    Bosma, Marco; Smit, Jaap; Terwisscha van Scheltinga, Jeroen

    1995-01-01

    The resolution obtained in volume rendering is greatly increased over known methods through the introduction of super resolution techniques which make it possible to enlarge the view o f the dataset without the introduction of unnecessary positional, gradient and opacity errors. In this paper our

  16. Intrinsic volumes of symmetric cones

    OpenAIRE

    Amelunxen, Dennis; Bürgisser, Peter

    2012-01-01

    We compute the intrinsic volumes of the cone of positive semidefinite matrices over the real numbers, over the complex numbers, and over the quaternions, in terms of integrals related to Mehta's integral. Several applications for the probabilistic analysis of semidefinite programming are given.

  17. The African Experience. Volume I: Syllabus Lectures; Volume II: Bibliographic References; Volume IIIA: Introductory Essays; Volume IIIB: Introductory Essays.

    Science.gov (United States)

    Paden, John N.; Soja, Edward W.

    In response to demands for more and better teaching about Africa in American higher education, the US Office of Education requested that the Program of African Studies at Northwestern University generate a set of teaching materials which could be used in introductory undergraduate courses. Included in these volumes, these materials provide…

  18. Editorial, Volume 5, Issue 1

    Directory of Open Access Journals (Sweden)

    Kristy L. Archuleta

    2014-08-01

    Full Text Available Welcome to Volume 5, Issue 1 of the Journal of Financial Therapy! In this issue, four scholarly papers are presented along with two profiles and a book review. These four papers address very important issues, such as mental health therapists’ competency in working with financial issues, financial stress of college students, parental messages about money, and financial advice media.

  19. Accurate measurements in volume data

    NARCIS (Netherlands)

    Oliván Bescós, J.; Bosma, Marco; Smit, Jaap; Mun, S.K.

    2001-01-01

    An algorithm for very accurate visualization of an iso- surface in a 3D medical dataset has been developed in the past few years. This technique is extended in this paper to several kinds of measurements in which exact geometric information of a selected iso-surface is used to derive volume, length,

  20. Modern Chemical Technology, Volume 9.

    Science.gov (United States)

    Pecsok, Robert L.; Chapman, Kenneth

    This volume is one of the series for the Chemical Technician Curriculum Project (ChemTeC) of the American Chemical Society funded by the National Science Foundation. It consists of discussions, exercises, and experiments on the following topics: ion exchange, electrphoresis, dialysis, electrochemistry, corrosion, electrolytic cells, coulometry,…

  1. NASA Thesaurus. Volume 1: Hierarchical listing. Volume 2: Access vocabulary. Volume 3: Definitions

    Science.gov (United States)

    1994-01-01

    There are over 17,500 postable terms and some 4,000 nonpostable terms approved for use in the NASA Scientific and Technical Information Database in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary and Volume 3 - Definitions.

  2. International Linear Collider Technical Design Report (Volumes 1 through 4)

    Energy Technology Data Exchange (ETDEWEB)

    Harrison M.

    2013-03-27

    The design report consists of four volumes: Volume 1, Executive Summary; Volume 2, Physics; Volume 3, Accelerator (Part I, R and D in the Technical Design Phase, and Part II, Baseline Design); and Volume 4, Detectors.

  3. Waste minimization handbook, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Coffey, M.J.

    1995-12-01

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility`s life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996.

  4. Basketball training increases striatum volume.

    Science.gov (United States)

    Park, In Sung; Lee, Kea Joo; Han, Jong Woo; Lee, Nam Joon; Lee, Won Teak; Park, Kyung Ah; Rhyu, Im Joo

    2011-02-01

    The striatum is associated with the learning and retention of motor skills. Several studies have shown that motor learning induces neuronal changes in the striatum. We investigated whether macroscopic change in striatum volume occurs in a segment of the human population who learned basketball-related motor skills and practiced them throughout their entire athletic life. Three-dimensional magnetic resonance imaging volumetry was performed in basketball players and healthy controls, and striatum volumes were compared based on basketball proficiency, region and side. We identified morphological enlargement in the striatum of basketball players in comparison with controls. Our results suggest that continued practice and repetitive performance of basketball-related motor skills may induce plastic structural changes in the human striatum. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. History of geophysics: Volume 2

    Science.gov (United States)

    This second volume in the AGU History of Geophysics Series continues the general aims of presenting articles concerning the social and intellectual history of the geophysical sciences. The articles are collected from peer-reviewed material that has appeared in Eos and several other AGU journals. The series is intended for a broad and diverse audience, including professional scientists, students, historians, and those concerned with policy studies.

  6. Archives of ALGA. Volume 4

    OpenAIRE

    2007-01-01

    Volume 4 contains articles: Nail H. Ibragimov, Ewald J.H. Wessels and George F.R. Ellis, Group classication of the Sachs equations for a radiating axisymmetric, non-rotating, vacuum space-time; Nail H. Ibragimov A discussion of conservation laws for over-determined systems with application to the Maxwell equations in vacuum; Nail H. Ibragimov, Quasi-self-adjoint differential equations; Nail H. Ibragimov and Salavat V. Khabirov, Existence of integrating factors for higher-order ordinary differ...

  7. Archives of ALGA. Volume 6

    OpenAIRE

    2009-01-01

    Volume 6 contains 6 articles: Nail H. Ibragimov, Utilization of canonical variables for integration of systems of first-order differential equations; Nail H. Ibragimov and Ranis N. Ibragimov, Group analysis of nonlinear internal waves in oceans. I: Self-adjointness, conservation laws, invariant solutions; Nail H. Ibragimov, Ranis N. Ibragimov and Vladimir F. Kovalev, Group analysis of nonlinear internal waves in oceans. II: The symmetries and rotationally invariant solution; Nail H. Ibragimov...

  8. Volume Transmission and Pain Perception

    Directory of Open Access Journals (Sweden)

    Gilberto C. Castañeda-Hernàndez

    2003-01-01

    Full Text Available Volume transmission (VT is the diffusion through the brain extracellular fluid of neurotransmitters released at points that may be remote from the target cells with the resulting activation of extrasynaptic receptors. VT appears to play multiple roles in the brain in normal and abnormal activity, brain plasticity and drug actions. The relevance of VT to pain perception has been explored in this review.

  9. Lung volume reduction for emphysema.

    Science.gov (United States)

    Shah, Pallav L; Herth, Felix J; van Geffen, Wouter H; Deslee, Gaetan; Slebos, Dirk-Jan

    2017-02-01

    Advanced emphysema is a lung disease in which alveolar capillary units are destroyed and supporting tissue is lost. The combined effect of reduced gas exchange and changes in airway dynamics impairs expiratory airflow and leads to progressive air trapping. Pharmacological therapies have limited effects. Surgical resection of the most destroyed sections of the lung can improve pulmonary function and exercise capacity but its benefit is tempered by significant morbidity. This issue stimulated a search for novel approaches to lung volume reduction. Alternative minimally invasive approaches using bronchoscopic techniques including valves, coils, vapour thermal ablation, and sclerosant agents have been at the forefront of these developments. Insertion of endobronchial valves in selected patients could have benefits that are comparable with lung volume reduction surgery. Endobronchial coils might have a role in the treatment of patients with emphysema with severe hyperinflation and less parenchymal destruction. Use of vapour thermal energy or a sclerosant might allow focal treatment but the unpredictability of the inflammatory response limits their current use. In this Review, we aim to summarise clinical trial evidence on lung volume reduction and provide guidance on patient selection for available therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Memorial volume for Y. Nambu

    CERN Document Server

    Chang, Lay Nam; Han, Moo-Young; Phua, Kok Khoo

    2016-01-01

    We have lost one of the giants of the twentieth century physics when Yoichiro Nambu passed away in July, 2015, at the age of 94. Today's Standard Model, though still incomplete in many respects, is the culmination of the most successful theory of the Universe to date, and it is built upon foundations provided by discoveries made by Nambu in the 1960s: the mechanism of spontaneously broken symmetry in Nature (with G Jona-Lasinio) and the hidden new SU(3) symmetry of quarks and gluons (with M-Y Han). In this volume honoring Nambu's memory, World Scientific Publishing presents a unique collection of papers written by his former colleagues, collaborating researchers and former students and associates, not only citing Nambu's great contributions in physics but also many personal and private reminiscences, some never told before. This volume also contains the very last scientific writing by Professor Nambu himself, discussing the development of particle physics. This book is a volume for all who benefited not on...

  11. A Concise Handbook of Mathematics, Volume 2,

    Science.gov (United States)

    The document is part two of a two volume handbook of mathematics . The volume contains chapters on integral calculation, differential equations, mathematical analysis, data evaluation, and an appendix on integral equations.

  12. Physiology of cell volume regulation in vertebrates

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Lambert, Ian H; Pedersen, Stine F

    2009-01-01

    organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review....

  13. Cochlear labyrinth volume in Krapina Neandertals.

    Science.gov (United States)

    Beals, Michaela E; Frayer, David W; Radovčić, Jakov; Hill, Cheryl A

    2016-01-01

    Research with extant primate taxa suggests that cochlear labyrinth volume is functionally related to the range of audible frequencies. Specifically, cochlear volume is negatively correlated with both the high and low frequency limits of hearing so that the smaller the cochlea, the higher the normal range of audible frequencies. The close anatomical relationship between the membranous cochlea and the bony cochlear labyrinth allows for the determination of cochlear size from fossil specimens. This study compares Krapina Neandertal cochlear volumes to extant taxa cochlear volumes. Cochlear volumes were acquired from high-resolution computed tomography scans of temporal bones of Krapina Neandertals, chimpanzees, gorillas, and modern humans. We find that Krapina Neandertals' cochlear volumes are similar to modern Homo sapiens and are significantly larger than chimpanzee and gorilla cochlear volumes. The measured cochlear volume in Krapina Neandertals suggests they had a range of audible frequencies similar to the modern human range. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. On the volume of cremated remains

    DEFF Research Database (Denmark)

    Harvig, Lise Lock; Lynnerup, Niels

    2013-01-01

    Harvig, L., Lynnerup, N. 2013. On the effective volume of prehistoric cremains - a comparative study of cremated bone volume measured manually and assessed by Computed Tomography. Journal of Archaeological Science 40, p. 2713–2722....

  15. Volume conservation during finite plastic deformation

    OpenAIRE

    Wang, He-Ling; Jiang, Dong-Jie; Zhang, Li-Yuan; Liu, Bin

    2016-01-01

    An elastoplastic theory is not volume conserved if it improperly sets an arbitrary plastic strain rate tensor to be deviatoric. This paper discusses how to rigorously realize volume conservation in finite strain regime, especially when the unloading stress free configuration is not adopted or unique in the elastoplastic theories. An accurate condition of volume conservation is clarified and used in this paper that the density of a volume element after the applied loads are completely removed ...

  16. The parallel volume at large distances

    DEFF Research Database (Denmark)

    Kampf, Jürgen

    In this paper we examine the asymptotic behavior of the parallel volume of planar non-convex bodies as the distance tends to infinity. We show that the difference between the parallel volume of the convex hull of a body and the parallel volume of the body itself tends to . This yields a new proof...... for the fact that a planar body can only have polynomial parallel volume, if it is convex. Extensions to Minkowski spaces and random sets are also discussed....

  17. The parallel volume at large distances

    DEFF Research Database (Denmark)

    Kampf, Jürgen

    In this paper we examine the asymptotic behavior of the parallel volume of planar non-convex bodies as the distance tends to infinity. We show that the difference between the parallel volume of the convex hull of a body and the parallel volume of the body itself tends to 0. This yields a new proof...... for the fact that a planar body can only have polynomial parallel volume, if it is convex. Extensions to Minkowski spaces and random sets are also discussed....

  18. Site Environmental Report for 2005 Volume I and Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, Michael

    2006-07-07

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, ''Environment, Safety, and Health Reporting''. The ''Site Environmental Report for 2005'' summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2005. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab'', ''the Laboratory'', ''Lawrence Berkeley National Laboratory'', and ''LBNL''.) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. This year's Volume I text body is organized into an executive summary followed by six chapters. The report's structure has been reorganized this year, and it now includes a chapter devoted to environmental management system topics. Volume II contains individual data results from surveillance and monitoring activities. The ''Site Environmental Report'' is distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported using the more conventional (non-SI) system of measurements, because the non-SI system is referenced by several current

  19. Ion Channels Involved in Cell Volume Regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay

    2011-01-01

    This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume...

  20. BEGINNING INDONESIAN. VOLUME 4 AND GLOSSARY.

    Science.gov (United States)

    DYEN, ISIDORE

    VOLUME 4 OF A 4-VOLUME WORK ON BEGINNING INDONESIAN CONTAINS LESSONS 19-24 OF A TOTAL OF 24. INCLUDED IN THIS FINAL VOLUME IS A GLOSSARY OF TERMS AND LESSONS WHICH PROVIDE DRILLS IN BASIC INDONESIAN SENTENCE PATTERNS INVOLVING THE USE OF FORMAL AND INFORMAL WORDS, ADJECTIVES, CLOSELY ASSOCIATED SECOND VERBS, COMPARATIVES, PREFIXES, AND SUFFIXES.…

  1. Volume control device for digital signals

    NARCIS (Netherlands)

    Schinkel, Daniel; van Tuijl, Adrianus Johannes Maria; Nuijten, Petrus A.C.M.

    2004-01-01

    A digital volume control device comprises a logic unit for volume control of digital input signals. Successively supplied m-bits words with maximally k bits active, derived from the output signals of or supplied by a volume control (4) with a quantizer (5) element the filtered m-bits workds are

  2. Review: The Oxford History of English Lexicography. Volume I ...

    African Journals Online (AJOL)

    A.P. Cowie (Editor). The Oxford History of English Lexicography. Volume I: General-purpose Dictionaries. Volume II: Specialized Dictionaries. 2009. Volume I: xviii + 467 pp., Volume II: xix + 551 pp. ISBN Volume I–II: 978-0-19-928562-4. Volume I: 978-0-19-928560-0. Volume II: 978-0-19-928561-7. Oxford: Oxford University ...

  3. Influence of a microcomposite and a nanocomposite on the properties of an epoxy-based powder coating

    Energy Technology Data Exchange (ETDEWEB)

    Piazza, Diego [Polymers Laboratory, Caxias do Sul University - Exact Science and Technology Center, Francisco Getulio Vargas Street, 1130, Petropolis, CEP 95070-560 Caxias do Sul, RS (Brazil); Lorandi, Natalia P. [Corrosion and Surface Protection Laboratory, Caxias do Sul University - Exact Science and Technology Center, Francisco Getulio Vargas Street, 1130, Petropolis, CEP 95070-560 Caxias do Sul, RS (Brazil); Pasqual, Charles I. [Polymers Laboratory, Caxias do Sul University - Exact Science and Technology Center, Francisco Getulio Vargas Street, 1130, Petropolis, CEP 95070-560 Caxias do Sul, RS (Brazil); Scienza, Lisete C. [Corrosion and Surface Protection Laboratory, Caxias do Sul University - Exact Science and Technology Center, Francisco Getulio Vargas Street, 1130, Petropolis, CEP 95070-560 Caxias do Sul, RS (Brazil); Zattera, Ademir J., E-mail: ajzattera@terra.com.br [Polymers Laboratory, Caxias do Sul University - Exact Science and Technology Center, Francisco Getulio Vargas Street, 1130, Petropolis, CEP 95070-560 Caxias do Sul, RS (Brazil)

    2011-08-25

    Highlights: {yields} New materials for using as protective coatings for metal surfaces. {yields} Development of nanostructured powder paints. {yields} Characterization of the new material in the powder and coating form. {yields} Development of a new material for use in the automotive industry, industrial production of appliances, furniture industry. {yields} Development of new material using the process of mixing using a twin-screw extruder, followed by sintering process on a metal plate. - Abstract: The incorporation of nanoclays into coatings has been considered to be commercially favorable due to the improvements obtained in the barrier, thermal, and anticorrosion properties, among others, leading to the development of a new segment in the area of clean technologies: the application of nanocomposites to powder coatings. In this study, in order to compare the performance of a powder coating with the addition of a conventional load (barium sulfate) and a montmorillonite clay (MMT), two mixtures of commercial epoxy-based powder coating were prepared in the melt state, with the addition of 2 and 4% (w/w) of MMT, or 2 and 4% (w/w) of barium sulfate (BaSO{sub 4}). The thermal properties were investigated through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to evaluate the load dispersion and the morphology of the systems formed. The physical and anticorrosion properties of the coatings were also investigated. The interaction of the MMT with the polymeric matrix, associated to the aspect ratio, resulted in better barrier properties, thermal stability, and adhesion to the metal substrate.

  4. Obtaining and characterization of polycaprolactone with nanocellulose microcomposite; Obtencao e caracterizacao de microcompositos de policaprolactona com nanocelulose

    Energy Technology Data Exchange (ETDEWEB)

    Paz, R.A. da; Araujo, E.M., E-mail: rene@cct.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Leite, A.M.D. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil). Escola de Ciencia e Tecnologia; Rosa, M.F. [Embrapa Agroindustria Tropical, Fortaleza, CE (Brazil)

    2016-07-01

    Research into the development of biodegradable materials of renewable energy sources are increasing and polycaprolactone (PCL) is a biodegradable thermoplastic which has many applications. The cellulose nanocrystals (NCC) are crystalline domains of cellulose sources and have been evaluated as reinforcement in polymer matrices for their potential to improve many properties. Micro Composites PCL with NCC were developed by by melting intercalation 3 content and 5% nanocellulose. Specimens tensile and impact were injection molded and the material was characterized by FTIR, XRD, TGA, DSC and mechanical properties. The FTIR and TGA results show the presence of load array and greater thermal stability respectively. XRD and DSC shows an increase in crystallinity. The properties: tensile and impact the system showed improvements in module, tension, and ductility of the material. (author)

  5. Petroleum supply annual 1994. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-22

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1994 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity, and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1994, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Below is a description of each section in Volume 1 of the PSA.

  6. Petroleum supply annual 1993. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Petroleum Supply Annual (PSA) contains information on the supply and disposition of crude oil and petroleum products. The publication reflects data that were collected from the petroleum industry during 1993 through annual and monthly surveys. The PSA is divided into two volumes. This first volume contains four sections: Summary Statistics, Detailed Statistics, Refinery Capacity, and Oxygenate Capacity each with final annual data. The second volume contains final statistics for each month of 1993, and replaces data previously published in the Petroleum Supply Monthly (PSM). The tables in Volumes 1 and 2 are similarly numbered to facilitate comparison between them. Below is a description of each section in Volume 1 of the PSA.

  7. Bladder volume estimation from electrical impedance tomography.

    Science.gov (United States)

    Schlebusch, Thomas; Nienke, Steffen; Santos, Susana Aguiar; Leonhardt, Steffen

    2013-01-01

    Ubiquitous knowledge of bladder volume is of great interest to patients whose perception of bladder volume is impaired. A promising approach to provide frequent bladder volume estimates to the patient are automatic and noninvasive measurements by electrical impedance tomography (EIT). Previous studies have shown a linear correlation of abdominal electrical impedance and bladder volume. In this article, we present two methods to extract a volume estimate from EIT measurements. One method is based on the global impedance from a reconstructed image, the second method is based on a singular value decomposition of the raw voltage measurement vector. A performance evaluation in presence of noise is performed.

  8. Archives of ALGA. Volume 3

    OpenAIRE

    2006-01-01

    Volume 3 contains 6 articles: Lars Haikola, Louise Petrén-Overton, min mormor; Lars Haikola, Louise Petr´en-Overton, my grandmother. Traslations: Louise Petrén, Extension of Laplace's method to the equations...; E. Bessel-Hagen, On conservation laws of electrodynamics. Nail H. Ibragimov, The answer to the question put to me by L.V. Ovsyannikov 33 years ago; Nail H. Ibragimov, Raisa Khamitova, Bo Thidé, Adjoint system and conservation laws for symmetrized electromagnetic equations with a ...

  9. Environmental Report 1995. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Harrach, R.J.; Failor, R.A.; Gallegos, G.M. [and others

    1996-09-01

    This report contains the results of Lawrence Livermore National Laboratory`s (LLNL) environmental monitoring and compliance effort and an assessment of the impact of LLNL operations on the environment and the public. This first volume describes LLNL`s environmental impact and compliance activities and features descriptive and explanatory text, summary data tables, and plots showing data trends. The summary data include measures of the center of data, their spread or variability, and their extreme values. Chapters on monitoring air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation are present.

  10. Holographically Encoded Volume Phase Masks

    Science.gov (United States)

    2015-07-13

    optics ,” Nat. Photonics 4, 188–193 (2010). 26. H. Kogelnik, “Coupled wave theory for thick volume holograms ,” Bell System Tech. J. 45(9), 2909–2944...phase masks Marc SeGall, Ivan Divliansky,* Clémence Jollivet, Axel Schülzgen, and Leonid B. Glebov University of Central Florida, College of Optics and...satisfying the Bragg condition of the hologram . Moreover, this approach enables the capability to encode and multiplex several phase masks into a single

  11. Electro Polishing of Niobium Cavities at DESY

    CERN Document Server

    Matheisen, A; Morales, H; Petersen, B; Schmoekel, M; Steinhau-Kühl, N

    2004-01-01

    At DESY a facility for electro polishing (EP) of the super conducting (s.c.) TESLA/TTF cavities have been built and is operational since summer 2003. The EP infrastructure is capable to handle single-cell structures and the standard TESLA/ TTF nine-cell cavities. Several electro polishing processes have been made since and acceleration voltage up to 40 MV/m have been reached in nine cell structures. We report on measurements and experiences gained since 2003 as well as on handling procedures developed for the preparation of electro polished resonators. Specific data like heat production, variation of current density and bath aging will be presented. Another important point for reproducible results is the quality control of the electro polishing process. First quality control steps to be implanted in the EP procedure for large-scale production will be described.

  12. Performance of 3-cell Seamless Niobium cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kneisel, Peter K. [JLAB; Ciovati, Gianluigi [JLBA; Jelezov, I. [DESY, Hamburg; Singer, W. [DESY, Hamburg; Singer, X. [DESY, Hamburg

    2009-11-01

    In the last several months we have surface treated and cryogenically tested three TESLA-type 3-cell cavities, which had been manufactured at DESY as seamless assemblies by hydroforming. The cavities were completed at JLab with beam tube/flange assemblies. All three cavities performed very well after they had been post-purified with titanium at 1250C for 3 hrs. The cavities, two of which consisted of an end cell and 2 center cells and one was a center cell assembly, achieved gradients of Eacc = 32 MV/m, 34 MV/m and 35 MV/m without quenches. The performance was limited by the appearance of the “Q-drop” in the absence of field emission. This contribution reports about the various measurements undertaken with these cavities.

  13. Sputtered Clusters from Niobium-Vanadium Alloys

    DEFF Research Database (Denmark)

    Schou, Jørgen; Hofer, W. O.

    1982-01-01

    A series of Nb&z.sbnd;V alloys have been irradiated by 6 keV argon ions. Homonuclear and heteronuclear clusters emitted from these alloys have been studied by means of post-ionization and/or secondary ion mass spectrometry. The intensity of clusters of atomic masses up to approximately 300 amu...... was related to the concentrations of Nb and V in the alloys. In addition, the behaviour of polyatomic cluster yields as a function of partial oxygen pressure was studied. At partial pressures larger than approximately 10 6Torr, the yields decreased with increasing partial pressures. By inclusion of the post......-ionized neutrals, the total secondary particle intensity was increased by a factor of 1.5 for clusters up to atomic masses of around 200 amu. Scanning electron microscopy revealed a varied surface topography with large differences from grain to grain for irradiated samples exposed for doses larger than 1018 atoms...

  14. Niobium Nitride Josephson Devices with Semiconductor Barriers.

    Science.gov (United States)

    1981-09-01

    impedance of the semiconductor side of the device.17 (An exception is the silicon membrane structures of Huang and Van Duzer . 2) In our devices this...and T. Van Duzer , Appl. Phys. Lett. 25, 753 (1974). 3. M. Schyfter, J. Maah-Sango, N. Ralez, R. Rubz, B. T. Alrich, and T. Van Duzer , IEEE Trans

  15. Niobium Cavity Electropolishing Modelling and Optimisation

    CERN Document Server

    Ferreira, L M A; Forel, S; Shirra, J A

    2013-01-01

    It’s widely accepted that electropolishing (EP) is the most suitable surface finishing process to achieve high performance bulk Nb accelerating cavities. At CERN and in preparation for the processing of the 704 MHz high-beta Superconducting Proton Linac (SPL) cavities a new vertical electropolishing facility has been assembled and a study is on-going for the modelling of electropolishing on cavities with COMSOL® software. In a first phase, the electrochemical parameters were taken into account for a fixed process temperature and flow rate, and are presented in this poster as well as the results obtained on a real SPL single cell cavity. The procedure to acquire the data used as input for the simulation is presented. The modelling procedure adopted to optimise the cathode geometry, aimed at a uniform current density distribution in the cavity cell for the minimum working potential and total current is explained. Some preliminary results on fluid dynamics is also briefly described.

  16. Plasma Treatment of Niobium SRF Cavity Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    J. Upadhyay, M. Raskovic, L. Vuskovic, S. Popovic, A.-M. Valente-Feliciano, L. Phillips

    2010-05-01

    Plasma based surface modification provides an excellent opportunity to eliminate non- superconductive pollutants in the penetration depth region of the SRF cavity surface and to remove mechanically damaged surface layer improving surface roughness. We have demonstrated on flat samples that plasma etching in Ar / Cl2 of bulk Nb is a viable alternative surface preparation technique to BCP and EP methods, with comparable etching rates. The geometry of SRF cavities made of bulk Nb defines the use of asymmetric RF discharge configuration for plasma etching. In a specially designed single cell cavity with sample holders, discharge parameters are combined with etched surface diagnostics to obtain optimum combination of etching rates, roughness and homogeneity in a variety of discharge types, conditions, and sequences. The optimized experimental conditions will ultimately be applied to single cell SRF cavities.

  17. Reduced central blood volume in cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Bendtsen, Flemming; Sørensen, T I

    1989-01-01

    for measuring the central blood volume. We have developed a method that enables us to determine directly the central blood volume, i.e., the blood volume in the heart cavities, lungs, and central arterial tree. In 60 patients with cirrhosis and 16 control subjects the central blood volume was assessed according......The pathogenesis of ascites formation in cirrhosis is uncertain. It is still under debate whether the effective blood volume is reduced (underfilling theory) or whether the intravascular compartment is expanded (overflow theory). This problem has not yet been solved because of insufficient tools...... to the kinetic theory as the product of cardiac output and mean transit time of the central vascular bed. Central blood volume was significantly smaller in patients with cirrhosis than in controls (mean 21 vs. 27 ml/kg estimated ideal body weight, p less than 0.001; 25% vs. 33% of the total blood volume, p less...

  18. Commissioning and modification of the low temperature scanning polarization microscope (TTSPM) and imaging of the local magnetic flux density distribution in superconducting niobium samples; Inbetriebnahme und Modifikation eines Tieftemperatur-Raster-Polarisations-Mikroskops (TTRPM) und Abbildung der lokalen Flussdichteverteilung in supraleitenden Niob-Proben

    Energy Technology Data Exchange (ETDEWEB)

    Gruenzweig, Matthias Sebastian Peter

    2014-07-11

    }). Indeed, it has been possible to image the magnetization reversal process and thus the formation (or destruction) and the migration of an ''Interfacial Domain Wall'' (IDW) in such a Fe{sub 1-x}Tb{sub x}/ vertical stroke Co/Pt vertical stroke {sub n}-heterostructure. Part II of the dissertation is about the magneto-optical imaging of superconducting Niobium coplanar microwave resonators as well as of a Niobium single crystal. By means of the magneto-optical images of the resonators, important findings about magnetic hysteresis effects in such coplanar microwave resonators could be achieved. It was also possible to confirm the results of transmission spectroscopy experiments on those coplanar resonators, which were performed in a previous dissertation of Daniel Bothner. Additionally, it was possible to show that initially inserted Abrikosov vortices can be almost completely removed from the coplanar resonators again by properly cycling the magnetic field. On the basis of magneto-optical images of a 2 mm thick Niobium single crystal, it was possible to observe dendritic avalanches in a superconducting bulk material for the first time. Here, the dendritic avalanches only appear in a very narrow temperature interval of about a tenth of a Kelvin below the critical temperature T{sub c} of the Niobium single crystal. Below this threshold temperature the magnetic flux penetrates nearly homogeneously into the single crystal. The observed dendritic avalanches in the bulk single crystal near T{sub c} have features which are identical to those seen in thin films at low temperatures caused by thermomagnetic instability. Therefore, one can conclude that the dendritic avalanches in the single crystal are formed in a thin superconducting layer at the surface of the single crystal, which can be formed under certain conditions near T{sub c}.

  19. Olfactory bulb volume in smokers.

    Science.gov (United States)

    Schriever, Valentin A; Reither, Nicole; Gerber, Johannes; Iannilli, Emilia; Hummel, Thomas

    2013-03-01

    The study aimed to investigate the volume of the olfactory bulb in smokers. Specifically, we wanted to see whether environmental influences may exert a negative influence on OB structure. Twenty-one smokers and 59 non-smokers, matched for age and sex, underwent olfactory testing by means of the Sniffin' Sticks testing device (measurement of odor threshold and identification abilities). In addition, they underwent an MR scan with 2-mm-thick T2-weighted fast spin-echo images without interslice gap in the coronal plane covering the anterior and middle segments of the base of the skull. Olfactory function was not different between the 2 groups; however, olfactory bulb volumes were smaller in smokers than in non-smokers (p = 0.006). The deficit seen at the level of the OB did not correlate with the duration of smoking. The current data indicate that smoking may have a negative effect on the olfactory system before this becomes obvious in terms of a decreased olfactory function.

  20. Exploded views for volume data.

    Science.gov (United States)

    Bruckner, Stefan; Gröiller, M Eduard

    2006-01-01

    Exploded views are an illustration technique where an object is partitioned into several segments. These segments are displaced to reveal otherwise hidden detail. In this paper we apply the concept of exploded views to volumetric data in order to solve the general problem of occlusion. In many cases an object of interest is occluded by other structures. While transparency or cutaways can be used to reveal a focus object, these techniques remove parts of the context information. Exploded views, on the other hand, do not suffer from this drawback. Our approach employs a force-based model: the volume is divided into a part configuration controlled by a number of forces and constraints. The focus object exerts an explosion force causing the parts to arrange according to the given constraints. We show that this novel and flexible approach allows for a wide variety of explosion-based visualizations including view-dependent explosions. Furthermore, we present a high-quality GPU-based volume ray casting algorithm for exploded views which allows rendering and interaction at several frames per second.