WorldWideScience

Sample records for volume minute ventilation

  1. Minute ventilation at different compression to ventilation ratios, different ventilation rates, and continuous chest compressions with asynchronous ventilation in a newborn manikin

    Directory of Open Access Journals (Sweden)

    Solevåg Anne L

    2012-10-01

    Full Text Available Abstract Background In newborn resuscitation the recommended rate of chest compressions should be 90 per minute and 30 ventilations should be delivered each minute, aiming at achieving a total of 120 events per minute. However, this recommendation is based on physiological plausibility and consensus rather than scientific evidence. With focus on minute ventilation (Mv, we aimed to compare today’s standard to alternative chest compression to ventilation (C:V ratios and different ventilation rates, as well as to continuous chest compressions with asynchronous ventilation. Methods Two investigators performed cardiopulmonary resuscitation on a newborn manikin with a T-piece resuscitator and manual chest compressions. The C:V ratios 3:1, 9:3 and 15:2, as well as continuous chest compressions with asynchronous ventilation (120 compressions and 40 ventilations per minute were performed in a randomised fashion in series of 10 × 2 minutes. In addition, ventilation only was performed at three different rates (40, 60 and 120 ventilations per minute, respectively. A respiratory function monitor measured inspiration time, tidal volume and ventilation rate. Mv was calculated for the different interventions and the Mann–Whitney test was used for comparisons between groups. Results Median Mv per kg in ml (interquartile range was significantly lower at the C:V ratios of 9:3 (140 (134–144 and 15:2 (77 (74–83 as compared to 3:1 (191(183–199. With ventilation only, there was a correlation between ventilation rate and Mv despite a negative correlation between ventilation rate and tidal volumes. Continuous chest compressions with asynchronous ventilation gave higher Mv as compared to coordinated compressions and ventilations at a C:V ratio of 3:1. Conclusions In this study, higher C:V ratios than 3:1 compromised ventilation dynamics in a newborn manikin. However, higher ventilation rates, as well as continuous chest compressions with asynchronous

  2. BOX: One Minute Volume 3

    OpenAIRE

    Butler, Rose

    2009-01-01

    BOX is a digital short originally developed in 2004 documented on a 1920’s box camera. This early moving image work formed the basis of a practice which interrogates our experience of moving image through the remediation of analogue technology with new media. In 2009 it was included in One Minute Volume 3; a programme of artists moving image curated by Kerry Baldry including work by: Tony Hill, Tina Keane, Katherine Meynell, Kayla Parker and Stuart Moore, Dave Griffiths, Marty St Jam...

  3. Assessment of minute volume of lung in NPP workers for Korean reference man

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. J.; Song, S. H.; Lee, J.; Jin, Y. W.; Yim, Y. K.; Kim, J. S. [KNETEC, Seoul (Korea, Republic of)

    2001-05-01

    To formulation of the reference Korean for radiation protection purpose, we measured the forced vital capacity(FVC), forced expiratory volume in second(FEVI), minute ventilation(MV) of Nuclear Power Plant workers using SP-1 Spirometry Unit(Schiller AG. 1998) and eatimated the liters of breathed for working and resting, also compared these data with ICRP 23.

  4. Two-minute training for improving neonatal bag and mask ventilation.

    Science.gov (United States)

    van Vonderen, Jeroen J; Witlox, Ruben S; Kraaij, Sascha; te Pas, Arjan B

    2014-01-01

    To test effectivity of a two-minute training consisting of a few key-points in ventilation using the self-inflating bag (SIB). Experienced and inexperienced caregivers were asked to mask ventilate a leak free manikin using the SIB before and after the training. Mask leak and pressures were measured using respiratory function monitoring. Pressures above 35 cm H2O were considered excessive. Parameters were compared using a Wilcoxon non-parametric test. Before and after the short training, experienced caregivers had minimal median (IQR) mask leak (14 (3-75) vs. 3 (0-53)%; ptraining (ptraining (94 (46-100) vs. 2 (0-70)%; ptraining of bag and mask ventilation was effective. This training could be incorporated into any training program.

  5. Comparison of actual tidal volume in neonatal lung model volume control ventilation using three ventilators.

    Science.gov (United States)

    Toyama, H; Endo, Y; Ejima, Y; Matsubara, M; Kurosawa, S

    2011-07-01

    In neonates, small changes in tidal volumes (V(T)) may lead to complications. Previous studies have shown a significant difference between ventilator-measured tidal volume and tidal volume delivered (actual V(T)). We evaluated the accuracy of three different ventilators to deliver small V(T) during volume-controlled ventilation. We tested Servo 300, 840 ventilator and Evita 4 Neoflow ventilators with lung models simulating normal and injured neonatal lung compliance models. Gas volume delivered from the ventilator into the test circuit (V(TV)) and actual V(T) to the test lung were measured using Ventrak respiration monitors at set V(T) (30 ml). The gas volume increase of the breathing circuit was then calculated. Tidal volumes of the SV300 and PB840 in both lung models were similar to the set V(T) and the actual tidal volumes in the injured model (20.7 ml and 19.8 ml, respectively) were significantly less than that in the normal model (27.4 ml and 23.4 ml). PB840 with circuit compliance compensation could not improve the actual V(T). V(TV) of the EV4N in the normal and the injured models (37.8 ml and 46.6 ml) were markedly increased compared with set V(T), and actual V(T) were similar to set V(T) in the normal and injured model (30.2 ml and 31.9 ml, respectively). EV4N measuring V(T) close to the lung could match actual V(T) to almost the same value as the set V(T) however the gas volume of the breathing circuit was increased. If an accurate value for the patient's actual V(T) is needed, this V(T) must be measured by a sensor located between the Y-piece and the tracheal tube.

  6. Exposure assessment by physiologic sampling pump--prediction of minute ventilation using a portable respiratory inductive plethysmograph system.

    Science.gov (United States)

    Lin, Ming-I; Groves, William A; Freivalds, Andris; Lee, Eun Gyung; Harper, Martin; Slaven, James E; Lee, Larry

    2008-10-01

    A study was conducted to evaluate a portable respiratory inductive plethysmograph (RIP) as a means to estimate minute ventilation (V(E)) for use in controlling the flow rate of a physiologic sampling pump (PSP). Specific aims were to: (1) evaluate the ability of the portable RIP system to measure V(E) using a direct (individual) fixed-volume calibration method (Direct RIP model), (2) develop and evaluate the performance of indirect (group) regression models for V(E) prediction using output data from the portable RIP and subject demographic characteristics (Indirect RIP model), and (3) compare V(E) estimates from indirect and direct portable RIP calibration with indirect estimation models published previously. Nine subjects (19-44 years) were divided into calibration (n = 6) and test (n = 3) datasets and performed step-tests on three different days while wearing the portable RIP and breathing through a pneumotachometer (reference). Minute ventilation and portable RIP output including heart rate, breathing rate, and a motion index were recorded simultaneously during the 80 minute sessions. Calibration data were used to develop a regression model for V(E) prediction that was subsequently applied to the test dataset. Direct calibration of the portable RIP system produced highly variable estimates of V(E) (R2 = 0.62, average % error = 15 +/- 50) while Indirect RIP model results were highly correlated with the reference (R2 = 0.80-0.88) and estimates of total volume were within 10% of reference values on average. Although developed from a limited dataset, the Indirect RIP model provided an alternative approach to estimation of V(E) and total volume with accuracy comparable to previously published models.

  7. The Effect of Pressure-Controlled Ventilation and Volume-Controlled Ventilation in Prone Position on Pulmonary Mechanics and Inflammatory Markers.

    Science.gov (United States)

    Şenay, Hasan; Sıvacı, Remziye; Kokulu, Serdar; Koca, Buğra; Bakı, Elif Doğan; Ela, Yüksel

    2016-08-01

    The aim of this present study is to compare the effect of pressure-controlled ventilation and volume-controlled ventilation on pulmonary mechanics and inflammatory markers in prone position. The study included 41 patients undergoing to vertebrae surgery. The patients were randomized into two groups: Group 1 received volume-controlled ventilation, while group 2 received pressure-controlled ventilation. The demographic data, pulmonary mechanics, the inflammatory marker levels just after the induction of anesthetics, at the 6th and 12th hours, and gas analysis from arterial blood samples taken at the beginning and the 30th minute were recorded. The inflammatory marker levels increased in both groups, without any significant difference among groups. Peak inspiratory pressure level was higher in the volume-controlled ventilation group. This study revealed that there is no difference regarding inflammatory marker levels between volume- and pressure-controlled ventilation.

  8. Two-minute training for improving neonatal bag and mask ventilation.

    Directory of Open Access Journals (Sweden)

    Jeroen J van Vonderen

    Full Text Available To test effectivity of a two-minute training consisting of a few key-points in ventilation using the self-inflating bag (SIB.Experienced and inexperienced caregivers were asked to mask ventilate a leak free manikin using the SIB before and after the training. Mask leak and pressures were measured using respiratory function monitoring. Pressures above 35 cm H2O were considered excessive. Parameters were compared using a Wilcoxon non-parametric test.Before and after the short training, experienced caregivers had minimal median (IQR mask leak (14 (3-75 vs. 3 (0-53%; p<0.01. Inexperienced users had large leak which reduced from 51 (7-91% before to 11 (2-71% after training (p<0.01. Pressures above 35 cm H2O hardly occurred in experienced caregivers (0 (0-5 vs. 0 (0-0%; ns. In inexperienced caregivers this frequently occurred but decreased considerably after training (94 (46-100 vs. 2 (0-70%; p<0.01.A two-minute training of bag and mask ventilation was effective. This training could be incorporated into any training program.

  9. Cardiorespiratory Mechanical Simulator for In Vitro Testing of Impedance Minute Ventilation Sensors in Cardiac Pacemakers.

    Science.gov (United States)

    Marcelli, Emanuela; Cercenelli, Laura

    2016-01-01

    We developed a cardiorespiratory mechanical simulator (CRMS), a system able to reproduce both the cardiac and respiratory movements, intended to be used for in vitro testing of impedance minute ventilation (iMV) sensors in cardiac pacemakers. The simulator consists of two actuators anchored to a human thorax model and a software interface to control the actuators and to acquire/process impedance signals. The actuators can be driven separately or simultaneously to reproduce the cardiac longitudinal shortening at a programmable heart rate and the diaphragm displacement at a programmable respiratory rate (RR). A standard bipolar pacing lead moving with the actuators and a pacemaker case fixed to the thorax model have been used to measure impedance (Z) variations during the simulated cardiorespiratory movements. The software is able to discriminate the low-frequency component because of respiration (Z(R)) from the high-frequency ripple because of cardiac effect (Z(C)). Impedance minute ventilation is continuously calculated from Z(R) and RR. From preliminary tests, the CRMS proved to be a reliable simulator for in vitro evaluation of iMV sensors. Respiration impedance recordings collected during cardiorespiratory movements reproduced by the CRMS were comparable in morphology and amplitude with in vivo assessments of transthoracic impedance variations.

  10. Activation of the inflammatory reaction within minutes after birth in ventilated preterm lambs with neonatal respiratory distress syndrome

    NARCIS (Netherlands)

    Jaarsma, AS; Geven, WB; van Oeveren, W; Oetomo, SB

    2004-01-01

    To study the activation of the inflammatory reaction within minutes after birth, we measured parameters of inflammation before and immediately after birth. To assess whether respiratory distress syndrome (RDS) or birth itself initiates activation, we compared preterm ventilated lambs with term nonve

  11. Activation of the inflammatory reaction within minutes after birth in ventilated preterm lambs with neonatal respiratory distress syndrome

    NARCIS (Netherlands)

    Jaarsma, AS; Geven, WB; van Oeveren, W; Oetomo, SB

    2004-01-01

    To study the activation of the inflammatory reaction within minutes after birth, we measured parameters of inflammation before and immediately after birth. To assess whether respiratory distress syndrome (RDS) or birth itself initiates activation, we compared preterm ventilated lambs with term

  12. Chronotropic incompetence in Chagas disease: effectiveness of blended sensor (volume/minute and accelerometer

    Directory of Open Access Journals (Sweden)

    Antonio da Silva Menezes Junior

    2015-09-01

    Full Text Available AbstractIntroduction:Technological progress of pacemakers has allowed the association of two or more sensors in one heart rate system response. The accelerometer sensor measures the intensity of the activity; it has a relatively rapid response to the beginning of it, however, it may present insufficient response to less strenuous or of less impact exercise. The minute ventilation sensor changes the pacing rate in response to changes in respiratory frequency in relation to tidal volume, allowing responses to situations of emotional stress and low impact exercises.Objective:To evaluate the cardiorespiratory response of the accelerometer with respect to the blended sensor (BS=accelerometer sensor+minute ventilation sensor to exercise in chagasic patients undergoing cardiopulmonary exercise test.Methods:This was a prospective, observational, randomized, cross-sectional study. Patients who met the inclusion criteria were selected. The maximum heart rate of the sensor was programmed by age (220-age. The results were analyzed through t test with paired samples (P<0.05.Results:Sample was comprised of 44 patients, with a mean age of 66±10.4 years, 58% were female, 54% as first implant, in 74% were functional class I and 26% were functional class II, left ventricular ejection fraction was 58±7. As for the cardiopulmonary test, maximum expected heart rate and VO2 were not achieved in both the accelerometer sensor and the blended sensor, however, metabolic equivalent in the blended sensor was higher than the expected, all data with P<0.001.Conclusion:Even though the maximal heart rate was not reached, the blended sensor provided a physiological electrical sequence when compared to the accelerometer sensor, providing better physical fitness test in cardiopulmonary hemodynamics and greater efficiency.

  13. Effect of Minimally Invasive Surfactant Therapy on Lung Volume and Ventilation in Preterm Infants.

    Science.gov (United States)

    van der Burg, Pauline S; de Jongh, Frans H; Miedema, Martijn; Frerichs, Inez; van Kaam, Anton H

    2016-03-01

    To assess the changes in (regional) lung volume and gas exchange during minimally invasive surfactant therapy (MIST) in preterm infants with respiratory distress syndrome. In this prospective observational study, infants requiring a fraction of inspired oxygen (FiO2) ≥ 0.30 during nasal continuous positive airway pressure of 6 cmH2O were eligible for MIST. Surfactant (160-240 mg/kg) was administered in supine position in 1-3 minutes via an umbilical catheter placed 2 cm below the vocal cords. Changes in end-expiratory lung volume (EELV), tidal volume, and its distribution were recorded continuously with electrical impedance tomography before and up to 60 minutes after MIST. Changes in transcutaneous oxygen saturation (SpO2) and partial carbon dioxide pressure, FiO2, respiratory rate, and minute ventilation were recorded. A total of 16 preterm infants were included. One patient did not finish study protocol because of severe apnea 10 minutes after MIST. In the remaining infants (gestational age 29.8 ± 2.8 weeks, body weight 1545 ± 481 g) EELV showed a rapid and sustained increase, starting in the dependent lung regions, followed by the nondependent regions approximately 5 minutes later. Oxygenation, expressed as the SpO2/FiO2 ratio, increased from 233 (IQR 206-257) to 418 (IQR 356-446) after 60 minutes (P transcutaneous partial carbon dioxide pressure was comparable with pre-MIST values. Ventilation distribution remained unchanged. MIST results in a rapid and homogeneous increase in EELV, which is associated with an improvement in oxygenation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Pressure and volume controlled mechanical ventilation in anaesthetized pregnant sheep.

    Science.gov (United States)

    Davis, J; Musk, G C

    2014-10-01

    Optimal mechanical ventilation of the pregnant ewe during anaesthesia is of vital importance for maintaining fetal viability. This study aimed to compare peak inspiratory pressure (PIP), oxygenation and cardiovascular parameters with pressure-control (PCV) or volume-control (VCV) mechanical ventilation of anaesthetized pregnant sheep. Twenty ewes at 110 days gestation underwent general anaesthesia in dorsal recumbency for fetal surgery in a research setting. All the sheep were mechanically ventilated; one group with PCV (n = 10) and another with VCV (n = 10) to maintain normocapnia. PIP, direct arterial blood pressure, heart rate, arterial pH and arterial oxygen tension were recorded. PIP was lower in the PCV group (P sheep anaesthetized in dorsal recumbency, though PCV may provide superior oxygenation at a lower PIP.

  15. [Noninvasive, continuous monitoring of artificial respiration in premature and newborn infants by the constant measurement of respiratory minute volume, oxygen consumption and carbon dioxide release].

    Science.gov (United States)

    Leidig, E; Noller, F; Mentzel, H

    1986-01-01

    A system of instrumentation for the continuous measurement of the respiratory gases during assisted ventilation of neonates and premature infants based upon "breath-by-breath-method" is described. The four respiratory parameters flow (V), ventilation pressure (p), oxygen-concentration and carbon dioxide-concentration are measured. These datas are processed by a computer to generate a continuous display of the respiratory minute volume, the tidal volume, the breath rate, the oxygen consumption and the carbon dioxide production. All parameters are stored and can be displayed or plotted as trends. The flow-measurement is performed using hot-wire-anemometry. The very small flow sensor is adapted directly to the tube. Next to this sensor, the respiratory gas for the analysis of the O2- and CO2- concentration is suctioned off continuously. First clinical experience in mechanically ventilated newborns is characterized.

  16. Volume-targeted ventilation and arterial carbon dioxide in neonates.

    Science.gov (United States)

    Dawson, Catherine; Davies, Mark William

    2005-01-01

    To review the arterial carbon dioxide tensions (PaCO(2)) in newborn infants ventilated using synchronized intermittent mandatory ventilation (SIMV) in volume guarantee mode (using the Dräger Babylog 8000+) with a unit policy targeting tidal volumes of approximately 4 mL/kg. Data on ventilator settings and arterial PaCO(2) levels were collected on all arterial blood gases (ABG; n = 288) from 50 neonates ( 65 mmHg) were determined. The mean (SD) PaCO(2) during the first 48 h was 46.6 (9.0) mmHg. The mean (SD) PaCO(2) on the first blood gas of those infants commenced on volume guarantee from admission was 45.1 (12.5) mmHg. Severe hypo- or hypercapnoea occurred in 8% of infants at the time of their first blood gas measurement, and in levels at the first blood gas measurement and during the first 48 h of life; and avoid severe hypo- or hypercapnoea over 90% of the time.

  17. Increased requirement for minute ventilation and negative arterial to end-tidal carbon dioxide gradient may indicate malignant hyperthermia

    Directory of Open Access Journals (Sweden)

    Ho-Tien Lin

    2014-04-01

    Full Text Available Characteristic signs of malignant hyperthermia (MH include unexplained tachycardia, increased end-tidal carbon dioxide (Etco2 concentration, metabolic and respiratory acidosis, and an increase in body temperature above 38.8°C. We present the case of a patient with highly probable MH. In addition to sinus tachycardia and metabolic and respiratory acidosis, this patient also had a negative arterial to Etco2 gradient and an increased requirement for minute ventilation to maintain a normal Etco2 concentration, with signs of increased CO2 production. Despite these signs of MH, the patient's rectal temperature monitoring equipment did not show an increase in temperature, although the temperature measured in the mouth was increased. This case illustrates the unreliability of measuring rectal temperature as a means of reflecting body temperature during MH and the usefulness of increased CO2 production signs in helping to diagnose MH.

  18. The impact of large tidal volume ventilation on the absorption of inhaled insulin in rabbits

    DEFF Research Database (Denmark)

    Petersen, Astrid Heide; Laursen, Torben; Ahrén, Bo;

    2007-01-01

    Previous studies have shown that ventilation patterns affect absorption of inhaled compounds. Thus, the aim of this study was to investigate the effect of large tidal volume ventilation (LTVV) on the absorption of inhaled insulin in rabbits. Mechanically ventilated rabbits were given human insuli...

  19. Comparison of volume controlled ventilation and pressure controlled ventilation in patients undergoing robot-assisted pelvic surgeries: An open-label trial

    Science.gov (United States)

    Jaju, Rishabh; Jaju, Pooja Bihani; Dubey, Mamta; Mohammad, Sadik; Bhargava, AK

    2017-01-01

    Background and Aims: Although volume controlled ventilation (VCV) has been the traditional mode of ventilation in robotic surgery, recently pressure controlled ventilation (PCV) has been used more frequently. However, evidence on whether PCV is superior to VCV is still lacking. We intended to compare the effects of VCV and PCV on respiratory mechanics and haemodynamic in patients undergoing robotic surgeries in steep Trendelenburg position. Methods: This prospective, randomized trial was conducted on sixty patients between 20 and 70 years belonging to the American Society of Anesthesiologist Physical Status I–II. Patients were randomly assigned to VCV group (n = 30), where VCV mode was maintained through anaesthesia, or the PCV group (n = 30), where ventilation mode was changed to PCV after the establishment of 40° Trendelenburg position and pneumoperitoneum. Respiratory (peak and mean airway pressure [APpeak, APmean], dynamic lung compliance [Cdyn] and arterial blood gas analysis) and haemodynamics variables (heart rate, mean blood pressure [MBP] central venous pressure) were measured at baseline (T1), post-Trendelenburg position at 60 min (T2), 120 min (T3) and after resuming supine position (T4). Results: Demographic profile, haemodynamic variables, oxygen saturation and minute ventilation (MV) were comparable between two groups. Despite similar values of APmean, APpeak was significantly higher in VCV group at T2 and T3 as compared to PCV group (P < 0.001). Cdyn and PaCO2 were also better in PCV group than in VCV group (P < 0.001 and 0.045, respectively). Conclusion: PCV should be preferred in robotic pelvic surgeries as it offers lower airway pressures, greater Cdyn and a better-preserved ventilation-perfusion matching for the same levels of MV. PMID:28216699

  20. Comparison of volume controlled ventilation and pressure controlled ventilation in patients undergoing robot-assisted pelvic surgeries: An open-label trial

    Directory of Open Access Journals (Sweden)

    Rishabh Jaju

    2017-01-01

    Full Text Available Background and Aims: Although volume controlled ventilation (VCV has been the traditional mode of ventilation in robotic surgery, recently pressure controlled ventilation (PCV has been used more frequently. However, evidence on whether PCV is superior to VCV is still lacking. We intended to compare the effects of VCV and PCV on respiratory mechanics and haemodynamic in patients undergoing robotic surgeries in steep Trendelenburg position. Methods: This prospective, randomized trial was conducted on sixty patients between 20 and 70 years belonging to the American Society of Anesthesiologist Physical Status I–II. Patients were randomly assigned to VCV group (n = 30, where VCV mode was maintained through anaesthesia, or the PCV group (n = 30, where ventilation mode was changed to PCV after the establishment of 40° Trendelenburg position and pneumoperitoneum. Respiratory (peak and mean airway pressure [APpeak, APmean], dynamic lung compliance [Cdyn] and arterial blood gas analysis and haemodynamics variables (heart rate, mean blood pressure [MBP] central venous pressure were measured at baseline (T1, post-Trendelenburg position at 60 min (T2, 120 min (T3 and after resuming supine position (T4. Results: Demographic profile, haemodynamic variables, oxygen saturation and minute ventilation (MV were comparable between two groups. Despite similar values of APmean,APpeakwas significantly higher in VCV group at T2 and T3 as compared to PCV group (P < 0.001. Cdynand PaCO2were also better in PCV group than in VCV group (P < 0.001 and 0.045, respectively. Conclusion: PCV should be preferred in robotic pelvic surgeries as it offers lower airway pressures, greater Cdynand a better-preserved ventilation-perfusion matching for the same levels of MV.

  1. Frequency dependence of lung volume changes during superimposed high-frequency jet ventilation and high-frequency jet ventilation.

    Science.gov (United States)

    Sütterlin, R; Priori, R; Larsson, A; LoMauro, A; Frykholm, P; Aliverti, A

    2014-01-01

    Superimposed high-frequency jet ventilation (SHFJV) has proved to be safe and effective in clinical practice. However, it is unclear which frequency range optimizes ventilation and gas exchange. The aim of this study was to systematically compare high-frequency jet ventilation (HFJV) with HFJV by assessing chest wall volume variations (ΔEEV(CW)) and gas exchange in relation to variable high frequency. SHFJV or HFJV were used alternatively to ventilate the lungs of 10 anaesthetized pigs (21-25 kg). The low-frequency component was kept at 16 min(-1) in SHFJV. In both modes, high frequencies ranging from 100 to 1000 min(-1) were applied in random order and ventilation was maintained for 5 min in all modalities. Chest wall volume variations were obtained using opto-electronic plethysmography. Airway pressures and arterial blood gases were measured repeatedly. SHFJV increased ΔEEV(CW) compared with HFJV; the difference ranged from 43 to 68 ml. Tidal volume (V(T)) was always >240 ml during SHFJV whereas during HFJV ranged from 92 ml at the ventilation frequency of 100 min(-1) to negligible values at frequencies >300 min(-1). We observed similar patterns for Pa(O₂) and Pa(CO₂). SHFJV provided generally higher, frequency-independent oxygenation (Pa(O₂) at least 32.0 kPa) and CO₂ removal (Pa(CO₂) ∼5.5 kPa), whereas HFJV led to hypoxia and hypercarbia at higher rates (Pa(O₂) 10 kPa at f(HF)>300 min(-1)). In a porcine model, SHFJV was more effective in increasing end-expiratory volume than single-frequency HFJV, but both modes may provide adequate ventilation in the absence of airway obstruction and respiratory disease, except for HFJV at frequencies ≥300 min(-1).

  2. Expression Changes of Early Response Genes in Lung Due to High Volume Ventilation

    Institute of Scientific and Technical Information of China (English)

    WANG Yuelan; YAO Shanglong; XIONG Ping

    2005-01-01

    Summary: The expression changes of early response genes due to ventilation with high volume in adult rats in vivo were observed. Forty SD male rats were randomly divided into control and 30, 60, 90 and 120 min ventilation groups, respectively (n=8 in each group). The animals were ventilated with tidal volume of 42 ml/kg and a PEEP level of 0 cmH2O at a rate of 40 breaths per minute in room air with a ventilator was given to the small animals. The expression of Egr-1, C-jun and IL-1β mRNA and proteins was detected by RT-PCR and immunohistochemical technique, respectively. The pathological changes in lung tissues were examined by HE staining. The results indicated that the expression of Egr-1, C-jun and IL-1β mRNA was detectable at 30th min after overventilation, but there was no significant difference in comparison with that in control group until overventilation for 60 min. However, at 90 and 120 min there was a significent increase as compared with 30 min or control group (P<0.05). The expression of Egr-1, C-jun and IL-1β deteced by immunohistochemical assay also showed a similar tendency of the gradual increase. In the 120 min ventilation group, the expression intensity of Egr-1, C-jun and IL-1β proteins in lung cells was the strongest and the nuclear translocation was increased markedly in comparison with any other groups (P<0.05). HE staining suggested that the degree of lung injury was aggravated gradually with the ventialtion going on and had a similar tendency to the expression of these early response genes and proteins. The current data suggested that overventilation activated and upregulated the expression of early response genes and the expression of these genes may be taken as the early signal to predict the onset and degree of lung injury. These results may demonstrated partially that the expression of early response genes induced by the mechanical stretch is associated with biochamic lung injury.

  3. Increasing inspiratory time exacerbates ventilator-induced lung injury during high-pressure/high-volume mechanical ventilation.

    Science.gov (United States)

    Casetti, Alfredo V; Bartlett, Robert H; Hirschl, Ronald B

    2002-10-01

    Ventilator-induced lung injury may be caused by overdistension of alveoli during high-pressure ventilation. In this study, we examined the effects of increasing inspiratory time on ventilator-induced lung injury. Sprague-Dawley rats were divided into four different groups with ten animals per group. Each group was then ventilated for 30 mins with one of four ventilator strategies. All groups were ventilated with an Fio2 of 1.0 and a positive end-expiratory pressure of 0 cm H2O. Group LoP was the negative control group and was ventilated with low pressures (peak inspiratory pressure = 12 cm H2O, rate = 30, and inspiratory time = 0.5 secs). Groups iT = 0.5, iT = 1.0, and iT = 1.5 were the experimental groups and were ventilated with high pressures (peak inspiratory pressure = 45 cm H2O, rate = 10, and inspiratory times = 0.5 secs, iT = 1.0 sec, and iT = 1.5 secs, respectively). Outcome measures included lung compliance, Pao /Fio ratio, wet/dry lung weight, and dry lung/body weight. Final static lung compliance (p =.0002) and Pao2/Fio2 (p =.001) decreased as inspiratory time increased. Wet/dry lung weights (p <.0001) and dry lung/body weights (p <.0001) increased as inspiratory time increased. Light microscopy revealed evidence of intra-alveolar edema and hemorrhage in the iT = 1.0 and iT = 1.5 animals but not the LoP and iT = 0.5 animals. Increasing inspiratory time during high-pressure/high-volume mechanical ventilation is associated with an increase in variables of lung injury.

  4. Comparative Study of pressure-control ventilation and volume-control ventilation in treating traumatic acute respiratory distress syndrome

    Institute of Scientific and Technical Information of China (English)

    杨云梅; 黄卫东; 沈美亚; 徐哲荣

    2005-01-01

    Objective: To observe the clinical therapeutic effect and side effect of pressure-control ventilation (PCV) on traumatic acute respiratory distress syndrome (ARDS) compared with volume-control ventilation (VCV).Methods: Forty patients with traumatic ARDS were hospitalized in our department from June 1996 to December 2002. Twenty were treated with PCV (PCV group) and 20 with VCV (VCV group). The changes of the peak inflating pressure and the mean pressure of the airway were observed at the very beginning of the mechanical ventilation and the following 12 and 24 hours, respectively. The transcutaneous saturation of oxygen pressure, the pressure of oxygen in artery, the mean blood pressure, the central venous pressure, the heart rate and the incidence of the pressure injury were also monitored before ventilation and 12 hours after ventilation.Results: The pressure of oxygen in artery, the transcutaneous saturation of oxygen pressure, the heart rate and the respiratory rate in the PCV group were obviously improved after ventilation treatment. The peak inflating pressure, the mean pressure of the airway and the central venous pressure in the PCV group were lower than in the VCV group. The incidence of pressure injury was 0 in the PCV group while 10% in the VCV group. Conclusions: The clinical effect of PCV on traumatic ARDS is better and the incidence rate of pressure injury is lower than that of VCV. PCV has minimal effects on the hemodynamics.

  5. Effect of low tidal volume ventilation on lung function and inflammation in mice

    Directory of Open Access Journals (Sweden)

    Goldmann Torsten

    2010-04-01

    Full Text Available Abstract Background A large number of studies have investigated the effects of high tidal volume ventilation in mouse models. In contrast data on very short term effects of low tidal volume ventilation are sparse. Therefore we investigated the functional and structural effects of low tidal volume ventilation in mice. Methods 38 Male C57/Bl6 mice were ventilated with different tidal volumes (Vt 5, 7, and 10 ml/kg without or with application of PEEP (2 cm H2O. Four spontaneously breathing animals served as controls. Oxygen saturation and pulse rate were monitored. Lung function was measured every 5 min for at least 30 min. Afterwards lungs were removed and histological sections were stained for measurement of infiltration with polymorphonuclear leukocytes (PMN. Moreover, mRNA expression of macrophage inflammatory protein (MIP-2 and tumor necrosis factor (TNFα in the lungs was quantified using real time PCR. Results Oxygen saturation did not change significantly over time of ventilation in all groups (P > 0.05. Pulse rate dropped in all groups without PEEP during mechanical ventilation. In contrast, in the groups with PEEP pulse rate increased over time. These effects were not statistically significant (P > 0.05. Tissue damping (G and tissue elastance (H were significantly increased in all groups after 30 min of ventilation (P 0.05. Mechanical ventilation significantly increased infiltration of the lungs with PMN (P Conclusions Our data show that very short term mechanical ventilation with lower tidal volumes than 10 ml/kg did not reduce inflammation additionally. Formation of atelectasis and inadequate oxygenation with very low tidal volumes may be important factors. Application of PEEP attenuated inflammation.

  6. Prophylactic protective ventilation: lower tidal volumes for all critically ill patients?

    Science.gov (United States)

    Lellouche, Francois; Lipes, Jed

    2013-01-01

    High tidal volumes have historically been recommended for mechanically ventilated patients during general anesthesia. High tidal volumes have been shown to increase morbidity and mortality in patients suffering from acute respiratory distress syndrome (ARDS). Barriers exist in implementing a tidal volume reduction strategy related to the inherent difficulty in changing one's practice patterns, to the current need to individualize low tidal volume settings only for a specific subgroup of mechanically ventilated patients (i.e., ARDS patients), the difficulty in determining the predicated body weight (requiring the patient's height and a complex formula). Consequently, a protective ventilation strategy is often under-utilized as a therapeutic option, even in ARDS. Recent data supports the generalization of this strategy prophylactically to almost all mechanically ventilated patients beginning immediately following intubation. Using tools to rapidly and reliably determine the predicted body weight (PBW), as well as the use of automated modes of ventilation are some of the potential solutions to facilitate the practice of protective ventilation and to finally ventilate our patients' lungs in a more gentle fashion to help prevent ARDS.

  7. Human versus Computer Controlled Selection of Ventilator Settings: An Evaluation of Adaptive Support Ventilation and Mid-Frequency Ventilation

    Directory of Open Access Journals (Sweden)

    Eduardo Mireles-Cabodevila

    2012-01-01

    Full Text Available Background. There are modes of mechanical ventilation that can select ventilator settings with computer controlled algorithms (targeting schemes. Two examples are adaptive support ventilation (ASV and mid-frequency ventilation (MFV. We studied how different clinician-chosen ventilator settings are from these computer algorithms under different scenarios. Methods. A survey of critical care clinicians provided reference ventilator settings for a 70 kg paralyzed patient in five clinical/physiological scenarios. The survey-derived values for minute ventilation and minute alveolar ventilation were used as goals for ASV and MFV, respectively. A lung simulator programmed with each scenario’s respiratory system characteristics was ventilated using the clinician, ASV, and MFV settings. Results. Tidal volumes ranged from 6.1 to 8.3 mL/kg for the clinician, 6.7 to 11.9 mL/kg for ASV, and 3.5 to 9.9 mL/kg for MFV. Inspiratory pressures were lower for ASV and MFV. Clinician-selected tidal volumes were similar to the ASV settings for all scenarios except for asthma, in which the tidal volumes were larger for ASV and MFV. MFV delivered the same alveolar minute ventilation with higher end expiratory and lower end inspiratory volumes. Conclusions. There are differences and similarities among initial ventilator settings selected by humans and computers for various clinical scenarios. The ventilation outcomes are the result of the lung physiological characteristics and their interaction with the targeting scheme.

  8. Industrial Education Ventilation Study. Volume 1: Final Report.

    Science.gov (United States)

    Stanley Associates, Edmonton (Alberta).

    A study assessed aspects of ventilation in industrial education facilities in selected junior and senior highs schools in Alberta (Canada). This report describes the purpose of the study and the four test methods used to acquire school specific information. Also discussed are (1) the results of the instructors' perception survey, the ventilation…

  9. Experimental study of acute lung injury induced by different tidal volume ventilation in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-ri; DU Yong-cheng; JIANG Hong-ying; XU Jian-ying; XU Yong-jian

    2005-01-01

    @@ Mechanical ventilation (MV) is a dual blade sward which if misused could lead to lung injury, called ventilator induced lung injury (VILI). Pathogenesis of VILI is very complex with various manifestations, which is the focus in MV field in recent years.1 In our research, the rats were ventilated with different tidal volume, then the pathological changes of the lungs were observed under macroscopy, light and electronic microscope, and various laboratory tests in blood and bronchoalveolar lavage fluid (BALF) were also carried out in order to probe further the pathologic characteristics and the pathogenesis of VILI.

  10. Effects of respiratory rate and tidal volume on gas exchange in total liquid ventilation.

    Science.gov (United States)

    Bull, Joseph L; Tredici, Stefano; Fujioka, Hideki; Komori, Eisaku; Grotberg, James B; Hirschl, Ronald B

    2009-01-01

    Using a rabbit model of total liquid ventilation (TLV), and in a corresponding theoretical model, we compared nine tidal volume-respiratory rate combinations to identify a ventilator strategy to maximize gas exchange, while avoiding choked flow, during TLV. Nine different ventilation strategies were tested in each animal (n = 12): low [LR = 2.5 breath/min (bpm)], medium (MR = 5 bpm), or high (HR = 7.5 bpm) respiratory rates were combined with a low (LV = 10 ml/kg), medium (MV = 15 ml/kg), or high (HV = 20 ml/kg) tidal volumes. Blood gases and partial pressures, perfluorocarbon gas content, and airway pressures were measured for each combination. Choked flow occurred in all high respiratory rate-high volume animals, 71% of high respiratory rate-medium volume (HRMV) animals, and 50% of medium respiratory rate-high volume (MRHV) animals but in no other combinations. Medium respiratory rate-medium volume (MRMV) resulted in the highest gas exchange of the combinations that did not induce choke. The HRMV and MRHV animals that did not choke had similar or higher gas exchange than MRMV. The theory predicted this behavior, along with spatial and temporal variations in alveolar gas partial pressures. Of the combinations that did not induce choked flow, MRMV provided the highest gas exchange. Alveolar gas transport is diffusion dominated and rapid during gas ventilation but is convection dominated and slow during TLV. Consequently, the usual alveolar gas equation is not applicable for TLV.

  11. Mechanical ventilation with lower tidal volumes does not influence the prescription of opioids or sedatives

    NARCIS (Netherlands)

    Wolthuis, Esther K; Veelo, Denise P; Choi, Goda; Determann, Rogier M; Korevaar, Johanna C; Spronk, Peter E; Kuiper, Michael A; Schultz, Marcus J

    2007-01-01

    INTRODUCTION: We compared the effects of mechanical ventilation with a lower tidal volume (V(T)) strategy versus those of greater V(T) in patients with or without acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) on the use of opioids and sedatives. METHODS: This is a secondary anal

  12. Volume and Pressure Delivery During Pediatric High-Frequency Oscillatory Ventilation.

    Science.gov (United States)

    Wong, Ronald; Deakers, Timothy; Hotz, Justin; Khemani, Robinder G; Ross, Patrick A; Newth, Christopher J

    2017-04-01

    Identify variables independently associated with delivered tidal volume (VT) and measured mean airway pressure during high-frequency oscillatory ventilation across the range of pediatric endotracheal tube sizes. In vitro study. Research laboratory. An in vitro bench model of the intubated pediatric respiratory system during high-frequency oscillatory ventilation was used to obtain delivered VT and mean airway pressure (in the distal lung) for various endotracheal tube sizes. Measurements were taken at different combinations of ventilator set mean airway pressure (Paw), amplitude (ΔP), frequency, and test lung compliance. Multiple regression analysis was used to construct multivariable models predicting delivered VT and mean airway pressure. Variables independently associated with higher delivered VT for all endotracheal tube sizes include higher ΔP (p frequency (p frequency and ΔP magnifies the delivered VT when ΔP is high and frequency is low (p frequency increases (p frequency in delivered VT and the effect of ΔP and frequency on delivered mean airway pressure. These results demonstrate the need to measure or estimate VT and delivered pressures during high-frequency oscillatory ventilation and may be useful in determining optimal strategies for lung protective ventilation during high-frequency oscillatory ventilation.

  13. Lung volume, breathing pattern and ventilation inhomogeneity in preterm and term infants.

    Directory of Open Access Journals (Sweden)

    Philipp Latzin

    Full Text Available BACKGROUND: Morphological changes in preterm infants with bronchopulmonary dysplasia (BPD have functional consequences on lung volume, ventilation inhomogeneity and respiratory mechanics. Although some studies have shown lower lung volumes and increased ventilation inhomogeneity in BPD infants, conflicting results exist possibly due to differences in sedation and measurement techniques. METHODOLOGY/PRINCIPAL FINDINGS: We studied 127 infants with BPD, 58 preterm infants without BPD and 239 healthy term-born infants, at a matched post-conceptional age of 44 weeks during quiet natural sleep according to ATS/ERS standards. Lung function parameters measured were functional residual capacity (FRC and ventilation inhomogeneity by multiple breath washout as well as tidal breathing parameters. Preterm infants with BPD had only marginally lower FRC (21.4 mL/kg than preterm infants without BPD (23.4 mL/kg and term-born infants (22.6 mL/kg, though there was no trend with disease severity. They also showed higher respiratory rates and lower ratios of time to peak expiratory flow and expiratory time (t(PTEF/t(E than healthy preterm and term controls. These changes were related to disease severity. No differences were found for ventilation inhomogeneity. CONCLUSIONS: Our results suggest that preterm infants with BPD have a high capacity to maintain functional lung volume during natural sleep. The alterations in breathing pattern with disease severity may reflect presence of adaptive mechanisms to cope with the disease process.

  14. Correlation between transition percentage of minute volume (TMV%) and outcome of patients with acute respiratory failure.

    Science.gov (United States)

    Peng, Chung-Kan; Wu, Shu-Fen; Yang, Shih-Hsing; Hsieh, Chuan-Fa; Huang, Chung-Chih; Huang, Yuh-Chin T; Wu, Chin-Pyng

    2017-06-01

    We have previously shown in patients receiving adaptive support ventilation (ASV) that there existed a Transition %MinVol (TMV%) where the patient's work of breathing began to reduce. In this study, we tested the hypothesis that higher TMV% would be associated with poorer outcome in patients with acute respiratory failure. In this prospective observational study, we recruited patients with acute respiratory failure on ASV between December 2012 and September 2013 in a mixed ICU. The TMV% was determined by adjusting % MinVol until mandatory respiratory frequency was between 0 and 1breath/min. TMV% was measured on the first two days of mechanical ventilation. A total of 337 patients (age: 70±16years) were recruited. In patients whose TMV% increased between Day 1 and Day 2, aOR for mortality was 7.0 (95%CI=2.7-18.3, pTMV% decreased. In patients whose TMV% was unchanged between Day 1 and Day2, aOR for mortality was 3.91 (95%CI=1.80-8.22, pTMV% from Day 1 to Day 2 was associated with higher risk of in-hospital death. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Comparison of efficacy of pressure-controlled ventilation and volume-controlled ventilation in children undergoing laparoscopic surgery%腹腔镜手术患儿压力控制通气和容量控制通气效果的比较

    Institute of Scientific and Technical Information of China (English)

    冯继峰; 郑剑秋; 周蜀克

    2014-01-01

    Objective To compare the efficacy of pressure-controlled ventilation and volume-controlled ventilation in children undergoing laparoscopic surgery.Methods Thirty ASA Ⅰ or Ⅱ children of both sexes,aged 12-36 months,weighing 9-15 kg,scheduled for laparoscopic surgery,were randomly divided into two groups (n =15 each):pressure-controlled ventilation group (group P) and volume-controlled ventilation group (group Ⅴ).After anesthesia was induced with propofol 2-4 mg/kg,vecuronium 0.1 mg/kg and fentanyl 2 μg/kg,the children received endotracheal intubation and mechanical ventilation.The maximum inspiratory pressure was adjusted to make the tidal volume (VT) achieve 12 ml/kg in group P and the VT was set at 12 ml/kg in group V.The end-tidal pressure of carbon dioxide (PET CO2) was controlled at 35-45 mm Hg.The mean arterial blood pressure (MAP),heart rate (HR),arterial carbpn dioxide tension (PaCO2),PETCO2,minute ventilation and peak airway pressure were recorded immediately after intubation (T0),immediately before skin incision (T1),after 30 minutes of pneumoperitoneum (T2) and 15 minutes after the end of pneumoperitoneum (T3).Arterial blood samples were taken at the same time points mentioned above for blood gas analysis.Dynamic lung compliance and the ratio of the physiological dead space to the tidal volume were calculated.Results Compared with group Ⅴ,PaCO2 and PET CO2 were significantly decreased and dynamic lung compliance was significantly increased at T1-2,and minute ventilation and peak airway pressure were significantly decreased at T0-3 in group P (P < 0.01).There was no significant difference in MAP,HR and the ratio of the physiological dead space to the tidal volume between the two groups (P > 0.05).Conclusion Compared with volume-controlled ventilation,pressure-controlled ventilation can better improve the ventilatory efficacy,is more beneficial to gas exchange and reduces the influence of pneumoperitoneum on respiratory function in children

  16. Small volumes of n-propanol (60%) applied for 3 minutes may be ineffective for surgical hand disinfection

    OpenAIRE

    Kampf, Günter; Ostermeyer, Christiane

    2014-01-01

    Background There is a trend in some countries to recommend the use of surgical hand disinfectants at volumes as low as 4 ml per application. Aim To determine whether the volume applied and hand size influence the efficacy of surgical hand disinfection. Methods Thirteen experiments, according to EN 12791, resulting in 269 datasets from 75 subjects were analyzed. Hands were first washed for one minute with soap. The pre-values were obtained by rubbing the finger tips in tryptic soy broth for on...

  17. Pulse pressure variation and prediction of fluid responsiveness in patients ventilated with low tidal volumes

    Directory of Open Access Journals (Sweden)

    Clarice Daniele Alves de Oliveira-Costa

    2012-07-01

    Full Text Available OBJECTIVE: To determine the utility of pulse pressure variation (ΔRESP PP in predicting fluid responsiveness in patients ventilated with low tidal volumes (V T and to investigate whether a lower ΔRESP PP cut-off value should be used when patients are ventilated with low tidal volumes. METHOD: This cross-sectional observational study included 37 critically ill patients with acute circulatory failure who required fluid challenge. The patients were sedated and mechanically ventilated with a V T of 6-7 ml/kg ideal body weight, which was monitored with a pulmonary artery catheter and an arterial line. The mechanical ventilation and hemodynamic parameters, including ΔRESP PP, were measured before and after fluid challenge with 1,000 ml crystalloids or 500 ml colloids. Fluid responsiveness was defined as an increase in the cardiac index of at least 15%. ClinicalTrial.gov: NCT01569308. RESULTS: A total of 17 patients were classified as responders. Analysis of the area under the ROC curve (AUC showed that the optimal cut-off point for ΔRESP PP to predict fluid responsiveness was 10% (AUC = 0.74. Adjustment of the ΔRESP PP to account for driving pressure did not improve the accuracy (AUC = 0.76. A ΔRESP PP>10% was a better predictor of fluid responsiveness than central venous pressure (AUC = 0.57 or pulmonary wedge pressure (AUC = 051. Of the 37 patients, 25 were in septic shock. The AUC for ΔRESP PP>10% to predict responsiveness in patients with septic shock was 0.484 (sensitivity, 78%; specificity, 93%. CONCLUSION: The parameter D RESP PP has limited value in predicting fluid responsiveness in patients who are ventilated with low tidal volumes, but a ΔRESP PP>10% is a significant improvement over static parameters. A ΔRESP PP > 10% may be particularly useful for identifying responders in patients with septic shock.

  18. Small volumes of n-propanol (60%) applied for 3 minutes may be ineffective for surgical hand disinfection.

    Science.gov (United States)

    Kampf, Günter; Ostermeyer, Christiane

    2014-01-01

    There is a trend in some countries to recommend the use of surgical hand disinfectants at volumes as low as 4 ml per application. To determine whether the volume applied and hand size influence the efficacy of surgical hand disinfection. Thirteen experiments, according to EN 12791, resulting in 269 datasets from 75 subjects were analyzed. Hands were first washed for one minute with soap. The pre-values were obtained by rubbing the finger tips in tryptic soy broth for one minute. Each subject treated his/her hands with n-propanol (60%, v/v), with as many portions as necessary to keep the hands wet for three minutes (6-12 ml). Bacterial post-values were taken from one hand (immediate effect); the other hand was gloved for three hours (sizes 7-9). The second post-value was taken when the glove was removed (3 h effect). The mean immediate log10 reduction of CFU was 2.56 ± 1.12. The glove size had no significant effect on the efficacy of disinfection (p = 0.182; ANOVA). However, a volume of 6 ml was significantly less effective than 9 ml for glove sizes of 7.5-8 (p < 0.05; Tukey post hoc analysis). The mean log10 reduction after 3 h was 2.12 ± 1.24. A volume of 6 ml was again significantly less effective than 12 ml for glove size 7 and than 9 ml for glove sizes 7.5-8 (p < 0.05). The application of small volumes of surgical hand disinfectant when using the EN 12791 reference procedure is likely to yield poor efficacy results, regardless of hand size.

  19. Stroke volume variation does not predict fluid responsiveness in patients with septic shock on pressure support ventilation

    DEFF Research Database (Denmark)

    Perner, A; Faber, T

    2006-01-01

    Stroke volume variation (SVV)--as measured by the pulse contour cardiac output (PiCCO) system--predicts the cardiac output response to a fluid challenge in patients on controlled ventilation. Whether this applies to patients on pressure support ventilation is unknown....

  20. High-Frequency Percussive Ventilation: Pneumotachograph Validation and Tidal Volume Analysis

    Science.gov (United States)

    2010-06-01

    Meredith Pride for their invaluable research efforts. Table 3. Mean Difference in High-Frequency VT* Relative to Test- Lung VT† Difference in High...respiratory gas on pneumotachographic measurement of ventilation in newborn infants. Biomed Tech 1994;39(4):85-92. 15. Jackson AC, Vinegar A. A technique...for measuring frequency re- sponse of pressure, volume, and flow transducers. J Appl Physiol 1979;47(2):462-467. 16. Finucane KE, Egan BA, Dawson SV

  1. Effects of serum of the rats ventilated with high tidal volume on endothelial cell permeability and therapeutic effects of ulinastatin

    Institute of Scientific and Technical Information of China (English)

    HUO Guo-dong; CAI Shao-xi; CHEN Bo; CHEN Ying-hua

    2006-01-01

    Background With the widespread use of ventilators in treating critically ill patients, the morbidity of ventilator-induced lung injury (VILI) is increasing accordingly. VILI is characterized by a considerable increase in microvascular leakiness and activation of inflammatory processes. In this study we investigated the effects of inflammatory mediators in VILI rat serum on endothelial cytoskeleton and monolayer cellular permeability, as well as the therapeutic effect of ulinastatin, to explore the pathogenesis and the relationship between biotrauma and lung oedema induced by VILI.Methods Thirty healthy male Sprague-Dawley rats were randomly divided into three groups: group A (normal tidal volume ventilation), group B (high tidal volume ventilation) and group C (high tidal volume ventilation plus ulinastatin). The serum of each rat after ventilation was added to endothelial cell line ECV-304 medium for two hours to observe the effects of serum and/or ulinastatin on endothelial fibrous actin and permeability. Results Compared to rats ventilated with normal tidal volume, serum of rats ventilated with high tidal volume caused a striking reorganization of actin cytoskeleton with a weakening of fluorescent intensity at the peripheral filament bands and formation of the long and thick stress fibres in the centre resulting in endothelial contraction and higher permeability. Prior treatment with ulinastatin lessened the above changes significantly. The changes of permeability coefficient of endothelial permeability after group A, B or C rats serum stimulation were (6.95 ±1.66)%, (27.50±7.77)% and (17.71±4.66)% respectively with statistically significant differences (P<0.05)among the three groups.Conclusions The proinflammatory mediators in the serum of the rats given high tidal volume ventilation increases endothelial permeability by reorganizing actin cytoskeleton, and pretreatment with ulinastatin lessens the permeability by inhibiting of proinflammatory mediators.

  2. CT-measured regional specific volume change reflects regional ventilation in supine sheep.

    Science.gov (United States)

    Fuld, Matthew K; Easley, R Blaine; Saba, Osama I; Chon, Deokiee; Reinhardt, Joseph M; Hoffman, Eric A; Simon, Brett A

    2008-04-01

    Computer tomography (CT) imaging techniques permit the noninvasive measurement of regional lung function. Regional specific volume change (sVol), determined from the change in lung density over a tidal breath, should correlate with regional ventilation and regional lung expansion measured with other techniques. sVol was validated against xenon (Xe)-CT-specific ventilation (sV) in four anesthetized, intubated, mechanically ventilated sheep. Xe-CT used expiratory gated axial scanning during the washin and washout of 55% Xe. sVol was measured from the tidal changes in tissue density (H, houndsfield units) of lung regions using the relationship sVol = [1,000(Hi - He)]/[He(1,000 + Hi)], where He and Hi are expiratory and inspiratory regional density. Distinct anatomical markings were used to define corresponding lung regions of interest between inspiratory, expiratory, and Xe-CT images, with an average region of interest size of 1.6 +/- 0.7 ml. In addition, sVol was compared with regional volume changes measured directly from the positions of implanted metal markers in an additional animal. A linear relationship between sVol and sV was demonstrated over a wide range of regional sV found in the normal supine lung, with an overall correlation coefficient (R(2)) of 0.66. There was a tight correlation (R(2) = 0.97) between marker-measured volume changes and sVol. Regional sVol, which involves significantly reduced exposure to radiation and Xe gas compared with the Xe-CT method, represents a safe and efficient surrogate for measuring regional ventilation in experimental studies and patients.

  3. Enteral nutrition volume is not correlated with lower respiratory tract infection in patients on mechanical ventilation.

    Science.gov (United States)

    Colomar, A; Guardiola, B; Llompart-Pou, J A; Ayestarán, I; Rodríguez-Pilar, J; Ferreruela, M; Raurich, J M

    To evaluate the effect of enteral nutrition volume, gastrointestinal function and the type of acid suppressive drug upon the incidence of lower respiratory tract infections in critically ill patients on mechanical ventilation (MV). A retrospective secondary analysis was carried out. The Intensive Care Unit of a University Hospital. Patients≥18-years-old expected to need MV for more than four days, and receiving enteral nutrition by nasogastric tube within 24h of starting MV. We correlated enteral nutrition volume administered during the first 10 days, gastrointestinal function and the type of acid suppressive therapy with the episodes of lower respiratory tract infection up until day 28. Cox proportional hazards ratios in univariate and adjusted multivariate models were used. Statistical significance was considered for p<0.05. Lower respiratory tract infection episodes. Sixty-six out of 185 patients (35.7%) had infection; 27 patients had ventilator-associated pneumonia; and 39 presented ventilator-associated tracheobronchitis. Uninfected and infected groups were similar in terms of enteral nutrition volume (54±12 and 54±9mL/h; p=0.94) and caloric intake (19.4±4.9 and 19.6±5.2kcal/kg/d; p=0.81). The Cox proportional hazards model showed neurological indication of MV to be the only independent variable related to infection (p=0.001). Enteral nutrition volume, the type of acid suppressive therapy, and the use of prokinetic agents were not significantly correlated to infection. Enteral nutrition volume and caloric intake, gastrointestinal dysfunction and the type of acid suppressive therapy used were not associated to lower respiratory tract infection in patients on MV. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  4. Influence of fluid and volume state on PaO2 oscillations in mechanically ventilated pigs.

    Science.gov (United States)

    Bodenstein, Marc; Bierschock, Stephan; Boehme, Stefan; Wang, Hemei; Vogt, Andreas; Kwiecien, Robert; David, Matthias; Markstaller, Klaus

    2013-03-01

    Varying pulmonary shunt fractions during the respiratory cycle cause oxygen oscillations during mechanical ventilation. In artificially damaged lungs, cyclical recruitment of atelectasis is responsible for varying shunt according to published evidence. We introduce a complimentary hypothesis that cyclically varying shunt in healthy lungs is caused by cyclical redistribution of pulmonary perfusion. Administration of crystalloid or colloid infusions would decrease oxygen oscillations if our hypothesis was right. Therefore, n=14 mechanically ventilated healthy pigs were investigated in 2 groups: crystalloid (fluid) versus no-fluid administration. Additional volume interventions (colloid infusion, blood withdrawal) were carried out in each pig. Intra-aortal PaO2 oscillations were recorded using fluorescence quenching technique. Phase shift of oxygen oscillations during altered inspiratory to expiratory (I:E) ventilation ratio and electrical impedance tomography (EIT) served as control methods to exclude that recruitment of atelectasis is responsible for oxygen oscillations. In hypovolemia relevant oxygen oscillations could be recorded. Fluid and volume state changed PaO2 oscillations according to our hypothesis. Fluid administration led to a mean decline of 105.3 mmHg of the PaO2 oscillations amplitude (PPaO2 oscillations.

  5. Comparison between Variable and Conventional Volume-Controlled Ventilation on Cardiorespiratory Parameters in Experimental Emphysema.

    Science.gov (United States)

    Henriques, Isabela; Padilha, Gisele A; Huhle, Robert; Wierzchon, Caio; Miranda, Paulo J B; Ramos, Isalira P; Rocha, Nazareth; Cruz, Fernanda F; Santos, Raquel S; de Oliveira, Milena V; Souza, Sergio A; Goldenberg, Regina C; Luiz, Ronir R; Pelosi, Paolo; de Abreu, Marcelo G; Silva, Pedro L; Rocco, Patricia R M

    2016-01-01

    Emphysema is characterized by loss of lung tissue elasticity and destruction of structures supporting alveoli and capillaries. The impact of mechanical ventilation strategies on ventilator-induced lung injury (VILI) in emphysema is poorly defined. New ventilator strategies should be developed to minimize VILI in emphysema. The present study was divided into two protocols: (1) characterization of an elastase-induced emphysema model in rats and identification of the time point of greatest cardiorespiratory impairment, defined as a high specific lung elastance associated with large right ventricular end-diastolic area; and (2) comparison between variable (VV) and conventional volume-controlled ventilation (VCV) on lung mechanics and morphometry, biological markers, and cardiac function at that time point. In the first protocol, Wistar rats (n = 62) received saline (SAL) or porcine pancreatic elastase (ELA) intratracheally once weekly for 4 weeks, respectively. Evaluations were performed 1, 3, 5, or 8 weeks after the last intratracheal instillation of saline or elastase. After identifying the time point of greatest cardiorespiratory impairment, an additional 32 Wistar rats were randomized into the SAL and ELA groups and then ventilated with VV or VCV (n = 8/group) [tidal volume (VT) = 6 mL/kg, positive end-expiratory pressure (PEEP) = 3 cmH2O, fraction of inspired oxygen (FiO2) = 0.4] for 2 h. VV was applied on a breath-to-breath basis as a sequence of randomly generated VT values (mean VT = 6 mL/kg), with a 30% coefficient of variation. Non-ventilated (NV) SAL and ELA animals were used for molecular biology analysis. The time point of greatest cardiorespiratory impairment, was observed 5 weeks after the last elastase instillation. At this time point, interleukin (IL)-6, cytokine-induced neutrophil chemoattractant (CINC)-1, amphiregulin, angiopoietin (Ang)-2, and vascular endothelial growth factor (VEGF) mRNA levels were higher in ELA compared to SAL. In ELA animals

  6. Comparison between Variable and Conventional Volume-Controlled Ventilation on Cardiorespiratory Parameters in Experimental Emphysema

    Science.gov (United States)

    Henriques, Isabela; Padilha, Gisele A.; Huhle, Robert; Wierzchon, Caio; Miranda, Paulo J. B.; Ramos, Isalira P.; Rocha, Nazareth; Cruz, Fernanda F.; Santos, Raquel S.; de Oliveira, Milena V.; Souza, Sergio A.; Goldenberg, Regina C.; Luiz, Ronir R.; Pelosi, Paolo; de Abreu, Marcelo G.; Silva, Pedro L.; Rocco, Patricia R. M.

    2016-01-01

    Emphysema is characterized by loss of lung tissue elasticity and destruction of structures supporting alveoli and capillaries. The impact of mechanical ventilation strategies on ventilator-induced lung injury (VILI) in emphysema is poorly defined. New ventilator strategies should be developed to minimize VILI in emphysema. The present study was divided into two protocols: (1) characterization of an elastase-induced emphysema model in rats and identification of the time point of greatest cardiorespiratory impairment, defined as a high specific lung elastance associated with large right ventricular end-diastolic area; and (2) comparison between variable (VV) and conventional volume-controlled ventilation (VCV) on lung mechanics and morphometry, biological markers, and cardiac function at that time point. In the first protocol, Wistar rats (n = 62) received saline (SAL) or porcine pancreatic elastase (ELA) intratracheally once weekly for 4 weeks, respectively. Evaluations were performed 1, 3, 5, or 8 weeks after the last intratracheal instillation of saline or elastase. After identifying the time point of greatest cardiorespiratory impairment, an additional 32 Wistar rats were randomized into the SAL and ELA groups and then ventilated with VV or VCV (n = 8/group) [tidal volume (VT) = 6 mL/kg, positive end-expiratory pressure (PEEP) = 3 cmH2O, fraction of inspired oxygen (FiO2) = 0.4] for 2 h. VV was applied on a breath-to-breath basis as a sequence of randomly generated VT values (mean VT = 6 mL/kg), with a 30% coefficient of variation. Non-ventilated (NV) SAL and ELA animals were used for molecular biology analysis. The time point of greatest cardiorespiratory impairment, was observed 5 weeks after the last elastase instillation. At this time point, interleukin (IL)-6, cytokine-induced neutrophil chemoattractant (CINC)-1, amphiregulin, angiopoietin (Ang)-2, and vascular endothelial growth factor (VEGF) mRNA levels were higher in ELA compared to SAL. In ELA animals

  7. Effects of noninvasive ventilation on treadmill 6-min walk distance and regional chest wall volumes in cystic fibrosis: randomized controlled trial.

    Science.gov (United States)

    Lima, Cibelle Andrade; Andrade, Armèle de Fátima Dornelas de; Campos, Shirley Lima; Brandão, Daniella Cunha; Fregonezi, Guilherme; Mourato, Ianny Pereira; Aliverti, Andrea; Britto, Murilo Carlos Amorim de

    2014-10-01

    Dyspnea and exercise intolerance are the symptoms that most affect the quality of life of children and adolescents with respiratory disorders resulting from cystic fibrosis (CF). To evaluate the effect of noninvasive ventilation (NIV) on treadmill 6-min walk distance and regional chest wall volumes in cystic fibrosis patients. Crossover clinical trial, randomized, controlled and open with 13 children and adolescents with CF, aged 7-16 years, with pulmonary impairment (NTC01987271). The patients performed a treadmill walking test (TWT) during 6 min, with and without NIV on a BiLEVEL mode, an interval of 24-48 h between tests. Before and after each test, patients were assessed by spirometry and optoelectronic plethysmography. Walking distance in TWT with NIV was significantly higher that without ventilatory support (mean ± sd: 0.41 ± 0.08 vs. 0.39 ± 0.85 km, p = 0.039). TWT with NIV increase forced expiratory volume on 1 s (FEV1; p = 0.036), tidal volume (Vt; p = 0.005), minute ventilation (MV; p = 0.013), pulmonary rib cage volume (Vrcp; p = 0.011), and decrease the abdominal volume (Vab; p = 0.013) after test. There was a significant reduction in oxygen saturation (p = 0.018) and permanent increase in respiratory rate after 5 min (p = 0.021) after the end test without NIV. During the walking test on the treadmill, the NIV change thoracoabdominal kinematics and lung function in order to optimized ventilation and tissue oxygenation, with improvement of walk distance. Consequently, NIV is an effective tool to increase functional capacity in children and adolescents with cystic fibrosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Modulating ventilation - low cost VAV for office buildings. [Variable Air Volume]; Modulerende ventilation - low cost VAV til kontor-bygninger. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Hoej Christensen, A.; Olsen, Hans; Drivsholm, C.

    2012-02-15

    The report describes a concept for renovating older existing Constant Air Volume (CAV) ventilation systems to modulating low-cost Variable Air Volume (VAV) systems. The concept is based on the total ventilated area being divided into appropriate indoor climate zones, which can cover from one to several offices with similar climate needs. For this initial climate assessment two relatively ''simple'' tools were developed that can estimate the temperature level in one room from the ventilation airflow, heat loads, etc.: - BSimFast (24-hour mean temperature calculation according to SBI-196, 2000); - BSimLight (Temperature simulation based on Danvak Textbook of Heat and Climate Technology). The concept of 'one room' can also be extended to 'one zone' with appropriate assumptions. However, only one mean room temperature is calculated. The different climate zones were equipped with Halton HFB control unit at the air supply and exhaust side. The project the following feedback options were used: - HFB unit's damper opening degree (0 to 90 degrees); - HFB unit's current flow; - HFB unit's exhaust temperature; and feedback from: - Frequency transformer (fan speed); - The central static duct pressure at the ventilation unit. In the project a control algorithm is developed that ensures a robust control of the entire ventilation system without adverse cyclic variations, based among other things on the exhaust temperature for each climate zone, and with the requirement that at least one throttle valve is always at least 80% open. It turned out that information on the current partial air volumes was necessary in addition to the individual throttle settings. Otherwise, a cyclic variations could not be controlled..Thus, it was the exhaust temperature from individual climate zones that defined the respective volumes of air. The concept was implemented on a complete CAV system and on part of a large CAV system, respectively. (LN)

  9. Glomerular filtration is reduced by high tidal volume ventilation in an in vivo healthy rat model

    Directory of Open Access Journals (Sweden)

    A. Luque

    2009-11-01

    Full Text Available Mechanical ventilation has been associated with organ failure in patients with acute respiratory distress syndrome. The present study examines the effects of tidal volume (V T on renal function using two V T values (8 and 27 mL/kg in anesthetized, paralyzed and mechanically ventilated male Wistar rats. Animals were randomized into two groups of 6 rats each: V T8 (V T, 8 mL/kg; 61.50 ± 0.92 breaths/min; positive end-expiratory pressure, 3.0 cmH2O; peak airway pressure (PAW, 11.8 ± 2.0 cmH2O, and V T27 (V T, 27 mL/kg; 33.60 ± 1.56 breaths/min; positive end-expiratory pressure, none, and PAW, 22.7 ± 4.0 cmH2O. Throughout the experiment, mean PAW remained comparable between the two groups (6.33 ± 0.21 vs 6.50 ± 0.22 cmH2O. For rats in the V T27 group, inulin clearance (mL·min-1·body weight-1 decreased acutely after 60 min of mechanical ventilation and even more significantly after 90 min, compared with baseline values (0.60 ± 0.05 and 0.45 ± 0.05 vs 0.95 ± 0.07; P < 0.001, although there were no differences between groups in mean arterial pressure or gasometric variables. In the V T8 group, inulin clearance at 120 min of mechanical ventilation remained unchanged in relation to baseline values (0.72 ± 0.03 vs 0.80 ± 0.05. The V T8 and V T27 groups did not differ in terms of serum thiobarbituric acid reactive substances (3.97 ± 0.27 vs 4.02 ± 0.45 nmol/mL or endothelial nitric oxide synthase expression (94.25 ± 2.75 vs 96.25 ± 2.39%. Our results show that glomerular filtration is acutely affected by high tidal volume ventilation but do not provide information about the mechanism.

  10. Effect of high tidal volume ventilation and lipopolysaccharide on mitogen-activated protein kinase in rat lung tissue

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Mechanical ventilation, a crucial therapy to acute respiratory distress syndrome (ARDS), could exacerbate lung injury, and even result in ventilator-induced lung injury (VILI) if misused in some condition1. Over-activating inflammatory cells and expanding inflammatory responses, which are induced by infection, are fundamental reasons for ARDS. Among them, mitogen-activated protein kinase (MAPK) intracellular signal transduction pathways are key processes. This study aimed to investigate the time course of MAPK activation in rat lung tissue after high tidal volume (VT) ventilation and the role of lipopolysaccharide (LPS) in high-sensitivity, and to elucidate the effect of the pathway on VILI.

  11. Is pulmonary resistance constant, within the range of tidal volume ventilation, in patients with ARDS?

    Science.gov (United States)

    Mols, G; Kessler, V; Benzing, A; Lichtwarck-Aschoff, M; Geiger, K; Guttmann, J

    2001-02-01

    When managing patients with acute respiratory distress syndrome (ARDS), respiratory system compliance is usually considered first and changes in resistance, although recognized, are neglected. Resistance can change considerably between minimum and maximum lung volume, but is generally assumed to be constant in the tidal volume range (V(T)). We measured resistance during tidal ventilation in 16 patients with ARDS or acute lung injury by the slice method and multiple linear regression analysis. Resistance was constant within V(T) in only six of 16 patients. In the remaining patients, resistance decreased, increased or showed complex changes. We conclude that resistance within V(T) varies considerably from patient to patient and that constant resistance within V(T) is not always likely.

  12. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  13. FCT (functional computed tomography) evaluation of the lung volumes at different PEEP (positive-end expiratory pressure) ventilation pattern, in mechanical ventilated patients

    Energy Technology Data Exchange (ETDEWEB)

    Papi, M.G.; Di Segni, R.; Mazzetti, G.; Staffa, F. [Dept. of Radiology, S. Giovanni HS, Rome (Italy); Conforto, F.; Calimici, R.; Salvi, A. [Dept. of Anesthesiology, S. Giovanni HS, Rome (Italy); Matteucci, G. [Dept. of Pneumology, S. Giovanni HS, Rome (Italy)

    2007-06-15

    Purpose To evaluate with FCT (functional computed tomography) total lung volume and fractional lung volumes at different PEEP (positive end expiratory pressure) values in acute mechanically ventilated patients. Methods Nine ICU (intensive care unity) patients (1 lung pneumonia, 2 polytrauma, 2 sepsis, 3 brain surgery, 1 pulmonary embolism); mean age 48 {+-} 15 years, 6 male, 3 female; GE 16 MDCT scan was performed with acquisition from apex to diaphragma in seven seca at different PEEP values. Raw CT data were analysed by an advantage workstation to obtain volume density masks and histograms of both lungs and each lung and these density ranges were applied: - 1000 - 950 = hyper-ventilated lung, -900 - 650 well aerated lung, -950 - 500 all aerated lung, -500 + 200 lung tissue. Total and fractional lung volumes, Hounsfield unit (HU) were calculated and compared at different PEEP values (0, 5, 10, 15 cm H{sub 2}O). In four patients lung volumes were compared between the more and the less involved lung at increased PEEP. Statistic analysis: comparison means-medians tests. Results Data calculated at five PEEP showed unexpected decrease of total lung volume and increase of lung density (HU); proportionally no significant improvement of oxigenation. (orig.)

  14. Respiratory dynamics and dead space to tidal volume ratio of volume-controlled versus pressure-controlled ventilation during prolonged gynecological laparoscopic surgery.

    Science.gov (United States)

    Lian, Ming; Zhao, Xiao; Wang, Hong; Chen, Lianhua; Li, Shitong

    2016-12-30

    Laparoscopic operations have become longer and more complex and applied to a broader patient population in the last decades. Prolonged gynecological laparoscopic surgeries require prolonged pneumoperitoneum and Trendelenburg position, which can influence respiratory dynamics and other measurements of pulmonary function. We investigated the differences between volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) and tried to determine the more efficient ventilation mode during prolonged pneumoperitoneum in gynecological laparoscopy. Twenty-six patients scheduled for laparoscopic radical hysterectomy combined with or without laparoscopic pelvic lymphadenectomy were randomly allocated to be ventilated by either VCV or PCV. Standard anesthesic management and laparoscopic procedures were performed. Measurements of respiratory and hemodynamic dynamics were obtained after induction of anesthesia, at 10, 30, 60, and 120 min after establishing pneumoperitoneum, and at 10 min after return to supine lithotomy position and removal of carbon dioxide. The logistic regression model was applied to predict the corresponding critical value of duration of pneumoperitoneum when the Ppeak was higher than 40 cmH2O. Prolonged pneumoperitoneum and Trendelenburg position produced significant and clinically relevant changes in dynamic compliance and respiratory mechanics in anesthetized patients under PCV and VCV ventilation. Patients under PCV ventilation had a similar increase of dead space/tidal volume ratio, but had a lower Ppeak increase compared with those under VCV ventilation. The critical value of duration of pneumoperitoneum was predicted to be 355 min under VCV ventilation, corresponding to the risk of Ppeak higher than 40 cmH2O. Both VCV and PCV can be safely applied to prolonged gynecological laparoscopic surgery. However, PCV may become the better choice of ventilation after ruling out of other reasons for Ppeak increasing.

  15. Effects of inhalational anaesthesia with low tidal volume ventilation on end-tidal sevoflurane and carbon dioxide concentrations: prospective randomized study.

    Science.gov (United States)

    de la Matta-Martín, M; López-Herrera, D; Luis-Navarro, J C; López-Romero, J L

    2014-02-01

    We investigated how ventilation with low tidal volumes affects the pharmacokinetics of sevoflurane uptake during the first minutes of inhaled anaesthesia. Forty-eight patients scheduled for lung resection were randomly assigned to three groups. Patients in group 1, 2 and 3 received 3% sevoflurane for 3 min via face mask and controlled ventilation with a tidal volume of 2.2, 8 and 12 ml kg(-1), respectively (Phase 1). After tracheal intubation (Phase 2), 3% sevoflurane was supplied for 2 min using a tidal volume of 8 ml kg(-1) (Phase 3). End-tidal sevoflurane concentrations were significantly higher in group 1 at the end of phase 1 and lower at the end of phase 2 than in the other groups as follows: median of 2.5%, 2.2% and 2.3% in phase 1 for groups 1, 2 and 3, respectively (P<0.001); and 1.7%, 2.1% and 2.0% in phase 2, respectively (P<0.001). End-tidal carbon dioxide values in group 1 were significantly lower at the end of phase 1 and higher at the end of phase 2 than in the other groups as follows: median of 16.5, 31 and 29.5 mm Hg in phase 1 for groups 1, 2 and 3, respectively (P<0.001); and 46.2, 36 and 33.5 mm Hg in phase 2, respectively (P<0.001). When sevoflurane is administered with tidal volume approximating the airway dead space volume, end-tidal sevoflurane and end-tidal carbon dioxide may not correctly reflect the concentration of these gases in the alveoli, leading to misinterpretation of expired gas data. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  16. Volume-Targeted Versus Pressure-Targeted Noninvasive Ventilation in Patients With Chest-Wall Deformity : A Pilot Study

    NARCIS (Netherlands)

    Struik, Fransien M.; Duiverman, Marieke L.; Meijer, Petra M.; Nieuwenhuis, Jellie A.; Kerstjens, Huib A. M.; Wijkstra, Peter J.

    2011-01-01

    BACKGROUND: Long-term noninvasive ventilation (NIV) is an effective treatment for patients with chronic respiratory failure due to chest-wall deformity, but it is unknown if the time required for the patient to adjust to long-term NIV depends on whether the NIV is volume-targeted or

  17. A sigmoidal fit for pressure-volume curves of idiopathic pulmonary fibrosis patients on mechanical ventilation: clinical implications

    Directory of Open Access Journals (Sweden)

    Juliana C. Ferreira

    2011-01-01

    Full Text Available OBJECTIVE: Respiratory pressure-volume curves fitted to exponential equations have been used to assess disease severity and prognosis in spontaneously breathing patients with idiopathic pulmonary fibrosis. Sigmoidal equations have been used to fit pressure-volume curves for mechanically ventilated patients but not for idiopathic pulmonary fibrosis patients. We compared a sigmoidal model and an exponential model to fit pressure-volume curves from mechanically ventilated patients with idiopathic pulmonary fibrosis. METHODS: Six idiopathic pulmonary fibrosis patients and five controls underwent inflation pressure-volume curves using the constant-flow technique during general anesthesia prior to open lung biopsy or thymectomy. We identified the lower and upper inflection points and fit the curves with an exponential equation, V = A-B.e-k.P, and a sigmoid equation, V = a+b/(1+e-(P-c/d. RESULTS: The mean lower inflection point for idiopathic pulmonary fibrosis patients was significantly higher (10.5 ± 5.7 cm H2O than that of controls (3.6 ± 2.4 cm H2O. The sigmoidal equation fit the pressure-volume curves of the fibrotic and control patients well, but the exponential equation fit the data well only when points below 50% of the inspiratory capacity were excluded. CONCLUSION: The elevated lower inflection point and the sigmoidal shape of the pressure-volume curves suggest that respiratory system compliance is decreased close to end-expiratory lung volume in idiopathic pulmonary fibrosis patients under general anesthesia and mechanical ventilation. The sigmoidal fit was superior to the exponential fit for inflation pressure-volume curves of anesthetized patients with idiopathic pulmonary fibrosis and could be useful for guiding mechanical ventilation during general anesthesia in this condition.

  18. A Double-Blind Randomized Clinical Trial Comparing the Effect of Neostigmine and Metoclopramide on Gastric Residual Volume of Mechanically Ventilated ICU Patients

    Science.gov (United States)

    Gholipour Baradari, Afshin; Alipour, Abbas; Firouzian, Abolfazl; Moarab, Laleh; Emami Zeydi, Amir

    2016-01-01

    Background: In critically ill patients, enteral feeding through the nasogastric tube is the method of choice for nutritional support. Gastrointestinal feeding intolerance and disturbed gastric emptying are common challenges in these patients. The aim of this study was to compare the effect of Neostigmine and Metoclopramide on gastric residual volume (GRV) in mechanically ventilated ICU patients. Methods: In a double blind, randomized clinical trial, a total of 60 mechanically ventilated ICU patients with GRV >120 mL (3 hours after the last gavage), were randomly assigned into two groups A and B. At baseline and 6 hours later, patients in group A and B received intravenous infusion of neostigmine in a dose of 2.5 mg and metoclopramide in a dose of 10 mg in 100 ml of normal saline, within 30 minutes. Patients’ gastric residual volumes were evaluated before the beginning of the intervention, and 3, 6, 9 and 12 hours after the intervention. Results: After adjusting of other variables (Sex, BMI and ICU stay period) generalized estimating equation (GEE) model revealed that neostigmine treatment increased odds of GRV improvement compare to metoclopramide group (Estimate 1.291, OR= 0.3.64, 95% CI 1.07-12.34). However there is a statistically significant time trend (within-subject differences or time effect) regardless of treatment groups (P<0.001). The median time from intervention to GRV improvement was 6 hours (95% CI 3.75-8.25) and 9 hours (95% CI 7.38-10.17) in neostigmine and metoclopramide groups, respectively. This difference was statistically significant (P<0.05). Conclusion: It seems that neostigmine is more effective than metoclopramide in reducing GRV and improving gastric emptying in mechanically ventilated ICU patients without significant complication and this protocol may be effective on the tolerance of enteral feeding in ICU patients. Further well-designed randomized clinical trials are needed. PMID:28077899

  19. Effect of one-lung ventilation with pressure-controlled ventilation or volume-controlled ventilation on intrinsic PEEP in patients undergoing esophagus surgery%食管癌术中定压和定容单肺通气对内源性PEEP的影响

    Institute of Scientific and Technical Information of China (English)

    朱磊君

    2011-01-01

    目的 比较食管癌术中定压(PCV)和定容(VCV)单肺通气(OLV)对内源性呼气末正压(PEEPi)的影响.方法 食管癌根治手术患者40例,随机均分为两组,采用全凭静脉麻醉,插入双腔气管导管.手术进胸前先行双肺VCV,潮气量(VT) 10 ml/kg,通气频率(f)12次/分;进胸后行OLV:A组采用PCV,压力限定设为双肺通气时的气道峰压(Ppeak),f为12次/分;B组采用VCV,VT为8 ml/kg,f为12次/分.记录Ppeak、气道平均压(Pmean)、分钟通气量(MV)、肺动态顺应性(Cdyn)和PEEPi.结果 与B组比较,A组Ppeak、MV和Pmean降低,而Cdyn升高,PEEPi发生率低(P<0.01).结论 食管癌手术采用PCV模式行OLV可降低Ppeak,改善Cdyn,减少PEEPi,利于肺保护.%Objective To investigate the effect of one-lung ventilation (OLV) with pressure-controlled ventilation(PCV) or volume-controlled ventilation (VCV) on intrinsic positive end-expired pressure(PEEPi) in patients undergoing esophagus surgery. Methods Fourty patients undergoing radical esophagus surgery under intravenous anesthesia were randomly and equally divided into two groups, who were intubated with double lumen bronchial tube and given two-lung VCV with a tidal volume(VT) of 10 ml/kg and frequency(f) of 12 breaths per minute before chest openning. After chest was opened, OLV in group A was performed in PCV mode with the same peak airway pressure (Ppeak) as that during two-lung VCV, which in group B in VCV mode with a Vt of 8 ml/kg and f of 12 breaths per minute. The Ppeak,mean airway pressure(Pmean),minute volume(MV),dynamic lung compliance(Cdyn) and PEEPi were recorded during OLV. Results Compared to group B,Ppeak,MV and Pmean were lower,the incidence and extent of PEEPi decreased,while Cdyn increased in group A (P<0. 01). Conclusion Compared to VCV, OLV in PCV mode can decrease Ppeak, improve Cdyn and attenuate PEEPi, which benefits lung protection in the patients undergoing esophagus surgery under OLV.

  20. Despite variation in volume, Veterans Affairs hospitals show consistent outcomes among patients with non-postoperative mechanical ventilation.

    Science.gov (United States)

    Cooke, Colin R; Kennedy, Edward H; Wiitala, Wyndy L; Almenoff, Peter L; Sales, Anne E; Iwashyna, Theodore J

    2012-09-01

    To assess the relationship between volume of nonoperative mechanically ventilated patients receiving care in a specific Veterans Health Administration hospital and their mortality. Retrospective cohort study. One-hundred nineteen Veterans Health Administration medical centers. We identified 5,131 hospitalizations involving mechanically ventilated patients in an intensive care unit during 2009, who did not receive surgery. None. We extracted demographic and clinical data from the VA Inpatient Evaluation Center. For each hospital, we defined volume as the total number of nonsurgical admissions receiving mechanical ventilation in an intensive care unit during 2009. We examined the hospital contribution to 30-day mortality using multilevel logistic regression models with a random intercept for each hospital. We quantified the extent of interhospital variation in 30-day mortality using the intraclass correlation coefficient and median odds ratio. We used generalized estimating equations to examine the relationship between volume and 30-day mortality and risk-adjusted all models using a patient-level prognostic score derived from clinical data representing the risk of death conditional on treatment at a high-volume hospital. Mean age for the sample was 65 (SD 11) yrs, 97% were men, and 60% were white. The median VA hospital cared for 40 (interquartile range 19-62) mechanically ventilated patients in 2009. Crude 30-day mortality for these patients was 36.9%. After reliability and risk adjustment to the median patient, adjusted hospital-level mortality varied from 33.5% to 40.6%. The intraclass correlation coefficient for the hospital-level variation was 0.6% (95% confidence interval 0.1, 3.4%), with a median odds ratio of 1.15 (95% confidence interval 1.06, 1.38). The relationship between hospital volume of mechanically ventilated and 30-day mortality was not statistically significant: each 50-patient increase in volume was associated with a nonsignificant 2% decrease in

  1. Mild hypothermia attenuates changes in respiratory system mechanics and modifies cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation.

    Science.gov (United States)

    Dostál, P; Senkeřík, M; Pařízková, R; Bareš, D; Zivný, P; Zivná, H; Cerný, V

    2010-01-01

    Hypothermia was shown to attenuate ventilator-induced lung injury due to large tidal volumes. It is unclear if the protective effect of hypothermia is maintained under less injurious mechanical ventilation in animals without previous lung injury. Tracheostomized rats were randomly allocated to non-ventilated group (group C) or ventilated groups of normothermia (group N) and mild hypothermia (group H). After two hours of mechanical ventilation with inspiratory fraction of oxygen 1.0, respiratory rate 60 min(-1), tidal volume 10 ml x kg(-1), positive end-expiratory pressure (PEEP) 2 cm H2O or immediately after tracheostomy in non-ventilated animals inspiratory pressures were recorded, rats were sacrificed, pressure-volume (PV) curve of respiratory system constructed, bronchoalveolar lavage (BAL) fluid and aortic blood samples obtained. Group N animals exhibited a higher rise in peak inspiratory pressures in comparison to group H animals. Shift of the PV curve to right, higher total protein and interleukin-6 levels in BAL fluid were observed in normothermia animals in comparison with hypothermia animals and non-ventilated controls. Tumor necrosis factor-alpha was lower in the hypothermia group in comparison with normothermia and non-ventilated groups. Mild hypothermia attenuated changes in respiratory system mechanics and modified cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation in animals without previous lung injury.

  2. The influence of ventilation variables on the volume rate of airflow delivered to the face of long drivages

    Energy Technology Data Exchange (ETDEWEB)

    Onder, M.; Sarac, S.; Cevik, E. [Osmangazi University, Eskisehir (Turkey). Dept. of Mining Engineering

    2006-09-15

    Auxiliary ventilation is performed by carrying intake or return air in ducts. The complete elimination of air leakage from or into the ducting system is impossible due to duct quality and numerous joints in ducting system. The auxiliary ventilation systems for long drivages often require the use of multiple fans. There are many methods proposed for the analysis air flow problems in leaky ducts. In this study, a method known as 'series-parallel combination of the duct and leakage path' has been introduced and a computer program has been developed based on this method. In order to design the conditions of an auxiliary ventilated drivage, in situ measurement have been made in the Omerler underground coal mine (Turkey) and the related data necessary for this study was collected. The presently developed program was tested using these data, and it was found that the measured and calculated values are quite close. The effective operational parameters governing auxiliary ventilation have been investigated and the effects of these variables on the volume rate of air flow reaching long drivage face have been examined by using linear regression analysis. Finally, it was concluded that the increase of duct diameter has prime importance in achieving the adequate air flow to the face and that for the auxiliary fans considered in this study the selection of fan does not greatly affect the volume rate reaching the face in a long duct line.

  3. A noninvasive high frequency oscillation ventilator: Achieved by utilizing a blower and a valve.

    Science.gov (United States)

    Yuan, YueYang; Sun, JianGuo; Wang, Baicun; Feng, Pei; Yang, ChongChang

    2016-02-01

    After the High Frequency Oscillatory Ventilation (HFOV) has been applied in the invasive ventilator, the new technique of noninvasive High Frequency Oscillatory Ventilation (nHFOV) which does not require opening the patient's airway has attracted much attention from the field. This paper proposes the design of an experimental positive pressure-controlled nHFOV ventilator which utilizes a blower and a special valve and has three ventilation modes: spontaneous controlled ventilation combining HFOV, time-cycled ventilation combining HFOV (T-HFOV), and continuous positive airway pressure ventilation combining HFOV. Experiments on respiratory model are conducted and demonstrated the feasibility of using nHFOV through the control of fan and valve. The experimental ventilator is able to produce an air flow with small tidal volume (VT) and a large minute ventilation volume (MV) using regular breath tubes and nasal mask (e.g., under T-HFOV mode, with a maximum tidal volume of 100 ml, the minute ventilation volume reached 14,400 ml). In the process of transmission, there is only a minor loss of oscillation pressure. (Under experimental condition and with an oscillation frequency of 2-10 Hz, peak pressure loss was around 0%-50% when it reaches the mask.).

  4. Changes in Stroke Volume Induced by Lung Recruitment Maneuver Predict Fluid Responsiveness in Mechanically Ventilated Patients in the Operating Room.

    Science.gov (United States)

    Biais, Matthieu; Lanchon, Romain; Sesay, Musa; Le Gall, Lisa; Pereira, Bruno; Futier, Emmanuel; Nouette-Gaulain, Karine

    2017-02-01

    Lung recruitment maneuver induces a decrease in stroke volume, which is more pronounced in hypovolemic patients. The authors hypothesized that the magnitude of stroke volume reduction through lung recruitment maneuver could predict preload responsiveness. Twenty-eight mechanically ventilated patients with low tidal volume during general anesthesia were included. Heart rate, mean arterial pressure, stroke volume, and pulse pressure variations were recorded before lung recruitment maneuver (application of continuous positive airway pressure of 30 cm H2O for 30 s), during lung recruitment maneuver when stroke volume reached its minimal value, and before and after volume expansion (250 ml saline, 0.9%, infused during 10 min). Patients were considered as responders to fluid administration if stroke volume increased greater than or equal to 10%. Sixteen patients were responders. Lung recruitment maneuver induced a significant decrease in mean arterial pressure and stroke volume in both responders and nonresponders. Changes in stroke volume induced by lung recruitment maneuver were correlated with those induced by volume expansion (r = 0.56; P recruitment maneuver predicted fluid responsiveness with a sensitivity of 88% (95% CI, 62 to 98) and a specificity of 92% (95% CI, 62 to 99). Pulse pressure variations more than 6% before lung recruitment maneuver discriminated responders with a sensitivity of 69% (95% CI, 41 to 89) and a specificity of 75% (95% CI, 42 to 95). The area under receiver operating curves generated for changes in stroke volume induced by lung recruitment maneuver (0.96; 95% CI, 0.81 to 0.99) was significantly higher than that for pulse pressure variations (0.72; 95% CI, 0.52 to 0.88; P recruitment maneuver could predict preload responsiveness in mechanically ventilated patients in the operating room.

  5. Smaller self-inflating bags produce greater guideline consistent ventilation in simulated cardiopulmonary resuscitation

    Directory of Open Access Journals (Sweden)

    Boyle Malcolm J

    2009-02-01

    Full Text Available Abstract Background Suboptimal bag ventilation in cardiopulmonary resuscitation (CPR has demonstrated detrimental physiological outcomes for cardiac arrest patients. In light of recent guideline changes for resuscitation, there is a need to identify the efficacy of bag ventilation by prehospital care providers. The objective of this study was to evaluate bag ventilation in relation to operator ability to achieve guideline consistent ventilation rate, tidal volume and minute volume when using two different capacity self-inflating bags in an undergraduate paramedic cohort. Methods An experimental study using a mechanical lung model and a simulated adult cardiac arrest to assess the ventilation ability of third year Monash University undergraduate paramedic students. Participants were instructed to ventilate using 1600 ml and 1000 ml bags for a length of two minutes at the correct rate and tidal volume for a patient undergoing CPR with an advanced airway. Ventilation rate and tidal volume were recorded using an analogue scale with mean values calculated. Ethics approval was granted. Results Suboptimal ventilation with the use of conventional 1600 ml bag was common, with 77% and 97% of participants unable to achieve guideline consistent ventilation rates and tidal volumes respectively. Reduced levels of suboptimal ventilation arouse from the use of the smaller bag with a 27% reduction in suboptimal tidal volumes (p = 0.015 and 23% reduction in suboptimal minute volumes (p = 0.045. Conclusion Smaller self-inflating bags reduce the incidence of suboptimal tidal volumes and minute volumes and produce greater guideline consistent results for cardiac arrest patients.

  6. Evaluation of Low versus High Volume per Minute Displacement CO2 Methods of Euthanasia in the Induction and Duration of Panic-Associated Behavior and Physiology

    Directory of Open Access Journals (Sweden)

    Debra L. Hickman

    2016-08-01

    Full Text Available Current recommendations for the use of CO 2 as a euthanasia agent for rats require the use of gradual fill protocols (such as 10% to 30% volume displacement per minute in order to render the animal insensible prior to exposure to levels of CO 2 that are associated with pain. However, exposing rats to CO 2 , concentrations as low as 7% CO 2 are reported to cause distress and 10%–20% CO 2 induces panic-associated behavior and physiology, but loss of consciousness does not occur until CO 2 concentrations are at least 40%. This suggests that the use of the currently recommended low flow volume per minute displacement rates create a situation where rats are exposed to concentrations of CO 2 that induce anxiety, panic, and distress for prolonged periods of time. This study first characterized the response of male rats exposed to normoxic 20% CO 2 for a prolonged period of time as compared to room air controls. It demonstrated that rats exposed to this experimental condition displayed clinical signs consistent with significantly increased panic-associated behavior and physiology during CO 2 exposure. When atmospheric air was then again delivered, there was a robust increase in respiration rate that coincided with rats moving to the air intake. The rats exposed to CO 2 also displayed behaviors consistent with increased anxiety in the behavioral testing that followed the exposure. Next, this study assessed the behavioral and physiologic responses of rats that were euthanized with 100% CO 2 infused at 10%, 30%, or 100% volume per minute displacement rates. Analysis of the concentrations of CO 2 and oxygen in the euthanasia chamber and the behavioral responses of the rats suggest that the use of the very low flow volume per minute displacement rate (10% may prolong the duration of panicogenic ranges of ambient CO 2 , while the use of the higher flow volume per minute displacement rate (100% increases agitation. Therefore, of the volume displacement per

  7. Minutes of the Explosives Safety Seminar (25th) Held in Anaheim, California on 18-20 August 1992. Volume 1

    Science.gov (United States)

    1992-08-20

    volume propylene glycol * 25% by volume water * 25% by volume aqueous film -forming foam (AFFF) NSN No. 4210-01-056-8343 PROOF TESTS AT UTAH TEST AND...in processing, as well as improving the aqueous ammonia degradation rate, triacetin was used as a plasticizer. The amount of triacetin ranged from 15...exceeded. The bags in the baghouse did not appear to be properly coated and should be caked more thoroughly for further tests. The chloride being fed at

  8. Stroke volume variation compared with pulse pressure variation and cardiac index changes for prediction of fluid responsiveness in mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Randa Aly Soliman

    2015-04-01

    Conclusions: Baseline stroke volume variation ⩾8.15% predicted fluid responsiveness in mechanically ventilated patients with acute circulatory failure. The study also confirmed the ability of pulse pressure variation to predict fluid responsiveness.

  9. Positive outcome of average volume-assured pressure support mode of a Respironics V60 Ventilator in acute exacerbation of chronic obstructive pulmonary disease: a case report

    Directory of Open Access Journals (Sweden)

    Okuda Miyuki

    2012-09-01

    Full Text Available Abstract Introduction We were able to treat a patient with acute exacerbation of chronic obstructive pulmonary disease who also suffered from sleep-disordered breathing by using the average volume-assured pressure support mode of a Respironics V60 Ventilator (Philips Respironics: United States. This allows a target tidal volume to be set based on automatic changes in inspiratory positive airway pressure. This removed the need to change the noninvasive positive pressure ventilation settings during the day and during sleep. The Respironics V60 Ventilator, in the average volume-assured pressure support mode, was attached to our patient and improved and stabilized his sleep-related hypoventilation by automatically adjusting force to within an acceptable range. Case presentation Our patient was a 74-year-old Japanese man who was hospitalized for treatment due to worsening of dyspnea and hypoxemia. He was diagnosed with acute exacerbation of chronic obstructive pulmonary disease and full-time biphasic positive airway pressure support ventilation was initiated. Our patient was temporarily provided with portable noninvasive positive pressure ventilation at night-time following an improvement in his condition, but his chronic obstructive pulmonary disease again worsened due to the recurrence of a respiratory infection. During the initial exacerbation, his tidal volume was significantly lower during sleep (378.9 ± 72.9mL than while awake (446.5 ± 63.3mL. A ventilator that allows ventilation to be maintained by automatically adjusting the inspiratory force to within an acceptable range was attached in average volume-assured pressure support mode, improving his sleep-related hypoventilation, which is often associated with the use of the Respironics V60 Ventilator. Polysomnography performed while our patient was on noninvasive positive pressure ventilation revealed obstructive sleep apnea syndrome (apnea-hypopnea index = 14, suggesting that his chronic

  10. Fluctuation in measurements of pulmonary nodule under tidal volume ventilation on four-dimensional computed tomography: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Tateishi, Ukihide [National Cancer Center Hospital, Division of Diagnostic Radiology, Chuo-ku, Tokyo (Japan); Tsukagoshi, Shinsuke; Inokawa, Hiroyasu; Okumura, Miwa [Toshiba Medical Systems Corporation, CT Systems Development, Otawara (Japan); Moriyama, Noriyuki [National Cancer Center, Division of Cancer Screening, Research Center for Cancer Prevention and Screening, Tokyo (Japan)

    2008-10-15

    The present study aimed to assess the feasibility of four-dimensional (4D) chest computed tomography (CT) under tidal volume ventilation and the impact of respiratory motion on quantitative analysis of CT measurements. Forty-four pulmonary nodules in patients with metastatic disease were evaluated. CT examinations were performed using a 256 multidetector-row CT (MDCT) unit. Volume data were obtained from the lower lung fields (128 mm) above the diaphragm during dynamic CT acquisition. The CT parameters used were 120 kV, 100 or 150 mA, 0.5 s{sup -1}, and 0.5 mm collimation. Image data were reconstructed every 0.1 s during one respiratory cycle by a 180 reconstruction algorithm for four independent fractions of the respiratory cycle. Pulmonary nodules were measured along their longest and shortest axes using electronic calipers. Automated volumetry was assessed using commercially available software. The diameters of long and short axes in each frame were 9.0-9.6 mm and 7.1-7.5 mm, respectively. There was fluctuation of the long axis diameters in the third fraction. The mean volume in each fraction ranged from 365 to 394 mm{sup 3}. Statistically significant fluctuation was also found in the third fraction. 4D-CT under tidal volume ventilation is feasible to determine diameter or volume of the pulmonary nodule. (orig.)

  11. Comparison of a Constant Air Volume (CAV) and a Demand Controlled Ventilation (DCV) System in a Residential Building

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Nielsen, Toke Rammer; Topp, Claus

    2008-01-01

    The aim of this paper was to compare the indoor climate and the energy performance of a Constant Air Volume (CAV) system of 0.5h-1 with a Demand Controlled Ventilation (DCV) system controlled by occupancy and relative humidity for a studio apartment. Furthermore the impact of building materials...... hygroscopic properties on indoor climate and energy consumption was investigated for the two systems. Dynamic simulations of the studio apartment were carried out in the program WUFI+ with weather data from Copenhagen including outside temperature end relative humidity. For the non-hygroscopic case...

  12. Assessment of Adaptive Rate Response Provided by Accelerometer, Minute Ventilation and Dual Sensor Compared with Normal Sinus Rhythm During Exercise: A Self-controlled Study in Chronotropically Competent Subjects

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Cao; Yiqun Zhang; Yangang Su; Jin Bai; Wei Wang; Junbo Ge

    2015-01-01

    Background:Dual sensor (DS) for rate adaption was supposed to be more physiological.To evaluate its superiority,the DS (accelerometer [ACC] and minute ventilation [MV]) and normal sinus rate response were compared in a self-controlled way during exercise treadmill testing.Methods:This self-controlled study was performed in atrioventricular block patients with normal sinus function who met the indications of pacemaker implant.Twenty-one patients came to the 1-month follow-up visit.Patients performed a treadmill test 1-month post implant while programmed in DDDR and sensor passive mode.For these patients,sensor response factors were left at default settings (ACC =8,MV =3) and sensor indicated rates (SIRs) for DS,ACC and MV sensor were retrieved from the pacemaker memories,along with measured sinus node (SN) rates from the beginning to 1-minute after the end of the treadmill test,and compared among study groups.Repeated measures analysis of variance and profile analysis,as well as variance analysis of randomized block designs,were used for statistical analysis.Results:Fifteen patients (15/2 l) were determined to be chronotropically competent.The mean differences between DS SIRs and intrinsic sinus rates during treadmill testing were smaller than those for ACC and MV sensor (mean difference between SIR and SN rate:ACC vs.SN,MV vs.SN,DS vs.SN,respectively,34.84,17.60,16.15 beats/min),though no sensors could mimic sinus rates under the default settings for sensor response factor (ACC vs.SN P-adjusted < 0.001; MV vs.SN P-adjusted =0.002; DS vs.SN P-adjusted =0.005).However,both in the range of 1st minute and first 3 minutes of exercise,only the DS SIR profile did not differ from sinus rates (P-adjusted =0.09,0.90,respectively).Conclusions:The DS under default settings provides more physiological rate response during physical activity than the corresponding single sensors (ACC or MV sensor).Further study is needed to determine if individual optimization would further

  13. Assessment of Adaptive Rate Response Provided by Accelerometer, Minute Ventilation and Dual Sensor Compared with Normal Sinus Rhythm During Exercise: A Self-controlled Study in Chronotropically Competent Subjects

    Directory of Open Access Journals (Sweden)

    Yuanyuan Cao

    2015-01-01

    Full Text Available Background: Dual sensor (DS for rate adaption was supposed to be more physiological. To evaluate its superiority, the DS (accelerometer [ACC] and minute ventilation [MV] and normal sinus rate response were compared in a self-controlled way during exercise treadmill testing. Methods: This self-controlled study was performed in atrioventricular block patients with normal sinus function who met the indications of pacemaker implant. Twenty-one patients came to the 1-month follow-up visit. Patients performed a treadmill test 1-month post implant while programmed in DDDR and sensor passive mode. For these patients, sensor response factors were left at default settings (ACC = 8, MV = 3 and sensor indicated rates (SIRs for DS, ACC and MV sensor were retrieved from the pacemaker memories, along with measured sinus node (SN rates from the beginning to 1-minute after the end of the treadmill test, and compared among study groups. Repeated measures analysis of variance and profile analysis, as well as variance analysis of randomized block designs, were used for statistical analysis. Results: Fifteen patients (15/21 were determined to be chronotropically competent. The mean differences between DS SIRs and intrinsic sinus rates during treadmill testing were smaller than those for ACC and MV sensor (mean difference between SIR and SN rate: ACC vs. SN, MV vs. SN, DS vs. SN, respectively, 34.84, 17.60, 16.15 beats/min, though no sensors could mimic sinus rates under the default settings for sensor response factor (ACC vs. SN P-adjusted < 0.001; MV vs. SN P-adjusted = 0.002; DS vs. SN P-adjusted = 0.005. However, both in the range of 1 st minute and first 3 minutes of exercise, only the DS SIR profile did not differ from sinus rates (P-adjusted = 0.09, 0.90, respectively. Conclusions: The DS under default settings provides more physiological rate response during physical activity than the corresponding single sensors (ACC or MV sensor. Further study is needed to

  14. Influence of applied volume on efficacy of 3-minute surgical reference disinfection method prEN 12791.

    Science.gov (United States)

    Kampf, Günter; Ostermeyer, Christiane

    2004-12-01

    For assessment of the efficacy of surgical hand disinfection, European reference method prEN 12791 prescribes that the hands must be kept wet with the reference alcohol for 3 min regardless of the applied volume. The aim of this study was to determine whether the applied volume of the reference disinfectant n-propanol (60%, vol/vol) influences the effect on the resident hand flora. Ten experiments with 200 reference disinfections were analyzed. Hands were washed for 1 min with soap. The bacterial prevalue was obtained by rubbing fingertips in tryptic soy broth for 1 min. After this, each subject treated the hands with n-propanol (60%, vol/vol) by using as many portions as necessary to keep hands wet for a total of 3 min. Bacterial postvalues (immediate effect) were obtained for one hand, and the other hand was gloved for 3 h. After the gloves were taken off, a second postvalue was obtained (sustained effect). Most surgical reference disinfections (73%) were achieved with 9 ml of the reference alcohol, followed by 12 ml (24%) and 6 ml (3%). There was no significant difference between the mean log10 reduction values for the three treatment groups, both in terms of the immediate effect (P = 0.333, as determined by analysis of variance) and in terms of the sustained effect (P = 0.442). A higher number of portions did not correlate with a higher reduction factor (for immediate effect, Pearson's correlation coefficient = -0.028 [P = 0.689]; for sustained effect, Pearson's correlation coefficient = 0.059 [P = 0.404]). If the hands were kept wet with the reference alcohol for the total application time, the applied volume could vary, but this did not alter the efficacy.

  15. Initial ventilator settings for critically ill patients.

    Science.gov (United States)

    Kilickaya, Oguz; Gajic, Ognjen

    2013-03-12

    The lung-protective mechanical ventilation strategy has been standard practice for management of acute respiratory distress syndrome (ARDS) for more than a decade. Observational data, small randomized studies and two recent systematic reviews suggest that lung protective ventilation is both safe and potentially beneficial in patients who do not have ARDS at the onset of mechanical ventilation. Principles of lung-protective ventilation include: a) prevention of volutrauma (tidal volume 4 to 8 ml/kg predicted body weight with plateau pressurerespiratory rate 20 to 35 breaths per minute); and d) prevention of hyperoxia (titrate inspired oxygen concentration to peripheral oxygen saturation (SpO2) levels of 88 to 95%). Most patients tolerate lung protective mechanical ventilation well without the need for excessive sedation. Patients with a stiff chest wall may tolerate higher plateau pressure targets (approximately 35 cmH2O) while those with severe ARDS and ventilator asynchrony may require a short-term neuromuscular blockade. Given the difficulty in timely identification of patients with or at risk of ARDS and both the safety and potential benefit in patients without ARDS, lung-protective mechanical ventilation is recommended as an initial approach to mechanical ventilation in both perioperative and critical care settings.

  16. Noninvasive Measurement of Carbon Dioxide during One-Lung Ventilation with Low Tidal Volume for Two Hours: End-Tidal versus Transcutaneous Techniques.

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    Full Text Available There may be significant difference between measurement of end-tidal carbon dioxide partial pressure (PetCO2 and arterial carbon dioxide partial pressure (PaCO2 during one-lung ventilation with low tidal volume for thoracic surgeries. Transcutaneous carbon dioxide partial pressure (PtcCO2 monitoring can be used continuously to evaluate PaCO2 in a noninvasive fashion. In this study, we compared the accuracy between PetCO2 and PtcCO2 in predicting PaCO2 during prolonged one-lung ventilation with low tidal volume for thoracic surgeries.Eighteen adult patients who underwent thoracic surgeries with one-lung ventilation longer than two hours were included in this study. Their PetCO2, PtcCO2, and PaCO2 values were collected at five time points before and during one-lung ventilation. Agreement among measures was evaluated by Bland-Altman analysis.Ninety sample sets were obtained. The bias and precision when PtcCO2 and PaCO2 were compared were 4.1 ± 6.5 mmHg during two-lung ventilation and 2.9 ± 6.1 mmHg during one-lung ventilation. Those when PetCO2 and PaCO2 were compared were -11.8 ± 6.4 mmHg during two-lung ventilation and -11.8 ± 4.9 mmHg during one-lung ventilation. The differences between PtcCO2 and PaCO2 were significantly lower than those between PetCO2 and PaCO2 at all five time-points (p < 0.05.PtcCO2 monitoring was more accurate for predicting PaCO2 levels during prolonged one-lung ventilation with low tidal volume for patients undergoing thoracic surgeries.

  17. Pressure-regulated volume controlled ventilation in acute respiratory failure of pulmonary diseases

    Directory of Open Access Journals (Sweden)

    M.E. Abou Shehata

    2012-07-01

    Conclusion: PRVC ventilation improves oxygenation parameters in ARF of different etiologies and is equally effective in management of ARF of different pulmonary disorders. The most important predictors for mortality were development of MODS and prolonged duration of MV as detected by logistic regression analysis.

  18. Clinical efficacy and safety of recruitment maneuver in patients with acute respiratory distress syndrome using low tidal volume ventilation: a multicenter randomized controlled clinical trial

    Institute of Scientific and Technical Information of China (English)

    XI Xiu-ming; JIANG Li; ZHU Bo; the RM group

    2010-01-01

    Background The recruitment maneuver (RM) has been shown to improve oxygenation in some patients with acute respiratory distress syndrome. But there is a lack of standardization and lack of clinical studies to prove the improvement on clinical outcome. We conducted this study to evaluate the clinical efficacy and safety of the RM in patients with acute respiratory distress syndrome (ARDS) using Iow tidal volume ventilation.Methods We randomly assigned 110 patients with ARDS from 14 Chinese intensive care units (ICUs) at the tertiary teaching hospitals. Patients with PaO2 ≤200 mmHg at FiO2 1.0 and PEEP ≥10 cmH2O were included in the study.Patients were randomized into two groups: control group and RM group. The tidal volume was set to 6-8 mi per kilogram of predicted body weight (PBW) in both groups. RM was performed by continuous positive airway pressure (CPAP) of 40 cmH2O maintained for 40 seconds. RMs was conducted every eight hours for the first five days, or stopped within five days if the patient reached the weaning standard.Results One hundred and ten patients had completed the requirements for the primary study goals, 55 from the RM group and 55 control patients. Baseline characteristics remained similar in the two groups. In the RM group the PaO2/FiO2 was significantly increased compared to baseline at 120 minutes after RM on day one and day two (P=0.007and P=0.001). There were no significant differences between the RM and control group in hospital mortality (41.8% vs.56.4%, P=0.13), 28-day mortality (29.1% vs. 43.6%, P=0.11) and ventilator-free days at day 28 (10.8±10.1 vs. 7.4±10.0,P=0.08). ICU mortality (32.7% vs. 52.7%, P=0.03), the rate of survival with unassisted breathing for at least 48 consecutive hours at day 28 (58.2% vs. 36.2%, P=0.02), and nonpulmonary organ failure-free days at day 28 (17.4±11.1vs. 13.0±12.0, P=0.03) favored the RM group. There was no significant difference in mean blood pressure and heart rate before RM and at 30, 60

  19. The effect of different inflation volumes of laryngeal mask airway on efficacy of closed circuit controlled ventilation in pediatric cancer patients

    Institute of Scientific and Technical Information of China (English)

    Magda S. Azer; Ayman A. Ghoneim; Hossam Z. Ghobrial

    2013-01-01

    Objective:The laryngeal mask airway (LMA) is an established way for airway control during spontaneous ventila-tion. Its ability to deliver positive pressure ventilation without leakage especial y in low flow states is stil controversy. The aim of this study is to test the possibility of using LMA in pediatric closed circuit control ed ventilation, and to find out the optimum cuf volume to perform closed system ventilation. Methods:Twenty children scheduled for elective surgeries were enrol ed in a crossover study. Laryngeal mask airway was used. In stage I, the cuf was inflated with the maximum volume of air as rec-ommended by the manufacturers. Adjustment of volume of air inflated into the LMA cuf to the minimum volume to obtain the ef ective seal was done at stage II. The leak pressure, intracuf pressure and the leak volume were measured in both stages. Results:The cuf fil ing volume was significantly lower compared to the maximum cuf inflation volume in stage I. Leakage values showed significantly less values in stage II of the study with smal er cuf inflation volumes. The airway leakage pressure was significantly lower in stage II in comparison to stage I. Cuf inflation pressure in stage I showed marked elevation which dropped significantly after adjustment of cuf volume in stage II. Conclusion:Laryngeal mask airway is an ef ective tool to provide closed circuit control ed ventilation in pediatrics. Inflation of the cuf by the minimum volume of air needed to reach the just sealing pressure is suggested to minimize the leakage volume.

  20. Comparison of volume controlled with pressure comtrolled one-lung ventilation during thoracic surgery%胸科手术单肺通气期间定容模式和定压模式的比较

    Institute of Scientific and Technical Information of China (English)

    阳世光; 袁爱武

    2008-01-01

    Objective To compare the effects of volume controlled with pressure comtrolled one-lung ventilation during thoracic surgery. Methods Twenty-four ASA Ⅰ~Ⅱ patients ( 18 male ,6 female)aged 18~68 years old undergoing one-lung ventilation (OLV) thoracic surgery were randomly divided into 2 groups ( n = 12 cases). After general anesthesia induction was performed, each patient was inserted a double-lumen tube. Twolung ventilated with volume controlled ventilation (TLV-VCV) was carried out in the lateral decubitus position in all patients. In group Ⅰ, one-lung ventilation was started by volume controlled ventilation (OLV-VCV) for 30 minutes and ventilation mode was then swithched to pressure controlled ventilation (OLV-PCV). Ventilation modes were performed in the opposite order in group Ⅱ, one-lung ventilation was started by pressure controlled ventilation (OLV-PCV) for 30 minutes and ventilation mode was then swithched to volume controlled ventilation (OLV-VCV). The following variables were measured and recorded at the end of TLV-VCV and at 30 minutes of OLV-VCV or OLV-PCV. Heart rate (HR),mean arterial pressure (MAP) and pulse oxygen degree (SpO2) were measured by a same HP monitor. Central venous pressure (CVP) was measured by a special ruler. Tidal volume (VT), peak airway pressure (Ppeak) and mean airway pressure (Pmean) were measured by a same Datex-Ohmeda Aestiva/5 anesthesia machine. End-tide carbon dioxide pressure was measured by a monitor of anesthesia machine. Meantime arterial blood oxygen tsensions and saturations (PaO2, Sat2) and arterial blood carbon dioxide tsensions (PaCO2) were analysed by arterial venous blood gases. Results There were no significant differences in HR, MAP, CVP and SpO2 between TLV-VCV, OLV-VCV and OLV-VCV (P>0. 05). Ppeak and Pmean were significant higher during OLV-VCV or OLV-PCV than during TLV-VCV (P 0.05). Conclusion The effects of OLV-PCV was superior to OLV-VCV during thoracic surgery.%目的 比较胸科手术单

  1. [Interpretation and use of routine pulmonary function tests: Spirometry, static lung volumes, lung diffusion, arterial blood gas, methacholine challenge test and 6-minute walk test].

    Science.gov (United States)

    Bokov, P; Delclaux, C

    2016-02-01

    Resting pulmonary function tests (PFT) include the assessment of ventilatory capacity: spirometry (forced expiratory flows and mobilisable volumes) and static volume assessment, notably using body plethysmography. Spirometry allows the potential definition of obstructive defect, while static volume assessment allows the potential definition of restrictive defect (decrease in total lung capacity) and thoracic hyperinflation (increase in static volumes). It must be kept in mind that this evaluation is incomplete and that an assessment of ventilatory demand is often warranted, especially when facing dyspnoea: evaluation of arterial blood gas (searching for respiratory insufficiency) and measurement of the transfer coefficient of the lung, allowing with the measurement of alveolar volume to calculate the diffusing capacity of the lung for CO (DLCO: assessment of alveolar-capillary wall and capillary blood volume). All these pulmonary function tests have been the subject of an Americano-European Task force (standardisation of lung function testing) published in 2005, and translated in French in 2007. Interpretative strategies for lung function tests have been recommended, which define abnormal lung function tests using the 5th and 95th percentiles of predicted values (lower and upper limits of normal values). Thus, these recommendations need to be implemented in all pulmonary function test units. A methacholine challenge test will only be performed in the presence of an intermediate pre-test probability for asthma (diagnostic uncertainty), which is an infrequent setting. The most convenient exertional test is the 6-minute walk test that allows the assessment of walking performance, the search for arterial desaturation and the quantification of dyspnoea complaint.

  2. Effectiveness of ventilation of nondependent lung for a brief period in improving arterial oxygenation during one-lung ventilation: A prospective study

    Directory of Open Access Journals (Sweden)

    Keerthi Chigurupati

    2017-01-01

    Full Text Available Background: Hypoxemia is common during one-lung ventilation(OLV, predominantly due to transpulmonary shunt. None of the strategies tried showed consistent results. We evaluated the effectiveness of ventilating the operated, non-dependent lung (NDL with small tidal volumes in improving the oxygenation during OLV. Methods: 30 ASA 1 and 2 patients undergoing elective, open thoracotomy were studied. After standard induction of anesthesia, lung seperation was acheived with left sided DLT. The ventilatory settings for two lung ventilation (TLV were: FiO 2 of 0.5, tidal volume of 8-10ml/kg and respiratory rate of 10-12/min. After initiating OLV, the dependent lung alone was ventilated with the above settings for 15 minutes and an arterial blood gas (ABG analysis was done. Then the NDL was ventilated with a separate ventilator, with FiO 2 of 1, tidal volume of 70 ml, I:E ratio of 1:10 and respiratory rate of 6/min for 15 minutes. The NDL ventilation was started early if the patients desaturated to <95%. ABG was done at 5 and 15 mins of NDL ventilation. We compared the PaO 2 values. Results: The mean PaO 2 decreased from 232.2 ± 67.2 mm of Hg (TLV-ABG1 to 91.2 ± 31.7 mm of Hg on OLV (OLV-ABG1. The ABG after 5 minutes and 15 minutes after institution of NDL ventilation during OLV showed a PaO2 of 145.7 ± 50.2 mm of Hg and 170.6 ± 50.4 mm of Hg which were significantly higher compared to the one lung ventilation values.

  3. Non-invasive ventilation with intelligent volume-assured pressure support versus pressure-controlled ventilation: effects on the respiratory event rate and sleep quality in COPD with chronic hypercapnia.

    Science.gov (United States)

    Nilius, Georg; Katamadze, Nato; Domanski, Ulrike; Schroeder, Maik; Franke, Karl-Josef

    2017-01-01

    COPD patients who develop chronic hypercapnic respiratory failure have a poor prognosis. Treatment of choice, especially the best form of ventilation, is not well known. This study compared the effects of pressure-controlled (spontaneous timed [ST]) non-invasive ventilation (NIV) and NIV with intelligent volume-assured pressure support (IVAPS) in chronic hypercapnic COPD patients regarding the effects on alveolar ventilation, adverse patient/ventilator interactions and sleep quality. This prospective, single-center, crossover study randomized patients to one night of NIV using ST then one night with the IVAPS function activated, or vice versa. Patients were monitored using polysomnography (PSG) and transcutaneous carbon dioxide pressure (PtcCO2) measurement. Patients rated their subjective experience (total score, 0-45; lower scores indicate better acceptability). Fourteen patients were included (4 females, age 59.4±8.9 years). The total number of respiratory events was low, and similar under pressure-controlled (5.4±6.7) and IVAPS (8.3±10.2) conditions (P=0.064). There were also no clinically relevant differences in PtcCO2 between pressure-controlled and IVAPS NIV (52.9±6.2 versus 49.1±6.4 mmHg). Respiratory rate was lower under IVAPS overall; between-group differences reached statistical significance during wakefulness and non-rapid eye movement sleep. Ventilation pressures were 2.6 cmH2O higher under IVAPS versus pressure-controlled ventilation, resulting in a 20.1 mL increase in breathing volume. Sleep efficiency was slightly higher under pressure-controlled ventilation versus IVAPS. Respiratory arousals were uncommon (24.4/h [pressure-controlled] versus 25.4/h [IVAPS]). Overall patient assessment scores were similar, although there was a trend toward less discomfort during IVAPS. Our results show that IVAPS NIV allows application of higher nocturnal ventilation pressures versus ST without affecting sleep quality or inducing ventilation- associated events.

  4. Non-invasive ventilation with intelligent volume-assured pressure support versus pressure-controlled ventilation: effects on the respiratory event rate and sleep quality in COPD with chronic hypercapnia

    Directory of Open Access Journals (Sweden)

    Nilius G

    2017-03-01

    Full Text Available Georg Nilius,1,2 Nato Katamadze,1,2 Ulrike Domanski,1 Maik Schroeder,1 Karl-Josef Franke1,2 1HELIOS Klinik Hagen-Ambrock, 2Internal Medicine I, Witten/Herdecke University, Witten, Germany Background: COPD patients who develop chronic hypercapnic respiratory failure have a poor prognosis. Treatment of choice, especially the best form of ventilation, is not well known. Objectives: This study compared the effects of pressure-controlled (spontaneous timed [ST] non-invasive ventilation (NIV and NIV with intelligent volume-assured pressure support (IVAPS in chronic hypercapnic COPD patients regarding the effects on alveolar ventilation, adverse patient/ventilator interactions and sleep quality. Methods: This prospective, single-center, crossover study randomized patients to one night of NIV using ST then one night with the IVAPS function activated, or vice versa. Patients were monitored using polysomnography (PSG and transcutaneous carbon dioxide pressure (PtcCO2 measurement. Patients rated their subjective experience (total score, 0–45; lower scores indicate better acceptability. Results: Fourteen patients were included (4 females, age 59.4±8.9 years. The total number of respiratory events was low, and similar under pressure-controlled (5.4±6.7 and IVAPS (8.3±10.2 conditions (P=0.064. There were also no clinically relevant differences in PtcCO2 between pressure-controlled and IVAPS NIV (52.9±6.2 versus 49.1±6.4 mmHg. Respiratory rate was lower under IVAPS overall; between-group differences reached statistical significance during wakefulness and non-rapid eye movement sleep. Ventilation pressures were 2.6 cmH2O higher under IVAPS versus pressure-controlled ventilation, resulting in a 20.1 mL increase in breathing volume. Sleep efficiency was slightly higher under pressure-controlled ventilation versus IVAPS. Respiratory arousals were uncommon (24.4/h [pressure-controlled] versus 25.4/h [IVAPS]. Overall patient assessment scores were similar

  5. Effects of pressure-controlled and volume-controlled ventilation on respiratory mechanics and systemic stress response during prone position.

    Science.gov (United States)

    Sen, Oznur; Bakan, Mefkur; Umutoglu, Tarik; Aydın, Nurdan; Toptas, Mehmet; Akkoc, Ibrahim

    2016-01-01

    Prone position during general anesthesia for special surgical operations may be related with increased airway pressure, decreased pulmonary and thoracic compliance that may be explained by restriction of chest expansion and compression of abdomen. The optimum ventilation mode for anesthetized patients on prone position was not described and studies comparing volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) during prone position are limited. We hypothesized that PCV instead of VCV during prone position could achieve lower airway pressures and reduce the systemic stress response. In this study, we aimed to compare the effects of PCV and VCV modes during prone position on respiratory mechanics, oxygenation, and hemodynamics, as well as blood cortisol and insulin levels, which has not been investigated before. Fifty-four ASA I-II patients, 18-70 years of age, who underwent percutaneous nephrolithotomy on prone position, were randomly selected to receive either the PCV (Group PC, n = 27) or VCV (Group VC, n = 27) under general anesthesia with sevoflurane and fentanyl. Blood sampling was made for baseline arterial blood gases (ABG), cortisol, insulin, and glucose levels. After anesthesia induction and endotracheal intubation, patients in Group PC were given pressure support to form 8 mL/kg tidal volume and patients in Group VC was maintained at 8 mL/kg tidal volume calculated using predicted body weight. All patients were maintained with 5 cmH2O PEEP. Respiratory parameters were recorded during supine and prone position. Assessment of ABG and sampling for cortisol, insulin and glucose levels were repeated during surgery and 60 min after extubation. P-peak and P-plateau levels during supine and prone positions were significantly higher and P-mean and compliance levels during prone position were significantly lower in Group VC when compared with Group PC. Postoperative PaO2 level was significantly higher in Group PC compared with Group

  6. Medida da freqüência respiratória e do volume corrente para prever a falha na extubação de recém-nascidos de muito baixo peso em ventilação mecânica Evaluation of respiratory rate and tidal volume to predict extubation failure in mechanically ventilated very low birth weight infants

    Directory of Open Access Journals (Sweden)

    Josy Davidson

    2008-03-01

    Full Text Available OBJETIVO: Verificar se a freqüência respiratória (FR, o volume corrente (VC e a relação FR/VC poderiam prever a falha na extubação em recém-nascidos de muito baixo peso submetidos à ventilação mecânica. MÉTODOS: Estudo prospectivo, observacional, de recém-nascidos com idade gestacional OBJECTIVE: To verify if respiratory rate (RR, tidal volume (TV and respiratory rate and tidal volume ratio (RR/TV could predict extubation failure in very low birth weight infants submitted to mechanical ventilation. METHODS: This prospective observational study enrolled newborn infants with gestational age <37 weeks and birth weight <1,500g, mechanically ventilated from birth during 48 hours to 30 days and thought to be ready for extubation. As soon as the physicians decided for extubation, the neonates received endotracheal continuous positive airway pressure (CPAP for 10 minutes while spontaneous RR, TV and RR/TV were measured using a fixed-orifice pneumotachograph positioned between the endotracheal tube and the ventilator circuit. Thereafter, the neonates were extubated to nasal CPAP. Extubation failure was defined as the need for reintubation within 48 hours. RESULTS: Of the 35 studied infants, 20 (57% were successfully extubated and 15 (43% required reintubation. RR and RR/TV before extubation had a trend to be higher in unsuccessfully extubated infants. TV was similar in both groups. Sensitivity and specificity of these parameters as predictors of extubation failure were 50 and 67% respectively for RR, 40 and 67% for TV and 40 and 73% for RR/TV. CONCLUSIONS: RR, TV and RR/TV showed low sensitivity and specificity to predict extubation failure in mechanically ventilated very low birth weight infants.

  7. Effects of pressure-controlled and volume-controlled ventilation on respiratory mechanics and systemic stress response during laparoscopic cholecystectomy.

    Science.gov (United States)

    Sen, Oznur; Umutoglu, Tarik; Aydın, Nurdan; Toptas, Mehmet; Tutuncu, Ayse Cigdem; Bakan, Mefkur

    2016-01-01

    Pressure-controlled ventilation (PCV) is less frequently employed in general anesthesia. With its high and decelerating inspiratory flow, PCV has faster tidal volume delivery and different gas distribution. The same tidal volume setting, delivered by PCV versus volume-controlled ventilation (VCV), will result in a lower peak airway pressure and reduced risk of barotrauma. We hypothesized that PCV instead of VCV during laparoscopic surgery could achieve lower airway pressures and reduce the systemic stress response. Forty ASA I-II patients were randomly selected to receive either the PCV (Group PC, n = 20) or VCV (Group VC, n = 20) during laparoscopic cholecystectomy. Blood sampling was made for baseline arterial blood gases (ABG), cortisol, insulin, and glucose levels. General anesthesia with sevoflurane and fentanyl was employed to all patients. After anesthesia induction and endotracheal intubation, patients in Group PC were given pressure support to form 8 mL/kg tidal volume and patients in Group VC was maintained at 8 mL/kg tidal volume calculated using predicted body weight. All patients were maintained with 5 cmH2O positive-end expiratory pressure (PEEP). Respiratory parameters were recorded before and 30 min after pneumoperitonium. Assessment of ABG and sampling for cortisol, insulin and glucose levels were repeated 30 min after pneumoperitonium and 60 min after extubation. The P-peak levels observed before (18.9 ± 3.8 versus 15 ± 2.2 cmH2O) and during (23.3 ± 3.8 versus 20.1 ± 2.9 cmH2O) pneumoperitoneum in Group VC were significantly higher. Postoperative partial arterial oxygen pressure (PaO2) values are higher (98 ± 12 versus 86 ± 11 mmHg) in Group PC. Arterial carbon dioxide pressure (PaCO2) values (41.8 ± 5.4 versus 36.7 ± 3.5 mmHg) during pneumoperitonium and post-operative mean cortisol and insulin levels were higher in Group VC. When compared to VCV mode, PCV mode may improve compliance during pneumoperitoneum

  8. The decrease of cardiac chamber volumes and output during positive-pressure ventilation

    DEFF Research Database (Denmark)

    Kristensen, Kasper Kyhl; Ahtarovski, Kiril Aleksov; Iversen, Kasper

    2013-01-01

    the effect of PPV on the central circulation by studying cardiac chamber volumes with cardiac magnetic resonance imaging (CMR). We hypothesized that PPV lowers cardiac output (CO) mainly via the Frank-Starling relationship. In 18 healthy volunteers, cardiac chamber volumes and flow in aorta and the pulmonary...

  9. Adaptive support ventilation with percutaneous dilatational tracheotomy: a clinical study.

    Science.gov (United States)

    Veelo, Denise P; Dongelmans, Dave A; Middelhoek, Pauline; Korevaar, Johanna C; Schultz, Marcus J

    2008-09-01

    We determined the need for changes in minute ventilation with adaptive support ventilation after percutaneous dilatational tracheotomy under endoscopic guidance in 34 intensive care unit patients. During the procedure, minute ventilation was not changed; only maximum pressure limits were adjusted, if necessary. After insertion of the tracheotomy, cannula minute ventilation was adjusted only if Paco(2)-values changed >or=0.5 kPa from baseline. In 74% of patients, adaptive support ventilation was unable to maintain minute ventilation during the use of the endoscope, mandating pressure limitation adjustments. In a minority of patients (26%), minute ventilation had to be adjusted to achieve similar Paco(2) values.

  10. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Charlotte J. Beurskens

    2014-01-01

    Full Text Available Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2 diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen. A fixed protective ventilation protocol (6 mL/kg was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P<0.017. Results. During heliox ventilation, respiratory rate decreased (25±4 versus 23±5 breaths min−1, P=0.010. Minute volume ventilation showed a trend to decrease compared to baseline (11.1±1.9 versus 9.9±2.1 L min−1, P=0.026, while reducing PaCO2 levels (5.0±0.6 versus 4.5±0.6 kPa, P=0.011 and peak pressures (21.1±3.3 versus 19.8±3.2 cm H2O, P=0.024. Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  11. “High Frequency/Small Tidal Volume Differential Lung Ventilation”: A Technique of Ventilating the Nondependent Lung of One Lung Ventilation for Robotically Assisted Thoracic Surgery

    Directory of Open Access Journals (Sweden)

    Bassam M. Shoman

    2015-01-01

    Full Text Available With the introduction of new techniques and advances in the thoracic surgery fields, challenges to the anesthesia techniques had became increasingly exponential. One of the great improvements that took place in the thoracic surgical field was the use of the robotically assisted thoracic surgical procedure and minimally invasive endoscopic thoracic surgery. One lung ventilation technique represents the core anesthetic management for the success of those surgical procedures. Even with the use of effective one lung ventilation, the patient hemodynamics and respiratory parameters could be deranged and could not be tolerating the procedure that could compromise the end result of surgery. We are presenting our experience in managing one patient who suffered persistent hypoxia and hemodynamic instability with one lung ventilation for robotically assisted thymectomy procedure and how it was managed till the completion of the surgery successfully.

  12. Natural air ventilation in underground galleries as a tool to increase radon sampling volumes for geologic monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Eff-Darwich, Antonio [Departamento de Edafologia y Geologia, Universidad de La Laguna, Av. Astrofisico Francisco, Sanchez s/n, 38206 La Laguna, Tenerife (Spain); Instituto de Astrofisica de Canarias, c/Via Lactea s/n, 38205 La Laguna, Tenerife (Spain)], E-mail: adarwich@ull.es; Vinas, Ronaldo [Departamento de Edafologia y Geologia, Universidad de La Laguna, Av. Astrofisico Francisco, Sanchez s/n, 38206 La Laguna, Tenerife (Spain); Soler, Vicente [Estacion Volcanologica de Canarias, IPNA-CSIC, Av. Astrofisico Francisco Sanchez s/n, 38206 La Laguna, Tenerife (Spain); Nuez, Julio de la; Quesada, Maria L. [Departamento de Edafologia y Geologia, Universidad de La Laguna, Av. Astrofisico Francisco, Sanchez s/n, 38206 La Laguna, Tenerife (Spain)

    2008-09-15

    A simple numerical model was implemented to infer airflow (natural ventilation) in underground tunnels from the differences in the temporal patterns of radon, {sup 222}Rn, concentration time-series that were measured at two distant points in the interior of the tunnels. The main purpose of this work was to demonstrate that the installation of radon monitoring stations closer to the entrance of the tunnels was sufficient to remotely analyse the distribution of radon concentration in their interiors. This could ease the monitoring of radon, since the effective sampling volume of a single monitoring station located closer to the entrance of a tunnel is approximately 30,000 times larger than the sampling volume of a sub-soil radon sensor. This methodology was applied to an underground gallery located in the volcanic island of Tenerife, Canary Islands. This island constitutes an ideal laboratory to study the geo-dynamical behaviour of radon because of the existence of a vast network of galleries that conforms the main water supply of the island.

  13. “High Frequency/Small Tidal Volume Differential Lung Ventilation”: A Technique of Ventilating the Nondependent Lung of One Lung Ventilation for Robotically Assisted Thoracic Surgery

    OpenAIRE

    Shoman, Bassam M.; Hany O. Ragab; Ammar Mustafa; Rashid Mazhar

    2015-01-01

    With the introduction of new techniques and advances in the thoracic surgery fields, challenges to the anesthesia techniques had became increasingly exponential. One of the great improvements that took place in the thoracic surgical field was the use of the robotically assisted thoracic surgical procedure and minimally invasive endoscopic thoracic surgery. One lung ventilation technique represents the core anesthetic management for the success of those surgical procedures. Even with the use o...

  14. Evaluation of residual functional lung volume on Tc-99m DTPA aerosol ventilation and Tc-99m MAA perfusion scintigraphy in primary ciliary dyskinesia (Kartagener syndrome).

    Science.gov (United States)

    Chen, Yu-Wen; Chang, Chin-Chuan; Lai, Yung-Chuang; Lu, Chia-Ying; Dai, Zen-Kong

    2008-12-01

    Kartagener syndrome is diagnosed as sinusitis, bronchitis (bronchiectasis), and situs inversus by the clinical features. It is a subclass of primary ciliary dyskinesia (PCD) disease. A 12-year-old girl who had frequent upper and lower airway infections since birth, which was confirmed as Kartagener syndrome by HRCT imaging. We present the residual functional lung volume and mucociliary clearance findings seen on Tc-99m DTPA aerosol ventilation and Tc-99m MAA perfusion scintigraphy.

  15. 脉搏指示连续心排血量技术对压力与容量控制模式机械通气容量参数的影响%Influence of pulse indicator continuous cardiac output in monitoring on the volume parameters of different tidal volume under pressure control ventilation mode and volume-controlled ventilation mode in sheep

    Institute of Scientific and Technical Information of China (English)

    李军; 高心晶; 高艳颖; 卫俊涛; 秦英智

    2010-01-01

    Objective To compare the influence of pulse indicator continuous cardiac output(PiCCO)in monitoring tidal volume(V_T)under pressure control ventilation mode and volume-controlled ventilation mode in sheep.Methods After anesthesia and tracheotomy,5 sheep,which were apneic and receiving mechanical ventilation.Twenty minutes later,central venous pressure(CVP)and cardiac function were monitored with different selected V_T levels of 6,10,15,20 ml/kg under bi-level positive airway pressure (BiPAP)mode by changing the pressure of inspiration,or under the synchronized intermittent mandatory ventilation(SIMV)mode with the same ventilation conditions.Results In both modes,the increase in V_T led to an decrease of cardiac index(CI)and intrathoracic blood volume index(ITBVI),reaching a statistically significant difference at 15 ml/kg[SIMV mode:CI(3.94±1.03)L·min~(-1)·m~(-2),ITBVI (707±105)ml/m2;BiPAP mode:CI(4.11±1.11)L·min-1±m-2,ITBVI(715±122)ml/m2]and 20 ml/kg[SIMV mode:CI(3.87±1.04)L·min~(-1)·m~(-2),ITBVI(705±116)ml/m2;BiPAP mode:CI (3.64±0.96)L·min~(-1)·m~(-2),ITBVI(694±114)ml/m2]compared with 6 ml/kg[SIMV mode:CI (4.96±1.58)L·min~(-1)·m~(-2),ITBVI(811±169)ml/m2;BiPAP mode:CI(5.67±1.96)L·min~(-1)·m~(-2),ITBVI(8234-182)ml/m~2,all P<0.05];an increase in systemic vascular resistance index(SVRI)and mean airway pressure(Pmean)at 15 ml/kg[SIMV mode:SVRI(237.64±6.2)kPa·s~(-1)·L~(-1),Pmean(14.0±3.2)cm H2O(1 cm H2O=0.098 kPa);BiPAP mode:SVRI(230.8±32.9)kPa·s~(-1)·L~(-1),Pmean(13.0±2.2)cm H_2O]and 20 ml/kg[SIMV mode:SVRI(253.1±76.7)kPa·s~(-1)·L~(-1),Pmean(18.2±4.8)cm H_2O;BiPAP mode:SVRI(246.7±48.8)kPa·s~(-1)·L~(-1),Pmean(16.8±3.3)cm H_2O]compared with 6 ml/kg[SIMV mode:SVRI(184.8±47.5)kPa·s~(-1)·L~(-1);Pmean(8.8±1.6)cm H_2O;BiPAP mode:SVRI(184.5±51.5)kPa·s~(-1)·L~(-1),Pmean(8.6±0.5)cm H_2O,all P<0.05];but there was no significant effects on CVP,heart rate(HR),mean blood pressure(MBP).There was no significant difference of CI

  16. Dependence of lung injury on inflation rate during low-volume ventilation in normal open-chest rabbits.

    Science.gov (United States)

    D'Angelo, Edgardo; Pecchiari, Matteo; Saetta, Marina; Balestro, Elisabetta; Milic-Emili, Joseph

    2004-07-01

    Lung mechanics and morphometry were assessed in two groups of nine normal open-chest rabbits mechanically ventilated (MV) for 3-4 h at zero end-expiratory pressure (ZEEP) with physiological tidal volumes (Vt; 11 ml/kg) and high (group A) or low (group B) inflation flow (44 and 6.1 ml x kg(-1) x s(-1), respectively). Relative to initial MV on positive end-expiratory pressure (PEEP; 2.3 cmH(2)O), MV on ZEEP increased quasi-static elastance and airway and viscoelastic resistance more in group A (+251, +393, and +225%, respectively) than in group B (+180, +247, and +183%, respectively), with no change in viscoelastic time constant. After restoration of PEEP, quasi-static elastance and viscoelastic resistance returned to control, whereas airway resistance, still relative to initial values, remained elevated more in group A (+86%) than in group B (+33%). In contrast, prolonged high-flow MV on PEEP had no effect on lung mechanics of seven open-chest rabbits (group C). Gas exchange on PEEP was equally preserved in all groups, and the lung wet-to-dry ratios were normal. Relative to group C, both groups A and B had an increased percentage of abnormal alveolar-bronchiolar attachments and number of polymorphonuclear leukocytes in alveolar septa, the latter being significantly larger in group A than in group B. Thus prolonged MV on ZEEP with cyclic opening-closing of peripheral airways causes alveolar-bronchiolar uncoupling and parenchymal inflammation with concurrent, persistent increase in airway resistance, which are worsened by high-inflation flow.

  17. Mechanical ventilation of the premature neonate.

    Science.gov (United States)

    Brown, Melissa K; DiBlasi, Robert M

    2011-09-01

    Although the trend in the neonatal intensive care unit is to use noninvasive ventilation whenever possible, invasive ventilation is still often necessary for supporting pre-term neonates with lung disease. Many different ventilation modes and ventilation strategies are available to assist with the optimization of mechanical ventilation and prevention of ventilator-induced lung injury. Patient-triggered ventilation is favored over machine-triggered forms of invasive ventilation for improving gas exchange and patient-ventilator interaction. However, no studies have shown that patient-triggered ventilation improves mortality or morbidity in premature neonates. A promising new form of patient-triggered ventilation, neurally adjusted ventilatory assist (NAVA), was recently FDA approved for invasive and noninvasive ventilation. Clinical trials are underway to evaluate outcomes in neonates who receive NAVA. New evidence suggests that volume-targeted ventilation modes (ie, volume control or pressure control with adaptive targeting) may provide better lung protection than traditional pressure control modes. Several volume-targeted modes that provide accurate tidal volume delivery in the face of a large endotracheal tube leak were recently introduced to the clinical setting. There is ongoing debate about whether neonates should be managed invasively with high-frequency ventilation or conventional ventilation at birth. The majority of clinical trials performed to date have compared high-frequency ventilation to pressure control modes. Future trials with premature neonates should compare high-frequency ventilation to conventional ventilation with volume-targeted modes. Over the last decade many new promising approaches to lung-protective ventilation have evolved. The key to protecting the neonatal lung during mechanical ventilation is optimizing lung volume and limiting excessive lung expansion, by applying appropriate PEEP and using shorter inspiratory time, smaller tidal

  18. Ventilator Circuits, Humidification and Ventilator-Associated Pneumonia

    Directory of Open Access Journals (Sweden)

    Dean Hess

    1996-01-01

    Full Text Available Technical issues in the care of mechanically ventilated patients include those related to the ventilator circuit, humidification and ventilator-associated pneumonia. Principal issues related to ventilator circuits include leaks and compression volume. Circuit compression volume affects delivered tidal volume as well as measurements of auto-positive end-expiratory pressure and mixed expired PCO2. Resistance through the ventilator circuit contributes to patient-ventilator dyssynchrony during assisted modes of mechanical ventilation. Adequate humidification of inspired gas is necessary to prevent heat and moisture loss. Common methods of humidification of inspired gas during mechanical ventilation include use of active heated humidifiers and passive artificial noses. Artificial noses are less effective than active humidifiers and are best suited to short term use. With active humidifiers, the circuit can be heated to avoid condensate formation. However, care must be exercised when heated circuits are used to avoid delivery of a low relative humidity and subsequent drying of secretions in the artificial airway. Although pneumonia is a complication of mechanical ventilation, these pneumonias are usually the result of aspiration of pharyngeal secretions and are seldom related to the ventilator circuit. Ventilator circuits do not need to be changed more frequently than weekly for infection control purposes, and the incidence of ventilator-associated pneumonia may be greater with more frequent circuit changes.

  19. 优秀手球运动员递增负荷期间肺通气和氧通气当量变化特征研究%The Changing Feature of Ventilation Volume and Oxygen Ventilation Equivalent of Elite Handball Athletes

    Institute of Scientific and Technical Information of China (English)

    贾宏

    2012-01-01

    This experiment observed the changing feature of ventilation volume of elite handball athletes.The results show : at the beginning stage of workload,the indexes of VE、RF and TV were in the rapid increase.With the increase of workload,the indexes of VE、RF and TV kept increased,but their growing speed was lower then the beginning stage of workload.In the bigger of workload,the changing feature were similar with the indexes of TV and RF,which it increased rapidly,and than,increased slowly.It was also the appearance of ventilation anaerobic threshold in 9th minute during the exercise.At the beginning stage of workload,VE/VO2 decreased with raising workload,and than,increased with raising workload.Conclusion:in the increased workload,ventilation volume of elite handball athletes can be divided intothree stages,which included the stage of rapid grow,the stage of slow grow,the over-respiratory stage.%观察国家优秀手球运动员在递增负荷运动过程中肺通气机能变化,结果发现,运动负荷开始阶段,VERF和TV大幅增长;随着运动负荷的增加,VE、RF和TV出现相对缓慢的增长;大运动负荷期间,VE先发生上升,然后缓慢增长,RF变化与VE相似;通气阈出现在第9min左右;在开始阶段,VE/VO2随着运动负荷的增加而降低,然后,随着运动负荷增加而增加。结论:递增负荷过程中,优秀手球运动员肺通气变化过程分为快速增长阶段、缓慢增长阶段和快速增长平台期。

  20. Ventilação mecânica volume-controlada versus pressão controlada em modelo canino de lesão pulmonar aguda: efeitos cardiorrespiratórios e sobre o custo de oxigênio da respiração Volume controlled ventilation versus pressure controlled ventilation in a canine acute lung injury model: effects on cardiorespiratory parameters and oxygen cost of breathing

    Directory of Open Access Journals (Sweden)

    BRUNO DO VALLE PINHEIRO

    2002-01-01

    Full Text Available Introdução: Persiste a questão sobre se há vantagens mecânicas ou de trocas gasosas no uso da ventilação pressão-controlada (VPC sobre a ciclada a volume (VCV. Objetivos: Comparar, de forma randômica, a VPC com a VCV com fluxo desacelerado nos modos assistido e controlado em modelo experimental de lesão pulmonar aguda. Métodos: Sete cães com lesão pulmonar aguda grave (PaO2/FIO2 Background: It is questionable whether pressure-controlled ventilation (PCV has advantages over volume-cycled ventilation (VCV. Objectives: To compare PCV to VCV with decelerating flow profile during assisted and controlled modes in an acute lung injury experimental model. Methods: Severe acute lung injury (PaO2/FIO2 < 100 mmHg was induced by oleic acid IV infusion (0.05 mg/kg in seven dogs. The animals were submitted to PCV and VCV in a randomized sequence. After 40 minutes in the assisted mode, ventilation was changed to the controlled mode after neuromuscular blockade. The tidal volume and the inspiratory time were kept constant throughout the experiment. Results: There were no differences in gas exchange (PaO2 and PaCO2, cardiac output or oxygen delivery (DO2 between VCV and PCV. The same was observed regarding maximum airway and plateau pressures, and also to the static compliance. Oxygen consumption (VO2 after neuromuscular blockade was 124 ± 48 in VCV versus 143 ± 50 ml/min in PCV, p = 0.42. In the assisted mode, there was a statistical trend of a higher VO2 in PCV (219 ± 72 versus 154 ± 67 ml/min in VCV, p = 0.06, that was associated with a statistical trend of a higher oxygen cost of breathing (OCB during assisted PCV, although without statistical significance (31 ± 77 in VCV versus 75 ± 96 ml/min in PCV, p = 0.23, and also in a lower PvO2 (34 ± 7 in PCV versus 42 ± 6 ml/min in VCV, p = 0.02. These occurred despite a higher maximum inspiratory flow in the assisted mode in PCV (58 ± 9 versus 48 ± 4 L/min in VCV, p = 0.01. In both VCV and

  1. Dead space reduction by Kolobow's endotracheal tube does not justify the waiving of volume monitoring in small, ventilated lungs.

    Science.gov (United States)

    Proquitté, Hans; Wendel, Rena; Roehr, Charles C; Wauer, Roland R; Schmalisch, Gerd

    2014-12-01

    In ventilated preterm infants the flow sensor contributes significantly to the total apparatus dead space, which may impair gas exchange. The aim of the study was to quantify to which extent a dead space reduced Kolobow tube (KB) without flow sensor improves the gas exchange compared with a conventional ventilator circuit with flow sensor [Babylog 8000 (BL)]. In a cross-over trial in 14 tracheotomized, surfactant-depleted (saline lavage) and mechanically ventilated newborn piglets (age space of BL and KB including the endotracheal tube were 3.0 and 1.34 mL. Despite a 50 % apparatus dead space reduction with KB compared to BL statistically significant improvements were only observed for body weights monitoring.

  2. Effects of a 1:1 inspiratory to expiratory ratio on respiratory mechanics and oxygenation during one-lung ventilation in the lateral decubitus position.

    Science.gov (United States)

    Kim, S H; Choi, Y S; Lee, J G; Park, I H; Oh, Y J

    2012-11-01

    Prolonged inspiratory to expiratory (I:E) ratio ventilation may have both positive and negative effects on respiratory mechanics and oxygenation during one-lung ventilation (OLV), but definitive information is currently lacking. We therefore compared the effects of volume-controlled ventilation with I:E ratios of 1:1 and 1:2 on respiratory mechanics and oxygenation during OLV. Fifty-six patients undergoing thoracoscopic lobectomy were randomly assigned volume-controlled ventilation with an I:E ratio of 1:1 (group 1:1, n=28) or 1:2 (group 1:2, n=28) during OLV. Arterial and central venous blood gas analyses and respiratory variables were recorded 15 minutes into two-lung ventilation, at 30 and 60 minutes during OLV, and 15 minutes after two-lung ventilation was re-initiated. Peak and plateau airway pressures in cmH2O [standard deviation] during OLV were significantly lower in group 1:1 than in group 1:2 (P ventilation with an I:E ratio of 1:1 reduced peak and plateau airway pressures improved dynamic compliance and efficiency of alveolar ventilation, but it did not improve arterial oxygenation in a substantial manner. Furthermore, the associated increase in mean airway pressure might have reduced cardiac output, resulting in a lower central venous oxygen saturation.

  3. Goal-directed fluid optimization based on stroke volume variation and cardiac index during one-lung ventilation in patients undergoing thoracoscopy lobectomy operations: a pilot study

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2013-07-01

    Full Text Available OBJECTIVES: This pilot study was designed to utilize stroke volume variation and cardiac index to ensure fluid optimization during one-lung ventilation in patients undergoing thoracoscopic lobectomies. METHODS: Eighty patients undergoing thoracoscopic lobectomy were randomized into either a goal-directed therapy group or a control group. In the goal-directed therapy group, the stroke volume variation was controlled at 10%±1%, and the cardiac index was controlled at a minimum of 2.5 L.min-1.m-2. In the control group, the MAP was maintained at between 65 mm Hg and 90 mm Hg, heart rate was maintained at between 60 BPM and 100 BPM, and urinary output was greater than 0.5 mL/kg-1/h-1. The hemodynamic variables, arterial blood gas analyses, total administered fluid volume and side effects were recorded. RESULTS: The PaO2/FiO2-ratio before the end of one-lung ventilation in the goal-directed therapy group was significantly higher than that of the control group, but there were no differences between the goal-directed therapy group and the control group for the PaO2/FiO2-ratio or other arterial blood gas analysis indices prior to anesthesia. The extubation time was significantly earlier in the goal-directed therapy group, but there was no difference in the length of hospital stay. Patients in the control group had greater urine volumes, and they were given greater colloid and overall fluid volumes. Nausea and vomiting were significantly reduced in the goal-directed therapy group. CONCLUSION: The results of this study demonstrated that an optimization protocol, based on stroke volume variation and cardiac index obtained with a FloTrac/Vigileo device, increased the PaO2/FiO2-ratio and reduced the overall fluid volume, intubation time and postoperative complications (nausea and vomiting in thoracic surgery patients requiring one-lung ventilation.

  4. Impact of airflow interaction on inhaled air quality and transport of contaminants in rooms with personalized and total volume ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Cermak, Radim; Kovar, O.

    2003-01-01

    The impact of airflow interaction on inhaled air quality and transport of contaminants between occupants was studied in regard to pollution from floor covering, human bioeffluents and exhaled air, with combinations of two personalized ventilation systems (PV) with mixing and displacement ventilat......The impact of airflow interaction on inhaled air quality and transport of contaminants between occupants was studied in regard to pollution from floor covering, human bioeffluents and exhaled air, with combinations of two personalized ventilation systems (PV) with mixing and displacement...

  5. Effect of Switching between Pressure-controlled and Volume-controlled Ventilation on Respiratory Mechanics and Hemodynamics in Obese Patients during Abdominoplasty

    Science.gov (United States)

    Messeha, Medhat Mikhail

    2017-01-01

    Background: The ideal intraoperative ventilation strategy in obese patients remains obscure. This prospective, randomized study was designed to evaluate the effect of pressure-controlled ventilation (PCV) before or after volume-controlled ventilation (VCV) on lung mechanics and hemodynamics variables in obese patients subjected to abdominoplasty operation. Patients and Methods: The study included forty patients with body mass index 30–45 kg/m2 subjected to abdominoplasty. All patients were randomly allocated in two groups after the induction of general anesthesia (twenty patients each), according to intraoperative ventilatory strategy. Group I (P-V): started with PCV until the plication of rectus muscle changes into VCV till the end of surgery. Group II (V-P): started with VCV until the plication of rectus muscle changes into PCV till the end of surgery. Lung mechanics, hemodynamics variables (heart rate and mean blood pressure), and arterial blood gases (ABGs) were recorded. Results: No significant difference in the hemodynamics and ABGs were recorded between the studied groups. The use of PCV after VCV induced the improvement of lung mechanics. Conclusion: Switching from VCV to PCV is preferred to improve intraoperative oxygenation and lung compliance without adverse hemodynamic effects in obese patients.

  6. Effect of One-lung Ventilation with Pressure Control Ventilation-volume Guarantee on Respiratory Mechanics in Elderly Patients Undergoing Radical Esophageal Cancer Surgery%压力控制通气-容量保证单肺通气模式对老年食管癌根治术患者呼吸力学的影响

    Institute of Scientific and Technical Information of China (English)

    原皓; 邹亮; 孙莉

    2014-01-01

    To explore the effect of one-lung ventilation (OLV ) with pressure control ventilation-volume guarantee(PCV-VG) on respiratory mechanics in elderly patients undergoing radical esophageal cancer sur-gery .[Methods] Totally 40 elderly patients(ASA Ⅰ ~ Ⅱ) undergoing radical esophageal cancer surgery were di-vided into two groups with 20 in each .All patients were given sevoflurane inhalation for maintenance anesthesia and intubated with double lumen endotracheal catheter .Two-lung volume controlled ventilation(VCV) with a tidal volume(VT) of 10ml/kg and frequency(f) of 12 breaths per minute were performed before chest opening .After chest was opened ,OLV was performed .Group A received VCV mode with a VT of 8ml/kg and f of 12 breaths per minute .Group B received PCV-VG mode with the same peak airway pressure (Ppeak) as that during two-lung VCV ,VT of 8ml/kg and f of 12 breaths per minute .The VT ,minute volume(MV) ,Ppeak ,mean airway pres-sure(Pmean) ,end-tidal pressure of carbon dioxide (PET CO2 ) and dynamic lung compliance (Cdyn) before OLA (T1 ) ,30min after OLA(T2 ) ,60min after OLA(T3 ) and 30min after two-lung ventilation(TLA) were observed . Lung effective dynamic compliance(Cdyn) was calculated .[Results]Compared with group A ,Ppeak and Pmean in group B were decreased ,but there was no significant difference in VT ,MV and PET CO2 ,and Cdyn was increased .[Conclusion] PCV-VG mode in OLA for elderly patients undergoing radical esophageal cancer surgery can decrease Ppeak ,ensure ventilatory capacity and improve Cdyn ,so it is good for lung protection in elderly patients .%【目的】探讨压力控制通气-容量保证(PCV-VG)单肺通气(OLV)模式对老年食管癌根治术患者呼吸力学的影响。【方法】将40例行食管癌根治术的老年患者(ASA Ⅰ~Ⅱ级)分为两组,每组20例。所有患者采取七氟烷吸入维持麻醉,插入双腔气管导管。手术进胸前先行双肺定容通气(VCV

  7. Hypercapnia attenuates ventilator-induced diaphragm atrophy and modulates dysfunction

    NARCIS (Netherlands)

    Schellekens, W.J.M.; Hees, H.W.H. van; Kox, M.; Linkels, M.; Acuna, G.L.; Dekhuijzen, P.N.R.; Scheffer, G.J.; Hoeven, J.G. van der; Heunks, L.M.A.

    2014-01-01

    INTRODUCTION: Diaphragm weakness induced by prolonged mechanical ventilation may contribute to difficult weaning from the ventilator. Hypercapnia is an accepted side effect of low tidal volume mechanical ventilation, but the effects of hypercapnia on respiratory muscle function are largely unknown.

  8. Intraoperative and postoperative evaluation of low tidal volume combined with low-level positive end-expiratory pressure ventilation in laparoscopic surgery in elderly patients

    Institute of Scientific and Technical Information of China (English)

    Ye-Qiu Li; Zheng-Lan Zhao; Qin-Fang Li

    2016-01-01

    Objective:To evaluate intraoperative and postoperative condition of low tidal volume combined with low-level positive end-expiratory pressure ventilation in laparoscopic surgery in elderly patients.Methods: A total of 176 cases of elderly patients (more than 60 years old) receiving laparoscopic surgery in our hospital from July 2013 to July 2015 were selected as research subjects and randomly divided into observation group and control group, each group included 88 cases, control group received conventional ventilation strategy, observation group received low tidal volume combined with low-level positive end-expiratory pressure ventilation strategy, and then levels of hemodynamic indexes, respiratory mechanical indexes, serology indexes and cerebral vessel related indexes, etc of two groups were compared.Results:Intraoperative and postoperative heart rate and mean arterial pressure levels of observation group were lower than those of control group, arterial partial pressure of oxygen and oxygenation index levels were higher than those of control group and differences had statistical significance (P<0.05); intraoperative APIP and Pplat values of observation group were lower than those of control group, Cs value was higher than that of control group and differences had statistical significance (P<0.05); intraoperative and postoperative serum IL-8 and TNF-αlevels of observation group were lower than those of control group, IL-10 level was higher than that of control group and differences had statistical significance (P<0.05); intraoperative and postoperative PjvO2, SjvO2 and CjvO2 levels of observation group were higher than those of control group, Da-jvO2 level was lower than that of control group and differences had statistical significance (P<0.05).Conclusions:When elderly patients receive laparoscopic surgery, the use of low tidal volume combined with low-level positive end-expiratory pressure ventilation strategy can stabilize hemodynamic level and respiratory

  9. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    Directory of Open Access Journals (Sweden)

    Smeding Lonneke

    2012-03-01

    Full Text Available Abstract Background Injurious mechanical ventilation (MV may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p. lipopolysaccharide (LPS-treated rats were ventilated with low (6 ml/kg and high (19 ml/kg tidal volumes (Vt under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP, central venous pressure (CVP, cardiac output (CO and pulmonary plateau pressure (Pplat were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.

  10. 3 Level Ventilation: the First Clinical Experience

    Directory of Open Access Journals (Sweden)

    P. Torok

    2008-01-01

    Full Text Available Considering the issues of artificial ventilation (AV in non-homogenous pathological lung processes (acute lung injury (ALI, acute respiratory distress syndrome (ARDS, pneumonia, etc., the authors applied the three-level lung ventilation to a group of 12 patients with non-homogenous lung injury. Three-level ventilation was defined as a type (modification of AV whose basic ventilation level was produced by the modes CMV, PCV or PS (ASB and add-on level, the so-called background ventilation was generated by two levels of PEEP. PEEP (constant and PEEPh (PEEP high with varying frequency and duration of transition between the individual levels of PEEP. Objective: to elucidate whether in cases of considerably non-homogenous gas distribution in acute pathological disorders, three-level ventilation (3LV can correct gas distribution into the so-called slow bronchoalveolar compartments, by decreasing the volume load of the so-called fast compartments and to improve lung gas exchange, by following the principles of safe ventilation. Results. 3LV was applied to 12 patients with severe non-homogenous lung injury/disorder (atypic pneumonia and ARDS/ALI and low-success PCV ventilation after recruitment manoeuvre (PaO2 (kPA /FiO2 = 5—6. There were pronounced positive changes in pulmonary gas exchange within 1—4 hours after initiation of 3LV at a fPCV of 26±4 breaths/min-1 and PEEPh at a fPEEPH of 7±2 breaths/min-1 with a minute ventilation of 12±4 l/min. 3LV reduced a intrapulmonary shunt fraction 50±5 to 30±5%, increased CO2 elimination, with PaCO2 falling to the values below 6±0.3 kPa, and PaO2 to 7.5±1.2 kPa, with FiO2 being decreased to 0.8—0.4. Lung recruitment also improved gas exchange: with PEEP=1.2±0.4 kPa, static tho-racopulmonary compliance (Cst elevated from 0.18±0.02 l/kPa to 0.3±0.02 l/kPa and then to 0.38±0.05 l/kPa. Airways resistance (Raw decreased by more than 30%. Improved lung aeration was also estimated as a manifestation of

  11. Different characteristics of ventilator application between tracheostomy- and noninvasive positive pressure ventilation patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Park, Donghwi; Lee, Goo Joo; Kim, Ha Young; Ryu, Ju Seok

    2017-03-01

    The aim of the study was to investigate the appropriate home ventilator settings for patients with amyotrophic lateral sclerosis (ALS).In total, 71 patients with ALS, who had received either a noninvasive positive pressure ventilation (NIPPV) or tracheostomy positive pressure ventilation (TPPV), were included. Accordingly, patients were divided into 2 groups (the TPPV and NIPPV groups). We retrospectively evaluated the values used in home ventilators for patients with ALS, who had maintained a stable level of CO2 on both the arterial blood gas analysis (ABGA) and transcutaneous blood gas monitoring. To measure the main outcome, we also investigated the actual body weight (ABW) and predicted body weight (PBW) of patients, and the following setting values of ventilators were also recorded: the inspired tidal volume (VTi), minute ventilation (MV), peak inspiratory pressure (PIP), positive end expiratory pressure (PEEP), and inspiratory time (Tins).VTi and MV showed a significantly positive correlation with both PBW and ABW of patients in the TPPV group. However, both VTi and MV had greater significant correlation with PBW than ABW in the TPPV group. In addition, VTi and MV did not show a significantly positive correlation with either PBW or ABW in the NIPPV group.In patients with ALS, PBW was more useful for predicting VTi and MV than ABW. Moreover, it will be helpful to know the differences of setting values between TPPV and NIPPV, especially because ALS patients are usually treated with TPPV due to the initial difficulties associated with NIPPV.

  12. Advanced lung ventilation system (ALVS) with linear respiratory mechanics assumption for waveform optimization of dual-controlled ventilation.

    Science.gov (United States)

    Montecchia, F; Guerrisi, M; Canichella, A

    2007-03-01

    The present paper describes the functional features of an advanced lung ventilation system (ALVS) properly designed for the optimization of conventional dual-controlled ventilation (DCV), i.e. with pressure-controlled ventilation with ensured tidal or minute volume. Considering the particular clinical conditions of patients treated with controlled ventilation the analysis and synthesis of ALVS control have been performed assuming a linear respiratory mechanics. Moreover, new airways pressure waveforms with more physiological shape can be tested on simulators of respiratory system in order to evaluate their clinical application. This is obtained through the implementation of a compensation procedure making the desired airways pressure waveform independent on patient airways resistance and lung compliance variations along with a complete real-time monitoring of respiratory system parameters leading the ventilator setting. The experimental results obtained with a lung simulator agree with the theoretical ones and show that ALVS performance is useful for the research activity aiming at the improvement of both diagnostic evaluation and therapeutic outcome relative to mechanical ventilation treatments.

  13. Comparison of different inspiratory triggering settings in automated ventilators during cardiopulmonary resuscitation in a porcine model

    Science.gov (United States)

    Fu, Yangyang; Sun, Feng; Zhang, Yazhi; Hu, Yingying; Walline, Joseph; Zhu, Huadong; Yu, Xuezhong

    2017-01-01

    Background Mechanical ventilation via automated in-hospital ventilators is quite common during cardiopulmonary resuscitation. It is not known whether different inspiratory triggering sensitivity settings of ordinary ventilators have different effects on actual ventilation, gas exchange and hemodynamics during resuscitation. Methods 18 pigs enrolled in this study were anaesthetized and intubated. Continuous chest compressions and mechanical ventilation (volume-controlled mode, 100% O2, respiratory rate 10/min, and tidal volumes 10ml/kg) were performed after 3 minutes of ventricular fibrillation. Group trig-4, trig-10 and trig-20 (six pigs each) were characterized by triggering sensitivities of 4, 10 and 20 (cmH2O for pressure-triggering and L/min for flow-triggering), respectively. Additionally, each pig in each group was mechanically ventilated using three types of inspiratory triggering (pressure-triggering, flow-triggering and turned-off triggering) of 5 minutes duration each, and each animal matched with one of six random assortments of the three different triggering settings. Blood gas samples, respiratory and hemodynamic parameters for each period were all collected and analyzed. Results In each group, significantly lower actual respiratory rate, minute ventilation volume, mean airway pressure, arterial pH, PaO2, and higher end-tidal carbon dioxide, aortic blood pressure, coronary perfusion pressure, PaCO2 and venous oxygen saturation were observed in the ventilation periods with a turned-off triggering setting compared to those with pressure- or flow- triggering (all P<0.05), except when compared with pressure-triggering of 20 cmH2O (respiratory rate 10.5[10/11.3]/min vs 12.5[10.8/13.3]/min, P = 0.07; coronary perfusion pressure 30.3[24.5/31.6] mmHg vs 27.4[23.7/29] mmHg, P = 0.173; venous oxygen saturation 46.5[32/56.8]% vs 41.5[33.5/48.5]%, P = 0.575). Conclusions Ventilation with pressure- or flow-triggering tends to induce hyperventilation and

  14. Six-Minute Walking Distance Correlated with Memory and Brain Volume in Older Adults with Mild Cognitive Impairment: A Voxel-Based Morphometry Study

    Directory of Open Access Journals (Sweden)

    Hyuma Makizako

    2013-08-01

    Full Text Available Background/Aims: High fitness levels play an important role in maintaining memory function and delaying the progression of structural brain changes in older people at risk of developing dementia. However, it is unclear which specific regions of the brain volume are associated with exercise capacity. We investigated whether exercise capacity, determined by a 6-min walking distance (6MWD, is associated with measures of logical and visual memory and where gray matter regions correlate with exercise capacity in older adults with mild cognitive impairment (MCI. Methods: Ninety-one community-dwelling older adults with MCI completed a 6-min walking test, structural magnetic resonance imaging scanning, and memory tests. The Wechsler Memory Scale-Revised Logical Memory and Rey-Osterrieth Complex Figure Tests were used to assess logical and visual memory, respectively. Results: The logical and visual memory tests were positively correlated with the 6MWD (p Conclusions: These results suggest that a better 6MWD performance may be related to better memory function and the maintenance of gray matter volume in older adults with MCI.

  15. Thermal plumes in ventilated rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    1990-01-01

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects. Free...... to be the only possible approach to obtain the volume flow in: thermal plumes in ventilated rooms....

  16. Comparison of Ventilation With One-Handed Mask Seal With an Intraoral Mask Versus Conventional Cuffed Face Mask in a Cadaver Model: A Randomized Crossover Trial.

    Science.gov (United States)

    Amack, Andrew J; Barber, Gary A; Ng, Patrick C; Smith, Thomas B; April, Michael D

    2017-01-01

    We compare received minute volume with an intraoral mask versus conventional cuffed face mask among medics obtaining a 1-handed mask seal on a cadaver model. This study comprised a randomized crossover trial of adult US Army combat medic volunteers participating in a cadaver laboratory as part of their training. We randomized participants to obtain a 1-handed mask seal during ventilation of a fresh unembalmed cadaver, first using either an intraoral airway device or conventional cuffed face mask. Participants obtained a 1-handed mask seal while a ventilator delivered 10 standardized 750-mL breaths during 1 minute. After a 5-minute rest period, they repeated the study with the alternative mask. The primary outcome measure was received minute volume as measured by a respirometer. Of 27 recruited participants, all completed the study. Median received minute volume was higher with the intraoral mask compared with conventional cuffed mask by 1.7 L (95% confidence interval 1.0 to 1.9 L; P<.001). The intraoral mask resulted in greater received minute volume received compared with conventional cuffed face mask during ventilation with a 1-handed mask seal in a cadaver model. The intraoral mask may prove a useful airway adjunct for ventilation. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  17. Goal-Directed Fluid Therapy Using Stroke Volume Variation Does Not Result in Pulmonary Fluid Overload in Thoracic Surgery Requiring One-Lung Ventilation

    Directory of Open Access Journals (Sweden)

    Sebastian Haas

    2012-01-01

    Full Text Available Background. Goal-directed fluid therapy (GDT guided by functional parameters of preload, such as stroke volume variation (SVV, seems to optimize hemodynamics and possibly improves clinical outcome. However, this strategy is believed to be rather fluid aggressive, and, furthermore, during surgery requiring thoracotomy, the ability of SVV to predict volume responsiveness has raised some controversy. So far it is not known whether GDT is associated with pulmonary fluid overload and a deleterious reduction in pulmonary function in thoracic surgery requiring one-lung-ventilation (OLV. Therefore, we assessed the perioperative course of extravascular lung water index (EVLWI and paO2/FiO2-ratio during and after thoracic surgery requiring lateral thoracotomy and OLV to evaluate the hypothesis that fluid therapy guided by SVV results in pulmonary fluid overload. Methods. A total of 27 patients (group T were enrolled in this prospective study with 11 patients undergoing lung surgery (group L and 16 patients undergoing esophagectomy (group E. Goal-directed fluid management was guided by SVV (SVV 0.05 in EVLWI during the observation period (BL: 7.8 ± 2.5, 24postop: 8.1 ± 2.4 mL/kg. A subgroup analysis for group L and group E also did not reveal significant changes of EVLWI. The paO2/FiO2-ratio decreased significantly during the observation period (group L: BL: 462 ± 140, OLVterm15: 338 ± 112 mmHg; group E: BL: 389 ± 101, 24postop: 303 ± 74 mmHg but remained >300 mmHg except during OLV. Conclusions. SVV-guided fluid management in thoracic surgery requiring lateral thoracotomy and one-lung ventilation does not result in pulmonary fluid overload. Although oxygenation was reduced, pulmonary function remained within a clinically acceptable range.

  18. Taking minutes of meetings

    CERN Document Server

    Gutmann, Joanna

    2016-01-01

    aking Minutes of Meetings guides you through the entire process behind minute taking: arranging the meeting; writing the agenda; creating the optimum environment; structuring the meeting and writing notes up accurately. The minute-taker is one of the most important and powerful people in a meeting and you can use this opportunity to develop your knowledge, broaden your horizons and build credibility within the organization. Taking Minutes of Meetings is an easy to read 'dip-in, dip-out' guide which shows you how to confidently arrange meetings and produce minutes. It provides hands-on advice about the sections of a meeting as well as tips on how to create an agenda, personal preparation, best practice advice on taking notes and how to improve your accuracy. Brand new chapters of this 4th edition include guidance on using technology to maximize effectiveness and practical help with taking minutes for a variety of different types of meetings. The creating success series of books... With over one million copi...

  19. Ventilation effectiveness

    CERN Document Server

    Mathisen, Hans Martin; Nielsen, Peter V; Moser, Alfred

    2004-01-01

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy-to-understand descriptions of the indices used to mesure the performance of a ventilation system and which indices to use in different cases.

  20. Demand Controlled Ventilation and Classroom Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davies, Molly [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Ekaterina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Tienzen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  1. Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    Displacement ventilation is an interesting new type of air distribution principle which should be considered in connection with design of comfort ventilation in both smal1 and large spaces. Research activities on displacement ventilation are large all over the world and new knowledge of design...... methods appears continuously. This book gives an easy introduction to the basis of displacement ventilation and the chapters are written in the order which is used in a design procedure. The main text is extended by five appendices which show some of the new research activities taking place at Aalborg...

  2. Intraoperative mechanical ventilation for the pediatric patient.

    Science.gov (United States)

    Kneyber, Martin C J

    2015-09-01

    Invasive mechanical ventilation is required when children undergo general anesthesia for any procedure. It is remarkable that one of the most practiced interventions such as pediatric mechanical ventilation is hardly supported by any scientific evidence but rather based on personal experience and data from adults, especially as ventilation itself is increasingly recognized as a harmful intervention that causes ventilator-induced lung injury. The use of low tidal volume and higher levels of positive end-expiratory pressure became an integral part of lung-protective ventilation following the outcomes of clinical trials in critically ill adults. This approach has been readily adopted in pediatric ventilation. However, a clear association between tidal volume and mortality has not been ascertained in pediatrics. In fact, experimental studies have suggested that young children might be less susceptible to ventilator-induced lung injury. As such, no recommendations on optimal lung-protective ventilation strategy in children with or without lung injury can be made.

  3. Effects of non-invasive ventilation and posture on chest wall volumes and motion in patients with amyotrophic lateral sclerosis: a case series

    Directory of Open Access Journals (Sweden)

    Cristiana M. Magalhães

    2016-01-01

    Full Text Available ABSTRACT Background The effects of non-invasive ventilation (NIV on the breathing pattern and thoracoabdominal motion of patients with amyotrophic lateral sclerosis (ALS are unknown. Objectives 1 To analyze the influence of NIV on chest wall volumes and motion assessed by optoelectronic plethysmography in ALS patients and 2 to compare these parameters in the supine and sitting positions to those of healthy individuals (without NIV. Method Nine ALS patients were evaluated in the supine position using NIV. In addition, the ALS patients and nine healthy individuals were evaluated in both sitting and supine positions. Statistical analysis was performed using the paired Student t-test or Wilcoxon test and the Student t-test for independent samples or Mann-Whitney U test. Results Chest wall volume increased significantly with NIV, mean volume=0.43 (SD=0.16L versus 0.57 (SD=0.19L (p=0.04. No significant changes were observed for the pulmonary rib cage, abdominal rib cage, or abdominal contribution. The index of the shortening velocity of the diaphragmatic muscle, mean=0.15 (SD=0.05L/s versus 0.21 (SD=0.05L/s (p<0.01, and abdominal muscles, mean=0.09 (SD=0.02L/s versus 0.14 (SD=0.06L/s (p<0.01, increased during NIV. Comparisons between the supine and sitting positions showed similar changes in chest wall motion in both groups. However, the ALS patients presented a significantly lower contribution of the abdomen in the supine position compared with the controls, mean=56 (SD=13 versus 69 (SD=10 (p=0.02. Conclusions NIV improved chest wall volumes without changing the contribution of the chest wall compartment in ALS patients. In the supine position, ALS patients had a lower contribution of the abdomen, which may indicate early diaphragmatic dysfunction.

  4. Sustained inflation at birth did not alter lung injury from mechanical ventilation in surfactant-treated fetal lambs.

    Directory of Open Access Journals (Sweden)

    Noah H Hillman

    Full Text Available BACKGROUND: Sustained inflations (SI are used with the initiation of ventilation at birth to rapidly recruit functional residual capacity and may decrease lung injury and the need for mechanical ventilation in preterm infants. However, a 20 second SI in surfactant-deficient preterm lambs caused an acute phase injury response without decreasing lung injury from subsequent mechanical ventilation. HYPOTHESIS: A 20 second SI at birth will decrease lung injury from mechanical ventilation in surfactant-treated preterm fetal lambs. METHODS: The head and chest of fetal sheep at 126±1 day GA were exteriorized, with tracheostomy and removal of fetal lung fluid prior to treatment with surfactant (300 mg in 15 ml saline. Fetal lambs were randomized to one of four 15 minute interventions: 1 PEEP 8 cmH2O; 2 20 sec SI at 40 cmH2O, then PEEP 8 cmH2O; 3 mechanical ventilation with 7 ml/kg tidal volume; or 4 20 sec SI then mechanical ventilation at 7 ml/kg. Fetal lambs remained on placental support for the intervention and for 30 min after the intervention. RESULTS: SI recruited a mean volume of 6.8±0.8 mL/kg. SI did not alter respiratory physiology during mechanical ventilation. Heat shock protein (HSP 70, HSP60, and total protein in lung fluid similarly increased in both ventilation groups. Modest pro-inflammatory cytokine and acute phase responses, with or without SI, were similar with ventilation. SI alone did not increase markers of injury. CONCLUSION: In surfactant treated fetal lambs, a 20 sec SI did not alter ventilation physiology or markers of lung injury from mechanical ventilation.

  5. Ventilation Effectiveness

    DEFF Research Database (Denmark)

    Mundt, M.; Mathisen, H. M.; Moser, M.;

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy...

  6. Liquid Ventilation

    Directory of Open Access Journals (Sweden)

    Qutaiba A. Tawfic

    2011-01-01

    Full Text Available Mammals have lungs to breathe air and they have no gills to breath liquids. When the surface tension at the air-liquid interface of the lung increases, as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen, as the inert carrier of oxygen and carbon dioxide offers a number of theoretical advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. The potential for multiple clinical applications for liquid-assisted ventilation will be clarified and optimized in future. Keywords: Liquid ventilation; perfluorochemicals; perfluorocarbon; respiratory distress; surfactant.

  7. Effectiveness of mask ventilation performed by hospital doctors in an Irish tertiary referral teaching hospital.

    LENUS (Irish Health Repository)

    Walsh, K

    2012-02-03

    The objective of this study was to assess the effectiveness of mask ventilation performed by 112 doctors with clinical responsibilities at a tertiary referral teaching hospital. Participant doctors were asked to perform mask ventilation for three minutes on a Resusci Anne mannequin using a facemask and a two litre self inflating bag. The tidal volumes generated were quantified using a Laerdal skillmeter computer as grades 0-5, corresponding to 0, 334, 434, 561, 673 and > 800 ml respectively. The effectiveness of mask ventilation (i.e. the proportion of ventilation attempts which achieved a volume delivery of > 434 mls) was greater for anaesthetists [78.0 (29.5)%] than for non anaesthetists [54.6 (40.0)%] (P = 0.012). Doctors who had attended one or more resuscitation courses where no more effective at mask ventilation than their colleagues who had not undertaken such courses. It is likely that first responders to in-hospital cardiac arrests are commonly unable to perform adequate mask ventilation.

  8. The Effects of Guided Imagery on Patients Being Weaned from Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    LeeAnna Spiva

    2015-01-01

    Full Text Available The study purpose was to assess the effects of guided imagery on sedation levels, sedative and analgesic volume consumption, and physiological responses of patients being weaned from mechanical ventilation. Forty-two patients were selected from two community acute care hospitals. One hospital served as the comparison group and provided routine care (no intervention while the other hospital provided the guided imagery intervention. The intervention included two sessions, each lasting 60 minutes, offered during morning weaning trials from mechanical ventilation. Measurements were recorded in groups at baseline and 30- and 60-minute intervals and included vital signs and Richmond Agitation-Sedation Scale (RASS score. Sedative and analgesic medication volume consumption were recorded 24 hours prior to and after the intervention. The guided imagery group had significantly improved RASS scores and reduced sedative and analgesic volume consumption. During the second session, oxygen saturation levels significantly improved compared to the comparison group. Guided imagery group had 4.88 less days requiring mechanical ventilation and 1.4 reduction in hospital length of stay compared to the comparison group. Guided imagery may be complementary and alternative medicine (CAM intervention to provide during mechanical ventilation weaning trials.

  9. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T

    1987-01-01

    studied CO2 production (VCO2) and oxygen consumption (VO2) in mechanically ventilated ICU patients, where CO2 stores were altered by: a) changing minute ventilation by 15%, b) reducing body temperature, and c) changing the level of sedation. Expired gases went through a mixing chamber and were analyzed...

  10. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state...

  11. Ventilation Model

    Energy Technology Data Exchange (ETDEWEB)

    V. Chipman

    2002-10-05

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to

  12. 10 Minutes of Bliss

    Science.gov (United States)

    Smith, Olynda

    2014-01-01

    For many of us, it is challenging to find the time to sleep enough each night or to sit down for a meal. So how can this author convince you that taking 10 minutes to do anything every day is actually worth it? The benefits of meditation--increased calm, clarity, compassion, and empathy, to name a few--have been known for centuries. Recently,…

  13. Differential Effects of Endotracheal Suctioning on Gas Exchanges in Patients with Acute Respiratory Failure under Pressure-Controlled and Volume-Controlled Ventilation

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Liu

    2015-01-01

    Full Text Available This study was conducted to evaluate the effects of open endotracheal suctioning on gas exchange and respiratory mechanics in ARF patients under the modes of PCV or VCV. Ninety-six ARF patients were treated with open endotracheal suctioning and their variations in respiratory mechanics and gas exchange after the suctions were compared. Under PCV mode, compared with the initial level of tidal volume (VT, ARF patients showed 30.0% and 27.8% decrease at 1 min and 10 min, respectively. Furthermore, the initial respiratory system compliance (Crs decreased by 29.6% and 28.5% at 1 min and 10 min, respectively. Under VCV mode, compared with the initial level, 38.6% and 37.5% increase in peak airway pressure (PAP were found at 1 min and 10 min, respectively. Under PCV mode, the initial PaO2 increased by 6.4% and 10.2 % at 3 min and 10 min, respectively, while 18.9% and 30.6% increase of the initial PaO2 were observed under VCV mode. Summarily, endotracheal suctioning may impair gas exchange and decrease lung compliance in ARF patients receiving mechanical ventilation under both PCV and VCV modes, but endotracheal suctioning effects on gas exchange were more severe and longer-lasting under PCV mode than VCV.

  14. Five minutes of heaven

    Directory of Open Access Journals (Sweden)

    Manuel Gárate

    2009-05-01

    Full Text Available Ganadora del principal premio del festival de cine de Sundance, “Five minutes of Heaven” constituye uno de aquellos filmes que demuestran que la calidad  y un presupuesto limitado pueden ir perfectamente de la mano, y alcanzar momentos de enorme calidad cinematográfica basados en un buen guión y una excelente dirección de actores. El realizador Olivier Hirschbiegel nos demuestra en esta película nuevamente su capacidad para entregarnos una obra de ficción sin dejar de lado su preocupación po...

  15. Five minutes of heaven

    OpenAIRE

    Manuel Gárate

    2009-01-01

    Ganadora del principal premio del festival de cine de Sundance, “Five minutes of Heaven” constituye uno de aquellos filmes que demuestran que la calidad  y un presupuesto limitado pueden ir perfectamente de la mano, y alcanzar momentos de enorme calidad cinematográfica basados en un buen guión y una excelente dirección de actores. El realizador Olivier Hirschbiegel nos demuestra en esta película nuevamente su capacidad para entregarnos una obra de ficción sin dejar de lado su preocupación po....

  16. High Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    AC Bryan

    1996-01-01

    Full Text Available High frequency oscillatory (HFO ventilation using low tidal volume and peak airway pressures is extremely efficient at eliminating carbon dioxide and raising pH in the newborn infant with acute respiratory failure. Improvement in oxygenation requires a strategy of sustained or repetitive inflations to 25 to 30 cm H2O in order to place the lung on the deflation limb of the pressure-volume curve. This strategy has also been shown to decrease the amount of secondary lung injury in animal models. Experience of the use of HFO ventilation as a rescue therapy as well as several published controlled trials have shown improved outcomes and a decrease in the use of extracorporeal membrane oxygenation when it has been used in newborns.

  17. Acute effects of deep breathing for a short duration (2-10 minutes) on pulmonary functions in healthy young volunteers.

    Science.gov (United States)

    Sivakumar, G; Prabhu, Krishnamoorthi; Baliga, Rekha; Pai, M Kirtana; Manjunatha, S

    2011-01-01

    Breathing is the most vital function for maintenance of life. Slow and deep breathing is an integral part of Pranayama and it reduces dead space ventilation and renews air throughout the lungs. The reported beneficial effects of deep breathing as a part of either long term or short term practice of Pranayama are well documented. However our knowledge about the effects of a few minutes' of deep breathing on human ventilatory parameters is poor. In the present study, we examined the relationship between exposure to short duration of deep breathing and performance on pulmonary function tests before and after the deep breathing. The study was conducted in a homogenous group of 12 volunteers containing 4 females and 8 males who were well trained in pulmonary function testing (PFT) before the start of the study. The volunteers performed deep breathing (DB) exercise for 2, 5 and 10 minutes at the rate of 6 breaths per minute under guidance, and the duration of DB exercise for that day was randomly selected for each group. PFT was done before and after the DB exercise. There was a significant (P vital capacity (VC) after 2 and 5 minutes' DB exercise and a consistent improvement in tidal volume (TV) and minute ventilation (MV) after the DB exercise in all the three groups, though it wasn't statistically significant. There was a significant (P vital capacity (FVC) after 2 minutes' of DB exercise and a consistent increase in all the three groups in forced inspiratory vital capacity (FIVC) and peak inspiratory flow rate (PIFR), though this increase was not statistically significant. This shows that deep breathing exercise, even for a few minutes' duration is beneficial for the lung functions.

  18. Assessing the influence of mechanical ventilation on blood gases and blood pressure in rattlesnakes

    DEFF Research Database (Denmark)

    Bertelsen, Mads F.; Buchanan, Rasmus; Jensen, Heidi M.

    2015-01-01

    OBJECTIVE: To characterize the impact of mechanical positive pressure ventilation on heart rate (HR), arterial blood pressure, blood gases, lactate, glucose, sodium, potassium and calcium concentrations in rattlesnakes during anesthesia and the subsequent recovery period. STUDY DESIGN: Prospective...... ventilation at a tidal volume of 30 mL kg(-1) at 1 breath every 90 seconds, 5 breaths minute(-1) , or 15 breaths minute(-1) . Arterial blood was collected from indwelling catheters at 30, 40, and 60 minutes and 2, 6, and 24 hours following induction of anesthesia and analyzed for pH, PaO2 , PaCO2...... , and selected variables. Mean arterial blood pressure (MAP) and HR were recorded at 30, 40, 60 minutes and 24 hours. RESULTS: Spontaneous ventilation and 1 breath every 90 seconds resulted in a mild hypercapnia (PaCO2 22.4 ± 4.3 mmHg [3.0 ± 0.6 kPa] and 24.5 ± 1.6 mmHg [3.3 ± 0.2 kPa], respectively), 5 breaths...

  19. APRV Mode in Ventilator Induced Lung Injury (VILI

    Directory of Open Access Journals (Sweden)

    Ata Mahmoodpoor

    2014-01-01

    Full Text Available Ventilator-Induced Lung Injury (VILI, being a significant iatrogenic complication in the ICU patients, is associated with high morbidity and mortality. Numerous approaches, protocols and ventilation modes have been introduced and examined to decrease the incidence of VILI in the ICU patients. Airway pressure release ventilation (APRV, firstly introduced by Stock and Downs in 1987, applies higher Continuous Positive Airway Pressure (CPAP levels in prolonged periods (P and T high in order to preserve satisfactory lung volume and consequently alveolar recruitment. This mode benefits a time-cycled release phase to a lower set of pressure for a short period of time (P and T low i.e. release time (1,2. While some advantages have been introduced for APRV such as efficiently recruited alveoli over time, more homogeneous ventilation, less volutrauma, probable stabilization of patent alveoli and reduction in atelectrauma, protective effects of APRV on lung damage only seem to be substantial if spontaneous breathing responds to more than 30% of total minute ventilation (3. APRV in ARDS patients should be administered cautiously; T low<0.6 seconds, for recruiting collapsed alveoli; however overstretching of alveoli especially during P high should not be neglected and appropriate sedation considered. The proposed advantages for APRV give the impression of being outstanding; however, APRV, as a non-physiologic inverse ratio mode of ventilation, might result in inflammation mainly due to impaired patient-ventilator interaction explaining the negative or minimally desirable effects of APRV on inflammation (4. Consequently, continuous infusion of neuromuscular blocking drugs during ARDS has been reported to reduce mortality (5. There are insufficient confirming data on the superiority of APRV above other ventilatory methods in regard to oxygenation, hemodynamics, regional blood flow, patient comfort and length of mechanical ventilation. Based on current findings

  20. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    NARCIS (Netherlands)

    Smeding, Lonneke; Plotz, Frans B.; Lamberts, Regis R.; van der Laarse, Willem J.; Kneyber, Martin C. J.; Groeneveld, A. B. Johan

    2012-01-01

    Background: Injurious mechanical ventilation (MV) may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investiga

  1. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    NARCIS (Netherlands)

    Smeding, Lonneke; Plotz, Frans B.; Lamberts, Regis R.; van der Laarse, Willem J.; Kneyber, Martin C. J.; Groeneveld, A. B. Johan

    2012-01-01

    Background: Injurious mechanical ventilation (MV) may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investiga

  2. Personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2004-01-01

    existing knowledge on performance of personalized ventilation (PV) and on human response to it. The airflow interaction in the vicinity of the human body is analyzed and its impact on thermal comfort and inhaled air quality is discussed together with control strategies and the application of PV in practice...

  3. Displacement Ventilation

    DEFF Research Database (Denmark)

    Bjørn, Erik; Mattsson, Magnus; Sandberg, Mats

    Full-scale experiments were made in a displacement ventilated room with two breathing thermal manikins to study the effect of movements and breathing on the vertical contaminant distribution, and on the personal exposure of occupants. Concentrations were measured with tracer gas equipment...

  4. Mixing Ventilation

    DEFF Research Database (Denmark)

    Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor;

    In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection of ...

  5. Lung-protective ventilation in neonatology.

    Science.gov (United States)

    van Kaam, Anton

    2011-01-01

    Ventilator-induced lung injury (VILI) is considered an important risk factor in the development of bronchopulmonary dysplasia (BPD) and is primarily caused by overdistension (volutrauma) and repetitive opening and collapse (atelectrauma) of terminal lung units. Lung-protective ventilation should therefore aim to reduce tidal volumes, and recruit and stabilize atelectatic lung units (open lung ventilation strategy). This review will summarize the available evidence on lung-protective ventilation in neonatology, discussing both high-frequency ventilation (HFV) and positive pressure ventilation (PPV). It shows that HFV does not appear to have a clear benefit over PPV, although most studies failed to apply a true open lung ventilation strategy during HFV. The evidence on the optimal tidal volume, positive end-expiratory pressure and the role for lung recruitment during lung-protective PPV is extremely limited. Volume-targeted ventilation seems to be a promising mode in terms of lung protection, but more studies are needed. Due to the lack of convincing evidence, lung-protective ventilation and modes seem to be implemented in daily clinical practice at a slow pace.

  6. Effects of manual hyperinflation in preterm newborns under mechanical ventilation

    Science.gov (United States)

    Viana, Camila Chaves; Nicolau, Carla Marques; Juliani, Regina Celia Turola Passos; de Carvalho, Werther Brunow; Krebs, Vera Lucia Jornada

    2016-01-01

    Objective To assess the effects of manual hyperinflation, performed with a manual resuscitator with and without the positive end-expiratory pressure valve, on the respiratory function of preterm newborns under mechanical ventilation. Methods Cross-sectional study of hemodynamically stable preterm newborns with gestational age of less than 32 weeks, under mechanical ventilation and dependent on it at 28 days of life. Manual hyperinflation was applied randomly, alternating the use or not of the positive end-expiratory pressure valve, followed by tracheal aspiration for ending the maneuver. For nominal data, the two-tailed Wilcoxon test was applied at the 5% significance level and 80% power. Results Twenty-eight preterm newborns, with an average birth weight of 1,005.71 ± 372.16g, an average gestational age of 28.90 ± 1.79 weeks, an average corrected age of 33.26 ± 1.78 weeks, and an average mechanical ventilation time of 29.5 (15 - 53) days, were studied. Increases in inspiratory and expiratory volumes occurred between time-points A5 (before the maneuver) and C1 (immediately after tracheal aspiration) in both the maneuver with the valve (p = 0.001 and p = 0.009) and without the valve (p = 0.026 and p = 0.001), respectively. There was also an increase in expiratory resistance between time-points A5 and C1 (p = 0.044). Conclusion Lung volumes increased when performing the maneuver with and without the valve, with a significant difference in the first minute after aspiration. There was a significant difference in expiratory resistance between the time-points A5 (before the maneuver) and C1 (immediately after tracheal aspiration) in the first minute after aspiration within each maneuver. PMID:27737427

  7. Effect of noninvasive, positive pressure ventilation on patients with severe, stable chronic obstructive pulmonary disease: a meta-analysis

    Institute of Scientific and Technical Information of China (English)

    SHI Jia-xin; XU Jin; SUN Wen-kui; SU Xin; ZHANG Yan; SHI Yi

    2013-01-01

    Background This meta-analysis evaluated the effect of noninvasive,positive pressure ventilation on severe,stable chronic obstructive pulmonary disease (COPD).Methods PUBMED,CNKI,Wanfang,EMBASE and the Cochrane trials databases were searched.Randomized controlled trials of patients with severe,stable COPD and receiving noninvasive positive pressure ventilation,compared with sham ventilation or no ventilation,were reviewed.The mortality,physiological and health related parameters were pooled to yield odds ratio (OR),weighted mean differences or standardized mean differences (SMD),with 95% confidence interval (C/).Results Eight parallel and three crossover randomized controlled trials met the inclusion criteria.Pooled analysis for parallel,randomized controlled trials showed noninvasive positive pressure ventilation:(1) Did not affect the 12-or 24-month mortality (OR 0.82,95% C/:0.48 to 1.41); (2) Improved the arterial carbon dioxide tension (SMD-0.88,95%C/:-1.43 to-0.34); (3) Did not improve forced expiratory volume in one second (SMD 0.20,95% C/:-0.06 to 0.46),maximal inspiratory pressure (SMD 0.01,95% C/:-0.28 to 0.29) or 6-minute walk distance (SMD 0.17,95% C/:-0.16 to 0.50); (4) Subgroup analysis showed noninvasive positive pressure ventilation improved the arterial carbon dioxide tension in hypercapnic patients.Pooled analysis for crossover randomized controlled trials did not show improvement in arterial blood gas or forced expiratory volume in one second with noninvasive positive pressure ventilation.Conclusions Noninvasive positive pressure ventilation improves the arterial carbon dioxide tension but does not improve the mortality,pulmonary function,or exercise tolerance and should be cautiously used in severe stable chronic obstructive pulmonary disease.

  8. Air compressor battery duration with mechanical ventilation in a field anesthesia machine.

    Science.gov (United States)

    Szpisjak, Dale F; Giberman, Anthony A

    2015-05-01

    Compressed air to power field anesthesia machine ventilators may be supplied by air compressor with battery backup. This study determined the battery duration when the compPAC ventilator's air compressor was powered by NiCd battery to ventilate the Vent Aid Training Test Lung modeling high (HC = 0.100 L/cm H2O) and low (LC = 0.020 L/cm H2O) pulmonary compliance. Target tidal volumes (VT) were 500, 750, and 1,000 mL. Respiratory rate = 10 bpm, inspiratory-to-expiratory time ratio = 1:2, and fresh gas flow = 1 L/min air. N = 5 in each group. Control limits were determined from the first 150 minutes of battery power for each run and lower control limit = mean VT - 3SD. Battery depletion occurred when VT was below the lower control limit. Battery duration ranged from 185.8 (±3.2) minutes in the LC-1000 group to 233.3 (±3.6) minutes in the HC-750 group. Battery duration of the LC-1000 group was less than all others (p = 0.027). The differences among the non-LC-1000 groups were not clinically significant. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  9. Naturlig ventilation med varmegenvinding

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2006-01-01

    Naturlig ventilation i kontorbyggerier har været et alternativ til me-kanisk ventilation i små 10 år. Naturlig ventilation har den klare fordel, at der ikke forbruges elenergi ved ventilering af bygningen, fordi ventilatorer ikke er påkrævet. Imidlertid lider naturlig ventila-tion under de ulemper...

  10. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo;

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  11. Adaptive Intelligent Ventilation Noise Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA needs for quiet crew volumes in a space habitat, Physical Optics Corporation (POC) proposes to develop a new Adaptive Intelligent Ventilation Noise...

  12. Instantaneous responses to high-frequency chest wall oscillation in patients with acute pneumonic respiratory failure receiving mechanical ventilation

    Science.gov (United States)

    Chuang, Ming-Lung; Chou, Yi-Ling; Lee, Chai-Yuan; Huang, Shih-Feng

    2017-01-01

    Abstract Background: Endotracheal intubation and prolonged immobilization of patients receiving mechanical ventilation may reduce expectoration function. High-frequency chest wall oscillation (HFCWO) may ameliorate airway secretion movement; however, the instantaneous changes in patients’ cardiopulmonary responses are unknown. Moreover, HFCWO may influence ventilator settings by the vigorous oscillation. The aim of this study was to investigate these issues. Methods: Seventy-three patients (52 men) aged 71.5 ± 13.4 years who were intubated with mechanical ventilation for pneumonic respiratory failure were recruited and randomly classified into 2 groups (HFCWO group, n = 36; and control group who received conventional chest physical therapy (CCPT, n = 37). HFCWO was applied with a fixed protocol, whereas CCPT was conducted using standard protocols. Both groups received sputum suction after the procedure. Changes in ventilator settings and the subjects’ responses were measured at preset intervals and compared within groups and between groups. Results: Oscillation did not affect the ventilator settings (all P > 0.05). The mean airway pressure, breathing frequency, and rapid shallow breathing index increased, and the tidal volume and SpO2 decreased (all P < 0.05). After sputum suction, the peak airway pressure (Ppeak) and minute ventilation decreased (all P < 0.05). The HFCWO group had a lower tidal volume and SpO2 at the end of oscillation, and lower Ppeak and tidal volume after sputum suction than the CCPT group. Conclusions: HFCWO affects breathing pattern and SpO2 but not ventilator settings, whereas CCPT maintains a steadier condition. After sputum suction, HFCWO slightly improved Ppeak compared to CCPT, suggesting that the study extends the indications of HFCWO for these patients in intensive care unit. (ClinicalTrials.gov number NCT02758106, retrospectively registered.) PMID:28248854

  13. Reduction in adverse effects of mechanical ventilation in rabbits with acute respiratory failure by treatment with extracorporeal CO2 removal and a large fluid volume of diluted surfactant

    NARCIS (Netherlands)

    Plotz, FB; Mook, PH; Jansen, NJG; Oetomo, SB; Wildevuur, CRH

    1997-01-01

    The long-term outcome of infants with severe respiratory distress syndrome can be improved by optimizing surfactant therapy and minimizing the risk for pulmonary barovolutrauma and oxygen toxicity. The authors hypothesized that this may be achieved with low frequency ventilation and extracorporeal C

  14. High intensity positive pressure ventilation and long term pulmonary function responses in severe stable COPD. A delicate and difficult balance.

    Science.gov (United States)

    Esquinas, Antonio M; Petroianni, Angelo

    2014-06-01

    Method to improve minute ventilation (MV) during spontaneous breathing (SB) in stable severe chronic obstructive pulmonary disease (COPD) have a great clinical relevant in long term outcome. In this scenario, recommendations of early use of high-Intensity non-invasive Positive pressure Ventilation (HI-NPPV) or intelligent Volume Assured Pressure (iVAP) Support in Hypercapnic COPD have been proposed by safe therapeutics options. We analyze in this letter, Ekkernkamp et al. study that described the effect of HI-NPPV compared with SB on MV in patients receiving long-term treatment. We consider that interpretation of relationships between ABG, functional parameters, and respiratory mechanics reported need clarifications. Further prospective large clinical trials identifying the best mode of ventilation according to the characteristics in severe stable COPD are necessary to balance an effective approach and response on clinical symptoms and long-term effects.

  15. Liquid Ventilation

    Directory of Open Access Journals (Sweden)

    Peter N Cox

    1996-01-01

    Full Text Available There has been a recent explosion of interest in the use of liquid ventilation. Over time humans have lost the physiological attributes necessary for respiration in water. However, perfluorocarbons have high solubilities for oxygen and carbon dioxide, as well as a low surface tension. These characteristics allow them to be used as a medium to assist gas exchange and recruit atelectatic-dependent lung zones in respiratory distress syndrome. Current trials may prove perfluorocarbon to be a useful adjunct in lung protective strategies in respiratory distress syndrome.

  16. Influence of changes in the pulmonary artery pressure on ventilation requirements in patients undergoing mitral valve replacement.

    Directory of Open Access Journals (Sweden)

    Muralidhar K

    2004-01-01

    Full Text Available The study was designed to evaluate the influence of changes in pulmonary artery pressure on the ventilation requirements in patients undergoing mitral valve surgery. Thirty patients with mitral valve disease with significant pulmonary arterial hypertension undergoing mitral valve replacement under cardiopulmonary bypass were included in this prospective study. All patients had a pulmonary artery catheter placed after the anaesthetic induction. The minute ventilation was adjusted to achieve an arterial carbon dioxide tension (PaCO2 of 35-40 mm Hg. After a stabilisation period of 15 minutes, the pulmonary artery pressure and the minute volume needed for maintaining a PaCO2 of 35-40 mm Hg in the precardiopulmonary bypass, post-cardiopulmonary bypass and six hours postoperatively were measured after ensuring stable haemodynamics and normothermia. There was a significant decrease in the mean pulmonary artery pressure from pre-cardiopulmonary bypass value of 41.3+/-15 mm Hg to 29.3+/-8 mm Hg in the postcardiopulmonary bypass period and subsequently to 25.5+/-7 mm Hg in the intensive care unit. There was a corresponding increase in the minute volume requirements from a pre-cardiopulmonary bypass value of 6.8+/-1 L/min to 8.0+/-1 L/min in the post cardiopulmonary bypass period and then to 9.4+/-1.2 L/min in the postoperative period. We conclude that there is a significant decrease in the pulmonary blood volume and a subsequent decrease in the pulmonary artery pressure after a successful mitral valve replacement in patients with pulmonary arterial hypertension. This is associated with a significant increase in the requirement of minute ventilation to maintain normocarbia.

  17. Effect of high volume mechanical ventilation on radiation-induced lung toxicity in rats%机械通气对大鼠照射后肺组织及细胞凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    金胜; 陈军; 叶繁; 冯丹

    2015-01-01

    Objective To evaluate the effects of mechanical ventilation on radiation induced lung injuries of apoptosis,acute inflammation,and oxidative stress by establishing a rat mechanical ventilation model and animal model.Methods Totally 40 male Sprague-Dawley(SD) rats were randomly divided into 4 groups with 10 rats in each group:control,radiation alone,high tidal volume ventilation,and high tidal volume ventilation following by radiation.After treatment,the pathological changes in lung tissue were observed,NF-κB activity was detected by electrophoretic mobility shift assay (EMSA),the expression of NF-κB subunit P65 protein level in lung cell nucleus was detected by Western blot,and the apoptosis of lung cells was detected by terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) method.The wet to dry weight ratio (W/D) of lung,myeloperoxidase (MPO),malondialdehyde (MDA) and superoxide dismutase (SOD) were detected.In addition,the total protein and white blood cell number in lung lavage fluid were also measured.Results Compared to the control,the acute lung injury (ALI) score,W/D ratio,MPO activity,total protein level,white blood cell number,apoptosis index (AI),lung tissue MDA,NF-κB activity and P65 protein expression were increased significantly (q =0.000 32-0.004 81,P <0.05),while SOD values was decreased significantly (q =0.000 18-0.002 53,P <0.01),in other three groups.Compared with radiation and high tidal volume ventilation group,the above indexes were significantly higher (q =0.004 3-0.022 6,P < 0.05) but the SOD value was significantly lower (q =0.002 9-0.008 3,P < 0.05) than those in the high tidal volume ventilation plus radiation group.Conclusions High tidal volume ventilation delivered to the radiation group produced more transparent ventilator-induced lung injury (VILI) than the high tidal volume ventilation alone induced VILI including permeable pulmonary edema,acute inflammation,oxidative stress and apoptosis in

  18. Avaliação do pico de pressão, do volume corrente e da freqüência respiratória durante ventilação de carneiros prematuros utilizando balão auto-inflável Evaluation of peak inspiratory pressure, tidal volume and respiratory rate during ventilation of premature lambs using a self-inflating bag

    Directory of Open Access Journals (Sweden)

    Jefferson G. Resende

    2006-08-01

    neonatal intensive care unit and with experience in the resuscitation of newborn infants, ventilated five intubated premature lambs using a self-inflating bag. Pressure and flow monitor signals were passed through a transducer and digitized for recording and analysis. Tidal volume and pressure curves were obtained from the integral of flow rate, at peak, during the last 50 seconds of every fifth minute, and analyzed. RESULTS: Median pressure was 39.8 (IQ25-75% 30.2-47.2 cmH2O; being below 20 in 1.1% of cases and above 40 in 49.1%. Seven out of 10 physicians produced more than six pressure peaks of over 40 cmH2O. Median tidal volume/kg was 17.8 (IQ25-75% 14.1-22.4 mL, being below 5 mL in 0.1% of cases and greater than or equal to 20 mL in 37.7%. All of the physicians propelled five or more ventilation cycles with tidal volume/kg of 20 mL or more. Respiratory rate was between 30 and 60 cycles/minute in 65.9% of cases, being below 30 in 6.8% of cases and over 60 in 27.3% of cases. CONCLUSIONS: There was major variation in peak inspiratory pressure and tidal volume/kg values, which were in many cases elevated, attaining levels that habitually cause biotrauma, while respiratory rates were adequate in the majority of cases.

  19. Severe pediatric acute respiratory distress syndrome due to scrub typhus: Successful ventilation with airway pressure release ventilation mode after becoming refractory to protective ventilation

    Directory of Open Access Journals (Sweden)

    Sudha Chandelia

    2017-01-01

    Full Text Available Scrub typhus can affect lungs from mild illness like pneumonitis to a severe illness like acute respiratory distress syndrome (ARDS. Such patients may be very challenging to treat when their hypoxemia becomes severe and refractory to treatment. Main treatment is supportive in terms of mechanical ventilation. In adult ARDS, low tidal volume (TV ventilation has been recommended, but there is no consensus on most effective ventilation mode in children. We present a case of a 12-year-old girl who developed severe ARDS (PO 2 /FiO 2 ratio - 58, refractory to low TV ventilation. There was a rapid improvement in oxygenation on the application of airway pressure release ventilation (APRV mode within ΍ h. She was successfully ventilated and weaned off the ventilator over 5 days. This case highlights the utility of APRV mode of ventilation as a rescue therapy for severe refractory ARDS in children.

  20. Actual performance of mechanical ventilators in ICU: a multicentric quality control study

    Directory of Open Access Journals (Sweden)

    Govoni L

    2012-12-01

    Full Text Available Leonardo Govoni,1 Raffaele L Dellaca,1 Oscar Peñuelas,2,3 Giacomo Bellani,4,5 Antonio Artigas,3,6 Miquel Ferrer,3,7 Daniel Navajas,3,8,9 Antonio Pedotti,1 Ramon Farré3,81TBM-Lab, Dipartimento di Bioingegneria, Politecnico di Milano University, Milano, Italy; 2Hospital Universitario de Getafe – CIBERES, Madrid, Spain; 3CIBER de Enfermedades Respiratorias, Bunyola, Spain; 4Department of Experimental Medicine, University of Milan, Bicocca, Italy; 5Department of Perioperative Medicine and Intensive Care, San Gerardo Hospital, Monza (MI, Italy; 6Critical Care Center, Sabadell Hospital, Corporació Sanitaria Universitaria Parc Tauli, Universitat Autonoma de Barcelona, CIBERES, Spain; 7Department of Pneumology, Hospital Clinic, IDIBAPS, Barcelona, Spain; 8Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universidad de Barcelona-IDIBAPS, Barcelona, Spain; 9Institut de Bioenginyeria de Catalunya, Barcelona, SpainAbstract: Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH2O/L/s – elastance (100 mL/cmH2O test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66. Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP = 8 cmH2O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average ± standard deviation and range (min–max of the ventilatory parameters were the following: inspired

  1. The impact of abdominal massage administered to intubated and enterally fed patients on the development of ventilator-associated pneumonia: a randomized controlled study.

    Science.gov (United States)

    Kahraman, Burcu Bayrak; Ozdemir, Leyla

    2015-02-01

    Enteral nutrition is one of the major risk factors for ventilator-associated pneumonia. Abdominal massage is assumed to prevent the development of ventilator-associated pneumonia by reducing residual gastric volume. To identify the effect of abdominal massage administered to critically ill patients with mechanical ventilation and continuous enteral feeding on the development of ventilator-associated pneumonia. A randomized controlled design was used in this study. This study was performed in a critical care unit of a university hospital in Turkey. The sample of the study consisted of a total of 32 patients, selected randomly to receive abdominal massage (n=16) and a control group (n=16). The stratified randomization was used in this study. Patients were stratified according to age and gender. A fifteen-minute abdominal massage was administered to the patients in the intervention group twice daily. No intervention was administered to the patients in the control group. At the end of monitoring days a reduction, compared to the control patients, was identified. The amount of gastric residual volume and abdominal circumference measurement of the patients in the intervention group had decreased. This reduction was found to be significant in the statistical analysis (p0.05). This study revealed that abdominal massage administered to intubated and enterally fed patients reduced gastric residual volume and abdominal distension. In addition, a decrease in the ratio of ventilator-associated pneumonia was determined. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. VENTILATION NEEDS DURING CONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    C.R. Gorrell

    1998-07-23

    The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options.

  3. Effect of four resuscitation methods on lung ventilation of pigs with respiratory arrest

    Directory of Open Access Journals (Sweden)

    Ya-hua LIU

    2012-03-01

    Full Text Available Objective To observe the effects of four cardiopulmonary resuscitation (CPR methods on lung ventilation of pigs with respiratory arrest. The four CPR methods included chest compression CPR (C-CPR, compression under the diaphragm CPR (D-CPR, abdominal compression CPR (A-CPR, and abdominal wall lifting and compression CPR (L-CPR. Methods  A total of 28 healthy domestic pigs were randomly divided into four groups. The pig respiratory arrest model was reproduced by intravenous injection of suxamethonium. Instantly after respiratory arrest, one of the 4 CPR methods was performed immediately on the groups of pigs respectively. After 2min of CPR, compression was stopped. The experimental pigs were given assisted respiration using a ventilator until autonomous respiration recovered. The tidal volume (VT in basic status and that during resuscitation by the four respective resuscitation methods was determined, and minute ventilation (MV was calculated. Furthermore, heart rate (HR, mean arterial blood pressure, and recovery time of autonomous respiration were compared between all the groups. Results In basic status, there was no statistical difference (P > 0.05 in VT and MV between the four groups. Approximately 2min after resuscitation, the VT and MV of D-CPR were higher than that of C-CPR; that of A-CPR was higher than that of D-CPR; and that of L-CPR was higher than that of A-CPR. The differences were statistically significant (P 0.05. HR in C-CPR and D-CPR were notably lower than the basic value (P < 0.01. Two minutes after resuscitation, mechanical ventilation was given, and HR in all the groups was close to the basic value 5 min after resuscitation. In the respiratory arrest pig model, L-CPR could provide more effective VT and MV than the other methods. Conclusion For the porcine respiratory arrest model, L-CPR can provide more effective lung ventilation than the other methods.

  4. A computerized aid in ventilating neonates

    DEFF Research Database (Denmark)

    Arrøe, M

    1991-01-01

    and contains a continuous evaluation of the last six values of pCO2 and pO2 resulting in statements and warnings in potentially harmful situations. The program is consistent with the written instructions of the department. The ventilator treatment of 30 premature babies is evaluated retrospectively using......A computer program for ventilating neonates using a volume controlled ventilator is presented. The program proposes directions for changes of ventilator settings decided from the actual arterial blood gas samples and ventilator settings. The program deals with up to six babies at the same time...... the program, showing a total agreement of 37.5%, lowest among the babies who died in respiratory insufficiency. The advantage of the use of the program is discussed....

  5. Monitoring during Mechnical Ventilation

    Directory of Open Access Journals (Sweden)

    Dean Hess

    1996-01-01

    Full Text Available Monitoring is a continuous, or nearly continuous, evaluation of the physiological function of a patient in real time to guide management decisions, including when to make therapeutic interventions and assessment of those interventions. Pulse oximeters pass two wavelengths of light through a pulsating vascular bed and determine oxygen saturation. The accuracy of pulse oximetry is about ±4%. Capnography measures carbon dioxide at the airway and displays a waveform called the capnogram. End-tidal PCO2 represents alveolar PCO2 and is determined by the ventilation-perfusion quotient. Use of end-tidal PCO2 as an indication of arterial PCO2 is often deceiving and incorrect in critically ill patients. Because there is normally very little carbon dioxide in the stomach, a useful application of capnography is the detection of esophageal intubation. Intra-arterial blood gas systems are available, but the clinical impact and cost effectiveness of these is unclear. Mixed venous oxygenation (PvO2 or SvO2 is a global indicator of tissue oxygenation and is affected by arterial oxygen content, oxygen consumption and cardiac output. Indirect calorimetry is the calculation of energy expenditure and respiratory quotient by the measurement of oxygen consumption and carbon dioxide production. A variety of mechanics can be determined in mechanically ventilated patients including resistance, compliance, auto-peak end-expiratory pressure (PEEP and work of breathing. The static pressure-volume curve can be used to identify lower and upper infection points, which can be used to determine the appropriate PEEP setting and to avoid alveolar overdistension. Although some forms of monitoring have become a standard of care during mechanical ventilation (eg, pulse oximetry, there is little evidence that use of any monitor affects patient outcome.

  6. Simultaneous in vivo synchrotron radiation computed tomography of regional ventilation and blood volume in rabbit lung using combined K-edge and temporal subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Suhonen, H [Department of Physical Sciences, University of Helsinki (Finland); Porra, L [Department of Physical Sciences, University of Helsinki (Finland); Bayat, S [Universite de Picardie Jules Verne, Faculte de Medecine, PERITOX (EA-INI RIS) and Cardiologie et Pneumo-Allerglogie Pediatriques, CHU Amiens (France); Sovijaervi, A R A [Department of Clinical Physiology and Nuclear Medicine, Helsinki University Central Hospital, Helsinki (Finland); Suortti, P [Department of Physical Sciences, University of Helsinki (Finland)

    2008-02-07

    In K-edge subtraction (KES) imaging with synchrotron radiation computed tomography (SRCT), two images are taken simultaneously using energies above and below the K-absorption edge of a contrast agent. A logarithmic difference image reveals the contrast agent concentration with good accuracy. Similarly, in temporal subtraction imaging (TSI) the reference image is taken before the introduction of the contrast agent. Quantitative comparisons of in vivo images of rabbit lung indicated that similar results for concentrations of iodine in blood vessels and xenon in airways are obtained by KES and TSI, but the level of noise and artifacts was higher in the latter. A linear fit showed that in the lung parenchyma {rho}{sub TSI} = (0.97 {+-} 0.03){rho}{sub KES} + (0.00 {+-} 0.05) for xenon and {rho}{sub TSI} = (1.21 {+-} 0.15){rho}{sub KES} + (0.0 {+-} 0.1) for iodine. For xenon the calculation of time constant of ventilation gave compatible values for both of the methods. The two methods are combined for the simultaneous determination of the xenon concentration (by KES) and the iodine concentration (by TSI) in lung imaging, which will allow simultaneous in vivo determination of ventilation and perfusion.

  7. Effects of manual chest compression and descompression maneuver on lung volumes, capnography and pulse oximetry in patients receiving mechanical ventilation Efeitos da manobra de compressão e descompressão torácica nos volumes pulmonares, capnografia e oximetria de pulso em pacientes submetidos à ventilação mecânica

    Directory of Open Access Journals (Sweden)

    Fabiana Della Via

    2012-10-01

    Full Text Available OBJECTIVES: The aims of this study were to evaluate whether there are changes in lung volumes, capnography, pulse oximetry and hemodynamic parameters associated with manual chest compression-decompression maneuver (MCCD in patients undergoing mechanical ventilation (MV. Method: A prospective study of 65 patients undergoing to MV after 24 hours. All patients received bronchial hygiene maneuvers and after 30 minutes they were submitted to ten repetitions of the MCCD during 10 consecutive respiratory cycles in the right hemithorax and than in the left hemithorax. The data were collected before the application of the maneuver and after 1, 5, 10, 15, 20, 25, 30, 35 and 40 minutes following application of the maneuver. RESULTS: There were statistical significant (pOBJETIVOS: Avaliar a presença de alterações nos volumes pulmonares, oximetria de pulso, capnografia e alterações hemodinâmicas associadas à intervenção da manobra de compressão e descompressão torácica (MCDT nos pacientes submetidos à ventilação mecânica (VM. Método: Tratou-se de um estudo prospectivo em que foram incluídos 65 pacientes em VM há mais de 24 horas. O protocolo consistiu na aplicação de manobras de higiene brônquica e, após 30 minutos, os pacientes eram submetidos a dez repetições da MCDT em dez respirações consecutivas no hemitórax direito e, posteriormente, no hemitórax esquerdo, coletando os dados antes e após a aplicação da manobra nos tempos 1, 5, 10, 15, 20, 25, 30, 35 e 40 minutos. RESULTADOS: Constatou-se aumento significante (p<0,001 do volume corrente inspiratório (pré: 458,2±132,1 ml; pós 1 minuto: 557,3±139,1; pós 40 minutos: 574,4±151, volume minuto corrente (pré: 7,0±2,7 L/min; pós 1 minuto: 8,7±3,3; pós 40 minutos: 8,8±3,8 e oximetria de pulso (pré: 97,4±2,2%; pós 1 minuto: 97,9±1,8; pós 40 minutos: 98,2±1,6; p<0,05. Ocorreu redução no CO2 expirado (pré: 35,1±9,0 mmHg; pós 1 minuto: 31,5±8,2; pós 40

  8. Hypercapnic acidosis attenuates the pulmonary innate immune response in ventilated healthy mice.

    NARCIS (Netherlands)

    Halbertsma, F.J.; Vaneker, M.; Pickkers, P.; Snijdelaar, D.G.; Egmond, J. van; Scheffer, G.J.; Hoeven, J.G. van der

    2008-01-01

    BACKGROUND: Mechanical ventilation with small tidal volumes reduces the development of ventilator-induced lung injury and mortality, but may increase PaCO2. It is not clear whether the beneficial effect of a lung-protective strategy results from reduced ventilation pressures/tidal volumes or is medi

  9. Reflections on Pediatric High-Frequency Oscillatory Ventilation From a Physiologic Perspective

    NARCIS (Netherlands)

    Kneyber, Martin C. J.; van Heerde, Marc; Markhorst, Dick G.

    2012-01-01

    Mechanical ventilation using low tidal volumes has become universally accepted to prevent ventilator-induced lung injury. High-frequency oscillatory ventilation (HFOV) allows pulmonary gas exchange using very small tidal volume (1-2 mL/kg) with concomitant decreased risk of atelectrauma. However, it

  10. Energy and IAQ Implications of Residential Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  11. Leakage Characteristics of Dual-Cannula Fenestrated Tracheostomy Tubes during Positive Pressure Ventilation: A Bench Study

    Directory of Open Access Journals (Sweden)

    Thomas Berlet

    2016-01-01

    Full Text Available This study compared the leakage characteristics of different types of dual-cannula fenestrated tracheostomy tubes during positive pressure ventilation. Fenestrated Portex® Blue Line Ultra®, TRACOE® twist, or Rüsch® Traceofix® tracheostomy tubes equipped with nonfenestrated inner cannulas were tested in a tracheostomy-lung simulator. Transfenestration pressures and transfenestration leakage rates were measured during positive pressure ventilation. The impact of different ventilation modes, airway pressures, temperatures, and simulated static lung compliance settings on leakage characteristics was assessed. We observed substantial differences in transfenestration pressures and transfenestration leakage rates. The leakage rates of the best performing tubes were <3.5% of the delivered minute volume. At body temperature, the leakage rates of these tracheostomy tubes were <1%. The tracheal tube design was the main factor that determined the leakage characteristics. Careful tracheostomy tube selection permits the use of fenestrated tracheostomy tubes in patients receiving positive pressure ventilation immediately after stoma formation and minimises the risk of complications caused by transfenestration gas leakage, for example, subcutaneous emphysema.

  12. Leakage Characteristics of Dual-Cannula Fenestrated Tracheostomy Tubes during Positive Pressure Ventilation: A Bench Study.

    Science.gov (United States)

    Berlet, Thomas; Marchon, Mathias

    2016-01-01

    This study compared the leakage characteristics of different types of dual-cannula fenestrated tracheostomy tubes during positive pressure ventilation. Fenestrated Portex® Blue Line Ultra®, TRACOE® twist, or Rüsch® Traceofix® tracheostomy tubes equipped with nonfenestrated inner cannulas were tested in a tracheostomy-lung simulator. Transfenestration pressures and transfenestration leakage rates were measured during positive pressure ventilation. The impact of different ventilation modes, airway pressures, temperatures, and simulated static lung compliance settings on leakage characteristics was assessed. We observed substantial differences in transfenestration pressures and transfenestration leakage rates. The leakage rates of the best performing tubes were <3.5% of the delivered minute volume. At body temperature, the leakage rates of these tracheostomy tubes were <1%. The tracheal tube design was the main factor that determined the leakage characteristics. Careful tracheostomy tube selection permits the use of fenestrated tracheostomy tubes in patients receiving positive pressure ventilation immediately after stoma formation and minimises the risk of complications caused by transfenestration gas leakage, for example, subcutaneous emphysema.

  13. Development of energy-efficient comfortable ventilation systems with air quality guided volume flow control and continuous monitoring of the window opening status. Part 1. Use of the LuQaS triple sensor for air quality guided volume flow control of mechanical ventilation systems in domestic buildings. Research project; Entwicklung energieeffizienter Komfortlueftungsanlagen mit luftqualitaetsgefuehrter Volumenstromregelung und kontinuierlicher Erfassung des Fensteroeffnungszustandes. Teilbericht 1. Einsatz des LuQaS-Triple-Sensors zur luftqualitaetsgefuehrten Volumenstromregelung von mechanischen Lueftungsanlagen in Wohngebaeuden. Forschungsprojekt

    Energy Technology Data Exchange (ETDEWEB)

    Grossklos, Marc; Ebel, Witta; Knissel, Jens

    2011-05-15

    The report presents the preparatory work on the research project of the above title. The first chapter presents a status report on air quality monitoring inside rooms and evaluates the projects so far in which the LuQaS air quality sensor was used. The second chapter is a documentation of preliminary measurements using the LuQaS sensor in two passive residential buildings and several individual measurements for sensor calibration. It was found that in apartments with mechanical ventilation, the sensor reflects the user activities; further, the measured values indicate signal changes also in the off-air of the building, so that control via central sensors in the ventilation and off-air systems appears feasible. The third chapter discusses control strategies for air quality control. Apart from a discussion of control unit types, operating regimes, methods to determine rated values, and additional control functions, the effects of threshold value control with different threshold limit values and volume flow changes on the air quality of a model building was simulated. The results prove the expectation that the air quality inside a building will be influenced positively by air quality control. Theoretical investigations of the DrD method will be presented in another part-report of the project.

  14. The Application of the Targeted Tidal Volume Ventilation in Meconium As-piration Syndrome%目标容量控制通气在新生儿胎粪吸入综合征中的应用

    Institute of Scientific and Technical Information of China (English)

    刘雪琴; 张卫星; 刘玉霞; 赵宝君

    2015-01-01

    Objective The treatment effects and complications between the targeted tidal volume ventilation (TTV) and auxiliary/control ventilation (A/C) in the neonatal meconium aspiration syndrome (MAS) are compared. Methods Sixty neonates with MAS between June 2012 and February 2015 in Xinxiang Central Hospital, were randomly divided into TTV group and the control group, 30 cases in each. Changes and complications on partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2), and partial pressure of arterial oxygen/partial pressure of alveolar oxygen (PaO2/PAO2) were compared after treatment between the two groups, in which TTV group being treated for MAS by TTV + synchronized intermittent mandatory ventilation (SIMV) + pressure support ventilation (PSV), while the control group by A/C mode. Results After treatment in two group neonates data on PaO2/FiO2 and PaO2/PAO2 were significantly higher (P0.05). Conclusion Ventilation of TTV+SIMV+PSV can quickly improve oxygenation in neonates with MAS, the curative effect is better than that of A/C mode, and the ventilator-associated pneumonia and lung leakage rate are to be reduced.%目的:比较目标容量控制通气(TTV)和辅助/控制通气(A/C)在新生儿胎粪吸入综合征(MAS)治疗中的效果和并发症的发生。方法随机选择2012年6月—2015年2月新乡市中心医院收治的MAS患儿60名,随机分成TTV组和对照组,各30例。 TTV组采用TTV+同步间歇指令通气(SIMV)+压力支持通气(PSV)治疗MAS,对照组采用A/C治疗MAS,比较两组患儿治疗后动脉氧分压/吸入氧浓度(PaO2/FiO2)、动脉氧分压/肺泡氧分压(PaO2/PAO2)的变化和并发症发生情况。结果两组患儿治疗后PaO2/FiO2、PaO2/PAO2明显升高差异有统计学意义(P<0.05),与对照组相比,TTV组患儿治疗后PaO2/FiO2、PaO2/PAO2明显升高差异有统计学意义(P<0.01)。TTV组患儿与对照组相比,呼吸机相关性肺

  15. Indicators of fatigue and of prolonged weaning from mechanical ventilation in surgical patients.

    Science.gov (United States)

    O'Keefe, G E; Hawkins, K; Boynton, J; Burns, D

    2001-01-01

    Indicators of weaning success have been tested primarily in patients who have been ventilated for short periods of time, and they may not be as accurate in cases where support has been required for longer than a few days. In patients requiring longer periods of support it is difficult to estimate the likelihood of successful liberation. Therefore we evaluated established weaning indices for their accuracy in surgical patients who required > or = 72 hours of mechanical ventilation. Surgical patients who required mechanical ventilation for > or = 72 hours were prospectively followed (over 6 months). We obtained standard indices of ventilatory function daily once patients were ready to wean. These indices included the respiratory rate/tidal volume ratio (RSBI), the maximal inspiratory pressure, and the minute ventilation. The duration of weaning and explicitly defined episodes of fatigue were the outcomes of interest. Statistical analyses evaluated the multiple factors that might influence the duration of weaning. Ninety-five patients (66% trauma; 34% surgery) survived to begin weaning, and 93% were liberated. The median duration of mechanical ventilation prior to weaning was 4 days (range 3-16 days), and the median duration of weaning was 3 days (range 0-56 days). Fatigue occurred in 36 patients and was not reliably predicted by any of the weaning measurements. However, a RSBI of > 105 on the first day of weaning was associated with prolonged weaning. By multivariate analysis, an RSBI of > 105 on the first day of weaning predicted prolonged weaning (hazard ratio 1.9; p = 0.03). After 72 hours of mechanical ventilation, clinical fatigue and successful liberation are not reliably predicted by standard indices of respiratory muscle strength and reserve. However, an RSBI of >105 observed once the patient is ready to wean is associated with prolonged weaning.

  16. Effect of endobronchial valve therapy on pulmonary perfusion and ventilation distribution.

    Directory of Open Access Journals (Sweden)

    Carmen Pizarro

    Full Text Available Endoscopic lung volume reduction (ELVR is an emerging therapy for emphysematous COPD. However, any resulting changes in lung perfusion and ventilation remain undetermined. Here, we report ELVR-mediated adaptations in lung perfusion and ventilation, as investigated by means of pulmonary scintigraphy.In this observational study, we enrolled 26 patients (64.9 ± 9.4 yrs, 57.7% male with COPD heterogeneous emphysema undergoing ELVR with endobronchial valves (Zephyr, Pulmonx, Inc.. Mean baseline FEV1 and RV were 32.9% and 253.8% predicted, respectively. Lung scintigraphy was conducted prior to ELVR and eight weeks thereafter. Analyses of perfusion and ventilation shifts were performed and complemented by correlation analyses between paired zones.After ELVR, target zone perfusion showed a mean relative reduction of 43.32% (p<0.001, which was associated with a significant decrease in target zone ventilation (p<0.001. Perfusion of the contralateral untreated zone and of the contralateral total lung exhibited significant increases post-ELVR (p = 0.002 and p = 0.005, respectively; both correlated significantly with the corresponding target zone perfusion adaptations. Likewise, changes in target zone ventilation correlated significantly with ventilatory changes in the contralateral untreated zone and the total contralateral lung (Pearson's r: -0.42, p = 0.04 and Pearson's r: -0.42, p = 0.03, respectively. These effects were observed in case of clinical responsiveness to ELVR, as assessed by changes in the six-minute walk test distance.ELVR induces a relevant decrease in perfusion and ventilation of the treated zone with compensatory perfusional and ventilatory redistribution to the contralateral lung, primarily to the non-concordant, contralateral zone.

  17. Last-Minute Travel Application

    OpenAIRE

    Hubner, Andre; Lenz, Mario; Borch, Roman; Posthoff, Michael

    2000-01-01

    In this article, we present a last-minute travel application as part of a complete virtual travel agency. Each year, a significant amount of tour packages are sold as last minute tours in Germany. It is impossible for a travel agent to keep track of all the offered tour packages. Electronic-commerce applications might present the best possible tour package for a specific customer request. Traditional database-driven applications, as used by most of the tour operators, are not sufficient enoug...

  18. New evidence in one-lung ventilation.

    Science.gov (United States)

    Meleiro, H; Correia, I; Charco Mora, P

    2017-09-26

    Mechanical ventilation in thoracic surgery has undergone significant changes in recent years due to the implementation of the protective ventilation. This review will analyze recent ventilatory strategies in one-lung ventilation. A MEDLINE research was performed using Mesh term "One-Lung Ventilation" including randomized clinical trials, metanalysis, reviews and systematic reviews published in the last 6 years. Search was performed on 21st March 2017. A total of 75 articles were initially found. After title and abstract review 14 articles were included. Protective ventilation is not simply synonymous of low tidal volume ventilation, but it also includes routine use of PEEP and alveolar recruitment maneuver. New techniques are still in discussion namely PEEP adjustment, ratio inspiration:expiration, ideal type of anesthesia during one-lung ventilation and hypercapnic ventilation. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Lung ventilation during treadmill locomotion in a semi-aquatic turtle, Trachemys scripta.

    Science.gov (United States)

    Landberg, Tobias; Mailhot, Jeffrey D; Brainerd, Elizabeth L

    2009-10-01

    It is reasonable to presume that locomotion should have a mechanical effect on breathing in turtles. The turtle shell is rigid, and when the limbs protract and retract, air in the lungs should be displaced. This expectation was met in a previous study of the green sea turtle, Chelonia mydas; breathing completely ceased during terrestrial locomotion (Jackson and Prange, 1979. J Comp Physiol 134:315-319). In contrast, another study found no direct effect of locomotion on ventilation in the terrestrial box turtle, Terrapene carolina (Landberg et al., 2003. J Exp Biol 206:3391-3404). In this study we measured lung ventilation during treadmill locomotion in a semi-aquatic turtle, the red-eared slider, Trachemys scripta. Sliders breathed almost continuously during locomotion and during brief pauses between locomotor bouts. Tidal volume was relatively small (approximately 1 mL) during locomotion and approximately doubled during pauses. Minute ventilation was, however, not significantly smaller during locomotion because breath frequency was higher than that during the pauses. We found no consistent evidence for phase coupling between breathing and locomotion indicating that sliders do not use locomotor movements to drive breathing. We also found no evidence for a buccal-pump mechanism. Sliders, like box turtles, appear to use abdominal musculature to breathe during locomotion. Thus, locomotion affects lung ventilation differently in the three turtle species studied to date: the terrestrial Te. carolina shows no measurable effect of locomotion on ventilation; the semi-aquatic Tr. scripta breathes with smaller tidal volumes during locomotion; and the highly aquatic C. mydas stops breathing completely during terrestrial locomotion. (c) 2008 Wiley-Liss, Inc.

  20. Characterization and Prediction of the Volume Flow Rate Aerating a Cross Ventilated Bilding by Means of Experimental Techniques and Numerical Approaches

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Nikolopoulos, N.; Nikolopoulos, A.

    2011-01-01

    anemometers across the openings, whilst the numerical methodology is based on the time-dependant solution of the governing Navier-Stokes equations. The experimental data are compared to the corresponding numerical results, revealing the unsteady character of the flow field especially at large incidence angles......The paper presents an extensive experimental and numerical study on a cross-ventilated building providing important features of the induced flow patterns at the two openings as a function of the free stream wind velocity’s magnitude and its incidence angle. The experimental data are measured via....... Furthermore, additional information regarding the flow field near the opening edges, not easily extracted by experimental methods, provide an in depth sight in the main characteristics of the flow field both at the openings but also inside the building. Finally, a new methodology for the approximation...

  1. Estimation of Lung Ventilation

    Science.gov (United States)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  2. 小潮气量机械通气对全麻患儿术中肺功能的影响%Influence of small tidal volume mechanical ventilation to lung function of children in general anesthesia

    Institute of Scientific and Technical Information of China (English)

    李体忠; 刘亚玲; 罗炜; 马源

    2012-01-01

    Objective To study the effect of low tidal volume mechanical ventilation on the lung protection of children in intraoperative anesthesia. Methods 48 cases of children with intestinal obstruction laparotomy were selected and randomly divided into A and B groups. The two groups were treated with low tidal volume and high tidal volume mechanical ventilation separately. Their peripheral blood were collected before intubation, after intubation 1 h and at the end of surgery, using enzyme-linked immunosorbent assay (ELISA) to test patients' plasma interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) concentration and to analyze arterial blood gas at the same time. Results The two groups in plasma IL-6 levels in tracheal intubation had no significant difference before. In group A there was no significant difference in IL-6 levels. Group B's plasma levels of IL-6 1 h after intubation and at the end of surgery was significantly higher (P <0.05) compared with before intubation. Two groups' plasma levels of TNF-α before intubation had no significant difference and group B's levels were significantly higher (P <0.05) than those 1 h after intubation and at the end of surgery compared with before intubation. Conclusion Tidal volume ventilation can cause increase of plasma IL-6 and TNF-α level in children, which may be one of the reasons to result in mechanical ventilation-induced lung injury. The low tidal volume ventilation used for children in the maintenance of anesthesia in ventilation can contribute to the protection of lung function.%目的 探讨小潮气量机械通气对全麻患儿术中肺功能的影响.方法 选取48例行肠梗阻剖腹探查术的患儿,随机分为A、B两组,术中分别采用小潮气量和大潮气量机械通气,于插管前、插管后1h和手术结束时分别采集外周血,用酶联免疫法检测患儿血浆中白介素-6(IL-6)和肿瘤坏死因子-α (TNF-α)的浓度,同时抽取动脉血行血气分析.结果 A组其他时点

  3. Dangerous Pressurization and Inappropriate Alarms during Water Occlusion of the Expiratory Circuit of Commonly Used Infant Ventilators.

    Directory of Open Access Journals (Sweden)

    Murray Hinder

    Full Text Available Non-invasive continuous positive airways pressure is commonly a primary respiratory therapy delivered via multi-purpose ventilators in premature newborns. Expiratory limb occlusion due to water accumulation or 'rainout' from gas humidification is a frequent issue. A case of expiratory limb occlusion due to rainout causing unexpected and excessive repetitive airway pressurisation in a Draeger VN500 prompted a systematic bench test examination of currently available ventilators.To assess neonatal ventilator response to partial or complete expiratory limb occlusion when set to non-invasive continuous positive airway pressure mode.Seven commercially available neonatal ventilators connected to a test lung using a standard infant humidifier circuit with partial and/or complete expiratory limb occlusion were examined in a bench test study. Each ventilator was set to deliver 6 cmH2O in non-invasive mode and respiratory mechanics data for 75%, 80% and 100% occlusion were collected.Several ventilators responded inappropriately with complete occlusion by cyclical pressurisation/depressurisation to peak pressures of between 19·4 and 64·6 cm H2O at rates varying between 2 to 77 inflations per minute. Tidal volumes varied between 10·1 and 24·3mL. Alarm responses varied from 'specific' (tube occluded to 'ambiguous' (Safety valve open. Carefusion Avea responded by continuing to provide the set distending pressure and displaying an appropriate alarm message. Draeger Babylog 8000 did not alarm with partial occlusions and incorrectly displayed airways pressure at 6·1cmH2O compared to the measured values of 13cmH2O.This study found a potential for significant adverse ventilator response due to complete or near complete expiratory limb occlusion in CPAP mode.

  4. [Measurement of the Minimum Pressure in the Bronchial Cuff during One-lung Ventilation Using a Capnometer].

    Science.gov (United States)

    Okubo, Haruka; Kawasaki, Takashi; Shibayama, Aiko; Sata, Takeyoshi

    2015-08-01

    It is recommended to avoid overinflation of the bronchial cuff, leading to ischemic pressure damages to the respiratory mucosa and bronchial rupture. We investigated the minimum bronchial cuff pressure of 35 Fr double lumen tubes (DLTs) during one lung ventilation using a capnometer. We studied 50 patients who were scheduled to undergo thoracic surgery. General anesthesia was induced and the patients were intubated with 35 Fr left DLT. With a fiberoptic bronchoscope, the DLT was positioned appropriately. The bronchial cuff was inflated first with air 3-3.5 ml. Lung isolation was confirmed by auscultation. Measurements were performed with the patient in the lateral position. Ventilating one lung isolatedly for 5 minutes, we confirmed non ventilated condition with a capnometer displaying flat line. The bronchial cuff was deflated 0.5-ml steps just before displaying the respiratory pattern by the capnogram. The bronchial cuff pressure and volume were recorded at this point The minimum pressures of bronchial cuff (volume) for one lung ventilation are for male 5.46 ± 0.6 cmH2O (2.33?0.1 ml) and for female 1.5?0.5 cmH20 (1.09 ± 0.3 ml). These values are smaller than the recommended value (< 25 cmH2O). There was no case in which the collapse of the operated lung was insufficient. In this study, the bronchial pressure higher than 12 cmH2O was not necessary for one lung ventilation. If high intracuff pressure is necessary to seal the bronchus, there are possibilities of the incompatibility of the size of DLT and the herniation of the bronchial cuff to the proximal side. The method of confirmation of OLV using a capnometer can display the non ventilated condition on the monitor objectively. We can thus decrease troubles during operations.

  5. 全麻不同潮气量机械通气对老年患者肺功能的影响#%The Effect of Different Tidal Volume Ventilation on Pulmonary Function in Old Man

    Institute of Scientific and Technical Information of China (English)

    林梁; 刘风; 汪延斌

    2012-01-01

    目的:探讨全麻不同潮气量机械通气对老年人肺功能的影响.方法:年龄大于60岁的老年直肠癌患者60例,随机分为三组,潮气量10ml/kg组(Ⅰ组),潮气量8ml/kg(Ⅱ组)和潮气量6ml/kg组(Ⅲ组),每组20例.机械通气后抽血测在麻醉后(T1)、麻醉后1h(T2)、麻醉后2h(T3)、麻醉后6h(T4)和麻醉后24h(T5)的TNF-а,IL-6,IL-10水平和RI值.结果:三组患者在麻醉后(T1)TNF-а,IL-6的水平无明显差异(P>0.05);Ⅲ组在T2~4的TNF-а,IL-6均低于Ⅰ、Ⅱ组,有显著性差异(P0.05),Ⅲ组在T3~5的RI均低于Ⅰ、Ⅱ组,有显著差异性(P0.05).But at T2-T5,the level of the TNF- a , IL-6 and Respiratory index in group Ⅲ has significant lower than the in group Ⅰ , Ⅱ (P0.05).Conclusion:Low tidal volume ventilation could alleviate ventilation induced lung injury and maintain balance of inflamm-antiflam cytokine in the old patients.

  6. Performance of ductless personalized ventilation in conjunction with displacement ventilation

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Melikov, Arsen Krikor; Vesely, Michal

    2014-01-01

    movement decreased with DPV compared to corresponding conditions with displacement ventilation alone and reached the same level as mixing or displacement ventilation at 23 °C. Subjects were able to control the volume and speed of the personalized air flow in order to avoid eye irritation. However......, increased eye dryness sensation was reported by 30% of subjects. The personalized air flow selected by nearly 80% of the subjects at 26 °C was between 10 and 20 l/s corresponding to the target air velocity of 1.2–1.7 m/s. At 29 °C almost 90% of subjects chose a personalized air flow between 15 and 20 l/s (1...

  7. Electrical Impedance Tomography During Mechanical Ventilation.

    Science.gov (United States)

    Walsh, Brian K; Smallwood, Craig D

    2016-10-01

    Electrical impedance tomography (EIT) is a noninvasive, non-radiologic imaging modality that may be useful for the quantification of lung disorders and titration of mechanical ventilation. The principle of operation is based on changes in electrical conductivity that occur as a function of changes in lung volume during ventilation. EIT offers potentially important benefits over standard imaging modalities because the system is portable and non-radiologic and can be applied to patients for long periods of time. Rather than providing a technical dissection of the methods utilized to gather, compile, reconstruct, and display EIT images, the present article seeks to provide an overview of the clinical application of this technology as it relates to monitoring mechanical ventilation and providing decision support at the bedside. EIT has been shown to be useful in the detection of pneumothoraces, quantification of pulmonary edema and comparison of distribution of ventilation between different modes of ventilation and may offer superior individual titration of PEEP and other ventilator parameters compared with existing approaches. Although application of EIT is still primarily done within a research context, it may prove to be a useful bedside tool in the future. However, head-to-head comparisons with existing methods of mechanical ventilation titration in humans need to be conducted before its application in general ICUs can be recommended. Copyright © 2016 by Daedalus Enterprises.

  8. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits

  9. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    with conventional ventilation systems (mixing or displacement ventilation), diffuse ceiling ventilation can significantly reduce or even eliminate draught risk in the occupied zone. Moreover, this ventilation system presents a promising opportunity for energy saving, because of the low pressure loss, extended free......Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as an air diffuser to supply fresh air into the room. Due to the large opening area, air is delivered to the room with very low velocity and no fixed direction, therefore the name ‘diffuse’. Compared......-cooling period and night cooling potential. The investment cost of this ventilation system is about 5-10% lower than the conventional ones, because the acoustic ceiling could be directly applied as air diffuser and the use of plenum to distribute air reduces the cost of ductwork. There is a growing interest...

  10. Ventilator versus manual hyperinflation in clearing sputum in ventilated intensive care unit patients.

    Science.gov (United States)

    Dennis, Diane; Jacob, Wendy; Budgeon, Charley

    2012-01-01

    The aim of hyperinflation in the ventilated intensive care unit patient is to increase oxygenation, reverse lung collapse and clear sputum. The efficacy and consistency of manual hyperventilation is well supported in the literature, but there is limited published evidence supporting hyperventilation utilising a ventilator. Despite this, a recent survey established that almost 40% of Australian tertiary intensive care units utilise ventilator hyperinflation. The aim of this non-inferiority cross-over study was to determine whether ventilator hyperinflation was as effective as manual hyperinflation in clearing sputum from patients receiving mechanical ventilation using a prescriptive ventilator hyperinflation protocol. Forty-six patients received two randomly ordered physiotherapy treatments on the same day by the same physiotherapist. The efficacy of the hyperinflation modes was measured by sputum wet weight. Secondary measures included compliance, tidal volume, airway pressure and PaO2/FiO2 ratio. There was no difference in wet weight of sputum cleared using ventilator hyperinflation or manual hyperinflation (mean 3.2 g, P=0.989). Further, no difference in compliance (P=0.823), tidal volume (P=0.219), heart rate (P=0.579), respiratory rate (P=0.929) or mean arterial pressure (P=0.593) was detected. A statistically significant difference was seen in mean airway pressure (P=0.002) between techniques. The effect of techniques on the PaO2/FiO2 response ratio was dependent on time (interaction P=0.024). Physiotherapy using ventilator hyperinflation cleared a comparable amount of sputum and was as safe as manual hyperinflation. This research describes a ventilator hyperinflation protocol that will serve as a platform for continued discussion, research and development of its application in ventilated patients.

  11. A prospective crossover comparison of neurally adjusted ventilatory assist and pressure-support ventilation in a pediatric and neonatal intensive care unit population.

    LENUS (Irish Health Repository)

    Breatnach, Cormac

    2012-02-01

    OBJECTIVE: To compare neurally adjusted ventilatory assist ventilation with pressure-support ventilation. DESIGN: Prospective, crossover comparison study. SETTING: Tertiary care pediatric and neonatal intensive care unit. PATIENTS: Sixteen ventilated infants and children: mean age = 9.7 months (range = 2 days-4 yrs) and mean weight = 6.2 kg (range = 2.4-13.7kg). INTERVENTIONS: A modified nasogastric tube was inserted and correct positioning was confirmed. Patients were ventilated in pressure-support mode with a pneumatic trigger for a 30-min period and then in neurally adjusted ventilatory assist mode for up to 4 hrs. MEASUREMENTS AND MAIN RESULTS: Data collected for comparison included activating trigger (neural vs. pneumatic), peak and mean airway pressures, expired minute and tidal volumes, heart rate, respiratory rate, pulse oximetry, end-tidal CO2 and arterial blood gases. Synchrony was improved in neurally adjusted ventilatory assist mode with 65% (+\\/-21%) of breaths triggered neurally vs. 35% pneumatically (p < .001) and 85% (+\\/-8%) of breaths cycled-off neurally vs. 15% pneumatically (p = .0001). The peak airway pressure in neurally adjusted ventilatory assist mode was significantly lower than in pressure-support mode with a 28% decrease in pressure after 30 mins (p = .003) and 32% decrease after 3 hrs (p < .001). Mean airway pressure was reduced by 11% at 30 mins (p = .13) and 9% at 3 hrs (p = .31) in neurally adjusted ventilatory assist mode although this did not reach statistical significance. Patient hemodynamics and gas exchange remained stable for the study period. No adverse patient events or device effects were noted. CONCLUSIONS: In a neonatal and pediatric intensive care unit population, ventilation in neurally adjusted ventilatory assist mode was associated with improved patient-ventilator synchrony and lower peak airway pressure when compared with pressure-support ventilation with a pneumatic trigger. Ventilating patients in this new mode

  12. Avaliação de parâmetros cardiovasculares, ventilatórios e hemogasométricos de coelhos anestesiados com isofluorano ou sevofluorano e submetidos à ventilação espontânea ou controlada a volume

    OpenAIRE

    Carneiro, R. L.; Nunes,N.; Lopes,P.C.F.; Moro, J.V. [UNESP; Uscategui, R. R. [UNESP; Belmonte, E.a. [UNESP; V.F. Barbosa; Gering, A. P.; Moraes,V.J.; Martins Filho,E.F.; Gomes Júnior, D.c.; Costa Neto, J.M.

    2013-01-01

    The volume-controlled mechanical ventilation and spontaneous ventilation, through haemogasometric, cardiovascular and spirometry variables were evaluated. Twenty-eight rabbits were distributed into two groups: GIVC (isoflurane and volume-controlled ventilation), GIVE (isoflurane and spontaneous ventilation), GSVC (sevoflurane and volume-controlled ventilation) and GSVE (sevoflurane and spontaneous ventilation). Induction was performed by mask with isoflurane (GIVE and GIVC) or sevoflurane (GS...

  13. Very early passive cycling exercise in mechanically ventilated critically ill patients: physiological and safety aspects--a case series.

    Directory of Open Access Journals (Sweden)

    Ruy Camargo Pires-Neto

    Full Text Available INTRODUCTION: Early mobilization can be performed in critically ill patients and improves outcomes. A daily cycling exercise started from day 5 after ICU admission is feasible and can enhance functional capacity after hospital discharge. In the present study we verified the physiological changes and safety of an earlier cycling intervention (< 72 hrs of mechanical ventilation in critical ill patients. METHODS: Nineteen hemodynamically stable and deeply sedated patients within the first 72 hrs of mechanical ventilation were enrolled in a single 20 minute passive leg cycling exercise using an electric cycle ergometer. A minute-by-minute evaluation of hemodynamic, respiratory and metabolic variables was undertaken before, during and after the exercise. Analyzed variables included the following: cardiac output, systemic vascular resistance, central venous blood oxygen saturation, respiratory rate and tidal volume, oxygen consumption, carbon dioxide production and blood lactate levels. RESULTS: We enrolled 19 patients (42% male, age 55 ± 17 years, SOFA = 6 ± 3, SAPS3 score = 58 ± 13, PaO2/FIO2 = 223 ± 75. The median time of mechanical ventilation was 1 day (02, and 68% (n=13 of our patients required norepinephrine (maximum concentration = 0.47 µg.kg(-1.min(-1. There were no clinically relevant changes in any of the analyzed variables during the exercise, and two minor adverse events unrelated to hemodynamic instability were observed. CONCLUSIONS: In our study, this very early passive cycling exercise in sedated, critically ill, mechanically ventilated patients was considered safe and was not associated with significant alterations in hemodynamic, respiratory or metabolic variables even in those requiring vasoactive agents.

  14. Complications of mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Drašković Biljana

    2011-01-01

    Full Text Available Mechanical ventilation of the lungs, as an important therapeutic measure, cannot be avoided in critically ill patients. However, when machines take over some of vital functions there is always a risk of complications and accidents. Complications associated with mechanical ventilation can be divided into: 1 airway-associated complications; 2 complications in the response of patients to mechanical ventilation; and 3 complications related to the patient’s response to the device for mechanical ventilation. Complications of artificial airway may be related to intubation and extubation or the endotracheal tube. Complications of mechanical ventilation, which arise because of the patient’s response to mechanical ventilation, may primarily cause significant side effects to the lungs. During the last two decades it was concluded that mechanical ventilation can worsen or cause acute lung injury. Mechanical ventilation may increase the alveolar/capillary permeability by overdistension of the lungs (volutrauma, it can exacerbate lung damage due to the recruitment/derecruitment of collapsed alveoli (atelectrauma and may cause subtle damages due to the activation of inflammatory processes (biotrauma. Complications caused by mechanical ventilation, beside those involving the lungs, can also have significant effects on other organs and organic systems, and can be a significant factor contributing to the increase of morbidity and mortality in critically ill of mechanically ventilated patients. Complications are fortunately rare and do not occur in every patient, but due to their seriousness and severity they require extensive knowledge, experience and responsibility by health-care workers.

  15. Calculation of Industrial Enterprise Ventilation System by Network Integral Method

    Directory of Open Access Journals (Sweden)

    Mihienkova Evgeniya I.

    2016-01-01

    Full Text Available This paper describe a ventilation system calculation of the technology building industrial enterprise. On the basis of the calculation model for the enterprise offered technical decision of ventilation systems, subject to a compliance exchange multiplicity, purification efficiency, decontamination from the work area; provided the required volume of gas extraction from process equipment according to the sanitary standards and environmental requirements. Produced selection of ventilation equipment parameters, solved the problem of the air exchange balancing between ventilation systems to prevent the emergence of parasitic flows between the rooms building. SigmaNet software package was used for the implement the calculation.

  16. [Ventilation in acute respiratory distress. Lung-protective strategies].

    Science.gov (United States)

    Bruells, C S; Rossaint, R; Dembinski, R

    2012-11-01

    Ventilation of patients suffering from acute respiratory distress syndrome (ARDS) with protective ventilator settings is the standard in patient care. Besides the reduction of tidal volumes, the adjustment of a case-related positive end-expiratory pressure and preservation of spontaneous breathing activity at least 48 h after onset is part of this strategy. Bedside techniques have been developed to adapt ventilatory settings to the individual patient and the different stages of ARDS. This article reviews the pathophysiology of ARDS and ventilator-induced lung injury and presents current evidence-based strategies for ventilator settings in ARDS.

  17. New generation ventilators.

    Science.gov (United States)

    Bersten, A D; Skowronski, G A; Oh, T E

    1986-08-01

    Desirable features of new generation intensive care ventilators include the ability to ventilate a wide range of patient sizes, an uncomplicated control panel, an appropriate but not excessive variety of ventilatory patterns, adequate patient monitoring and alarm functions, and simplicity of cleaning and routine maintenance. Examples of currently available ventilators include the Servo 900-C, CPU-1, Engstrom Erica, Bear 5, Drager EV-A and Hamilton Veolar. The incorporation of microcomputer control into some of these ventilators has resulted in improved flexibility and a limited number of automatic responses to detected patient changes. However, the function of components provided to allow spontaneous ventilation, such as demand valves, requires considerable improvement. Current trends in ventilator design include further refinement of computer control and the provision of graphic displays showing the results of continuous sophisticated analysis of respiratory function. The extent to which these developments will prove clinically useful will require careful evaluation.

  18. Design Principles for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system -Hybrid Ventilation....... The hybrid ventilation concepts, design challenges and - principles are discussed and illustrated by four building examples....

  19. Mechanical ventilation in children.

    Science.gov (United States)

    Kendirli, Tanil; Kavaz, Asli; Yalaki, Zahide; Oztürk Hişmi, Burcu; Derelli, Emel; Ince, Erdal

    2006-01-01

    Mechanical ventilation can be lifesaving, but > 50% of complications in conditions that require intensive care are related to ventilatory support, particularly if it is prolonged. We retrospectively evaluated the medical records of patients who had mechanical ventilation in the Pediatric Intensive Care Unit (PICU) during a follow-up period between January 2002-May 2005. Medical records of 407 patients were reviewed. Ninety-one patients (22.3%) were treated with mechanical ventilation. Ages of all patients were between 1-180 (median: 8) months. The mechanical ventilation time was 18.8 +/- 14.1 days. Indication of mechanical ventilation could be divided into four groups as respiratory failure (64.8%), cardiovascular failure (19.7%), central nervous system disease (9.8%) and safety airway (5.4%). Tracheostomy was performed in four patients. The complication ratio of mechanically ventilated children was 42.8%, and diversity of complications was as follows: 26.3% atelectasia, 17.5% ventilator-associated pneumonia, 13.1% pneumothorax, 5.4% bleeding, 4.3% tracheal edema, and 2.1% chronic lung disease. The mortality rate of mechanically ventilated patients was 58.3%, but the overall mortality rate in the PICU was 12.2%. In conclusion, there are few published epidemiological data on the follow-up results and mortality in infants and children who are mechanically ventilated.

  20. Natural Ventilation in Atria

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Heiselberg, Per; Hendriksen, Ole Juhl

    This case study comprises a monitoring programme as well as a Computational Fluid Dynamics (CFD) analysis of a natural ventilated atrium. The purpose has been to analyse the performance of a typical natural ventilation system in Denmark under both summer and winter conditions.......This case study comprises a monitoring programme as well as a Computational Fluid Dynamics (CFD) analysis of a natural ventilated atrium. The purpose has been to analyse the performance of a typical natural ventilation system in Denmark under both summer and winter conditions....

  1. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  2. Mechanical ventilation in patients subjected to extracorporeal membrane oxygenation (ECMO).

    Science.gov (United States)

    Sánchez, M L

    2017-02-07

    Mechanical ventilation (MV) is a crucial element in the management of acute respiratory distress syndrome (ARDS), because there is high level evidence that a low tidal volume of 6ml/kg (protective ventilation) improves survival. In these patients with refractory respiratory insufficiency, venovenous extracorporeal membrane oxygenation (ECMO) can be used. This salvage technique improves oxygenation, promotes CO2 clearance, and facilitates protective and ultraprotective MV, potentially minimizing ventilation-induced lung injury. Although numerous trials have investigated different ventilation strategies in patients with ARDS, consensus is lacking on the optimal MV settings during venovenous ECMO. Although the concept of "lung rest" was introduced years ago, there are no evidence-based guidelines on its use in application to MV in patients supported by ECMO. How MV in ECMO patients can promote lung recovery and weaning from ventilation is not clear. The purpose of this review is to describe the ventilation strategies used during venovenous ECMO in clinical practice.

  3. Review of Residential Ventilation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Armin Rudd

    2005-08-30

    This paper reviews current and potential ventilation technologies for residential buildings, including a variety of mechanical systems, natural ventilation, and passive ventilation. with particular emphasis on North American climates and construction.

  4. Pulmonary ventilation/perfusion scan

    Science.gov (United States)

    V/Q scan; Ventilation/perfusion scan; Lung ventilation/perfusion scan ... A pulmonary ventilation/perfusion scan is actually two tests. They may be done separately or together. During the perfusion scan, a health care provider injects ...

  5. Effect of different tidal volume on respiratory mechanics and blood gas in lung cancer patients during one lung ventilation%单肺通气时不同潮气量对肺癌根治术患者呼吸力学及血气的影响

    Institute of Scientific and Technical Information of China (English)

    林飞; 潘灵辉; 钱卫; 杜学柯; 裴圣林; 陈肖东

    2012-01-01

    Objective To study the effect of different tidal volume on respiratory mechanics and blood gas in lung cancer patients with single lung ventilation. Methods 45 lung cancer patients were selected to execute radical operation, and put into double lumen endobronchial intubation after induction of anesthesia. The patients were randomly divided into three groups in the case of minute ventilation quantity invariable during intraoperative of one-lung ventilation; group A(VT = 10 mL/kg,f = 12/min), group B(VT = 8 mL/kg,f = 15/min) and group C(VT = 6 mL/kg,f = 20/min). Intraoperative continuous monitoring PETCO2、 Ppeak 、 Raw and extracting the arterial bloods for blood gas analysis before OLV, 30 min after OLV, 1 min before the end of OLV (Tl, T2, T3 ). Results Compared with Tl, Ppeak and Raw at T2, T3 significantly increased during the OLV(P < 0.05). Among three groups, Ppeak and Raw decreased gradually with the VT reduction during OLV, Ppeak and Raw were least in group C, and Ppeak and Raw in group A were significantly higher than those in group B, C (P < 0.05). PeiCO2 at T3 significantly increased than those at Tl, T2(P < 0.05), and PeiCO2 in group C was significantly higher than those in group A, B during the OLV (P < 0.05). Compared with T1, PaO2 were decreased, while PaC02 showed ascendant trend after OLV. PaO2 was significantly lower than that in group A and B (P < 0.01), and PaCO2 in group C significantly increased than that in group A and B (P < 0.05). Conclusion Using the ventilation way of group B(VT= 8 mL/ kg, f = 15/min ) is more appropriate in radical operation for lung cancer with one-lung ventilation.%观察在肺癌根治术中单肺通气(OLV)时不同潮气量(VT)对呼吸力学和血气值的影响.方法:选择45例择期行肺癌根治术的患者,行双腔支气管插管麻醉,术中OLV期间在保持分钟通气量不变的情况下,随机分为3组(每组15例):A组(VT=10 mL/kg,f=12次/min)、B组(VT=8 mL/kg,f=15次/min)、C组(VT=6m

  6. Multifamily Ventilation Retrofit Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation (BSC), Somerville, MA (United States); Lstiburek, J. [Building Science Corporation (BSC), Somerville, MA (United States); Bergey, D. [Building Science Corporation (BSC), Somerville, MA (United States)

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  7. VENTILATION MODEL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    V. Chipman

    2002-10-31

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses.

  8. Diffuse ceiling ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen

    both thermal comfort and energy efficient aspects. The present study aims to characterize the air distribution and thermal comfort in the rooms with diffuse ceiling ventilation. Both the stand-alone ventilation system and its integration with a radiant ceiling system are investigated. This study also...

  9. Oxygen consumption and ventilation during simulated escape from an offshore oil platform.

    Science.gov (United States)

    Ross, J A; Henderson, G D; Howie, R M

    1997-03-01

    Twenty-six male workers from the North Sea offshore oil industry took part in a simulated escape exercise at the Offshore Fire Training Centre. The course was 370 m long and had 19.4 m of vertical ascent and descent using the stairs on simulated offshore structures. Inspired ventilation and oxygen consumption were measured using the P. K. Morgan "Oxylog' and subjects breathed through the apparatus by mouthpiece and one-way valve assembly while wearing a nose clip. On comparison with anthropometric data from larger studies, this sample of the offshore work-force was thought to be representative. The mean duration of the exercise period was 371 s (SD = 24 s, range = 325-424 s). Mean oxygen consumption standing still at the start of the trial was 0.421 min-1 (SD = 0.101 min-1, max. = 0.611 min-1) and mean ventilation 12.351 min-1 (SD = 4.251 min-1, max. = 22.271 min-1). During exercise, the mean oxygen consumption rose to 2.711 min-1 (SD = 0.641 min-1, max = 4.051 min-1) and mean ventilation reached 46.341 min-1 (SD = 15.831 min-1, max = 87.361 min-1) during the fifth minute of exercise. At the end of the exercise period, oxygen consumption returned to resting values after 2 min and ventilation after 3 min. There was no indication of an oxygen debt. Oxygen consumption and ventilation were related to body weight and the maximum figures for ventilation and oxygen consumption were seen in individuals of over the 95th centile for weight who completed the exercise more quickly than other subjects. Draft standards for respiratory protective equipment for use during escape from fire do not specify the breathing volumes identified in this study, and which are considerably higher than those being currently considered. Additionally, the atmospheric conditions near a fire are likely to stimulate ventilation to considerably higher levels than those identified here. Accordingly, such equipment is likely to limit physical performance if a similar intensity of exercise is necessary

  10. Ventilation rates and health

    DEFF Research Database (Denmark)

    Sundell, Jan; Levin, H; Nazaroff, W W

    2011-01-01

    The scientific literature through 2005 on the effects of ventilation rates on health in indoor environments has been reviewed by a multidisciplinary group. The group judged 27 papers published in peer-reviewed scientific journals as providing sufficient information on both ventilation rates...... and health effects to inform the relationship. Consistency was found across multiple investigations and different epidemiologic designs for different populations. Multiple health endpoints show similar relationships with ventilation rate. There is biological plausibility for an association of health outcomes...... studies of the relationship between ventilation rates and health, especially in diverse climates, in locations with polluted outdoor air and in buildings other than offices. PRACTICAL IMPLICATIONS: Ventilation with outdoor air plays an important role influencing human exposures to indoor pollutants...

  11. CFD and Ventilation Research

    DEFF Research Database (Denmark)

    Li, Y.; Nielsen, Peter V.

    2011-01-01

    There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000–10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part of scienti......There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000–10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part...... of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize...... analysis in ventilation research, rather it has become an increasingly important partner....

  12. Alveolocapillary membrane permeability in experimental model of ventilator induced lung injury

    Directory of Open Access Journals (Sweden)

    Наталья Александровна Решетняк

    2016-01-01

    Full Text Available Aim: to assess alveocapillary membrane permeability for the whole protein, middle molecular peptides and some lipoperoxidation markers depending on respiratory volume using in reproduction of ventilator induced lung injury model.Material and methods: Experiments were carried out on 15 laboratory rats- males (body mass 180–240 gr. of “Vistar” line. The mechanical pulmonary ventilation in rats was carried out using tracheostomy cannula ALV Hamilton G 5 apparatus during 2 hours under the total anesthesia with sodium thiopental at a rate of 40 mg|kg of animal body mass. The initial parameters of ventilation were equal in all animals: Inspiratory time = 0,5 seconds; respiratory rate = 60 – 76/minute; pressure at the end of expiration (PEE = 0 - 2 sm. of water column; inspiration-expiration ratio (I:E = 1:1 or 1:2. Depending on the size of respiratory volume (RV animal were divided into 3 groups (n=5. Animals with RV=7 ml/kg of body mass formed the first group (the control one. The second group included animals with RV = 20 ml/kg of body mass (the moderate volutrauma and the third one included animals with RV = 40 ml/kg of body mass (the heavy volutrauma. The bronchoalveolar lavage was carried out on isolated lungs with the volume of filling at a rate 5 ml of 0,9 % sodium chloride solution for 1 g of pulmonary tissue and there was received nearly 2,5+0,5 ml of lavage liquid (sodium chloride solution + bronchoalveolar liquid. The alveolocapillary membrane permeability was assessed by detecting in the received liquid of bronchoalveolar lavage the concentration of whole protein on Lowry, the content of middle mass molecules on extinction at wave lengths 238, 254, 260, and 280 nm; the level of diene conjugates on V.B. Gavrilov and catalase activity on M.A. Koroliuk. The received data were processed using methods of nonparametric statistics. The revealed intergroup differences were assessed on Kruskall-Wallis «ANOVA» criterion. The differences at

  13. Blown away: good ventilation is a bathroom must have

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, V.

    2010-10-15

    Ventilation is an often overlooked component of bathroom design despite its importance. Modern airtight homes have lost their natural ventilation, heightening the need to pay attention to proper mechanical ventilation. A good vent allows steam to exit the house without damaging the bathroom. Increased bathroom sizes require several smaller fans rather than one large one. Poor ventilation can cause not only unpleasant odours but also mould and mildew on surfaces and damage to the actual structure of the home. Ventilation increases the life of fixtures, grout, and tile. Many existing systems in Canada are inadequate. Although mechanical systems may be noisy, they are the best method to move enough air. The Home Ventilation Institute has developed a set of codes using simulated bathrooms, moisture and tracer gas to compare and test fans. A system should provide 8 air changes an hour, or one cubic foot per minute per foot of floor area. For efficiency, the system should be a controlled process and not occupancy-driven. A popular extra feature on ventilation systems is the ability to heat the bathroom while the fan is ventilating. 1 fig.

  14. The Effect of Equal Ratio Ventilation on Oxygenation, Respiratory Mechanics, and Cerebral Perfusion Pressure During Laparoscopy in the Trendelenburg Position.

    Science.gov (United States)

    Jo, Youn Yi; Kim, Ji Young; Chang, Young Jin; Lee, Sehwan; Kwak, Hyun Jeong

    2016-06-01

    The aim of this study was to investigate the effects of equal ratio ventilation (ERV) on oxygenation, respiratory mechanics, and the cerebral perfusion pressure during pneumoperitoneum in the Trendelenburg position. Thirty patients undergoing laparoscopic low anterior resection (25 to 65 y) were enrolled. Mechanical ventilator was set to volume-controlled mode at an inspiratory to expiratory (I:E) ratio of 1:2 with a tidal volume of 8 mL/kg of ideal body weight with a 5 cm H2O positive end-expiratory pressure. Twenty minutes after pneumoperitoneum in the Trendelenburg position, the I:E ratio was changed to 1:1 for 20 minutes and then restored to 1:2. No significant changes in arterial oxygen tension and respiratory compliance after adopting ERV. Mean arterial pressure and cerebral perfusion pressure decreased significantly over time after adopting the Trendelenburg position during pneumoperitoneum (P=0.014 and 0.005, respectively). In conclusion, there was no improvement in oxygenation or respiratory mechanics with ERV.

  15. Minutes of the 23rd Explosives Safety Seminar, volume 1

    Science.gov (United States)

    1988-08-01

    Some topics of the conference include: Fragment hazards; Airblast interactions; Explosives risk assessment; Structural damage from blast; Demilitarization, disposal, decontamination; Quantity distance application; Fire protection - deluge systems; Debris hazards testing and analysis; Far field airblast effects and mitigation designs consideration; Electrostatic discharge (ESD); Underground explosion effects - large scale tests; Wall and window response to blast loads; Explosives facility design considerations, Accident/explosion effects; and Shock sensitivity of explosives.

  16. Exercise 30 minutes a day (image)

    Science.gov (United States)

    You get the most benefit from exercise if you do it for at least 30 minutes a day for 5 to 6 days a week. But you do not have to do 30 minutes in a row. Studies suggest that you ... for 10 minutes 3 times a day as you do during a longer session.

  17. Interfaces and ventilator settings for long-term noninvasive ventilation in COPD patients

    Directory of Open Access Journals (Sweden)

    Callegari J

    2017-06-01

    Full Text Available Jens Callegari,1 Friederike Sophie Magnet,1 Steven Taubner,1 Melanie Berger,2 Sarah Bettina Schwarz,1 Wolfram Windisch,1 Jan Hendrik Storre3,4 1Department of Pneumology, Cologne-Merheim Hospital, Kliniken der Stadt Koeln, Witten/Herdecke University Hospital, 2Department of Pneumology, Malteser Hospital St Hildegardis, Cologne, 3Department of Pneumology, University Medical Hospital, Freiburg, 4Department of Intensive Care, Sleep Medicine and Mechanical Ventilation, Asklepios Fachkliniken Munich-Gauting, Gauting, Germany Introduction: The establishment of high-intensity (HI noninvasive ventilation (NIV that targets elevated PaCO2 has led to an increase in the use of long-term NIV to treat patients with chronic hypercapnic COPD. However, the role of the ventilation interface, especially in more aggressive ventilation strategies, has not been systematically assessed.Methods: Ventilator settings and NIV compliance were assessed in this prospective cross-sectional monocentric cohort study of COPD patients with pre-existing NIV. Daytime ­arterialized blood gas analyses and lung function testing were also performed. The primary end point was the distribution among study patients of interfaces (full-face masks [FFMs] vs nasal masks [NMs] in a real-life setting.Results: The majority of the 123 patients studied used an FFM (77%, while 23% used an NM. Ventilation settings were as follows: mean ± standard deviation (SD inspiratory positive airway pressure (IPAP was 23.2±4.6 mbar and mean ± SD breathing rate was 16.7±2.4/minute. Pressure support ventilation (PSV mode was used in 52.8% of patients, while assisted pressure-controlled ventilation (aPCV was used in 47.2% of patients. Higher IPAP levels were associated with an increased use of FFMs (IPAP <21 mbar: 73% vs IPAP >25 mbar: 84%. Mean compliance was 6.5 hours/day, with no differences between FFM (6.4 hours/day and NM (6.7 hours/day users. PaCO2 assessment of ventilation quality revealed

  18. Experimental Study of Effect of Vents in Thermal Ventilation

    Institute of Scientific and Technical Information of China (English)

    LIU Dong; LIU Xiao-yu; ZHUANG Jiang-ting; SHEN Hui

    2009-01-01

    The effects of vents on thermal ventilation to save energy in the cold roUing workshop of Baosteel were investigated.According to the scale modeling theory,a small chamber was established.The details about construction of experiment On thermal ventilation and the preparation and arrangement of apparatus were dis-cussed,and then the effects of vents on thermal ventilation were studied through experiments,which includes the temperature distribution,the volume of ventilation,the temperature difference between inlets and outlets,the neutral plane,and the effective thermal coefficient of thermal natural ventilation.Based on this,the effects of natural ventilation based on varied area of inlets and oudets and those of vents on one side and on different sides were compared.According to the experiments,the area of inlet vents and outlet vents affect the tempera-ture distribution in chamber, and their effects on ventilation volume are difierent,but the effects of vents in sin-gle side or different sides aare the same under the condition that only thermal ventilation is considered.

  19. The effects of inverse ratio ventilation on cardiopulmonary function and inflammatory cytokine of bronchoaveolar lavage in obese patients undergoing gynecological laparoscopy.

    Science.gov (United States)

    Zhang, W P; Zhu, S M

    2016-03-01

    High peak airway pressure (Ppeak) and high end-tidal carbon dioxide tension (PETCO2) are the common problems encountered in the obese patients undergoing gynecological laparoscopy with conventional volume-controlled ventilation. This study was designed to investigate whether volume-controlled inverse ratio ventilation (IRV) with inspiratory to expiratory (I:E) ratio of 2:1 could reduce Ppeak or the plateau pressure (Pplat), improve oxygenation, and alleviate lung injury in patients with normal lungs. Sixty obese patients undergoing gynecological laparoscopy were enrolled in this study. After tracheal intubation, the patients were randomly divided into the IRV group (n = 30) and control group (n = 30). They were ventilated with an actual tidal volume of 8 mL/kg, respiratory rate of 12 breaths/min, zero positive end-expiratory pressure and I:E of 1:2 or 2:1. Arterial blood samples, hemodynamic parameters, and respiratory mechanics were recorded before and during pneumoperitoneum. The concentrations of tumor necrosis factor-α, and interleukins 6 and 8 in bronchoalveolar lavage fluid were measured immediately before and 60 minutes after onset of CO2 pneumoperitoneum. IRV significantly increased arterial partial pressure of oxygen, mean airway pressure, and dynamic compliance of respiratory system with concomitant significant decreases in Ppeak and Pplat compared to conventional ventilation with I:E of 1:2 (p obese patients undergoing gynecologic laparoscopy without adverse respiratory and hemodynamic effects. It is superior to conventional ratio ventilation in terms of oxygenation, respiratory mechanics and inflammatory cytokine in obese patients undergoing gynecologic laparoscopy. Copyright © 2015. Published by Elsevier B.V.

  20. Ventilation problems of diesel self-propelled mining machines with special regard to shuttle services

    Energy Technology Data Exchange (ETDEWEB)

    Benke, L.; Buocz, Z.

    1985-01-01

    The basic problems associated with the ventilation of diesel-powered self-propelled equipment used in underground mines are summarized. The composition of exhaust gases and its dependence on various conditions are investigated. After an overview of ventilation regulation rules, the principles of mine air volume determination are discussed. Next, the ventilation problems of diesel vehicles used for shuttle services are considered. The main results are presented in the form of diagrams for the determination of air volume and air flow.

  1. Humidification during invasive and noninvasive mechanical ventilation: 2012.

    Science.gov (United States)

    Restrepo, Ruben D; Walsh, Brian K

    2012-05-01

    We searched the MEDLINE, CINAHL, and Cochrane Library databases for articles published between January 1990 and December 2011. The update of this clinical practice guideline is based on 184 clinical trials and systematic reviews, and 10 articles investigating humidification during invasive and noninvasive mechanical ventilation. The following recommendations are made following the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) scoring system: 1. Humidification is recommended on every patient receiving invasive mechanical ventilation. 2. Active humidification is suggested for noninvasive mechanical ventilation, as it may improve adherence and comfort. 3. When providing active humidification to patients who are invasively ventilated, it is suggested that the device provide a humidity level between 33 mg H(2)O/L and 44 mg H(2)O/L and gas temperature between 34°C and 41°C at the circuit Y-piece, with a relative humidity of 100%. 4. When providing passive humidification to patients undergoing invasive mechanical ventilation, it is suggested that the HME provide a minimum of 30 mg H(2)O/L. 5. Passive humidification is not recommended for noninvasive mechanical ventilation. 6. When providing humidification to patients with low tidal volumes, such as when lung-protective ventilation strategies are used, HMEs are not recommended because they contribute additional dead space, which can increase the ventilation requirement and P(aCO(2)). 7. It is suggested that HMEs are not used as a prevention strategy for ventilator-associated pneumonia.

  2. Why We Ventilate

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  3. Home Ventilator Guide

    Science.gov (United States)

    ... fit the ventilator under the seat in front. Second, its protected electronic panel prevents the settings from being changed inadvertently. Third, the Trilogy has six hours of battery life – three hours of internal battery and three hours ...

  4. Non-invasive ventilation for cystic fibrosis.

    Science.gov (United States)

    Moran, Fidelma; Bradley, Judy M; Piper, Amanda J

    2017-02-20

    Non-invasive ventilation may be a means to temporarily reverse or slow the progression of respiratory failure in cystic fibrosis by providing ventilatory support and avoiding tracheal intubation. Using non-invasive ventilation, in the appropriate situation or individuals, can improve lung mechanics through increasing airflow and gas exchange and decreasing the work of breathing. Non-invasive ventilation thus acts as an external respiratory muscle. This is an update of a previously published review. To compare the effect of non-invasive ventilation versus no non-invasive ventilation in people with cystic fibrosis for airway clearance, during sleep and during exercise. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching relevant journals and abstract books of conference proceedings. We searched the reference lists of each trial for additional publications possibly containing other trials.Most recent search: 08 August 2016. Randomised controlled trials comparing a form of pressure preset or volume preset non-invasive ventilation to no non-invasive ventilation used for airway clearance or during sleep or exercise in people with acute or chronic respiratory failure in cystic fibrosis. Three reviewers independently assessed trials for inclusion criteria and methodological quality, and extracted data. Ten trials met the inclusion criteria with a total of 191 participants. Seven trials evaluated single treatment sessions, one evaluated a two-week intervention, one evaluated a six-week intervention and one a three-month intervention. It is only possible to blind trials of airway clearance and overnight ventilatory support to the outcome assessors. In most of the trials we judged there was an unclear risk of bias with regards to blinding due to inadequate descriptions. The six-week trial was the only one judged to have a low risk of bias for all

  5. Protective ventilation of preterm lambs exposed to acute chorioamnionitis does not reduce ventilation-induced lung or brain injury.

    Directory of Open Access Journals (Sweden)

    Samantha K Barton

    Full Text Available The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response.Pregnant ewes (n = 18 received intra-amniotic lipopolysaccharide (LPS 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6, or were ventilated using an injurious high VT strategy (LPSINJ; n = 5 or a protective ventilation strategy (LPSPROT; n = 7 for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury.LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02 and cell death (p<0.05 in the WM, which were equivalent in magnitude between groups.Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed

  6. Conventional mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Tobias Joseph

    2010-01-01

    Full Text Available The provision of mechanical ventilation for the support of infants and children with respiratory failure or insufficiency is one of the most common techniques that are performed in the Pediatric Intensive Care Unit (PICU. Despite its widespread application in the PICUs of the 21st century, before the 1930s, respiratory failure was uniformly fatal due to the lack of equipment and techniques for airway management and ventilatory support. The operating rooms of the 1950s and 1960s provided the arena for the development of the manual skills and the refinement of the equipment needed for airway management, which subsequently led to the more widespread use of endotracheal intubation thereby ushering in the era of positive pressure ventilation. Although there seems to be an ever increasing complexity in the techniques of mechanical ventilation, its successful use in the PICU should be guided by the basic principles of gas exchange and the physiology of respiratory function. With an understanding of these key concepts and the use of basic concepts of mechanical ventilation, this technique can be successfully applied in both the PICU and the operating room. This article reviews the basic physiology of gas exchange, principles of pulmonary physiology, and the concepts of mechanical ventilation to provide an overview of the knowledge required for the provision of conventional mechanical ventilation in various clinical arenas.

  7. Dynamic and quasi-static lung mechanics system for gas-assisted and liquid-assisted ventilation.

    Science.gov (United States)

    Alvarez, Francisco J; Gastiasoro, Elena; Rey-Santano, M Carmen; Gomez-Solaetxe, Miguel A; Publicover, Nelson G; Larrabe, Juan L

    2009-07-01

    Our aim was to develop a computerized system for real-time monitoring of lung mechanics measurements during both gas and liquid ventilation. System accuracy was demonstrated by calculating regression and percent error of the following parameters compared to standard device: airway pressure difference (Delta P(aw)), respiratory frequency (f(R) ), tidal volume (V(T)), minute ventilation (V'(E)), inspiratory and expiratory maximum flows (V'(ins,max), V'(exp,max)), dynamic lung compliance (C(L,dyn) ), resistance of the respiratory system calculated by method of Mead-Whittenberger (R(rs,MW)) and by equivalence to electrical circuits (R(rs,ele)), work of breathing (W(OB)), and overdistension. Outcome measures were evaluated as function of gas exchange, cardiovascular parameters, and lung mechanics including mean airway pressure (mP(aw)). Delata P(aw), V(T), V'(ins,max), V'(exp,max), and V'(E) measurements had correlation coefficients r = 1.00, and %error or = 0.98 and %error ventilated groups had increased mP(aw) and W(OB), with decreased V(T), V'(E), C(L,dyn), R(rs,MW), and R(rs,ele) compared to controls. After 1-h ventilation, both injured group had decreased V(T), V'(E) , and C(L,dyn), with increased mP(aw), R(rs,MW), R(rs,ele), and W(OB) . In lung-injured animals, liquid ventilation restored gas exchange, and cardiovascular and lung functions. Our lung mechanics system was able to closely monitor pulmonary function, including during transitions between gas and liquid phases.

  8. Face mask ventilation: a comparison of three techniques.

    Science.gov (United States)

    Hart, Danielle; Reardon, Robert; Ward, Christopher; Miner, James

    2013-05-01

    There are multiple techniques for face-mask (FM) ventilation. To our knowledge, the one-handed vs. two-handed C-E technique has been compared in children and adults, but no studies have compared the various two-handed methods. To compare the effectiveness of mask seal using three different FM techniques on a model intended to simulate difficult FM ventilation and measure ventilation performance. This was a prospective randomized study of health care providers. A standard airway-training mannequin was modified to produce variable airway resistance and allow measurements of ventilation volume and pressure. Each subject performed FM ventilation for 3 min per technique (30 breaths) in a randomized order. Median exhaled tidal volume and proximal peak flow pressure were determined and compared. Seventy subjects were enrolled. Both two-handed ventilation techniques were more effective than the one-handed technique by both volume and pressure measurements. The one-handed C-E technique yielded a median volume of 428.4 mL, vs. the two-handed C-E technique with 550.8 mL, and the two-handed V-E technique with 538 mL (p training for health care providers. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Effects of a nasal ventilator restriction device on lung ventilation and gas exchange during exercise in healthy subjects

    Directory of Open Access Journals (Sweden)

    José Luis González-Montesinos

    Full Text Available Introduction and objectives: A device called FeelBreathe® (FB has been designed, developed and patented for inspiratory muscle training (IMT. In order to examine the effects of FB on lung ventilation and gas exchange during exercise, 27 trained male healthy volunteers (age: 32.5 ± 7.2 years were measured. Methods: Maximum static inspiratory pressure (PImax and spirometry to determine lung capacity were measured at baseline. We continued with an incremental cycloergometer to determine the VO2 peak. Three days later, each subject performed randomly three identical submaximal cycloergometer tests at 50% between ventilatory thresholds under three different breathing conditions: a oronasal breathing (ONB, b nasal breathing (NB and c nasal breathing through the FB. Results: FB trial showed lower minute ventilation (VE and breathing frequency (BF than NB, which had lower BF, but similar VE than ONB (p < 0.001. Despite this, FB had similar values of VO2, respiratory exchange ratio (RER, heart rate (HR and peripheral capillary oxygen saturation (SpO2 compared to NB and ONB. The latter can occur partly due to increased tidal volume (VT and expiration time (Tex in FB until same level than NB, which were in both trials 15% and 14% respectively higher than ONB (p < 0.001. The percentage of inspiration time (Ti/Tot was 7% greater in FB compared to NB and ONB (p < 0.001. Increased end-tidal pressure of CO2 (P ET CO2 and reduced end-tidal pressure of O2 (P ET O2 and fraction of O2 expiration (FEO2 were found only in FB. Conclusions: FeelBreathe is a new nasal restriction device that stimulates the inspiratory muscles to produce a breathing pattern more efficiency during exercise in well-trained humans.

  10. 容量控制通气模式和压力控制通气模式对病态肥胖症患者循环功能的影响%Effects of volume controlled ventilation and pressure controlled ventilation on morbidly obese patients

    Institute of Scientific and Technical Information of China (English)

    邹启荣; 李佳阳; 彭雪梅

    2015-01-01

    VCV更有利于降低气腹对循环功能的影响。%Objective To investigate the effects of volume controlled ventilation (VCV) and pressure controlled ventilation (PCV) on morbidly obese patients during LRYGB under general anesthesia.Methods A total of 40 morbidly obese patients undergoing laparoscopic Roux-en-Y gastric bypass in the First Affiliated Hospital of Jinan University between September 2013 and March 2015 were included in this prospective study. These patients were divided into VCV group and PCV group according to the random number table method. Twenty patients were included into VCV group, among them, 12 were males and 8 were females with an average age of (40±12) years old. Twenty other patients were included into PCV group, among them, 11 were males and 9 were females with an average age of (34±16) years old. The informed consents of all patients were obtained the local ethical committee approval had been received. The two different ventilation modes were used in patients after intubation anesthesia to maintained an end-tidal PaCO2 of 35~40 mmHg. Radial arterial blood was collected for blood gas analysis before pneumoperitoneum (T1), 30 min (T2), 60 min (T3) and 90 min (T4) after the beginning of pneumoperitoneum, and 30 min (T5) after pneumoperitoneum termination. Arterial pH value and PaCO2in two groups were collected at different time points, and lactic acid (Lac) levels were measured at T1 and T2. Echocardiographic monitoring was used to record left ventricular ejection fraction (LVEF) and stroke volume (SV) before anesthesia induction (T0), T1, T2 and 2 h postoperatively (T6). Those indexes at different time points were compared between the two groups. The comparison of gender was conducted using Chi-square test, and the comparison of the other clinical indexes among the groups and in the same groups were conducted using t test.Results PH values at T1 point were higher than those at other time points in both two groups, while PaCO2 were lower

  11. Effect of low tidal volume one lung ventilation plus positive end-expiratory pressure on inflammatory responses of pulmonary in patients with lung cancer operation%低潮气量单肺通气复合呼气末正压对肺癌手术患者肺部炎症反应的影响

    Institute of Scientific and Technical Information of China (English)

    孔岚

    2014-01-01

    Objective To compare the effect of low tidal volume and normal tidal volume one lung ventilation plus positive end-expiratory pressure(PEEP) on inflammatory responses of pulmonary in patients with lung cancer operation.Methods Divided 40 patients with lung cancer operation into PEEP group(group L) and normal tidal volume one lung ventilation group(goup N), 20 cases in each group, tumor necrosis factor-α(TNF-α), Interleukin-6(IL-6), Interleukin-8(IL-8) and Interleukin-10(IL-10) were assessed with ELISA on the following time①two lung ventilation after anesthesia induction(T1); ②60 min after one lung ventilation (T2); ③90 min after one lung ventilation (T3); ④60 min after two lung ventilation(T4); ⑤1d after operation (T5). Results Compared to T1, TNF-α、IL-6、IL-8 and IL-10 were increased in other time point in both groups. The TNF-α、IL-6、IL -8 in group L were significant decreased than group N in T2, T3, T4, T5 time point(P<0.05). The IL-10 in group L were significant increased than group N in T2, T3, T4, T5 time point(P<0.05).Conclusion Low tidal volume one lung ventilation plus positive end-expiratory pressure can lessen pulmonary inflammatory response obviously than normal tidal volume and relieve the lung injury.%目的:对比低潮气量单肺通气复合呼气末正压(PEEP)与正常潮气量单肺通气对肺癌手术患者肺部炎症反应的影响。方法40例择期肺癌手术患者随机分为低潮气量单肺通气复合PEEP组(L组)和正常潮气量单肺通气组(N组),每组20例。两组患者分别在麻醉诱导后双肺通气时(T1)、单肺通气60 min时(T2)、单肺通气90 min时(T3)、术毕双肺通气60 min时(T4)、术后1 d(T5)采取外周静脉血,采用放射酶联免疫吸附法(ELISA)测量肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)、白细胞介素-8(IL-8)及白细胞介素-10(IL-10)水平。结果与T1比较,两组各时点血浆TNF-α, IL-6, IL-8及IL-10水平均持续升高(P<0.05)

  12. TH-E-BRF-02: 4D-CT Ventilation Image-Based IMRT Plans Are Dosimetrically Comparable to SPECT Ventilation Image-Based Plans

    Energy Technology Data Exchange (ETDEWEB)

    Kida, S [UC Davis School of Medicine, Sacramento, CA (United States); University of Tokyo Hospital, Bunkyo, Tokyo (Japan); Bal, M [Philips Healthcare (Netherlands); Kabus, S [Philips Research, Hamburg (Germany); Loo, B [Stanford University, Stanford, CA (United States); Keall, P [University of Sydney, Camperdown (Australia); Yamamoto, T [UC Davis School of Medicine, Sacramento, CA (United States); Stanford University, Stanford, CA (United States)

    2014-06-15

    Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (a surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image

  13. Efeitos do pneumoperitônio sobre a hemodinâmica e função renais de cães ventilados com volume e pressão controlados Efectos del pneumoperitonio sobre la hemodinámica y función renal de perros ventilados con volumen y presión controlados Effects of pneumoperitoneum on renal hemodynamics and function of dogs under volume and pressure-controlled ventilation

    Directory of Open Access Journals (Sweden)

    Armando Vieira de Almeida

    2004-06-01

    hemodynamics and function changes in dogs under volume and pressure controlled ventilation. METHODS: This study involved 16 dogs anesthetized with sodium thiopental and fentanyl, which were divided in two groups: Group 1: volume controlled; and Group 2: pressure controlled, both submitted to 10 and 15 mmHg pneumoperitoneum. The following parameters were evaluated: renal blood flow, renal vascular resistance, sodium para-aminohippurate clearance, plasma sodium, plasma potassium, plasma osmolality, creatinine clearance, filtration fraction, urinary volume, urinary clearance, osmolar clearance, free water clearance, sodium clearance, sodium urinary excretion, sodium fractional excretion, potassium clearance, potassium urinary excretion and potassium fractional excretion. Data were collected in 4 moments: M1 before pneumoperitoneum, M2, 30 minutes after 10 mmHg pneumoperitoneum, M3, 30 minutes after 15 mmHg pneumoperitoneum, M4, 30 minutes after pneumoperitoneum deflation. RESULTS: Sodium para-aminohippurate and creatinine clearance remained constant for both groups throughout the experiment. Plasma sodium and potassium were not changed. There has been potassium clearance and fractional excretion decrease as from M2 in both groups. CONCLUSIONS: Ventilatory modes have not promoted renal hemodynamic differences between groups. Pneumoperitoneum, by compressing renal parenchyma, may have determined changes in potassium reabsorption and/or secretion.

  14. Effect of Phenylephrine on Alveolar Fluid Clearance in Ventilator-induced Lung Injury

    Institute of Scientific and Technical Information of China (English)

    Nai-jing Li; Xiu Gu; Wei Li; Yan Li; Sheng-qi Li; Ping He

    2013-01-01

    Objective To investigate the effect of phenylephrine (an α-adrenergic agonist) on alveolar fluid clearance (AFC) in ventilator-induced lung injury and the possible mechanism involved. Methods A total of 170 male Wistar rats were randomly allocated into 17 groups (n=10) using ran-dom number tables. Short-term (40 minutes) mechanical ventilation with high tidal volume (HVT) was per-formed to induce lung injury,impair active Na+ transport and lung liquid clearance in the rats. Unventilated rats served as controls. To demonstrate the effect of phenylephrine on AFC,phenylephrine at different con-centrations (1×10-5,1×10-6,1×10-7,1×10-8,and 1×10-9 mol/L) was injected into the alveolar space of the HVT ventilated rats. To identify the influence of adrenergic antagonists,Na+ channel,and microtubular sys-tem on the effect of phenylephrine,phenylephrine at 1×10-5 mol/L combined with prazosin (an α1-adrener-gic antagonist,1×10-4 mol/L),yohimbine (an α2-adrenergic antagonist,1×10-4 mol/L),atenolol (a β1-adrenergic antagonist,1×10-5 mol/L),ICI-118551 (an β2-adrenergic antagonist,1×10-5 mol/L),amiloride (a Na+ channel blocker,5×10-4 mol/L),ouabain (a Na+/K+-ATPase blocker,5×10-4 mol/L),colchicine (a mi-crotubular disrupting agent,0.25 mg/100 g body weight),or β-lumicolchicine (an isomer of colchicine,0.25 mg/100 g body weight) were perfused into the alveolar space of the rats ventilated with HVT for 40 minutes. AFC and total lung water content were measured. Results Basal AFC in control rats was (17.47±2.56)%/hour,which decreased to (9.64± 1.32)%/hour in HVT ventilated rats (P=0.003). The perfusion of phenylephrine at 1×10-8,1×10-7,1×10-6,and 1×10-5 mol/L significantly increased the AFC in HVT ventilated rats (all P<0.05). This effect of phenylephrine on AFC was suppressed by prazosin,atenolol,and ICI-118551 in HVT ventilated rats by 53%,31%,and 37%,respectively (all P<0.05). The AFC-stimulating effect of phenylephrine was lowered by 33% and 42% with

  15. Human Response to Personalized Ventilation Combined with Chilled Ceiling

    DEFF Research Database (Denmark)

    Lipczynska, Aleksandra; Kaczmarczyk, Jan; Marcol, Bartosz;

    2014-01-01

    Personalized ventilation (PV) improves inhaled air quality, because it provides fresh air to each workstation and directly to occupant’s breathing zone. Previous research was focused on combining PV with additional total volume air distribution, i.e. mixing ventilation or displacement ventilation...... temperature for chilled ceiling was 15,5/16,8°C at room air temperature of 26°C and 19,5/20,6°C at 28°C. During the experiment the subjects were performing typical office tasks at workstations with computers. Exposure included also increased activity level office work for a period of 25 min...

  16. PReVENT - protective ventilation in patients without ARDS at start of ventilation: study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    Simonis, Fabienne D.; Binnekade, Jan M.; Braber, Annemarije; Gelissen, Harry P.; Heidt, Jeroen; Horn, Janneke; Innemee, Gerard; Jonge, de Evert; Juffermans, Nicole P.; Spronk, Peter E.; Steuten, Lotte M.; Tuinman, Pieter Roel; Vriends, Marijn; Vreede, de Gwendolyn; Wilde, de Rob B.; Neto, Ary Serpa; Gama de Abreu, Marcelo; Pelosi, Paolo; Schultz, Marcus J.

    2015-01-01

    Background It is uncertain whether lung-protective mechanical ventilation using low tidal volumes should be used in all critically ill patients, irrespective of the presence of the acute respiratory distress syndrome (ARDS). A low tidal volume strategy includes use of higher respiratory rates, which

  17. Chest wall volumes during inspiratory loaded breathing in COPD patients.

    Science.gov (United States)

    Coutinho Myrrha, Mariana Alves; Vieira, Danielle Soares Rocha; Moraes, Karoline Simões; Lage, Susan Martins; Parreira, Verônica Franco; Britto, Raquel Rodrigues

    2013-08-01

    Chest wall volumes and breathing patterns of 13 male COPD patients were evaluated at rest and during inspiratory loaded breathing (ILB). The sternocleidomastoid (SMM) and abdominal muscle activity was also evaluated. The main compartment responsible for the tidal volume at rest and during ILB was the abdomen. During ILB patients exhibited, in addition to increases in the ratio of inspiratory time to total time of the respiratory cycle and minute ventilation, increases (p<0.05) in the chest wall tidal volume by an increase in abdomen tidal volume as a result of improvement of end chest wall inspiratory volume without changing on end chest wall expiratory volume. The SMM and abdominal muscle activity increased 63.84% and 1.94% during ILB. Overall, to overcome the load imposed by ILB, COPD patients improve the tidal volume by changing the inspiratory chest wall volume without modifying the predominant mobility of the abdomen at rest and without affecting the end chest wall expiratory volume. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Perioperative lung-protective ventilation strategy reduces postoperative pulmonary complications in patients undergoing thoracic and major abdominal surgery

    Science.gov (United States)

    2016-01-01

    The occurrence of postoperative pulmonary complications is strongly associated with increased hospital mortality and prolonged postoperative hospital stays. Although protective lung ventilation is commonly used in the intensive care unit, low tidal volume ventilation in the operating room is not a routine strategy. Low tidal volume ventilation, moderate positive end-expiratory pressure, and repeated recruitment maneuvers, particularly for high-risk patients undergoing major abdominal surgery, can reduce postoperative pulmonary complications. Facilitating perioperative bundle care by combining prophylactic and postoperative positive-pressure ventilation with intraoperative lung-protective ventilation may be helpful to reduce postoperative pulmonary complications. PMID:26885294

  19. Performance of ICU ventilators during noninvasive ventilation with large leaks in a total face mask: a bench study

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Miyuki Nakamura

    2014-06-01

    Full Text Available Objective: Discomfort and noncompliance with noninvasive ventilation (NIV interfaces are obstacles to NIV success. Total face masks (TFMs are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. Methods: This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Results: Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection; three worked with some problems (low PEEP or high cycling delay; and one worked properly. Conclusions: The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM.

  20. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    -cooling period and night cooling potential. The investment cost of this ventilation system is about 5-10% lower than the conventional ones, because the acoustic ceiling could be directly applied as air diffuser and the use of plenum to distribute air reduces the cost of ductwork. There is a growing interest...... is not well structured with this system. These become the motivations in developing the design guide. This design guide aims to establish a systematic understanding of diffuse ceiling ventilation and provide assistance in designing of such a system. The guide is targeted at design engineers, architects...... and manufacturers and the users of diffuse ceiling technology. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation. It provides an overview of potential benefit and limitations of this technology. The benefits include high thermal comfort, high...

  1. CFD and Ventilation Research

    DEFF Research Database (Denmark)

    Li, Y.; Nielsen, Peter V.

    2011-01-01

    There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000–10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part...... of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize...... the growing need for CFD verification and validation, suggest on-going needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical...

  2. Development of energy-efficient comfort ventilation plants with air quality controlled volume flow rate and continuous detection of the status of the windows aperture. Part 3. Final report with documentation of the field test; Entwicklung energieeffizienter Komfortlueftungsanlagen mit luftqualitaetsgefuehrter Volumenstromregelung und kontinuierlicher Erfassung des Fensteroeffnungszustandes. Teilbericht 3. Endbericht mit Dokumentation des Feldtests

    Energy Technology Data Exchange (ETDEWEB)

    Grossklos, Marc; Hacke, Ulrike [Institut Wohnen und Umwelt GmbH, Darmstadt (Germany)

    2012-10-25

    Residential ventilation systems with a heat recovery contribute to the improvement of the air quality and to the reduction of heat losses caused by ventilation. An additional opening of the windows in residential buildings results in a clearly increasing consumption of thermal heat because the thermal heat of the out coming air cannot be utilized furthermore. Continuous information on the energetic effects of the opening of windows is helpful. Under this aspect, the authors of the contribution under consideration report on the development of energy efficient comfort ventilation systems with an air quality controlled volume flow rate and continuous detection of the status of the windows aperture. The contribution under consideration is the third part of a project concerning to this theme. This part encompasses a field test with four single-family houses in which the air quality control as well as the detection of the status of the windows aperture is tested and optimized for a long period. This contribution also contains the results of the second part of the project. The second project investigate the technical implementation of a air quality regulation at prototypes and test facilities.

  3. Excess ventilation and ventilatory constraints during exercise in patients with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Teopompi, Elisabetta; Tzani, Panagiota; Aiello, Marina; Gioia, Maria Rosaria; Marangio, Emilio; Chetta, Alfredo

    2014-06-15

    We assessed the relationship between minute ventilation/carbon dioxide output (VE/VCO2) and ventilatory constraints during an incremental cardiopulmonary exercise testing (CPET) in patients with chronic obstructive pulmonary disease (COPD). Slope and intercept of the VE/VCO2 linear relationship, the ratios of inspiratory capacity/total lung capacity (IC/TLC) and of tidal volume (VT) over vital capacity (VTpeak/VC) and IC (VTpeak/IC) and over forced expiratory volume at 1st second (VTpeak/FEV1) at peak of exercise were measured in 52 COPD patients during a CPET. The difference peak-rest in end-tidal pressure of CO2 (PETCO2) was also measured. VE/VCO2 intercept showed a negative correlation with IC/TLC peak (pCOPD, VE/VCO2 slope and intercept provide complementary information on the ventilatory limitation to exercise, as assessed by changes in the end-expiratory lung volume and in tidal volume excursion.

  4. Untersuchungen zur künstlichen Beatmung bei der Maus (Mus musculus) mit dem UNO Micro-Ventilator®

    OpenAIRE

    Römer, Dirk

    2003-01-01

    In the present experimental essay the effect of controlled ventilation with the UNO Micro-Ventilator? (UMV) on the mouse is examined. The UMV is a pressure controlled and volume limited ventilation device with a sinus ventilation pattern and lowflow rebreathing of the respiration gas. Not only the impact of a preoxygenation is assessed but also the effect of different respiratory rates on mice of different weight. The assessment is made with blood gas analysis, circulatory parameters and h...

  5. Ventilation with heat recovery

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2005-01-01

    This paper presents the experiences from the use of ventilation with heat recovery in several experimental single-family houses developed and built within the last four years to meet the new Danish energy requirements of 2005. Included are descriptions of the ventilation system components...... and the main functional demands as well as measurements of the thermal efficiency, electricity consumptions and building air tightness. The paper addresses the aspects of minimizing the heat loss from the duct system and the heat recovery unit (when placed in an unheated attic space) in order to obtain...

  6. Ventilation with heat recovery

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2005-01-01

    and the main functional demands as well as measurements of the thermal efficiency, electricity consumptions and building air tightness. The paper addresses the aspects of minimizing the heat loss from the duct system and the heat recovery unit (when placed in an unheated attic space) in order to obtain......This paper presents the experiences from the use of ventilation with heat recovery in several experimental single-family houses developed and built within the last four years to meet the new Danish energy requirements of 2005. Included are descriptions of the ventilation system components...

  7. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Walker, Iain S.

    2011-04-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outdoor pollutant levels are high, the importance of minimizing energy use particularly during times of peak electricity demand, and how the energy used to condition air as part of ventilation system operation changes with outdoor conditions. Dynamic control of ventilation systems can provide ventilation equivalent to or better than what is required by standards while minimizing energy costs and can also add value by shifting load during peak times and reducing intake of outdoor air contaminants. This article describes the logic that enables dynamic control of whole-house ventilation systems to meet the intent of ventilation standards and demonstrates the dynamic ventilation system control concept through simulations and field tests of the Residential Integrated Ventilation-Energy Controller (RIVEC).

  8. A Nomogram for Calculation of Oxygen Consumption from Minute Ventilation at Varying Workloads

    Science.gov (United States)

    1979-07-01

    T. S. Neuman Naval Health Research Center San Diego, Czalifornia 92152 K. M. Moser Pulmonary Divisin r Acession FrUCSD School of Medicine NTIS GRA&I...AODRESS(UI dilffeent from Controlling Office) IS. SECURITY CLASS. (of this reporl) Bureau of Medicine & Surgery - .,_.. "-.. / Unclassified Department of

  9. 低潮气量机械通气对瓣膜置换病人肺换气功能影响的临床研究%Effects of low tidal volume ventilation on pulmonary gas exchange before and after mitral valve replacement with cardiopulmonary bypass

    Institute of Scientific and Technical Information of China (English)

    蔡宏伟; 田玉科; 任飞; 张海萍

    2006-01-01

    [Objective] To investigate the effect of low tidal volume ventilation on pulmonary gas exchange in patients undergoing mitral valve replacement with cardiopulmonary bypass (CPB). [Methods] A prospective randomized study was done in university hospital. Thirty patients undergoing mitral valve replacement with CPB were randomized to receive traditional tidal volume ventilation (TV; tidal volume, 9 mL/kg; respiratory rate, 12 times/min),or low tidal volume ventilation with conventional respiratory rate (LV; tidal volume, 7 mL/kg; respiratory rate, 12times/min), or low tidal volume ventilation with high respiratory rate (HR; tidal volume 7 mL/kg, 15 times/min)throughout surgery. During CPB, patients' lungs were kept inflated with 100% oxygen. [Results] Pulmonary gas exchange parameters were determined twice before CPB and after CPB. When final values after CPB were compared with the values before CPB, the arterial oxygen tension-inspired oxygen concentration ratio (PaO2/FiO2) was significantly decreased, and alveolar-artetal (A-a) oxygen gradient [P(A-a)O2] and intrapulmonary shunt (Qs/QT) were significantly increased in group LV. No significant differences were found in either group TV or group HR. [Conclusions] Low tidal volume ventilation with conventional respiratory rate in patients undergoing mitral valve replacement impaired pulmonary gas exchange early after CPB, while low tidal volume ventilation with high respiratory rate did not. These results suggest that low tidal volume ventilation with high respiratory rate may be useful for reducing lung injury caused by CPB and mechanical ventilation in patients undergoing mitral valve replacement.%目的以心输出量和肺换气功能为指标研究低潮气量通气对瓣膜置换病人心肺功能的影响.方法30例择期行二尖瓣置换手术病人随机分成3组:常规(传统)潮气量组(组Ⅰ),潮气量9mL/kg,呼吸频率12次/min;低潮气量常规频率组(组Ⅱ),潮气量7 mL/kg,呼吸频率12次/min

  10. Demand controlled ventilation; Behovsstyrt ventilasjon

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Henning Holm

    2006-07-01

    The terms CAV and VAV have been known terms for many years in the ventilation business. The terms are also included in building regulations, but the time is now right to focus on demand controlled ventilation (DCV). The new building regulations and the accompanying energy framework underline the need for a more nuanced thinking when it comes to controlling ventilation systems. Descriptions and further details of the ventilation systems are provided (ml)

  11. Management of critically ill patients receiving noninvasive and invasive mechanical ventilation in the emergency department

    Directory of Open Access Journals (Sweden)

    Rose L

    2012-03-01

    Full Text Available Louise RoseLawrence S Bloomberg Faculty of Nursing, University of Toronto, Toronto, Ontario, CanadaAbstract: Patients requiring noninvasive and invasive ventilation frequently present to emergency departments, and may remain for prolonged periods due to constrained critical care services. Emergency clinicians often do not receive the same education on management of mechanical ventilation or have similar exposure to these patients as do their critical care colleagues. The aim of this review was to synthesize the evidence on management of patients requiring noninvasive and invasive ventilation in the emergency department including indications, clinical applications, monitoring priorities, and potential complications. Noninvasive ventilation is recommended for patients with acute exacerbation of chronic obstructive pulmonary disease or cardiogenic pulmonary edema. Less evidence supports its use in asthma and other causes of acute respiratory failure. Use of noninvasive ventilation in the prehospital setting is relatively new, and some evidence suggests benefit. Monitoring priorities for noninvasive ventilation include response to treatment, respiratory and hemodynamic stability, noninvasive ventilation tolerance, detection of noninvasive ventilation failure, and identification of air leaks around the interface. Application of injurious ventilation increases patient morbidity and mortality. Lung-protective ventilation with low tidal volumes based on determination of predicted body weight and control of plateau pressure has been shown to reduce mortality in patients with acute respiratory distress syndrome, and some evidence exists to suggest this strategy should be used in patients without lung injury. Monitoring of the invasively ventilated patient should focus on assessing response to mechanical ventilation and other interventions, and avoiding complications, such as ventilator-associated pneumonia. Several key aspects of management of noninvasive

  12. 48 CFR 9901.312 - Minutes.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Minutes. 9901.312 Section 9901.312 Federal Acquisition Regulations System COST ACCOUNTING STANDARDS BOARD, OFFICE OF FEDERAL... maintaining Board files....

  13. U.S. 15 Minute Precipitation Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. 15 Minute Precipitation Data is digital data set DSI-3260, archived at the National Climatic Data Center (NCDC). This is precipitation data. The primary source...

  14. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  15. Ventilator and viral induced inflammation

    NARCIS (Netherlands)

    Hennus, M.P.

    2013-01-01

    This thesis expands current knowledge on ventilator induced lung injury and provides insights on the immunological effects of mechanical ventilation during viral respiratory infections. The experimental studies in the first part of this thesis improve our understanding of how mechanical ventilation

  16. Algebra success in 20 minutes a day

    CERN Document Server

    LearningExpress, LLC

    2014-01-01

    Stripped of unnecessary math jargon but bursting with algebra essentials, this handy guide covers vital algebra skills that apply to real-world scenarios. Whether you're new to algebra or just looking for a refresher, Algebra Success in 20 Minutes a Day offers a lesson plan that provides quick and thorough instruction in practical, critical skills. All lessons can be completed in just 20 minutes a day, for a manageable and non-intimidating learning experience.

  17. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  18. Elforbrug til mekanisk ventilation

    DEFF Research Database (Denmark)

    Olufsen, P.

    I Energi 2000 er ventilationsområdet udpeget som et af de områder, hvor der bør tages initiativ til at fremme elbesparelser. I rapporten beskrives og analyseres målinger af elforbruget til ventilation i 12 bygninger, der alle anvendes til administration eller lignende formål. På grundlag af...

  19. Estimation of tidal ventilation in preterm and term newborn infants using electromagnetic inductance plethysmography.

    Science.gov (United States)

    Williams, E M; Pickerd, N; Eriksen, M; Øygarden, K; Kotecha, S

    2011-11-01

    Tidal volume (VT) measurements in newborn infants remain largely a research tool. Tidal ventilation and breathing pattern were measured using a new device, FloRight, which uses electromagnetic inductive plethysmography,and compared simultaneously with pneumotachography in 43 infants either receiving no respiratory support or continuous positive airway pressure (CPAP).Twenty-three infants were receiving CPAP (gestational age 28 ± 2 weeks, mean ± SD) and 20 were breathing spontaneously (gestational age 34 ± 4 weeks). The two methods were in reasonable agreement, with VT (r2 = 0.69) ranging from 5 to 23 ml (4–11 ml kg−1) with a mean difference of 0.4 ml and limit of agreement of −4.7 to + 5.5 ml. For respiratory rate, minute ventilation,peak flow and breathing pattern indices, the mean difference between the two methods ranged between 0.7% and 5.8%. The facemask increased the respiratory rate (P < 0.001) in both groups with the change in VT being more pronounced in the infants receiving no respiratory support. Thus, FloRight provides an easy to use technique to measure term and preterm infants in the clinical environment without altering the infant's breathing pattern.

  20. 小潮气量通气和肺复张策略治疗小儿急性肺损伤的作用%Effect of Small Sidal Volume Ventilation and Recruitment Maneuvers Strategy in the Treatment of Acute Lung Injury

    Institute of Scientific and Technical Information of China (English)

    梁文宝; 蔡仪术

    2013-01-01

    Objective:To discuss the effect of Small tidal volume ventilation and recruitment maneuvers strategy in the treatment of acute lung injury. Methods:65 children in our hospital with acute lung injury were selected and divided into two groups.The children in observation groups were given Small tidal volume ventilation and recruitment maneuvers strategy,while the control group was given conventional ventilation.The blood gas indexes were observed in the two groups.Results:After 24 h treatment,PaO2,PaO2/FiO2 raised and PaCO2 significantly dropped in observation groups than control groups,there was significant difference(P<0.05).Conclusion:Small tidal volume ventilation and recruitment maneuvers strategy can improve the symptom and oxygenation function in child with acute lung injury.%  目的:探讨小潮气量通气和肺复张策略治疗小儿急性肺损伤的作用。方法:将笔者所在医院收治的65例急性肺损伤患儿随机分为两组,对照组30例给予常规机械通气治疗,观察组35例给予小潮气量联合肺复张策略治疗,观察两组血气分析指标。结果:观察组实施小潮气量通气和肺复张策略后24 h后,PaO2、PaO2/FiO2显著升高,PaCO2显著下降,与对照组比较差异有统计学意义(P<0.05)。结论:小潮气量通气和肺复张策略可以显著提高急性肺损伤患儿的肺顺应性和氧合功能,改善症状。

  1. Human response to ductless personalized ventilation coupled with displacement ventilation

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Veselý, Michal; Melikov, Arsen K.

    2012-01-01

    A human subject experiment was carried out to investigate the extent to which ductless personalized ventilation (DPV) in conjunction with displacement ventilation can improve perceived air quality (PAQ) and thermal comfort at elevated room air temperature in comparison with displacement ventilation...... alone. The experimental conditions comprised displacement ventilation alone (room air temperature of 23 °C, 26 °C, 29 °C) and DPV with displacement ventilation (26 °C, 29 °C), both operating at supply air temperatures 3, 5 or 6K lower than room air temperature, as well as mixing ventilation (23 °C, 3 K......). During one hour exposure participants answered questionnaires regarding PAQ and thermal comfort. PAQ was significantly better with DPV than without DPV at the same background conditions. Thermal comfort improved when DPV was used. Combining DPV with displacement ventilation showed the potential...

  2. 单肺通气中右美托咪定辅助麻醉对肺通气/血流的影响%Single Lung Ventilation of Dexmedetomidine Assisted Anesthesia on Pulmonary Ventilation/Blood Flow

    Institute of Scientific and Technical Information of China (English)

    康忠奎

    2016-01-01

    Objective Observed in single lung ventilation,right the microphones on auxiliary anesthesia hemodynamic, whether to help to improve the single lung ventilation lung ventilation/blood flow abnormalities.Methods 60 cases of esophageal cancer radical under one-lung ventilation were divided into control group and experimental group.Control group 0.9% saline injec-tion 10 mL after anesthesia induction,the experimental group after anesthesia induction right set beauty holds the mi 0.6 mu g/kg (input) 10 minutes.Observe two groups of related indicators: single lung ventilation time,operation time,airway pressure,oxygen partial pressure;Observe preoperative,15 minutes before intubation and after intubation and after intubation,cut skin,into the chest,single lung ventilation when 60 minutes,90 minutes of single lung ventilation,double lung ventilation 15 minutes time point of the mean arterial pressure (MAP),heart rate (HR);Observe preoperatively,single lung ventilation 60 minutes,90 minutes of one-lung ventilation and oxygen index.Results This study results show that the oxygen and index in preoperative point in time,the ex-perimental group there was no statistically significant difference compared with control group (P>0.05);Oxygen index and one-lung ventilation 60 minutes,single lung ventilation in 90 minutes,the experimental group compared with control group difference was sta-tistically significant(P0.05);氧和指数在单肺通气60 min、单肺通气90 min时间点,实验组与对照组比较差异有统计学意义(P<0.05),其机制可能就是减轻了单肺通气引起急性肺损伤。 HR、MAP在插管前、插管后、插管后15 min、切皮时、进胸、单肺通气60 min、单肺通气90 min、双肺通气15 min时间点,实验组与对照组比较差异有统计学意义(P<0.05)。结论在单肺通气中,右美托咪定辅助麻醉血流动力学更平稳,氧和指数增加,有助于改善单肺通气时的肺通气/血流异常。

  3. Metabolic and clinical comparative analysis of treadmill six-minute walking test and cardiopulmonary exercise testing in obese and eutrophic women

    Directory of Open Access Journals (Sweden)

    Luciana Di Thommazo-Luporini

    Full Text Available BACKGROUND: Impaired exercise tolerance is directly linked to decreased functional capacity as a consequence of obesity. OBJECTIVES: To analyze and compare the cardiopulmonary, metabolic, and perceptual responses during a cardiopulmonary exercise test (CPX and a treadmill six-minute walking test (tread6MWT in obese and eutrophic women. METHOD: Twenty-nine female participants, aged 20-45 years were included. Fourteen were allocated to the obese group and 15 to the eutrophic group. Anthropometric measurements and body composition assessment were performed. RESULTS: In both tests, obese women presented with significantly higher absolute oxygen uptake, minute ventilation, and systolic and diastolic blood pressure; they also presented with lower speed, distance walked, and oxygen uptake corrected by the weight compared to eutrophics. During the maximal exercise test, perceived dyspnea was greater and the respiratory exchange ratio was lower in obese subjects compared to eutrophics. During the submaximal test, carbon dioxide production, tidal volume, and heart rate were higher in obese subjects compared to eutrophic women. When analyzing possible correlations between the CPX and the tread6MWT at peak, there was a strong correlation for the variable heart rate and a moderate correlation for the variable oxygen uptake. The heart rate obtained in the submaximal test was able to predict the one obtained in the maximal test. Bland-Altman plots demonstrated the agreement between both tests to identify metabolic and physiological parameters at peak exercise. CONCLUSIONS: The six-minute walking test induced ventilatory, metabolic, and cardiovascular responses in agreement with the maximal testing. Thus, the six-minute walking test proves to be important for functional evaluation in the physical therapy routine.

  4. Clinical observation of low tidal volume with low positive end-expiratory pressure in one-lung ventilation patients undergoing esophageal cancer resection%低潮气量联合低呼气末正压通气用于食管癌根治术患者单肺通气的临床观察

    Institute of Scientific and Technical Information of China (English)

    周荣胜; 刘齐宁; 关正; 毕阳

    2012-01-01

    目的 观察低潮气量联合低呼气末正压通气用于食管癌根治术患者单肺通气的临床效果.方法 32例ASA Ⅰ或Ⅱ级择期行食管癌(中段)根治术患者随机均分为 A、B两组.A组为低潮气量联合低呼气末正压通气组:VT=6ml*kg-1,f=16次/min-1,加5cm H2O PEEP;B组为传统单肺通气组:VT=10ml*kg-1,f=12次/min.观察气管插管后切皮前(T1)、单肺通气后60min(T2)、恢复双肺通气后15min(T3)、拔管后30min(T4)的动脉氧分压(PaO2)、动脉二氧化碳分压( PaCO2)、呼气末二氧化碳分压(PETCO2)、氧合指数(PaO2/FiO2)、平均动脉压(MAP)及术中的气道峰压(Ppeak)、气道平台压力(Pplat)、气道压力(Paw).结果 T2时A组的Ppeak、Pplat及Paw明显低于B组(P0.05).结论 食管癌根治术中应用低潮气量联合低呼气末正压通气能有效改善患者术中低氧血症,减少肺部并发症,有利于患者呼吸功能的恢复,对血流动力学无明显影响,是食管癌根治手术全麻安全、有效的通气方法.%Objective: To investigate the effects of low tidal volume with low positive end - expiratory pressure in one - lung ventilation patients undergoing esophageal cancer resection. Methods: Thirty - two ASA class I or II patients scheduled to undergo esophagectomy for esophageal cancer were randomly assigned into 2 groups ( n = 16 each ). Low VT and low positive end - expiratory pressure( PEEP )mechanical ventilation were applied to the patients in group A( VT = 6ml"kg~ ,f=16, PEEP = 5 cm H2 0 ), while traditional ventilation was used in group B( VT = 10 ml ? Kg"1 ,f = 12, PEEP = 0 ). Arterial blood samples were taken and PaO2 ,PaCO2 ,PETCO2 , PaO2/FiO2 and MAP were recorded at the time points of before operation( Tj ) ,60 min after one - lung ventilation( T2 ), 15 min after double lung ventilation and 30 min after tracheal extubation( T4 ). Peak airway pressure( Ppeak ), Pplat and Paw were recorded during operation. Results: At T2 ,Ppeak,Pplat and Paw in

  5. Sensitivity analysis on parameter changes in underground mine ventilation systems

    Institute of Scientific and Technical Information of China (English)

    LI Gary; KOCSIS Charles; HARDCASTLE Steve

    2011-01-01

    A more efficient mine ventilation system,the ventilation-on-demand (VOD) system,has been proposed and tested in Canadian mines recently.In order to supply the required air volumes to the production areas of a mine,operators need to know the cause and effect of any changes requested from the VOD system.The sensitivity analysis is developed through generating a cause and effect matrix of sensitivity factors on given parameter changes in a ventilation system.This new utility,which was incorporated in the 3D-CANVENT mine ventilation simulator,is able to predict the airflow distributions in a ventilation network when underground conditions and ventilation controls are changed.For a primary ventilation system,the software can determine the optimal operating speed of the main fans to satisfy the airflow requirements in underground workings without necessarily using booster fans and regulators locally.An optimized fan operating speed time-table would assure variable demand-based fresh air delivery to the production areas effectively,while generating significant savings in energy consumption and operating cost.

  6. Assessment of mechanical ventilation parameters on respiratory mechanics.

    Science.gov (United States)

    Pidaparti, Ramana M; Koombua, Kittisak; Ward, Kevin R

    2012-01-01

    Better understanding of airway mechanics is very important in order to avoid lung injuries for patients undergoing mechanical ventilation for treatment of respiratory problems in intensive-care medicine, as well as pulmonary medicine. Mechanical ventilation depends on several parameters, all of which affect the patient outcome. As there are no systematic numerical investigations of the role of mechanical ventilation parameters on airway mechanics, the objective of this study was to investigate the role of mechanical ventilation parameters on airway mechanics using coupled fluid-solid computational analysis. For the airway geometry of 3 to 5 generations considered, the simulation results showed that airflow velocity increased with increasing airflow rate. Airway pressure increased with increasing airflow rate, tidal volume and positive end-expiratory pressure (PEEP). Airway displacement and airway strains increased with increasing airflow rate, tidal volume and PEEP form mechanical ventilation. Among various waveforms considered, sine waveform provided the highest airflow velocity and airway pressure while descending waveform provided the lowest airway pressure, airway displacement and airway strains. These results combined with optimization suggest that it is possible to obtain a set of mechanical ventilation strategies to avoid lung injuries in patients.

  7. Links between the mechanics of ventilation and spine stability.

    Science.gov (United States)

    Wang, Simon; McGill, Stuart M

    2008-05-01

    Spine stability is ensured through isometric coactivation of the torso muscles; however, these same muscles are used cyclically to assist ventilation. Our objective was to investigate this apparent paradoxical role (isometric contraction for stability or rhythmic contraction for ventilation) of some selected torso muscles that are involved in both ventilation and support of the spine. Eight, asymptomatic, male subjects provided data on low back moments, motion, muscle activation, and hand force. These data were input to an anatomically detailed, biologically driven model from which spine load and a lumbar spine stability index was obtained. Results revealed that subjects entrained their torso stabilization muscles to breathe during demanding ventilation tasks. Increases in lung volume and back extensor muscle activation coincided with increases in spine stability, whereas declines in spine stability were observed during periods of low lung inflation volume and simultaneously low levels of torso muscle activation. As a case study, aberrant ventilation motor patterns (poor muscle entrainment), seen in one subject, compromised spine stability. Those interested in rehabilitation of patients with lung compromise and concomitant back troubles would be assisted with knowledge of the mechanical links between ventilation during tasks that impose spine loading.

  8. Cellular Stress Failure in Ventilator-injured Lungs

    Science.gov (United States)

    Vlahakis, Nicholas E.; Hubmayr, Rolf D.

    2005-01-01

    The clinical and experimental literature has unequivocally established that mechanical ventilation with large tidal volumes is injurious to the lung. However, uncertainty about the micromechanics of injured lungs and the numerous degrees of freedom in ventilator settings leave many unanswered questions about the biophysical determinants of lung injury. In this review we focus on experimental evidence for lung cells as injury targets and the relevance of these studies for human ventilator-associated lung injury. In vitro, the stress-induced mechanical interactions between matrix and adherent cells are important for cellular remodeling as a means for preventing compromise of cell structure and ultimately cell injury or death. In vivo, these same principles apply. Large tidal volume mechanical ventilation results in physical breaks in alveolar epithelial and endothelial plasma membrane integrity and subsequent triggering of proinflammatory signaling cascades resulting in the cytokine milieu and pathologic and physiologic findings of ventilator-associated lung injury. Importantly, though, alveolar cells possess cellular repair and remodeling mechanisms that in addition to protecting the stressed cell provide potential molecular targets for the prevention and treatment of ventilator-associated lung injury in the future. PMID:15695492

  9. [Ventilation during cardiopulmonary resuscitation (CPR). A literature study and analysis of ventilation strategies].

    Science.gov (United States)

    Wenzel, V; Lindner, K H; Prengel, A W

    1997-02-01

    ventilation during CPR showed controversial results; in one animal model of cardiac arrest with muscle paralysis, chest compressions were not sufficient for adequate gas exchange, but active compression-decompression CPR achieved reasonable ventilation. Animal models that prevented gasping during cardiac arrest required ventilation during CPR, whereas gasping animals seemed to be satisfactorily ventilated with chest compressions alone. The question whether spontaneous gasping after cardiac arrest in humans may be sufficient for oxygenation and carbon dioxide elimination is debatable and remains unanswered at this time. When cardiac arrest is monitored, frequent coughing by the patient may maintain artificial ventilation and circulation for 30 s. The strategy to compress the thorax first and then maintain the airway and perform ventilation may only have an advantage for the first 30 s of CPR. Therefore, MTMV remains the therapy of choice to ventilate the victim of cardiac arrest. If a rescuer chooses to not perform MTMV, at least chest compressions should be administered. During ventilation with an unprotected airway, tidal volumes of 0.5 l instead 0.8-1.2 l may have an advantage. This strategy would decrease the inspiratory flow rate and, therefore, peak airway inflation pressure, which is associated with stomach inflation. Animal models indicate that lower esophageal sphincter pressure may decrease rapidly to 5 cm H2O during cardiac arrest, which may further increase the importance of a low peak airway pressure during ventilation with an unprotected airway. Gastric inflation may cause, besides regurgitation, aspiration, and pneumonia, an increased intragastric pressure, which may push up the diaphragm, decrease lung compliance, and induce a vicious circle of hypoventilation and stomach inflation.(ABSTRACT TRUNCATED)

  10. Design Procedure for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Tjelflaat, Per Olaf

    Mechanical and natural ventilation systems have developed separately during many years. The natural next step in this development is development of ventilation concepts that utilises and combines the best features from each system into a new type of ventilation system - Hybrid Ventilation....... Buildings with hybrid ventilation often include other sustainable technologies and an energy optimisation requires an integrated approach in the design of the building and its mechanical systems. Therefore, the hybrid ventilation design procedure differs from the design procedure for conventional HVAC....... The first ideas on a design procedure for hybrid ventilation is presented and the different types of design methods, that is needed in different phases of the design process, is discussed....

  11. ASHRAE and residential ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.

    2003-10-01

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the

  12. Energy Saving by Novel Bed-Integrated Local Exhaust Ventilation

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Kehayova, Nushka; Melikov, Arsen Krikor

    2016-01-01

    to suck the human bio-effluents at the area of the body where they are generated before they spread in the room. The air polluted with released bio-effluents is exhausted into the mattress near the body and is either cleaned and released back in the room or is removed from the room by connecting......-bed hospital patient room (1.3 air changes per hour (ACH)) and double-bed patient room (1.6 ACH) was assessed by means of dynamic computer simulations. The estimated annual energy consumption for the rooms using the VM combined with CAV was compared to the annual energy consumption when the CAV ventilation...... the mattress to the exhaust of the room background ventilation system. Comprehensive research reveals that the method is highly efficient for removal of bio-effluents. The energy saving potential of the VM combined with constant air volume (CAV) ventilation operating at reduced ventilation rate in a single...

  13. Relationship between 6-minute walk test and pulmonary function test in stable chronic obstructive pulmonary disease with different severities

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong; LIANG Bin-miao; FANG Yong-jiang; XU Zhi-bo; WANG Ke; YI Qun; OU Xue-mei; FENG Yu-lin

    2012-01-01

    Background The relationship between the 6-minute walk test (6MWT) and pulmonary function test in stable chronic obstructive pulmonary disease (COPD) remains unclear.We evaluate the correlation of 6MWT and spirometric parameters in stable COPD with different severities.6MWT data assessed included three variables:the 6-minute walk distance (6MWD),6-minute walk work (6MWORK),and pulse oxygen desaturation rate (SPO2%).Methods 6MWT and pulmonary function test were assessed for 150 stable COPD patients with different severities.Means and standard deviations were calculated for the variables of interest.Analysis of variance was performed to compare means.Correlation coefficients were calculated for 6MWT data with the spirometric parameters and dyspnea Borg scale.Multiple stepwise regression analysis was used to screen pulmonary function-related predictors of 6MWT data.Results The three variables of 6MWT all varied as the severities of the disease.The 6MWD and 6MWORK both correlated with some spirometric parameters (positive or negative correlation; the absolute value of r ranging from 0.34 to 0.67; P<0.05) in severe and very severe patients,and the SPO2% correlated with the dyspnea Borg scale in four severities (r=-0.33,-0.34,-0.39,-0.53 respectively; P <0.05).The 6MWD was correlated with the 6MWORK in four severities (r=0.56,0.57,0.72,0.81 respectively,P <0.05),and neither of them correlated with the SPO2%.The percent of predicted forced expiratory volume in 1 second (FEV1% predicted) and residual volume to total lung capacity ratio (RV/TLC) were predictors of the 6MWD,and the maximum voluntary ventilation (MW) was the predictor of the 6MWORK.Conclusions 6MWT correlated with the spirometric parameters in severe and very severe COPD patients.6MWT may be used to monitor changes of pulmonary function in these patients.

  14. Geometry success in 20 minutes a day

    CERN Document Server

    LLC, LearningExpress

    2014-01-01

    Whether you're new to geometry or just looking for a refresher, Geometry Success in 20 Minutes a Day offers a 20-step lesson plan that provides quick and thorough instruction in practical, critical skills. Stripped of unnecessary math jargon but bursting with geometry essentials, Geometry Success in 20 Minutes a Day: Covers all vital geometry skills, from the basic building blocks of geometry to ratio, proportion, and similarity to trigonometry and beyond Provides hundreds of practice exercises in test format Applies geometr

  15. Lung recruitment and endotracheal suction in ventilated preterm infants measured with electrical impedance tomography.

    Science.gov (United States)

    Hough, Judith L; Shearman, Andrew D; Liley, Helen; Grant, Caroline A; Schibler, Andreas

    2014-11-01

    Although suctioning is a standard airway maintenance procedure, there are significant associated risks, such as loss of lung volume due to high negative suction pressures. This study aims to assess the extent and duration of change in end-expiratory level (EEL) resulting from endotracheal tube (ETT) suction and to examine the relationship between EEL and regional lung ventilation in ventilated preterm infants with respiratory distress syndrome. A prospective observational clinical study of the effect of ETT suction on 20 non-muscle-relaxed preterm infants with respiratory distress syndrome (RDS) on conventional mechanical ventilation was conducted in a neonatal intensive care unit. Ventilation distribution was measured with regional impedance amplitudes and EEL using electrical impedance tomography. ETT suction resulted in a significant increase in EEL post-suction (P suction, suggesting heterogeneity. Tidal volume was significantly lower in volume-guarantee ventilation compared with pressure-controlled ventilation (P = 0.04). ETT suction in non-muscle-relaxed and ventilated preterm infants with RDS results in significant lung volume increase that is maintained for at least 90 min. Regional differences in distribution of ventilation with ETT suction suggest that the behaviour of the lung is heterogeneous in nature. © 2014 The Authors. Journal of Paediatrics and Child Health © 2014 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  16. Effect of protective ventilation on postoperative lung injury during one-lung ventilation%保护性通气策略对于开胸术后肺损伤的影响

    Institute of Scientific and Technical Information of China (English)

    焦卫平; 李简; 刘桐林

    2005-01-01

    [Objective] To evaluate the efficacy of individual protective ventilation strategy on the postoperative lung injury during one-lung ventilation (OLV). [Methods] Thirty-two patients undergoing pulmonary resection were randomly divided into two groups. Traditional ventilation group (TG): tidal volume 8 ml/kg and peak inspiratory pressure (PIP) <30 cmH20. Protective ventilation group (PG): tidal volume 1/2VT (half-tidal-volume from preoperative pulmonary function test) and PIP<25 cmH20. The arterial blood samples were collected for blood gases analysis immediately 20 minutes after two-lung ventilation (TLV) in the supine position after anesthesia (T1) and the end of operation (T2). The values of PaO2, PaCO2, pH and the inspired oxygen fraction (FiO2) were recorded and the values of oxygenation index (OI) were calculated respectively. The venous blood samples were collected for measurement of plasma interleukin-6 (IL-6) level at two time points. [Results] In all the patients, a decrease in OI and increase in plasma IL-6 level occurred at the end of operation (P <0.05). There were no significant differences of changes between the TG and the PG (P>0.05). For the overweight patients (difference between body weight and predicted body weight higher 10 kg), the decreases in OI were larger in traditional ventilation strategy than those in protective ventilation strategy (P<0.05). [Conclusion] During OLV, the individual protective ventilation strategy moderates the postoperative lung injury for the overweight patients.%目的评价单肺通气(OLV)期间个体化保护性通气策略的应用对于开胸术后肺损伤的影响.方法32例限期进行肺切除手术的患者随机分为两组.常规通气组(TG):潮气量8 mL/kg,吸气峰压(PIP)小于30cmH2O;保护性通气组(PG):潮气量1/2VT(为患者术前肺功能潮气量测试值减半),PIP<25 cmH2O.在全麻平卧位双肺通气20min后(T1)和手术结束(T2)两个时间点收集动脉血做血气分

  17. 10-Minute Consultation Transient ischaemic attack

    Institute of Scientific and Technical Information of China (English)

    Vedamurthy Adhiyaman; Sonja Adhiyaman

    2009-01-01

    @@ A 64 year old man comes to your surgery five days after an episode of visual loss in his left eye, followed by fight sided weakness and speech disturbance lasting 10 minutes. He has made a complete recovery and has driven himself to the surgery to ask whether he can return to work.

  18. Grammar success in 20 minutes a day

    CERN Document Server

    Express, Learning

    2013-01-01

    Thorough and concise, Grammar Success in 20 Minutes a Day, covers all the essentials, including common and proper nouns; personal, reflexive, and demonstrative pronouns; regular and irregular verbs; adjectives, adverbs, misplaced modifiers, prepositions, subordinate and insubordinate clauses; coordinating and correlating conjunctions; compound sentences; and punctuation.

  19. Increased Resistance to Flow and Ventilator Failure Secondary to Faulty CO2 Absorbent Insert Not Detected During Automated Anesthesia Machine Check: A Case Report.

    Science.gov (United States)

    Moreno-Duarte, Ingrid; Montenegro, Julio; Balonov, Konstantin; Schumann, Roman

    2017-02-01

    Most modern anesthesia workstations provide automated checkout, which indicates the readiness of the anesthesia machine. In this case report, an anesthesia machine passed the automated machine checkout. Minutes after the induction of general anesthesia, we observed a mismatch between the selected and delivered tidal volumes in the volume auto flow mode with increased inspiratory resistance during manual ventilation. Endotracheal tube kinking, circuit obstruction, leaks, and patient-related factors were ruled out. Further investigation revealed a broken internal insert within the CO2 absorbent canister that allowed absorbent granules to cause a partial obstruction to inspiratory and expiratory flow triggering contradictory alarms. We concluded that even when the automated machine checkout indicates machine readiness, unforeseen equipment failure due to unexpected events can occur and require providers to remain vigilant.

  20. Peripheral Circulatory Features during High-Frequency Jet Ventilation

    Directory of Open Access Journals (Sweden)

    M. B. Kontorovich

    2010-01-01

    Full Text Available The paper gives the results of a study of peripheral circulatory features during high-frequency jet ventilation (HFJV. The main specific features of peripheral circulation and oxygen transport during HFJV are formulated on the basis of a study of cardiac output (impedance cardiography, peripheral vascular resistance, peripheral vascular blood filling (photoplethysmogram analysis, adaptive peripheral blood flow reactions (spectral analysis of peripheral vascular pulsation. HFJV gives rise to the peculiar pattern of peripheral hemodynamics and tissue gas exchange, which is characterized by higher oxygen uptake without a decrease in mixed venous blood saturation, with normal extraction coefficient and preserved low peripheral vascular resistance. During HFJV, unlike traditional ventilation, the main peripheral hemodynamic feature is the increased capillary bed blood volume caused by the blood flow involvement of reserve capillaries under control of volume (parasympathetic regulation of adaptive peripheral hemodynamic reactions. Key words: high-frequency jet ventilation, oxygen transport, peripheral hemodynamics.

  1. Ventilation strategies in burn intensive care: A retrospective observational study

    Directory of Open Access Journals (Sweden)

    Stefano Palazzo

    2014-01-01

    Full Text Available Consensus regarding optimal burns intensive care (BICU patient management is lacking. This study aimed to assess whether ventilation strategies, cardiovascular support and sedation in BICU patients have changed over time, and whether this affects outcome. A retrospective observational study comparing two 12-patient BICU cohorts (2005/06 and 2010/11 was undertaken. Demographic and admission characteristics, ventilation parameters, sedation, fluid resuscitation, cardiovascular support and outcome (length of stay, mortality data were collected from patient notes. Data was analysed using T-tests, Fisher's exact and Mann-Whitney U tests. In our study cohort groups were equivalent in demographic and admission parameters. There were equal ventilator-free days in the two cohorts 10 ± 12.7 vs. 13.3 ± 12.2 ventilator free days; P = 0.447. The 2005/06 cohort were mechanically ventilated more often than in 2010/11 cohort (568 ventilator days/1000 patient BICU days vs. 206 ventilator days/1000 patient BICU days; P = 0.001. The 2005/06 cohort were ventilated less commonly in tracheostomy group/endotracheal tube spontaneous (17.8% vs. 26%; P = 0.001 and volume-controlled modes (34.4% vs. 40.8%; P = 0.001. Patients in 2010/11 cohort were more heavily sedated (P = 0.001 with more long-acting sedative drug use (P = 0.001 than the 2005/06 cohort, fluid administration was equivalent. Patient outcome did not vary. Inhalational injury patients were ventilated in volume-controlled (44.5% vs. 28.1%; P = 0.001 and pressure-controlled modes (18.2% vs. 9.5%; P = 0.001 more frequently than those without. Outcome did not vary. This study showed there has been shift away from mechanical ventilation, with increased use of tracheostomy/tracheal tube airway spontaneous ventilation. Inhalation injury patients require more ventilatory support though patient outcomes do not differ. Prospective trials are required to establish which strategies confer benefit.

  2. Nasal highflow improves ventilation in patients with COPD

    Directory of Open Access Journals (Sweden)

    Bräunlich J

    2016-05-01

    Full Text Available Jens Bräunlich,* Marcus Köhler,* Hubert WirtzDepartment of Respiratory Medicine, University of Leipzig, Leipzig, Germany *These authors contributed equally to this workBackground: Nasal highflow (NHF provides a warmed and humidified air stream up to 60 L/min. Recent data demonstrated a positive effect in patients with acute hypoxemic respiratory failure, especially when caused by pneumonia. Preliminary data show a decrease in hypercapnia in patients with COPD. Therefore, NHF should be evaluated as a new ventilatory support device. This study was conducted to assess the impact of different flow rates on ventilatory parameters in patients with COPD.Materials and methods: This interventional clinical study was performed with patients suffering from severe COPD. The aim was to characterize flow-dependent changes in mean airway pressure, breathing volumes, breathing frequency, and decrease in partial pressure of CO2 (pCO2. Mean airway pressure was measured in the nasopharyngeal space (19 patients. To evaluate breathing volumes, we used a polysomnographic device (18 patients. All patients received 20 L/min, 30 L/min, 40 L/min, and 50 L/min and – to illustrate the effects – nasal continuous positive airway pressure and nasal bilevel positive airway pressure. Capillary blood gas analyses were performed in 54 patients with hypercapnic COPD before and two hours after the use of NHF. We compared the extent of decrease in pCO2 when using 20 L/min and 30 L/min. Additionally, comfort and dyspnea during the use of NHF were surveyed.Results: NHF resulted in a minor flow dependent increase in mean airway pressure. Tidal volume increased, and breathing rate decreased. The calculated minute volume decreased under NHF breathing. In spite of this fact, hypercapnia decreased with increasing flow (20 L/min vs 30 L/min. Additionally, an improvement in dyspnea was observed. The rapid shallow breathing index shows a decrease when using NHF.Conclusion: NHF

  3. Pretest Predictions for Ventilation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Y. Sun; H. Yang; H.N. Kalia

    2007-01-17

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, concrete pipe walls, and insulation that will be developed during the ventilation tests involving various test conditions. The results will be used as input to the following three areas: (1) Decisions regarding testing set-up and performance. (2) Assessing how best to scale the test phenomena measured. (3) Validating numerical approach for modeling continuous ventilation. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the ventilation tests, and develop and describe numerical methods that can be used to calculate the effects of continuous ventilation. Sensitivity studies to assess the impact of variation of linear power densities (linear heat loads) and ventilation air flow rates are included. The calculation is limited to thermal effect only.

  4. Pulmonary mechanics during mechanical ventilation.

    Science.gov (United States)

    Henderson, William R; Sheel, A William

    2012-03-15

    The use of mechanical ventilation has become widespread in the management of hypoxic respiratory failure. Investigations of pulmonary mechanics in this clinical scenario have demonstrated that there are significant differences in compliance, resistance and gas flow when compared with normal subjects. This paper will review the mechanisms by which pulmonary mechanics are assessed in mechanically ventilated patients and will review how the data can be used for investigative research purposes as well as to inform rational ventilator management.

  5. Mechanical ventilation in neurosurgical patients

    Directory of Open Access Journals (Sweden)

    Keshav Goyal

    2013-01-01

    Full Text Available Mechanical ventilation significantly affects cerebral oxygenation and cerebral blood flow through changes in arterial carbon dioxide levels. Neurosurgical patients might require mechanical ventilation for correction and maintenance of changes in the pulmonary system that occur either due to neurosurgical pathology or following surgery during the acute phase. This review discusses the basics of mechanical ventilation relevant to the neurosurgeon in the day-to-day management of neurosurgical patient requiring artificial support of the respiration.

  6. Design Principles for Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system- Hybrid Ventilation....... The hybrid ventilation concepts, design challenges and principles are discussed and illustrated by four building examples....

  7. Alterações hemodinâmicas durante o pneumoperitônio em cães ventilados com volume e pressão controlados Alteraciones hemodinámicas durante el pneumoperitoneo en canes ventilados con volumen y presión controlados Hemodynamic changes during pneumoperitoneum in volume and pressure controlled ventilated dogs

    Directory of Open Access Journals (Sweden)

    Armando Vieira de Almeida

    2003-12-01

    por el pneumoperitoneo en canes con ventilación por volumen y presión controlados. MÉTODO: Diez y seis canes anestesiados con tiopental sódico y fentanil fueron divididos en grupo 1, volumen controlado, y grupo 2, presión controlada, y sometidos al pneumoperitoneo de 10 y 15 mmHg. Se estudió la frecuencia cardíaca, presión arterial media, presión del atrio derecho, presión de la arteria pulmonar ocluida, índice cardíaco, índice de resistencia vascular sistémica y vasopresina plasmática. Los datos fueron colectados en 4 momentos. M1 - antes del pneumoperitoneo, M2 - 30 minutos después del pneumoperitoneo con 10 mmHg, M3 - 30 minutos después del pneumoperitoneo con 15 mmHg, M4 - 30 minutos después de la deflación del pneumoperitoneo. RESULTADOS: Los resultados mostraron aumento en el índice cardíaco, en las presiones del atrio derecho y de la arteria pulmonar ocluida en M2 y M3, en ambos grupos. La vasopresina no varió durante el procedimiento y el índice de resistencia vascular sistémica no aumentó, proporcionando estabilidad de la presión arterial media en ambos grupos. CONCLUSIONES: Las modalidades ventilatorias no determinaron diferencias en la respuesta hemodinámica entre los grupos estudiados. La técnica anestésica utilizada y las presiones intra-abdominales alcanzadas determinaron estabilidad de la presión arterial media, probablemente resultante de la ausencia del aumento en el índice de la resistencia vascular sistémica.BACKGROUND AND OBJECTIVES: There are no studies associating ventilation-induced effects and hemodynamic changes during pneumoperitoneum. This study aimed at evaluating hemodynamic changes determined by pneumoperitoneum in dogs under volume and pressure controlled ventilation. METHODS: The study involved 16 dogs anesthetized with sodium thiopental and fentanyl, divided in group 1: volume controlled; and group 2: pressure controlled; submitted to 10 and 15 mmHg pneumoperitoneum. The following parameters were

  8. Clinical Validation of 4-Dimensional Computed Tomography Ventilation With Pulmonary Function Test Data

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Douglas [University of Colorado School of Medicine, Aurora, Colorado (United States); Schubert, Leah; Diot, Quentin [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States); Castillo, Richard [Department of Radiation Oncology, The University of Texas Medical Branch, Galveston, Texas (United States); Castillo, Edward; Guerrero, Thomas [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Martel, Mary K. [Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Linderman, Derek; Gaspar, Laurie E.; Miften, Moyed; Kavanagh, Brian D. [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States); Vinogradskiy, Yevgeniy, E-mail: yevgeniy.vinogradskiy@ucdenver.edu [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado (United States)

    2015-06-01

    Purpose: A new form of functional imaging has been proposed in the form of 4-dimensional computed tomography (4DCT) ventilation. Because 4DCTs are acquired as part of routine care for lung cancer patients, calculating ventilation maps from 4DCTs provides spatial lung function information without added dosimetric or monetary cost to the patient. Before 4DCT-ventilation is implemented it needs to be clinically validated. Pulmonary function tests (PFTs) provide a clinically established way of evaluating lung function. The purpose of our work was to perform a clinical validation by comparing 4DCT-ventilation metrics with PFT data. Methods and Materials: Ninety-eight lung cancer patients with pretreatment 4DCT and PFT data were included in the study. Pulmonary function test metrics used to diagnose obstructive lung disease were recorded: forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity. Four-dimensional CT data sets and spatial registration were used to compute 4DCT-ventilation images using a density change–based and a Jacobian-based model. The ventilation maps were reduced to single metrics intended to reflect the degree of ventilation obstruction. Specifically, we computed the coefficient of variation (SD/mean), ventilation V20 (volume of lung ≤20% ventilation), and correlated the ventilation metrics with PFT data. Regression analysis was used to determine whether 4DCT ventilation data could predict for normal versus abnormal lung function using PFT thresholds. Results: Correlation coefficients comparing 4DCT-ventilation with PFT data ranged from 0.63 to 0.72, with the best agreement between FEV1 and coefficient of variation. Four-dimensional CT ventilation metrics were able to significantly delineate between clinically normal versus abnormal PFT results. Conclusions: Validation of 4DCT ventilation with clinically relevant metrics is essential. We demonstrate good global agreement between PFTs and 4DCT-ventilation, indicating that 4DCT-ventilation

  9. Severe bronchopulmonary dysplasia improved by noninvasive positive pressure ventilation: a case report

    Directory of Open Access Journals (Sweden)

    Mann Christian

    2011-09-01

    Full Text Available Abstract Introduction This is the first report to describe the feasibility and effectiveness of noninvasive positive pressure ventilation in the secondary treatment of bronchopulmonary dysplasia. Case presentation A former male preterm of Caucasian ethnicity delivered at 29 weeks gestation developed severe bronchopulmonary dysplasia. At the age of six months he was in permanent tachypnea and dyspnea and in need of 100% oxygen with a flow of 2.0 L/minute via a nasal cannula. Intermittent nocturnal noninvasive positive pressure ventilation was then administered for seven hours daily. The ventilator was set at a positive end-expiratory pressure of 6 cmH2O, with pressure support of 4 cmH2O, trigger at 1.4 mL/second, and a maximum inspiratory time of 0.7 seconds. Over the course of seven weeks, the patient's maximum daytime fraction of inspired oxygen via nasal cannula decreased from 1.0 to 0.75, his respiratory rate from 64 breaths/minute to 50 breaths/minute and carbon dioxide from 58 mmHg to 44 mmHg. Conclusion Noninvasive positive pressure ventilation may be a novel therapeutic option for established severe bronchopulmonary dysplasia. In the case presented, noninvasive positive pressure ventilation achieved sustained improvement in ventilation and thus prepared our patient for safe home oxygen therapy.

  10. Displacement ventilation in lecture halls

    OpenAIRE

    Egorov, Artem

    2013-01-01

    This thesis considers several important goals. The main purpose is to see how displacement ventilation sys-tem works in the lecture hall of M-building and compare obtained results with D2 and Indoor Climate Classi-fication. The second one is to analyze the function of the ventilation system. The last one is to realize when displacement ventilation is preferable to mixing ventilation. Analysis of the system was carried out with instruments from MUAS HVAC laboratory. In lecture hall were me...

  11. Evaluation of Fractional Regional Ventilation Using 4D-CT and Effects of Breathing Maneuvers on Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, Nilesh N., E-mail: nmistry@som.umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Diwanji, Tejan; Shi, Xiutao [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Pokharel, Sabin [Morgan State University, Baltimore, Maryland (United States); Feigenberg, Steven [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Scharf, Steven M. [Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland (United States); D' Souza, Warren D. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States)

    2013-11-15

    Purpose: Current implementations of methods based on Hounsfield units to evaluate regional lung ventilation do not directly incorporate tissue-based mass changes that occur over the respiratory cycle. To overcome this, we developed a 4-dimensional computed tomography (4D-CT)-based technique to evaluate fractional regional ventilation (FRV) that uses an individualized ratio of tidal volume to end-expiratory lung volume for each voxel. We further evaluated the effect of different breathing maneuvers on regional ventilation. The results from this work will help elucidate the relationship between global and regional lung function. Methods and Materials: Eight patients underwent 3 sets of 4D-CT scans during 1 session using free-breathing, audiovisual guidance, and active breathing control. FRV was estimated using a density-based algorithm with mass correction. Internal validation between global and regional ventilation was performed by use of the imaging data collected during the use of active breathing control. The impact of breathing maneuvers on FRV was evaluated comparing the tidal volume from 3 breathing methods. Results: Internal validation through comparison between the global and regional changes in ventilation revealed a strong linear correlation (slope of 1.01, R{sup 2} of 0.97) between the measured global lung volume and the regional lung volume calculated by use of the “mass corrected” FRV. A linear relationship was established between the tidal volume measured with the automated breathing control system and FRV based on 4D-CT imaging. Consistently larger breathing volumes were observed when coached breathing techniques were used. Conclusions: The technique presented improves density-based evaluation of lung ventilation and establishes a link between global and regional lung ventilation volumes. Furthermore, the results obtained are comparable with those of other techniques of functional evaluation such as spirometry and hyperpolarized-gas magnetic

  12. Ventilation inhomogeneity in children with primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Green, Kent; Buchvald, Frederik F; Marthin, June Kehlet

    2012-01-01

    The lung clearance index (LCI) derived from the multiple breath inert gas washout (MBW) test reflects global ventilation distribution inhomogeneity. It is more sensitive than forced expiratory volume in 1 s (FEV(1)) for detecting abnormal airway function and correlates closely with structural lun...

  13. 30 CFR 75.371 - Mine ventilation plan; contents.

    Science.gov (United States)

    2010-07-01

    ... third connecting crosscut outby each working face (see § 75.333(b)(1)). (p) The volume of air required... belt entry when belt air is used to ventilate working sections or areas where mechanized mining... velocities at those locations where air velocities in the belt entry are above or below the limits set...

  14. Cardiopulmonary interactions during mechanical ventilation in critically ill patients

    NARCIS (Netherlands)

    T.G.V. Cherpanath (Thomas); W.K. Lagrand (Wim); M.J. Schultz (Marcus); A.B.J. Groeneveld (Johan)

    2013-01-01

    textabstractCardiopulmonary interactions induced by mechan-ical ventilation are complex and only partly understood. Ap-plied tidal volumes and/or airway pressures largely mediate changes in right ventricular preload and afterload. Effects on left ventricular function are mostly secondary to changes

  15. Endobronchial Valves for Emphysema without Interlobar Collateral Ventilation

    NARCIS (Netherlands)

    Klooster, Karin; ten Hacken, Nick H T; Hartman, Jorine E.; Kerstjens, Huib A. M.; van Rikxoort, Eva M.; Slebos, Dirk-Jan

    2015-01-01

    BACKGROUND Bronchoscopic lung-volume reduction with the use of one-way endobronchial valves is a potential treatment for patients with severe emphysema. To date, the benefits have been modest but have been hypothesized to be much larger in patients without interlobar collateral ventilation than in

  16. Ventilation, gas exchange and blood gases in the snake, Pituophis melanoleucus.

    Science.gov (United States)

    Stinner, J N

    1982-03-01

    Oxygen consumption of Pituophis melanoleucus was about 30-50% of values predicted for snakes of similar body mass. Following a rise in body temperature there were transient increases in CO2 elimination and the respiratory exchange ratio for about 6 hours. Lowering body temperature produced transient decreases in CO2 elimination and the respiratory exchange ratio for about 24 hours. Respiratory exchange ratios measured up to 6 days following these transients were found to be significantly higher at higher temperatures. From 20 to 30 degrees C arterial pH declined 0.157 unit, and there was a significant decline in blood CO2 of 1.3 mM which is consistent with the direction of the transients in CO2 elimination. This fall in CO2 at higher temperatures probably results from increased levels of plasma fixed acid (e.g., lactate). Minute ventilation and breathing frequency increased with body temperature while tidal volume remained nearly constant at 29 ml/kg. Breathing was regular, with each breath followed by an inspiratory pause. Air convection requirement declined from about 61 ml air/ml O2 at 15 degrees C to 36 ml air/ml O2 at 30 degrees C. Blood convection requirement remained constant at about 44.6 ml blood/ml O2 at 20 degrees C and 30 degrees C with the result that ventilation/perfusion declined from approximately 1.13 to 0.76. In Pituophis, mechanisms of acid-base regulation and adjustments in gas transfer with temperature do not differ fundamentally from those of other air-breathing ectotherms. However, snakes utilize tidal volumes which are 2 to 2.5 times larger than other reptiles and have air convection requirements which exceed other reptiles by about 50%.

  17. Respiratory mechanics in mechanically ventilated patients.

    Science.gov (United States)

    Hess, Dean R

    2014-11-01

    Respiratory mechanics refers to the expression of lung function through measures of pressure and flow. From these measurements, a variety of derived indices can be determined, such as volume, compliance, resistance, and work of breathing. Plateau pressure is a measure of end-inspiratory distending pressure. It has become increasingly appreciated that end-inspiratory transpulmonary pressure (stress) might be a better indicator of the potential for lung injury than plateau pressure alone. This has resulted in a resurgence of interest in the use of esophageal manometry in mechanically ventilated patients. End-expiratory transpulmonary pressure might also be useful to guide the setting of PEEP to counterbalance the collapsing effects of the chest wall. The shape of the pressure-time curve might also be useful to guide the setting of PEEP (stress index). This has focused interest in the roles of stress and strain to assess the potential for lung injury during mechanical ventilation. This paper covers both basic and advanced respiratory mechanics during mechanical ventilation.

  18. The DECam Minute Cadence Survey I

    CERN Document Server

    Belardi, Claudia; Munn, Jeffrey A; Gianninas, A; Barber, Sara D; Dey, Arjun; Stetson, Peter B

    2016-01-01

    We present the first results from a minute cadence survey of a three square degree field obtained with the Dark Energy Camera. We imaged part of the Canada-France-Hawaii Telescope Legacy Survey area over eight half-nights. We use the stacked images to identify 111 high proper motion white dwarf candidates with g $\\leq24.5$ mag and search for eclipse-like events and other sources of variability. We find a new g = 20.64 mag pulsating ZZ Ceti star with pulsation periods of 11-13 min. However, we do not find any transiting planetary companions in the habitable zone of our target white dwarfs. Given the probability of eclipses of 1% and our observing window from the ground, the non-detection of such companions in this first field is not surprising. Minute cadence DECam observations of additional fields will provide stringent constraints on the frequency of planets in the white dwarf habitable zone.

  19. Ultrastructural Study of Alveolar Epithelial Type II Cells by High-Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    Xiaofei Qin

    2013-01-01

    Full Text Available Alveolar epithelial type II cells (AECIIs containing lamellar bodies (LBs are alveolar epithelial stem cells that have important functions in the repair of lung structure and function after lung injury. The ultrastructural changes in AECIIs after high-frequency oscillatory ventilation (HFOV with a high lung volume strategy or conventional ventilation were evaluated in a newborn piglet model with acute lung injury (ALI. After ALI with saline lavage, newborn piglets were randomly assigned into five study groups (three piglets in each group, namely, control (no mechanical ventilation, conventional ventilation for 24 h, conventional ventilation for 48 h, HFOV for 24 h, and HFOV for 48 h. The lower tissues of the right lung were obtained to observe the AECII ultrastructure. AECIIs with reduced numbers of microvilli, decreased LBs electron density, and vacuole-like LBs deformity were commonly observed in all five groups. Compared with conventional ventilation groups, the decrease in numbers of microvilli and LBs electron density, as well as LBs with vacuole-like appearance and polymorphic deformity, was less severe in HFOV with high lung volume strategy groups. AECIIs were injured during mechanical ventilation. HFOV with a high lung volume strategy resulted in less AECII damage than conventional ventilation.

  20. Effects of manual rib-cage compression versus PEEP-ZEEP maneuver on respiratory system compliance and oxygenation in patients receiving mechanical ventilation.

    Science.gov (United States)

    Santos, Flavio Renato Antunes Dos; Schneider Júnior, Luiz Carlos; Forgiarini Junior, Luiz Alberto; Veronezi, Jefferson

    2009-06-01

    Patients unable to perform breathing functions may be submitted to invasive mechanical ventilation. Chest physiotherapy acts directly on the treatment of these patients for the purpose of improving their lung function. The objective of this study was to evaluate the effects of manual rib-cage compression versus the positive end expiratory pressure-zero end expiratory pressure (PEEP-ZEEP) maneuver, on compliance of the respiratory system and oxygenation in patients under invasive mechanical ventilation. A double centric, prospective, randomized and crossover study, with patients under invasive mechanical ventilation, in controlled mode for more than 48 hours was carried out. The protocols of chest physiothe-rapy were randomly applied at an interval of 24 hours. Data of respiratory system compliance and oxygenation were collected before application of the protocols and 30 minutes after. Twelve patients completed the study. Intragroup analysis, for both techniques showed a statistically significant difference in tidal volume (p=0.002), static compliance (p=0.002) and dynamic compliance (p=0.002). In relation to oxygenation, in the group of manual rib-cage compression, peripheral oxygen saturation increased with a significant difference (p=0.011). Manual rib-cage compression and PEEP-ZEEP maneuver have positive clinical effects. In relation to oxygenation we found a favorable behavior of peripheral oxygen saturation in the group of manual rib-cage compression.

  1. [A case of respiratory insufficiency after resection of the aortic aneurysm and replacement with a synthetic conduit which recovered by airway pressure release ventilation].

    Science.gov (United States)

    Shimoyama, Yuichiro; Majima, Nozomi; Kadono, Noriko; Ito, Masayuki; Agui, Tomoyuki; Umegaki, Osamu; Minami, Toshiaki

    2011-04-01

    We experienced a patient with respiratory insufficiency after resection of the aortic aneurysm and replacement with a synthetic conduit which recovered by airway pressure release ventilation (APRV) dramatically. A 44-year-old man diagnosed as aortic aneurysm of the descending thoracic aorta was admitted to our hospital and an operation was scheduled. The operation lasted for 19 hours and the time of general anesthesia was 23 hours. The immediate post-operative chest x-ray showed atelectasis of the right upper lobe, elevated right diaphragm and poor aeration of the lungs. A volume-limited mechanical ventilation was used for this patient postoperatively in ICU. But accumulation of carbon dioxide and poor oxygenation were observed. We started APRV by Bennet 840 (Tyco Healthcare, Tokyo). Specifically, we used Bilevel mode (PEEP 20/3 cmH20/3, inspiratory time 3.2 seconds, respiratory rate 15 times per minute, pressure support 20 cm H2O, FI(O2) 1.0). Promptly accumulation of carbon dioxide was improved and atelectasis of the right upper lobe vanished. Additionally, oxygenation was improved. He was weaned from a ventilator on postoperative day 5. We have demonstrated that APRV is an important tool that should be used to improve severe respiratory insufficiency.

  2. Interagency Advanced Power Group meeting minutes

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

  3. The elements of grammar in 90 minutes

    CERN Document Server

    Hollander, Robert

    2011-01-01

    An eminent scholar explains the essentials of English grammar to those who never studied the basics as well as those who need a refresher course. Inspired by Strunk & White's classic The Elements of Style, this user-friendly guide focuses exclusively on grammar, explaining the individual parts of speech and their proper arrangement in sentence form. A modest investment of 90 minutes can provide readers of all ages with simple but important tools that will improve their communication skills. Dover (2011) original publication.

  4. Interagency Advanced Power Group meeting minutes

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

  5. Plane Stratified Flow in a Room Ventilated by Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Nickel, J.; Baron, D. J. G.

    2004-01-01

    The air movement in the occupied zone of a room ventilated by displacement ventilation exists as a stratified flow along the floor. This flow can be radial or plane according to the number of wall-mounted diffusers and the room geometry. The paper addresses the situations where plane flow...

  6. 小潮气量和传统潮气量机械通气治疗小儿重症肺炎的疗效对比分析%Comparison of the effects of low and conventional tidal volume mechanical ventilation on the treatment of children with severe pneumonia

    Institute of Scientific and Technical Information of China (English)

    李细林; 顿浩; 孙凯; 江华

    2016-01-01

    Objective: To analyse the effects of low and conventional tidal volume mechanical ventilation on the treatment of children with severe pneumonia.Methods: 100 cases of children with severe pneumonia from June 2013 to June 2015 in our hospital were randomly divided into control group and observation group, each of 50 cases. hTe control group children with traditional tidal volume, tidal volume of 10~12 mL/kg; the observation group children using low tidal volume, tidal volume of 6~8 mL/kg, clinical parameters of two groups during treatmentwere analyzed.Results: hTe mechanical ventilation of the observation group was signiifcantly more than that of the control group (t=11.0770, P=0.0000), the mortality rate of observation group was signiifcantly higher than that of the control group (χ2=5.4825,P=0.0192). In the course of treatment, children mean airway pressure (Paw), fraction of inspiration O2 (FiO2), positive end expiratory pressure (PEEP), peak inflating pressure (PIP) and other clinical indexes of two groups had no significant difference (P>0.05), recurrent respiratory tract infections survival rate between the two groups had no significant difference (χ2=0.0624,P=0.8028). Conclusion: For children with severe pneumonia mechanical ventilation, the effect of traditional tidal volume shows better than low tidal volume.%目的:对比分析小潮气量和传统潮气量机械通气治疗小儿重症肺炎的疗效。方法:对2013年6月至2015年6月在我院进行接治的100例小儿重症肺炎进行研究,将患儿随机分为对照组和观察组,各50例,对照组的患儿采用传统潮气量,潮气量为10~12 mL/kg;观察组的患儿采用小潮气量,潮气量为6~8 mL/kg,对治疗过程中两组患儿临床参数的变化进行对比分析。结果:观察组患儿的机械通气时间明显多于对照组(t=11.0770,P=0.0000),观察组患儿的病死率明显高于对照组(χ2=5.4825,P=0.0192),治疗过程中,两组患儿的

  7. The effect of airway pressure and oscillation amplitude on ventilation in pre-term infants

    NARCIS (Netherlands)

    Miedema, M.; de Jongh, Franciscus H.C.; Frerichs, I.; van Veenendaal, M.B.; van Kaam, A.H.

    2012-01-01

    We determined the effect of lung recruitment and oscillation amplitude on regional oscillation volume and functional residual capacity (FRC) in high-frequency oscillatory ventilation (HFOV) used in pre-term infants with respiratory distress syndrome (RDS). Changes in lung volume, oscillation volume

  8. Capture and Use of Coal Mine Ventilation Air Methane

    Energy Technology Data Exchange (ETDEWEB)

    Deborah Kosmack

    2008-10-31

    CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

  9. 食管癌根治术患者低流量麻醉单肺通气对肺内分流的影响%Effect of low volume anesthesia on intrapulmonary shunt during one-lung ventilation in patients undergoing esophageal cancer resection

    Institute of Scientific and Technical Information of China (English)

    徐银秀; 李利

    2012-01-01

    目的 观察对食管癌根治术患者低流量麻醉单肺通气对肺内分流的影响.方法 择期行食管癌根治术患者50例,年龄在42~75岁,ASA分级Ⅰ或Ⅱ级,随机分为低流量组(A组)和常流量组(B组),每组25例.单肺通气时A组氧流量1.0 L·min-1,B组氧流量3.0 L·min-1,分别测定麻醉诱导后(T1)及单肺通气15 min (T2)、30 min (T3) 、45 min (T4) 、60 min (T5)及恢复双肺通气30 min(T6)时CVP、HR、MAP和气道平均压(Pmean),同时采集颈内静脉和桡动脉血样,进行血气分析,计算肺内分流率(Qs/Qt).结果 与T1时比较,两组T2~5时Pmean和Qs/Qt升高(P0.05).结论 食管癌根治术患者低流量麻醉单肺通气对肺内分流无明显影响.%Objective To evaluate the effect of low volume anesthesia on intrapulmonary shunt during one-lung ventilation in patients undergoing esophageal cancer resection. Methods Fifty ASA I or II patients of both sexes aged 42 ~ 75 yr undergoing esophageal cancer resection were randomly divided into low volume anesthesia group ( group A ) and normal volume anesthesia group ( group B ), each group of 25 patients. In group A,oxygen supply was administered with 1.0 L · Min-1 during OLV,while in group B,oxygen supply was administered with 3. 0 L · Min-1 during OLV. Left radial artery and right internal jugular vein were cannulated for MAP and CVP monitoring and blood sampling. MAP,HR,CVP,mean airway pressure were monitored and recorded after induction of anesthesia ( T1 ),at 15,30 min,45 min and 60 min of OLV ( T2,3,4,5 ) and 30 rain after re-expansion of the collapsed lung ( T6 ). Blood samples were taken simultaneously from jugular vein and radial artery for blood gas analysis. Intrapulmonary shunt ( Qs/Qt )was calculated. Results Mean airway pressure and Qs/Qt was significantly increased during OLV compared with two-lung ventilation ( TLV ) in two groups( P < 0. 05 ). There was no significant difference in MAP, HR, CVP, mean airway pressure and Qs

  10. Lung protective ventilation induces immunotolerance and nitric oxide metabolites in porcine experimental postoperative sepsis.

    Directory of Open Access Journals (Sweden)

    Jesper Sperber

    Full Text Available Low tidal volume ventilation is beneficial in patients with severe pulmonary dysfunction and would, in theory, reduce postoperative complications if implemented during routine surgery. The study aimed to investigate whether low tidal volume ventilation and high positive end-expiratory pressure (PEEP in a large animal model of postoperative sepsis would attenuate the systemic inflammatory response and organ dysfunction. Thirty healthy pigs were randomized to three groups: Group Prot-7h, i.e. protective ventilation for 7 h, was ventilated with a tidal volume of 6 mL x kg(-1 for 7 h; group Prot-5h, i.e. protective ventilation for 5 h, was ventilated with a tidal volume of 10 mL x kg(-1 for 2 h, after which the group was ventilated with a tidal volume of 6 mL x kg(-1; and a control group that was ventilated with a tidal volume of 10 mL x kg(-1 for 7 h. In groups Prot-7h and Prot-5h PEEP was 5 cmH2O for 2 h and 10 cmH2O for 5 h. In the control group PEEP was 5 cmH2O for the entire experiment. After surgery for 2 h, postoperative sepsis was simulated with an endotoxin infusion for 5 h. Low tidal volume ventilation combined with higher PEEP led to lower levels of interleukin 6 and 10 in plasma, higher PaO2/FiO2, better preserved functional residual capacity and lower plasma troponin I as compared with animals ventilated with a medium high tidal volume and lower PEEP. The beneficial effects of protective ventilation were seen despite greater reductions in cardiac index and oxygen delivery index. In the immediate postoperative phase low VT ventilation with higher PEEP was associated with reduced ex vivo plasma capacity to produce TNF-α upon endotoxin stimulation and higher nitrite levels in urine. These findings might represent mechanistic explanations for the attenuation of systemic inflammation and inflammatory-induced organ dysfunction.

  11. Effects of mechanical ventilation with lower tidal volume and positive end-expiratory pressure on pulmonary function during laparoscopic surgery in patients with chronic obstructive pulmonary disease%低潮气量联合呼气末正压通气对慢性阻塞性肺疾病患者腹腔镜手术时肺功能的影响

    Institute of Scientific and Technical Information of China (English)

    陈志远; 吴健华; 王玉珍; 李岩; 许小婷

    2013-01-01

    Objective To investigate the effects of mechanicl ventilation with lower tidal volume and positive end-expiratory pressure (PEEP) on pulmonary function during laparoscopic surgery in patients with chronic obstructive pulmonary disease (COPD).Methods Forty patients with COPD,aged 60-82 yr,with body mass index of 16-29 kg/m2,undergoing elective laparoscopic surgery,were randomly divided into 2 groups (n =20 each) using a random number table:conventional ventilation group (group Ⅰ) and mechanical ventilation with lower tidal volume and PEEP group (group Ⅱ).Anesthesia was induced with midazolam,sufentanil,cisatracurium and propofol and maintained with iv infusion of propofol,cisawacurium and remifentanil.The patients were endotracheally ventilated and mechanically ventilated.In group Ⅰ,fresh gas flow was set at 2 L/min,VT at 10 ml/kg,and I∶E at 1∶2 during ventilation.In group Ⅱ,fresh gas flow was set at 2 L/min,VT at 6 ml/kg,I∶E at 1∶2 and PEEP at 6 cm H2O during ventilation.PErCO2 was maintained at 35-45 mm Hg in both groups.Airway peak pressure (Pp~),airway plateau pressure (Pplat),airway resistance (Raw) and dynamic lung compliance (Cdyn) were measured at 5 min after intubation (T1),45 min of pneumoperitoneum (T2),and 15 min after the end of pneumoperitoneum (T3).Arterial blood samples were obtained at T1,T2 and T3 for blood gas analysis.Alveolar-arterial oxygen gradiant (A-aDO2),oxygenation index (PaO2/FiO2),respiratory index (RI) and physiologic dead space fraction (VD/VT) were calculated.The extubation time and development of complications were recorded within 48 h after operation.Results Compared with group Ⅰ,Ppeak and Plat at T2 and Raw at T1,2 were significantly decreased,Cdyn at T2 and PaO2/FiO2 at T1-3 were significantly increased,RI,VD/VT and A-aDO2 were significantly decreased at T1-3,and the incidence of hyoxemia,atelectasis and rales was decreased within 48 h after operation in group Ⅱ (P < 0.05).There was no significant difference

  12. Ventilation and Heat Recovering System

    Directory of Open Access Journals (Sweden)

    Olga Bancea

    2007-01-01

    Full Text Available Some aspects concerning the heat reducing for ventilation, achieved by using heat recovering components and a combined heating--ventilating system, assuring both comfort and human health are presented. The floor imbedded systems together with air outlets elements could fulfill all the aesthetically desires, as well as comfort and they are ideal for family houses.

  13. Free Convection Personalized Ventilation (FCPV)

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    Normally we supply fresh air to a room with a diffuser, and this air is distributed in the room according to different principles as: mixing ventilation, displacement ventilation etc. That means we have to supply a very large amount of air to the whole room, although a person in the room totally...

  14. Inhalation therapy in mechanical ventilation

    Science.gov (United States)

    Maccari, Juçara Gasparetto; Teixeira, Cassiano; Gazzana, Marcelo Basso; Savi, Augusto; Dexheimer-Neto, Felippe Leopoldo; Knorst, Marli Maria

    2015-01-01

    Patients with obstructive lung disease often require ventilatory support via invasive or noninvasive mechanical ventilation, depending on the severity of the exacerbation. The use of inhaled bronchodilators can significantly reduce airway resistance, contributing to the improvement of respiratory mechanics and patient-ventilator synchrony. Although various studies have been published on this topic, little is known about the effectiveness of the bronchodilators routinely prescribed for patients on mechanical ventilation or about the deposition of those drugs throughout the lungs. The inhaled bronchodilators most commonly used in ICUs are beta adrenergic agonists and anticholinergics. Various factors might influence the effect of bronchodilators, including ventilation mode, position of the spacer in the circuit, tube size, formulation, drug dose, severity of the disease, and patient-ventilator synchrony. Knowledge of the pharmacological properties of bronchodilators and the appropriate techniques for their administration is fundamental to optimizing the treatment of these patients. PMID:26578139

  15. Concentration Distribution in a Mixing Ventilated Room

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Pedersen, D. N.; Nielsen, Peter Vilhelm

    2001-01-01

    Today there is an increasing focus on the importance of a proper ventilation system to obtain good working conditions in the term of air and thermal quality to ensure high productivity. Different ventilation principles are used, e.g., mixing ventilation and displacement ventilation. In order...... to ensure that the ventilation system meets the demands it is important to know which parameters that influence the performance of the system. In this work the mixing ventilation principle was investigated. When the mixing ventilation principle is used for the design of a ventilation system it is assumed...

  16. Home monitoring of daytime mouthpiece ventilation effectiveness in patients with neuromuscular disease.

    Science.gov (United States)

    Nardi, Julie; Leroux, Karl; Orlikowski, David; Prigent, Hélène; Lofaso, Frédéric

    2016-02-01

    Mouthpiece ventilation (MPV) allows patients with neuromuscular disease to receive daytime support from a portable ventilator, which they can disconnect at will, for example, for speaking, eating, swallowing, and coughing. However, MPV carries a risk of underventilation. Our purpose here was to evaluate the effectiveness of daytime MPV under real-life conditions. Eight wheelchair-bound patients who used MPV underwent daytime polygraphy at home with recordings of airflow, mouthpiece pressure, thoracic and abdominal movements, peripheral capillary oxygen saturation (SpO2), and transcutaneous partial pressure of carbon dioxide (PtcCO2). Times and durations of tasks and activities were recorded. The Apnea-Hypopnea Index (AHI) was computed. Patient-ventilator disconnections ≥3 minutes and episodes of hypoventilation defined as PtcCO2>45 mmHg were counted. Patient-ventilator asynchrony events were analyzed. The AHI was >5 hour(-1) in two patients. Another patient experienced unexplained 3% drops in arterial oxygen saturations at a frequency of 70 hour(-1). Patient-ventilator disconnections ≥3 minutes occurred in seven of eight patients and were consistently associated with decreases in SpO2 and ≥5-mmHg increases in PtcCO2; PtcCO2 rose above 45 mmHg in two patients during these disconnections. The most common type of patient-ventilator asynchrony was ineffective effort. This study confirms that MPV can be effective as long as the patient remains connected to the mouthpiece. However, transient arterial oxygen desaturation and hypercapnia due to disconnection from the ventilator may occur, without inducing unpleasant sensations in the patients. Therefore, an external warning system based on a minimal acceptable value of minute ventilation would probably be useful. © The Author(s) 2015.

  17. Lung Injury After One-Lung Ventilation: A Review of the Pathophysiologic Mechanisms Affecting the Ventilated and the Collapsed Lung.

    Science.gov (United States)

    Lohser, Jens; Slinger, Peter

    2015-08-01

    Lung injury is the leading cause of death after thoracic surgery. Initially recognized after pneumonectomy, it has since been described after any period of 1-lung ventilation (OLV), even in the absence of lung resection. Overhydration and high tidal volumes were thought to be responsible at various points; however, it is now recognized that the pathophysiology is more complex and multifactorial. All causative mechanisms known to trigger ventilator-induced lung injury have been described in the OLV setting. The ventilated lung is exposed to high strain secondary to large, nonphysiologic tidal volumes and loss of the normal functional residual capacity. In addition, the ventilated lung experiences oxidative stress, as well as capillary shear stress because of hyperperfusion. Surgical manipulation and/or resection of the collapsed lung may induce lung injury. Re-expansion of the collapsed lung at the conclusion of OLV invariably induces duration-dependent, ischemia-reperfusion injury. Inflammatory cytokines are released in response to localized injury and may promote local and contralateral lung injury. Protective ventilation and volatile anesthesia lessen the degree of injury; however, increases in biochemical and histologic markers of lung injury appear unavoidable. The endothelial glycocalyx may represent a common pathway for lung injury creation during OLV, because it is damaged by most of the recognized lung injurious mechanisms. Experimental therapies to stabilize the endothelial glycocalyx may afford the ability to reduce lung injury in the future. In the interim, protective ventilation with tidal volumes of 4 to 5 mL/kg predicted body weight, positive end-expiratory pressure of 5 to 10 cm H2O, and routine lung recruitment should be used during OLV in an attempt to minimize harmful lung stress and strain. Additional strategies to reduce lung injury include routine volatile anesthesia and efforts to minimize OLV duration and hyperoxia.

  18. Performance of manual ventilation: how to define its efficiency in bench studies? A review of the literature.

    Science.gov (United States)

    Khoury, A; De Luca, A; Sall, F S; Pazart, L; Capellier, G

    2015-08-01

    Bench studies have become the preferred way to evaluate the performance of airway equipment, since clinical trials are not specifically required before marketing these devices. However, it is difficult to assess the efficiency of ventilation without recording physiological data. This review analyses how efficiency of manual ventilation has been defined in recent studies, and how their results may be affected. We searched electronic databases from 2000 to April 2014. The main inclusion criterion was the analysis of performance of ventilation. Nine relevant articles were selected from 53 eligible publications. Most studies used the same parameters; tidal volume and ventilation rate. However, there were significant differences between the definitions of performance of ventilation, both in terms of criteria of judgement and methods of analysis. None of these approaches is able to provide a clear understanding of variability of ventilation during a given period. A new definition may increase the relevance of bench studies to clinical medicine, by more appropriately assessing the performance of ventilation.

  19. Ventilation and respiratory mechanics.

    Science.gov (United States)

    Sheel, Andrew William; Romer, Lee M

    2012-04-01

    During dynamic exercise, the healthy pulmonary system faces several major challenges, including decreases in mixed venous oxygen content and increases in mixed venous carbon dioxide. As such, the ventilatory demand is increased, while the rising cardiac output means that blood will have considerably less time in the pulmonary capillaries to accomplish gas exchange. Blood gas homeostasis must be accomplished by precise regulation of alveolar ventilation via medullary neural networks and sensory reflex mechanisms. It is equally important that cardiovascular and pulmonary system responses to exercise be precisely matched to the increase in metabolic requirements, and that the substantial gas transport needs of both respiratory and locomotor muscles be considered. Our article addresses each of these topics with emphasis on the healthy, young adult exercising in normoxia. We review recent evidence concerning how exercise hyperpnea influences sympathetic vasoconstrictor outflow and the effect this might have on the ability to perform muscular work. We also review sex-based differences in lung mechanics.

  20. Oxygenation with T-piece versus self-inflating bag for ventilation of extremely preterm infants at birth: a randomized controlled trial.

    LENUS (Irish Health Repository)

    Dawson, Jennifer A

    2011-06-01

    To investigate whether infants < 29 weeks gestation who receive positive pressure ventilation (PPV) immediately after birth with a T-piece have higher oxygen saturation (SpO₂) measurements at 5 minutes than infants ventilated with a self inflating bag (SIB).

  1. Metabolism, temperature, and ventilation.

    Science.gov (United States)

    Mortola, Jacopo P; Maskrey, Michael

    2011-10-01

    In mammals and birds, all oxygen used (VO2) must pass through the lungs; hence, some degree of coupling between VO2 and pulmonary ventilation (VE) is highly predictable. Nevertheless, VE is also involved with CO2 elimination, a task that is often in conflict with the convection of O2. In hot or cold conditions, the relationship between VE and VO2 includes the participation of the respiratory apparatus to the control of body temperature and water balance. Some compromise among these tasks is achieved through changes in breathing pattern, uncoupling changes in alveolar ventilation from VE. This article examines primarily the relationship between VE and VO2 under thermal stimuli. In the process, it considers how the relationship is influenced by hypoxia, hypercapnia or changes in metabolic level. The shuffling of tasks in emergency situations illustrates that the constraints on VE-VO2 for the protection of blood gases have ample room for flexibility. However, when other priorities do not interfere with the primary goal of gas exchange, VE follows metabolic rate quite closely. The fact that arterial CO2 remains stable when metabolism is changed by the most diverse circumstances (moderate exercise, cold, cold and exercise combined, variations in body size, caloric intake, age, time of the day, hormones, drugs, etc.) makes it unlikely that VE and metabolism are controlled in parallel by the condition responsible for the metabolic change. Rather, some observations support the view that the gaseous component of metabolic rate, probably CO2, may provide the link between the metabolic level and VE.

  2. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  3. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  4. Automated continuous quantitative measurement of proximal airways on dynamic ventilation CT: initial experience using an ex vivo porcine lung phantom

    Directory of Open Access Journals (Sweden)

    Yamashiro T

    2015-09-01

    Full Text Available Tsuneo Yamashiro,1 Maho Tsubakimoto,1 Yukihiro Nagatani,2 Hiroshi Moriya,3 Kotaro Sakuma,3 Shinsuke Tsukagoshi,4 Hiroyasu Inokawa,5 Tatsuya Kimoto,5 Ryuichi Teramoto,6 Sadayuki Murayama1 1Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa; 2Department of Radiology, Shiga University of Medical Science, Otsu; 3Department of Radiology, Ohara General Hospital, Fukushima; 4CT Systems Division, 5Center for Medical Research and Development, Toshiba Medical Systems Corporation, Otawara; 6Corporate Manufacturing Engineering Center, Toshiba Corporation, Yokohama, Japan Background: The purpose of this study was to evaluate the feasibility of continuous quantitative measurement of the proximal airways, using dynamic ventilation computed tomography (CT and our research software. Methods: A porcine lung that was removed during meat processing was ventilated inside a chest phantom by a negative pressure cylinder (eight times per minute. This chest phantom with imitated respiratory movement was scanned by a 320-row area-detector CT scanner for approximately 9 seconds as dynamic ventilatory scanning. Obtained volume data were reconstructed every 0.35 seconds (total 8.4 seconds with 24 frames as three-dimensional images and stored in our research software. The software automatically traced a designated airway point in all frames and measured the cross-sectional luminal area and wall area percent (WA%. The cross-sectional luminal area and WA% of the trachea and right main bronchus (RMB were measured for this study. Two radiologists evaluated the traceability of all measurable airway points of the trachea and RMB using a three-point scale. Results: It was judged that the software satisfactorily traced airway points throughout the dynamic ventilation CT (mean score, 2.64 at the trachea and 2.84 at the RMB. From the maximum inspiratory frame to the maximum expiratory frame, the cross-sectional luminal area of

  5. Saving energy for ventilation using decentralised duct fans

    DEFF Research Database (Denmark)

    Gunner, Amalie; Bergsøe, Niels Christian; Afshari, Alireza

    2014-01-01

    pressure drops which in turn will increase energy use. This paper presents a novel procedure for balancing CAV-systems using decentralised duct fans instead of flat plate dampers. The procedure will result in lower pressure drops and consequently in a reduction of energy use for ventilation when compared......In conventional mechanical ventilation systems with constant air volume (CAV) airflows are often balanced using balancing flat plate dampers. The purpose of the dampers is to obtain nominal airflows to the individual zones or rooms in the building. Unfortunately, this procedure leads to increased...... to a conventional mechanical ventilation system with flat plate dampers. Theoretical calculations and experimental observations for the investigated systems show that the power demand for distribution of air can be reduced about 30%. The work carried out forms part of an ongoing PhD-project on mechanical...

  6. Lecture Notes on Mixing Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The main task of the ventilation system or the air-conditioning system is to supply· and remove air and airborne materials and to supply or remove heat from a room. The necessary level of fresh air will be supplied to· a room by a ventilation system, and heat from equipment or solar radiation can...... be removed by an air-conditioning system. An industrial ventilation system may both take care of the occupants' comfort and the industrial processes in the area....

  7. Low-energy mechanical ventilation

    DEFF Research Database (Denmark)

    Andersen, Claus Wessel; Hviid, Christian Anker

    2014-01-01

    and with as little energy consumption as 41.1 kWh/m2/year including heating and all building services with no use of renewable energy such as PVcells or solar heating. One of the key means of reaching the objectives was to implement mechanical ventilation with low pressure loss and therefore low energy consumption....... The project consists of two buildings, building one is 6 stories high, and building two is 4 stories high. The buildings have a gross area of 50,500 m2 including underground parking. The ventilation and indoor climate concept was to use mechanical ventilation together with mechanical cooling and fanassisted...

  8. A complete audit cycle to assess adherence to a lung protective ventilation strategy

    Directory of Open Access Journals (Sweden)

    Emma Joynes

    2014-01-01

    Full Text Available There is clear evidence for the use of a protective ventilation protocol in patients with acute respiratory distress syndrome (ARDS. There is evidence to suggest that protective ventilation is beneficial in patients at risk of ARDS. A protective ventilation strategy was implemented on our intensive care unit in critical care patients who required mechanical ventilation for over 48 h, with and at risk for ARDS. A complete audit cycle was performed over 13 months to assess compliance with a safe ventilation protocol in intensive care. The ARDS network mechanical ventilation protocol was used as the standard for our protective ventilation strategy. This recommends ventilation with a tidal volume (Vt of 6 ml/kg of ideal body weight (IBW and plateau airway pressure of ≤30 cm H 2 O. The initial audit failed to meet this standard with Vt ′s of 9.5 ml/kg of IBW. Following the implementation of a ventilation strategy and an educational program, we demonstrate a significant improvement in practice with Vt ′s of 6.6 ml/kg of IBW in the re-audit. This highlights the importance of simple interventions and continuous education in maintaining high standards of care.

  9. The LHC restart in one minute

    CERN Multimedia

    2016-01-01

    On Friday March 25 2016, the Large Hadron Collider (LHC) got its first proton beam of the year. In just over 1 minute this time-lapse provides a quick overview to some of the important milestones that preceded proton beam injection this year, against a background of activities over the last few days in the CERN Control Centre (CCC), the place where the CERN accelerator chain is operated and controlled. Read more: http://cern.ch/go/Z9cz Music From FruityAudio, entitled "New Groove". - Producer - Audiovisual production service Paola Catapano - Director - Julien Ordan - Camera - Julien Ordan Maximilien Brice - Graphics \\ Animations - Arzur Catel Torres - Infography - Daniel Dominguez Noemi Caraban - Music - FruityAudio - New groove Category Film & Animation License Standard YouTube License

  10. Long-term facilitation of ventilation and genioglossus muscle activity is evident in the presence of elevated levels of carbon dioxide in awake humans.

    Science.gov (United States)

    Harris, Daniel P; Balasubramaniam, Arvind; Badr, M Safwan; Mateika, Jason H

    2006-10-01

    We hypothesized that long-term facilitation (LTF) of minute ventilation and peak genioglossus muscle activity manifests itself in awake healthy humans when carbon dioxide is sustained at elevated levels. Eleven subjects completed two trials. During trial 1, baseline carbon dioxide levels were maintained during and after exposure to eight 4-min episodes of hypoxia. During trial 2, carbon dioxide was sustained 5 mmHg above baseline levels during exposure to episodic hypoxia. Seven subjects were exposed to sustained elevated levels of carbon dioxide in the absence of episodic hypoxia, which served as a control experiment. Minute ventilation was measured during trial 1, trial 2, and the control experiment. Peak genioglossus muscle activity was measured during trial 2. Minute ventilation during the recovery period of trial 1 was similar to baseline (9.3 +/- 0.5 vs. 9.2 +/- 0.7 l/min). Likewise, minute ventilation remained unchanged during the control experiment (beginning vs. end of control experiment, 14.4 +/- 1.7 vs. 14.7 +/- 1.4 l/min). In contrast, minute ventilation and peak genioglossus muscle activity during the recovery period of trial 2 was greater than baseline (minute ventilation: 28.4 +/- 1.7 vs. 19.6 +/- 1.0 l/min, P levels of carbon dioxide.

  11. Hydrostatic Hyperbaric Chamber Ventilation System

    Science.gov (United States)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware

  12. "Take ten minutes": a dedicated ten minute medication review reduces polypharmacy in the elderly.

    LENUS (Irish Health Repository)

    Walsh, E K

    2010-09-01

    Multiple and inappropriate medications are often the cause for poor health status in the elderly. Medication reviews can improve prescribing. This study aimed to determine if a ten minute medication review by a general practitioner could reduce polypharmacy and inappropriate prescribing in elderly patients. A prospective, randomised study was conducted. Patients over the age of 65 (n = 50) underwent a 10-minute medication review. Inappropriate medications, dosage errors, and discrepancies between prescribed versus actual medication being consumed were recorded. A questionnaire to assess satisfaction was completed following review. The mean number of medications taken by patients was reduced (p < 0.001). A medication was stopped in 35 (70%) patients. Inappropriate medications were detected in 27 (54%) patients and reduced (p < 0.001). Dose errors were detected in 16 (32%). A high level of patient satisfaction was reported. A ten minute medication review reduces polypharmacy, improves prescribing and is associated with high levels of patient satisfaction.

  13. "Take ten minutes": a dedicated ten minute medication review reduces polypharmacy in the elderly.

    LENUS (Irish Health Repository)

    Walsh, E K

    2012-02-01

    Multiple and inappropriate medications are often the cause for poor health status in the elderly. Medication reviews can improve prescribing. This study aimed to determine if a ten minute medication review by a general practitioner could reduce polypharmacy and inappropriate prescribing in elderly patients. A prospective, randomised study was conducted. Patients over the age of 65 (n = 50) underwent a 10-minute medication review. Inappropriate medications, dosage errors, and discrepancies between prescribed versus actual medication being consumed were recorded. A questionnaire to assess satisfaction was completed following review. The mean number of medications taken by patients was reduced (p < 0.001). A medication was stopped in 35 (70%) patients. Inappropriate medications were detected in 27 (54%) patients and reduced (p < 0.001). Dose errors were detected in 16 (32%). A high level of patient satisfaction was reported. A ten minute medication review reduces polypharmacy, improves prescribing and is associated with high levels of patient satisfaction.

  14. Nonassociative learning promotes respiratory entrainment to mechanical ventilation.

    Directory of Open Access Journals (Sweden)

    Shawna M MacDonald

    Full Text Available BACKGROUND: Patient-ventilator synchrony is a major concern in critical care and is influenced by phasic lung-volume feedback control of the respiratory rhythm. Routine clinical application of positive end-expiratory pressure (PEEP introduces a tonic input which, if unopposed, might disrupt respiratory-ventilator entrainment through sustained activation of the vagally-mediated Hering-Breuer reflex. We suggest that this potential adverse effect may be averted by two differentiator forms of nonassociative learning (habituation and desensitization of the Hering-Breuer reflex via pontomedullary pathways. METHODOLOGY/PRINCIPAL FINDINGS: We tested these hypotheses in 17 urethane-anesthetized adult Sprague-Dawley rats under controlled mechanical ventilation. Without PEEP, phrenic discharge was entrained 1:1 to the ventilator rhythm. Application of PEEP momentarily dampened the entrainment to higher ratios but this effect was gradually adapted by nonassociative learning. Bilateral electrolytic lesions of the pneumotaxic center weakened the adaptation to PEEP, whereas sustained stimulation of the pneumotaxic center weakened the entrainment independent of PEEP. In all cases, entrainment was abolished after vagotomy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate an important functional role for pneumotaxic desensitization and extra-pontine habituation of the Hering-Breuer reflex elicited by lung inflation: acting as buffers or high-pass filters against tonic vagal volume input, these differentiator forms of nonassociative learning help to restore respiratory-ventilator entrainment in the face of PEEP. Such central sites-specific habituation and desensitization of the Hering-Breuer reflex provide a useful experimental model of nonassociative learning in mammals that is of particular significance in understanding respiratory rhythmogenesis and coupled-oscillator entrainment mechanisms, and in the clinical management of mechanical ventilation in

  15. Climate control of natural ventilated pig houses

    NARCIS (Netherlands)

    Bontsema, J.; Straten, van G.; Salomons, L.; Klooster, van 't C.E.

    1996-01-01

    Ventilation in pig houses is important for maintaining a good climate for the welfare of animals and humans and for an optimal production. Mechanical ventilation has a good performance, since the ventilation rate can easily be controlled, but it is energy demanding, whereas natural ventilation is ch

  16. Preoperational test report, vent building ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  17. 30 CFR 57.8520 - Ventilation plan.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Ventilation plan. 57.8520 Section 57.8520... Underground Only § 57.8520 Ventilation plan. A plan of the mine ventilation system shall be set out by the... ventilation plan or revisions thereto shall be submitted to the District Manager for review and comments...

  18. Preoperational test, vent building ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T., Westinghouse Hanford

    1996-08-20

    Preoperational Test Procedure for Vent Building Ventilation System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The Vent Building ventilation system provides ventilation, heating, cooling, and zone confinement control for the W-030 Project Vent Building. The tests verify correct System operation and correct indications displayed by the central Monitor and Control system.

  19. Concentration Distribution in a Mixing Ventilated Room

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Pedersen, D.N.; Nielsen, Peter V.

    2001-01-01

    Today there is an increasing focus on the importance of a proper ventilation system to obtain good working conditions in the term of air and thermal quality to ensure high productivity. Different ventilation principles are used, e.g., mixing ventilation and displacement ventilation. In order to e...

  20. Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings

    Directory of Open Access Journals (Sweden)

    Piers MacNaughton

    2015-11-01

    Full Text Available Introduction: Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption—Economic and environmental costs. Methods: We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person, 30% enhanced ventilation, and 40 cfm/person and four different heating, ventilation and air conditioning (HVAC system strategies (Variable Air Volume (VAV with reheat and a Fan Coil Unit (FCU, both with and without an energy recovery ventilator. We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Results: Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities. The same change in ventilation

  1. Nicotinamide exacerbates hypoxemia in ventilator-induced lung injury independent of neutrophil infiltration.

    Directory of Open Access Journals (Sweden)

    Heather D Jones

    Full Text Available Ventilator-induced lung injury is a form of acute lung injury that develops in critically ill patients on mechanical ventilation and has a high degree of mortality. Nicotinamide phosphoribosyltransferase is an enzyme that is highly upregulated in ventilator-induced lung injury and exacerbates the injury when given exogenously. Nicotinamide (vitamin B3 directly inhibits downstream pathways activated by Nicotinamide phosphoribosyltransferase and is protective in other models of acute lung injury.We administered nicotinamide i.p. to mice undergoing mechanical ventilation with high tidal volumes to study the effects of nicotinamide on ventilator-induced lung injury. Measures of injury included oxygen saturations and bronchoalveolar lavage neutrophil counts, protein, and cytokine levels. We also measured expression of nicotinamide phosophoribosyltransferase, and its downstream effectors Sirt1 and Cebpa, Cebpb, Cebpe. We assessed the effect of nicotinamide on the production of nitric oxide during ventilator-induced lung injury. We also studied the effects of ventilator-induced lung injury in mice deficient in C/EBPε.Nicotinamide treatment significantly inhibited neutrophil infiltration into the lungs during ventilator-induced lung injury, but did not affect protein leakage or cytokine production. Surprisingly, mice treated with nicotinamide developed significantly worse hypoxemia during mechanical ventilation. This effect was not linked to increases in nitric oxide production or alterations in expression of Nicotinamide phosphoribosyl transferase, Sirt1, or Cebpa and Cebpb. Cebpe mRNA levels were decreased with either nicotinamide treatment or mechanical ventilation, but mice lacking C/EBPε developed the same degree of hypoxemia and ventilator-induced lung injury as wild-type mice.Nicotinamide treatment during VILI inhibits neutrophil infiltration of the lungs consistent with a strong anti-inflammatory effect, but paradoxically also leads to the

  2. Nicotinamide Exacerbates Hypoxemia in Ventilator-Induced Lung Injury Independent of Neutrophil Infiltration

    Science.gov (United States)

    Jones, Heather D.; Yoo, Jeena; Crother, Timothy R.; Kyme, Pierre; Ben-Shlomo, Anat; Khalafi, Ramtin; Tseng, Ching W.; Parks, William C.; Arditi, Moshe

    2015-01-01

    Background Ventilator-induced lung injury is a form of acute lung injury that develops in critically ill patients on mechanical ventilation and has a high degree of mortality. Nicotinamide phosphoribosyltransferase is an enzyme that is highly upregulated in ventilator-induced lung injury and exacerbates the injury when given exogenously. Nicotinamide (vitamin B3) directly inhibits downstream pathways activated by Nicotinamide phosphoribosyltransferase and is protective in other models of acute lung injury. Methods We administered nicotinamide i.p. to mice undergoing mechanical ventilation with high tidal volumes to study the effects of nicotinamide on ventilator-induced lung injury. Measures of injury included oxygen saturations and bronchoalveolar lavage neutrophil counts, protein, and cytokine levels. We also measured expression of nicotinamide phosophoribosyltransferase, and its downstream effectors Sirt1 and Cebpa, Cebpb, Cebpe. We assessed the effect of nicotinamide on the production of nitric oxide during ventilator-induced lung injury. We also studied the effects of ventilator-induced lung injury in mice deficient in C/EBPε. Results Nicotinamide treatment significantly inhibited neutrophil infiltration into the lungs during ventilator-induced lung injury, but did not affect protein leakage or cytokine production. Surprisingly, mice treated with nicotinamide developed significantly worse hypoxemia during mechanical ventilation. This effect was not linked to increases in nitric oxide production or alterations in expression of Nicotinamide phosphoribosyl transferase, Sirt1, or Cebpa and Cebpb. Cebpe mRNA levels were decreased with either nicotinamide treatment or mechanical ventilation, but mice lacking C/EBPε developed the same degree of hypoxemia and ventilator-induced lung injury as wild-type mice. Conclusions Nicotinamide treatment during VILI inhibits neutrophil infiltration of the lungs consistent with a strong anti-inflammatory effect, but

  3. Plasma-derived human C1-esterase inhibitor does not prevent mechanical ventilation-induced pulmonary complement activation in a rat model of Streptococcus pneumoniae pneumonia.

    Science.gov (United States)

    de Beer, F M; Aslami, H; Hoeksma, J; van Mierlo, G; Wouters, D; Zeerleder, S; Roelofs, J J T H; Juffermans, N P; Schultz, M J; Lagrand, W K

    2014-11-01

    Mechanical ventilation has the potential to cause lung injury, and the role of complement activation herein is uncertain. We hypothesized that inhibition of the complement cascade by administration of plasma-derived human C1-esterase inhibitor (C1-INH) prevents ventilation-induced pulmonary complement activation, and as such attenuates lung inflammation and lung injury in a rat model of Streptococcus pneumoniae pneumonia. Forty hours after intratracheal challenge with S. pneumoniae causing pneumonia rats were subjected to ventilation with lower tidal volumes and positive end-expiratory pressure (PEEP) or high tidal volumes without PEEP, after an intravenous bolus of C1-INH (200 U/kg) or placebo (saline). After 4 h of ventilation blood, broncho-alveolar lavage fluid and lung tissue were collected. Non-ventilated rats with S. pneumoniae pneumonia served as controls. While ventilation with lower tidal volumes and PEEP slightly amplified pneumonia-induced complement activation in the lungs, ventilation with higher tidal volumes without PEEP augmented local complement activation more strongly. Systemic pre-treatment with C1-INH, however, failed to alter ventilation-induced complement activation with both ventilation strategies. In accordance, lung inflammation and lung injury were not affected by pre-treatment with C1-INH, neither in rats ventilated with lower tidal volumes and PEEP, nor rats ventilated with high tidal volumes without PEEP. Ventilation augments pulmonary complement activation in a rat model of S. pneumoniae pneumonia. Systemic administration of C1-INH, however, does not attenuate ventilation-induced complement activation, lung inflammation, and lung injury.

  4. IL-6、IL-8在不同潮气量单肺通气肺癌根治术中的表达%Effect of One-lung Ventilation of Different Tidal Volume on the Expressions of Interleukin-6 and Interleukin-8 in Lung Cancer Patients during Radical Operation

    Institute of Scientific and Technical Information of China (English)

    林飞; 潘灵辉; 钱卫; 黄宇; 杜学柯; 裴圣林

    2012-01-01

    目的 观察在肺癌根治术中不同潮气量(VT)的单肺通气(OLV)对血IL-6、IL-8表达的影响.方法 30例行肺癌根治术患者,用随机数字表法分为3组.行双腔支气管插管麻醉,术中单肺通气期间在保持分钟通气量不变的情况下,A组VT=10 ml/kg,呼吸频率(f)=12次/min,B组VT=8 ml/kg,f=15次/min,C组VT=6 ml/kg,f=20次/min.在OLV前(T1)、OLV后30 min(T2)、60 min(T3)、OLV结束前(T4)检测血IL-6、IL-8的表达.结果 3组在T2、T3、T4时点的IL-6、IL-8表达均明显高于T1(P<0.05),且随OLV时间延长而逐渐升高;OLV后随设定的潮气量减低,IL-6及IL-8表达逐渐降低; A组的IL-6、IL-8表达显著高于B、C组(P<0.05).结论 在单肺通气的肺癌根治术中,采用小潮气量的通气模式可减少肺内炎症反应.%Objective To study effect of one-lung ventilation( OLV ) of different tidal volume( VT ) on the expressions of serum interleukin-6( IL-6 ) and interleukin-8( IL-8 ) in lung cancer patients during radical operation. Methods Thirty lung cancer patients undergoing radical operation were enrolled in the study. All the patients received double-lumen endobronchial intubation anesthesia, and were randomly divided into three groups after one-lung ventilation during radical operation: Group A( VT = 10 ml/kg, respiratory frequency( f ) = 12/min ), Group B( VT = 8 ml/kg, f = 12/min ), Group C( VT =6 ml/kg,f = 12/min ). The expressions of serum IL-6,IL-8 were detected before OLV( T1 ),30 min after OLV ( T2 ),60 min after OLV ( T3 ),1 min before OLV ending( T4 ). Results Compared with T1 ,the expressions of IL-6,IL-8 on T2 ,T3 ,T4 significantly increased in three groups( P <0. 05 ),and the increase was in a time-dependent manner. The expressions of IL-6, IL-8 gradually decreased with VT reduction during OLV. The expressions of IL-6, IL-8 in Group A were significantly higher than those in Group B, C( P < 0. 05 ). Conclusion The ventilation mode of low tidal volume can reduce the pulmonary

  5. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space ventilation systems. 111.103-1 Section 111.103-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Power ventilation systems except machinery space ventilation systems. Each power ventilation system...

  6. ASHRAE Standard 62: tobacco industry's influence over national ventilation standards.

    Science.gov (United States)

    Bialous, S Aguinaga; Glantz, S A

    2002-12-01

    To describe the role of the tobacco industry in the development of ventilation standards for indoor air quality by influencing the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE). Review of tobacco industry documents available on the internet between January 2001 and March 2002. Search terms included "ASHRAE", "ventilation", "minutes", "memo", and the names of key players and organisations as identified in the initial searches. Analysis of ASHRAE and other relevant documents publicly available and the personal files of a Standard 62 committee member; interviews of a selected number of ASHRAE players; observation of an ASHRAE meeting. The tobacco industry has been involved in the development of ventilation standards for over 20 years. It has successfully influenced the standard and continues to attempt to change the standard from a smoke-free framework into an "accommodation" framework. The industry acts directly and through consultants and allies. The major health groups have been largely absent and the health interests have been poorly represented in standard development. While concentrated in the USA, ASHRAE standards are adopted worldwide. The tobacco industry determined that allowing smoking in ventilation standards for indoor air quality was a high priority and dedicated significant human and financial resources to ensure that its interests were represented. The health groups, until recently, have largely ignored the policy implications for tobacco control of standard development. This situation is changing, but unless health groups maintain high visibility within ASHRAE, the tobacco industry may succeed in creating a standard that ignores the dangers of secondhand smoke.

  7. Neonatal weaning from ventilator: PSV versus SIMV mode

    Directory of Open Access Journals (Sweden)

    Nayeri F

    2009-01-01

    Full Text Available "nBackground: The use of synchronized intermittent mandatory ventilation (SIMV and pressure support ventilation (PSV have been used for older children and adults. The purpose of this study was to compare PSV and SIMV modes in weaning from mechanical ventilation in neonate with respiratory failure. "nMethods: A randomized clinical trial study carried out in NICU ward of Valiasr hospital Imam Khomeini Hospital complex, Tehran, Iran. Thirty neonates enrolled in two groups of 15. At the weaning time they randomly assigned to SIMV or PSV. They compared for tidal volume (VT, peak inspiratory pressure (PIP, incidence of pneumothorax, weaning failure and duration of weaning. For two groups to be homogeneous, maternal disease during pregnancy were also considered. "nResults: In this study, VT, PIP, incidence of pneumothorax and weaning failure did not differ between groups; duration of ventilation of the two methods (hours and duration of hospitalization (days were separately calculated. The only meaningful difference in two groups were due to weaning duration. The neonates weaned by PSV mode experienced shorter weaning time. (6.05 hours. The weaning time in SIMV mode was longer (45 hours (P=0.006. There were no other meaningful differences between the two groups "nConclusions: According to the results of this study there were no advantage using PSV over SIMV except that the weaning time were shorter in PSV. This decrease in weaning time causes less dependence of the neonate to the ventilator and as a result secure them from complications.

  8. Novel bed integrated ventilation method for hospital patient rooms

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Melikov, Arsen Krikor; Kokora, Monika

    2014-01-01

    a mattress having a suction opening from which bio-effluents generated from human body are exhausted. Experiments were conducted in a full-scale two-bed hospital room mock-up, 4.7 x 5.3 x 2.6 m3 (W x L x H). Only one of the patients’ beds was equipped with the ventilated mattress. The room was air......This study presents a novel method for advanced ventilation of hospital wards leading to improved air quality at reduced ventilation rate. The idea is to evacuate the bio-effluents generated from patients’ body by local exhaustion before being spread in the room. This concept was realized by using...... conditioned via mixing total volume ventilation system supplying air through a ceiling mounted diffuser. All experiments were performed at room air temperature of 23ºC. A thermal manikin was used to simulate a polluting patient on the bed equipped with the ventilated mattress. Two heated dummies were used...

  9. Equivalence in Ventilation and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  10. Use of dynamic CT in acute respiratory distress syndrome (ARDS) with comparison of positive and negative pressure ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Helm, Emma; Babyn, Paul [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Talakoub, Omid; Alirezaie, Javad [Ryerson University, Department of Electrical and Computer Engineering, Toronto, ON (Canada); Grasso, Francesco; Engelberts, Doreen; Kavanagh, Brian P. [Hospital for Sick Children and the University of Toronto, Departments of Anesthesia and Critical Care Medicine and the Program in Pulmonary and Experimental Medicine, Toronto (Canada)

    2009-01-15

    Negative pressure ventilation via an external device ('iron lung') has the potential to provide better oxygenation with reduced barotrauma in patients with ARDS. This study was designed to see if oxygenation differences between positive and negative ventilation could be explained by CT. Six anaesthetized rabbits had ARDS induced by repeated saline lavage. Rabbits were ventilated with positive pressure ventilation (PPV) and negative pressure ventilation (NPV) in turn. Dynamic CT images were acquired over the respiratory cycle. A computer-aided method was used to segment the lung and calculate the range of CT densities within each slice. Volumes of ventilated lung and atelectatic lung were measured over the respiratory cycle. NPV was associated with an increased percentage of ventilated lung and decreased percentage of atelectatic lung. The most significant differences in ventilation and atelectasis were seen at mid-inspiration and mid-expiration (ventilated lung NPV=61%, ventilated lung PPV=47%, p<0.001; atelectatic lung NPV=10%, atelectatic lung PPV 19%, p<0.001). Aeration differences were not significant at end-inspiration. Dynamic CT can show differences in lung aeration between positive and negative ventilation in ARDS. These differences would not be appreciated if only static breath-hold CT was used. (orig.)

  11. Measurement of the Air Chance Rate and Ventilation Characteristics During Short Term Transient Phenomena

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Perino, M.

    2004-01-01

    is assured throughout the test. However, due to the relatively slow response of the gas analysers, none of these procedures can usually be applied to fast transient phenomena that last 15 minutes or less. Moreover in many cases of natural ventilation strategies, the continuous mixing of the indoor air would...

  12. Mechanical ventilation in rural ICUs.

    Science.gov (United States)

    Fieselmann; Bock; Hendryx; Wakefield; Helms; Bentler

    1999-01-01

    BACKGROUND: In recent years, rural hospitals have expanded their scope of specialized services, which has led to the development and staffing of rural intensive care units (ICUs). There is little information about the breadth, quality or outcomes of these services. This is particularly true for specialized ICU services such as mechanical ventilation, where little, if any, information exists specifically for rural hospitals. The long-term objectives of this project were to evaluate the quality of medical care provided to mechanically ventilated patients in rural ICUs and to improve patient care through an educational intervention. This paper reports baseline data on patient and hospital characteristics for both rural and rural referral hospitals. RESULTS: Twenty Iowa hospitals were evaluated. Data collected on 224 patients demonstrated a mean age of 70 years and a mean ICU admission Acute Physiology and Chronic Health Evaluation (APACHE) II score of 22, with an associated 36% mortality. Mean length of ICU stay was 10 days, with 7.7 ventilated days. Significant differences were found in both institutional and patient variables between rural referral hospitals and rural hospitals with more limited resources. A subgroup of patients with diagnoses associated with complex ventilation had higher mortality rates than patients without these conditions. Patients who developed nosocomial events had longer mean ventilator and ICU days than patients without nosocomial events. This study also found ICU practices that frequently fell outside the guidelines recommended by a task force describing minimum standards of care for critically ill patients with acute respiratory failure on mechanical ventilation. CONCLUSIONS: Despite distinct differences in the available resources between rural referral and rural hospitals, overall mortality rates of ventilated patients are similar. Considering the higher mortality rates observed in patients with complicated medical conditions requiring

  13. Regional tidal lung strain in mechanically ventilated normal lungs.

    Science.gov (United States)

    Paula, Luis Felipe; Wellman, Tyler J; Winkler, Tilo; Spieth, Peter M; Güldner, Andreas; Venegas, Jose G; Gama de Abreu, Marcelo; Carvalho, Alysson R; Vidal Melo, Marcos F

    2016-12-01

    Parenchymal strain is a key determinant of lung injury produced by mechanical ventilation. However, imaging estimates of volumetric tidal strain (ε = regional tidal volume/reference volume) present substantial conceptual differences in reference volume computation and consideration of tidally recruited lung. We compared current and new methods to estimate tidal volumetric strains with computed tomography, and quantified the effect of tidal volume (VT) and positive end-expiratory pressure (PEEP) on strain estimates. Eight supine pigs were ventilated with VT = 6 and 12 ml/kg and PEEP = 0, 6, and 12 cmH2O. End-expiratory and end-inspiratory scans were analyzed in eight regions of interest along the ventral-dorsal axis. Regional reference volumes were computed at end-expiration (with/without correction of regional VT for intratidal recruitment) and at resting lung volume (PEEP = 0) corrected for intratidal and PEEP-derived recruitment. All strain estimates demonstrated vertical heterogeneity with the largest tidal strains in middependent regions (P < 0.01). Maximal strains for distinct estimates occurred at different lung regions and were differently affected by VT-PEEP conditions. Values consistent with lung injury and inflammation were reached regionally, even when global measurements were below critical levels. Strains increased with VT and were larger in middependent than in nondependent lung regions. PEEP reduced tidal-strain estimates referenced to end-expiratory lung volumes, although it did not affect strains referenced to resting lung volume. These estimates of tidal strains in normal lungs point to middependent lung regions as those at risk for ventilator-induced lung injury. The different conditions and topography at which maximal strain estimates occur allow for testing the importance of each estimate for lung injury.

  14. Ventilation Model and Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    V. Chipman

    2003-07-18

    This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity.

  15. Pulmonary hemodynamic responses to in utero ventilation in very immature fetal sheep

    Directory of Open Access Journals (Sweden)

    Allison Beth J

    2010-08-01

    Full Text Available Abstract Background The onset of ventilation at birth decreases pulmonary vascular resistance (PVR resulting in a large increase in pulmonary blood flow (PBF. As the large cross sectional area of the pulmonary vascular bed develops late in gestation, we have investigated whether the ventilation-induced increase in PBF is reduced in immature lungs. Methods Surgery was performed in fetal sheep at 105 d GA (n = 7; term ~147 d to insert an endotracheal tube, which was connected to a neonatal ventilation circuit, and a transonic flow probe was placed around the left pulmonary artery. At 110 d GA, fetuses (n = 7 were ventilated in utero (IUV for 12 hrs while continuous measurements of PBF were made, fetuses were allowed to develop in utero for a further 7 days following ventilation. Results PBF changes were highly variable between animals, increasing from 12.2 ± 6.6 mL/min to a maximum of 78.1 ± 23.1 mL/min in four fetuses after 10 minutes of ventilation. In the remaining three fetuses, little change in PBF was measured in response to IUV. The increases in PBF measured in responding fetuses were not sustained throughout the ventilation period and by 2 hrs of IUV had returned to pre-IUV control values. Discussion and conclusion Ventilation of very immature fetal sheep in utero increased PBF in 57% of fetuses but this increase was not sustained for more than 2 hrs, despite continuing ventilation. Immature lungs can increase PBF during ventilation, however, the present studies show these changes are transient and highly variable.

  16. [A case of ventilation disorder and poor oxygenation after changing position from prone to supine].

    Science.gov (United States)

    Yamaguchi, Satoshi; Hirakawa, Kei; Kitamura, Jiro

    2013-01-01

    A 68-year-old obese woman (BMI 35) underwent posterior lumbar interbody fusion in prone position. Immediately after changing position postoperatively from prone to supine, severe ventilation disorder and poor oxygenation occured. Chest X-ray showed severe atelectasis. Poor oxygenation was suspected to be the result of the atelectasis by the pressure of massive abdominal fatty tissue to the diaphragm. Ventilation disorder was suspected of the bronchospasm associated with inadequate anesthesia. We ventilated her manually with a bag in Fowler position for twenty minutes, and then mechanically by pressure controlled ventilation. She recovered gradually. It is concluded that in obese patients undergoing operation in prone position, changing position should be done very carefully during adequate anesthesia, understanding respiratory physiology in positioning and considering the effect of the abdominal fatty tissue to the diaphragm.

  17. [Comparison of the Effectiveness of Different Supraglottic Ventilation Methods during Bronchial Thermoplasty].

    Science.gov (United States)

    Wang, Wen; Lin, Jiang-tao; Su, Nan; Nong, Ying; Hong, Hong; Yin, Yi-qing; Li, Cheng-hui

    2016-04-01

    To compare the effectiveness of high-frequency jet ventilation via Wei jet nasal airway and controlled ventilation with improved laryngeal mask airway during bronchial thermoplasty. Twenty-eight patients undergoing bronchial thermoplasty were equally divided into two groups: group A (high-frequency jet ventilation through Wei jet nasal airway) and group B (controlled ventilation with improved laryngeal mask airway). Pulse oxygenation,heart rate,and mean arterial blood pressure were recorded after entering the operating room (T0), 1 minute after administration/induction (T1), bronchoscope inserting (T2), 15 minutes (T3)/30 minutes (T4)/45 minutes (T5) after ventilation,at the end of the operation (T6), and at the recovery of patients' consciousness (T7). The pH,arterial oxygen partial pressure,and arterial carbon dioxide partial pressure were recorded at T0, T4, and T6. The endoscope indwelling duration,operative time,patients' awakening time,adverse events during anesthesia,satisfactions of patients and operators, anesthesic effectiveness were also recorded. The arterial carbon dioxide partial pressur in group A at T4 and T6 were significantly higher than in group B (P<0.05). The pH in group A at T4 and T6 was significantly lower than in group B (P<0.05). The endoscope indwelling duration and the operative time in group B were significantly shorter than in group A (P<0.05) while the recovery of consciousness in group B was significantly longer than in group A (P<0.05). The satisfaction for operators and the efficacy of anesthesia in group B were better than in group A (P<0.05). The number of adverse events in group B was significantly smaller than in group A (P<0.05). The improved laryngeal mask airway with controlled ventilation is more suitable for bronchial thermoplasty.

  18. Simple nanosecond to minutes transient absorption spectrophotometer.

    Science.gov (United States)

    Mikhonin, Aleksandr V; Maurer, Marta K; Reese, Chad E; Asher, Sanford A

    2005-12-01

    We built a transient absorption spectrophotometer that can determine transient absorption spectral changes that occur at times as fast as approximately 200 ns and as slow as a minute. The transient absorption can be induced by a temperature-jump (T-jump) or by optical pumping from the deep ultraviolet (UV) to the infrared (IR) by use of single ns Nd:YAG laser pulses. Our use of a fiber-optic spectrometer coupled to a XeF flashlamp makes the collection of transient spectra easy and convenient in the spectral range from the near IR (1700 nm) down to the deep UV (200 nm), with high signal-to-noise (S/N) ratios. The spectral resolution is determined by the specific configuration of the fiber-optic spectrometer (grating groove density, fiber diameter, slit width) and varies between 0.3 and 10 nm. The utility of this spectrometer was demonstrated by measuring the rate at which a polymerized crystalline colloidal array (PCCA) of poly(N-isopropylacrylamide) nanogel particles optically switch light due to a T-jump induced by nanosecond 1.9 microm laser pulses. In addition, we measured the rate of optical switching induced by a 3 ns 355 nm pump pulse in PCCA functionalized with azobenzene.

  19. Determinants of ventilation behavior in naturally ventilated dwellings: Identification and quantification of relationships

    NARCIS (Netherlands)

    Levie, D.; Kluizenaar, Y. de; Hoes-van Oeffelen, E.C.M.; Hofstetter, H.; Janssen, S.A.; Spiekman, M.E.; Koene, F.G.H.

    2014-01-01

    Background: Ventilation in dwellings is essential for well-being and health. However, insight in determinants of ventilation behavior is still limited. Aim: Identifying determinants of ventilation behavior and quantifying relationships. Secondly, identifying households characteristics associated wit

  20. Bench evaluation of 7 home-care ventilators.

    Science.gov (United States)

    Blakeman, Thomas C; Rodriquez, Dario; Hanseman, Dennis; Branson, Richard D

    2011-11-01

    Portable ventilators continue to decrease in size while increasing in performance. We bench-tested the triggering, battery duration, and tidal volume (V(T)) of 7 portable ventilators: LTV 1000, LTV 1200, Puritan Bennett 540, Trilogy, Vela, iVent 101, and HT50. We tested triggering with a modified dual-chamber test lung to simulate spontaneous breathing with weak, normal, and strong inspiratory effort. We measured battery duration by fully charging the battery and operating the ventilator with a V(T) of 500 mL, a respiratory rate of 20 breaths/min, and PEEP of 5 cm H(2)O until breath-delivery ceased. We tested V(T) accuracy with pediatric ventilation scenarios (V(T) 50 mL or 100 mL, respiratory rate 50 breaths/min, inspiratory time 0.3 s, and PEEP 5 cm H(2)O) and an adult ventilation scenario (V(T) 400 mL, respiratory rate 30 breaths/min, inspiratory time 0.5 s, and PEEP 5 cm H(2)O). We measured and analyzed airway pressure, volume, and flow signals. At the adult settings the measured V(T) range was 362-426 mL. On the pediatric settings the measured V(T) range was 51-182 mL at the set V(T) of 50 mL, and 90-141 mL at the set V(T) of 100 mL. The V(T) delivered by the Vela at both the 50 mL and 100 mL, and by the HT50 at 100 mL, did not meet the American Society for Testing and Materials standard for V(T) accuracy. Triggering response and battery duration ranged widely among the tested ventilators. There was wide variability in battery duration and triggering sensitivity. Five of the ventilators performed adequately in V(T) delivery across several settings. The combination of high respiratory rate and low V(T) presented problems for 2 of the ventilators.

  1. NUMERICAL SIMULATION OF VENTILATED CAVITATING FLOW AROUND A 2D FOIL

    Institute of Scientific and Technical Information of China (English)

    CHEN Xin; LU Chuan-jing

    2005-01-01

    By using a pressure-based method and the finite volume method in the framework of the time-dependent Reynolds-averaged Navier-Stokes equations, the authors studied the unsteady process of ventilated cavities generated forcing air through an orifice in a 2D hydrofoil without natural cavitation physically. The computation was carried out with the Volume Of Fluid (VOF) technique to track the gas-liquid two-phase interface. The results of simulation indicate that the ventilation rate is an important parameter in determining the morphology of cavity. There exists a critical value to convert sheet cavity into supercavity. A high ventilation rate can induce a two-phase interface fluctuation and enable the ventilated cavitating flow to present a characteristic of periodicity.

  2. Contaminants in ventilated filling boxes

    Science.gov (United States)

    Bolster, D. T.; Linden, P. F.

    While energy efficiency is important, the adoption of energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. Many low-energy systems, such as displacement or natural ventilation, rely on temperature stratification within the interior environment, always extracting the warmest air from the top of the room. Understanding buoyancy-driven convection in a confined ventilated space is key to understanding the flow that develops with many of these modern low-energy ventilation schemes. In this work we study the transport of an initially uniformly distributed passive contaminant in a displacement-ventilated space. Representing a heat source as an ideal sourced of buoyancy, analytical and numerical models are developed that allow us to compare the average efficiency of contaminant removal between traditional mixing and modern low-energy systems. A set of small-scale analogue laboratory experiments was also conducted to further validate our analytical and numerical solutions.We find that on average traditional and low-energy ventilation methods are similar with regard to pollutant flushing efficiency. This is because the concentration being extracted from the system at any given time is approximately the same for both systems. However, very different vertical concentration gradients exist. For the low-energy system, a peak in contaminant concentration occurs at the temperature interface that is established within the space. This interface is typically designed to sit at some intermediate height in the space. Since this peak does not coincide with the extraction point, displacement ventilation does not offer the same benefits for pollutant flushing as it does for buoyancy removal.

  3. Influence of Persons' Movements on Ventilation Effectiveness

    DEFF Research Database (Denmark)

    Brohus, Henrik; Hyldig, Mikkel; Kamper, Simon

    2008-01-01

    of different kinds of movement compared with the case of no movements. It is found that mixing ventilation is considerably more robust compared with displacement ventilation. At the same time it is found that displacement ventilation on average is more effective than mixing ventilation when movements prevail......Most often the ventilation effectiveness of a ventilated room is determined without considering the influence of persons´ movements. Even though the main reason for supplying the ventilation may be to create a healthy and productive environment for the occupants, their own influence...... on the ventilation is usually disregarded. This paper presents results from a systematic investigation of the movements´ influence on the ventilation effectiveness using human subjects combined with tracer gas measurements. Several typical "movements" are defined and carefully repeated to determine the influence...

  4. Universal functional form of 1-minute raindrop size distribution?

    Science.gov (United States)

    Cugerone, Katia; De Michele, Carlo

    2015-04-01

    Rainfall remains one of the poorly quantified phenomena of the hydrological cycle, despite its fundamental role. No universal laws describing the rainfall behavior are available in literature. This is probably due to the continuous description of rainfall, which is a discrete phenomenon, made by drops. From the statistical point of view, the rainfall variability at particle size scale, is described by the drop size distribution (DSD). With this term, it is generally indicated as the concentration of raindrops per unit volume and diameter, as the probability density function of drop diameter at the ground, according to the specific problem of interest. Raindrops represent the water exchange, under liquid form, between atmosphere and earth surface, and the number of drops and their size have impacts in a wide range of hydrologic, meteorologic, and ecologic phenomena. DSD is used, for example, to measure the multiwavelength rain attenuation for terrestrial and satellite systems, it is an important input for the evaluation of the below cloud scavenging coefficient of the aerosol by precipitation, and is of primary importance to make estimates of rainfall rate through radars. In literature, many distributions have been used to this aim (Gamma and Lognormal above all), without statistical supports and with site-specific studies. Here, we present an extensive investigation of raindrop size distribution based on 18 datasets, consisting in 1-minute disdrometer data, sampled using Joss-Waldvogel or Thies instrument in different locations on Earth's surface. The aim is to understand if an universal functional form of 1-minute drop diameter variability exists. The study consists of three main steps: analysis of the high order moments, selection of the model through the AIC index and test of the model with the use of goodness-of-fit tests.

  5. Simulation of static pressure reset control in comfort ventilation

    DEFF Research Database (Denmark)

    Koulani, Chrysanthi Sofia; Prunescu, Remus Mihail; Hviid, Christian Anker

    2014-01-01

    Variable air volume (VAV) ventilation systems reduce fan power consumption compared to constant air volume (CAV) systems because they supply air according to the airflow demand. However VAV ventilation systems do not take fully into account the potential energy savings as the control strategy...... operates the terminal boxes and the air handling unit (AHU) independently without pressure integration. The pressure in the main duct is maintained at a constant static pressure (CSP) which corresponds to the pressure required under the design full load condition. Under part load conditions, the fan...... the fan generates only enough pressure to satisfy the airflow demand in the most critical zone. Consequently the airflow resistance of the ductwork is maintained at a minimum and the fan operation is optimized. There are various approaches to implement the control scheme of the SPR method; the state...

  6. Assessment of the potential of roof turbine ventilators for bathroom ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Ishiow Kuo [National United Univ., Dept. of Architecture, Miao-li City (Taiwan); Chiming Lai [Leader Univ., Dept. of Construction Technology, Tainan City (Taiwan)

    2005-06-15

    This study set out to investigate the potential of installing a new common roof turbine ventilator on to an existing bathroom ventilation system which serves 14 bathrooms in the first dormitory block of Leader University in Taiwan, and evaluate the overall ventilation performance of this new combination. Field measurements of airflow in the ventilation ducts and low-speed wind tunnel experiments for this turbine ventilator were carried out. The results showed that the combination of the roof turbine ventilator and bathroom ventilation were successful in achieving sufficient air change rate in bathrooms, and this ventilation design alternative is now proposed as a method of improving the indoor air environment in bathrooms. (Author)

  7. The effects of aminophylline infusion in the treatment of children with acute asthma exacerbation. Evaluation with {sup 81m}Kr ventilation scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Yasuko; Shimada, Takao [Jikei Univ., Tokyo (Japan). School of Medicine

    1998-09-01

    The use of intravenous aminophylline in the treatment of children with acute asthma remains controversial. Most authors suggest that aminophylline be used with caution because of its poor efficacy with adverse reactions and instead recommend other drugs, such as {beta}{sub 2}-adrenergic agonists and glucocorticoids. However other studies have reported the benefits of aminophylline, and current Japanese guidelines for the management of asthma recommend its use. Here, we have evaluated the efficacy of aminophylline infusion in children with acute asthma exacerbations. Twenty children with acute asthma exacerbations were given an infusion of 5 mg/kg of aminophylline over 5 minutes, 30 minutes after the same volume of normal saline had been infused as a control. {sup 81m}Kr ventilation scintigraphy was done sequentially, and lung function was measured with spirometry before and after each infusion. Side effects were also evaluated with a questionnaire. Ventilation images obtained with {sup 81m}Kr scintigraphy, which initially showed widespread ventilatory defects caused by bronchoconstriction, decreased 54.9% after aminophylline infusion (p<0.0001). Ventilatory defects, caused by both central and peripheral airway disturbances and confirmed with the {sup 81m}Kr bolus inhalation procedure, also showed significant improvement (p<0.0001). These improvement were accompanied by improvements in lung function as assessed with forced expiratory volume in 1 second (p<0.01) and maximum expiratory flow rates at 25% (p<0.001) and 50% (p<0.001). No serious adverse reactions were recognized in any subjects. Our results show that aminophylline is a useful bronchodilator which decreased ventilatory imbalance and improves lung function in both central and peripheral airways. (author)

  8. The effect of open lung ventilation on right ventricular and left ventricular function in lung-lavaged pigs

    NARCIS (Netherlands)

    D.R. Miranda; L. Klompe; F. Cademartiri (Filippo); J.J. Haitsma (Jack); A. Palumbo (Alessandro); B.F. Lachmann (Burkhard); A.J.J.C. Bogers (Ad); D.A.M.P.J. Gommers (Diederik); J.J.M. Takkenberg (Hanneke)

    2006-01-01

    textabstractINTRODUCTION: Ventilation according to the open lung concept (OLC) consists of recruitment maneuvers, followed by low tidal volume and high positive end-expiratory pressure, aiming at minimizing atelectasis. The minimization of atelectasis reduces the right ventricular

  9. Effect of closed endotracheal suction in high-frequency ventilated premature infants measured with electrical impedance tomography

    NARCIS (Netherlands)

    van Veenendaal, M.B.; Miedema, M.; de Jongh, F.H.C.; van der Lee, J.H.; Frerichs, I.; van Kaam, A.H.

    2009-01-01

    Objective: To determine the global and regional changes in lung volume during and after closed endotracheal tube (ETT) suction in high-frequency ventilated preterm infants with respiratory distress syndrome (RDS). Design: Prospective observational clinical study. Setting: Neonatal intensive care

  10. Contaminant Distribution Around Persons in Rooms Ventilated by Displacement Ventilation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter V.

    An optimal design of the ventilation system needs a proper prediction of the velocity, temperature and contaminant distribution in the room. Traditionally this is done either by the use of simplified models or by a somewhat more comprehensive CFD-simulation. Common to both methods is usually the ...... the lack of consideration for the persons present in the room. This paper deals with some of the effects of persons present in a displacement ventilated room, especially the effect on the contaminant distribution.......An optimal design of the ventilation system needs a proper prediction of the velocity, temperature and contaminant distribution in the room. Traditionally this is done either by the use of simplified models or by a somewhat more comprehensive CFD-simulation. Common to both methods is usually...

  11. Bronchoalveolar lavage alterations during prolonged ventilation of patients without acute lung injury.

    Science.gov (United States)

    Tsangaris, I; Lekka, M E; Kitsiouli, E; Constantopoulos, S; Nakos, G

    2003-03-01

    Mechanical ventilation deteriorates previously injured lung, but little is known about its effect on healthy human lung. This work was designed to assess the effect of prolonged mechanical ventilation on bronchoalveolar lavage (BAL) fluid composition of patients without acute lung injury. Twenty-two ventilated patients (tidal volume 8-10 mL x kg(-1), positive end-expiratory pressure 3-5 cmH2O) without lung injury, who did not develop any complication from the respiratory system during the 2-week study period, were studied. They were subjected to three consecutive BALs, the first during 36 h from intubation, the second at the end of the first week of mechanical ventilation and the third at the end of the second week of mechanical ventilation. Total BAL protein increased during mechanical ventilation (148 +/- 62, 381 +/- 288, 353 +/- 215 microg x mL(-1) BAL for the first, second and third BAL, respectively). In contrast, BAL phospholipids decreased (2.7 +/- 1.1, 1.4 +/- 0.6, 1.2 +/- 0.7 microg x mL(-1) BAL, respectively). Large surfactant aggregates were reduced and inflammatory markers, such as platelet activating factor (PAF), PAF-acetylhydrolase and neutrophils, significantly increased after 1 week, but partially remitted after 2 weeks of mechanical ventilation. In summary, this study demonstrates that prolonged mechanical ventilation even of patients without acute lung injury is associated with the presence of inflammatory markers and surfactant alterations.

  12. 呼吸末阻断试验评估感染性休克机械通气患者血容量的临床价值研究%Clinical value of end-expiratory blocking test in assessment of blood volume of septic shock patients undergoing mechanical ventilation

    Institute of Scientific and Technical Information of China (English)

    谢晓红; 吴远怡; 符惠雅; 麦叶; 李瑞; 周忠义; 李娜

    2016-01-01

    目的:研究呼气末阻断试验(EEO )在感染性休克机械通气患者容量反应性中的预测效果,以提高容量反应性评估方法、指导患者血容量复苏。方法选取2013年9月-2015年9月医院重症医学科收治的160例感染性休克机械通气患者临床资料进行分析,采用随机对照方法将患者分为对照组和试验组,每组各80例,对照组为对容量负荷试验无反应性,试验组为对容量负荷试验有反应性,患者入院后对其进行EEO ,分析其在感染性休克机械通气患者容量反应性中的预测效果。结果两组患者不同基线下EEO和被动抬腿试验对心率、收缩压、平均血压、舒张压差异无统计学意义;试验组基线1脉压和心脏指数下EEO水平显著高于对照组( P<0.05);试验组基线2脉压和心脏指数水平下PLR显著高于对照组(P<0.05)。结论感染性休克机械通气患者采用EEO、心脏指数以及脉压等指标均能评估患者容量反应性,而EEO评估容量反应性更加可靠。%OBJECTIVE To study the effect of end-expiratory blocking test on prediction of volume responsiveness of the septic shock patients undergoing mechanical ventilation so as to improve the assessment of volume respon-siveness and provide guidance for recovery of blood volume .METHODS The clinical data were collected from 160 septic shock patients who underwent the mechanical ventilation in the critical care medicine department from Sep 2013 to Sep 2015 ,then the enrolled patients were randomly divided into the control group and the experimental group ,with 80 cases in each .The control group was not responsive to the capacity load test ,while the experimen-tal group was responsive to the capacity load test ,the end-expiratory blocking test was carried out for the patients after the admission to the hospital ,and the effect of the end-expiratory blocking test on prediction of volume re-sponsiveness of the

  13. Recurrent recruitment manoeuvres improve lung mechanics and minimize lung injury during mechanical ventilation of healthy mice.

    Directory of Open Access Journals (Sweden)

    Lucy Kathleen Reiss

    Full Text Available INTRODUCTION: Mechanical ventilation (MV of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined the effects of frequent short recruitment manoeuvres (RM in healthy mice. METHODS: Mice were ventilated at low tidal volume V(T = 8 mL/kg or high tidal volume V(T = 16 mL/kg and a positive end-expiratory pressure (PEEP of 2 or 6 cm H(2O. RM were performed every 5 min, 60 min or not at all. Lung mechanics were followed by the forced oscillation technique. Blood pressure (BP, electrocardiogram (ECG, heart frequency (HF, oxygen saturation and body temperature were monitored. Blood gases, neutrophil-recruitment, microvascular permeability and pro-inflammatory cytokines in bronchoalveolar lavage (BAL and blood serum as well as histopathology of the lung were examined. RESULTS: MV with repetitive RM every 5 min resulted in stable respiratory mechanics. Ventilation without RM worsened lung mechanics due to alveolar collapse, leading to impaired gas exchange. HF and BP were affected by anaesthesia, but not by ventilation. Microvascular permeability was highest in atelectatic lungs, whereas neutrophil-recruitment and structural changes were strongest in lungs ventilated with high tidal volume. The cytokines IL-6 and KC, but neither TNF nor IP-10, were elevated in the BAL and serum of all ventilated mice and were reduced by recurrent RM. Lung mechanics, oxygenation and pulmonary inflammation were improved by increased PEEP. CONCLUSIONS: Recurrent RM maintain lung mechanics in their physiological range during low tidal volume ventilation of healthy mice by

  14. Exposure to aerosol and gaseous pollutants in a room ventilated with mixing air distribution

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Ondráček, Jakub; Ždímal, Vladimír

    2016-01-01

    The present study investigates the aerosol and gas dispersal in a mechanically ventilated room and the personal exposure to these contaminants. The study was performed in a full-scale climate chamber. The room was air conditioned via mixing total volume ventilation system. The room occupancy...... of the thermal manikin were measured. The results showed higher exposure to the contaminants measured at the breathing zone than at the ambient air. The behaviour of the tracer gas and the aerosols was similar....

  15. Residential ventilation standards scoping study

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  16. Relative Tissue Factor Deficiency Attenuates Ventilator-Induced Coagulopathy but Does Not Protect against Ventilator-Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Esther K. Wolthuis

    2012-01-01

    Full Text Available Preventing tissue-factor-(TF- mediated systemic coagulopathy improves outcome in models of sepsis. Preventing TF-mediated pulmonary coagulopathy could attenuate ventilator-induced lung injury (VILI. We investigated the effect of relative TF deficiency on pulmonary coagulopathy and inflammation in a murine model of VILI. Heterozygous TF knockout (TF+/− mice and their wild-type (TF+/+ littermates were sedated (controls or sedated, tracheotomized, and mechanically ventilated with either low or high tidal volumes for 5 hours. Mechanical ventilation resulted in pulmonary coagulopathy and inflammation, with more injury after mechanical ventilation with higher tidal volumes. Compared with TF+/+ mice, TF+/− mice demonstrated significantly lower pulmonary thrombin-antithrombin complex levels in both ventilation groups. There were, however, no differences in lung wet-to-dry ratio, BALF total protein levels, neutrophil influx, and lung histopathology scores between TF+/− and TF+/+ mice. Notably, pulmonary levels of cytokines were significantly higher in TF+/− as compared to TF+/+ mice. Systemic levels of cytokines were not altered by the relative absence of TF. TF deficiency is associated with decreased pulmonary coagulation independent of the ventilation strategy. However, relative TF deficiency does not reduce VILI and actually results in higher pulmonary levels of inflammatory mediators.

  17. 5-minute Gridded Global Relief Data (ETOPO5)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Earth topography five minute grid (ETOPO5) is a gridded data base of worldwide elevations derived from several sources at a resolution of 5 minutes of latitude and...

  18. Impact of the atmospheric boundary layer profile on the ventilation of a cubic building with two large opposite openings

    CERN Document Server

    Bastide, Alain; Boyer, Harry

    2014-01-01

    The aim of this paper is to show the influence of the atmospheric boundary layer profile on the distribution of velocity in a building having two large openings. The knowledge of the flow form inside a building is useful to define a thermal environment favourable with thermal comfort and good air quality. In computational fluid dynamics, several profiles of atmospheric boundary layer can be used like logarithmic profiles or power profiles. This paper shows the impact of these profiles on the indoor airflow. Non-ventilated or ventilated parts of room are found. They show respectively ineffective ventilation and effective ventilation. A qualitative and global approach allows to observe the flows in a cubic building and to show the influence of each profile according to the external ground roughness and the incidence angle of the wind. Some zones, where occupants move, are named volumes of life. Ventilation is there observed using traditional tools in order to analyze quantitatively the ventilation of these zone...

  19. Summary of after the first three minutes

    Science.gov (United States)

    Richard Bond, J.

    1991-04-01

    Readers of the New York Times over the past few years have variously learned that: the Big Bang is dead; dark matter isn't cold; the Universe is bubbly, spongy, periodic, replete with Great Voids, Attractors and Walls. And every six months or so obituaries appear for the CDM model of cosmic structure formation. The observational evidence for the Hot Big Bang model, for dark matter, for the large scale structure of the Universe as revealed by galaxy surveys and for the very large scale structure as constrained by microwave background observations was thoroughly explored in After The First Three Minutes. From this meeting we learned that: The Hot Big Bang model is healthier than ever. There is evidence from IRAS surveys that Ω>~0.5, but from Big Bang nucleosynthesis that ΩB>=0.07, suggesting a great deal of nonbaryonic dark matter exists, which cannot be vacuum energy (nonzero Λ). There are fewer viable candidates for cold dark matter (CDM) after the LEP results from CERN, but searches are still promising. Hot dark matter in the form of light massive neutrinos got a boost from the MSW solution of the solar neutrino problem. The standard ``biased'' CDM model, the `minimal' inflation model with adiabatic Gaussian scale invariant fluctuations and cold dark matter, probably should have been `unbiased' in its primordial amplitude all along - although some galaxy types and their relative velocities would be biased. The indications for extra density fluctuation power on large scales over that of the `minimal' CDM model continue to firm up. The emerging dilemma is what can give the observed large scale structure, and yet such CMB isotropy on slightly larger scales. The key clue may reside in cosmological background radiation. All wavebands are being experimentally mined to unearth it. Energy injection models with hot gas or dust are already under pressure in the sub-mm. The recuring invocation of the cosmological constant to solve our cosmological problems causes

  20. Air Distribution in a Furnished Room Ventilated by Mixing Ventilation

    DEFF Research Database (Denmark)

    Nielsen, June Richter; Nielsen, Peter V.; Svidt, Kjeld

    Using isothermal full-scale experiments and two-dimensional isothermal CFD simulations it is investigated how normal office furniture influences the air movements in a room with mixing ventilation. Three different set-ups are made in the experiments and different sizes and locations of the furnit......Using isothermal full-scale experiments and two-dimensional isothermal CFD simulations it is investigated how normal office furniture influences the air movements in a room with mixing ventilation. Three different set-ups are made in the experiments and different sizes and locations...

  1. A method for measuring passive elastance during proportional assist ventilation.

    Science.gov (United States)

    Younes, M; Webster, K; Kun, J; Roberts, D; Masiowski, B

    2001-07-01

    There are currently no reliable, noninvasive ways to monitor respiratory elastance (E) during assisted ventilation. We describe a method that is suited for proportional assist ventilation (PAV). In this mode, the end of the ventilator's inflation phase occurs during the declining phase of inspiratory effort (Pmus). If the opening of the exhalation valve is delayed, airway pressure (Paw) should initially rise as Pmus continues its decline. When Pmus declines to zero, a Paw plateau should appear. Paw at this point should reflect passive recoil at the prevailing volume. A cohort of 74 ventilator-dependent patients, ventilated in the PAV mode, were studied. Brief end-inspiratory occlusions were applied at random intervals. The magnitude of early change in Paw during the occlusion was inversely related to level of assist (r = 0.7, p 75%), Paw was nearly flat or declined slightly, indicating minimal residual Pmus at the onset of occlusion. At lower assist levels, Paw increased exponentially in most patients with an average time constant of 0.21 +/- 0.06 s. Extraneous events that may corrupt the measurement (e.g., behavioral responses) were extremely rare (passive E measured during controlled ventilation (ECMV); the average difference (EPAV - ECMV) was (+/- SD) -0.3 +/- 4.9 cm H2O x L(-1), corresponding to 0.9 +/- 16.4% of average E. We conclude that Paw measured at 0.25 s from the onset of end-inspiratory occlusion in the PAV mode provides a reliable estimate of passive elastic recoil.

  2. Increased ventilation in runners during running as compared to walking at similar metabolic rates.

    Science.gov (United States)

    Berry, M J; Dunn, C J; Pittman, C L; Kerr, W C; Adair, N E

    1996-01-01

    At similar levels of carbon dioxide production (VCO2) and oxygen consumption (VO2), runners have been shown to have a greater minute ventilation (VE) during running as compared to walking. The mechanism responsible for these differences has yet to be identified. To determine if these differences are a result of differences in acid-base status, potassium (K+), norepinephrine and/or epinephrine levels, seven well-trained runners completed walk and run tests at similar VO2 and VCO2 levels. The occurrence of entrainment of the breathing and stride frequencies during both walking and running was also determined. VE was significantly greater during the run as compared to the walk, 73.7 (2.2) versus 68.6 (2.0) l.min-1, respectively, despite the similarity in VO2 and VCO2 levels. Alveolar ventilation was not significantly different between the run and the walk, 60.4 (4.7) versus 59.6 (4.4) l.min-1, respectively. Dead space ventilation was found to be significantly greater during running as compared to walking, 13.3 (3.2) versus 9.0 (4.7) l.min-1, respectively. The increases in VE were due to increases in breathing frequency and decreases in tidal volume during the run as compared to the walk. Arterial partial pressures of CO2 (PaCO2) were not significantly different when comparing walking and running to rest values nor when comparing walking and running. Arterial pH was significantly lower during walking as compared to rest and running. Bicarbonate levels were significantly lower during walking as compared to rest. Lactate was significantly greater during walking as compared to rest and to running. K+ levels were significantly higher during walking and running as compared to rest. Epinephrine and norepinephrine levels were not significantly different between running and walking. During the walk, six of the seven subjects entrained their breathing frequency to the stride frequency, and during the run three of the seven subjects demonstrated entrainment. Results from this

  3. Effect of intermittent positive pressure ventilation on cardiac systolic time intervals.

    Science.gov (United States)

    Brundin, T; Hedenstierna, G; McCarthy, G

    1976-01-01

    The measurement of systolic time intervals (STI) has been widely used as a non-invasive method of assessing the inotropic state of the heart, and normal values are available for healthy individuals breathing spontaneously. The present study was performed in order to evaluate how intermittent positive pressure ventilation (IPPV) affects STI. Ten subjects were investigated before and during halothane anaesthesia for routine surgery. Oesophageal pressure, respiratory minute volume and frequency, arterial blood-gas tensions, cardiac output and heart rate were also measured simultaneously. As expected, the institution of IPPV was associated with a reduction in cardiac output and an increase in oesophageal pressure. Paco2 was reduced. These changes were associated with a considerable lengthening of electro-mechanical systole. This was due to a lengthened pre-ejection period (PEP), whereas the left ventricular ejection time (LVET) was slightly shortened. These changes were even more marked during artifical hyperventilation. The changes in STI are attributed mainly to the reduction of venous return to the heart, subsidiary factors being intrathoracic pressure, myocardial inotropy and vascular resistance.

  4. Critical evaluation of pulmonary contusion in the early post-traumatic period: risk of assisted ventilation.

    Science.gov (United States)

    Hamrick, Miller C; Duhn, Ryan D; Ochsner, M Gage

    2009-11-01

    This study attempts to accurately quantify pulmonary contusion and predict those patients most likely to require assisted ventilation early in their hospital course. Patients admitted to a Level I trauma center were evaluated for pulmonary contusion by helical CT scan. Scans were reviewed by a single radiologist who attempted to accurately quantify contusion as a percentage of total lung volume. These patients were then followed for 48 hours in an attempt to use CT measurements of contusion to predict those that would require assisted ventilation early in their hospital course. After using numerous exclusion criteria, 152 patients were included in the study. Of these, 31 patients (20%) required assisted ventilation within 48 hours of hospital admission. Twenty per cent pulmonary contusion proved to be a highly predictive variable leading to need for assisted ventilation. Of patients sustaining contusion, only 7 of 92 (8%) required assisted ventilation versus 24 of 60 (40%) sustaining >20 per cent contusion. Pulmonary contusion is a significant injury especially when contusion volume exceeds 20 per cent of total lung volume. With accurate measurement of contusion, we can identify those patients at high risk of requiring assisted ventilation early in their hospital course.

  5. Comparison of Airway Pressure Release Ventilation to Conventional Mechanical Ventilation in the Early Management of Smoke Inhalation Injury in Swine

    Science.gov (United States)

    2011-01-01

    acute respiratory distress syndrome developed ( PaO2 /FIO2 ratio ), plateau pressures were limited to ន cm H2O. Six uninjured pigs received...conventional mechanical ventilation for 48 hrs and served as time controls. Changes in PaO2 /FIO2 ratio, tidal volume, respiratory rate, mean airway pressure...plateau pressure, and hemody- namic variables were recorded. Survival was assessed using Kaplan- Meier analysis. PaO2 /FIO2 ratio was lower in airway

  6. Relative effects of negative versus positive pressure ventilation depend on applied conditions.

    Science.gov (United States)

    Engelberts, Doreen; Malhotra, Atul; Butler, James P; Topulos, George P; Loring, Stephen H; Kavanagh, Brian P

    2012-05-01

    Comparisons of negative versus positive pressure ventilation have imperfectly matched the pressure-time profile or the lung volume history, or have incompletely applied in vivo negative pressure to include the complete thoracic wall and abdomen. Negative pressure exerts the same pattern of lung distension as positive pressure when the pressure-time and volume history profiles are identical and the application of negative pressure is over the whole lung. (1) In isolated (ex vivo) and (2) intact (in vivo) mouse lungs (n = 4/group) (sealed chamber enclosing either the whole lung or whole mouse except for external airway opening), identical and inverse-tidal, square-wave pressure-time profiles were obtained with positive and negative pressure ventilation. (3) Following an identical volume history, surfactant-depleted rabbits (n = 7) were randomly assigned to sustained, static equivalent positive versus negative pressures. (4) Surfactant-depleted anesthetized rabbits (n = 10) with identical volume histories were randomized to positive versus negative ventilation with identical pressure-time characteristics. Matched positive and negative pressure time profiles in ex vivo and in vivo mice resulted in identical tidal volumes. Identical (negative vs. positive) sustained static pressures resulted in similar PaO(2) and end expiratory lung volumes. Positive and negative ventilation with identical volume histories and pressure time characteristics showed no difference in oxygenation or lung volumes. Historical comparisons suggested better oxygenation with negative pressure when the volume history was not identical. These data do not support major biological differences between negative and positive pressure ventilation when waveforms and lung volume history are matched.

  7. [Nasopharyngeal myiasis during mechanical ventilation].

    Science.gov (United States)

    Yoshitomi, A; Sato, A; Suda, T; Chida, K

    1997-12-01

    We report a case of myiasis caused by Phaenicia sericata during mechanical ventilation. An 86-year-old woman with bronchiectasis was admitted to our hospital with severe respiratory failure. Treatment with mechanical ventilation and sedatives was initiated. On the 10th day of hospitalization, about 20 white larvae were found in the patient's oral or nasal cavities. The larvae were removed and identified as Phaenicia sericata. No mucosal injury was found in the patient's oral or nasal cavity by endoscopic examination. The patient died of multiple organ failure caused by sepsis that had no association with myiasis. From the clinical course and the fly's life cycle, it is considered that the fly laid eggs in the patient's oral or nasal cavity while she was sedated during mechanical ventilation. Myiasis can occur even in a hospital.

  8. Comparison of CT-derived ventilation maps with deposition patterns of inhaled microspheres in rats

    Science.gov (United States)

    Jacob, Richard E.; Lamm, Wayne J.; Einstein, Daniel R.; Krueger, Melissa A.; Glenny, Robb W.; Corley, Richard A.

    2016-01-01

    Purpose Computer models for inhalation toxicology and drug-aerosol delivery studies rely on ventilation pattern inputs for predictions of particle deposition and vapor uptake. However, changes in lung mechanics due to disease can impact airflow dynamics and model results. It has been demonstrated that non-invasive, in vivo, 4DCT imaging (3D imaging at multiple time points in the breathing cycle) can be used to map heterogeneities in ventilation patterns under healthy and disease conditions. The purpose of this study was to validate ventilation patterns measured from CT imaging by exposing the same rats to an aerosol of fluorescent microspheres (FMS) and examining particle deposition patterns using cryomicrotome imaging. Materials and Methods Six male Sprague-Dawley rats were intratracheally instilled with elastase to a single lobe to induce a heterogeneous disease. After four weeks, rats were imaged over the breathing cycle by CT then immediately exposed to an aerosol of ~1μm FMS for ~5 minutes. After the exposure, the lungs were excised and prepared for cryomicrotome imaging, where a 3D image of FMS deposition was acquired using serial sectioning. Cryomicrotome images were spatially registered to match the live CT images to facilitate direct quantitative comparisons of FMS signal intensity with the CT-based ventilation maps. Results Comparisons of fractional ventilation in contiguous, non-overlapping, 3D regions between CT-based ventilation maps and FMS images showed strong correlations in fractional ventilation (r=0.888, p<0.0001). Conclusion We conclude that ventilation maps derived from CT imaging are predictive of the 1μm aerosol deposition used in ventilation-perfusion heterogeneity inhalation studies. PMID:25513951

  9. Comparison of CT-derived Ventilation Maps with Deposition Patterns of Inhaled Microspheres in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rick E.; Lamm, W. J.; Einstein, Daniel R.; Krueger, Melissa; Glenny, Robb W.; Corley, Richard A.

    2015-04-01

    Purpose: Computer models for inhalation toxicology and drug-aerosol delivery studies rely on ventilation pattern inputs for predictions of particle deposition and vapor uptake. However, changes in lung mechanics due to disease can impact airflow dynamics and model results. It has been demonstrated that non-invasive, in vivo, 4DCT imaging (3D imaging at multiple time points in the breathing cycle) can be used to map heterogeneities in ventilation patterns under healthy and disease conditions. The purpose of this study was to validate ventilation patterns measured from CT imaging by exposing the same rats to an aerosol of fluorescent microspheres (FMS) and examining particle deposition patterns using cryomicrotome imaging. Materials and Methods: Six male Sprague-Dawley rats were intratracheally instilled with elastase to a single lobe to induce a heterogeneous disease. After four weeks, rats were imaged over the breathing cycle by CT then immediately exposed to an aerosol of ~1µm FMS for ~5 minutes. After the exposure, the lungs were excised and prepared for cryomicrotome imaging, where a 3D image of FMS deposition was acquired using serial sectioning. Cryomicrotome images were spatially registered to match the live CT images to facilitate direct quantitative comparisons of FMS signal intensity with the CT-based ventilation maps. Results: Comparisons of fractional ventilation in contiguous, non-overlapping, 3D regions between CT-based ventilation maps and FMS images showed strong correlations in fractional ventilation (r=0.888, p<0.0001). Conclusion: We conclude that ventilation maps derived from CT imaging are predictive of the 1µm aerosol deposition used in ventilation-perfusion heterogeneity inhalation studies.

  10. Assessment of exercise capacity in African patients with chronic heart failure using six minutes walk test

    Directory of Open Access Journals (Sweden)

    Rufus A Adedoyin

    2010-02-01

    Full Text Available Rufus A Adedoyin1, Samuel A Adeyanju2, Michael O Balogun3, Anthony O Akintomide3, Rasaaq A Adebayo3, Patience O Akinwusi4, Taofeek O Awotidebe11Department of Medical Rehabilitation, Obafemi Awolowo University, Ile-Ife, Nigeria; 2Department of Physical and Health Education, Obafemi Awolowo University, Ile-Ife, Nigeria; 3Department of Medicine, Obafemi Awolowo University, Ile-Ife, Nigeria; 4Department of Medicine, Ladoke Akintola University of Technology, Osogbo, NigeriaBackground: The purpose of this study was to assess the functional capacity during a 6-minute corridor walk and a 6-minute bicycle ergometry exercise in patients with chronic heart failure (CHF.Method: Thirty five patients with stable CHF were recruited for the study. Each subject performed six minutes corridor walk and 6-minute bicycle ergometry testing. The 6-minute walk required the subjects to walk at a self selected speed on a 20 meter marked level ground for 6-minute. All the subjects also performed a 6-minute exercise on a stationary bicycle ergometer with initial resistance of 20 watts and increased by 10 watts after 3-minutes. The perceived rate of exertion was assessed using a modified Borg Scale after each exercise mode. The maximum oxygen consumption was derived using American College of Sport Medicine equations.Results: Result showed high positive correlation between distance walked in the 6-minute and the maximum volume of oxygen (VO2 max (r = 0.65, P < 0.01. The average distance walked was 327 m ± 12.03 m. The VO2 max estimated during bicycle ergometry was higher (13.7 ± 1.9 L than during the six minutes walk (8.9 ± 1.2 L.Conclusion: Six minutes walk could be useful to evaluate exercise tolerance in patients with chronic heart failure, while the bicycle ergometer could be more appropriate in the assessment of maximum functional capacity in these patients.Keywords: 6-minute walk, CHF, bicycle ergometer

  11. Total liquid ventilation reduces oleic acid-induced lung injury in piglets

    Institute of Scientific and Technical Information of China (English)

    ZHU Yao-bin; LIU Dong-hai; ZHANG Yan-bo; LIU Ai-jun; FAN Xiang-ming; QIAO Chen-hui; WANG Qiang

    2013-01-01

    Background Pediatric patients are susceptible to lung injury that does not respond to traditional therapies.Total liquid ventilation has been developed as an alternative ventilatory strategy for severe lung injury.The aim of this study is to investigate the effect of total liquid ventilation on oleic acid (OA)-induced lung injury in piglets.Methods Twelve Chinese immature piglets were induced acute lung injury by OA.Twelve piglets were randomly treated with conventional gas ventilation (control group) or total liquid ventilation (study group) for 240 minutes.Samples for blood gas analysis were collected before,and at 60-minute intervals after OA-induced lung injury.The degree of lung injury was quantified by histologic examination.The inflammatory cells and the levels of IL-1β,IL-6,IL-10 and TNF-α in plasma,tissue and bronchoalveolar lavage were analyzed.Results Neutrophil and macrophage counts in bronchoalveolar lavage were significantly decreased in the study group (P<0.05).The total lung injury score was also reduced in the study group (P<0.05).The cconcentrations of IL-1β,IL-6,IL-10and TNF-α in plasma,tissue and bronchoalveolar lavage were significantly reduced in the study group (P<0.05).Conclusions Total liquid ventilation reduces biochemical and histologic OA-induced lung injury in piglets.

  12. 容量目标压力控制+同步间歇指令通气治疗新生儿呼吸窘迫综合征的疗效%Efficacy of volume target pressure control and synchronized intermittent mandatory ventilation in treating neo-natal respiratory distress syndrome

    Institute of Scientific and Technical Information of China (English)

    刘郴州; 关浩锋; 左雪梅; 许小慧; 郭青云

    2016-01-01

    Objective To investigate the efficacy of volume target pressure control(VTPC)and synchronized intermittent mandatory ventilation(SIMV)in treating severe neonatal respiratory distress syndrome(NRDS). Methods Fifty - six admitted cases with severe NRDS hospitalized in Jiangmen Central Hospital from October 2012 to March 2015 were randomly divided into 2 groups:28 cases in VTPC group were treated by VTPC and SIMV,and 28 cases in pressure control ventilation(PCV)group were treated by PCV and SIMV. There was no significant difference between 2 groups in terms of gender,gestational age,and birth weight(all P ﹥ 0. 05). Artery blood gas analysis was performed at 6 hours,12 hours,24 hours,and 48 hours respectively after ventilation. The following parameters were observed:the time of invasive mechanical ventilation,duration of oxygen therapy,mortality and the incidence rates of hypocapnia,pneumo-thorax,ventilator associated pneumonia( VAP),grade Ⅲ - Ⅳ periventricular intraventricular hemorrhage( PVH -IVH),periventricular leukomalacia(PVL)and bronchopulmonary dysplasia(BPD). Results No case in 2 groups withdrew from the test. There was no significant difference between 2 groups in terms of the first treatment time and total doses of poractant alfa injection(all P ﹥ 0. 05). The time of invasive mechanical ventilation in VTPC group[(71. 75 ± 9. 82)h]was shorter than that in PVC group[(97. 89 ± 16. 88)h](t = 7. 083,P = 0. 000). Hypocapnia incidence of four blood gas analysis in VTPC group[(19. 64 ± 14. 20)% ]was lower than that in PCV group[(47. 32 ± 18. 43)% ] (t = 6. 294,P = 0. 000). Incidence rates of VAP and PVL in VTPC group were lower than those in PCV group(χ2 =5. 197,P = 0. 023;χ2 = 4. 766,P = 0. 029). However,duration of oxygen therapy,mortality and the incidence rates of pneumothorax,Ⅲ - Ⅳ PVH - IVH and BPD were not significantly different between 2 groups( all P ﹥ 0. 05). Conclusion VTPC + SIMV has a better efficacy than PCV + SIMV in the treatment

  13. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Youbing, E-mail: youbing-yin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Choi, Jiwoong, E-mail: jiwoong-choi@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A., E-mail: eric-hoffman@uiowa.edu [Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242 (United States); Tawhai, Merryn H., E-mail: m.tawhai@auckland.ac.nz [Auckland Bioengineering Institute, The University of Auckland, Auckland (New Zealand); Lin, Ching-Long, E-mail: ching-long-lin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2013-07-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.

  14. Ventilation effectiveness : health benefits of heat recovery ventilators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-08-15

    Studies have shown that the installation of a heat recovery ventilator (HRV) in homes in northern Canada could improve indoor air quality and the respiratory health of inhabitants. Low ventilation rates are common in many homes in the North because the climate is severe, homes are smaller and lack basements, and occupancies are higher, leading to unhealthy indoor air quality. Northern communities also have a high rate of respiratory infections. HRVs recover much of the energy used to ventilate, which is desirable in cold regions with high heating costs. For the study, the test sample was divided into two types of houses, notably houses with active HRVs and those with control HRVs that were installed and operated but that did not function. The study results showed that HRVs provided increased ventilation. Complaints by residents about HRV noise, discomfort, or low humidity were common but equally spread between those with active and placebo HRVs. The study showed that the system design needs to be improved to better suit the needs of Inuit families. The nature of northern housing presents installation and maintenance challenges. It is hard to retrofit HRV ducting inside small, existing houses, and building supplies arrive infrequently, so detailed planning and careful take-offs of all supplies and materials must be done well in advance of construction. In addition, contractors are hard to locate and have variable expertise, and there is little technical follow-up. Robust technical support by local contractors and housing authorities is therefore important. 2 refs.

  15. Quantification of respiratory depression during pre-operative administration of midazolam using a non-invasive respiratory volume monitor

    Science.gov (United States)

    Gonzalez Castro, Luis N.; Mehta, Jaideep H.; Brayanov, Jordan B.; Mullen, Gary J.

    2017-01-01

    Background Pre-operative administration of benzodiazepines can cause hypoventilation—a decrease in minute ventilation (MV)—commonly referred to as “respiratory compromise or respiratory depression.” Respiratory depression can lead to hypercarbia and / or hypoxemia, and may heighten the risk of other respiratory complications. Current anesthesia practice often places patients at risk for respiratory complications even before surgery, as respiratory monitoring is generally postponed until the patient is in the operating room. In the present study we examined and quantified the onset of respiratory depression following the administration of a single dose of midazolam in pre-operative patients, using a non-invasive respiratory volume monitor that reports MV, tidal volume (TV), and respiratory rate (RR). Methods Impedance-based Respiratory Volume Monitor (RVM) data were collected and analyzed from 30 patients prior to undergoing orthopedic or general surgical procedures. All patients received 2.0 mg of midazolam intravenously at least 20 minutes prior to the induction of anesthesia and the effects of midazolam on the patient's respiratory function were analyzed. Results Within 15 minutes of midazolam administration, we noted a significant decrease in both MV (average decrease of 14.3% ± 5.9%, pbenzodiazepines affect primarily TV rather than RR. Such respiratory monitoring data provide the opportunity for individualizing dosing and adjustment of clinical interventions, especially important in elderly patients. With additional respiratory data, clinicians may be able to better identify and quantify respiratory depression, reduce adverse effects, and improve overall patient safety. PMID:28235069

  16. The School Advanced Ventilation Engineering Software (SAVES)

    Science.gov (United States)

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  17. The practice of mine ventilation engineering

    Institute of Scientific and Technical Information of China (English)

    Wallace Keith; Prosser Brian; Stinnette J. Daniel

    2015-01-01

    The practice of ventilation is continually evolving with new technological advances developed in the mining industry. In recent years the advances in diesel engine technologies, ventilation modeling software, and ventilation management capacities have redefined the historical methods used to evaluate systems. The advances re-evaluate previous methods used to calculate the airflow requirements for the dilution of diesel exhaust fumes. Modeling software has become an integral part of planning and devel-oping ventilation systems in partnership with graphical mine design software packages to generate realistic representations of the mine. Significant advances in ventilation control strategies through remote sensors and monitoring capabilities have been developed to results in cost savings. Though there has been much advancement in mine ventilation technology, the practices and basic ventilation princi-pals enacted through the ventilation engineer cannot be placated with technological advances only.

  18. Minute Temperature Fluctuations Detected in Eta Bootis

    Science.gov (United States)

    1994-11-01

    A group of astronomers from the Aarhus University (Denmark) and the European Southern Observatory (2) have for the first time succeeded in detecting solar-type oscillations in another star. They observed the temperature of the bright northern star Eta Bootis during six nights with the 2.5-metre Nordic Optical Telescope at the Roque de los Muchachos observatory on the island of La Palma (Canary Islands) and were able to show that it varies periodically by a few hundredths of a degree. These changes are caused by pressure waves in the star and are directly dependent on its inner structure. A detailed analysis by the astronomers has shown that the observed effects are in good agreement with current stellar models. This is a most important, independent test of stellar theory. The Sun is an Oscillating Star About twenty years ago, it was discovered that the nearest star, our Sun, oscillates like the ringing of a bell with a period of about 5 minutes. The same phenomenon is known in the Earth, which begins to vibrate after earthquakes; in this way seismologists have been able to discern a layered structure in the Earth's interior. The recent impacts of a comet on Jupiter most likely had a similar effect on that planet. The observed solar oscillations concern the entire gaseous body of the Sun, but we can of course only observe them on its surface. It has been found that each mode moves the surface up and down by less than 25 metres; the combined motion is very complicated, because there are many different, simultaneous modes, each of which has a slightly different period. The exact values of these periods are sensitive to the speed of sound in the Sun's interior, which in turn depends on the density of the material there. Thus, by measuring the periods of solar oscillations, we may probe the internal structure of the Sun, that is otherwise inaccessible to observations. Why does the Sun oscillate and what is the cause of these oscillations ? We do not know yet, but it is

  19. Prolonged mechanical ventilation induces cell cycle arrest in newborn rat lung.

    Directory of Open Access Journals (Sweden)

    Andreas A Kroon

    Full Text Available RATIONALE: The molecular mechanism(s by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. OBJECTIVE: To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar formation in newborn rats. METHODS: Seven-day old rats were ventilated with room air for 8, 12 and 24 h using relatively moderate tidal volumes (8.5 mL.kg⁻¹. MEASUREMENT AND MAIN RESULTS: Ventilation for 24 h (h decreased the number of elastin-positive secondary crests and increased the mean linear intercept, indicating arrest of alveolar development. Proliferation (assessed by BrdU incorporation was halved after 12 h of ventilation and completely arrested after 24 h. Cyclin D1 and E1 mRNA and protein levels were decreased after 8-24 h of ventilation, while that of p27(Kip1 was significantly increased. Mechanical ventilation for 24 h also increased levels of p57(Kip2, decreased that of p16(INK4a, while the levels of p21(Waf/Cip1 and p15(INK4b were unchanged. Increased p27(Kip1 expression coincided with reduced phosphorylation of p27(Kip1 at Thr¹⁵⁷, Thr¹⁸⁷ and Thr¹⁹⁸ (p<0.05, thereby promoting its nuclear localization. Similar -but more rapid- changes in cell cycle regulators were noted when 7-day rats were ventilated with high tidal volume (40 mL.kg⁻¹ and when fetal lung epithelial cells were subjected to a continuous (17% elongation cyclic stretch. CONCLUSION: This is the first demonstration that prolonged (24 h of mechanical ventilation causes cell cycle arrest in newborn rat lungs; the arrest occurs in G₁ and is caused by increased expression and nuclear localization of Cdk inhibitor proteins (p27(Kip1, p57(Kip2 from the Kip family.

  20. Iatrogenic pneumothorax related to mechanical ventilation

    OpenAIRE

    2014-01-01

    Pneumothorax is a potentially lethal complication associated with mechanical ventilation. Most of the patients with pneumothorax from mechanical ventilation have underlying lung diseases; pneumothorax is rare in intubated patients with normal lungs. Tension pneumothorax is more common in ventilated patients with prompt recognition and treatment of pneumothorax being important to minimize morbidity and mortality. Underlying lung diseases are associated with ventilator-related pneumothorax with...

  1. Evaluation of Security of Mine Ventilation Systems

    Institute of Scientific and Technical Information of China (English)

    何书建; 彭担任; 翟成

    2002-01-01

    A mine ventilation system has a deterministic function for the safety of coal production and for the control of mine accidents. So, it has an importa nt meaning to evaluate the security of a mine ventilation system. This paper studied the evaluation index system of the security of a mine ventilation system, and the security of a mine ventilation system was described quantitatively in the saf ety degree. Finally, an example of the security evaluation was given .

  2. Functionality of Ventilated Facades: Protection of Insulation

    OpenAIRE

    Petrichenko Mikhail; Musorina Tatiana; Statsenko Elena; Ostrovaia Anastasia; Tarasov Vladimir

    2016-01-01

    This article discusses about methods of construction of the ventilated facades. The ventilated facade is not only the element of facing, it is the supporting structure. Their main objective - creation of air ventilating space between a facade and an external wall of the building. Moving of air in this gap protects a heater from destruction, interfering with a moisture congestion. In addition, the ventilated facade protect the building from aggressive influence of external environment, have a ...

  3. Radioactive waste tank ventilation system incorporating tritium control

    Energy Technology Data Exchange (ETDEWEB)

    Rice, P.D. [ICF Kaiser Hanford Company, Richland, WA (United States)

    1997-08-01

    This paper describes the development of a ventilation system for radioactive waste tanks at the U.S. Department of Energy`s (DOE) Hanford Site in Richland, Washington. The unique design of the system is aimed at cost-effective control of tritiated water vapor. The system includes recirculation ventilation and cooling for each tank in the facility and a central exhaust air clean-up train that includes a low-temperature vapor condenser and high-efficiency mist eliminator (HEME). A one-seventh scale pilot plant was built and tested to verify predicted performance of the low-temperature tritium removal system. Tests were conducted to determine the effectiveness of the removal of condensable vapor and soluble and insoluble aerosols and to estimate the operating life of the mist eliminator. Definitive design of the ventilation system relied heavily on the test data. The unique design features of the ventilation system will result in far less release of tritium to the atmosphere than from conventional high-volume dilution systems and will greatly reduce operating costs. NESHAPs and TAPs NOC applications have been approved, and field construction is nearly complete. Start-up is scheduled for late 1996. 3 refs., 4 figs., 2 tabs.

  4. Ventilation in Commercial and Residential Buildings

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    A number of areas have to be considered in connection with indoor air quality and ventilation. The selection of ventilation principle and components in the ventilation system will have influence on the indoor air quality and this subject will be discussed on the following pages. The main object o...

  5. Why this crisis in residential ventilation

    NARCIS (Netherlands)

    Hasselaar, E.

    2008-01-01

    Ventilation is the cornerstone of good indoor air quality. Ventilation requirements have major attention in building regulations, but ventilation in practice is often poor, resulting in increased concentration of pollutants and hence exposure to health risk. Inspection of 500 houses with interviews

  6. Decisional responsibility for mechanical ventilation and weaning

    DEFF Research Database (Denmark)

    Rose, Louise; Blackwood, Bronagh; Egerod, Ingrid

    2011-01-01

    Optimal management of mechanical ventilation and weaning requires dynamic and collaborative decision making to minimize complications and avoid delays in the transition to extubation. In the absence of collaboration, ventilation decision making may be fragmented, inconsistent, and delayed. Our ob...... objective was to describe the professional group with responsibility for key ventilation and weaning decisions and to examine organizational characteristics associated with nurse involvement....

  7. Worker productivity and ventilation rate in a call center: Analyses of time-series data for a group of workers

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J.; Price, Phillip; Faulkner, David; Sullivan, Douglas; Dibartolomeo, Dennis; Federspiel, Cliff; Liu, Gang; Lahiff, Maureen

    2002-01-01

    In previous studies, increased ventilation rates and reduced indoor carbon dioxide concentrations have been associated with improvements in health at work and increased performance in work-related tasks. Very few studies have assessed whether ventilation rates influence performance of real work. This paper describes part one of a two-part analysis from a productivity study performed in a call center operated by a health maintenance organization. Outside air ventilation rates were manipulated, indoor air temperatures, humidities, and carbon dioxide concentrations were monitored, and worker performance data for advice nurses, with 30-minute resolution, were analyzed via multivariate linear regression to look for an association of performance with building ventilation rate, or with indoor carbon dioxide concentration (which is related to ventilation rate per worker). Results suggest that the effect of ventilation rate on worker performance in this call center was very small (probably less than 1%) or nil, over most of the range of ventilation rate experienced during the study (roughly 12 L s{sup -1} to 48 L s{sup -1} per person). However, there is some evidence suggesting performance improvements of 2% or more when the ventilation rate per person is very high, as indicated by indoor CO{sub 2} concentrations exceeding outdoor concentrations by less than 75 ppm.

  8. Pulmonary Ventilation Imaging Based on 4-Dimensional Computed Tomography: Comparison With Pulmonary Function Tests and SPECT Ventilation Images

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tokihiro, E-mail: toyamamoto@ucdavis.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California (United States); Kabus, Sven; Lorenz, Cristian [Department of Digital Imaging, Philips Research Europe, Hamburg (Germany); Mittra, Erik [Departments of Radiology, Stanford University School of Medicine, Stanford, California (United States); Hong, Julian C.; Chung, Melody; Eclov, Neville; To, Jacqueline; Diehn, Maximilian; Loo, Billy W. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, New South Wales (Australia)

    2014-10-01

    Purpose: 4-dimensional computed tomography (4D-CT)-based pulmonary ventilation imaging is an emerging functional imaging modality. The purpose of this study was to investigate the physiological significance of 4D-CT ventilation imaging by comparison with pulmonary function test (PFT) measurements and single-photon emission CT (SPECT) ventilation images, which are the clinical references for global and regional lung function, respectively. Methods and Materials: In an institutional review board–approved prospective clinical trial, 4D-CT imaging and PFT and/or SPECT ventilation imaging were performed in thoracic cancer patients. Regional ventilation (V{sub 4DCT}) was calculated by deformable image registration of 4D-CT images and quantitative analysis for regional volume change. V{sub 4DCT} defect parameters were compared with the PFT measurements (forced expiratory volume in 1 second (FEV{sub 1}; % predicted) and FEV{sub 1}/forced vital capacity (FVC; %). V{sub 4DCT} was also compared with SPECT ventilation (V{sub SPECT}) to (1) test whether V{sub 4DCT} in V{sub SPECT} defect regions is significantly lower than in nondefect regions by using the 2-tailed t test; (2) to quantify the spatial overlap between V{sub 4DCT} and V{sub SPECT} defect regions with Dice similarity coefficient (DSC); and (3) to test ventral-to-dorsal gradients by using the 2-tailed t test. Results: Of 21 patients enrolled in the study, 18 patients for whom 4D-CT and either PFT or SPECT were acquired were included in the analysis. V{sub 4DCT} defect parameters were found to have significant, moderate correlations with PFT measurements. For example, V{sub 4DCT}{sup HU} defect volume increased significantly with decreasing FEV{sub 1}/FVC (R=−0.65, P<.01). V{sub 4DCT} in V{sub SPECT} defect regions was significantly lower than in nondefect regions (mean V{sub 4DCT}{sup HU} 0.049 vs 0.076, P<.01). The average DSCs for the spatial overlap with SPECT ventilation defect regions were only moderate (V

  9. Displacement Ventilation in Hospital Environments

    DEFF Research Database (Denmark)

    Li, Yuguo; Nielsen, Peter V.; Sandberg, Mats

    2011-01-01

    Hospital differ from conventional buildings in terms of ventilation needs. Exhaled infectious droplets or droplet nuclei of an infected patient need to be removed in general wards, waiting areas and isolation rooms to minimize transmission to health-care workers, other patients and visitors...

  10. Displacement Ventilation in Hospital Environments

    DEFF Research Database (Denmark)

    Li, Yuguo; Nielsen, Peter V.; Sandberg, Mats

    2011-01-01

    Hospital differ from conventional buildings in terms of ventilation needs. Exhaled infectious droplets or droplet nuclei of an infected patient need to be removed in general wards, waiting areas and isolation rooms to minimize transmission to health-care workers, other patients and visitors...

  11. International Ventilation Cooling Application Database

    DEFF Research Database (Denmark)

    Holzer, Peter; Psomas, Theofanis Ch.; OSullivan, Paul

    2016-01-01

    The currently running International Energy Agency, Energy and Conservation in Buildings, Annex 62 Ventilative Cooling (VC) project, is coordinating research towards extended use of VC. Within this Annex 62 the joint research activity of International VC Application Database has been carried out, ...

  12. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects....

  13. Computational Fluid Dynamics in Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.;

    2008-01-01

    Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD...

  14. Cardiogenic oscillation induced ventilator autotriggering

    Directory of Open Access Journals (Sweden)

    Narender Kaloria

    2015-01-01

    Full Text Available Cardiogenic oscillation during mechanical ventilation can auto-trigger the ventilator resembling patient initiated breadth. This gives a false sense of intact respiratory drive and determination brain death, even if other tests are positive, is not appropriate in such a situation. It will prolong the ICU stay and confound the brain-death determination. In this case report, we describe a 35 year old man who was brought to the hospital after many hours of critical delay following multiple gun shot injuries. The patient suffered a cardiac arrest while on the way from another hospital. After an emergency laparotomy, patient was shifted to Intensive Care Unit (ICU with Glasgow Coma Scale (GCS score of E1VTM1 and was mechanically ventilated. Despite absence of brainstem reflexes, the ventilator continued to be triggered on continuous positive airway pressure (CPAP mode and the patient maintained normal oxygen saturation and acceptable levels of carbon dioxide. An apnoea test confirmed absent respiratory drive. Ventilatory waveform graph analysis, revealed cardiogenic oscillation as the cause for autotrigerring.

  15. MO-A-BRD-05: Evaluation of Composed Lung Ventilation with 4DCT and Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Du, K; Bayouth, J [University of Wisconsin Madison, Madison, WI (United States); Reinhardt, J; Christensen, G; Zhao, B [University of Iowa, Iowa City, IA (United States); Ding, K [Johns Hopkins University, Baltimore, MD (United States)

    2014-06-15

    Purpose: Regional pulmonary function can be derived using fourdimensional computed tomography (4DCT) combined with deformable image registration. However, only peak inhale and exhale phases have been used thus far while the lung ventilation during intermediate phases is not considered. In our previous work, we have investigated the spatiotemporal heterogeneity of lung ventilation and its dependence on respiration effort. In this study, composed ventilation is introduced using all inspiration phases and compared to direct ventilation. Both methods are evaluated against Xe-CT derived ventilation. Methods: Using an in-house tissue volume preserving deformable image registration, unlike the direct ventilation method, which computes from end expiration to end inspiration, Jacobian ventilation maps were computed from one inhale phase to the next and then composed from all inspiration steps. The two methods were compared in both patients prior to RT and mechanically ventilated sheep subjects. In addition, they wereassessed for the correlation with Xe-CT derived ventilation in sheep subjects. Annotated lung landmarks were used to evaluate the accuracy of original and composed deformation field. Results: After registration, the landmark distance for composed deformation field was always higher than that for direct deformation field (0IN to 100IN average in human: 1.03 vs 1.53, p=0.001, and in sheep: 0.80 vs0.94, p=0.009), and both increased with longer phase interval. Direct and composed ventilation maps were similar in both sheep (gamma pass rate 87.6) and human subjects (gamma pass rate 71.9),and showed consistent pattern from ventral to dorsal when compared to Xe-CT derived ventilation. Correlation coefficient between Xe-CT and composed ventilation was slightly better than the direct method but not significant (average 0.89 vs 0.85, p=0.135). Conclusion: More strict breathing control in sheep subjects may explain higher similarity between direct and composed ventilation

  16. In vitro growth and leaf anatomy of Cattleya walkeriana (Gardner, 1839 grown in natural ventilation system

    Directory of Open Access Journals (Sweden)

    Adriano Bortolotti da Silva

    2014-12-01

    Full Text Available Natural ventilation system facilitates gaseous exchanges in in vitro plants promoting changes in the leaf tissue, which can be evaluated through the leaf anatomy, and it allows a cultivation closer to the photoautrophic micropropagation. The objective of this work was to evaluate the effects on in vitro growth and on the leaf anatomy of Cattleya walkeriana grown in natural and conventional ventilation system with different concentrations of sucrose (0; 15; 30 and 45 L-1 combined with different cultivation systems (conventional micropropagation and natural ventilation system. The culture medium was composed of MS salts, solidified with 7 g L-1 of agar and pH adjusted to 5.8. Forty milliliters of culture medium were distributed in 250 mL flasks, autoclaved at 120 ºC for 20 minutes. The greater plant growth, as well as the greater thickness of the mesophyll was observed with the use of 20 g L-1 sucrose in natural ventilation system. Plants grown in natural ventilation system showed a thicker leaf mesophyll, which is directly related to photoautotrophic crops. The natural ventilation system induced more elliptical stomata and probably more functional formats.

  17. Correlation between stroke volume variation and blood volume during hypovolemia%低血容量状态下患者每搏量变异度与血容量的相关性

    Institute of Scientific and Technical Information of China (English)

    李文静; 李健; 彭科

    2014-01-01

    Objective To investigate the correlation between stroke volume variation (SVV) and blood volume during hypovolemia.Methods Twenty ASA Ⅰ or Ⅱ patients,aged 20-64 years,with body mass index (BMI) of 20-30 kg/m2,scheduled for elective orthopedic operation were enrolled in this study.Anesthesia was induced with dexamethasone,midazolam,propofol,fentanyl and cisatracurium,and maintained with sevoflurane,fentanyl and cisatracurium.Then the patients received endotracheal intubation and mechanical ventilation.Heart rate (HR),mean arterial blood pressure (MAP),central venous pressure (CVP),arterial pressure-based cardiac output (APCO),SW,systemic vascular resistance (SVR) and cardiac index (Cl) were recorded 5 minutes after endotracheal intubation.Blood was taken from the central vein at a rate of 30-50 ml/min and the volume was 5% of the whole blood volume,and then haemodynamic parameters mentioned above were recorded after the haemodynamics were kept stable for 5 minutes.Blood was taken again with the method mentioned above and the haemodynamic parameters were recorded.Then 6% hydroxyethyl starch (HES) 130/0.4 was infused at 50-70 ml/min via the right internal jugular vein,and the volume was equal to 5% of the whole blood volume,and then haemodynamic parameters were recorded after the haemodynamics was kept stable for 5 minutes.Fluid replacement was performed again using the method mentioned above and the haemodynamic parameters were recorded.Linear correlation of the changes in blood volume (difference between the blood volume at each time point and the baseline value) with dSVV (difference between the value monitored at each time point and the baseline value) was analyzed.Results Significant changes were found in SW,APCO and Cl after each change in blood volume (P < 0.05 or 0.01),while no significant changes were found in HR,MAP,CVP and SVR after each change in blood volume.The change in blood volume was negatively correlated with dSVV (r =-0.875,P < 0

  18. Analyze of Ventilator Associated Pneumonia

    Directory of Open Access Journals (Sweden)

    Aysel Sunnetcioglu

    2014-03-01

    Full Text Available Aim: Ventilator-associated pneumonia (VAP is the infection that is an important cause of morbidity and mortality developed in patients whom the invasive mechanical ventilation (MV were performed in intensive care units (ICU. In this study, the factors of VAP developing in patients whom the mechanical ventilation of ICU performed, antibiotic susceptibility to these factors and determining the risk factors were aimed. Material and Method: Between January 2009 and March 2013, 79 cases, followed with the mechanical ventilation for at least for 48 hours and developed VAP, were retrospectively reviewed at Anesthesiology and Intensive Care Unit of Reanimation at Faculty of Medicine at Yuzuncu Yil University, performing endotracheal intubation. The cases were evaluated in terms of microorganisms, antibiotic susceptibility and risk factors. Results: The rate of our VAP speed was calculated to be 19.68 on the day of 1000 ventilator. While a single microorganism could be isolated in 81.1% of the 74 VAP cases whose the active pathogen could be isolated, two or more than two microorganisms were isolated in 18.9% of them.While 83 of the strains (90.2% were gram-negative bacteria, 7 of them (7.6% were gram-positive bacteria. Acinetobacter spp. (40.2% was most commonly isolated as a gram-negative factor, but methicillin-resistant S. aureus (4.3% was isolated as a gram-positive factor. It was determined that the isolated factors in VAP cases were significantly resistant to the broad-spectrum antibiotics. Discussion: As a result, in patients with high-risk factors for the development of VAP, early and appropriate empirical antibiotic treatment should be started according to the results of the sensitivity of the unit and for the multi-drug-resistant microorganisms with common and high mortality.

  19. An experimental study on the impacts of inspiratory and expiratory muscles activities during mechanical ventilation in ARDS animal model

    Science.gov (United States)

    Zhang, Xianming; Du, Juan; Wu, Weiliang; Zhu, Yongcheng; Jiang, Ying; Chen, Rongchang

    2017-01-01

    In spite of intensive investigations, the role of spontaneous breathing (SB) activity in ARDS has not been well defined yet and little has been known about the different contribution of inspiratory or expiratory muscles activities during mechanical ventilation in patients with ARDS. In present study, oleic acid-induced beagle dogs’ ARDS models were employed and ventilated with the same level of mean airway pressure. Respiratory mechanics, lung volume, gas exchange and inflammatory cytokines were measured during mechanical ventilation, and lung injury was determined histologically. As a result, for the comparable ventilator setting, preserved inspiratory muscles activity groups resulted in higher end-expiratory lung volume (EELV) and oxygenation index. In addition, less lung damage scores and lower levels of system inflammatory cytokines were revealed after 8 h of ventilation. In comparison, preserved expiratory muscles activity groups resulted in lower EELV and oxygenation index. Moreover, higher lung injury scores and inflammatory cytokines levels were observed after 8 h of ventilation. Our findings suggest that the activity of inspiratory muscles has beneficial effects, whereas that of expiratory muscles exerts adverse effects during mechanical ventilation in ARDS animal model. Therefore, for mechanically ventilated patients with ARDS, the demands for deep sedation or paralysis might be replaced by the strategy of expiratory muscles paralysis through epidural anesthesia. PMID:28230150

  20. The use of chilled condensers for the recovery of perfluorocarbon liquid in an experimental model of perfluorocarbon vapour loss during neonatal partial liquid ventilation

    Directory of Open Access Journals (Sweden)

    Dunster Kimble R

    2007-05-01

    Full Text Available Abstract Background Perfluorocarbon (PFC vapour in the expired gases during partial liquid ventilation should be prevented from entering the atmosphere and recovered for potential reuse. This study aimed to determine how much PFC liquid could be recovered using a conventional humidified neonatal ventilator with chilled condensers in place of the usual expiratory ventilator circuit and whether PFC liquid could be recovered when using the chilled condensers at the ventilator exhaust outlet. Methods Using a model lung, perfluorocarbon vapour loss during humidified partial liquid ventilation of a 3.5 kg infant was approximated. For each test 30 mL of FC-77 was infused into the model lung. Condensers were placed in the expiratory limb of the ventilator circuit and the amounts of PFC (FC-77 and water recovered were measured five times. This was repeated with the condensers placed at the ventilator exhaust outlet. Results When the condensers were used as the expiratory limb, the mean (± SD volume of FC77 recovered was 16.4 mL (± 0.18 mL. When the condensers were connected to the ventilator exhaust outlet the mean (± SD volume of FC-77 recovered was 7.6 mL (± 1.14 mL. The volume of FC-77 recovered was significantly higher when the condenser was used as an expiratory limb. Conclusion Using two series connected condensers in the ventilator expiratory line 55% of PFC liquid (FC-77 can be recovered during partial liquid ventilation without altering the function of the of the ventilator circuit. This volume of PFC recovered was just over twice that recovered with the condensers connected to the ventilator exhaust outlet.

  1. Short-term airing by natural ventilation

    DEFF Research Database (Denmark)

    Perino, Marco; Heiselberg, Per

    2009-01-01

    traditional mechanical ventilation components with natural ventilation devices, such as motorized windows and louvers. Among the various ventilation strategies that are currently available, buoyancy driven single-sided natural ventilation has proved to be very effective and can provide high air change rates...... that was aimed at developing and validating numerical models for the analysis of buoyancy driven single-sided natural ventilation systems. Once validated, these models can be used to optimize control strategies in order to achieve satisfactory indoor comfort conditions and IAQ....

  2. Neuronal apoptosis and inflammatory reaction in rat models of focal cerebral ischemia following 40-minute suspended moxibustion

    Institute of Scientific and Technical Information of China (English)

    Rixin Chen; Zhimai Lv; Mingren Chen; Xin An; Dingyi Xie; Jing Yi

    2011-01-01

    The treatment duration of heat-sensitive moxibustion (approximately 40 minutes on average) is longer than that of traditional suspended moxibustion.The present study investigated expression changes of three inflammatory and apoptosis-associated proteins (inducible nitric oxide synthase,cyclooxygenase-2 and caspase-3) in transient middle cerebral artery occlusion model rats following suspended moxibustion for 40 minutes,to explore the mechanisms underlying neuroprotective action of suspended moxibustion.The results indicated that suspended moxibustion at acupoint Dazhui (DU 14) for 40 minutes reduced the cortical expression of caspase-3,cyclooxygenase-2 and inducible nitric oxide synthase proteins of transient middle cerebral artery occlusion model rats,as well as decreasing infarct volume and ameliorating the neurological deficit score.Outcomes with 40 minutes of moxibustion were superior to the outcomes after suspended moxibustion for 15 minutes.

  3. Lung ventilation strategies for acute respiratory distress syndrome: a systematic review and network meta-analysis.

    Science.gov (United States)

    Wang, Changsong; Wang, Xiaoyang; Chi, Chunjie; Guo, Libo; Guo, Lei; Zhao, Nana; Wang, Weiwei; Pi, Xin; Sun, Bo; Lian, Ailing; Shi, Jinghui; Li, Enyou

    2016-03-09

    To identify the best lung ventilation strategy for acute respiratory distress syndrome (ARDS), we performed a network meta-analysis. The Cochrane Central Register of Controlled Trials, EMBASE, MEDLINE, CINAHL, and the Web of Science were searched, and 36 eligible articles were included. Compared with higher tidal volumes with FiO2-guided lower positive end-expiratory pressure [PEEP], the hazard ratios (HRs) for mortality were 0.624 (95% confidence interval (CI) 0.419-0.98) for lower tidal volumes with FiO2-guided lower PEEP and prone positioning and 0.572 (0.34-0.968) for pressure-controlled ventilation with FiO2-guided lower PEEP. Lower tidal volumes with FiO2-guided higher PEEP and prone positioning had the greatest potential to reduce mortality, and the possibility of receiving the first ranking was 61.6%. Permissive hypercapnia, recruitment maneuver, and low airway pressures were most likely to be the worst in terms of all-cause mortality. Compared with higher tidal volumes with FiO2-guided lower PEEP, pressure-controlled ventilation with FiO2-guided lower PEEP and lower tidal volumes with FiO2-guided lower PEEP and prone positioning ventilation are associated with lower mortality in ARDS patients. Lower tidal volumes with FiO2-guided higher PEEP and prone positioning ventilation and lower tidal volumes with pressure-volume (P-V) static curve-guided individual PEEP are potential optimal strategies for ARDS patients.

  4. The effects of positive end-expiratory pressure in alveolar recruitment during mechanical ventilation in pigs

    OpenAIRE

    Madke,Gabriel Ribeiro; Pilla,Eduardo Sperb; Sanchez,Pablo Geraldo; Foernges, Rafael; Grün, Gustavo; Vendrami,Giovani; Fontena,Eduardo; Andrade, Cristiano Feijó; Cardoso, Paulo Francisco Guerreiro

    2008-01-01

    PURPOSE: To evaluate the effects of alveolar recruitment based on mean airway pressure (MAP) on pig lungs submitted to thoracotomy through blood gas exchange and hemodynamic parameters. METHODS: Twelve pigs weighting approximately 25Kg were intubated and ventilated on volume controlled ventilation (tidal volume 10ml/Kg, respiratory rate 16min, FiO2 1.0, inspiratory:expiratory ratio 1:2, PEEP 5cmH2O). The animals were then randomized into two groups: control and left lateral thoracotomy. The P...

  5. Hyperpolarized 3He magnetic resonance imaging ventilation defects in asthma: relationship to airway mechanics.

    Science.gov (United States)

    Leary, Del; Svenningsen, Sarah; Guo, Fumin; Bhatawadekar, Swati; Parraga, Grace; Maksym, Geoffrey N

    2016-04-01

    In patients with asthma, magnetic resonance imaging (MRI) provides direct measurements of regional ventilation heterogeneity, the etiology of which is not well-understood, nor is the relationship of ventilation abnormalities with lung mechanics. In addition, respiratory resistance and reactance are often abnormal in asthmatics and the frequency dependence of respiratory resistance is thought to reflect ventilation heterogeneity. We acquiredMRIventilation defect maps, forced expiratory volume in one-second (FEV1), and airways resistance (Raw) measurements, and used a computational airway model to explore the relationship of ventilation defect percent (VDP) with simulated measurements of respiratory system resistance (Rrs) and reactance (Xrs).MRIventilation defect maps were experimentally acquired in 25 asthmatics before, during, and after methacholine challenge and these were nonrigidly coregistered to the airway tree model. Using the model coregistered to ventilation defect maps, we narrowed proximal (9th) and distal (14th) generation airways that were spatially related to theMRIventilation defects. The relationships forVDPwith Raw measured using plethysmography (r = 0.79), and model predictions of Rrs>14(r = 0.91,P 9(r = 0.88,P mechanics measurements were different (P mechanics and ventilation defects, impedance predictions were made using a computational airway tree model with simulated constriction of airways related to ventilation defects measured in mild-moderate asthmatics.

  6. Linking Ventilation Heterogeneity Quantified via Hyperpolarized 3He MRI to Dynamic Lung Mechanics and Airway Hyperresponsiveness.

    Science.gov (United States)

    Lui, Justin K; Parameswaran, Harikrishnan; Albert, Mitchell S; Lutchen, Kenneth R

    2015-01-01

    Advancements in hyperpolarized helium-3 MRI (HP 3He-MRI) have introduced the ability to render and quantify ventilation patterns throughout the anatomic regions of the lung. The goal of this study was to establish how ventilation heterogeneity relates to the dynamic changes in mechanical lung function and airway hyperresponsiveness in asthmatic subjects. In four healthy and nine mild-to-moderate asthmatic subjects, we measured dynamic lung resistance and lung elastance from 0.1 to 8 Hz via a broadband ventilation waveform technique. We quantified ventilation heterogeneity using a recently developed coefficient of variation method from HP 3He-MRI imaging. Dynamic lung mechanics and imaging were performed at baseline, post-challenge, and after a series of five deep inspirations. AHR was measured via the concentration of agonist that elicits a 20% decrease in the subject's forced expiratory volume in one second compared to baseline (PC20) dose. The ventilation coefficient of variation was correlated to low-frequency lung resistance (R = 0.647, P ventilation heterogeneity. Also, the degree of AHR appears to be dependent on the degree to which baseline airway constriction creates baseline ventilation heterogeneity. HP 3He-MRI imaging may be a powerful predictor of the degree of AHR and in tracking the efficacy of therapy.

  7. Comparison between 3D-CTA with volume reconstruction and 3D-DSA in diagnosis of acute rupture of minute cerebral aneurysms%容积重建成像3D-CTA与3D-DSA在诊断急性破裂性颅内微小动脉瘤的研究

    Institute of Scientific and Technical Information of China (English)

    曾少建; 舒航; 陈光忠; 李昭杰; 詹升全; 林晓风; 周东

    2010-01-01

    Objective To evaluate the diagnostic value of three dimensional computed tomographic angiog-raphy (3D-CTA) with volume reconstruction (VR) and 3D digital subtraction angiography (3D-DSA) in diagnosis of minimal cerebral aneurysms. Method A total of 174 patients in Guangdong General Hospital, May 2007 to November 2008, of subarachnoid hemorrhage were checked upon the original imaging obtained by GE' s Light Speed Plus 64 volume spiral CT scanner at first, and then by the means of using Volume rendering (VR) three dimen-sional reconstruction and assisting the use of multiple planar reconstruction (MPR) to complete the 3D-DSA imag-ing at last. The volume rendering (VR) was assessed. Results Eleven very small cerebral aneurysms in 174 pa-tients with subarachnoid hemorrhage were diagnosed by CTA and 10 of them by 3D-DSA. Finally, all of 11 patients were confirmed by intracranial operations. The 3D-CTA (VR) clearly showed the shape and size of the intracranial aneurysms and their relationship to adjacent structures as well. There was no significant difference in the diagnosis of very small cerebral aneurysms between 3D-DSA and 3D-CTA(VR). Conclusions The 3D-CTA (VR) is a re-liable and rapid non-invasive diagnostic device for very small intracranial aneurysms. For the emergency operation,3D-CTA (VR) can provide more detailed imaging information to help the development of treatment strategy.%目的 对比研究容积重建成像三维CT血管造影与三维DSA(3D-DSA)在颅内微小动脉瘤诊疗中的临床应用价值.方法 对广东省人民医院2007年5月至2008年11月收治的174例蛛网膜下腔出血患者首先采用采用GE公司的Light Speed Plus 64排容积螺旋CT机获得原始图像,采用容积重建成像技术(VR)进行三维重建.并辅助运用多轴面重建(MPR),然后再行全脑血管造影术,并行3D-DSA成像.结果 本组174例蛛网膜下腔出血患者诊断为颅内微小动脉瘤11例,均经开颅手术证实;其中CTA诊断11例,3D

  8. Evaluation of self-perception of mechanical ventilation knowledge among Brazilian final-year medical students, residents and emergency physicians

    Science.gov (United States)

    Tallo, Fernando Sabia; de Campos Vieira Abib, Simone; de Andrade Negri, Alexandre Jorgi; Filho, Paulo Cesar; Lopes, Renato Delascio; Lopes, Antônio Carlos

    2017-01-01

    OBJECTIVE: To present self-assessments of knowledge about mechanical ventilation made by final-year medical students, residents, and physicians taking qualifying courses at the Brazilian Society of Internal Medicine who work in urgent and emergency settings. METHODS: A 34-item questionnaire comprising different areas of knowledge and training in mechanical ventilation was given to 806 medical students, residents, and participants in qualifying courses at 11 medical schools in Brazil. The questionnaire’s self-assessment items for knowledge were transformed into scores. RESULTS: The average score among all participants was 21% (0-100%). Of the total, 85% respondents felt they did not receive sufficient information about mechanical ventilation during medical training. Additionally, 77% of the group reported that they would not know when to start noninvasive ventilation in a patient, and 81%, 81%, and 89% would not know how to start volume control, pressure control and pressure support ventilation modes, respectively. Furthermore, 86.4% and 94% of the participants believed they would not identify the basic principles of mechanical ventilation in patients with obstructive pulmonary disease and acute respiratory distress syndrome, respectively, and would feel insecure beginning ventilation. Finally, 77% said they would fear for the safety of a patient requiring invasive mechanical ventilation under their care. CONCLUSION: Self-assessment of knowledge and self-perception of safety for managing mechanical ventilation were deficient among residents, students and emergency physicians from a sample in Brazil.

  9. SU-E-J-120: Comparing 4D CT Computed Ventilation to Lung Function Measured with Hyperpolarized Xenon-129 MRI

    Energy Technology Data Exchange (ETDEWEB)

    Neal, B; Chen, Q [University of Virginia, Charlottesville, VA (United States)

    2015-06-15

    Purpose: To correlate ventilation parameters computed from 4D CT to ventilation, profusion, and gas exchange measured with hyperpolarized Xenon-129 MRI for a set of lung cancer patients. Methods: Hyperpolarized Xe-129 MRI lung scans were acquired for lung cancer patients, before and after radiation therapy, measuring ventilation, perfusion, and gas exchange. In the standard clinical workflow, these patients also received 4D CT scans before treatment. Ventilation was computed from 4D CT using deformable image registration (DIR). All phases of the 4D CT scan were registered using a B-spline deformable registration. Ventilation at the voxel level was then computed for each phase based on a Jacobian volume expansion metric, yielding phase sorted ventilation images. Ventilation based upon 4D CT and Xe-129 MRI were co-registered, allowing qualitative visual comparison and qualitative comparison via the Pearson correlation coefficient. Results: Analysis shows a weak correlation between hyperpolarized Xe-129 MRI and 4D CT DIR ventilation, with a Pearson correlation coefficient of 0.17 to 0.22. Further work will refine the DIR parameters to optimize the correlation. The weak correlation could be due to the limitations of 4D CT, registration algorithms, or the Xe-129 MRI imaging. Continued development will refine parameters to optimize correlation. Conclusion: Current analysis yields a minimal correlation between 4D CT DIR and Xe-129 MRI ventilation. Funding provided by the 2014 George Amorino Pilot Grant in Radiation Oncology at the University of Virginia.

  10. Night ventilation control strategies in office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaojun; Yi, Lingli; Gao, Fusheng [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China)

    2009-10-15

    In moderate climates night ventilation is an effective and energy-efficient approach to improve the indoor thermal environment for office buildings during the summer months, especially for heavyweight construction. However, is night ventilation a suitable strategy for office buildings with lightweight construction located in cold climates? In order to answer this question, the whole energy-consumption analysis software EnergyPlus was used to simulate the indoor thermal environment and energy consumption in typical office buildings with night mechanical ventilation in three cities in northern China. The summer outdoor climate data was analyzed, and three typical design days were chosen. The most important factors influencing night ventilation performance such as ventilation rates, ventilation duration, building mass and climatic conditions were evaluated. When night ventilation operation time is closer to active cooling time, the efficiency of night ventilation is higher. With night ventilation rate of 10 ach, the mean radiant temperature of the indoor surface decreased by up to 3.9 C. The longer the duration of operation, the more efficient the night ventilation strategy becomes. The control strategies for three locations are given in the paper. Based on the optimized strategies, the operation consumption and fees are calculated. The results show that more energy is saved in office buildings cooled by a night ventilation system in northern China than ones that do not employ this strategy. (author)

  11. Ventilation system design for educational facilities

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F.; Abo Elazm, M.M. [Arab Academy for Science, Alexandria (Egypt). Technology and Maritime Transport; Safwan, M. [Arab Academy for Science, Cairo (Egypt). Technology and Maritime Transport

    2010-07-01

    In order to maintain acceptable indoor air quality levels in classrooms, high ventilation rates are needed to dilute the concentration of indoor contaminants, resulting in higher energy consumption for the operation of mechanical ventilation systems. Three factors are usually considered when determining the adequate ventilation rate for classrooms in educational facilities. These include the maximum population served in the classroom; carbon dioxide (CO{sub 2}) production rate by occupants; and outdoor air conditions. CO{sub 2} concentrations usually indicate the rate of ventilation required. This paper presented a newly developed computer software program for determining the ventilation rates needed to enhance indoor air quality and to maintain CO{sub 2} concentration within the recommended levels by ANSI/ASHRAE standards for best student performance. This paper also presented design curves for determining the ventilation rates and air changes per hour required for the ventilated educational zone. 15 refs., 2 tabs., 5 figs.

  12. Vortex ventilation in the laboratory environment.

    Science.gov (United States)

    Meisenzahl, Lawrence R

    2014-01-01

    Assured containment at low airflow has long eluded the users of ventilated enclosures including chemical fume hoods used throughout industry. It is proposed that containment will be enhanced in a hood that has a particular interior shape that causes a natural vortex to occur. The sustained vortex improves the containment of contaminants within the enclosure at low airflow. This hypothesis was tested using the ASHRAE 110 tracer gas test. A known volume of tracer gas was emitted in the hood. A MIRAN SapphIRe infrared spectrometer was used to measure the concentration of tracer gas that escapes the enclosure. The design of the experiment included a written operating procedure, data collection plan, and statistical analysis of the data. A chemical fume hood of traditional design was tested. The hood interior was then reconstructed to enhance the development of a vortex inside the enclosure. The hood was retested using the same method to compare the performance of the traditional interior shape with the enhanced vortex shape. In every aspect, the vortex hood showed significant improvement over the traditional hood design. Use of the Hood Index characterizing the dilution of gas in an air stream as a logarithmic function indicates a causal relationship between containment and volumetric airflow through an enclosure. Use of the vortex effect for ventilated enclosures can provide better protection for the user and lower operating cost for the owner. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a data collection spreadsheet, data analysis, and data collection procedure.].

  13. Association between classroom ventilation mode and learning outcome in Danish schools

    DEFF Research Database (Denmark)

    Toftum, Jørn; Kjeldsen, Birthe Uldahl; Wargocki, Pawel;

    2015-01-01

    Associations between learning, ventilation mode, and other classroom characteristics were investigated with data from a Danish test scheme and two widespread cross-sectional studies examining air quality in Danish schools. An academic achievement indicator as a measure of the learning outcome...... was calculated from the scores of a standardized Danish test scheme adjusted for a socioeconomic reference index. Pupils in schools with balanced mechanical ventilation had significantly higher achievement indicators than pupils in schools with natural ventilation, where airing took place mostly by manual window...... opening. Also, the carbon dioxide concentration was lower in classrooms with balanced mechanical ventilation. There was no consistent association between the achievement indicators and the person specific room volume, construction/renovation year, or the occupancy. Measurements of carbon dioxide...

  14. Summary of human responses to ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Seppanen, Olli A.; Fisk, William J.

    2004-06-01

    The effects of ventilation on indoor air quality and health is a complex issue. It is known that ventilation is necessary to remove indoor generated pollutants from indoor air or dilute their concentration to acceptable levels. But, as the limit values of all pollutants are not known, the exact determination of required ventilation rates based on pollutant concentrations and associated risks is seldom possible. The selection of ventilation rates has to be based also on epidemiological research (e.g. Seppanen et al., 1999), laboratory and field experiments (e.g. CEN 1996, Wargocki et al., 2002a) and experience (e.g. ECA 2003). Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated as summarized by Seppdnen (2003). Ventilation may bring indoors harmful substances that deteriorate the indoor environment. Ventilation also affects air and moisture flow through the building envelope and may lead to moisture problems that deteriorate the structures of the building. Ventilation changes the pressure differences over the structures of building and may cause or prevent the infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. Ventilation can be implemented with various methods which may also affect health (e.g. Seppdnen and Fisk, 2002, Wargocki et al., 2002a). In non residential buildings and hot climates, ventilation is often integrated with air-conditioning which makes the operation of ventilation system more complex. As ventilation is used for many purposes its health effects are also various and complex. This paper summarizes the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus of the paper is on office-type working environment and residential buildings. In the industrial premises the problems of air quality are usually

  15. Optimized damper control of pressure and airflow in ventilation systems

    DEFF Research Database (Denmark)

    Koulani, Chrysanthi Sofia; Hviid, Christian Anker; Terkildsen, Søren

    2014-01-01

    Conventional control strategies in variable air volume (VAV) ventilation systems do not take fully into advantage the potential energy savings since the system operation is based on maintaining a constant static pressure (CSP) set point in the main duct irrespective of the actual pressure demand....... The static pressure reset (SPR) control strategy can optimize the operation of the supply air fans by adjusting the pressure set point to be just enough to deliver the required airflow to the most critical zone. This study investigated the operation and energy savings potential of an SPR control algorithm...... by using the Simulink programming tool which is addon software to MATLAB mathematical programming language. A model of a VAV ventilation system was created in Simulink based on the International Building Physics Toolbox (IBPT); the IBPT thermal zone was remodelled in order to calculate dynamically...

  16. Early Open-Lung Ventilation Improves Clinical Outcomes in Patients with Left Cardiac Dysfunction Undergoing Off-Pump Coronary Artery Bypass: a Randomized Controlled Trial

    Science.gov (United States)

    Bolzan, Douglas W.; Gomes, Walter José; Rocco, Isadora S.; Viceconte, Marcela; Nasrala, Mara L. S.; Pauletti, Hayanne O.; Moreira, Rita Simone L.; Hossne Jr, Nelson A.; Arena, Ross; Guizilini, Solange

    2016-01-01

    Objective To compare pulmonary function, functional capacity and clinical outcomes amongst three groups of patients with left ventricular dysfunction following off-pump coronary artery bypass, namely: 1) conventional mechanical ventilation (CMV); 2) late open lung strategy (L-OLS); and 3) early open lung strategy (E-OLS). Methods Sixty-one patients were randomized into 3 groups: 1) CMV (n=21); 2) L-OLS (n=20) initiated after intensive care unit arrival; and 3) E-OLS (n=20) initiated after intubation. Spirometry was performed at bedside on preoperative and postoperative days (PODs) 1, 3, and 5. Partial pressure of arterial oxygen (PaO2) and pulmonary shunt fraction were evaluated preoperatively and on POD1. The 6-minute walk test was applied on the day before the operation and on POD5. Results Both the open lung groups demonstrated higher forced vital capacity and forced expiratory volume in 1 second on PODs 1, 3 and 5 when compared to the CMV group (P<0.05). The 6-minute walk test distance was more preserved, shunt fraction was lower, and PaO2 was higher in both open-lung groups (P<0.05). Open-lung groups had shorter intubation time and hospital stay and also fewer respiratory events (P<0.05). Key measures were significantly more favorable in the E-OLS group compared to the L-OLS group. Conclusion Both OLSs (L-OLS and E-OLS) were able to promote higher preservation of pulmonary function, greater recovery of functional capacity and better clinical outcomes following off-pump coronary artery bypass when compared to conventional mechanical ventilation. However, in this group of patients with reduced left ventricular function, initiation of the OLS intra-operatively was found to be more beneficial and optimal when compared to OLS initiation after intensive care unit arrival. PMID:27982344

  17. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    Science.gov (United States)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  18. A randomized comparison of different ventilator strategies during thoracotomy for pulmonary resection.

    Science.gov (United States)

    Maslow, Andrew D; Stafford, Todd S; Davignon, Kristopher R; Ng, Thomas

    2013-07-01

    Protective lung ventilation is reported to benefit patients with acute respiratory distress syndrome. It is not known whether protective lung ventilation is also beneficial to patients undergoing single-lung ventilation for elective pulmonary resection. In an institutional review board-approved prospective randomized trial, 34 patients undergoing elective pulmonary resection requiring single-lung ventilation were enrolled. Informed consent was obtained. Patients were randomized to 1 of 2 groups: (1) high tidal volume (Hi-TV) of 10 mL/kg, rate of 7 breaths/min, and zero positive end-expiratory pressure or (2) low tidal volume (Lo-TV) of 5 mL/kg, rate of 14 breaths/min, and 5 cmH2O positive end-expiratory pressure. Ventilator settings were continued during both double- and single-lung ventilation. Pulmonary functions, hemodynamics, and postoperative outcomes were recorded. Patient demographics, operative characteristics, intraoperative hemodynamics, and postoperative pain and sedation scores were similar between the 2 groups. During most time periods, airway pressures (peak and plateau) were significantly higher in the Hi-TV group; however, plateau pressures remained less than 30 cmH2O at all times for all patients. The Hi-TV group had significantly lower arterial carbon dioxide tension, less arterial carbon dioxide tension-end-tidal carbon dioxide gradient, lower alveolar dead space ratio, and higher dynamic pulmonary compliance. There were no differences in postoperative morbidity and hospital days between the 2 groups, but atelectasis scores on postoperative days 1 and 2 were lower in the Hi-TV group. The use of Hi-TV during single-lung ventilation for pulmonary resection resulted in no increase in morbidity and was associated with less hypercarbia, less dead space ventilation, better dynamic compliance, and less postoperative atelectasis. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  19. Early predictors of success of non-invasive positive pressure ventilation in hypercapnic respiratory failure.

    Science.gov (United States)

    Bhattacharyya, D; Prasad, Bnbm; Tampi, P S; Ramprasad, R

    2011-10-01

    Non-invasive positive pressure ventilation (NIPPV) has emerged as a significant advancement in the management of acute hypercapnic respiratory failure. Patients with hypercapnic respiratory failure requiring ventilation therapy (respiratory rate [RR] of > 30 breaths per minutes, PaCO2 > 55 mmHg and arterial pH intubation was evaluated. Of the 100 patients, 76 (76%) showed improvement in clinical parameters and ABG. There was improvement in HR and RR, pH, and PCO2 within the first hour in the success group and these parameters continued to improve even after four and 24 hours of NIPPV treatment. Out of 24 (24%) patients who failed to respond, 13 (54%) needed endotracheal intubation within one hour. The failure group had higher baseline HR than the success group. Improvement in HR, RR, pH, and PCO2 one hour after putting the patient on NIPPV predicts success of non-invasive positive pressure ventilation in hypercapnic respiratory failure.

  20. Cerebral Arterial Air Embolism Associated with Mechanical Ventilation and Deep Tracheal Aspiration

    Directory of Open Access Journals (Sweden)

    S. Gursoy

    2012-01-01

    Full Text Available Arterial air embolism associated with pulmonary barotrauma has been considered a rare but a well-known complication of mechanical ventilation. A 65-year-old man, who had subarachnoid hemorrhage with Glasgow coma scale of 8, was admitted to intensive care unit and ventilated with the help of mechanical ventilator. Due to the excessive secretions, deep tracheal aspirations were made frequently. GCS decreased from 8–10 to 4-5, and the patient was reevaluated with cranial CT scan. In CT scan, air embolism was detected in the cerebral arteries. The patient deteriorated and spontaneous respiratory activity lost just after the CT investigation. Thirty minutes later cardiac arrest appeared. Despite the resuscitation, the patient died. We suggest that pneumonia and frequent tracheal aspirations are predisposing factors for cerebral vascular air embolism.

  1. Simplified modelling of displacement ventilation

    OpenAIRE

    Mateus, Nuno André Marques, 1987-

    2016-01-01

    Tese de doutoramento, Energia e Ambiente (Energia e Desenvolvimento Sustentável), Universidade de Lisboa, Faculdade de Ciências, 2016 With the aim of creating adequate indoor conditions, modern buildings use energy for space heating, ventilation and air conditioning (HVAC). The environmental impact of this energy use creates an urgent need to develop strategies to reduce HVAC related energy consumption. This thesis contributes to this goal by testing and developing simplified models for hi...

  2. The One-Minute Paper: Some Empirical Findings.

    Science.gov (United States)

    Chizmar, John F.; Ostrosky, Anthony L

    1998-01-01

    Suggests that using the one-minute paper to teach an introductory economics course increases economic knowledge regardless of student ability level and instructor characteristics. The one-minute paper is a form of feedback where the students answer a few basic questions about the lesson at the end of the class. (MJP)

  3. Econometric Assessment of "One Minute" Paper as a Pedagogic Tool

    Science.gov (United States)

    Das, Amaresh

    2010-01-01

    This paper makes an econometric testing of one-minute paper used as a tool to manage and assess instruction in my statistics class. One of our findings is that the one minute paper when I have tested it by using an OLS estimate in a controlled Vs experimental design framework is found to statistically significant and effective in enhancing…

  4. 2-minute Gridded Global Relief Data (ETOPO2) v2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Two-minute gridded global relief for both ocean and land areas are available in the ETOPO2v2 (2006) database. ETOPO2v2 replaced ETOPO2 (2001). The historic 2-minute...

  5. Development of a Residential Integrated Ventilation Controller

    Energy Technology Data Exchange (ETDEWEB)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  6. Ventilation onset prior to umbilical cord clamping (physiological-based cord clamping) improves systemic and cerebral oxygenation in preterm lambs.

    Science.gov (United States)

    Polglase, Graeme R; Dawson, Jennifer A; Kluckow, Martin; Gill, Andrew W; Davis, Peter G; Te Pas, Arjan B; Crossley, Kelly J; McDougall, Annie; Wallace, Euan M; Hooper, Stuart B

    2015-01-01

    As measurement of arterial oxygen saturation (SpO2) is common in the delivery room, target SpO2 ranges allow clinicians to titrate oxygen therapy for preterm infants in order to achieve saturation levels similar to those seen in normal term infants in the first minutes of life. However, the influence of the onset of ventilation and the timing of cord clamping on systemic and cerebral oxygenation is not known. We investigated whether the initiation of ventilation, prior to, or after umbilical cord clamping, altered systemic and cerebral oxygenation in preterm lambs. Systemic and cerebral blood-flows, pressures and peripheral SpO2 and regional cerebral tissue oxygenation (SctO2) were measured continuously in apnoeic preterm lambs (126±1 day gestation). Positive pressure ventilation was initiated either 1) prior to umbilical cord clamping, or 2) after umbilical cord clamping. Lambs were monitored intensively prior to intervention, and for 10 minutes following umbilical cord clamping. Clamping the umbilical cord prior to ventilation resulted in a rapid decrease in SpO2 and SctO2, and an increase in arterial pressure, cerebral blood flow and cerebral oxygen extraction. Ventilation restored oxygenation and haemodynamics by 5-6 minutes. No such disturbances in peripheral or cerebral oxygenation and haemodynamics were observed when ventilation was initiated prior to cord clamping. The establishment of ventilation prior to umbilical cord clamping facilitated a smooth transition to systemic and cerebral oxygenation following birth. SpO2 nomograms may need to be re-evaluated to reflect physiological management of preterm infants in the delivery room.

  7. Ventilation onset prior to umbilical cord clamping (physiological-based cord clamping improves systemic and cerebral oxygenation in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Graeme R Polglase

    Full Text Available As measurement of arterial oxygen saturation (SpO2 is common in the delivery room, target SpO2 ranges allow clinicians to titrate oxygen therapy for preterm infants in order to achieve saturation levels similar to those seen in normal term infants in the first minutes of life. However, the influence of the onset of ventilation and the timing of cord clamping on systemic and cerebral oxygenation is not known.We investigated whether the initiation of ventilation, prior to, or after umbilical cord clamping, altered systemic and cerebral oxygenation in preterm lambs.Systemic and cerebral blood-flows, pressures and peripheral SpO2 and regional cerebral tissue oxygenation (SctO2 were measured continuously in apnoeic preterm lambs (126±1 day gestation. Positive pressure ventilation was initiated either 1 prior to umbilical cord clamping, or 2 after umbilical cord clamping. Lambs were monitored intensively prior to intervention, and for 10 minutes following umbilical cord clamping.Clamping the umbilical cord prior to ventilation resulted in a rapid decrease in SpO2 and SctO2, and an increase in arterial pressure, cerebral blood flow and cerebral oxygen extraction. Ventilation restored oxygenation and haemodynamics by 5-6 minutes. No such disturbances in peripheral or cerebral oxygenation and haemodynamics were observed when ventilation was initiated prior to cord clamping.The establishment of ventilation prior to umbilical cord clamping facilitated a smooth transition to systemic and cerebral oxygenation following birth. SpO2 nomograms may need to be re-evaluated to reflect physiological management of preterm infants in the delivery room.

  8. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using {sup 68}Ga-labeled nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia); Siva, Shankar [Department of Radiation Oncology, Peter MacCallum Cancer Centre, and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville VIC 3052 (Australia); Hofman, Michael S.; Callahan, Jason; Hicks, Rodney J. [Centre for Cancer Imaging, Peter MacCallum Cancer Centre and Department of Medicine, University of Melbourne, Melbourne VIC 3002 (Australia)

    2014-01-15

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with{sup 68}Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metrics model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V{sub HU}) or Jacobian determinant of deformation (V{sub Jac}). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV{sub HU} and ρV{sub Jac}) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ{sub m} = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d{sub 20} for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV{sub HU}) with σ{sub m} = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d{sub 20} ⩽ 0.68, with r{sup ¯}=0.42±0.16 and d{sup ¯}{sub 20}=0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant

  9. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark Raymond [Univ. of California, Berkeley, CA (United States)

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 μm were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the

  10. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark R.

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on

  11. Radiation protect during the ventilation scintigraphy of Tc99m DTPA radioaerosol in pediatric application

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Wen; Dai, Zen-Kong; Huang, Ying-Fong; Jong, Shiang-Bing [Chou-Hon Memorial Hospital, Kaohsiung Medical Univ., Kaohsiung, Taiwan (China)

    2000-05-01

    Lung ventilation-perfusion scintigraphy is of great value for the management of patients with both primary lung disease and heart disease, by proving patho- physiological information of importance for the diagnosis, follow-up and functional evaluation of the patients. Krypton 81m radioactive gas is preferable for pediatric application due to its short half-life. However, the rubidium-krypton 81m generator is not popular in hospital of our country. Tc99m DTPA radioaerosol ventilation scintigraphy has its unique convenient for clinical application. But, the most disadvantage of clinical application of Tc99m DTPA radioaerosol is contamination of environment when the poor-cooperative patient can't breathe by mouth. For this reason, we design the certain procedure to reduce the radioaerosol contamination. During May to Aug., 1999, we collect 36 pediatric patients (male to female ratio 2:1, age from 6 months to 20 years old) with clinical history of lung or heart disease, including congenital heart disease, asthma and so on. Before the cases receive 10 to 15 mCi Tc99m DTPA radioaerosol ventilation scan, all of them were trained with breath training. And during the ventilation scintigraphy, the special mouth mask is designed to prevent the radioaerosol leakage into atmosphere. Then Geiger-Muller survey meter was arranged to detect the environmental contamination of radioaerosol in the mask, one and two metes away from the mask every 10 minutes during ventilation scintigraphy procedure and 1 hour after finishing image. Two nuclear medicine physicians evaluated imaging quality of ventilation scintigraphy. Results: Among thirty-six pediatric patients with prior breath training, thirty-two cases are successful to proceed the Tc99m DTPA ventilation scintigraphy. The other four cases that were under three-year-old fail to receive ventilation scintigraphy. There is limited detectable radioactivity in the mouth mask at early 10 minute by Geiger-Muller counter. No significant

  12. End-tidal carbon dioxide monitoring during bag valve ventilation: the use of a new portable device

    Directory of Open Access Journals (Sweden)

    Lindström Veronica

    2010-09-01

    Full Text Available Abstract Background For healthcare providers in the prehospital setting, bag-valve mask (BVM ventilation could be as efficacious and safe as endotracheal intubation. To facilitate the evaluation of efficacious ventilation, capnographs have been further developed into small and convenient devices able to provide end- tidal carbon dioxide (ETCO2. The aim of this study was to investigate whether a new portable device (EMMA™ attached to a ventilation mask would provide ETCO2 values accurate enough to confirm proper BVM ventilation. Methods A prospective observational trial was conducted in a single level-2 centre. Twenty-two patients under general anaesthesia were manually ventilated. ETCO2 was measured every five minutes with the study device and venous PCO2 (PvCO2 was simultaneously measured for comparison. Bland- Altman plots were used to compare ETCO2, and PvCO2. Results The patients were all hemodynamically and respiratory stable during anaesthesia. End-tidal carbon dioxide values were corresponding to venous gases during BVM ventilation under optimal conditions. The bias, the mean of the differences between the two methods (device versus venous blood gases, for time points 1-4 ranges from -1.37 to -1.62. Conclusion The portable device, EMMA™ is suitable for determining carbon dioxide in expired air (kPa as compared to simultaneous samples of PvCO2. It could therefore, be a supportive tool to asses the BVM ventilation in the demanding prehospital and emergency setting.

  13. A potential kidney-bone axis involved in the rapid minute-to-minute regulation of plasma Ca2+

    DEFF Research Database (Denmark)

    Nordholm, Anders; Mace, Maria L; Gravesen, Eva;

    2015-01-01

    of plasma-Ca(2+) (p-Ca(2+)) takes place via an exchange mechanism of Ca(2+) between plasma and bone. A labile Ca storage pool exists on bone surfaces storing excess or supplying Ca when blood Ca is lowered. Aim was to examine minute-to-minute regulation of p-Ca(2+) in the very early phase of acute uremia...

  14. A Comparison of Ventilation Rates Between a Standard Bag-Valve-Mask and a New Design in a Prehospital Setting During Training Simulations.

    Science.gov (United States)

    Costello, Joseph T; Allen, Paul B; Levesque, Robert

    2017-01-01

    Excessive ventilation of sick and injured patients is associated with increased morbidity and mortality. Combat Medical Systems® (CMS) is developing a new bag-valve-mask (BVM) designed to limit ventilation rates. The purpose of this study was to compare ventilation rates between a standard BVM device and the CMS device. This was a prospective, observational, semirandomized, crossover study using Army Medics. Data were collected during Brigade Combat Team Trauma Training classes at Camp Bullis, Texas. Subjects were observed during manikin simulation training in classroom and field environments, with total duration of manual ventilation and number of breaths given recorded for each device. Analysis was performed on overall ventilation rate in breaths per minute (BPM) and also by grouping the subjects by ventilation rates in low, correct, and high groups based on an ideal rate of 10-12 BPM. A total of 89 Medics were enrolled and completed the classroom portion of the study, with a subset of 36 evaluated in the field. A small but statistically significant difference in overall BPM between devices was seen in the classroom (ρ .05). The study device significantly decreased the incidence of high ventilation rates when compared by groups in both the classroom (ρ < .001) and the field (ρ = .044), but it also increased the rate of low ventilation rates. The study device effectively reduced rates of excessive ventilation in the classroom and the field. 2017.

  15. TU-G-BRA-04: Changes in Regional Lung Function Measured by 4D-CT Ventilation Imaging for Thoracic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y; Kadoya, N [Tohoku University School of Medicine, Sendai, Miyagi (Japan); Kabus, S [Philips Research Europe, Hamburg, Hamburg (Germany); Loo, B [Stanford University, Stanford, CA (United States); Keall, P [University of Sydney, Camperdown (Australia); Yamamoto, T [University of California Davis School of Medicine, Sacramento, CA (United States)

    2015-06-15

    Purpose: To test the hypothesis: 4D-CT ventilation imaging can show the known effects of radiotherapy on lung function: (1) radiation-induced ventilation reductions, and (2) ventilation increases caused by tumor regression. Methods: Repeat 4D-CT scans (pre-, mid- and/or post-treatment) were acquired prospectively for 11 thoracic cancer patients in an IRB-approved clinical trial. A ventilation image for each time point was created using deformable image registration and the Hounsfield unit (HU)-based or Jacobian-based metric. The 11 patients were divided into two subgroups based on tumor volume reduction using a threshold of 5 cm{sup 3}. To quantify radiation-induced ventilation reduction, six patients who showed a small tumor volume reduction (<5 cm{sup 3}) were analyzed for dose-response relationships. To investigate ventilation increase caused by tumor regression, two of the other five patients were analyzed to compare ventilation changes in the lung lobes affected and unaffected by the tumor. The remaining three patients were excluded because there were no unaffected lobes. Results: Dose-dependent reductions of HU-based ventilation were observed in a majority of the patient-specific dose-response curves and in the population-based dose-response curve, whereas no clear relationship was seen for Jacobian-based ventilation. The post-treatment population-based dose-response curve of HU-based ventilation demonstrated the average ventilation reductions of 20.9±7.0% at 35–40 Gy (equivalent dose in 2-Gy fractions, EQD2), and 40.6±22.9% at 75–80 Gy EQD2. Remarkable ventilation increases in the affected lobes were observed for the two patients who showed an average tumor volume reduction of 37.1 cm{sup 3} and re-opening airways. The mid-treatment increase in HU-based ventilation of patient 3 was 100.4% in the affected lobes, which was considerably greater than 7.8% in the unaffected lobes. Conclusion: This study has demonstrated that 4D-CT ventilation imaging shows

  16. Photospheric Origin of Three-minute Oscillations in a Sunspot

    Science.gov (United States)

    Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun; Song, Donguk; Cho, Kyungsuk; Yurchyshyn, Vasyl

    2017-02-01

    The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni i λ5436, Fe i λ5435, and Na i D2 λ5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3 minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.

  17. High-Frequency Percussive Ventilation and Low Tidal Volume Ventilation in Burns: A Randomized Controlled Trial

    Science.gov (United States)

    2010-01-01

    links.lww.com/CCM/A159]). Criteria for changing modes were as follows: severe hy- poxemia with arterial partial pressure of oxy- gen ( PaO2 ) 60 mm Hg despite a...injury on admission (16). Additional second- ary outcome measures included the ratio of PaO2 to FIO2 and the oxygenation index in the first 7 days...after randomization. Oxygenation index was defined as the product of the FIO2 in percent and mean airway pressure in cm H2O divided by the PaO2 . Plasma

  18. A perfluorochemical loss/restoration (L/R) system for tidal liquid ventilation.

    Science.gov (United States)

    Libros, R; Philips, C M; Wolfson, M R; Shaffer, T H

    2000-01-01

    Tidal liquid ventilation is the transport of dissolved respiratory gases via volume exchange of perfluorochemical (PFC) liquid to and from the PFC-filled lung. All gas-liquid surface tension is eliminated, increasing compliance and providing lung protection due to lower inflation pressures. Tidal liquid ventilation is achieved by cycling fluid from a reservoir to and from the lung by a ventilator. Current approaches are microprocessor-based with feedback control. During inspiration, warmed oxygenated PFC liquid is pumped from a fluid reservoir/gas exchanger into the lung. PFC fluid is conserved by condensing (60-80% efficiency) vapor in the expired gas. A feedback-control system was developed to automatically replace PFC lost due to condenser inefficiency. This loss/restoration (L/R) system consists of a PFC-vapor thermal detector (+/- 2.5%), pneumatics, amplifiers, a gas flow detector (+/- 1%), a PFC pump (+/- 5%), and a controller. Gravimetric studies of perflubron loss from a flask due to evaporation were compared with experimental L/R results and found to be within +/- 1.4%. In addition, when L/R studies were conducted with a previously reported liquid ventilation system over a four-hour period, the L/R system maintained system perflubron volume to within +/- 1% of prime volume and 11.5% of replacement volume, and the difference between experimental PFC loss and that of the L/R system was 1.8 mL/hr. These studies suggest that the PFC L/R system may have significant economic (appropriate dosing for PFC loss) as well as physiologic (maintenance of PFC inventory in the lungs and liquid ventilator) impact on liquid ventilation procedures.

  19. Respiratory Variations in Pulse Pressure Reflect Central Hypovolemia during Noninvasive Positive Pressure Ventilation

    Directory of Open Access Journals (Sweden)

    Ingrid Elise Hoff

    2014-01-01

    Full Text Available Background. Correct volume management is essential in patients with respiratory failure. We investigated the ability of respiratory variations in noninvasive pulse pressure (ΔPP, photoplethysmographic waveform amplitude (ΔPOP, and pleth variability index (PVI to reflect hypovolemia during noninvasive positive pressure ventilation by inducing hypovolemia with progressive lower body negative pressure (LBNP. Methods. Fourteen volunteers underwent LBNP of 0, −20, −40, −60, and −80 mmHg for 4.5 min at each level or until presyncope. The procedure was repeated with noninvasive positive pressure ventilation. We measured stroke volume (suprasternal Doppler, ΔPP (Finapres, ΔPOP, and PVI and assessed their association with LBNP-level using linear mixed model regression analyses. Results. Stroke volume decreased with each pressure level (−11.2 mL, 95% CI −11.8, −9.6, P<0.001, with an additional effect of noninvasive positive pressure ventilation (−3.0 mL, 95% CI −8.5, −1.3, P=0.009. ΔPP increased for each LBNP-level (1.2%, 95% CI 0.5, 1.8, P<0.001 and almost doubled during noninvasive positive pressure ventilation (additional increase 1.0%, 95% CI 0.1, 1.9, P=0.003. Neither ΔPOP nor PVI was significantly associated with LBNP-level. Conclusions. During noninvasive positive pressure ventilation, preload changes were reflected by ΔPP but not by ΔPOP or PVI. This implies that ΔPP may be used to assess volume status during noninvasive positive pressure ventilation.

  20. Implementation of ventilation in existing schools

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Petersen, Steffen

    Present paper analyses the best-practice solutions for classrooms’ ventilation that fit the objective of quick and inexpensive implementation. The paper decomposes the relations between ventilation and building into manageable elements and analyzes them. The analyses are performed qualitatively......; they evaluate both scientific and practical implementation The analyses lead to a list of criteria associated with the implementation of ventilation in existing schools. Generic retrofitting scenarios which prioritize energy savings, indoor climate and building/facade integration are assembled and illustrated...

  1. Luftkvalitet i nyere skoler uden mekanisk ventilation

    DEFF Research Database (Denmark)

    Aggerholm, Søren

    I skoler uden mekanisk ventilation må der udluftes konsekvent for at forbedre luftkvaliteten. Rapporten viser resultatet af målinger af kuldioxidkoncentrationen i fire skoler uden mekanisk ventilation og én skole med mekanisk udsugning. Kuldioxidkoncentrationen er brugt som indikator...... for luftkvaliteten. Rapporten beskriver desuden de energimæssige konsekvenser ved at etablere mekanisk ventilation. Resultaterne har især interesse for skoleforvaltninger og rådgivende teknikere....

  2. Single-lung ventilation in pediatric anesthesia.

    Science.gov (United States)

    Choudhry, Dinesh K

    2005-12-01

    Single-lung ventilation is requested for an increasing spectrum of surgical procedures in infants and children. A clear understanding of the physiology of single-lung ventilation, the techniques of lung separation, and the technical skill necessary to apply these techniques are essential for an anesthesiologist practicing thoracic anesthesia. This article focuses on various devices available for single-lung ventilation in the pediatric age group, the relevant respiratory physiology, and the strategies that optimize oxygenation during one-lung anesthesia.

  3. Naturlig ventilation kombineret med varmegenvinding og natkøling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker

    2007-01-01

    Naturlig ventilation i kontorbyggerier har været et alternativ til mekanisk ventilation i små 10 år. Ventilation med naturlige drivkræfter har den klare fordel, at der ikke forbruges elenergi ved ventilering af bygningen, fordi ventilatorer ikke er påkrævet. Imidlertid lider naturlig ventilation...

  4. High-frequency chest wall oscillation. Assistance to ventilation in spontaneously breathing subjects.

    Science.gov (United States)

    Calverley, P M; Chang, H K; Vartian, V; Zidulka, A

    1986-02-01

    In five supine normal subjects breathing spontaneously, we studied the effects of high-frequency chest wall oscillation (HFCWO), which was achieved by oscillating the pressure in an air-filled cuff wrapped around the lower thorax. Oscillations of 3.5 and 8 Hz (in randomized order) were applied for 15 minutes each at both maximal (mean of 90 to 102 cm H2O) and half-maximal peak tolerable cuff pressures. Fifteen minutes of control spontaneous ventilation preceded each HFCWO maneuver. The HFCWO resulted in a significant decrease in spontaneous minute ventilation (VES) at maximal and half-maximal pressures by 35 and 40 percent, respectively, at 3 Hz and by 26 and 35 percent, respectively, at 5 Hz, with little change in VES at 8 Hz. This occurred despite an unchanging arterial carbon dioxide tension at all frequencies. Arterial oxygen pressure increased at 3 Hz at maximal pressure but remained statistically unchanged at 3 Hz at half-maximal pressure and at 5 Hz and 8 Hz both at maximal and half-maximal pressures. We conclude that HFCWO may potentially assist ventilation in spontaneously breathing man without requiring an endotracheal tube.

  5. Numerical simulation of ventilation in blinding heading

    Institute of Scientific and Technical Information of China (English)

    CHANG De-qiang; LIU Jing-xian; CHEN Bao-zhi

    2008-01-01

    The way of ventilation in all its forms and characteristics in the blinding heading was studied. On the basis of computational fluid dynamics (CFD) the turbulence model of restrained ventilation in blinding heading was set up, and the calculation boundary condi-tions were analyzed. According to the practice application the three-dimensional flow field of ventilation in blinding heading was simulated by the computational fluid dynamics soft-ware. The characteristics of the ventilation flow field such as the temperature field zone and the flow filed zone and the rule of the flow velocity were obtained. The ventilation in blinding heading under certain circumstances was calculated and simulated for optimiza-tion. The optimal ventilation form and related parameters under given condition were ob-tained. The rule of the ventilation in blinding heading was theoretical analyzed, which pro-vided reference for the research on the process of mass transfer, the rule of hazardous substances transportation and ventilation efficiency, provided a new method for the study of reasonable and effective ventilation in blinding heading.

  6. Numerical simulation of ventilation in blinding heading

    Institute of Scientific and Technical Information of China (English)

    CHANG De-qiang; LIU Jing-xian; CHEN Bao-zhi

    2008-01-01

    The way of ventilation in all its forms and characteristics in the blinding heading was studied.On the basis of computational fluid dynamics (CFD) the turbulence model of restrained ventilation in blinding heading was set up,and the calculation boundary conditions were analyzed.According to the practice application the three-dimensional flow field of ventilation in blinding heading was simulated by the computational fluid dynamics software.The characteristics of the ventilation flow field such as the temperature field zone and the flow filed zone and the rule of the flow velocity were obtained.The ventilation in blinding heading under certain circumstances was calculated and simulated for optimization.The optimal ventilation form and related parameters under given condition were obtained.The rule of the ventilation in blinding heading was theoretical analyzed,which provided reference for the research on the process of mass transfer,the rule of hazardous substances transportation and ventilation efficiency,provided a new method for the study of reasonable and effective ventilation in blinding heading.

  7. Large Eddy Simulations of the Flow in a Three-Dimensional Ventilated Room

    DEFF Research Database (Denmark)

    Davidson, Lars; Nielsen, Peter V.

    We have done Large Eddy Simulations (LES) of the flow in a three-dimensional ventilated room. A finite volume method is used with a collocated grid arrangement. The momentum equations are solved with an explicit method using central differencing for all terms. The pressure is obtained from...

  8. Potential energy savings with personalized ventilation coupled with passive chilled beams

    DEFF Research Database (Denmark)

    Lyubenova, Velina S.; Holsøe, Jan W.; Melikov, Arsen Krikor

    2011-01-01

    Personalized ventilation (PV) is an individually controlled air distribution system aimed at improving inhaled air quality and thermal comfort of each occupant. Numerous studies have shown that PV may improve occupants’ health, comfort and performance in comparison with traditional total volume air...

  9. Non-conventional mechanical ventilation in severe ARDS, illustrated by a complicated case

    NARCIS (Netherlands)

    Tulleken, JE; van der Werf, TS; Ligtenberg, JJM; Zijlstra, JG

    1998-01-01

    When conventional respiratory strategies fail to maintain adequate oxygenation treatment of severe ARDS is largely empirical. Modern techniques such as inverse ratio ventilation, permissive hypercapnia, NO inhalation and lowering tidal volumes/pressures are advocated. We report on a patient with sev

  10. Ventilation induced apnea and its effect on dorsal brainstem inspiratory neurones in the rat

    NARCIS (Netherlands)

    Subramanian, Hari H.; Balnave, Ron J.; Chow, Chin M.

    2007-01-01

    The purpose of this study was to examine the effect of mechanical ventilation (MV) on inherent breathing and on dorsal brainstem nucleus tractus solitarius (NTS) respiratory cell function. In pentobarbitone-anaesthetised rats, application of MV at combined high frequencies and volumes (representing

  11. [Intraoperative monitoring in artificial respiration of premature and newborn infants. I. Monitoring of respiratory parameters and alveolar ventilation].

    Science.gov (United States)

    Lenz, G; Heipertz, W; Leidig, E; Madee, S

    1986-06-01

    Monitoring of ventilation serves to ensure adequate alveolar ventilation and arterial oxygenation, and to avoid pulmonary damage due to mechanical ventilation. Basic clinical monitoring, i.e., inspection, auscultation (including precordial or oesophageal stethoscope) and monitoring of heart rate and blood pressure, is mandatory. Mechanical ventilation is monitored by ventilation pressures (peak pressure, plateau pressure and endexpiratory pressure), ventilation volumes (measured at the in/expiratory valve of the respirator and by hot-wire anemometry at the tube connector), ventilation rate, and inspiratory oxygen concentration (FiO2). Alveolar ventilation should be continuously and indirectly recorded by capnometry (pECO2) and by measurement of transcutaneous pCO2 (tcpCO2), whereas oxygenation is determined via measurement of transcutaneous pO2 (tcpO2). Invasive monitoring of gas exchange is essential in prolonged or intrathoracic interventions as well as in neonates with cardiopulmonary problems. paCO2 may be estimated by capillary or venous blood gas analysis; arterial blood gas analysis is required for exact determination of paCO2 as well as arteriocutaneous pCO2 (atcDCO2) and arterio-end-expiratory (aEDCO2) gradients.

  12. Functional MRI using Fourier decomposition of lung signal: Reproducibility of ventilation- and perfusion-weighted imaging in healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Lederlin, Mathieu, E-mail: mathieu.lederlin@chu-bordeaux.fr [Department of Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Department of Thoracic and Cardiovascular Imaging, University Hospital of Bordeaux, Av de Magellan, 33600 Pessac (France); Bauman, Grzegorz, E-mail: g.bauman@dkfz.de [Division of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Eichinger, Monika, E-mail: m.eichinger@dkfz.de [Division of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Dinkel, Julien, E-mail: julien.dinkel@googlemail.com [Division of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114 (United States); Brault, Mathilde, E-mail: mathilde.brault@isped.u-bordeaux2.fr [Methodological Unit of Support for Research (USMR), University Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux (France); Biederer, Jürgen, E-mail: juergen.biederer@uni-heidelberg.de [Department of Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Puderbach, Michael, E-mail: m.puderbach@dkfz.de [Division of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Chest Clinics at the University of Heidelberg, Clinics for Interventional and Diagnostic Radiology, Amalienstr. 5, 69126 Heidelberg (Germany)

    2013-06-15

    Purpose: To assess the reproducibility of Fourier decomposition (FD) based ventilation- and perfusion-weighted lung MRI. Methods: Sixteen healthy volunteers were examined on a 1.5 T whole-body MR-scanner with 4–6 sets of coronal slices over the chest volume with a non-contrast enhanced steady-state free precession sequence. The identical protocol was repeated after 24 h. Reconstructed perfusion- and ventilation-weighted images were obtained through non-rigid registration and FD post-processing of images. Analysis of signal in segmented regions of interest was performed for both native and post-processed data. Two blinded chest radiologists rated image quality of perfusion- and ventilation-weighted images using a 3-point scale. Results: Reproducibility of signal between the two time points was very good with intra-class correlation coefficients of 0.98, 0.94 and 0.86 for native, perfusion- and ventilation-weighted images, respectively. Perfusion- and ventilation-weighted images were of overall good quality with proportions of diagnostic images of 87–95% and 69–75%, respectively. Lung signal decreased from posterior to anterior slices with image quality of ventilation-weighted images in anterior areas rated worse than in posterior or perfusion-weighted images. Inter- and intra-observer agreement of image quality was good for perfusion and ventilation. Conclusions: The study demonstrates high reproducibility of ventilation- and perfusion-weighted FD lung MRI.

  13. Role of JNK signal transduction pathway in IL-8 and TNF-α secretion from alveolar macrophages induced by mechanical ventilation with large-tidal volume in rabbits%JNK信号转导通路在大潮气量机械通气诱发兔肺泡巨噬细胞分泌IL-8和TNF-α中的作用

    Institute of Scientific and Technical Information of China (English)

    童瑾; Juliy M.Perelman; Victor P.Kolosov

    2010-01-01

    Objective To investigate the role of c-Jun N-terminal kinase (JNK) signal transduction pathway in IL-8 and TNF-α secretion from alveolar macrophages induced by mechanical ventilation with large-tidal volume in rabbits. Methods Thirty male New Zealand white rabbits weighing 210-260 g were randomly divided into 330-40 bpm, PEEP 0), and SB203580 group (group S). The animals were anesthetized with iv pentobarbital sodium 40 mg/kg, traeheostomized and mechanically ventilated. Group C received no mechanical ventilation. The animals were mechanically ventilated for 3 days in group V. The animals were mechanically ventilated for 3 days and SB203580 (a specific JNK inhibitor) 6 mg/kg was injected via the ear vein every day during ventilation (the ventilation parameters were the same as those in group V). The animals were then sacrificed by exsanguination. The concentrations of IL-8 and TNF-α in bronchoalveolar lavage fluid (BALF) were determined by ELISA and the alveolar macrophages were collected. After the macrophages were cultured for 2 h in vitro, the expression of IL-8 mRNA and TNF-α mRNA was determined by RT-PCR. Results Compared with group C, the levels of IL-8 , TNF-α,IL-8 mRNA and TNF-α mRNA were significantly increased in group V (P<0.05). Compared with group V, the levels of TNF-α and TNF-α mRNA were significantly decreased ( P < 0.01 ), but no significant change was found in the levels of IL-8 and IL-8 mRNA in group S ( P > 0.05). Conclusion JNK signal transduction pathway plays an important role in TNF-α secretion from alveolar macrophages induced by mechanical ventilation with large-tidal volume in rabbits, but is not involved the secretion of TNF-α.%目的 评价c-Jun氨基末端激酶(JNK)在大潮气量机械通气诱发兔肺泡巨噬细胞分泌IL-8和TNF-α中的作用.方法 清洁级雄性新西兰白兔30只,体重210~260 g,随机分为3组(n=10):正常对照组(C组)不予任何刺激;机械通气组(V组)大潮气量机械通气3 d

  14. Ventilation requirements for control of occupancy odor and tobacco smoke odor: laboratory studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cain, W.S.; Isseroff, R.; Leaderer, B.P.; Lipsitt, E.D.; Huey, R.J.; Perlman, D.; Bergland, L.G.; Dunn, J.D.

    1981-04-01

    Experiments on occupancy odor addressed the question of why required ventilation rate per occupant increased progressively with increases in the number of persons in a space. In order to investigate ventilation requirements under approximately ideal conditions, we constructed an aluminum-lined environment