#### Sample records for volume integration method

1. Iterative algorithm for the volume integral method for magnetostatics problems

International Nuclear Information System (INIS)

Pasciak, J.E.

1980-11-01

Volume integral methods for solving nonlinear magnetostatics problems are considered in this paper. The integral method is discretized by a Galerkin technique. Estimates are given which show that the linearized problems are well conditioned and hence easily solved using iterative techniques. Comparisons of iterative algorithms with the elimination method of GFUN3D shows that the iterative method gives an order of magnitude improvement in computational time as well as memory requirements for large problems. Computational experiments for a test problem as well as a double layer dipole magnet are given. Error estimates for the linearized problem are also derived

2. Visualizing Volume to Help Students Understand the Disk Method on Calculus Integral Course

Science.gov (United States)

2018-04-01

Many research shown that students have difficulty in understanding the concepts of integral calculus. Therefore this research is interested in designing a classroom activity integrated with design research method to assist students in understanding the integrals concept especially in calculating the volume of rotary objects using disc method. In order to support student development in understanding integral concepts, this research tries to use realistic mathematical approach by integrating geogebra software. First year university student who takes a calculus course (approximately 30 people) was chosen to implement the classroom activity that has been designed. The results of retrospective analysis show that visualizing volume of rotary objects using geogebra software can assist the student in understanding the disc method as one way of calculating the volume of a rotary object.

3. Hybrid Finite Element and Volume Integral Methods for Scattering Using Parametric Geometry

DEFF Research Database (Denmark)

Volakis, John L.; Sertel, Kubilay; Jørgensen, Erik

2004-01-01

n this paper we address several topics relating to the development and implementation of volume integral and hybrid finite element methods for electromagnetic modeling. Comparisons of volume integral equation formulations with the finite element-boundary integral method are given in terms of accu...... of vanishing divergence within the element but non-zero curl. In addition, a new domain decomposition is introduced for solving array problems involving several million degrees of freedom. Three orders of magnitude CPU reduction is demonstrated for such applications....

4. New Internet search volume-based weighting method for integrating various environmental impacts

Energy Technology Data Exchange (ETDEWEB)

Ji, Changyoon, E-mail: changyoon@yonsei.ac.kr; Hong, Taehoon, E-mail: hong7@yonsei.ac.kr

2016-01-15

Weighting is one of the steps in life cycle impact assessment that integrates various characterized environmental impacts as a single index. Weighting factors should be based on the society's preferences. However, most previous studies consider only the opinion of some people. Thus, this research proposes a new weighting method that determines the weighting factors of environmental impact categories by considering public opinion on environmental impacts using the Internet search volumes for relevant terms. To validate the new weighting method, the weighting factors for six environmental impacts calculated by the new weighting method were compared with the existing weighting factors. The resulting Pearson's correlation coefficient between the new and existing weighting factors was from 0.8743 to 0.9889. It turned out that the new weighting method presents reasonable weighting factors. It also requires less time and lower cost compared to existing methods and likewise meets the main requirements of weighting methods such as simplicity, transparency, and reproducibility. The new weighting method is expected to be a good alternative for determining the weighting factor. - Highlight: • A new weighting method using Internet search volume is proposed in this research. • The new weighting method reflects the public opinion using Internet search volume. • The correlation coefficient between new and existing weighting factors is over 0.87. • The new weighting method can present the reasonable weighting factors. • The proposed method can be a good alternative for determining the weighting factors.

5. New Internet search volume-based weighting method for integrating various environmental impacts

International Nuclear Information System (INIS)

Ji, Changyoon; Hong, Taehoon

2016-01-01

Weighting is one of the steps in life cycle impact assessment that integrates various characterized environmental impacts as a single index. Weighting factors should be based on the society's preferences. However, most previous studies consider only the opinion of some people. Thus, this research proposes a new weighting method that determines the weighting factors of environmental impact categories by considering public opinion on environmental impacts using the Internet search volumes for relevant terms. To validate the new weighting method, the weighting factors for six environmental impacts calculated by the new weighting method were compared with the existing weighting factors. The resulting Pearson's correlation coefficient between the new and existing weighting factors was from 0.8743 to 0.9889. It turned out that the new weighting method presents reasonable weighting factors. It also requires less time and lower cost compared to existing methods and likewise meets the main requirements of weighting methods such as simplicity, transparency, and reproducibility. The new weighting method is expected to be a good alternative for determining the weighting factor. - Highlight: • A new weighting method using Internet search volume is proposed in this research. • The new weighting method reflects the public opinion using Internet search volume. • The correlation coefficient between new and existing weighting factors is over 0.87. • The new weighting method can present the reasonable weighting factors. • The proposed method can be a good alternative for determining the weighting factors.

6. Method of moments solution of volume integral equations using higher-order hierarchical Legendre basis functions

DEFF Research Database (Denmark)

Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter

2004-01-01

An efficient higher-order method of moments (MoM) solution of volume integral equations is presented. The higher-order MoM solution is based on higher-order hierarchical Legendre basis functions and higher-order geometry modeling. An unstructured mesh composed of 8-node trilinear and/or curved 27...... of magnitude in comparison to existing higher-order hierarchical basis functions. Consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement with the analytical Mie series solution for a dielectric sphere as well as with results obtained...

7. Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method.

Science.gov (United States)

Aikio, Sanna; Hiltunen, Jussi; Hiitola-Keinänen, Johanna; Hiltunen, Marianne; Kontturi, Ville; Siitonen, Samuli; Puustinen, Jarkko; Karioja, Pentti

2016-02-08

Flexible photonic integrated circuit technology is an emerging field expanding the usage possibilities of photonics, particularly in sensor applications, by enabling the realization of conformable devices and introduction of new alternative production methods. Here, we demonstrate that disposable polymeric photonic integrated circuit devices can be produced in lengths of hundreds of meters by ultra-high volume roll-to-roll methods on a flexible carrier. Attenuation properties of hundreds of individual devices were measured confirming that waveguides with good and repeatable performance were fabricated. We also demonstrate the applicability of the devices for the evanescent wave sensing of ambient refractive index. The production of integrated photonic devices using ultra-high volume fabrication, in a similar manner as paper is produced, may inherently expand methods of manufacturing low-cost disposable photonic integrated circuits for a wide range of sensor applications.

8. Study of scattering cross section of a plasma column using Green's function volume integral equation method

Science.gov (United States)

2017-05-01

In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.

9. Finite volume method room acoustic simulations integrated into the architectural design process

DEFF Research Database (Denmark)

Pind Jörgensson, Finnur Kári; Jeong, Cheol-Ho; Engsig-Karup, Allan Peter

2017-01-01

with the architectural design from the earliest design stage, as a part of a holistic design process. A new procedure to integrate room acoustics into architectural design is being developed in a Ph.D. project, with the aim of promoting this early stage holistic design process. This project aims to develop a new hybrid...

10. Using high-order polynomial basis in 3-D EM forward modeling based on volume integral equation method

Science.gov (United States)

Kruglyakov, Mikhail; Kuvshinov, Alexey

2018-05-01

3-D interpretation of electromagnetic (EM) data of different origin and scale becomes a common practice worldwide. However, 3-D EM numerical simulations (modeling)—a key part of any 3-D EM data analysis—with realistic levels of complexity, accuracy and spatial detail still remains challenging from the computational point of view. We present a novel, efficient 3-D numerical solver based on a volume integral equation (IE) method. The efficiency is achieved by using a high-order polynomial (HOP) basis instead of the zero-order (piecewise constant) basis that is invoked in all routinely used IE-based solvers. We demonstrate that usage of the HOP basis allows us to decrease substantially the number of unknowns (preserving the same accuracy), with corresponding speed increase and memory saving.

11. Volume integral method for investigation of plasmonic nanowaveguide structures and photonic crystals

Czech Academy of Sciences Publication Activity Database

Lerer, A.M.; Donets, I.V.; Kalinchenko, Galina; Makhno, P.V.

2014-01-01

Roč. 2, č. 1 (2014), s. 31-37 ISSN 2327-9125 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : mathematical methods * subwavelength structures * nanostuctures Subject RIV: BH - Optics, Masers, Lasers

12. The unbiasedness of a generalized mirage boundary correction method for Monte Carlo integration estimators of volume

Science.gov (United States)

Thomas B. Lynch; Jeffrey H. Gove

2014-01-01

The typical "double counting" application of the mirage method of boundary correction cannot be applied to sampling systems such as critical height sampling (CHS) that are based on a Monte Carlo sample of a tree (or debris) attribute because the critical height (or other random attribute) sampled from a mirage point is generally not equal to the critical...

13. Colorado Conference on iterative methods. Volume 1

Energy Technology Data Exchange (ETDEWEB)

NONE

1994-12-31

The conference provided a forum on many aspects of iterative methods. Volume I topics were:Session: domain decomposition, nonlinear problems, integral equations and inverse problems, eigenvalue problems, iterative software kernels. Volume II presents nonsymmetric solvers, parallel computation, theory of iterative methods, software and programming environment, ODE solvers, multigrid and multilevel methods, applications, robust iterative methods, preconditioners, Toeplitz and circulation solvers, and saddle point problems. Individual papers are indexed separately on the EDB.

14. Quantum Coherent States and Path Integral Method to Stochastically Determine the Anisotropic Volume Expansion in Lithiated Silicon Nanowires

Directory of Open Access Journals (Sweden)

Donald C. Boone

2017-10-01

Full Text Available This computational research study will analyze the multi-physics of lithium ion insertion into a silicon nanowire in an attempt to explain the electrochemical kinetics at the nanoscale and quantum level. The electron coherent states and a quantum field version of photon density waves will be the joining theories that will explain the electron-photon interaction within the lithium-silicon lattice structure. These two quantum particles will be responsible for the photon absorption rate of silicon atoms that are hypothesized to be the leading cause of breaking diatomic silicon covalent bonds that ultimately leads to volume expansion. It will be demonstrated through the combination of Maxwell stress tensor, optical amplification and path integrals that a stochastic analyze using a variety of Poisson distributions that the anisotropic expansion rates in the <110>, <111> and <112> orthogonal directions confirms the findings ascertained in previous works made by other research groups. The computational findings presented in this work are similar to those which were discovered experimentally using transmission electron microscopy (TEM and simulation models that used density functional theory (DFT and molecular dynamics (MD. The refractive index and electric susceptibility parameters of lithiated silicon are interwoven in the first principle theoretical equations and appears frequently throughout this research presentation, which should serve to demonstrate the importance of these parameters in the understanding of this component in lithium ion batteries.

15. Alternative occupied volume integrity (OVI) tests and analyses.

Science.gov (United States)

2013-10-01

FRA, supported by the Volpe Center, conducted research on alternative methods of evaluating occupied volume integrity (OVI) in passenger railcars. Guided by this research, an alternative methodology for evaluating OVI that ensures an equivalent or gr...

16. Finite volume form factors in the presence of integrable defects

International Nuclear Information System (INIS)

Bajnok, Z.; Buccheri, F.; Hollo, L.; Konczer, J.; Takacs, G.

2014-01-01

We developed the theory of finite volume form factors in the presence of integrable defects. These finite volume form factors are expressed in terms of the infinite volume form factors and the finite volume density of states and incorporate all polynomial corrections in the inverse of the volume. We tested our results, in the defect Lee–Yang model, against numerical data obtained by truncated conformal space approach (TCSA), which we improved by renormalization group methods adopted to the defect case. To perform these checks we determined the infinite volume defect form factors in the Lee–Yang model exactly, including their vacuum expectation values. We used these data to calculate the two point functions, which we compared, at short distance, to defect CFT. We also derived explicit expressions for the exact finite volume one point functions, which we checked numerically. In all of these comparisons excellent agreement was found

17. Transcranial sonography: integration into target volume definition for glioblastoma multiforme

International Nuclear Information System (INIS)

Vordermark, Dirk; Becker, Georg; Flentje, Michael; Richter, Susanne; Goerttler-Krauspe, Irene; Koelbl, Oliver

2000-01-01

Purpose: Recent studies indicate that transcranial sonography (TCS) reliably displays the extension of malignant brain tumors. The effect of integrating TCS into radiotherapy planning for glioblastoma multiforme (GBM) was investigated herein. Methods and Materials: Thirteen patients subtotally resected for GBM underwent TCS during radiotherapy planning and were conventionally treated (54 to 60 Gy). Gross tumor volumes (GTVs) and stereotactic boost planning target volumes (PTVs, 3-mm margin) were created, based on contrast enhancement on computed tomography (CT) only (PTV CT ) or the combined CT and TCS information (PTV CT+TCS ). Noncoplonar conformal treatment plans for both PTVs were compared. Tumor progression patterns and preoperative magnetic resonance imaging (MRI) were related to both PTVs. Results: A sufficient temporal bone window for TCS was present in 11 of 13 patients. GTVs as defined by TCS were considerably larger than the respective CT volumes: Of the composite GTV CT+TCS (median volume 42 ml), 23%, 13%, and 66% (medians) were covered by the overlap of both methods, CT only and TCS only, respectively. Median sizes of PTV CT and PTV CT+TCS were 34 and 74 ml, respectively. Addition of TCS to CT information led to a median increase of the volume irradiated within the 80% isodose by 32 ml (median factor 1.51). PTV CT+TCS volume was at median 24% of a 'conventional' MRI(T2)-based PTV. Of eight progressions analyzed, three and six occurred inside the 80% isodose of the plans for PTV CT and for PTV CT+TCS , respectively. Conclusion: Addition of TCS tumor volume to the contrast-enhancing CT volume in postoperative radiotherapy planning for GBM increases the treated volume by a median factor of 1.5. Since a high frequency of marginal recurrences is reported from dose-escalation trials of this disease, TCS may complement established methods in PTV definition

18. Statistical Methods in Integrative Genomics

Science.gov (United States)

Richardson, Sylvia; Tseng, George C.; Sun, Wei

2016-01-01

Statistical methods in integrative genomics aim to answer important biology questions by jointly analyzing multiple types of genomic data (vertical integration) or aggregating the same type of data across multiple studies (horizontal integration). In this article, we introduce different types of genomic data and data resources, and then review statistical methods of integrative genomics, with emphasis on the motivation and rationale of these methods. We conclude with some summary points and future research directions. PMID:27482531

19. Diverse methods for integrable models

NARCIS (Netherlands)

Fehér, G.

2017-01-01

This thesis is centered around three topics, sharing integrability as a common theme. This thesis explores different methods in the field of integrable models. The first two chapters are about integrable lattice models in statistical physics. The last chapter describes an integrable quantum chain.

20. Integral dose and evaluation of irradiated tissue volume

International Nuclear Information System (INIS)

Sivachenko, T.P.; Kalina, V.K.; Belous, A.K.; Gaevskij, V.I.

1984-01-01

Two parameters having potentialities of radiotherapy planning improvement are under consideration. One of these two parameters in an integral dose. An efficiency of application of special tables for integral dose estimation is noted. These tables were developed by the Kiev Physician Improvement Institute and the Cybernetics Institute of the Ukrainian SSR Academy of Science. The meaning of the term of ''irradiated tissue volume'' is specified, and the method of calculation of the irradiated tissue effective mass is considered. It is possible to evaluate with higher accuracy tolerance doses taking into account the irradiated mass

1. Method and apparatus for imaging volume data

International Nuclear Information System (INIS)

Drebin, R.; Carpenter, L.C.

1987-01-01

An imaging system projects a two dimensional representation of three dimensional volumes where surface boundaries and objects internal to the volumes are readily shown, and hidden surfaces and the surface boundaries themselves are accurately rendered by determining volume elements or voxels. An image volume representing a volume object or data structure is written into memory. A color and opacity is assigned to each voxel within the volume and stored as a red (R), green (G), blue (B), and opacity (A) component, three dimensional data volume. The RGBA assignment for each voxel is determined based on the percentage component composition of the materials represented in the volume, and thus, the percentage of color and transparency associated with those materials. The voxels in the RGBA volume are used as mathematical filters such that each successive voxel filter is overlayed over a prior background voxel filter. Through a linear interpolation, a new background filter is determined and generated. The interpolation is successively performed for all voxels up to the front most voxel for the plane of view. The method is repeated until all display voxels are determined for the plane of view. (author)

2. Integral equation methods for electromagnetics

CERN Document Server

Volakis, John

2012-01-01

This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the mo

3. Expressing intrinsic volumes as rotational integrals

DEFF Research Database (Denmark)

Auneau, Jeremy Michel; Jensen, Eva Bjørn Vedel

2010-01-01

A new rotational formula of Crofton type is derived for intrinsic volumes of a compact subset of positive reach. The formula provides a functional defined on the section of X with a j-dimensional linear subspace with rotational average equal to the intrinsic volumes of X. Simplified forms of the ...

4. Nonlinear Conservation Laws and Finite Volume Methods

Science.gov (United States)

Leveque, Randall J.

Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

5. Solving hyperbolic equations with finite volume methods

CERN Document Server

Vázquez-Cendón, M Elena

2015-01-01

Finite volume methods are used in numerous applications and by a broad multidisciplinary scientific community. The book communicates this important tool to students, researchers in training and academics involved in the training of students in different science and technology fields. The selection of content is based on the author’s experience giving PhD and master courses in different universities. In the book the introduction of new concepts and numerical methods go together with simple exercises, examples and applications that contribute to reinforce them. In addition, some of them involve the execution of MATLAB codes. The author promotes an understanding of common terminology with a balance between mathematical rigor and physical intuition that characterizes the origin of the methods. This book aims to be a first contact with finite volume methods. Once readers have studied it, they will be able to follow more specific bibliographical references and use commercial programs or open source software withi...

6. Method of measuring a liquid pool volume

Science.gov (United States)

Garcia, G.V.; Carlson, N.M.; Donaldson, A.D.

1991-03-19

A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools is disclosed, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figures.

7. Integration of wind generation forecasts. Volume 2

International Nuclear Information System (INIS)

Ahlstrom, M.; Zavadil, B.; Jones, L.

2005-01-01

WindLogics is a company that specializes in atmospheric modelling, visualization and fine-scale forecasting systems for the wind power industry. A background of the organization was presented. The complexities of wind modelling were discussed. Issues concerning location and terrain, shear, diurnal and interannual variability were reviewed. It was suggested that wind power producers should aim to be mainstream, and that variability should be considered as intrinsic to fuel supply. Various utility operating impacts were outlined. Details of an Xcel NSP wind integration study were presented, as well as a studies conducted in New York state and Colorado. It was concluded that regulations and load following impacts with wind energy integration are modest. Overall impacts are dominated by costs incurred to accommodate wind generation variability and uncertainty in the day-ahead time frame. Cost impacts can be reduced with adjustments to operating strategies, improvements in wind forecasting and access to real-time markets. Details of WindLogic's wind energy forecast system were presented, as well as examples of day ahead and hour ahead forecasts and wind speed and power forecasts. Screenshots of control room integration, EMS integration and simulations were presented. Details of a utility-scale wind energy forecasting system funded by Xcel Renewable Development Fund (RDF) were also presented. The goal of the system was to optimize the way that wind forecast information is integrated into the control room environment. Project components were outlined. It was concluded that accurate day-ahead forecasting can lead to significant asset optimization. It was recommended that wind plants share data, and aim to resolve issues concerning grid codes and instrumentation. refs., tabs., figs

8. Development and analysis of finite volume methods

International Nuclear Information System (INIS)

Omnes, P.

2010-05-01

This document is a synthesis of a set of works concerning the development and the analysis of finite volume methods used for the numerical approximation of partial differential equations (PDEs) stemming from physics. In the first part, the document deals with co-localized Godunov type schemes for the Maxwell and wave equations, with a study on the loss of precision of this scheme at low Mach number. In the second part, discrete differential operators are built on fairly general, in particular very distorted or nonconforming, bidimensional meshes. These operators are used to approach the solutions of PDEs modelling diffusion, electro and magneto-statics and electromagnetism by the discrete duality finite volume method (DDFV) on staggered meshes. The third part presents the numerical analysis and some a priori as well as a posteriori error estimations for the discretization of the Laplace equation by the DDFV scheme. The last part is devoted to the order of convergence in the L2 norm of the finite volume approximation of the solution of the Laplace equation in one dimension and on meshes with orthogonality properties in two dimensions. Necessary and sufficient conditions, relatively to the mesh geometry and to the regularity of the data, are provided that ensure the second-order convergence of the method. (author)

9. Copper Mountain conference on iterative methods: Proceedings: Volume 1

Energy Technology Data Exchange (ETDEWEB)

NONE

1996-10-01

This volume (one of two) contains information presented during the first three days of the Copper Mountain Conference on Iterative Methods held April 9-13, 1996 at Copper Mountain, Colorado. Topics of the sessions held these three days included nonlinear systems, parallel processing, preconditioning, sparse matrix test collections, first-order system least squares, Arnoldis method, integral equations, software, Navier-Stokes equations, Euler equations, Krylov methods, and eigenvalues. The top three papers from a student competition are also included. Selected papers indexed separately for the Energy Science and Technology Database.

10. ASPECTS OF INTEGRATION MANAGEMENT METHODS

Directory of Open Access Journals (Sweden)

Artemy Varshapetian

2015-10-01

Full Text Available For manufacturing companies to succeed in today's unstable economic environment, it is necessary to restructure the main components of its activities: designing innovative product, production using modern reconfigurable manufacturing systems, a business model that takes into account the global strategy and management methods using modern management models and tools. The first three components are discussed in numerous publications, for example, (Koren, 2010 and is therefore not considered in the article. A large number of publications devoted to the methods and tools of production management, for example (Halevi, 2007. On the basis of what was said in the article discusses the possibility of the integration of only three methods have received in recent years, the most widely used, namely: Six Sigma method - SS (George et al., 2005 and supplements its-Design for six sigm? - DFSS (Taguchi, 2003; Lean production transformed with the development to the "Lean management" and further to the "Lean thinking" - Lean (Hirano et al., 2006; Theory of Constraints, developed E.Goldratt - TOC (Dettmer, 2001. The article investigates some aspects of this integration: applications in diverse fields, positive features, changes in management structure, etc.

11. Topology optimization using the finite volume method

DEFF Research Database (Denmark)

in this presentation is focused on a prototype model for topology optimization of steady heat diffusion. This allows for a study of the basic ingredients in working with FVM methods when dealing with topology optimization problems. The FVM and FEM based formulations differ both in how one computes the design...... derivative of the system matrix K and in how one computes the discretized version of certain objective functions. Thus for a cost function for minimum dissipated energy (like minimum compliance for an elastic structure) one obtains an expression c = u^\\T \\tilde{K}u $, where \\tilde{K} is different from K...... the well known Reuss lower bound. [1] Bendsøe, M.P.; Sigmund, O. 2004: Topology Optimization - Theory, Methods, and Applications. Berlin Heidelberg: Springer Verlag [2] Versteeg, H. K.; W. Malalasekera 1995: An introduction to Computational Fluid Dynamics: the Finite Volume Method. London: Longman... 12. Finite Volume Method for Unstructured Grid International Nuclear Information System (INIS) Casmara; Kardana, N.D. 1997-01-01 The success of a computational method depends on the solution algorithm and mesh generation techniques. cell distributions are needed, which allow the solution to be calculated over the entire body surface with sufficient accuracy. to handle the mesh generation for multi-connected region such as multi-element bodies, the unstructured finite volume method will be applied. the advantages of the unstructured meshes are it provides a great deal more flexibility for generating meshes about complex geometries and provides a natural setting for the use of adaptive meshing. the governing equations to be discretized are inviscid and rotational euler equations. Applications of the method will be evaluated on flow around single and multi-component bodies 13. Methods for enhancing numerical integration International Nuclear Information System (INIS) Doncker, Elise de 2003-01-01 We give a survey of common strategies for numerical integration (adaptive, Monte-Carlo, Quasi-Monte Carlo), and attempt to delineate their realm of applicability. The inherent accuracy and error bounds for basic integration methods are given via such measures as the degree of precision of cubature rules, the index of a family of lattice rules, and the discrepancy of uniformly distributed point sets. Strategies incorporating these basic methods often use paradigms to reduce the error by, e.g., increasing the number of points in the domain or decreasing the mesh size, locally or uniformly. For these processes the order of convergence of the strategy is determined by the asymptotic behavior of the error, and may be too slow in practice for the type of problem at hand. For certain problem classes we may be able to improve the effectiveness of the method or strategy by such techniques as transformations, absorbing a difficult part of the integrand into a weight function, suitable partitioning of the domain, transformations and extrapolation or convergence acceleration. Situations warranting the use of these techniques (possibly in an 'automated' way) are described and illustrated by sample applications 14. An integrating factor matrix method to find first integrals International Nuclear Information System (INIS) Saputra, K V I; Quispel, G R W; Van Veen, L 2010-01-01 In this paper we develop an integrating factor matrix method to derive conditions for the existence of first integrals. We use this novel method to obtain first integrals, along with the conditions for their existence, for two- and three-dimensional Lotka-Volterra systems with constant terms. The results are compared to previous results obtained by other methods. 15. Analysis of Buried Dielectric Objects Using Higher-Order MoM for Volume Integral Equations DEFF Research Database (Denmark) Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav 2004-01-01 A higher-order method of moments (MoM) is applied to solve a volume integral equation for dielectric objects in layered media. In comparison to low-order methods, the higher-order MoM, which is based on higher-order hierarchical Legendre vector basis functions and curvilinear hexahedral elements,... 16. Local and Global Illumination in the Volume Rendering Integral Energy Technology Data Exchange (ETDEWEB) Max, N; Chen, M 2005-10-21 This article is intended as an update of the major survey by Max [1] on optical models for direct volume rendering. It provides a brief overview of the subject scope covered by [1], and brings recent developments, such as new shadow algorithms and refraction rendering, into the perspective. In particular, we examine three fundamentals aspects of direct volume rendering, namely the volume rendering integral, local illumination models and global illumination models, in a wavelength-independent manner. We review the developments on spectral volume rendering, in which visible light are considered as a form of electromagnetic radiation, optical models are implemented in conjunction with representations of spectral power distribution. This survey can provide a basis for, and encourage, new efforts for developing and using complex illumination models to achieve better realism and perception through optical correctness. 17. European market integration for gas? Volume flexibility and political risk International Nuclear Information System (INIS) Asche, Frank; Tveteras, Ragnar; Osmundsen, Petter 2002-01-01 Long-term take-or-pay contracts regulating gas exports to the Continent are described and analyzed. We thereafter examine whether the German gas market is integrated. Time series of Norwegian, Dutch and Russian gas export prices to Germany in 1990-1998 are examined. Cointegration tests show that that the different border prices for gas to Germany move proportionally over time, indicating an integrated gas market. We find differences in mean prices, with Russian gas being sold at prices systematically lower than Dutch and Norwegian gas. Among the explanatory factors for price discrepancies are differences in volume flexibility (swing) and perceived political risk 18. Fast Near-Field Calculation for Volume Integral Equations for Layered Media DEFF Research Database (Denmark) Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav 2005-01-01 . Afterwards, the scattered electric field can be easily computed at a regular rectangular grid on any horizontal plane us-ing a 2-dimensional FFT. This approach provides significant speedup in the near-field calculation in comparison to a straightforward numerical evaluation of the ra-diation integral since......An efficient technique based on the Fast Fourier Transform (FFT) for calculating near-field scattering by dielectric objects in layered media is presented. A higher or-der method of moments technique is employed to solve the volume integral equation for the unknown induced volume current density... 19. Integral methods in low-frequency electromagnetics CERN Document Server Solin, Pavel; Karban, Pavel; Ulrych, Bohus 2009-01-01 A modern presentation of integral methods in low-frequency electromagnetics This book provides state-of-the-art knowledge on integral methods in low-frequency electromagnetics. Blending theory with numerous examples, it introduces key aspects of the integral methods used in engineering as a powerful alternative to PDE-based models. Readers will get complete coverage of: The electromagnetic field and its basic characteristics An overview of solution methods Solutions of electromagnetic fields by integral expressions Integral and integrodifferential methods 20. Community biomass handbook volume 4: enterprise development for integrated wood manufacturing Science.gov (United States) Eini Lowell; D.R. Becker; D. Smith; M. Kauffman; D. Bihn 2017-01-01 The Community Biomass Handbook Volume 4: Enterprise Development for Integrated Wood Manufacturing is a guide for creating sustainable business enterprises using small diameter logs and biomass. This fourth volume is a companion to three Community Biomass Handbook volumes: Volume 1: Thermal Wood Energy; Volume 2: Alaska, Where Woody Biomass Can Work; and Volume 3: How... 1. A volume of fluid method based on multidimensional advection and spline interface reconstruction International Nuclear Information System (INIS) Lopez, J.; Hernandez, J.; Gomez, P.; Faura, F. 2004-01-01 A new volume of fluid method for tracking two-dimensional interfaces is presented. The method involves a multidimensional advection algorithm based on the use of edge-matched flux polygons to integrate the volume fraction evolution equation, and a spline-based reconstruction algorithm. The accuracy and efficiency of the proposed method are analyzed using different tests, and the results are compared with those obtained recently by other authors. Despite its simplicity, the proposed method represents a significant improvement, and compares favorably with other volume of fluid methods as regards the accuracy and efficiency of both the advection and reconstruction steps 2. Inner volume leakage during integrated leakage rate testing International Nuclear Information System (INIS) Glover, J.P. 1987-01-01 During an integrated leak rate test (ILRT), the containment structure is maintained at test pressure with most penetrations isolated. Since penetrations typically employ dual isolation, the possibility exists for the inner isolation to leak while the outer holds. In this case, the ILRT instrumentation system would indicate containment out-leakage when, in fact, only the inner volume between closures is being pressurized. The problem is compounded because this false leakage is not readily observable outside of containment by standard leak inspection techniques. The inner volume leakage eventually subsides after the affected volumes reach test pressure. Depending on the magnitude of leakage and the size of the volumes, equalization could occur prior to the end of the pretest stabilization period, or significant false leakages may persist throughout the entire test. Two simple analyses were performed to quantify the effects of inside volume leakages. First, a lower bound for the equalization time was found. A second analysis was performed to find an approximate upper bound for the stabilization time. The results of both analyses are shown 3. Mathematical methods linear algebra normed spaces distributions integration CERN Document Server Korevaar, Jacob 1968-01-01 Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector 4. MRI definition of target volumes using fuzzy logic method for three-dimensional conformal radiation therapy International Nuclear Information System (INIS) Caudrelier, Jean-Michel; Vial, Stephane; Gibon, David; Kulik, Carine; Fournier, Charles; Castelain, Bernard; Coche-Dequeant, Bernard; Rousseau, Jean 2003-01-01 Purpose: Three-dimensional (3D) volume determination is one of the most important problems in conformal radiation therapy. Techniques of volume determination from tomographic medical imaging are usually based on two-dimensional (2D) contour definition with the result dependent on the segmentation method used, as well as on the user's manual procedure. The goal of this work is to describe and evaluate a new method that reduces the inaccuracies generally observed in the 2D contour definition and 3D volume reconstruction process. Methods and Materials: This new method has been developed by integrating the fuzziness in the 3D volume definition. It first defines semiautomatically a minimal 2D contour on each slice that definitely contains the volume and a maximal 2D contour that definitely does not contain the volume. The fuzziness region in between is processed using possibility functions in possibility theory. A volume of voxels, including the membership degree to the target volume, is then created on each slice axis, taking into account the slice position and slice profile. A resulting fuzzy volume is obtained after data fusion between multiorientation slices. Different studies have been designed to evaluate and compare this new method of target volume reconstruction and a classical reconstruction method. First, target definition accuracy and robustness were studied on phantom targets. Second, intra- and interobserver variations were studied on radiosurgery clinical cases. Results: The absolute volume errors are less than or equal to 1.5% for phantom volumes calculated by the fuzzy logic method, whereas the values obtained with the classical method are much larger than the actual volumes (absolute volume errors up to 72%). With increasing MRI slice thickness (1 mm to 8 mm), the phantom volumes calculated by the classical method are increasing exponentially with a maximum absolute error up to 300%. In contrast, the absolute volume errors are less than 12% for phantom 5. Integral methods in science and engineering theoretical and practical aspects CERN Document Server Constanda, C; Rollins, D 2006-01-01 Presents a series of analytic and numerical methods of solution constructed for important problems arising in science and engineering, based on the powerful operation of integration. This volume is meant for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students. 6. Chemical Method of Urine Volume Measurement Science.gov (United States) Petrack, P. 1967-01-01 A system has been developed and qualified as flight hardware for the measurement of micturition volumes voided by crewmen during Gemini missions. This Chemical Urine Volume Measurement System (CUVMS) is used for obtaining samples of each micturition for post-flight volume determination and laboratory analysis for chemical constituents of physiological interest. The system is versatile with respect to volumes measured, with a capacity beyond the largest micturition expected to be encountered, and with respect to mission duration of inherently indefinite length. The urine sample is used for the measurement of total micturition volume by a tracer dilution technique, in which a fixed, predetermined amount of tritiated water is introduced and mixed into the voided urine, and the resulting concentration of the tracer in the sample is determined with a liquid scintillation spectrometer. The tracer employed does not interfere with the analysis for the chemical constituents of the urine. The CUVMS hardware consists of a four-way selector valve in which an automatically operated tracer metering pump is incorporated, a collection/mixing bag, and tracer storage accumulators. The assembled system interfaces with a urine receiver at the selector valve inlet, sample bags which connect to the side of the selector valve, and a flexible hose which carries the excess urine to the overboard drain connection. Results of testing have demonstrated system volume measurement accuracy within the specification limits of +/-5%, and operating reliability suitable for system use aboard the GT-7 mission, in which it was first used. 7. Verification and validation guidelines for high integrity systems. Volume 1 Energy Technology Data Exchange (ETDEWEB) Hecht, H.; Hecht, M.; Dinsmore, G.; Hecht, S.; Tang, D. [SoHaR, Inc., Beverly Hills, CA (United States) 1995-03-01 High integrity systems include all protective (safety and mitigation) systems for nuclear power plants, and also systems for which comparable reliability requirements exist in other fields, such as in the process industries, in air traffic control, and in patient monitoring and other medical systems. Verification aims at determining that each stage in the software development completely and correctly implements requirements that were established in a preceding phase, while validation determines that the overall performance of a computer system completely and correctly meets system requirements. Volume I of the report reviews existing classifications for high integrity systems and for the types of errors that may be encountered, and makes recommendations for verification and validation procedures, based on assumptions about the environment in which these procedures will be conducted. The final chapter of Volume I deals with a framework for standards in this field. Volume II contains appendices dealing with specific methodologies for system classification, for dependability evaluation, and for two software tools that can automate otherwise very labor intensive verification and validation activities. 8. Verification and validation guidelines for high integrity systems. Volume 1 International Nuclear Information System (INIS) Hecht, H.; Hecht, M.; Dinsmore, G.; Hecht, S.; Tang, D. 1995-03-01 High integrity systems include all protective (safety and mitigation) systems for nuclear power plants, and also systems for which comparable reliability requirements exist in other fields, such as in the process industries, in air traffic control, and in patient monitoring and other medical systems. Verification aims at determining that each stage in the software development completely and correctly implements requirements that were established in a preceding phase, while validation determines that the overall performance of a computer system completely and correctly meets system requirements. Volume I of the report reviews existing classifications for high integrity systems and for the types of errors that may be encountered, and makes recommendations for verification and validation procedures, based on assumptions about the environment in which these procedures will be conducted. The final chapter of Volume I deals with a framework for standards in this field. Volume II contains appendices dealing with specific methodologies for system classification, for dependability evaluation, and for two software tools that can automate otherwise very labor intensive verification and validation activities 9. Solution of volume-surface integral equations using higher-order hierarchical Legendre basis functions DEFF Research Database (Denmark) Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav 2007-01-01 The problem of electromagnetic scattering by composite metallic and dielectric objects is solved using the coupled volume-surface integral equation (VSIE). The method of moments (MoM) based on higher-order hierarchical Legendre basis functions and higher-order curvilinear geometrical elements...... with the analytical Mie series solution. Scattering by more complex metal-dielectric objects are also considered to compare the presented technique with other numerical methods.... 10. Automatic numerical integration methods for Feynman integrals through 3-loop International Nuclear Information System (INIS) De Doncker, E; Olagbemi, O; Yuasa, F; Ishikawa, T; Kato, K 2015-01-01 We give numerical integration results for Feynman loop diagrams through 3-loop such as those covered by Laporta [1]. The methods are based on automatic adaptive integration, using iterated integration and extrapolation with programs from the QUADPACK package, or multivariate techniques from the ParInt package. The Dqags algorithm from QuadPack accommodates boundary singularities of fairly general types. PARINT is a package for multivariate integration layered over MPI (Message Passing Interface), which runs on clusters and incorporates advanced parallel/distributed techniques such as load balancing among processes that may be distributed over a network of nodes. Results are included for 3-loop self-energy diagrams without IR (infra-red) or UV (ultra-violet) singularities. A procedure based on iterated integration and extrapolation yields a novel method of numerical regularization for integrals with UV terms, and is applied to a set of 2-loop self-energy diagrams with UV singularities. (paper) 11. Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: the integrated volume mentod Science.gov (United States) This study presents the integrated volume method for estimating saturation pressure and enthalpy of vaporization of a whole aerosol distribution. We measure the change of total volume of an aerosol distribution between a reference state and several heated states, with the heating... 12. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer Energy Technology Data Exchange (ETDEWEB) D. S. Lucas 2004-10-01 A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com. 13. Transient analysis of scattering from ferromagnetic objects using Landau-Lifshitz-Gilbert and volume integral equations KAUST Repository Sayed, Sadeed Bin 2016-11-02 An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented. 14. Transient analysis of scattering from ferromagnetic objects using Landau-Lifshitz-Gilbert and volume integral equations KAUST Repository Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan 2016-01-01 An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented. 15. Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement Directory of Open Access Journals (Sweden) Joko Siswantoro 2014-01-01 Full Text Available Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method. 16. Monte Carlo method with heuristic adjustment for irregularly shaped food product volume measurement. Science.gov (United States) Siswantoro, Joko; Prabuwono, Anton Satria; Abdullah, Azizi; Idrus, Bahari 2014-01-01 Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method. 17. Subdomain Precise Integration Method for Periodic Structures Directory of Open Access Journals (Sweden) F. Wu 2014-01-01 Full Text Available A subdomain precise integration method is developed for the dynamical responses of periodic structures comprising many identical structural cells. The proposed method is based on the precise integration method, the subdomain scheme, and the repeatability of the periodic structures. In the proposed method, each structural cell is seen as a super element that is solved using the precise integration method, considering the repeatability of the structural cells. The computational efforts and the memory size of the proposed method are reduced, while high computational accuracy is achieved. Therefore, the proposed method is particularly suitable to solve the dynamical responses of periodic structures. Two numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method through comparison with the Newmark and Runge-Kutta methods. 18. Splines and their reciprocal-bases in volume-integral equations International Nuclear Information System (INIS) Sabbagh, H.A. 1993-01-01 The authors briefly outline the use of higher-order splines and their reciprocal-bases in discretizing the volume-integral equations of electromagnetics. The discretization is carried out by means of the method of moments, in which the expansion functions are the higher-order splines, and the testing functions are the corresponding reciprocal-basis functions. These functions satisfy an orthogonality condition with respect to the spline expansion functions. Thus, the method is not Galerkin, but the structure of the resulting equations is quite regular, nevertheless. The theory is applied to the volume-integral equations for the unknown current density, or unknown electric field, within a scattering body, and to the equations for eddy-current nondestructive evaluation. Numerical techniques for computing the matrix elements are also given 19. Design method for marine direct drive volume control ahead actuator Directory of Open Access Journals (Sweden) WANG Haiyang 2018-02-01 Full Text Available [Objectives] In order to reduce the size, weight and auxiliary system configuration of marine ahead actuators, this paper proposes a kind of direct drive volume control electro-hydraulic servo ahead actuator. [Methods] The protruding and indenting control of the servo oil cylinder are realized through the forward and reverse of the bidirectional working gear pump, and the flow matching valve implements the self-locking of the ahead actuator in the target position. The mathematical model of the ahead actuator is established, and an integral separation fuzzy PID controller designed. On this basis, using AMESim software to build a simulation model of the ahead actuator, and combined with testing, this paper completes an analysis of the control strategy research and dynamic and static performance of the ahead actuator. [Results] The experimental results agree well with the simulation results and verify the feasibility of the ahead actuator's design. [Conclusions] The research results of this paper can provide valuable references for the integration and miniaturization design of marine ahead actuators. 20. A numerical method for resonance integral calculations International Nuclear Information System (INIS) Tanbay, Tayfun; Ozgener, Bilge 2013-01-01 A numerical method has been proposed for resonance integral calculations and a cubic fit based on least squares approximation to compute the optimum Bell factor is given. The numerical method is based on the discretization of the neutron slowing down equation. The scattering integral is approximated by taking into account the location of the upper limit in energy domain. The accuracy of the method has been tested by performing computations of resonance integrals for uranium dioxide isolated rods and comparing the results with empirical values. (orig.) 1. Viscous wing theory development. Volume 1: Analysis, method and results Science.gov (United States) Chow, R. R.; Melnik, R. E.; Marconi, F.; Steinhoff, J. 1986-01-01 Viscous transonic flows at large Reynolds numbers over 3-D wings were analyzed using a zonal viscid-inviscid interaction approach. A new numerical AFZ scheme was developed in conjunction with the finite volume formulation for the solution of the inviscid full-potential equation. A special far-field asymptotic boundary condition was developed and a second-order artificial viscosity included for an improved inviscid solution methodology. The integral method was used for the laminar/turbulent boundary layer and 3-D viscous wake calculation. The interaction calculation included the coupling conditions of the source flux due to the wing surface boundary layer, the flux jump due to the viscous wake, and the wake curvature effect. A method was also devised incorporating the 2-D trailing edge strong interaction solution for the normal pressure correction near the trailing edge region. A fully automated computer program was developed to perform the proposed method with one scalar version to be used on an IBM-3081 and two vectorized versions on Cray-1 and Cyber-205 computers. 2. Efficient orbit integration by manifold correction methods. Science.gov (United States) Fukushima, Toshio 2005-12-01 Triggered by a desire to investigate, numerically, the planetary precession through a long-term numerical integration of the solar system, we developed a new formulation of numerical integration of orbital motion named manifold correct on methods. The main trick is to rigorously retain the consistency of physical relations, such as the orbital energy, the orbital angular momentum, or the Laplace integral, of a binary subsystem. This maintenance is done by applying a correction to the integrated variables at each integration step. Typical methods of correction are certain geometric transformations, such as spatial scaling and spatial rotation, which are commonly used in the comparison of reference frames, or mathematically reasonable operations, such as modularization of angle variables into the standard domain [-pi, pi). The form of the manifold correction methods finally evolved are the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an indefinitely long period. In perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset of which depends on the type and magnitude of the perturbations. This feature is also realized for highly eccentric orbits by applying the same idea as used in KS-regularization. In particular, the introduction of time elements greatly enhances the performance of numerical integration of KS-regularized orbits, whether the scaling is applied or not. 3. The spectral volume method as applied to transport problems International Nuclear Information System (INIS) McClarren, Ryan G. 2011-01-01 We present a new spatial discretization for transport problems: the spectral volume method. This method, rst developed by Wang for computational fluid dynamics, divides each computational cell into several sub-cells and enforces particle balance on each of these sub-cells. Also, these sub-cells are used to build a polynomial reconstruction in the cell. The idea of dividing cells into many cells is a generalization of the simple corner balance and other similar schemes. The spectral volume method preserves particle conservation and preserves the asymptotic diffusion limit. We present results from the method on two transport problems in slab geometry using discrete ordinates and second through sixth order spectral volume schemes. The numerical results demonstrate the accuracy and preservation of the diffusion limit of the spectral volume method. Future work will explore possible bene ts of the scheme for high-performance computing and for resolving diffusive boundary layers. (author) 4. Comparison of different precondtioners for nonsymmtric finite volume element methods Energy Technology Data Exchange (ETDEWEB) Mishev, I.D. 1996-12-31 We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed. 5. Three-dimensional reconstruction volume: a novel method for volume measurement in kidney cancer. Science.gov (United States) Durso, Timothy A; Carnell, Jonathan; Turk, Thomas T; Gupta, Gopal N 2014-06-01 The role of volumetric estimation is becoming increasingly important in the staging, management, and prognostication of benign and cancerous conditions of the kidney. We evaluated the use of three-dimensional reconstruction volume (3DV) in determining renal parenchymal volumes (RPV) and renal tumor volumes (RTV). We compared 3DV with the currently available methods of volume assessment and determined its interuser reliability. RPV and RTV were assessed in 28 patients who underwent robot-assisted laparoscopic partial nephrectomy for kidney cancer. Patients with a preoperative creatinine level of kidney pre- and postsurgery overestimated 3D reconstruction volumes by 15% to 102% and 12% to 101%, respectively. In addition, volumes obtained from 3DV displayed high interuser reliability regardless of experience. 3DV provides a highly reliable way of assessing kidney volumes. Given that 3DV takes into account visible anatomy, the differences observed using previously published methods can be attributed to the failure of geometry to accurately approximate kidney or tumor shape. 3DV provides a more accurate, reproducible, and clinically useful tool for urologists looking to improve patient care using analysis related to volume. 6. Topology optimization using the finite volume method DEFF Research Database (Denmark) Gersborg-Hansen, Allan; Bendsøe, Martin P.; Sigmund, Ole 2005-01-01 in this presentation is focused on a prototype model for topology optimization of steady heat diffusion. This allows for a study of the basic ingredients in working with FVM methods when dealing with topology optimization problems. The FVM and FEM based formulations differ both in how one computes the design...... derivative of the system matrix$\\mathbf K$and in how one computes the discretized version of certain objective functions. Thus for a cost function for minimum dissipated energy (like minimum compliance for an elastic structure) one obtains an expression$ c = \\mathbf u^\\T \\tilde{\\mathbf K} \\mathbf u...... the arithmetic and harmonic average with the latter being the well known Reuss lower bound. [1] Bendsøe, MP and Sigmund, O 2004: Topology Optimization - Theory, Methods, and Applications. Berlin Heidelberg: Springer Verlag [2] Versteeg, HK and Malalasekera, W 1995: An introduction to Computational Fluid Dynamics...

7. Computational Methods in Stochastic Dynamics Volume 2

CERN Document Server

2013-01-01

The considerable influence of inherent uncertainties on structural behavior has led the engineering community to recognize the importance of a stochastic approach to structural problems. Issues related to uncertainty quantification and its influence on the reliability of the computational models are continuously gaining in significance. In particular, the problems of dynamic response analysis and reliability assessment of structures with uncertain system and excitation parameters have been the subject of continuous research over the last two decades as a result of the increasing availability of powerful computing resources and technology.   This book is a follow up of a previous book with the same subject (ISBN 978-90-481-9986-0) and focuses on advanced computational methods and software tools which can highly assist in tackling complex problems in stochastic dynamic/seismic analysis and design of structures. The selected chapters are authored by some of the most active scholars in their respective areas and...

8. Hydrothermal analysis in engineering using control volume finite element method

CERN Document Server

Sheikholeslami, Mohsen

2015-01-01

Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),

9. Explicit solution of the time domain volume integral equation using a stable predictor-corrector scheme

KAUST Repository

Al Jarro, Ahmed; Salem, Mohamed; Bagci, Hakan; Benson, Trevor; Sewell, Phillip D.; Vuković, Ana

2012-01-01

An explicit marching-on-in-time (MOT) scheme for solving the time domain volume integral equation is presented. The proposed method achieves its stability by employing, at each time step, a corrector scheme, which updates/corrects fields computed by the explicit predictor scheme. The proposedmethod is computationally more efficient when compared to the existing filtering techniques used for the stabilization of explicit MOT schemes. Numerical results presented in this paper demonstrate that the proposed method maintains its stability even when applied to the analysis of electromagnetic wave interactions with electrically large structures meshed using approximately half a million discretization elements.

10. Explicit solution of the time domain volume integral equation using a stable predictor-corrector scheme

KAUST Repository

Al Jarro, Ahmed

2012-11-01

An explicit marching-on-in-time (MOT) scheme for solving the time domain volume integral equation is presented. The proposed method achieves its stability by employing, at each time step, a corrector scheme, which updates/corrects fields computed by the explicit predictor scheme. The proposedmethod is computationally more efficient when compared to the existing filtering techniques used for the stabilization of explicit MOT schemes. Numerical results presented in this paper demonstrate that the proposed method maintains its stability even when applied to the analysis of electromagnetic wave interactions with electrically large structures meshed using approximately half a million discretization elements.

11. Integral Methods in Science and Engineering

CERN Document Server

Constanda, Christian

2011-01-01

An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques

12. Method of manufacturing Josephson junction integrated circuits

International Nuclear Information System (INIS)

Jillie, D.W. Jr.; Smith, L.N.

1985-01-01

Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed

Science.gov (United States)

Legarda-Saenz, Ricardo; Brito-Loeza, Carlos; Rivera, Mariano; Espinosa-Romero, Arturo

2014-12-01

We propose a variational method for integrating information obtained from circular fringe pattern. The proposed method is a suitable choice for objects with radial symmetry. First, we analyze the information contained in the fringe pattern captured by the experimental setup and then move to formulate the problem of recovering the wavefront using techniques from calculus of variations. The performance of the method is demonstrated by numerical experiments with both synthetic and real data.

14. Volume Sculpting Using the Level-Set Method

DEFF Research Database (Denmark)

Bærentzen, Jakob Andreas; Christensen, Niels Jørgen

2002-01-01

In this paper, we propose the use of the Level--Set Method as the underlying technology of a volume sculpting system. The main motivation is that this leads to a very generic technique for deformation of volumetric solids. In addition, our method preserves a distance field volume representation....... A scaling window is used to adapt the Level--Set Method to local deformations and to allow the user to control the intensity of the tool. Level--Set based tools have been implemented in an interactive sculpting system, and we show sculptures created using the system....

15. The volume of fluid method in spherical coordinates

NARCIS (Netherlands)

Janse, A.M.C.; Janse, A.M.C.; Dijk, P.E.; Kuipers, J.A.M.

2000-01-01

The volume of fluid (VOF) method is a numerical technique to track the developing free surfaces of liquids in motion. This method can, for example, be applied to compute the liquid flow patterns in a rotating cone reactor. For this application a spherical coordinate system is most suited. The novel

16. Mining method selection by integrated AHP and PROMETHEE method.

Science.gov (United States)

Bogdanovic, Dejan; Nikolic, Djordje; Ilic, Ivana

2012-03-01

Selecting the best mining method among many alternatives is a multicriteria decision making problem. The aim of this paper is to demonstrate the implementation of an integrated approach that employs AHP and PROMETHEE together for selecting the most suitable mining method for the "Coka Marin" underground mine in Serbia. The related problem includes five possible mining methods and eleven criteria to evaluate them. Criteria are accurately chosen in order to cover the most important parameters that impact on the mining method selection, such as geological and geotechnical properties, economic parameters and geographical factors. The AHP is used to analyze the structure of the mining method selection problem and to determine weights of the criteria, and PROMETHEE method is used to obtain the final ranking and to make a sensitivity analysis by changing the weights. The results have shown that the proposed integrated method can be successfully used in solving mining engineering problems.

17. Integrated thermal treatment system study: Phase 1 results. Volume 1

International Nuclear Information System (INIS)

Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

1994-07-01

An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked

18. Integration of equations of parabolic type by the method of nets

CERN Document Server

Saul'Yev, V K; Stark, M; Ulam, S

1964-01-01

International Series of Monographs in Pure and Applied Mathematics, Volume 54: Integration of Equations of Parabolic Type by the Method of Nets deals with solving parabolic partial differential equations using the method of nets. The first part of this volume focuses on the construction of net equations, with emphasis on the stability and accuracy of the approximating net equations. The method of nets or method of finite differences (used to define the corresponding numerical method in ordinary differential equations) is one of many different approximate methods of integration of partial diff

19. New simple method for fast and accurate measurement of volumes

International Nuclear Information System (INIS)

Frattolillo, Antonio

2006-01-01

A new simple method is presented, which allows us to measure in just a few minutes but with reasonable accuracy (less than 1%) the volume confined inside a generic enclosure, regardless of the complexity of its shape. The technique proposed also allows us to measure the volume of any portion of a complex manifold, including, for instance, pipes and pipe fittings, valves, gauge heads, and so on, without disassembling the manifold at all. To this purpose an airtight variable volume is used, whose volume adjustment can be precisely measured; it has an overall capacity larger than that of the unknown volume. Such a variable volume is initially filled with a suitable test gas (for instance, air) at a known pressure, as carefully measured by means of a high precision capacitive gauge. By opening a valve, the test gas is allowed to expand into the previously evacuated unknown volume. A feedback control loop reacts to the resulting finite pressure drop, thus contracting the variable volume until the pressure exactly retrieves its initial value. The overall reduction of the variable volume achieved at the end of this process gives a direct measurement of the unknown volume, and definitively gets rid of the problem of dead spaces. The method proposed actually does not require the test gas to be rigorously held at a constant temperature, thus resulting in a huge simplification as compared to complex arrangements commonly used in metrology (gas expansion method), which can grant extremely accurate measurement but requires rather expensive equipments and results in time consuming methods, being therefore impractical in most applications. A simple theoretical analysis of the thermodynamic cycle and the results of experimental tests are described, which demonstrate that, in spite of its simplicity, the method provides a measurement accuracy within 0.5%. The system requires just a few minutes to complete a single measurement, and is ready immediately at the end of the process. The

20. Cellwise conservative unsplit advection for the volume of fluid method

DEFF Research Database (Denmark)

Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

2015-01-01

We present a cellwise conservative unsplit (CCU) advection scheme for the volume of fluid method (VOF) in 2D. Contrary to other schemes based on explicit calculations of the flux balances, the CCU advection adopts a cellwise approach where the pre-images of the control volumes are traced......-overlapping donating regions and pre-images with conforming edges to their neighbors, resulting in the conservativeness and the boundedness (liquid volume fraction inside the interval [0, 1]) of the CCU advection scheme. Finally, the update of the liquid volume fractions is computed from the intersections of the pre......-image polygons with the reconstructed interfaces. The CCU scheme is tested on several benchmark tests for the VOF advection, together with the standard piecewise linear interface calculation (PLIC). The geometrical errors of the CCU compare favorably with other unsplit VOF-PLIC schemes. Finally, potential...

1. Nonlinear structural analysis using integrated force method

A new formulation termed the Integrated Force Method (IFM) was proposed by Patnaik ... nated Structure (nY m)'' where (nY m) are the force and displacement degrees of ..... Patnaik S N, Yadagiri S 1976 Frequency analysis of structures.

2. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

Energy Technology Data Exchange (ETDEWEB)

Lucas, D.S.

2004-10-03

This paper covers the basics of the implementation of the control volume method in the context of the Homogeneous Equilibrium Model (HEM)(T/H) code using the conservation equations of mass, momentum, and energy. This primer uses the advection equation as a template. The discussion will cover the basic equations of the control volume portion of the course in the primer, which includes the advection equation, numerical methods, along with the implementation of the various equations via FORTRAN into computer programs and the final result for a three equation HEM code and its validation.

3. Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry

International Nuclear Information System (INIS)

Gilardi, Giovanni; Beccherelli, Romeo

2013-01-01

We propose and numerically investigate an integrated optics refractometric nano-opto-fluidic sensor based on whispering gallery modes in sapphire microspheres. A measurand fluid is injected in a micromachined reservoir defined in between the microsphere and an optical waveguide. The wavelength shift due to changes in the refractive index of the measurand fluid are studied for a set of different configurations by the finite element method and a high sensitivity versus fluid volume is found. The proposed device can be tailored to work with a minimum fluid volume of 1 pl and a sensitivity up of 2000 nm/(RIU·nl). We introduce a figure of merit which quantifies the amplifying effect on the sensitivity of high quality factor resonators and allows us to compare different devices. (paper)

4. Indirect methods for wake potential integration

International Nuclear Information System (INIS)

Zagorodnov, I.

2006-05-01

The development of the modern accelerator and free-electron laser projects requires to consider wake fields of very short bunches in arbitrary three dimensional structures. To obtain the wake numerically by direct integration is difficult, since it takes a long time for the scattered fields to catch up to the bunch. On the other hand no general algorithm for indirect wake field integration is available in the literature so far. In this paper we review the know indirect methods to compute wake potentials in rotationally symmetric and cavity-like three dimensional structures. For arbitrary three dimensional geometries we introduce several new techniques and test them numerically. (Orig.)

5. Numerical methods for engine-airframe integration

International Nuclear Information System (INIS)

Murthy, S.N.B.; Paynter, G.C.

1986-01-01

Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison of full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment

6. Permutation statistical methods an integrated approach

CERN Document Server

Berry, Kenneth J; Johnston, Janis E

2016-01-01

This research monograph provides a synthesis of a number of statistical tests and measures, which, at first consideration, appear disjoint and unrelated. Numerous comparisons of permutation and classical statistical methods are presented, and the two methods are compared via probability values and, where appropriate, measures of effect size. Permutation statistical methods, compared to classical statistical methods, do not rely on theoretical distributions, avoid the usual assumptions of normality and homogeneity of variance, and depend only on the data at hand. This text takes a unique approach to explaining statistics by integrating a large variety of statistical methods, and establishing the rigor of a topic that to many may seem to be a nascent field in statistics. This topic is new in that it took modern computing power to make permutation methods available to people working in the mainstream of research. This research monograph addresses a statistically-informed audience, and can also easily serve as a ...

7. Analysis Method for Integrating Components of Product

Energy Technology Data Exchange (ETDEWEB)

Choi, Jun Ho [Inzest Co. Ltd, Seoul (Korea, Republic of); Lee, Kun Sang [Kookmin Univ., Seoul (Korea, Republic of)

2017-04-15

This paper presents some of the methods used to incorporate the parts constituting a product. A new relation function concept and its structure are introduced to analyze the relationships of component parts. This relation function has three types of information, which can be used to establish a relation function structure. The relation function structure of the analysis criteria was established to analyze and present the data. The priority components determined by the analysis criteria can be integrated. The analysis criteria were divided based on their number and orientation, as well as their direct or indirect characteristic feature. This paper presents a design algorithm for component integration. This algorithm was applied to actual products, and the components inside the product were integrated. Therefore, the proposed algorithm was used to conduct research to improve the brake discs for bicycles. As a result, an improved product similar to the related function structure was actually created.

8. Analysis Method for Integrating Components of Product

International Nuclear Information System (INIS)

Choi, Jun Ho; Lee, Kun Sang

2017-01-01

This paper presents some of the methods used to incorporate the parts constituting a product. A new relation function concept and its structure are introduced to analyze the relationships of component parts. This relation function has three types of information, which can be used to establish a relation function structure. The relation function structure of the analysis criteria was established to analyze and present the data. The priority components determined by the analysis criteria can be integrated. The analysis criteria were divided based on their number and orientation, as well as their direct or indirect characteristic feature. This paper presents a design algorithm for component integration. This algorithm was applied to actual products, and the components inside the product were integrated. Therefore, the proposed algorithm was used to conduct research to improve the brake discs for bicycles. As a result, an improved product similar to the related function structure was actually created.

9. First integral method for an oscillator system

Directory of Open Access Journals (Sweden)

Xiaoqian Gong

2013-04-01

Full Text Available In this article, we consider the nonlinear Duffing-van der Pol-type oscillator system by means of the first integral method. This system has physical relevance as a model in certain flow-induced structural vibration problems, which includes the van der Pol oscillator and the damped Duffing oscillator etc as particular cases. Firstly, we apply the Division Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to explore a quasi-polynomial first integral to an equivalent autonomous system. Then, through solving an algebraic system we derive the first integral of the Duffing-van der Pol-type oscillator system under certain parametric condition.

10. Copper Mountain conference on iterative methods: Proceedings: Volume 2

Energy Technology Data Exchange (ETDEWEB)

NONE

1996-10-01

This volume (the second of two) contains information presented during the last two days of the Copper Mountain Conference on Iterative Methods held April 9-13, 1996 at Copper Mountain, Colorado. Topics of the sessions held these two days include domain decomposition, Krylov methods, computational fluid dynamics, Markov chains, sparse and parallel basic linear algebra subprograms, multigrid methods, applications of iterative methods, equation systems with multiple right-hand sides, projection methods, and the Helmholtz equation. Selected papers indexed separately for the Energy Science and Technology Database.

11. Different partial volume correction methods lead to different conclusions

DEFF Research Database (Denmark)

Greve, Douglas N; Salat, David H; Bowen, Spencer L

2016-01-01

A cross-sectional group study of the effects of aging on brain metabolism as measured with (18)F-FDG-PET was performed using several different partial volume correction (PVC) methods: no correction (NoPVC), Meltzer (MZ), Müller-Gärtner (MG), and the symmetric geometric transfer matrix (SGTM) usin...

12. A method of measuring a molten metal liquid pool volume

Science.gov (United States)

Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

1990-12-12

A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

13. Multistep Methods for Integrating the Solar System

Science.gov (United States)

1988-07-01

Technical Report 1055 [Multistep Methods for Integrating the Solar System 0 Panayotis A. Skordos’ MIT Artificial Intelligence Laboratory DTIC S D g8...RMA ELEENT. PROECT. TASK Artific ial Inteligence Laboratory ARE1A G WORK UNIT NUMBERS 545 Technology Square Cambridge, MA 02139 IL. CONTROLLING...describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology, supported by the Advanced Research Projects

14. 14th International Conference on Integral Methods in Science and Engineering

CERN Document Server

Riva, Matteo; Lamberti, Pier; Musolino, Paolo

2017-01-01

This contributed volume contains a collection of articles on the most recent advances in integral methods.  The first of two volumes, this work focuses on the construction of theoretical integral methods. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as: • Integral equations • Homogenization • Duality methods • Optimal design • Conformal techniques This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.

15. Gastrointestinal tract volume measurement method using a compound eye type endoscope

Science.gov (United States)

Yoshimoto, Kayo; Yamada, Kenji; Watabe, Kenji; Kido, Michiko; Nagakura, Toshiaki; Takahashi, Hideya; Nishida, Tsutomu; Iijima, Hideki; Tsujii, Masahiko; Takehara, Tetsuo; Ohno, Yuko

2015-03-01

We propose an intestine volume measurement method using a compound eye type endoscope. This method aims at assessment of the gastrointestinal function. Gastrointestinal diseases are mainly based on morphological abnormalities. However, gastrointestinal symptoms are sometimes apparent without visible abnormalities. Such diseases are called functional gastrointestinal disorder, for example, functional dyspepsia, and irritable bowel syndrome. One of the major factors for these diseases is abnormal gastrointestinal motility. For the diagnosis of the gastrointestinal tract, both aspects of organic and functional assessment is important. While endoscopic diagnosis is essential for assessment of organic abnormalities, three-dimensional information is required for assessment of the functional abnormalities. Thus, we proposed the three dimensional endoscope system using compound eye. In this study, we forces on the volume of gastrointestinal tract. The volume of the gastrointestinal tract is thought to related its function. In our system, we use a compound eye type endoscope system to obtain three-dimensional information of the tract. The volume can be calculated by integrating the slice data of the intestine tract shape using the obtained three-dimensional information. First, we evaluate the proposed method by known-shape tube. Then, we confirm that the proposed method can measure the tract volume using the tract simulated model. Our system can assess the wall of gastrointestinal tract directly in a three-dimensional manner. Our system can be used for examination of gastric morphological and functional abnormalities.

16. Life sciences payload definition and integration study. Volume 3: Appendices

Science.gov (United States)

1972-01-01

Detail design information concerning payloads for biomedical research projects conducted during space missions is presented. Subjects discussed are: (1) equipment modules and equipment item lists, (2) weight and volume breakdown by payload and equipment units, (3) longitudinal floor arrangement configuration, and (4) nonbaseline second generation layouts.

17. Radionuclide method for blood volume determination in kidneys

International Nuclear Information System (INIS)

Trindev, P.; Nikolov, D.; Shejretova, E.; Garcheva-Tsacheva, M.

1989-01-01

The method is applied in nephrology for diagnosing changes in blood circulation of the kidneys. The blood volume of each kidney is determined separately by perfusion angioscintigraphy (PAS) with improved accuracy. The method consists in intravenous injection of 300-450 MBq 99m Tc for in-vivo labelling of the erythrocytes. About 30 images are registered every 2 sec, and through zones of interest perfusion histograms of kidneys are derived. Ten minutes later kidneys images (one full-face and two profiles) are registered. Correction coefficients for kidneys depth are derived and the activities registered according to full-face images and amplitudes of perfusion histograms are corrected. The activity of 1 ml blood is determined from blood sample of the patient. The blood volume of each kidney is expressed as a ratio of the activity corrected for background and depth and the activity of 1 ml blood of the sample. 1 claim

18. Adequacy of power-to-volume scaling philosophy to simulate natural circulation in Integral Test Facilities

International Nuclear Information System (INIS)

Nayak, A.K.; Vijayan, P.K.; Saha, D.; Venkat Raj, V.; Aritomi, Masanori

1998-01-01

Theoretical and experimental investigations were carried out to study the adequacy of power-to-volume scaling philosophy for the simulation of natural circulation and to establish the scaling philosophy applicable for the design of the Integral Test Facility (ITF-AHWR) for the Indian Advanced Heavy Water Reactor (AHWR). The results indicate that a reduction in the flow channel diameter of the scaled facility as required by the power-to-volume scaling philosophy may affect the simulation of natural circulation behaviour of the prototype plants. This is caused by the distortions due to the inability to simulate the frictional resistance of the scaled facility. Hence, it is recommended that the flow channel diameter of the scaled facility should be as close as possible to the prototype. This was verified by comparing the natural circulation behaviour of a prototype 220 MWe Indian PHWR and its scaled facility (FISBE-1) designed based on power-to-volume scaling philosophy. It is suggested from examinations using a mathematical model and a computer code that the FISBE-1 simulates the steady state and the general trend of transient natural circulation behaviour of the prototype reactor adequately. Finally the proposed scaling method was applied for the design of the ITF-AHWR. (author)

19. AC/ARNG Integrated Division Concept Study, Appendices, Volume 3

National Research Council Canada - National Science Library

Twohig, John

1997-01-01

...) division headquarters. The US Army Training and Doctrine Command (TRADOC) was tasked to conduct a viability assessment of the AC/ARNG Integrated Division concept and focus on merits and implementation issues...

20. Continual integration method in the polaron model

International Nuclear Information System (INIS)

Kochetov, E.A.; Kuleshov, S.P.; Smondyrev, M.A.

1981-01-01

The article is devoted to the investigation of a polaron system on the base of a variational approach formulated on the language of continuum integration. The variational method generalizing the Feynman one for the case of the system pulse different from zero has been formulated. The polaron state has been investigated at zero temperature. A problem of the bound state of two polarons exchanging quanta of a scalar field as well as a problem of polaron scattering with an external field in the Born approximation have been considered. Thermodynamics of the polaron system has been investigated, namely, high-temperature expansions for mean energy and effective polaron mass have been studied [ru

1. Economic development through biomass system integration: Volume 1

Energy Technology Data Exchange (ETDEWEB)

DeLong, M.M. [Northern States Power Co., Minneapolis, MN (United States)

1995-10-01

This report documents a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is the feedstock for a processing plant and a power plant (integrated gasification combined cycle) in a way that benefits the facility owners. Chapters describe alfalfa basics, production risks, production economics, transportation and storage, processing, products, market analysis, business analysis, environmental impact, and policy issues. 69 figs., 63 tabs.

2. Development op finite volume methods for fluid dynamics

International Nuclear Information System (INIS)

Delcourte, S.

2007-09-01

We aim to develop a finite volume method which applies to a greater class of meshes than other finite volume methods, restricted by orthogonality constraints. We build discrete differential operators over the three staggered tessellations needed for the construction of the method. These operators verify some analogous properties to those of the continuous operators. At first, the method is applied to the Div-Curl problem, which can be viewed as a building block of the Stokes problem. Then, the Stokes problem is dealt with with various boundary conditions. It is well known that when the computational domain is polygonal and non-convex, the order of convergence of numerical methods is deteriorated. Consequently, we have studied how an appropriate local refinement is able to restore the optimal order of convergence for the Laplacian problem. At last, we have discretized the non-linear Navier-Stokes problem, using the rotational formulation of the convection term, associated to the Bernoulli pressure. With an iterative algorithm, we are led to solve a saddle-point problem at each iteration. We give a particular interest to this linear problem by testing some pre-conditioners issued from finite elements, which we adapt to our method. Each problem is illustrated by numerical results on arbitrary meshes, such as strongly non-conforming meshes. (author)

3. Improvements of the integral transport theory method

International Nuclear Information System (INIS)

Kavenoky, A.; Lam-Hime, M.; Stankovski, Z.

1979-01-01

The integral transport theory is widely used in practical reactor design calculations however it is computer time consuming for two dimensional calculations of large media. In the first part of this report a new treatment is presented; it is based on the Galerkin method: inside each region the total flux is expanded over a three component basis. Numerical comparison shows that this method can considerably reduce the computing time. The second part of the this report is devoted to homogeneization theory: a straightforward calculation of the fundamental mode for an heterogeneous cell is presented. At first general presentation of the problem is given, then it is simplified to plane geometry and numerical results are presented

4. Collaborative teaching of an integrated methods course

Directory of Open Access Journals (Sweden)

George Zhou

2011-03-01

Full Text Available With an increasing diversity in American schools, teachers need to be able to collaborate in teaching. University courses are widely considered as a stage to demonstrate or model the ways of collaboration. To respond to this call, three authors team taught an integrated methods course at an urban public university in the city of New York. Following a qualitative research design, this study explored both instructors‟ and pre-service teachers‟ experiences with this course. Study findings indicate that collaborative teaching of an integrated methods course is feasible and beneficial to both instructors and pre-service teachers. For instructors, this collaborative teaching was a reciprocal learning process where they were engaged in thinking about teaching in a broader and innovative way. For pre-service teachers, this collaborative course not only helped them understand how three different subjects could be related to each other, but also provided opportunities for them to actually see how collaboration could take place in teaching. Their understanding of collaborative teaching was enhanced after the course.

5. Methods for obtaining a uniform volume concentration of implanted ions

International Nuclear Information System (INIS)

Reutov, V.F.

1995-01-01

Three simple practical methods of irradiations with high energy particles providing the conditions for obtaining a uniform volume concentration of the implanted ions in the massive samples are described in the present paper. Realization of the condition of two-sided irradiation of a plane sample during its rotation in the flux of the projectiles is the basis of the first method. The use of free air as a filter with varying absorbent ability due to movement of the irradiated sample along ion beam brought to the atmosphere is at the basis of the second method of uniform ion alloying. The third method for obtaining a uniform volume concentration of the implanted ions in a massive sample consists of irradiation of a sample through the absorbent filter in the shape of a foil curved according to the parabolic law moving along its surface. The first method is the most effective for obtaining a great number of the samples, for example, for mechanical tests, the second one - for irradiation in different gaseous media, and the third one - for obtaining high concentrations of the implanted ions under controlled (regulated) thermal and deformation conditions. 2 refs., 7 figs

6. DNFSB Recommendation 94-1 Hanford Site Integrated Stabilization Management Plan. Volume 2

International Nuclear Information System (INIS)

Gerber, E.W.

1995-10-01

The Hanford Site Integrated Stabilization Management Plan (SISMP) was developed in support of the US Department of Energy's (DOE) Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 Integrated Program Plan (IPP). Volume 1 of the SISMP identifies the technical scope and costs associated with Hanford Site plans to resolve concerns identified in DNFSB Recommendation 94-1. Volume 2 of the SISMP provides the Resource Loaded Integrated Schedules for Spent Nuclear Fuel Project and Plutonium Finishing Plant activities identified in Volume 1 of the SISMP. Appendix A provides the schedules and progress curves related to spent nuclear fuel management. Appendix B provides the schedules and progress curves related to plutonium-bearing material management. Appendix C provides programmatic logic diagrams that were referenced in Volume 1 of the SISMP

7. An efficient explicit marching on in time solver for magnetic field volume integral equation

KAUST Repository

Sayed, Sadeed Bin; Ulku, H. Arda; Bagci, Hakan

2015-01-01

An efficient explicit marching on in time (MOT) scheme for solving the magnetic field volume integral equation is proposed. The MOT system is cast in the form of an ordinary differential equation and is integrated in time using a PE(CE)m multistep

8. Development op finite volume methods for fluid dynamics; Developpement de methodes de volumes finis pour la mecanique des fluides

Energy Technology Data Exchange (ETDEWEB)

Delcourte, S

2007-09-15

We aim to develop a finite volume method which applies to a greater class of meshes than other finite volume methods, restricted by orthogonality constraints. We build discrete differential operators over the three staggered tessellations needed for the construction of the method. These operators verify some analogous properties to those of the continuous operators. At first, the method is applied to the Div-Curl problem, which can be viewed as a building block of the Stokes problem. Then, the Stokes problem is dealt with with various boundary conditions. It is well known that when the computational domain is polygonal and non-convex, the order of convergence of numerical methods is deteriorated. Consequently, we have studied how an appropriate local refinement is able to restore the optimal order of convergence for the Laplacian problem. At last, we have discretized the non-linear Navier-Stokes problem, using the rotational formulation of the convection term, associated to the Bernoulli pressure. With an iterative algorithm, we are led to solve a saddle-point problem at each iteration. We give a particular interest to this linear problem by testing some pre-conditioners issued from finite elements, which we adapt to our method. Each problem is illustrated by numerical results on arbitrary meshes, such as strongly non-conforming meshes. (author)

9. Fort Stewart integrated resource assessment. Volume 3: Resource assessment

Energy Technology Data Exchange (ETDEWEB)

Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

1993-10-01

The US Army Forces Command (FORSCOM) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Stewart. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Stewart facility located approximately 25 miles southwest of Savannah, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO. The tables also present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

10. Integral Engine Inlet Particle Separator. Volume 2. Design Guide

Science.gov (United States)

1975-08-01

herein will be used in the design of integral inlet particle separators for future Army aircraft gas turbine engines. Apprupriate technical personnel...into the comprensor at some future date. 5. A typical scavenge vane design Js; shown in Figures 85 and 86. The important features of the scavenge...service passageweys, for cooling of oil, and for directing sand and air into the scroll. Orientetion of the vanes is set by collection efficiency

11. Parallel Jacobi EVD Methods on Integrated Circuits

Directory of Open Access Journals (Sweden)

Chi-Chia Sun

2014-01-01

Full Text Available Design strategies for parallel iterative algorithms are presented. In order to further study different tradeoff strategies in design criteria for integrated circuits, A 10 × 10 Jacobi Brent-Luk-EVD array with the simplified μ-CORDIC processor is used as an example. The experimental results show that using the μ-CORDIC processor is beneficial for the design criteria as it yields a smaller area, faster overall computation time, and less energy consumption than the regular CORDIC processor. It is worth to notice that the proposed parallel EVD method can be applied to real-time and low-power array signal processing algorithms performing beamforming or DOA estimation.

12. Parallel, explicit, and PWTD-enhanced time domain volume integral equation solver

KAUST Repository

Liu, Yang

2013-07-01

Time domain volume integral equations (TDVIEs) are useful for analyzing transient scattering from inhomogeneous dielectric objects in applications as varied as photonics, optoelectronics, and bioelectromagnetics. TDVIEs typically are solved by implicit marching-on-in-time (MOT) schemes [N. T. Gres et al., Radio Sci., 36, 379-386, 2001], requiring the solution of a system of equations at each and every time step. To reduce the computational cost associated with such schemes, [A. Al-Jarro et al., IEEE Trans. Antennas Propagat., 60, 5203-5215, 2012] introduced an explicit MOT-TDVIE method that uses a predictor-corrector technique to stably update field values throughout the scatterer. By leveraging memory-efficient nodal spatial discretization and scalable parallelization schemes [A. Al-Jarro et al., in 28th Int. Rev. Progress Appl. Computat. Electromagn., 2012], this solver has been successfully applied to the analysis of scattering phenomena involving 0.5 million spatial unknowns. © 2013 IEEE.

13. A volume-based method for denoising on curved surfaces

KAUST Repository

Biddle, Harry; von Glehn, Ingrid; Macdonald, Colin B.; Marz, Thomas

2013-01-01

We demonstrate a method for removing noise from images or other data on curved surfaces. Our approach relies on in-surface diffusion: we formulate both the Gaussian diffusion and Perona-Malik edge-preserving diffusion equations in a surface-intrinsic way. Using the Closest Point Method, a recent technique for solving partial differential equations (PDEs) on general surfaces, we obtain a very simple algorithm where we merely alternate a time step of the usual Gaussian diffusion (and similarly Perona-Malik) in a small 3D volume containing the surface with an interpolation step. The method uses a closest point function to represent the underlying surface and can treat very general surfaces. Experimental results include image filtering on smooth surfaces, open surfaces, and general triangulated surfaces. © 2013 IEEE.

14. A volume-based method for denoising on curved surfaces

KAUST Repository

Biddle, Harry

2013-09-01

We demonstrate a method for removing noise from images or other data on curved surfaces. Our approach relies on in-surface diffusion: we formulate both the Gaussian diffusion and Perona-Malik edge-preserving diffusion equations in a surface-intrinsic way. Using the Closest Point Method, a recent technique for solving partial differential equations (PDEs) on general surfaces, we obtain a very simple algorithm where we merely alternate a time step of the usual Gaussian diffusion (and similarly Perona-Malik) in a small 3D volume containing the surface with an interpolation step. The method uses a closest point function to represent the underlying surface and can treat very general surfaces. Experimental results include image filtering on smooth surfaces, open surfaces, and general triangulated surfaces. © 2013 IEEE.

15. A point-value enhanced finite volume method based on approximate delta functions

Science.gov (United States)

Xuan, Li-Jun; Majdalani, Joseph

2018-02-01

We revisit the concept of an approximate delta function (ADF), introduced by Huynh (2011) [1], in the form of a finite-order polynomial that holds identical integral properties to the Dirac delta function when used in conjunction with a finite-order polynomial integrand over a finite domain. We show that the use of generic ADF polynomials can be effective at recovering and generalizing several high-order methods, including Taylor-based and nodal-based Discontinuous Galerkin methods, as well as the Correction Procedure via Reconstruction. Based on the ADF concept, we then proceed to formulate a Point-value enhanced Finite Volume (PFV) method, which stores and updates the cell-averaged values inside each element as well as the unknown quantities and, if needed, their derivatives on nodal points. The sharing of nodal information with surrounding elements saves the number of degrees of freedom compared to other compact methods at the same order. To ensure conservation, cell-averaged values are updated using an identical approach to that adopted in the finite volume method. Here, the updating of nodal values and their derivatives is achieved through an ADF concept that leverages all of the elements within the domain of integration that share the same nodal point. The resulting scheme is shown to be very stable at successively increasing orders. Both accuracy and stability of the PFV method are verified using a Fourier analysis and through applications to the linear wave and nonlinear Burgers' equations in one-dimensional space.

16. Numerov iteration method for second order integral-differential equation

International Nuclear Information System (INIS)

Zeng Fanan; Zhang Jiaju; Zhao Xuan

1987-01-01

In this paper, Numerov iterative method for second order integral-differential equation and system of equations are constructed. Numerical examples show that this method is better than direct method (Gauss elimination method) in CPU time and memoy requireing. Therefore, this method is an efficient method for solving integral-differential equation in nuclear physics

17. Integrated Unmanned Air-Ground Robotics System, Volume 4

Science.gov (United States)

2001-08-20

3) IPT Integrated Product Team IRP Intermediate Power Rating JAUGS TBD JCDL TBD Joint Vision 2020 TBD Km Kilometer lbs. pounds MAE Mechanical and...compatible with emerging JCDL and/or JAUGS . 2.3.2.2. Payload must be “plug and play.” 2.3.3. Communications 2.3.3.1. System communications shall be robust...Power JCDL JAUGS Joint Architecture for Unmanned Ground Systems JP-8 Jet Propulsion Fuel 8 km Kilometer lbs. Pounds LOS Line Of Sight MAE Mechanical

18. An Integrated Method for Airfoil Optimization

Science.gov (United States)

Okrent, Joshua B.

Design exploration and optimization is a large part of the initial engineering and design process. To evaluate the aerodynamic performance of a design, viscous Navier-Stokes solvers can be used. However this method can prove to be overwhelmingly time consuming when performing an initial design sweep. Therefore, another evaluation method is needed to provide accurate results at a faster pace. To accomplish this goal, a coupled viscous-inviscid method is used. This thesis proposes an integrated method for analyzing, evaluating, and optimizing an airfoil using a coupled viscous-inviscid solver along with a genetic algorithm to find the optimal candidate. The method proposed is different from prior optimization efforts in that it greatly broadens the design space, while allowing the optimization to search for the best candidate that will meet multiple objectives over a characteristic mission profile rather than over a single condition and single optimization parameter. The increased design space is due to the use of multiple parametric airfoil families, namely the NACA 4 series, CST family, and the PARSEC family. Almost all possible airfoil shapes can be created with these three families allowing for all possible configurations to be included. This inclusion of multiple airfoil families addresses a possible criticism of prior optimization attempts since by only focusing on one airfoil family, they were inherently limiting the number of possible airfoil configurations. By using multiple parametric airfoils, it can be assumed that all reasonable airfoil configurations are included in the analysis and optimization and that a global and not local maximum is found. Additionally, the method used is amenable to customization to suit any specific needs as well as including the effects of other physical phenomena or design criteria and/or constraints. This thesis found that an airfoil configuration that met multiple objectives could be found for a given set of nominal

19. METHODS OF INTEGRATED OPTIMIZATION MAGLEV TRANSPORT SYSTEMS

Directory of Open Access Journals (Sweden)

A. Lasher

2013-09-01

example, this research proved the sustainability of the proposed integrated optimization parameters of transport systems. This approach could be applied not only for MTS, but also for other transport systems. Originality. The bases of the complex optimization of transport presented are the new system of universal scientific methods and approaches that ensure high accuracy and authenticity of calculations with the simulation of transport systems and transport networks taking into account the dynamics of their development. Practical value. The development of the theoretical and technological bases of conducting the complex optimization of transport makes it possible to create the scientific tool, which ensures the fulfillment of the automated simulation and calculating of technical and economic structure and technology of the work of different objects of transport, including its infrastructure.

20. Research on volume metrology method of large vertical energy storage tank based on internal electro-optical distance-ranging method

Science.gov (United States)

Hao, Huadong; Shi, Haolei; Yi, Pengju; Liu, Ying; Li, Cunjun; Li, Shuguang

2018-01-01

A Volume Metrology method based on Internal Electro-optical Distance-ranging method is established for large vertical energy storage tank. After analyzing the vertical tank volume calculation mathematical model, the key processing algorithms, such as gross error elimination, filtering, streamline, and radius calculation are studied for the point cloud data. The corresponding volume values are automatically calculated in the different liquids by calculating the cross-sectional area along the horizontal direction and integrating from vertical direction. To design the comparison system, a vertical tank which the nominal capacity is 20,000 m3 is selected as the research object, and there are shown that the method has good repeatability and reproducibility. Through using the conventional capacity measurement method as reference, the relative deviation of calculated volume is less than 0.1%, meeting the measurement requirements. And the feasibility and effectiveness are demonstrated.

1. National comparison on volume sample activity measurement methods

International Nuclear Information System (INIS)

Sahagia, M.; Grigorescu, E.L.; Popescu, C.; Razdolescu, C.

1992-01-01

A national comparison on volume sample activity measurements methods may be regarded as a step toward accomplishing the traceability of the environmental and food chain activity measurements to national standards. For this purpose, the Radionuclide Metrology Laboratory has distributed 137 Cs and 134 Cs water-equivalent solid standard sources to 24 laboratories having responsibilities in this matter. Every laboratory has to measure the activity of the received source(s) by using its own standards, equipment and methods and report the obtained results to the organizer. The 'measured activities' will be compared with the 'true activities'. A final report will be issued, which plans to evaluate the national level of precision of such measurements and give some suggestions for improvement. (Author)

2. Boundary integral methods for unsaturated flow

International Nuclear Information System (INIS)

Martinez, M.J.; McTigue, D.F.

1990-01-01

Many large simulations may be required to assess the performance of Yucca Mountain as a possible site for the nations first high level nuclear waste repository. A boundary integral equation method (BIEM) is described for numerical analysis of quasilinear steady unsaturated flow in homogeneous material. The applicability of the exponential model for the dependence of hydraulic conductivity on pressure head is discussed briefly. This constitutive assumption is at the heart of the quasilinear transformation. Materials which display a wide distribution in pore-size are described reasonably well by the exponential. For materials with a narrow range in pore-size, the exponential is suitable over more limited ranges in pressure head. The numerical implementation of the BIEM is used to investigate the infiltration from a strip source to a water table. The net infiltration of moisture into a finite-depth layer is well-described by results for a semi-infinite layer if αD > 4, where α is the sorptive number and D is the depth to the water table. the distribution of moisture exhibits a similar dependence on αD. 11 refs., 4 figs.,

3. Porosity, Bulk Density, and Volume Reduction During Drying: Review of Measurement Methods and Coefficient Determinations

NARCIS (Netherlands)

Qiu, J.; Khalloufi, S.; Martynenko, A.; Dalen, van G.; Schutyser, M.A.I.; Almeida-Rivera, C.

2015-01-01

Several experimental methods for measuring porosity, bulk density and volume reduction during drying of foodstuff are available. These methods include among others geometric dimension, volume displacement, mercury porosimeter, micro-CT, and NMR. However, data on their accuracy, sensitivity, and

4. Method of reducing the volume of radioactive waste

International Nuclear Information System (INIS)

Buckley, L.P.; Burrill, K.A.; Desjardins, C.D.; Salter, R.S.

1984-01-01

There is provided a method of reducing the volume of radioactive waste, comprising: pyrolyzing the radioactive waste in the interior of a vessel, while passing superheated steam through the vessel at a temperature in the range 500 to 700 degrees C, a pressure in the range 1.0 to 3.5 MPa, and at a flow rate in the range 4 to 50 mL/s/m 3 of the volume of the vessel interior, to cause pyrohydrolysis of the waste and to remove carbon-containing components of the pyrolyzed waste from the vessel as gaseous oxides, leaving an ash residue in the vessel. Entrained particles present with the gaseous oxides are filtered and acidic vapours present with the gaseous oxides are removed by solid sorbent. Steam and any organic substances present with the gaseous oxides are condensed and the ash is removed from the vessel. The radioactive waste may be deposited upon an upper screen in the vessel, so that a substantial portion of the pyrolysis of the radioactive waste takes place while the radioactive waste is on the upper screen, and pyrolyzed waste falls through the upper screen onto a lower screen, where another substantial portion of the pyrohydrolysis takes place. The ash residue falls through the lower screen

5. Angular finite volume method for solving the multigroup transport equation with piecewise average scattering cross sections

Energy Technology Data Exchange (ETDEWEB)

Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G., E-mail: ansar.calloo@cea.fr, E-mail: jean-francois.vidal@cea.fr, E-mail: romain.le-tellier@cea.fr, E-mail: gerald.rimpault@cea.fr [CEA, DEN, DER/SPRC/LEPh, Saint-Paul-lez-Durance (France)

2011-07-01

This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S{sub n} method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)

6. Angular finite volume method for solving the multigroup transport equation with piecewise average scattering cross sections

International Nuclear Information System (INIS)

Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G.

2011-01-01

This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S_n method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)

7. Brachytherapy dose-volume histogram computations using optimized stratified sampling methods

International Nuclear Information System (INIS)

Karouzakis, K.; Lahanas, M.; Milickovic, N.; Giannouli, S.; Baltas, D.; Zamboglou, N.

2002-01-01

A stratified sampling method for the efficient repeated computation of dose-volume histograms (DVHs) in brachytherapy is presented as used for anatomy based brachytherapy optimization methods. The aim of the method is to reduce the number of sampling points required for the calculation of DVHs for the body and the PTV. From the DVHs are derived the quantities such as Conformity Index COIN and COIN integrals. This is achieved by using partial uniform distributed sampling points with a density in each region obtained from a survey of the gradients or the variance of the dose distribution in these regions. The shape of the sampling regions is adapted to the patient anatomy and the shape and size of the implant. For the application of this method a single preprocessing step is necessary which requires only a few seconds. Ten clinical implants were used to study the appropriate number of sampling points, given a required accuracy for quantities such as cumulative DVHs, COIN indices and COIN integrals. We found that DVHs of very large tissue volumes surrounding the PTV, and also COIN distributions, can be obtained using a factor of 5-10 times smaller the number of sampling points in comparison with uniform distributed points

8. Integral Equation Methods for Electromagnetic and Elastic Waves

CERN Document Server

Chew, Weng; Hu, Bin

2008-01-01

Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral eq

9. Analytic methods to generate integrable mappings

essential integrability features of an integrable differential equation is a .... With this in mind we first write x3(t) as a cubic polynomial in (xn−1,xn,xn+1) and then ..... coefficients, the quadratic equation in xn+N has real and distinct roots which in ...

10. Method of volume-reducing processing for radioactive wastes

International Nuclear Information System (INIS)

Sato, Koei; Yamauchi, Noriyuki; Hirayama, Toshihiko.

1985-01-01

Purpose: To process the processing products of radioactive liquid wastes and burnable solid wastes produced from nuclear facilities into stable solidification products by heat melting. Method: At first, glass fiber wastes of contaminated air filters are charged in a melting furnace. Then, waste products obtained through drying, sintering, incineration, etc. are mixed with a proper amount of glass fibers and charged into the melting furnace. Both of the charged components are heated to a temperature at which the glass fibers are melted. The burnable materials are burnt out to provide a highly volume-reduced products. When the products are further heated to a temperature at which metals or metal oxides of a higher melting point than the glass fiber, the glass fibers and the metals or metal oxides are fused to each other to be combined in a molecular structure into more stabilized products. The products are excellent in strength, stability, durability and leaching resistance at ambient temperature. (Kamimura, M.)

11. A Calderón multiplicative preconditioner for coupled surface-volume electric field integral equations

KAUST Repository

Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric

2010-01-01

A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well

12. Estimating traffic volume on Wyoming low volume roads using linear and logistic regression methods

Directory of Open Access Journals (Sweden)

Dick Apronti

2016-12-01

Full Text Available Traffic volume is an important parameter in most transportation planning applications. Low volume roads make up about 69% of road miles in the United States. Estimating traffic on the low volume roads is a cost-effective alternative to taking traffic counts. This is because traditional traffic counts are expensive and impractical for low priority roads. The purpose of this paper is to present the development of two alternative means of cost-effectively estimating traffic volumes for low volume roads in Wyoming and to make recommendations for their implementation. The study methodology involves reviewing existing studies, identifying data sources, and carrying out the model development. The utility of the models developed were then verified by comparing actual traffic volumes to those predicted by the model. The study resulted in two regression models that are inexpensive and easy to implement. The first regression model was a linear regression model that utilized pavement type, access to highways, predominant land use types, and population to estimate traffic volume. In verifying the model, an R2 value of 0.64 and a root mean square error of 73.4% were obtained. The second model was a logistic regression model that identified the level of traffic on roads using five thresholds or levels. The logistic regression model was verified by estimating traffic volume thresholds and determining the percentage of roads that were accurately classified as belonging to the given thresholds. For the five thresholds, the percentage of roads classified correctly ranged from 79% to 88%. In conclusion, the verification of the models indicated both model types to be useful for accurate and cost-effective estimation of traffic volumes for low volume Wyoming roads. The models developed were recommended for use in traffic volume estimations for low volume roads in pavement management and environmental impact assessment studies.

13. Analysis of electromagnetic wave interactions on nonlinear scatterers using time domain volume integral equations

KAUST Repository

Ulku, Huseyin Arda

2014-07-06

Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half

14. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume I. Organization plan

International Nuclear Information System (INIS)

1981-12-01

This plan and the accompanying MFTF-B Integrated Operations Plan are submitted in response to UC/LLNL Purchase Order 3883801, dated July 1981. The organization plan also addresses the specific tasks and trade studies directed by the scope of work. The Integrated Operations Plan, which includes a reliability, quality assurance, and safety plan and an integrated logistics plan, comprises the burden of the report. In the first section of this volume, certain underlying assumptions and observations are discussed setting the requirements and limits for organization. Section B presents the recommended structure itself. Section C Device Availability vs Maintenance and Support Efforts and Section D Staffing Levels and Skills provide backup detail and justification. Section E is a trade study on maintenance and support by LLNL staff vs subcontract and Section F is a plan for transitioning from the construction phase into operation. A brief summary of schedules and estimated costs concludes the volume

15. Integrated circuit and method of arbitration in a network on an integrated circuit.

NARCIS (Netherlands)

2011-01-01

The invention relates to an integrated circuit and to a method of arbitration in a network on an integrated circuit. According to the invention, a method of arbitration in a network on an integrated circuit is provided, the network comprising a router unit, the router unit comprising a first input

16. ACARP Project C10059. ACARP manual of modern coal testing methods. Volume 2: Appendices

Energy Technology Data Exchange (ETDEWEB)

Sakurovs, R.; Creelman, R.; Pohl, J.; Juniper, L. [CSIRO Energy Technology, Sydney, NSW (Australia)

2002-07-01

The Manual summarises the purpose, applicability, and limitations of a range of standard and modern coal testing methods that have potential to assist the coal company technologist to better evaluate coal performance. It is presented in two volumes. This second volume provides more detailed information regarding the methods discussed in Volume 1.

17. Integrals of Frullani type and the method of brackets

Directory of Open Access Journals (Sweden)

Bravo Sergio

2017-01-01

Full Text Available The method of brackets is a collection of heuristic rules, some of which have being made rigorous, that provide a flexible, direct method for the evaluation of definite integrals. The present work uses this method to establish classical formulas due to Frullani which provide values of a specific family of integrals. Some generalizations are established.

18. Accurate Electromagnetic Modeling Methods for Integrated Circuits

NARCIS (Netherlands)

Sheng, Z.

2010-01-01

The present development of modern integrated circuits (IC’s) is characterized by a number of critical factors that make their design and verification considerably more difficult than before. This dissertation addresses the important questions of modeling all electromagnetic behavior of features on

19. Well balanced finite volume methods for nearly hydrostatic flows

International Nuclear Information System (INIS)

Botta, N.; Klein, R.; Langenberg, S.; Luetzenkirchen, S.

2004-01-01

In numerical approximations of nearly hydrostatic flows, a proper representation of the dominant hydrostatic balance is of crucial importance: unbalanced truncation errors can induce unacceptable spurious motions, e.g., in dynamical cores of models for numerical weather prediction (NWP) in particular near steep topography. In this paper we develop a new strategy for the construction of discretizations that are 'well-balanced' with respect to dominant hydrostatics. The classical idea of formulating the momentum balance in terms of deviations of pressure from a balanced background distribution is realized here through local, time dependent hydrostatic reconstructions. Balanced discretizations of the pressure gradient and of the gravitation source term are achieved through a 'discrete Archimedes' buoyancy principle'. This strategy is applied to extend an explicit standard finite volume Godunov-type scheme for compressible flows with minimal modifications. The resulting method has the following features: (i) It inherits its conservation properties from the underlying base scheme. (ii) It is exactly balanced, even on curvilinear grids, for a large class of near-hydrostatic flows. (iii) It solves the full compressible flow equations without reference to a background state that is defined for an entire vertical column of air. (iv) It is robust with respect to details of the implementation, such as the choice of slope limiting functions, or the particularities of boundary condition discretizations

20. 13th International Conference on Integral Methods in Science and Engineering

CERN Document Server

Kirsch, Andreas

2015-01-01

This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering.  Written by internationally recognized researchers, the chapters in this book are based on talks given at the Thirteenth International Conference on Integral Methods in Science and Engineering, held July 21–25, 2014, in Karlsruhe, Germany.   A broad range of topics is addressed, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches.   This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.

1. A new electric method for non-invasive continuous monitoring of stroke volume and ventricular volume-time curves

Directory of Open Access Journals (Sweden)

Konings Maurits K

2012-08-01

Full Text Available Abstract Background In this paper a new non-invasive, operator-free, continuous ventricular stroke volume monitoring device (Hemodynamic Cardiac Profiler, HCP is presented, that measures the average stroke volume (SV for each period of 20 seconds, as well as ventricular volume-time curves for each cardiac cycle, using a new electric method (Ventricular Field Recognition with six independent electrode pairs distributed over the frontal thoracic skin. In contrast to existing non-invasive electric methods, our method does not use the algorithms of impedance or bioreactance cardiography. Instead, our method is based on specific 2D spatial patterns on the thoracic skin, representing the distribution, over the thorax, of changes in the applied current field caused by cardiac volume changes during the cardiac cycle. Since total heart volume variation during the cardiac cycle is a poor indicator for ventricular stroke volume, our HCP separates atrial filling effects from ventricular filling effects, and retrieves the volume changes of only the ventricles. Methods ex-vivo experiments on a post-mortem human heart have been performed to measure the effects of increasing the blood volume inside the ventricles in isolation, leaving the atrial volume invariant (which can not be done in-vivo. These effects have been measured as a specific 2D pattern of voltage changes on the thoracic skin. Furthermore, a working prototype of the HCP has been developed that uses these ex-vivo results in an algorithm to decompose voltage changes, that were measured in-vivo by the HCP on the thoracic skin of a human volunteer, into an atrial component and a ventricular component, in almost real-time (with a delay of maximally 39 seconds. The HCP prototype has been tested in-vivo on 7 human volunteers, using G-suit inflation and deflation to provoke stroke volume changes, and LVot Doppler as a reference technique. Results The ex-vivo measurements showed that ventricular filling

2. Local defect correction for boundary integral equation methods

NARCIS (Netherlands)

Kakuba, G.; Anthonissen, M.J.H.

2014-01-01

The aim in this paper is to develop a new local defect correction approach to gridding for problems with localised regions of high activity in the boundary element method. The technique of local defect correction has been studied for other methods as finite difference methods and finite volume

3. Local defect correction for boundary integral equation methods

NARCIS (Netherlands)

Kakuba, G.; Anthonissen, M.J.H.

2013-01-01

This paper presents a new approach to gridding for problems with localised regions of high activity. The technique of local defect correction has been studied for other methods as ¿nite difference methods and ¿nite volume methods. In this paper we develop the technique for the boundary element

4. Adaptive integral equation methods in transport theory

International Nuclear Information System (INIS)

Kelley, C.T.

1992-01-01

In this paper, an adaptive multilevel algorithm for integral equations is described that has been developed with the Chandrasekhar H equation and its generalizations in mind. The algorithm maintains good performance when the Frechet derivative of the nonlinear map is singular at the solution, as happens in radiative transfer with conservative scattering and in critical neutron transport. Numerical examples that demonstrate the algorithm's effectiveness are presented

5. K East basin sludge volume estimates for integrated water treatment system

International Nuclear Information System (INIS)

Pearce, K.L.

1998-01-01

This document provides estimates of the volume of sludge expected from Integrated Process Strategy (IPS) processing of the fuel elements and in the fuel storage canisters in K East Basin. The original estimates were based on visual observations of fuel element condition in the basin and laboratory measurements of canister sludge density. Revision 1 revised the volume estimates of sludge from processing of the fuel elements based on additional data from evaluations of material from the KE Basin fuel subsurface examinations. A nominal Working Estimate and an upper level Working Bound is developed for the canister sludge and the fuel wash sludge components in the KE Basin

6. A symplectic integration method for elastic filaments

Science.gov (United States)

2009-03-01

Elastic rods are a ubiquitous coarse-grained model of semi-flexible biopolymers such as DNA, actin, and microtubules. The Worm-Like Chain (WLC) is the standard numerical model for semi-flexible polymers, but it is only a linearized approximation to the dynamics of an elastic rod, valid for small deflections; typically the torsional motion is neglected as well. In the standard finite-difference and finite-element formulations of an elastic rod, the continuum equations of motion are discretized in space and time, but it is then difficult to ensure that the Hamiltonian structure of the exact equations is preserved. Here we discretize the Hamiltonian itself, expressed as a line integral over the contour of the filament. This discrete representation of the continuum filament can then be integrated by one of the explicit symplectic integrators frequently used in molecular dynamics. The model systematically approximates the continuum partial differential equations, but has the same level of computational complexity as molecular dynamics and is constraint free. Numerical tests show that the algorithm is much more stable than a finite-difference formulation and can be used for high aspect ratio filaments, such as actin. We present numerical results for the deterministic and stochastic motion of single filaments.

7. Molar excess volumes of liquid hydrogen and neon mixtures from path integral simulation

International Nuclear Information System (INIS)

Challa, S.R.; Johnson, J.K.

1999-01-01

Volumetric properties of liquid mixtures of neon and hydrogen have been calculated using path integral hybrid Monte Carlo simulations. Realistic potentials have been used for the three interactions involved. Molar volumes and excess volumes of these mixtures have been evaluated for various compositions at 29 and 31.14 K, and 30 atm. Significant quantum effects are observed in molar volumes. Quantum simulations agree well with experimental molar volumes. Calculated excess volumes agree qualitatively with experimental values. However, contrary to the existing understanding that large positive deviations from ideal mixtures are caused due to quantum effects in Ne - H 2 mixtures, both classical as well as quantum simulations predict the large positive deviations from ideal mixtures. Further investigations using two other Ne - H 2 potentials of Lennard - Jones (LJ) type show that excess volumes are very sensitive to the cross-interaction potential. We conclude that the cross-interaction potential employed in our simulations is accurate for volumetric properties. This potential is more repulsive compared to the two LJ potentials tested, which have been obtained by two different combining rules. This repulsion and a comparatively lower potential well depth can explain the positive deviations from ideal mixing. copyright 1999 American Institute of Physics

8. Integral Method of Boundary Characteristics: Neumann Condition

Science.gov (United States)

Kot, V. A.

2018-05-01

A new algorithm, based on systems of identical equalities with integral and differential boundary characteristics, is proposed for solving boundary-value problems on the heat conduction in bodies canonical in shape at a Neumann boundary condition. Results of a numerical analysis of the accuracy of solving heat-conduction problems with variable boundary conditions with the use of this algorithm are presented. The solutions obtained with it can be considered as exact because their errors comprise hundredths and ten-thousandths of a persent for a wide range of change in the parameters of a problem.

9. Selective Integration in the Material-Point Method

DEFF Research Database (Denmark)

Andersen, Lars; Andersen, Søren; Damkilde, Lars

2009-01-01

The paper deals with stress integration in the material-point method. In order to avoid parasitic shear in bending, a formulation is proposed, based on selective integration in the background grid that is used to solve the governing equations. The suggested integration scheme is compared...... to a traditional material-point-method computation in which the stresses are evaluated at the material points. The deformation of a cantilever beam is analysed, assuming elastic or elastoplastic material behaviour....

10. Numerical method of singular problems on singular integrals

International Nuclear Information System (INIS)

Zhao Huaiguo; Mou Zongze

1992-02-01

As first part on the numerical research of singular problems, a numerical method is proposed for singular integrals. It is shown that the procedure is quite powerful for solving physics calculation with singularity such as the plasma dispersion function. Useful quadrature formulas for some class of the singular integrals are derived. In general, integrals with more complex singularities can be dealt by this method easily

11. Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes

Science.gov (United States)

Ranamukhaarachchi, Sahan A.; Padeste, Celestino; Dübner, Matthias; Häfeli, Urs O.; Stoeber, Boris; Cadarso, Victor J.

2016-07-01

Therapeutic drug monitoring (TDM) typically requires painful blood drawn from patients. We propose a painless and minimally-invasive alternative for TDM using hollow microneedles suitable to extract extremely small volumes (microneedle is functionalized to be used as a micro-reactor during sample collection to trap and bind target drug candidates during extraction, without requirements of sample transfer. An optofluidic device is integrated with this microneedle to rapidly quantify drug analytes with high sensitivity using a straightforward absorbance scheme. Vancomycin is currently detected by using volumes ranging between 50-100 μL with a limit of detection (LoD) of 1.35 μM. The proposed microneedle-optofluidic biosensor can detect vancomycin with a sample volume of 0.6 nL and a LoD of <100 nM, validating this painless point of care system with significant potential to reduce healthcare costs and patients suffering.

12. Integrating model of the Project Independence Evaluation System. Volume VI. Data documentation. Part I

Energy Technology Data Exchange (ETDEWEB)

Allen, B J

1979-02-01

This documentation describes the PIES Integrating Model as it existed on January 1, 1978. This volume contains two chapters. In Chapter I, Overview, the following subjects are briefly described: supply data, EIA projection series and scenarios, demand data and assumptions, and supply assumptions - oil and gas availabilities. Chapter II contains supply and demand data tables and sources used by the PIES Integrating Model for the mid-range scenario target years 1985 and 1990. Tabulated information is presented for demand, price, and elasticity data; coal data; imports data; oil and gas data; refineries data; synthetics, shale, and solar/geothermal data; transportation data; and utilities data.

13. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 2: Participant Case Studies

Energy Technology Data Exchange (ETDEWEB)

Acker, T.

2011-12-01

This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

14. Mixed waste focus area integrated technical baseline report. Phase I, Volume 2: Revision 0

International Nuclear Information System (INIS)

1996-01-01

This document (Volume 2) contains the Appendices A through J for the Mixed Waste Focus Area Integrated Technical Baseline Report Phase I for the Idaho National Engineering Laboratory. Included are: Waste Type Managers' Resumes, detailed information on wastewater, combustible organics, debris, unique waste, and inorganic homogeneous solids and soils, and waste data information. A detailed list of technology deficiencies and site needs identification is also provided

15. Altered Gray Matter Volume and White Matter Integrity in College Students with Mobile Phone Dependence

OpenAIRE

Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d?Oleire Uquillas, Federico; Huang, Xiting

2016-01-01

Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional ...

16. Integration method of 3D MR spectroscopy into treatment planning system for glioblastoma IMRT dose painting with integrated simultaneous boost

International Nuclear Information System (INIS)

Ken, Soléakhéna; Cassol, Emmanuelle; Delannes, Martine; Celsis, Pierre; Cohen-Jonathan, Elizabeth Moyal; Laprie, Anne; Vieillevigne, Laure; Franceries, Xavier; Simon, Luc; Supper, Caroline; Lotterie, Jean-Albert; Filleron, Thomas; Lubrano, Vincent; Berry, Isabelle

2013-01-01

To integrate 3D MR spectroscopy imaging (MRSI) in the treatment planning system (TPS) for glioblastoma dose painting to guide simultaneous integrated boost (SIB) in intensity-modulated radiation therapy (IMRT). For sixteen glioblastoma patients, we have simulated three types of dosimetry plans, one conventional plan of 60-Gy in 3D conformational radiotherapy (3D-CRT), one 60-Gy plan in IMRT and one 72-Gy plan in SIB-IMRT. All sixteen MRSI metabolic maps were integrated into TPS, using normalization with color-space conversion and threshold-based segmentation. The fusion between the metabolic maps and the planning CT scans were assessed. Dosimetry comparisons were performed between the different plans of 60-Gy 3D-CRT, 60-Gy IMRT and 72-Gy SIB-IMRT, the last plan was targeted on MRSI abnormalities and contrast enhancement (CE). Fusion assessment was performed for 160 transformations. It resulted in maximum differences <1.00 mm for translation parameters and ≤1.15° for rotation. Dosimetry plans of 72-Gy SIB-IMRT and 60-Gy IMRT showed a significantly decreased maximum dose to the brainstem (44.00 and 44.30 vs. 57.01 Gy) and decreased high dose-volumes to normal brain (19 and 20 vs. 23% and 7 and 7 vs. 12%) compared to 60-Gy 3D-CRT (p < 0.05). Delivering standard doses to conventional target and higher doses to new target volumes characterized by MRSI and CE is now possible and does not increase dose to organs at risk. MRSI and CE abnormalities are now integrated for glioblastoma SIB-IMRT, concomitant with temozolomide, in an ongoing multi-institutional phase-III clinical trial. Our method of MR spectroscopy maps integration to TPS is robust and reliable; integration to neuronavigation systems with this method could also improve glioblastoma resection or guide biopsies

17. A hybrid finite-volume and finite difference scheme for depth-integrated non-hydrostatic model

Science.gov (United States)

Yin, Jing; Sun, Jia-wen; Wang, Xing-gang; Yu, Yong-hai; Sun, Zhao-chen

2017-06-01

A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into hydrostatic and non-hydrostatic parts. The first part is solved by using the finite volume conservative discretization method, whilst the latter is considered by solving discretized Poisson-type equations with the finite difference method. The second-order accuracy, both in time and space, of the finite volume scheme is achieved by using an explicit predictor-correction step and linear construction of variable state in cells. The fluxes across the cell faces are computed in a Godunov-based manner by using MUSTA scheme. Slope and flux limiting technique is used to equip the algorithm with total variation dimensioning property for shock capturing purpose. Wave breaking is treated as a shock by switching off the non-hydrostatic pressure in the steep wave front locally. The model deals with moving wet/dry front in a simple way. Numerical experiments are conducted to verify the proposed model.

18. A theoretical study for the real-time assessment of external gamma exposure using equivalent-volume numerical integration

International Nuclear Information System (INIS)

Han, Moon Hee

1995-02-01

An approximate method for estimating gamma external dose due to an arbitrary distribution of radioactive material has been developed. For the assessment of external gamma dose, the space over which radioactive material is distributed has been assumed to be composed of hexagonal cells. The evaluation of three-dimensional integration over the space is an extremely time-consuming task. Hence, a different approach has been used for the study, i.e., a equivalent-volume spherical approach in which a regular hexahedron is modeled as a equivalent-volume sphere to simplify the integration. For the justification of the current approach, two case studies have been performed: a comparison with a point source approximation and a comparison of external dose rate with the Monte Carlo integration. These comparisons show that the current approach gives reasonable results in a physical sense. Computing times of the developed and Monte Carlo integration method on VAX system have been compared as a function of the number of hexagonal cells. This comparison shows that CPU times for both methods are comparable in the region of small number of cells, but in the region of large number, Monte Carlo integration needs much more computing times. The proposed method is shown to have an accuracy equivalent to Monte Carlo method with an advantage of much shorter calculation time. Then, the method developed here evaluates early off-site consequences of a nuclear accident. An accident consequence assessment model has been integrated using Gaussian puff model which is used to obtain the distribution of radioactive material in the air and on the ground. For this work, the real meteorological data measured at Kori site for 10 years (1976 - 1985) have been statistically analyzed for obtaining site-specific conditions. The short-term external gamma exposures have been assessed for several site-specific meteorological conditions. The results show that the extent and the pattern of short-term external

19. Momentum integral network method for thermal-hydraulic transient analysis

International Nuclear Information System (INIS)

Van Tuyle, G.J.

1983-01-01

A new momentum integral network method has been developed, and tested in the MINET computer code. The method was developed in order to facilitate the transient analysis of complex fluid flow and heat transfer networks, such as those found in the balance of plant of power generating facilities. The method employed in the MINET code is a major extension of a momentum integral method reported by Meyer. Meyer integrated the momentum equation over several linked nodes, called a segment, and used a segment average pressure, evaluated from the pressures at both ends. Nodal mass and energy conservation determined nodal flows and enthalpies, accounting for fluid compression and thermal expansion

20. Methods for determining enzymatic activity comprising heating and agitation of closed volumes

Science.gov (United States)

Thompson, David Neil; Henriksen, Emily DeCrescenzo; Reed, David William; Jensen, Jill Renee

2016-03-15

Methods for determining thermophilic enzymatic activity include heating a substrate solution in a plurality of closed volumes to a predetermined reaction temperature. Without opening the closed volumes, at least one enzyme is added, substantially simultaneously, to the closed volumes. At the predetermined reaction temperature, the closed volumes are agitated and then the activity of the at least one enzyme is determined. The methods are conducive for characterizing enzymes of high-temperature reactions, with insoluble substrates, with substrates and enzymes that do not readily intermix, and with low volumes of substrate and enzyme. Systems for characterizing the enzymes are also disclosed.

1. The Environment for Application Software Integration and Execution (EASIE), version 1.0. Volume 2: Program integration guide

Science.gov (United States)

Jones, Kennie H.; Randall, Donald P.; Stallcup, Scott S.; Rowell, Lawrence F.

1988-01-01

The Environment for Application Software Integration and Execution, EASIE, provides a methodology and a set of software utility programs to ease the task of coordinating engineering design and analysis codes. EASIE was designed to meet the needs of conceptual design engineers that face the task of integrating many stand-alone engineering analysis programs. Using EASIE, programs are integrated through a relational data base management system. In volume 2, the use of a SYSTEM LIBRARY PROCESSOR is used to construct a DATA DICTIONARY describing all relations defined in the data base, and a TEMPLATE LIBRARY. A TEMPLATE is a description of all subsets of relations (including conditional selection criteria and sorting specifications) to be accessed as input or output for a given application. Together, these form the SYSTEM LIBRARY which is used to automatically produce the data base schema, FORTRAN subroutines to retrieve/store data from/to the data base, and instructions to a generic REVIEWER program providing review/modification of data for a given template. Automation of these functions eliminates much of the tedious, error prone work required by the usual approach to data base integration.

2. Achieving Integration in Mixed Methods Designs—Principles and Practices

OpenAIRE

Fetters, Michael D; Curry, Leslie A; Creswell, John W

2013-01-01

Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs—exploratory sequential, explanatory sequential, and convergent—and through four advanced frameworks—multistage, intervention, case study, and participato...

3. Simulation of 3D parachute fluid–structure interaction based on nonlinear finite element method and preconditioning finite volume method

Directory of Open Access Journals (Sweden)

Fan Yuxin

2014-12-01

Full Text Available A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual (GMRES method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor (HHT time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC (Harten–Lax–van Leer contact scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel (LU-SGS approximate factorization is applied to accelerate the numerical convergence speed. Finally, the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.

4. Integrated management of thesis using clustering method

Science.gov (United States)

2017-02-01

Thesis is one of major requirements for student in pursuing their bachelor degree. In fact, finishing the thesis involves a long process including consultation, writing manuscript, conducting the chosen method, seminar scheduling, searching for references, and appraisal process by the board of mentors and examiners. Unfortunately, most of students find it hard to match all the lecturers' free time to sit together in a seminar room in order to examine the thesis. Therefore, seminar scheduling process should be on the top of priority to be solved. Manual mechanism for this task no longer fulfills the need. People in campus including students, staffs, and lecturers demand a system in which all the stakeholders can interact each other and manage the thesis process without conflicting their timetable. A branch of computer science named Management Information System (MIS) could be a breakthrough in dealing with thesis management. This research conduct a method called clustering to distinguish certain categories using mathematics formulas. A system then be developed along with the method to create a well-managed tool in providing some main facilities such as seminar scheduling, consultation and review process, thesis approval, assessment process, and also a reliable database of thesis. The database plays an important role in present and future purposes.

5. IMP: Integrated method for power analysis

Energy Technology Data Exchange (ETDEWEB)

1989-03-01

An integrated, easy to use, economical package of microcomputer programs has been developed which can be used by small hydro developers to evaluate potential sites for small scale hydroelectric plants in British Columbia. The programs enable evaluation of sites located far from the nearest stream gauging station, for which streamflow data are not available. For each of the province's 6 hydrologic regions, a streamflow record for one small watershed is provided in the data base. The program can then be used to generate synthetic streamflow records and to compare results obtained by the modelling procedure with the actual data. The program can also be used to explore the significance of modelling parameters and to develop a detailed appreciation for the accuracy which can be obtained under various circumstances. The components of the program are an atmospheric model of precipitation; a watershed model that will generate a continuous series of streamflow data, based on information from the atmospheric model; a flood frequency analysis system that uses site-specific topographic data plus information from the atmospheric model to generate a flood frequency curve; a hydroelectric power simulation program which determines daily energy output for a run-of-river or reservoir storage site based on selected generation facilities and the time series generated in the watershed model; and a graphic analysis package that provides direct visualization of data and modelling results. This report contains a description of the programs, a user guide, the theory behind the model, the modelling methodology, and results from a workshop that reviewed the program package. 32 refs., 16 figs., 18 tabs.

6. Calculation of an axisymmetric current coil field with the bounding contour integration method

Energy Technology Data Exchange (ETDEWEB)

Telegin, Alexander P.; Klevets, Nickolay I. E-mail: pmsolution@mail.ru

2004-06-01

Method for the economic and stable (in the sense of calculation errors) analysis of an induction of a magnetic field created with axisymmetric coils in arbitrary points of space, including points located inside a coil or on its border, is obtained. The basic idea of the method is to replace a current coil with continuous distribution of current density by magnetization distributed in the volume of the coil and creating the equivalent magnetic field. This allows to use field surface sources at calculation of the fields. Consequently, the range of integration is reduced resulting in reduction of calculation volume by an order in most cases. Besides, the calculation of improper integrals in internal points and on the border is completely excluded.

7. Calculation of an axisymmetric current coil field with the bounding contour integration method

International Nuclear Information System (INIS)

Telegin, Alexander P.; Klevets, Nickolay I.

2004-01-01

Method for the economic and stable (in the sense of calculation errors) analysis of an induction of a magnetic field created with axisymmetric coils in arbitrary points of space, including points located inside a coil or on its border, is obtained. The basic idea of the method is to replace a current coil with continuous distribution of current density by magnetization distributed in the volume of the coil and creating the equivalent magnetic field. This allows to use field surface sources at calculation of the fields. Consequently, the range of integration is reduced resulting in reduction of calculation volume by an order in most cases. Besides, the calculation of improper integrals in internal points and on the border is completely excluded

8. Teaching Thermal Hydraulics and Numerical Methods: An Introductory Control Volume Primer

International Nuclear Information System (INIS)

D. S. Lucas

2004-01-01

A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com

9. Deterministic methods to solve the integral transport equation in neutronic

International Nuclear Information System (INIS)

Warin, X.

1993-11-01

We present a synthesis of the methods used to solve the integral transport equation in neutronic. This formulation is above all used to compute solutions in 2D in heterogeneous assemblies. Three kinds of methods are described: - the collision probability method; - the interface current method; - the current coupling collision probability method. These methods don't seem to be the most effective in 3D. (author). 9 figs

10. Comparison of the accuracy of three angiographic methods for calculating left ventricular volume measurement

International Nuclear Information System (INIS)

Hu Lin; Cui Wei; Shi Hanwen; Tian Yingping; Wang Weigang; Feng Yanguang; Huang Xueyan; Liu Zhisheng

2003-01-01

Objective: To compare the relative accuracy of three methods measuring left ventricular volume by X-ray ventriculography: single plane area-length method, biplane area-length method, and single-plane Simpson's method. Methods: Left ventricular casts were obtained within 24 hours after death from 12 persons who died from non-cardiac causes. The true left ventricular cast volume was measured by water displacement. The calculated volume of the casts was obtained with 3 angiographic methods, i.e., single-plane area-length method, biplane area-length method, and single-plane Simpson's method. Results: The actual average volume of left ventricular casts was (61.17±26.49) ml. The left ventricular volume was averagely (97.50±35.56) ml with single plane area-length method, (90.51±36.33) ml with biplane area-length method, and (65.00± 23.63) ml with single-plane Simpson's method. The left ventricular volumes calculated with single-plane and biplane area-length method were significantly larger than that the actual volumes (P 0.05). The left ventricular volumes calculated with single-plane and biplane area-length method were significantly larger than those calculated with single-plane Simpson's method (P 0.05). The over-estimation of left ventricular volume by single plane area-length method (36.34±17.98) ml and biplane area-length method (29.34±15.59) ml was more obvious than that calculated by single-plane Simpson's method (3.83±8.48) ml. Linear regression analysis showed that there was close correlations between left ventricular volumes calculated with single plane area-length method, biplane area-length method, Simpson's method and the true volume (all r>0.98). Conclusion: Single-plane Simpson's method is more accurate than single plane area-length method and biplane area-length method for left ventricular volume measurement; however, both the single-plane and biplane area-length methods could be used in clinical practice, especially in those imaging modality

11. Quadratic algebras in the noncommutative integration method of wave equation

International Nuclear Information System (INIS)

Varaksin, O.L.

1995-01-01

The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras

12. New method for calculation of integral characteristics of thermal plumes

DEFF Research Database (Denmark)

Zukowska, Daria; Popiolek, Zbigniew; Melikov, Arsen Krikor

2008-01-01

A method for calculation of integral characteristics of thermal plumes is proposed. The method allows for determination of the integral parameters of plumes based on speed measurements performed with omnidirectional low velocity thermoanemometers. The method includes a procedure for calculation...... of the directional velocity (upward component of the mean velocity). The method is applied for determination of the characteristics of an asymmetric thermal plume generated by a sitting person. The method was validated in full-scale experiments in a climatic chamber with a thermal manikin as a simulator of a sitting...

13. INTEGRATED FUSION METHOD FOR MULTIPLE TEMPORAL-SPATIAL-SPECTRAL IMAGES

Directory of Open Access Journals (Sweden)

H. Shen

2012-08-01

Full Text Available Data fusion techniques have been widely researched and applied in remote sensing field. In this paper, an integrated fusion method for remotely sensed images is presented. Differently from the existed methods, the proposed method has the performance to integrate the complementary information in multiple temporal-spatial-spectral images. In order to represent and process the images in one unified framework, two general image observation models are firstly presented, and then the maximum a posteriori (MAP framework is used to set up the fusion model. The gradient descent method is employed to solve the fused image. The efficacy of the proposed method is validated using simulated images.

14. MRI markers for mild cognitive impairment: comparisons between white matter integrity and gray matter volume measurements.

Directory of Open Access Journals (Sweden)

Yu Zhang

Full Text Available The aim of the study was to evaluate the value of assessing white matter integrity using diffusion tensor imaging (DTI for classification of mild cognitive impairment (MCI and prediction of cognitive impairments in comparison to brain atrophy measurements using structural MRI. Fifty-one patients with MCI and 66 cognitive normal controls (CN underwent DTI and T1-weighted structural MRI. DTI measures included fractional anisotropy (FA and radial diffusivity (DR from 20 predetermined regions-of-interest (ROIs in the commissural, limbic and association tracts, which are thought to be involved in Alzheimer's disease; measures of regional gray matter (GM volume included 21 ROIs in medial temporal lobe, parietal cortex, and subcortical regions. Significant group differences between MCI and CN were detected by each MRI modality: In particular, reduced FA was found in splenium, left isthmus cingulum and fornix; increased DR was found in splenium, left isthmus cingulum and bilateral uncinate fasciculi; reduced GM volume was found in bilateral hippocampi, left entorhinal cortex, right amygdala and bilateral thalamus; and thinner cortex was found in the left entorhinal cortex. Group classifications based on FA or DR was significant and better than classifications based on GM volume. Using either DR or FA together with GM volume improved classification accuracy. Furthermore, all three measures, FA, DR and GM volume were similarly accurate in predicting cognitive performance in MCI patients. Taken together, the results imply that DTI measures are as accurate as measures of GM volume in detecting brain alterations that are associated with cognitive impairment. Furthermore, a combination of DTI and structural MRI measurements improves classification accuracy.

15. Method and apparatus for probing relative volume fractions

Science.gov (United States)

Jandrasits, Walter G.; Kikta, Thomas J.

1998-01-01

A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction.

16. Urban Run-off Volumes Dependency on Rainfall Measurement Method

DEFF Research Database (Denmark)

Pedersen, L.; Jensen, N. E.; Rasmussen, Michael R.

2005-01-01

Urban run-off is characterized with fast response since the large surface run-off in the catchments responds immediately to variations in the rainfall. Modeling such type of catchments is most often done with the input from very few rain gauges, but the large variation in rainfall over small areas...... resolutions and single gauge rainfall was fed to a MOUSE run-off model. The flow and total volume over the event is evaluated....

17. New method of assigning uncertainty in volume calibration

International Nuclear Information System (INIS)

Lechner, J.A.; Reeve, C.P.; Spiegelman, C.H.

1980-12-01

This paper presents a practical statistical overview of the pressure-volume calibration curve for large nuclear materials processing tanks. It explains the appropriateness of applying splines (piecewise polynomials) to this curve, and it presents an overview of the associated statistical uncertainties. In order to implement these procedures, a practical and portable FORTRAN IV program is provided along with its users' manual. Finally, the recommended procedure is demonstrated on actual tank data collected by NBS

18. Alternative containment integrity test methods, an overview of possible techniques

International Nuclear Information System (INIS)

Spletzer, B.L.

1986-01-01

A study is being conducted to develop and analyze alternative methods for testing of containment integrity. The study is focused on techniques for continuously monitoring containment integrity to provide rapid detection of existing leaks, thus providing greater certainty of the integrity of the containment at any time. The study is also intended to develop techniques applicable to the currently required Type A integrated leakage rate tests. A brief discussion of the range of alternative methods currently being considered is presented. The methods include applicability to all major containment types, operating and shutdown plant conditions, and quantitative and qualitative leakage measurements. The techniques are analyzed in accordance with the current state of knowledge of each method. The bulk of the techniques discussed are in the conceptual stage, have not been tested in actual plant conditions, and are presented here as a possible future direction for evaluating containment integrity. Of the methods considered, no single method provides optimum performance for all containment types. Several methods are limited in the types of containment for which they are applicable. The results of the study to date indicate that techniques for continuous monitoring of containment integrity exist for many plants and may be implemented at modest cost

19. Calculating the tumor volume of acoustic neuromas: comparison of ABC/2 formula with planimetry method.

Science.gov (United States)

Yu, Yi-Lin; Lee, Meei-Shyuan; Juan, Chun-Jung; Hueng, Dueng-Yuan

2013-08-01

The ABC/2 equation is commonly applied to measure the volume of intracranial hematoma. However, the precision of ABC/2 equation in estimating the tumor volume of acoustic neuromas is less addressed. The study is to evaluate the accuracy of the ABC/2 formula by comparing with planimetry method for estimating the tumor volumes. Thirty-two patients diagnosed with acoustic neuroma received contrast-enhanced magnetic resonance imaging of brain were recruited. The volume was calculated by the ABC/2 equation and planimetry method (defined as exact volume) at the same time. The 32 patients were divided into three groups by tumor volume to avoid volume-dependent overestimation (6 ml). The tumor volume by ABC/2 method was highly correlated to that calculated by planimetry method using linear regression analysis (R2=0.985). Pearson correlation coefficient (r=0.993, pABC/2 formula is an easy method in estimating the tumor volume of acoustic neuromas that is not inferior to planimetry method. Copyright © 2013 Elsevier B.V. All rights reserved.

20. Two pricing methods for solving an integrated commercial fishery ...

African Journals Online (AJOL)

a model (Hasan and Raffensperger, 2006) to solve this problem: the integrated ... planning and labour allocation for that processing firm, but did not consider any fleet- .... the DBONP method actually finds such price information, and uses it.

1. Critical Analysis of Methods for Integrating Economic and Environmental Indicators

NARCIS (Netherlands)

Huguet Ferran, Pau; Heijungs, Reinout; Vogtländer, Joost G.

2018-01-01

The application of environmental strategies requires scoring and evaluation methods that provide an integrated vision of the economic and environmental performance of systems. The vector optimisation, ratio and weighted addition of indicators are the three most prevalent techniques for addressing

2. A simple flow-concentration modelling method for integrating water ...

African Journals Online (AJOL)

A simple flow-concentration modelling method for integrating water quality and ... flow requirements are assessed for maintenance low flow, drought low flow ... the instream concentrations of chemical constituents that will arise from different ...

3. APPLICATION OF BOUNDARY INTEGRAL EQUATION METHOD FOR THERMOELASTICITY PROBLEMS

Directory of Open Access Journals (Sweden)

Vorona Yu.V.

2015-12-01

Full Text Available Boundary Integral Equation Method is used for solving analytically the problems of coupled thermoelastic spherical wave propagation. The resulting mathematical expressions coincide with the solutions obtained in a conventional manner.

4. Supplier Portfolio Selection and Optimum Volume Allocation: A Knowledge Based Method

NARCIS (Netherlands)

Aziz, Romana; Aziz, R.; van Hillegersberg, Jos; Kersten, W.; Blecker, T.; Luthje, C.

2010-01-01

Selection of suppliers and allocation of optimum volumes to suppliers is a strategic business decision. This paper presents a decision support method for supplier selection and the optimal allocation of volumes in a supplier portfolio. The requirements for the method were gathered during a case

5. New Approaches to Aluminum Integral Foam Production with Casting Methods

Directory of Open Access Journals (Sweden)

Ahmet Güner

2015-08-01

Full Text Available Integral foam has been used in the production of polymer materials for a long time. Metal integral foam casting systems are obtained by transferring and adapting polymer injection technology. Metal integral foam produced by casting has a solid skin at the surface and a foam core. Producing near-net shape reduces production expenses. Insurance companies nowadays want the automotive industry to use metallic foam parts because of their higher impact energy absorption properties. In this paper, manufacturing processes of aluminum integral foam with casting methods will be discussed.

6. Rigid 3D-3D registration of TOF MRA integrating vessel segmentation for quantification of recurrence volumes after coiling cerebral aneurysm

International Nuclear Information System (INIS)

Saering, Dennis; Forkert, Nils Daniel; Fiehler, Jens; Ries, Thorsten

2012-01-01

A fast and reproducible quantification of the recurrence volume of coiled aneurysms is required to enable a more timely evaluation of new coils. This paper presents two registration schemes for the semi-automatic quantification of aneurysm recurrence volumes based on baseline and follow-up 3D MRA TOF datasets. The quantification of shape changes requires a previous definition of corresponding structures in both datasets. For this, two different rigid registration methods have been developed and evaluated. Besides a state-of-the-art rigid registration method, a second approach integrating vessel segmentations is presented. After registration, the aneurysm recurrence volume can be calculated based on the difference image. The computed volumes were compared to manually extracted volumes. An evaluation based on 20 TOF MRA datasets (baseline and follow-up) of ten patients showed that both registration schemes are generally capable of providing sufficient registration results. Regarding the quantification of aneurysm recurrence volumes, the results suggest that the second segmentation-based registration method yields better results, while a reduction of the computation and interaction time is achieved at the same time. The proposed registration scheme incorporating vessel segmentation enables an improved quantification of recurrence volumes of coiled aneurysms with reduced computation and interaction time. (orig.)

7. Tau method approximation of the Hubbell rectangular source integral

International Nuclear Information System (INIS)

Kalla, S.L.; Khajah, H.G.

2000-01-01

The Tau method is applied to obtain expansions, in terms of Chebyshev polynomials, which approximate the Hubbell rectangular source integral:I(a,b)=∫ b 0 (1/(√(1+x 2 )) arctan(a/(√(1+x 2 )))) This integral corresponds to the response of an omni-directional radiation detector situated over a corner of a plane isotropic rectangular source. A discussion of the error in the Tau method approximation follows

8. Lung lesion doubling times: values and variability based on method of volume determination

International Nuclear Information System (INIS)

Eisenbud Quint, Leslie; Cheng, Joan; Schipper, Matthew; Chang, Andrew C.; Kalemkerian, Gregory

2008-01-01

Purpose: To determine doubling times (DTs) of lung lesions based on volumetric measurements from thin-section CT imaging. Methods: Previously untreated patients with ≥ two thin-section CT scans showing a focal lung lesion were identified. Lesion volumes were derived using direct volume measurements and volume calculations based on lesion area and diameter. Growth rates (GRs) were compared by tissue diagnosis and measurement technique. Results: 54 lesions were evaluated including 8 benign lesions, 10 metastases, 3 lymphomas, 15 adenocarcinomas, 11 squamous carcinomas, and 7 miscellaneous lung cancers. Using direct volume measurements, median DTs were 453, 111, 15, 181, 139 and 137 days, respectively. Lung cancer DTs ranged from 23-2239 days. There were no significant differences in GRs among the different lesion types. There was considerable variability among GRs using different volume determination methods. Conclusions: Lung cancer doubling times showed a substantial range, and different volume determination methods gave considerably different DTs

9. Finite elements volumes methods: applications to the Navier-Stokes equations and convergence results

International Nuclear Information System (INIS)

Emonot, P.

1992-01-01

In the first chapter are described the equations modeling incompressible fluid flow and a quick presentation of finite volumes method. The second chapter is an introduction to the finite elements volumes method. The box model is described and a method adapted to Navier-Stokes problems is proposed. The third chapter shows a fault analysis of the finite elements volumes method for the Laplacian problem and some examples in one, two, three dimensional calculations. The fourth chapter is an extension of the error analysis of the method for the Navier-Stokes problem

10. Assessing Backwards Integration as a Method of KBO Family Finding

Science.gov (United States)

Benfell, Nathan; Ragozzine, Darin

2018-04-01

The age of young asteroid collisional families can sometimes be determined by using backwards n-body integrations of the solar system. This method is not used for discovering young asteroid families and is limited by the unpredictable influence of the Yarkovsky effect on individual specific asteroids over time. Since these limitations are not as important for objects in the Kuiper belt, Marcus et al. 2011 suggested that backwards integration could be used to discover and characterize collisional families in the outer solar system. But various challenges present themselves when running precise and accurate 4+ Gyr integrations of Kuiper Belt objects. We have created simulated families of Kuiper Belt Objects with identical starting locations and velocity distributions, based on the Haumea Family. We then ran several long-term test integrations to observe the effect of various simulation parameters on integration results. These integrations were then used to investigate which parameters are of enough significance to require inclusion in the integration. Thereby we determined how to construct long-term integrations that both yield significant results and require manageable processing power. Additionally, we have tested the use of backwards integration as a method of discovery of potential young families in the Kuiper Belt.

11. A Calderón multiplicative preconditioner for coupled surface-volume electric field integral equations

KAUST Repository

Bagci, Hakan

2010-08-01

A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well-posed even when applied to densely discretized volumes, a classically formulated S-EFIE operator is ill-posed when applied to densely discretized surfaces. This renders the discretized coupled S-EFIE and V-EFIE system ill-conditioned, and its iterative solution inefficient or even impossible. The proposed scheme regularizes the coupled set of S-EFIE and V-EFIE using a Calderón multiplicative preconditioner (CMP)-based technique. The resulting scheme enables the efficient analysis of electromagnetic interactions with composite structures containing fine/subwavelength geometric features. Numerical examples demonstrate the efficiency of the proposed scheme. © 2006 IEEE.

12. Explicit integration of extremely stiff reaction networks: partial equilibrium methods

International Nuclear Information System (INIS)

Guidry, M W; Hix, W R; Billings, J J

2013-01-01

In two preceding papers (Guidry et al 2013 Comput. Sci. Disc. 6 015001 and Guidry and Harris 2013 Comput. Sci. Disc. 6 015002), we have shown that when reaction networks are well removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper, we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the approach to equilibrium and show that explicit asymptotic methods, combined with the new partial equilibrium methods, give an integration scheme that can plausibly deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that such explicit methods may offer alternatives to implicit integration of even extremely stiff systems and that these methods may permit integration of much larger networks than have been possible before in a number of fields. (paper)

13. Approximation of the exponential integral (well function) using sampling methods

Science.gov (United States)

Baalousha, Husam Musa

2015-04-01

Exponential integral (also known as well function) is often used in hydrogeology to solve Theis and Hantush equations. Many methods have been developed to approximate the exponential integral. Most of these methods are based on numerical approximations and are valid for a certain range of the argument value. This paper presents a new approach to approximate the exponential integral. The new approach is based on sampling methods. Three different sampling methods; Latin Hypercube Sampling (LHS), Orthogonal Array (OA), and Orthogonal Array-based Latin Hypercube (OA-LH) have been used to approximate the function. Different argument values, covering a wide range, have been used. The results of sampling methods were compared with results obtained by Mathematica software, which was used as a benchmark. All three sampling methods converge to the result obtained by Mathematica, at different rates. It was found that the orthogonal array (OA) method has the fastest convergence rate compared with LHS and OA-LH. The root mean square error RMSE of OA was in the order of 1E-08. This method can be used with any argument value, and can be used to solve other integrals in hydrogeology such as the leaky aquifer integral.

14. An integrated lean-methods approach to hospital facilities redesign.

Science.gov (United States)

Nicholas, John

2012-01-01

Lean production methods for eliminating waste and improving processes in manufacturing are now being applied in healthcare. As the author shows, the methods are appropriate for redesigning hospital facilities. When used in an integrated manner and employing teams of mostly clinicians, the methods produce facility designs that are custom-fit to patient needs and caregiver work processes, and reduce operational costs. The author reviews lean methods and an approach for integrating them in the redesign of hospital facilities. A case example of the redesign of an emergency department shows the feasibility and benefits of the approach.

15. A MATHEMATICAL MODEL OF OPTIMIZATION OF THE VOLUME OF MATERIAL FLOWS IN GRAIN PROCESSING INTEGRATED PRODUCTION SYSTEMS

OpenAIRE

Baranovskaya T. P.; Loyko V. I.; Makarevich O. A.; Bogoslavskiy S. N.

2014-01-01

The article suggests a mathematical model of optimization of the volume of material flows: the model for the ideal conditions; the model for the working conditions; generalized model of determining the optimal input parameters. These models optimize such parameters of inventory management in technology-integrated grain production systems, as the number of cycles supply, the volume of the source material and financial flows. The study was carried out on the example of the integrated system of ...

16. OTEC platform configuration and integration study. Volume I. Systems engineering and integration. Final report

Energy Technology Data Exchange (ETDEWEB)

None

1978-04-01

The economic success of an Ocean Thermal Energy Conversion (OTEC) system is highly dependent on a platform which provides adequate support for the power system, accommodates reliably the cold water pipe, and is most cost effective. The results of a study conducted for the Department of Energy to assess six generic types of platforms to determine the most satisfactory platform for severl potential sites are presented. The six platform configurations are ship, circular barge, semi-submersible, Tuned Sphere, submersible, and spar. These represent directional and symmetric types of platforms which operate on the surface, at the interface, and submerged. The five sites for this study were primarily New Orleans, Keahole Point (Hawaii), Brazil, and secondarily Key West and Puerto Rico. Electrical transmission of energy by submarine cable is the planned form of energy transmission for all sites except Brazil, where chemical conversion is to be the method of transmission. This study is devoted to the platform (or ocean systems) of the OTEC plant which is chiefly comprised of the hull and structure, the seawater system, the position control system, and miscellaneous support/assembly systems. The principal elements in the work breakdown structure for the commercial plants are presented. The assessment of the six platform configurations was conducted utilizing a baseline plan (100-MW(e) (Net)) and site (New Orleans) with variations from the baseline to cover the range of interested platforms and sites.

17. Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science).

Science.gov (United States)

Zeng, Irene Sui Lan; Lumley, Thomas

2018-01-01

Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.

18. A dynamic integrated fault diagnosis method for power transformers.

Science.gov (United States)

Gao, Wensheng; Bai, Cuifen; Liu, Tong

2015-01-01

In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified.

19. A Dynamic Integrated Fault Diagnosis Method for Power Transformers

Science.gov (United States)

Gao, Wensheng; Liu, Tong

2015-01-01

In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified. PMID:25685841

20. Human Factors, Habitability and Environmental Health and the Human Integration Design Handbook. Volume 2

Science.gov (United States)

Houbec, Keith; Tillman, Barry; Connolly, Janis

2010-01-01

For decades, Space Life Sciences and NASA as an Agency have considered NASA-STD-3000, Man-Systems Integration Standards, a significant contribution to human spaceflight programs and to human-systems integration in general. The document has been referenced in numerous design standards both within NASA and by organizations throughout the world. With research program and project results being realized, advances in technology and new information in a variety of topic areas now available, the time arrived to update this extensive suite of requirements and design information. During the past several years, a multi-NASA center effort has been underway to write the update to NASA-STD-3000 with standards and design guidance that would be applicable to all future human spaceflight programs. NASA-STD-3001 - Volumes 1 and 2 - and the Human Integration Design Handbook (HIDH) were created. Volume 1, Crew Health, establishes NASA s spaceflight crew health standards for the pre-flight, in-flight, and post-flight phases of human spaceflight. Volume 2, Human Factors, Habitability and Environmental Health, focuses on the requirements of human-system integration and how the human crew interacts with other systems, and how the human and the system function together to accomplish the tasks for mission success. The HIDH is a compendium of human spaceflight history and knowledge, and provides useful background information and research findings. And as the HIDH is a stand-alone companion to the Standards, the maintenance of the document has been streamlined. This unique and flexible approach ensures that the content is current and addresses the fundamental advances of human performance and human capabilities and constraints research. Current work focuses on the development of new sections of Volume 2 and collecting updates to the HIDH. The new sections in development expand the scope of the standard and address mission operations and support operations. This effort is again collaboration

1. 6Li real potential volume integrals in elastic scattering and distorted-waveBorn approximation analyses

International Nuclear Information System (INIS)

Lezoch, P.; Trost, H.; Strohbusch, U.

1981-01-01

The magnitudes of volume integrals per interacting nucleon pair J/sub R/' calculated from a compilation of 6 Li potentials vary between 100 and 500 MeV fm 3 . They are grouped in discrete branches with J/sub R/(A) smoothly increasing with decreasing target mass. Comparison with the results for lighter projectiles restricts the ''physically meaningful'' branches to those characterized by J/sub R/ (A> or =48) 3 . ( 6 Li,d) reaction analyses yield the same fit qualities for 6 Li potentials of the different discrete families, but deduced spectroscopic factors jump (by factors of approx.3) when changing between successive families

2. An integrated approach for estimating oil volume in petroleum-contaminated sites: a North American case study

International Nuclear Information System (INIS)

Chen, Z.; Huang, G.H.; Chakma, A.

1999-01-01

An integrated approach for estimating the distribution of light nonaqueous phase liquids (LNAPLs) such as oil spill and leakage in a porous media is proposed, based on a study at a site located in western Canada. The site has one original release source that is a flare pit, with on-site soil and groundwater seriously contaminated by petroleum products spilled over the past two decades. Results of the study show that soil properties and site characteristics have significant impact on the spreading of contaminants which affect the estimation of contaminant volume. Although the LNAPLs in the subsurface do not appear as a distinct layer, and the volume and distribution differ from site to site, the proposed method offers insight into the contamination details and is, therefore, considered to be an effective and convenient tool for obtaining a reasonable estimate of residual oil volume in the subsurface. Results could also be used in designing an enhanced recovery scheme for the site under study, as well as in designing multi-component models of the subsurface contamination for the purpose of risk assessment. 13 refs., 2 tabs., 2 figs

3. Achieving integration in mixed methods designs-principles and practices.

Science.gov (United States)

Fetters, Michael D; Curry, Leslie A; Creswell, John W

2013-12-01

Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs-exploratory sequential, explanatory sequential, and convergent-and through four advanced frameworks-multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. © Health Research and Educational Trust.

4. Achieving Integration in Mixed Methods Designs—Principles and Practices

Science.gov (United States)

Fetters, Michael D; Curry, Leslie A; Creswell, John W

2013-01-01

Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs—exploratory sequential, explanatory sequential, and convergent—and through four advanced frameworks—multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. PMID:24279835

5. Protection Parameters against the Cracks by the Method of Volume Compensation Dam

Directory of Open Access Journals (Sweden)

Bulatov Georgiy

2016-01-01

Full Text Available This article provides estimates the parameters of protection from cracking dam due to volume compensation method. This article discusses the method of compensation dam volume. This method allows calculating the settings of security causing cracks the dam. Presents graphs of horizontal deformations of elongation calculated surface along the length of the construction and in time. Showing horizontal stress distribution diagram in the ground around the pile in plan and in section. Given all the necessary formulas for the method of compensation of the dam volume.

6. An efficient explicit marching on in time solver for magnetic field volume integral equation

KAUST Repository

2015-07-25

An efficient explicit marching on in time (MOT) scheme for solving the magnetic field volume integral equation is proposed. The MOT system is cast in the form of an ordinary differential equation and is integrated in time using a PE(CE)m multistep scheme. At each time step, a system with a Gram matrix is solved for the predicted/corrected field expansion coefficients. Depending on the type of spatial testing scheme Gram matrix is sparse or consists of blocks with only diagonal entries regardless of the time step size. Consequently, the resulting MOT scheme is more efficient than its implicit counterparts, which call for inversion of fuller matrix system at lower frequencies. Numerical results, which demonstrate the efficiency, accuracy, and stability of the proposed MOT scheme, are presented.

7. Computation of rectangular source integral by rational parameter polynomial method

International Nuclear Information System (INIS)

Prabha, Hem

2001-01-01

Hubbell et al. (J. Res. Nat Bureau Standards 64C, (1960) 121) have obtained a series expansion for the calculation of the radiation field generated by a plane isotropic rectangular source (plaque), in which leading term is the integral H(a,b). In this paper another integral I(a,b), which is related with the integral H(a,b) has been solved by the rational parameter polynomial method. From I(a,b), we compute H(a,b). Using this method the integral I(a,b) is expressed in the form of a polynomial of a rational parameter. Generally, a function f (x) is expressed in terms of x. In this method this is expressed in terms of x/(1+x). In this way, the accuracy of the expression is good over a wide range of x as compared to the earlier approach. The results for I(a,b) and H(a,b) are given for a sixth degree polynomial and are found to be in good agreement with the results obtained by numerically integrating the integral. Accuracy could be increased either by increasing the degree of the polynomial or by dividing the range of integration. The results of H(a,b) and I(a,b) are given for values of b and a up to 2.0 and 20.0, respectively

8. Conservative multi-implicit integral deferred correction methods with adaptive mesh refinement

International Nuclear Information System (INIS)

Layton, A.T.

2004-01-01

In most models of reacting gas dynamics, the characteristic time scales of chemical reactions are much shorter than the hydrodynamic and diffusive time scales, rendering the reaction part of the model equations stiff. Moreover, nonlinear forcings may introduce into the solutions sharp gradients or shocks, the robust behavior and correct propagation of which require the use of specialized spatial discretization procedures. This study presents high-order conservative methods for the temporal integration of model equations of reacting flows. By means of a method of lines discretization on the flux difference form of the equations, these methods compute approximations to the cell-averaged or finite-volume solution. The temporal discretization is based on a multi-implicit generalization of integral deferred correction methods. The advection term is integrated explicitly, and the diffusion and reaction terms are treated implicitly but independently, with the splitting errors present in traditional operator splitting methods reduced via the integral deferred correction procedure. To reduce computational cost, time steps used to integrate processes with widely-differing time scales may differ in size. (author)

9. An integration weighting method to evaluate extremum coordinates

International Nuclear Information System (INIS)

Ilyushchenko, V.I.

1990-01-01

The numerical version of the Laplace asymptotics has been used to evaluate the coordinates of extrema of multivariate continuous and discontinuous test functions. The performed computer experiments demonstrate the high efficiency of the integration method proposed. The saturating dependence of extremum coordinates on such parameters as a number of integration subregions and that of K going /theoretically/ to infinity has been studied in detail for the limitand being a ratio of two Laplace integrals with exponentiated K. The given method is an integral equivalent of that of weighted means. As opposed to the standard optimization methods of the zero, first and second order the proposed method can be successfully applied to optimize discontinuous objective functions, too. There are possibilities of applying the integration method in the cases, when the conventional techniques fail due to poor analytical properties of the objective functions near extremal points. The proposed method is efficient in searching for both local and global extrema of multimodal objective functions. 12 refs.; 4 tabs

10. Higher-Order Integral Equation Methods in Computational Electromagnetics

DEFF Research Database (Denmark)

Jørgensen, Erik; Meincke, Peter

Higher-order integral equation methods have been investigated. The study has focused on improving the accuracy and efficiency of the Method of Moments (MoM) applied to electromagnetic problems. A new set of hierarchical Legendre basis functions of arbitrary order is developed. The new basis...

11. Two pricing methods for solving an integrated commercial fishery ...

African Journals Online (AJOL)

In this paper, we develop two novel pricing methods for solving an integer program. We demonstrate the methods by solving an integrated commercial fishery planning model (IFPM). In this problem, a fishery manager must schedule fishing trawlers (determine when and where the trawlers should go fishing, and when the ...

12. Method for integrating a train of fast, nanosecond wide pulses

International Nuclear Information System (INIS)

Rose, C.R.

1987-01-01

This paper describes a method used to integrate a train of fast, nanosecond wide pulses. The pulses come from current transformers in a RF LINAC beamline. Because they are ac signals and have no dc component, true mathematical integration would yield zero over the pulse train period or an equally erroneous value because of a dc baseline shift. The circuit used to integrate the pulse train first stretches the pulses to 35 ns FWHM. The signals are then fed into a high-speed, precision rectifier which restores a true dc baseline for the following stage - a fast, gated integrator. The rectifier is linear over 55dB in excess of 25 MHz, and the gated integrator is linear over a 60 dB range with input pulse widths as short as 16 ns. The assembled system is linear over 30 dB with a 6 MHz input signal

13. A study of compositional verification based IMA integration method

Science.gov (United States)

Huang, Hui; Zhang, Guoquan; Xu, Wanmeng

2018-03-01

The rapid development of avionics systems is driving the application of integrated modular avionics (IMA) systems. But meanwhile it is improving avionics system integration, complexity of system test. Then we need simplify the method of IMA system test. The IMA system supports a module platform that runs multiple applications, and shares processing resources. Compared with federated avionics system, IMA system is difficult to isolate failure. Therefore, IMA system verification will face the critical problem is how to test shared resources of multiple application. For a simple avionics system, traditional test methods are easily realizing to test a whole system. But for a complex system, it is hard completed to totally test a huge and integrated avionics system. Then this paper provides using compositional-verification theory in IMA system test, so that reducing processes of test and improving efficiency, consequently economizing costs of IMA system integration.

14. Hemorrhagic shock impairs myocardial cell volume regulation and membrane integrity in dogs

International Nuclear Information System (INIS)

Horton, J.W.

1987-01-01

An in vitro myocardial slice technique was used to quantitate alterations in cell volume regulation and membrane integrity after 2 h or hemorrhagic shock. After in vitro incubation in Krebs-Ringer-phosphate medium containing trace [ 14 C]inulin, values (ml H 2 O/g dry wt) for control nonshocked myocardial slices were 4.03 /plus minus/ 0.11 (SE) for total water, 2.16 /plus minus/ 0.07 for inulin impermeable space, and 1.76 /plus minus/ 0.15 for inulin diffusible space. Shocked myocardial slices showed impaired response to cold incubation. After 2 h of in vivo shock, total tissue water, inulin diffusible space, and inulin impermeable space increased significantly for subendocardium, whereas changes in subepicardium parameters were minimal. Shock-induced cellular swelling was accompanied by an increased total tissue sodium, but no change in tissue potassium. Calcium entry blockade in vivo significantly reduced subendocardial total tissue water as compared with shock-untreated dogs. In addition, calcium entry blockade reduced shock-induced increases in inulin diffusible space. In vitro myocardial slice studies confirm alterations in subendocardial membrane integrity after 2 h of in vivo hemorrhagic shock. Shock-induced abnormalities in myocardial cell volume regulation are reduced by calcium entry blockade in vivo

15. Feasibility of the left ventricular volume measurement by acoustic quantification method. Comparison with ultrafast computed tomography

International Nuclear Information System (INIS)

Tomimoto, Shigehiro; Nakatani, Satoshi; Tanaka, Norio; Uematsu, Masaaki; Beppu, Shintaro; Nagata, Seiki; Hamada, Seiki; Takamiya, Makoto; Miyatake, Kunio

1995-01-01

Acoustic quantification (AQ: the real-time automated boundary detection system) allows instantaneous measurement of cardiac chamber volumes. The feasibility of this method was evaluated by comparing the left ventricular (LV) volumes obtained with AQ to those derived from ultrafast computed tomography (UFCT), which enables accurate measurements of LV volumes even in the presence of LV asynergy, in 23 patients (8 with ischemic heart disease, 5 with cardiomyopathy, 3 with valvular heart disease). Both LV end-diastolic and end-systolic volumes obtained with the AQ method were in good agreement with those obtained with UFCT (y=1.04χ-16.9, r=0.95; y=0.87χ+15.7, r=0.91; respectively). AQ was reliable even in the presence of LV asynergy. Interobserver variability for the AQ measurement was 10.2%. AQ provides a new, clinically useful method for real-time accurate estimation of the left ventricular volume. (author)

16. Feasibility of the left ventricular volume measurement by acoustic quantification method. Comparison with ultrafast computed tomography

Energy Technology Data Exchange (ETDEWEB)

Tomimoto, Shigehiro; Nakatani, Satoshi; Tanaka, Norio; Uematsu, Masaaki; Beppu, Shintaro; Nagata, Seiki; Hamada, Seiki; Takamiya, Makoto; Miyatake, Kunio [National Cardiovascular Center, Suita, Osaka (Japan)

1995-01-01

Acoustic quantification (AQ: the real-time automated boundary detection system) allows instantaneous measurement of cardiac chamber volumes. The feasibility of this method was evaluated by comparing the left ventricular (LV) volumes obtained with AQ to those derived from ultrafast computed tomography (UFCT), which enables accurate measurements of LV volumes even in the presence of LV asynergy, in 23 patients (8 with ischemic heart disease, 5 with cardiomyopathy, 3 with valvular heart disease). Both LV end-diastolic and end-systolic volumes obtained with the AQ method were in good agreement with those obtained with UFCT (y=1.04{chi}-16.9, r=0.95; y=0.87{chi}+15.7, r=0.91; respectively). AQ was reliable even in the presence of LV asynergy. Interobserver variability for the AQ measurement was 10.2%. AQ provides a new, clinically useful method for real-time accurate estimation of the left ventricular volume. (author).

17. Quantification and variability in colonic volume with a novel magnetic resonance imaging method

DEFF Research Database (Denmark)

Nilsson, M; Sandberg, Thomas Holm; Poulsen, Jakob Lykke

2015-01-01

Background: Segmental distribution of colorectal volume is relevant in a number of diseases, but clinical and experimental use demands robust reliability and validity. Using a novel semi-automatic magnetic resonance imaging-based technique, the aims of this study were to describe: (i) inter......-individual and intra-individual variability of segmental colorectal volumes between two observations in healthy subjects and (ii) the change in segmental colorectal volume distribution before and after defecation. Methods: The inter-individual and intra-individual variability of four colorectal volumes (cecum...... (p = 0.02). Conclusions & Inferences: Imaging of segmental colorectal volume, morphology, and fecal accumulation is advantageous to conventional methods in its low variability, high spatial resolution, and its absence of contrast-enhancing agents and irradiation. Hence, the method is suitable...

18. INTEGRATED SENSOR EVALUATION CIRCUIT AND METHOD FOR OPERATING SAID CIRCUIT

OpenAIRE

Krüger, Jens; Gausa, Dominik

2015-01-01

WO15090426A1 Sensor evaluation device and method for operating said device Integrated sensor evaluation circuit for evaluating a sensor signal (14) received from a sensor (12), having a first connection (28a) for connection to the sensor and a second connection (28b) for connection to the sensor. The integrated sensor evaluation circuit comprises a configuration data memory (16) for storing configuration data which describe signal properties of a plurality of sensor control signals (26a-c). T...

19. User's guide to Monte Carlo methods for evaluating path integrals

Science.gov (United States)

Westbroek, Marise J. E.; King, Peter R.; Vvedensky, Dimitri D.; Dürr, Stephan

2018-04-01

We give an introduction to the calculation of path integrals on a lattice, with the quantum harmonic oscillator as an example. In addition to providing an explicit computational setup and corresponding pseudocode, we pay particular attention to the existence of autocorrelations and the calculation of reliable errors. The over-relaxation technique is presented as a way to counter strong autocorrelations. The simulation methods can be extended to compute observables for path integrals in other settings.

20. Classification Method in Integrated Information Network Using Vector Image Comparison

Directory of Open Access Journals (Sweden)

Zhou Yuan

2014-05-01

Full Text Available Wireless Integrated Information Network (WMN consists of integrated information that can get data from its surrounding, such as image, voice. To transmit information, large resource is required which decreases the service time of the network. In this paper we present a Classification Approach based on Vector Image Comparison (VIC for WMN that improve the service time of the network. The available methods for sub-region selection and conversion are also proposed.

1. Process automation system for integration and operation of Large Volume Plasma Device

International Nuclear Information System (INIS)

Sugandhi, R.; Srivastava, P.K.; Sanyasi, A.K.; Srivastav, Prabhakar; Awasthi, L.M.; Mattoo, S.K.

2016-01-01

Highlights: • Analysis and design of process automation system for Large Volume Plasma Device (LVPD). • Data flow modeling for process model development. • Modbus based data communication and interfacing. • Interface software development for subsystem control in LabVIEW. - Abstract: Large Volume Plasma Device (LVPD) has been successfully contributing towards understanding of the plasma turbulence driven by Electron Temperature Gradient (ETG), considered as a major contributor for the plasma loss in the fusion devices. Large size of the device imposes certain difficulties in the operation, such as access of the diagnostics, manual control of subsystems and large number of signals monitoring etc. To achieve integrated operation of the machine, automation is essential for the enhanced performance and operational efficiency. Recently, the machine is undergoing major upgradation for the new physics experiments. The new operation and control system consists of following: (1) PXIe based fast data acquisition system for the equipped diagnostics; (2) Modbus based Process Automation System (PAS) for the subsystem controls and (3) Data Utilization System (DUS) for efficient storage, processing and retrieval of the acquired data. In the ongoing development, data flow model of the machine’s operation has been developed. As a proof of concept, following two subsystems have been successfully integrated: (1) Filament Power Supply (FPS) for the heating of W- filaments based plasma source and (2) Probe Positioning System (PPS) for control of 12 number of linear probe drives for a travel length of 100 cm. The process model of the vacuum production system has been prepared and validated against acquired pressure data. In the next upgrade, all the subsystems of the machine will be integrated in a systematic manner. The automation backbone is based on 4-wire multi-drop serial interface (RS485) using Modbus communication protocol. Software is developed on LabVIEW platform using

2. Process automation system for integration and operation of Large Volume Plasma Device

Energy Technology Data Exchange (ETDEWEB)

Sugandhi, R., E-mail: ritesh@ipr.res.in; Srivastava, P.K.; Sanyasi, A.K.; Srivastav, Prabhakar; Awasthi, L.M.; Mattoo, S.K.

2016-11-15

Highlights: • Analysis and design of process automation system for Large Volume Plasma Device (LVPD). • Data flow modeling for process model development. • Modbus based data communication and interfacing. • Interface software development for subsystem control in LabVIEW. - Abstract: Large Volume Plasma Device (LVPD) has been successfully contributing towards understanding of the plasma turbulence driven by Electron Temperature Gradient (ETG), considered as a major contributor for the plasma loss in the fusion devices. Large size of the device imposes certain difficulties in the operation, such as access of the diagnostics, manual control of subsystems and large number of signals monitoring etc. To achieve integrated operation of the machine, automation is essential for the enhanced performance and operational efficiency. Recently, the machine is undergoing major upgradation for the new physics experiments. The new operation and control system consists of following: (1) PXIe based fast data acquisition system for the equipped diagnostics; (2) Modbus based Process Automation System (PAS) for the subsystem controls and (3) Data Utilization System (DUS) for efficient storage, processing and retrieval of the acquired data. In the ongoing development, data flow model of the machine’s operation has been developed. As a proof of concept, following two subsystems have been successfully integrated: (1) Filament Power Supply (FPS) for the heating of W- filaments based plasma source and (2) Probe Positioning System (PPS) for control of 12 number of linear probe drives for a travel length of 100 cm. The process model of the vacuum production system has been prepared and validated against acquired pressure data. In the next upgrade, all the subsystems of the machine will be integrated in a systematic manner. The automation backbone is based on 4-wire multi-drop serial interface (RS485) using Modbus communication protocol. Software is developed on LabVIEW platform using

3. Variation in Measurements of Transtibial Stump Model Volume A Comparison of Five Methods

NARCIS (Netherlands)

Bolt, A.; de Boer-Wilzing, V. G.; Geertzen, J. H. B.; Emmelot, C. H.; Baars, E. C. T.; Dijkstra, P. U.

Objective: To determine the right moment for fitting the first prosthesis, it is necessary to know when the volume of the stump has stabilized. The aim of this study is to analyze variation in measurements of transtibial stump model volumes using the water immersion method, the Design TT system, the

4. Variant of a volume-of-fluid method for surface tension-dominant two ...

2013-12-27

Dec 27, 2013 ... face tension-dominant two-phase flows are explained. ... for one particular fluid inside a cell as its material volume divided by the total ... the reconstructed interface and the velocity field, and the final part ..... Welch S W J and Wilson J 2000 A volume of fluid based method for fluid flows with phase change. J.

5. Critical length sampling: a method to estimate the volume of downed coarse woody debris

Science.gov (United States)

G& #246; ran St& #229; hl; Jeffrey H. Gove; Michael S. Williams; Mark J. Ducey

2010-01-01

In this paper, critical length sampling for estimating the volume of downed coarse woody debris is presented. Using this method, the volume of downed wood in a stand can be estimated by summing the critical lengths of down logs included in a sample obtained using a relascope or wedge prism; typically, the instrument should be tilted 90° from its usual...

6. A new method to estimate the atomic volume of ternary intermetallic compounds

International Nuclear Information System (INIS)

Pani, M.; Merlo, F.

2011-01-01

The atomic volume of an A x B y C z ternary intermetallic compound can be calculated starting from volumes of some proper A-B, A-C and B-C binary phases. The three methods by Colinet, Muggianu and Kohler, originally used to estimate thermodynamic quantities, and a new method here proposed, were tested to derive volume data in eight systems containing 91 ternary phases with the known structure. The comparison between experimental and calculated volume values shows the best agreement both for the Kohler method and for the new proposed procedure. -- Graphical abstract: Synopsys: the volume of a ternary intermetallic compound can be calculated starting from volumes of some binary phases, selected by the methods of Colinet, Muggianu, Kohler and a new method proposed here. The so obtained values are compared with the experimental ones for eight ternary systems. Display Omitted Research highlights: → The application of some thermodinamic methods to a crystallochemical problem. → The prevision of the average atomic volume of ternary intermetallic phases. → The proposal of a new procedure to select the proper starting set of binary phases.

7. A matrix-free implicit unstructured multigrid finite volume method for simulating structural dynamics and fluid structure interaction

Science.gov (United States)

Lv, X.; Zhao, Y.; Huang, X. Y.; Xia, G. H.; Su, X. H.

2007-07-01

A new three-dimensional (3D) matrix-free implicit unstructured multigrid finite volume (FV) solver for structural dynamics is presented in this paper. The solver is first validated using classical 2D and 3D cantilever problems. It is shown that very accurate predictions of the fundamental natural frequencies of the problems can be obtained by the solver with fast convergence rates. This method has been integrated into our existing FV compressible solver [X. Lv, Y. Zhao, et al., An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3d unsteady compressible flows with moving objects, Journal of Computational Physics 215(2) (2006) 661-690] based on the immersed membrane method (IMM) [X. Lv, Y. Zhao, et al., as mentioned above]. Results for the interaction between the fluid and an immersed fixed-free cantilever are also presented to demonstrate the potential of this integrated fluid-structure interaction approach.

8. A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors

International Nuclear Information System (INIS)

Liang, Hongbo; Fan, Man; You, Shijun; Zheng, Wandong; Zhang, Huan; Ye, Tianzhen; Zheng, Xuejing

2017-01-01

Highlights: •Four optical models for parabolic trough solar collectors were compared in detail. •Characteristics of Monte Carlo Method and Finite Volume Method were discussed. •A novel method was presented combining advantages of different models. •The method was suited to optical analysis of collectors with different geometries. •A new kind of cavity receiver was simulated depending on the novel method. -- Abstract: The PTC (parabolic trough solar collector) is widely used for space heating, heat-driven refrigeration, solar power, etc. The concentrated solar radiation is the only energy source for a PTC, thus its optical performance significantly affects the collector efficiency. In this study, four different optical models were constructed, validated and compared in detail. On this basis, a novel coupled method was presented by combining advantages of these models, which was suited to carry out a mass of optical simulations of collectors with different geometrical parameters rapidly and accurately. Based on these simulation results, the optimal configuration of a collector with highest efficiency can be determined. Thus, this method was useful for collector optimization and design. In the four models, MCM (Monte Carlo Method) and FVM (Finite Volume Method) were used to initialize photons distribution, as well as CPEM (Change Photon Energy Method) and MCM were adopted to describe the process of reflecting, transmitting and absorbing. For simulating reflection, transmission and absorption, CPEM was more efficient than MCM, so it was utilized in the coupled method. For photons distribution initialization, FVM saved running time and computation effort, whereas it needed suitable grid configuration. MCM only required a total number of rays for simulation, whereas it needed higher computing cost and its results fluctuated in multiple runs. In the novel coupled method, the grid configuration for FVM was optimized according to the “true values” from MCM of

9. Incineration method for volume reduction and disposal of transuranic waste

International Nuclear Information System (INIS)

Borham, B.M.

1985-01-01

The Process Experimental Pilot Plant (PREPP) at Idaho National Engineering Laboratory (INEL) is designed to process 7 TPD of transuranic (TRU) waste producing 8.5 TPD of cemented waste and 4100 ACFM of combustion gases with a volume reduction of up to 17:1. The waste and its container are shredded then fed to a rotary kiln heated to 1700 0 F, then cooled and classified by a trommel screen. The fine portion is mixed with a cement grout which is placed with the coarse portion in steel drums for disposal at the Waste Isolation Pilot Plant (WIPP). The kiln off-gas is reheated to 2000 0 F to destroy any remaining hydrocarbons and toxic volatiles. The gases are cooled and passed in a venturi scrubber to remove particulates and corrosive gases. The venturi off-gas is passed through a mist eliminator and is reheated to 50 0 F above the dew point prior to passing through a High Efficiency Particulate Air (HEPA) filter. The scrub solution is concentrated to 25% solids by an inertial filter. The sludge containing the combustion chemical contaminants is encapsulated with the residue of the incinerated waste

10. Volume Equalization Method for Land Grading Design: Uniform ...

African Journals Online (AJOL)

muğla üniversitesi

2011-05-23

May 23, 2011 ... *Corresponding author. E-mail: ... Land grading has been in practice for a long time, but land-grading ... method was based on least-squares theory and he showed its ... Srinisava (1996) developed a nonlinear optimization.

11. An integral nodal variational method for multigroup criticality calculations

International Nuclear Information System (INIS)

Lewis, E.E.; Tsoulfanidis, N.

2003-01-01

An integral formulation of the variational nodal method is presented and applied to a series of benchmark critically problems. The method combines an integral transport treatment of the even-parity flux within the spatial node with an odd-parity spherical harmonics expansion of the Lagrange multipliers at the node interfaces. The response matrices that result from this formulation are compatible with those in the VARIANT code at Argonne National Laboratory. Either homogeneous or heterogeneous nodes may be employed. In general, for calculations requiring higher-order angular approximations, the integral method yields solutions with comparable accuracy while requiring substantially less CPU time and memory than the standard spherical harmonics expansion using the same spatial approximations. (author)

12. Integrative methods for analyzing big data in precision medicine.

Science.gov (United States)

Gligorijević, Vladimir; Malod-Dognin, Noël; Pržulj, Nataša

2016-03-01

We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of "Big Data" in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

13. Cultural adaptation and translation of measures: an integrated method.

Science.gov (United States)

Sidani, Souraya; Guruge, Sepali; Miranda, Joyal; Ford-Gilboe, Marilyn; Varcoe, Colleen

2010-04-01

Differences in the conceptualization and operationalization of health-related concepts may exist across cultures. Such differences underscore the importance of examining conceptual equivalence when adapting and translating instruments. In this article, we describe an integrated method for exploring conceptual equivalence within the process of adapting and translating measures. The integrated method involves five phases including selection of instruments for cultural adaptation and translation; assessment of conceptual equivalence, leading to the generation of a set of items deemed to be culturally and linguistically appropriate to assess the concept of interest in the target community; forward translation; back translation (optional); and pre-testing of the set of items. Strengths and limitations of the proposed integrated method are discussed. (c) 2010 Wiley Periodicals, Inc.

14. Development of production methods of volume source by the resinous solution which has hardening

CERN Document Server

Motoki, R

2002-01-01

Volume sources is used for standard sources by radioactive measurement using Ge semiconductor detector of environmental sample, e.g. water, soil and etc. that require large volume. The commercial volume source used in measurement of the water sample is made of agar-agar, and that used in measurement of the soil sample is made of alumina powder. When the plastic receptacles of this two kinds of volume sources were damaged, the leakage contents cause contamination. Moreover, if hermetically sealing performance of volume source made of agar-agar fell, volume decrease due to an evaporation off moisture gives an error to radioactive measurement. Therefore, we developed the two type methods using unsaturated polyester resin, vinilester resin, their hardening agent and acrylicresin. The first type is due to dispersing the hydrochloric acid solution included the radioisotopes uniformly in each resin and hardening the resin. The second is due to dispersing the alumina powder absorbed the radioisotopes in each resin an...

15. An Integrated Computational Materials Engineering Method for Woven Carbon Fiber Composites Preforming Process

Energy Technology Data Exchange (ETDEWEB)

Zhang, Weizhao; Ren, Huaqing; Wang, Zequn; Liu, Wing K.; Chen, Wei; Zeng, Danielle; Su, Xuming; Cao, Jian

2016-10-19

An integrated computational materials engineering method is proposed in this paper for analyzing the design and preforming process of woven carbon fiber composites. The goal is to reduce the cost and time needed for the mass production of structural composites. It integrates the simulation methods from the micro-scale to the macro-scale to capture the behavior of the composite material in the preforming process. In this way, the time consuming and high cost physical experiments and prototypes in the development of the manufacturing process can be circumvented. This method contains three parts: the micro-scale representative volume element (RVE) simulation to characterize the material; the metamodeling algorithm to generate the constitutive equations; and the macro-scale preforming simulation to predict the behavior of the composite material during forming. The results show the potential of this approach as a guidance to the design of composite materials and its manufacturing process.

16. A finite volume method for cylindrical heat conduction problems based on local analytical solution

KAUST Repository

Li, Wang

2012-10-01

A new finite volume method for cylindrical heat conduction problems based on local analytical solution is proposed in this paper with detailed derivation. The calculation results of this new method are compared with the traditional second-order finite volume method. The newly proposed method is more accurate than conventional ones, even though the discretized expression of this proposed method is slightly more complex than the second-order central finite volume method, making it cost more calculation time on the same grids. Numerical result shows that the total CPU time of the new method is significantly less than conventional methods for achieving the same level of accuracy. © 2012 Elsevier Ltd. All rights reserved.

17. A finite volume method for cylindrical heat conduction problems based on local analytical solution

KAUST Repository

Li, Wang; Yu, Bo; Wang, Xinran; Wang, Peng; Sun, Shuyu

2012-01-01

A new finite volume method for cylindrical heat conduction problems based on local analytical solution is proposed in this paper with detailed derivation. The calculation results of this new method are compared with the traditional second-order finite volume method. The newly proposed method is more accurate than conventional ones, even though the discretized expression of this proposed method is slightly more complex than the second-order central finite volume method, making it cost more calculation time on the same grids. Numerical result shows that the total CPU time of the new method is significantly less than conventional methods for achieving the same level of accuracy. © 2012 Elsevier Ltd. All rights reserved.

18. The 3D Lagrangian Integral Method. Henrik Koblitz Rasmussen

DEFF Research Database (Denmark)

Rasmussen, Henrik Koblitz

2003-01-01

. This are processes such as thermo-forming, gas-assisted injection moulding and all kind of simultaneous multi-component polymer processing operations. Though, in all polymer processing operations free surfaces (or interfaces) are present and the dynamic of these surfaces are of interest. In the "3D Lagrangian...... Integral Method" to simulate viscoelastic flow, the governing equations are solved for the particle positions (Lagrangian kinematics). Therefore, the transient motion of surfaces can be followed in a particularly simple fashion even in 3D viscoelastic flow. The "3D Lagrangian Integral Method" is described...

19. Path integral for stochastic inflation: Nonperturbative volume weighting, complex histories, initial conditions, and the end of inflation

Science.gov (United States)

Gratton, Steven

2011-09-01

In this paper we present a path integral formulation of stochastic inflation. Volume weighting can be naturally implemented from this new perspective in a very straightforward way when compared to conventional Langevin approaches. With an in-depth study of inflation in a quartic potential, we investigate how the inflaton evolves and how inflation typically ends both with and without volume weighting. The calculation can be carried to times beyond those accessible to conventional Fokker-Planck approaches. Perhaps unexpectedly, complex histories sometimes emerge with volume weighting. The reward for this excursion into the complex plane is an insight into how volume-weighted inflation both loses memory of initial conditions and ends via slow roll. The slow-roll end of inflation mitigates certain “Youngness Paradox”-type criticisms of the volume-weighted paradigm. Thus it is perhaps time to rehabilitate proper-time volume weighting as a viable measure for answering at least some interesting cosmological questions.

20. Path integral for stochastic inflation: Nonperturbative volume weighting, complex histories, initial conditions, and the end of inflation

International Nuclear Information System (INIS)

Gratton, Steven

2011-01-01

In this paper we present a path integral formulation of stochastic inflation. Volume weighting can be naturally implemented from this new perspective in a very straightforward way when compared to conventional Langevin approaches. With an in-depth study of inflation in a quartic potential, we investigate how the inflaton evolves and how inflation typically ends both with and without volume weighting. The calculation can be carried to times beyond those accessible to conventional Fokker-Planck approaches. Perhaps unexpectedly, complex histories sometimes emerge with volume weighting. The reward for this excursion into the complex plane is an insight into how volume-weighted inflation both loses memory of initial conditions and ends via slow roll. The slow-roll end of inflation mitigates certain ''Youngness Paradox''-type criticisms of the volume-weighted paradigm. Thus it is perhaps time to rehabilitate proper-time volume weighting as a viable measure for answering at least some interesting cosmological questions.

1. ABC/2 Method Does not Accurately Predict Cerebral Arteriovenous Malformation Volume.

Science.gov (United States)

Roark, Christopher; Vadlamudi, Venu; Chaudhary, Neeraj; Gemmete, Joseph J; Seinfeld, Joshua; Thompson, B Gregory; Pandey, Aditya S

2018-02-01

Stereotactic radiosurgery (SRS) is a treatment option for cerebral arteriovenous malformations (AVMs) to prevent intracranial hemorrhage. The decision to proceed with SRS is usually based on calculated nidal volume. Physicians commonly use the ABC/2 formula, based on digital subtraction angiography (DSA), when counseling patients for SRS. To determine whether AVM volume calculated using the ABC/2 method on DSA is accurate when compared to the exact volume calculated from thin-cut axial sections used for SRS planning. Retrospective search of neurovascular database to identify AVMs treated with SRS from 1995 to 2015. Maximum nidal diameters in orthogonal planes on DSA images were recorded to determine volume using ABC/2 formula. Nidal target volume was extracted from operative reports of SRS. Volumes were then compared using descriptive statistics and paired t-tests. Ninety intracranial AVMs were identified. Median volume was 4.96 cm3 [interquartile range (IQR) 1.79-8.85] with SRS planning methods and 6.07 cm3 (IQR 1.3-13.6) with ABC/2 methodology. Moderate correlation was seen between SRS and ABC/2 (r = 0.662; P ABC/2 (t = -3.2; P = .002). When AVMs were dichotomized based on ABC/2 volume, significant differences remained (t = 3.1, P = .003 for ABC/2 volume ABC/2 volume > 7 cm3). The ABC/2 method overestimates cerebral AVM volume when compared to volumetric analysis from SRS planning software. For AVMs > 7 cm3, the overestimation is even greater. SRS planning techniques were also significantly different than values derived from equations for cones and cylinders. Copyright © 2017 by the Congress of Neurological Surgeons

2. A New Volume-Of-Fluid Method in Openfoam

DEFF Research Database (Denmark)

Pedersen, Johan Rønby; Eltard-Larsen, Bjarke; Bredmose, Henrik

methods have become quiteadvanced and accurate on structured meshes, there is still room for improvement when it comesto unstructured meshes of the type needed to simulate ows in and around complex geometricstructures. We have recently developed a new geometric VOF algorithm called isoAdvector forgeneral...... limited interface compression, with the new isoAd-vector method. Our test case is a steady 2D stream function wave propagating in a periodicdomain. Based on a series of simulations with different numerical settings, we conclude that theintroduction of isoAdvector has a significant effect on wave...

3. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

Energy Technology Data Exchange (ETDEWEB)

Templeton, K.J.

1996-05-23

For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Companys Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Divisions treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on

4. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

International Nuclear Information System (INIS)

Templeton, K.J.

1996-01-01

For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company's Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division's treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on

5. Analysis of one-dimensional nonequilibrium two-phase flow using control volume method

International Nuclear Information System (INIS)

Minato, Akihiko; Naitoh, Masanori

1987-01-01

A one-dimensional numerical analysis model was developed for prediction of rapid flow transient behavior involving boiling. This model was based on six conservation equations of time averaged parameters of gas and liquid behavior. These equations were solved by using a control volume method with an explicit time integration. This model did not use staggered mesh scheme, which had been commonly used in two-phase flow analysis. Because void fraction and velocity of each phase were defined at the same location in the present model, effects of void fraction on phase velocity calculation were treated directly without interpolation. Though non-staggered mesh scheme was liable to cause numerical instability with zigzag pressure field, stability was achieved by employing the Godunov method. In order to verify the present analytical model, Edwards' pipe blow down and Zaloudek's initially subcooled critical two-phase flow experiments were analyzed. Stable solutions were obtained for rarefaction wave propagation with boiling and transient two-phase flow behavior in a broken pipe by using this model. (author)

6. Estimation method for volumes of hot spots created by heavy ions

International Nuclear Information System (INIS)

Kanno, Ikuo; Kanazawa, Satoshi; Kajii, Yuji

1999-01-01

As a ratio of volumes of hot spots to cones, which have the same lengths and bottom radii with the ones of hot spots, a simple and convenient method for estimating the volumes of hot spots is described. This calculation method is useful for the study of damage producing mechanism in hot spots, and is also convenient for the estimation of the electron-hole densities in plasma columns created by heavy ions in semiconductor detectors. (author)

7. Simple method for the generation of multiple homogeneous field volumes inside the bore of superconducting magnets.

Science.gov (United States)

Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris

2015-07-17

Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation.

8. Finite Volume Method for Pricing European Call Option with Regime-switching Volatility

Science.gov (United States)

Lista Tauryawati, Mey; Imron, Chairul; Putri, Endah RM

2018-03-01

In this paper, we present a finite volume method for pricing European call option using Black-Scholes equation with regime-switching volatility. In the first step, we formulate the Black-Scholes equations with regime-switching volatility. we use a finite volume method based on fitted finite volume with spatial discretization and an implicit time stepping technique for the case. We show that the regime-switching scheme can revert to the non-switching Black Scholes equation, both in theoretical evidence and numerical simulations.

9. A numerical integration-based yield estimation method for integrated circuits

International Nuclear Information System (INIS)

Liang Tao; Jia Xinzhang

2011-01-01

A novel integration-based yield estimation method is developed for yield optimization of integrated circuits. This method tries to integrate the joint probability density function on the acceptability region directly. To achieve this goal, the simulated performance data of unknown distribution should be converted to follow a multivariate normal distribution by using Box-Cox transformation (BCT). In order to reduce the estimation variances of the model parameters of the density function, orthogonal array-based modified Latin hypercube sampling (OA-MLHS) is presented to generate samples in the disturbance space during simulations. The principle of variance reduction of model parameters estimation through OA-MLHS together with BCT is also discussed. Two yield estimation examples, a fourth-order OTA-C filter and a three-dimensional (3D) quadratic function are used for comparison of our method with Monte Carlo based methods including Latin hypercube sampling and importance sampling under several combinations of sample sizes and yield values. Extensive simulations show that our method is superior to other methods with respect to accuracy and efficiency under all of the given cases. Therefore, our method is more suitable for parametric yield optimization. (semiconductor integrated circuits)

10. A numerical integration-based yield estimation method for integrated circuits

Energy Technology Data Exchange (ETDEWEB)

Liang Tao; Jia Xinzhang, E-mail: tliang@yahoo.cn [Key Laboratory of Ministry of Education for Wide Bandgap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China)

2011-04-15

A novel integration-based yield estimation method is developed for yield optimization of integrated circuits. This method tries to integrate the joint probability density function on the acceptability region directly. To achieve this goal, the simulated performance data of unknown distribution should be converted to follow a multivariate normal distribution by using Box-Cox transformation (BCT). In order to reduce the estimation variances of the model parameters of the density function, orthogonal array-based modified Latin hypercube sampling (OA-MLHS) is presented to generate samples in the disturbance space during simulations. The principle of variance reduction of model parameters estimation through OA-MLHS together with BCT is also discussed. Two yield estimation examples, a fourth-order OTA-C filter and a three-dimensional (3D) quadratic function are used for comparison of our method with Monte Carlo based methods including Latin hypercube sampling and importance sampling under several combinations of sample sizes and yield values. Extensive simulations show that our method is superior to other methods with respect to accuracy and efficiency under all of the given cases. Therefore, our method is more suitable for parametric yield optimization. (semiconductor integrated circuits)

11. Application of Stochastic Sensitivity Analysis to Integrated Force Method

Directory of Open Access Journals (Sweden)

X. F. Wei

2012-01-01

Full Text Available As a new formulation in structural analysis, Integrated Force Method has been successfully applied to many structures for civil, mechanical, and aerospace engineering due to the accurate estimate of forces in computation. Right now, it is being further extended to the probabilistic domain. For the assessment of uncertainty effect in system optimization and identification, the probabilistic sensitivity analysis of IFM was further investigated in this study. A set of stochastic sensitivity analysis formulation of Integrated Force Method was developed using the perturbation method. Numerical examples are presented to illustrate its application. Its efficiency and accuracy were also substantiated with direct Monte Carlo simulations and the reliability-based sensitivity method. The numerical algorithm was shown to be readily adaptable to the existing program since the models of stochastic finite element and stochastic design sensitivity are almost identical.

12. Real-time hybrid simulation using the convolution integral method

International Nuclear Information System (INIS)

Kim, Sung Jig; Christenson, Richard E; Wojtkiewicz, Steven F; Johnson, Erik A

2011-01-01

This paper proposes a real-time hybrid simulation method that will allow complex systems to be tested within the hybrid test framework by employing the convolution integral (CI) method. The proposed CI method is potentially transformative for real-time hybrid simulation. The CI method can allow real-time hybrid simulation to be conducted regardless of the size and complexity of the numerical model and for numerical stability to be ensured in the presence of high frequency responses in the simulation. This paper presents the general theory behind the proposed CI method and provides experimental verification of the proposed method by comparing the CI method to the current integration time-stepping (ITS) method. Real-time hybrid simulation is conducted in the Advanced Hazard Mitigation Laboratory at the University of Connecticut. A seismically excited two-story shear frame building with a magneto-rheological (MR) fluid damper is selected as the test structure to experimentally validate the proposed method. The building structure is numerically modeled and simulated, while the MR damper is physically tested. Real-time hybrid simulation using the proposed CI method is shown to provide accurate results

13. An approximation method for nonlinear integral equations of Hammerstein type

International Nuclear Information System (INIS)

Chidume, C.E.; Moore, C.

1989-05-01

The solution of a nonlinear integral equation of Hammerstein type in Hilbert spaces is approximated by means of a fixed point iteration method. Explicit error estimates are given and, in some cases, convergence is shown to be at least as fast as a geometric progression. (author). 25 refs

14. The philosophy and method of integrative humanism and religious ...

African Journals Online (AJOL)

This paper titled “Philosophy and Method of Integrative Humanism and Religious Crises in Nigeria: Picking the Essentials”, acknowledges the damaging effects of religious bigotry, fanaticism and creed differences on the social, political and economic development of the country. The need for the cessation of religious ...

15. An Integrated Approach to Research Methods and Capstone

Science.gov (United States)

Postic, Robert; McCandless, Ray; Stewart, Beth

2014-01-01

In 1991, the AACU issued a report on improving undergraduate education suggesting, in part, that a curriculum should be both comprehensive and cohesive. Since 2008, we have systematically integrated our research methods course with our capstone course in an attempt to accomplish the twin goals of comprehensiveness and cohesion. By taking this…

16. Confluent education: an integrative method for nursing (continuing) education.

NARCIS (Netherlands)

Francke, A.L.; Erkens, T.

1994-01-01

Confluent education is presented as a method to bridge the gap between cognitive and affective learning. Attention is focused on three main characteristics of confluent education: (a) the integration of four overlapping domains in a learning process (readiness, the cognitive domain, the affective

17. On the solution of high order stable time integration methods

Czech Academy of Sciences Publication Activity Database

2013-01-01

Roč. 108, č. 1 (2013), s. 1-22 ISSN 1687-2770 Institutional support: RVO:68145535 Keywords : evolution equations * preconditioners for quadratic matrix polynomials * a stiffly stable time integration method Subject RIV: BA - General Mathematics Impact factor: 0.836, year: 2013 http://www.boundaryvalueproblems.com/content/2013/1/108

18. Educational integrating projects as a method of interactive learning

Directory of Open Access Journals (Sweden)

Иван Николаевич Куринин

2013-12-01

Full Text Available The article describes a method of interactive learning based on educational integrating projects. Some examples of content of such projects for the disciplines related to the study of information and Internet technologies and their application in management are presented.

19. Integrating Expressive Methods in a Relational-Psychotherapy

Directory of Open Access Journals (Sweden)

Richard G. Erskine

2011-06-01

Full Text Available Therapeutic Involvement is an integral part of all effective psychotherapy.This article is written to illustrate the concept of Therapeutic Involvement in working within a therapeutic relationship – within the transference -- and with active expressive and experiential methods to resolve traumatic experiences, relational disturbances and life shaping decisions.

20. A volume integral equation solver for quantum-corrected transient analysis of scattering from plasmonic nanostructures

KAUST Repository

Sayed, Sadeed Bin; Uysal, Ismail Enes; Bagci, Hakan; Ulku, H. Arda

2018-01-01

Quantum tunneling is observed between two nanostructures that are separated by a sub-nanometer gap. Electrons “jumping” from one structure to another create an additional current path. An auxiliary tunnel is introduced between the two structures as a support for this so that a classical electromagnetic solver can account for the effects of quantum tunneling. The dispersive permittivity of the tunnel is represented by a Drude model, whose parameters are obtained from the electron tunneling probability. The transient scattering from the connected nanostructures (i.e., nanostructures plus auxiliary tunnel) is analyzed using a time domain volume integral equation solver. Numerical results demonstrating the effect of quantum tunneling on the scattered fields are provided.

1. The integral equation method applied to eddy currents

International Nuclear Information System (INIS)

Biddlecombe, C.S.; Collie, C.J.; Simkin, J.; Trowbridge, C.W.

1976-04-01

An algorithm for the numerical solution of eddy current problems is described, based on the direct solution of the integral equation for the potentials. In this method only the conducting and iron regions need to be divided into elements, and there are no boundary conditions. Results from two computer programs using this method for iron free problems for various two-dimensional geometries are presented and compared with analytic solutions. (author)

2. An element-based finite-volume method approach for naturally fractured compositional reservoir simulation

Energy Technology Data Exchange (ETDEWEB)

Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu

2010-07-01

An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)

3. Advances in the discrete ordinates and finite volume methods for the solution of radiative heat transfer problems in participating media

International Nuclear Information System (INIS)

Coelho, Pedro J.

2014-01-01

Many methods are available for the solution of radiative heat transfer problems in participating media. Among these, the discrete ordinates method (DOM) and the finite volume method (FVM) are among the most widely used ones. They provide a good compromise between accuracy and computational requirements, and they are relatively easy to integrate in CFD codes. This paper surveys recent advances on these numerical methods. Developments concerning the grid structure (e.g., new formulations for axisymmetrical geometries, body-fitted structured and unstructured meshes, embedded boundaries, multi-block grids, local grid refinement), the spatial discretization scheme, and the angular discretization scheme are described. Progress related to the solution accuracy, solution algorithm, alternative formulations, such as the modified DOM and FVM, even-parity formulation, discrete-ordinates interpolation method and method of lines, and parallelization strategies is addressed. The application to non-gray media, variable refractive index media, and transient problems is also reviewed. - Highlights: • We survey recent advances in the discrete ordinates and finite volume methods. • Developments in spatial and angular discretization schemes are described. • Progress in solution algorithms and parallelization methods is reviewed. • Advances in the transient solution of the radiative transfer equation are appraised. • Non-gray media and variable refractive index media are briefly addressed

4. Errors of the backextrapolation method in determination of the blood volume

Science.gov (United States)

Schröder, T.; Rösler, U.; Frerichs, I.; Hahn, G.; Ennker, J.; Hellige, G.

1999-01-01

Backextrapolation is an empirical method to calculate the central volume of distribution (for example the blood volume). It is based on the compartment model, which says that after an injection the substance is distributed instantaneously in the central volume with no time delay. The occurrence of recirculation is not taken into account. The change of concentration with time of indocyanine green (ICG) was observed in an in vitro model, in which the volume was recirculating in 60 s and the clearance of the ICG could be varied. It was found that the higher the elimination of ICG, the higher was the error of the backextrapolation method. The theoretical consideration of Schröder et al ( Biomed. Tech. 42 (1997) 7-11) was proved. If the injected substance is eliminated somewhere in the body (i.e. not by radioactive decay), the backextrapolation method produces large errors.

5. Method of monitoring volume activity of natural radioactive aerosol

International Nuclear Information System (INIS)

Dvorak, V.

1980-01-01

The method of monitoring radioactivity of a aerosol trapped, eg., with a filter is based on counting quasi-coincidences of the RaC-RaC' and ThC-ThC' decay. The first electronic unit counts quasi-coincidences at a time interval proportional to the ThC' half-life while the second electronic unit counts quasi-coincidences at a time interval proportional to the RaC' half-life, reduced by the time interval of the first electronic unit. The quasi-coincidences are evaluated of the RaC-RaC' decay independently of the ThC-ThC' quasi-coincidences and the decay products of the trapped radon and thoron gases are thus offset separately. (J.P.)

6. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 4, Organic methods

Energy Technology Data Exchange (ETDEWEB)

1993-08-01

This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics CO{sub 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics Model 5011 coulometer, and soxhlet extraction.

7. Comparison of different methods used in integral codes to model coagulation of aerosols

Science.gov (United States)

Beketov, A. I.; Sorokin, A. A.; Alipchenkov, V. M.; Mosunova, N. A.

2013-09-01

The methods for calculating coagulation of particles in the carrying phase that are used in the integral codes SOCRAT, ASTEC, and MELCOR, as well as the Hounslow and Jacobson methods used to model aerosol processes in the chemical industry and in atmospheric investigations are compared on test problems and against experimental results in terms of their effectiveness and accuracy. It is shown that all methods are characterized by a significant error in modeling the distribution function for micrometer particles if calculations are performed using rather "coarse" spectra of particle sizes, namely, when the ratio of the volumes of particles from neighboring fractions is equal to or greater than two. With reference to the problems considered, the Hounslow method and the method applied in the aerosol module used in the ASTEC code are the most efficient ones for carrying out calculations.

8. Calculating regional tissue volume for hyperthermic isolated limb perfusion: Four methods compared.

Science.gov (United States)

Cecchin, D; Negri, A; Frigo, A C; Bui, F; Zucchetta, P; Bodanza, V; Gregianin, M; Campana, L G; Rossi, C R; Rastrelli, M

2016-12-01

Hyperthermic isolated limb perfusion (HILP) can be performed as an alternative to amputation for soft tissue sarcomas and melanomas of the extremities. Melphalan and tumor necrosis factor-alpha are used at a dosage that depends on the volume of the limb. Regional tissue volume is traditionally measured for the purposes of HILP using water displacement volumetry (WDV). Although this technique is considered the gold standard, it is time-consuming and complicated to implement, especially in obese and elderly patients. The aim of the present study was to compare the different methods described in the literature for calculating regional tissue volume in the HILP setting, and to validate an open source software. We reviewed the charts of 22 patients (11 males and 11 females) who had non-disseminated melanoma with in-transit metastases or sarcoma of the lower limb. We calculated the volume of the limb using four different methods: WDV, tape measurements and segmentation of computed tomography images using Osirix and Oncentra Masterplan softwares. The overall comparison provided a concordance correlation coefficient (CCC) of 0.92 for the calculations of whole limb volume. In particular, when Osirix was compared with Oncentra (validated for volume measures and used in radiotherapy), the concordance was near-perfect for the calculation of the whole limb volume (CCC = 0.99). With methods based on CT the user can choose a reliable plane for segmentation purposes. CT-based methods also provides the opportunity to separate the whole limb volume into defined tissue volumes (cortical bone, fat and water). Copyright © 2016 Elsevier Ltd. All rights reserved.

9. Mixed methods in psychotherapy research: A review of method(ology) integration in psychotherapy science.

Science.gov (United States)

Bartholomew, Theodore T; Lockard, Allison J

2018-06-13

Mixed methods can foster depth and breadth in psychological research. However, its use remains in development in psychotherapy research. Our purpose was to review the use of mixed methods in psychotherapy research. Thirty-one studies were identified via the PRISMA systematic review method. Using Creswell & Plano Clark's typologies to identify design characteristics, we assessed each study for rigor and how each used mixed methods. Key features of mixed methods designs and these common patterns were identified: (a) integration of clients' perceptions via mixing; (b) understanding group psychotherapy; (c) integrating methods with cases and small samples; (d) analyzing clinical data as qualitative data; and (e) exploring cultural identities in psychotherapy through mixed methods. The review is discussed with respect to the value of integrating multiple data in single studies to enhance psychotherapy research. © 2018 Wiley Periodicals, Inc.

10. Comparative methods for quantifying thyroid volume using planar imaging and SPECT

International Nuclear Information System (INIS)

Zaidi, H.

1996-01-01

Thyroid volume determination using planar imaging is a procedure often performed in routine nuclear medicine, but is hampered by several physical difficulties, in particular by structures which overlie or underlie the organ of interest. SPECT enables improved accuracy over planar imaging in the determination of the volume since it is derived from the 3-D data rather than from a 2-D projection with a certain geometric assumption regarding the thyroid configuration. By using the phantoms of known volume, it was possible to estimate the accuracy of 3 different methods of determining thyroid volume from planar imaging used in clinical routine. The experimental results demonstrate that compared with conventional scintigraphy, thyroid phantom volumes were most accurately determined with SPECT when attenuation and scatter corrections are performed which allows accurate radiation dosimetry in humans without the need for assumptions on organ size or concentrations. Poster 181. (author)

11. Derivations of the solid angle subtended at a point by first- and second-order surfaces and volumes as a function of elliptic integrals

International Nuclear Information System (INIS)

Cramer, S.N.

1999-01-01

An analytical study of the solid angle subtended at a point by objects of first and second algebraic order has been made. It is shown that the derived solid angle for all such objects is in the form of a general elliptic integral, which can be written as a linear combination of elliptic integrals of the first and third kind and elementary functions. Many common surfaces and volumes have been investigated, including the conic sections and their volumes of revolution. The principal feature of the study is the manipulation of solid-angle equations into integral forms that can be matched with those found in handbook tables. These integrals are amenable to computer special function library routine analysis requiring no direct interaction with elliptic integrals by the user. The general case requires the solution of a fourth-order equation before specific solid-angle formulations can be made, but for many common geometric objects this equation can be solved by elementary means. Methods for the testing and application of solid-angle equations with Monte Carlo rejection and estimation techniques are presented. Approximate and degenerate forms of the equations are shown, and methods for the evaluation of the solid angle of a torus are outlined

12. Dhage Iteration Method for Generalized Quadratic Functional Integral Equations

Directory of Open Access Journals (Sweden)

Bapurao C. Dhage

2015-01-01

Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.

13. Entropic sampling in the path integral Monte Carlo method

International Nuclear Information System (INIS)

Vorontsov-Velyaminov, P N; Lyubartsev, A P

2003-01-01

We have extended the entropic sampling Monte Carlo method to the case of path integral representation of a quantum system. A two-dimensional density of states is introduced into path integral form of the quantum canonical partition function. Entropic sampling technique within the algorithm suggested recently by Wang and Landau (Wang F and Landau D P 2001 Phys. Rev. Lett. 86 2050) is then applied to calculate the corresponding entropy distribution. A three-dimensional quantum oscillator is considered as an example. Canonical distributions for a wide range of temperatures are obtained in a single simulation run, and exact data for the energy are reproduced

14. Design of a micro-irrigation system based on the control volume method

Directory of Open Access Journals (Sweden)

Chasseriaux G.

2006-01-01

Full Text Available A micro-irrigation system design based on control volume method using the back step procedure is presented in this study. The proposed numerical method is simple and consists of delimiting an elementary volume of the lateral equipped with an emitter, called « control volume » on which the conservation equations of the fl uid hydrodynamicʼs are applied. Control volume method is an iterative method to calculate velocity and pressure step by step throughout the micro-irrigation network based on an assumed pressure at the end of the line. A simple microcomputer program was used for the calculation and the convergence was very fast. When the average water requirement of plants was estimated, it is easy to choose the sum of the average emitter discharge as the total average fl ow rate of the network. The design consists of exploring an economical and effi cient network to deliver uniformly the input fl ow rate for all emitters. This program permitted the design of a large complex network of thousands of emitters very quickly. Three subroutine programs calculate velocity and pressure at a lateral pipe and submain pipe. The control volume method has already been tested for lateral design, the results from which were validated by other methods as fi nite element method, so it permits to determine the optimal design for such micro-irrigation network

15. A general multiblock Euler code for propulsion integration. Volume 1: Theory document

Science.gov (United States)

Chen, H. C.; Su, T. Y.; Kao, T. J.

1991-01-01

A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.

16. ICM: an Integrated Compartment Method for numerically solving partial differential equations

Energy Technology Data Exchange (ETDEWEB)

Yeh, G.T.

1981-05-01

An integrated compartment method (ICM) is proposed to construct a set of algebraic equations from a system of partial differential equations. The ICM combines the utility of integral formulation of finite element approach, the simplicity of interpolation of finite difference approximation, and the flexibility of compartment analyses. The integral formulation eases the treatment of boundary conditions, in particular, the Neumann-type boundary conditions. The simplicity of interpolation provides great economy in computation. The flexibility of discretization with irregular compartments of various shapes and sizes offers advantages in resolving complex boundaries enclosing compound regions of interest. The basic procedures of ICM are first to discretize the region of interest into compartments, then to apply three integral theorems of vectors to transform the volume integral to the surface integral, and finally to use interpolation to relate the interfacial values in terms of compartment values to close the system. The Navier-Stokes equations are used as an example of how to derive the corresponding ICM alogrithm for a given set of partial differential equations. Because of the structure of the algorithm, the basic computer program remains the same for cases in one-, two-, or three-dimensional problems.

17. High sensitive quench detection method using an integrated test wire

International Nuclear Information System (INIS)

Fevrier, A.; Tavergnier, J.P.; Nithart, H.; Kiblaire, M.; Duchateau, J.L.

1981-01-01

A high sensitive quench detection method which works even in the presence of an external perturbing magnetic field is reported. The quench signal is obtained from the difference in voltages at the superconducting winding terminals and at the terminals at a secondary winding strongly coupled to the primary. The secondary winding could consist of a ''zero-current strand'' of the superconducting cable not connected to one of the winding terminals or an integrated normal test wire inside the superconducting cable. Experimental results on quench detection obtained by this method are described. It is shown that the integrated test wire method leads to efficient and sensitive quench detection, especially in the presence of an external perturbing magnetic field

18. Integrating computational methods to retrofit enzymes to synthetic pathways.

Science.gov (United States)

Brunk, Elizabeth; Neri, Marilisa; Tavernelli, Ivano; Hatzimanikatis, Vassily; Rothlisberger, Ursula

2012-02-01

Microbial production of desired compounds provides an efficient framework for the development of renewable energy resources. To be competitive to traditional chemistry, one requirement is to utilize the full capacity of the microorganism to produce target compounds with high yields and turnover rates. We use integrated computational methods to generate and quantify the performance of novel biosynthetic routes that contain highly optimized catalysts. Engineering a novel reaction pathway entails addressing feasibility on multiple levels, which involves handling the complexity of large-scale biochemical networks while respecting the critical chemical phenomena at the atomistic scale. To pursue this multi-layer challenge, our strategy merges knowledge-based metabolic engineering methods with computational chemistry methods. By bridging multiple disciplines, we provide an integral computational framework that could accelerate the discovery and implementation of novel biosynthetic production routes. Using this approach, we have identified and optimized a novel biosynthetic route for the production of 3HP from pyruvate. Copyright © 2011 Wiley Periodicals, Inc.

19. Scintigraphic method for evaluating reductions in local blood volumes in human extremities

DEFF Research Database (Denmark)

2000-01-01

in the experiment. Evaluation of one versus two scintigraphic projections, trials for assessment of the reproducibility, a comparison of the scintigraphic method with a water-plethysmographic method and registration of the fractional reduction in blood volume caused by exsanguination as a result of simple elevation......% in the lower limb experiment and 6% in the upper limb experiment. We found a significant relation (r = 0.42, p = 0.018) between the results obtained by the scintigraphic method and the plethysmographic method. In fractions, a mean reduction in blood volume of 0.49+0.14 (2 SD) was found after 1 min of elevation......We introduce a new method for evaluating reductions in local blood volumes in extremities, based on the combined use of autologue injection of 99mTc-radiolabelled erythrocytes and clamping of the limb blood flow by the use of a tourniquet. Twenty-two healthy male volunteers participated...

20. Efficient 3D Volume Reconstruction from a Point Cloud Using a Phase-Field Method

Directory of Open Access Journals (Sweden)

Darae Jeong

2018-01-01

Full Text Available We propose an explicit hybrid numerical method for the efficient 3D volume reconstruction from unorganized point clouds using a phase-field method. The proposed three-dimensional volume reconstruction algorithm is based on the 3D binary image segmentation method. First, we define a narrow band domain embedding the unorganized point cloud and an edge indicating function. Second, we define a good initial phase-field function which speeds up the computation significantly. Third, we use a recently developed explicit hybrid numerical method for solving the three-dimensional image segmentation model to obtain efficient volume reconstruction from point cloud data. In order to demonstrate the practical applicability of the proposed method, we perform various numerical experiments.

1. Electre III method in assessment of variants of integrated urban public transport system in Cracow

Directory of Open Access Journals (Sweden)

Katarzyna SOLECKA

2014-12-01

Full Text Available There is a lot of methods which are currently used for assessment of urban public transport system development and operation e.g. economic analysis, mostly Cost-Benefit Analysis – CBA, Cost-Effectiveness Analysis - CEA, hybrid methods, measurement methods (survey e.g. among passengers and measurement of traffic volume, vehicles capacity etc., and multicriteria decision aiding methods (multicriteria analysis. The main aim of multicriteria analysis is the choice of the most desirable solution from among alternative variants according to different criteria which are difficult to compare against one another. There are several multicriteria methods for assessment of urban public transport system development and operation, e.g. AHP, ANP, Electre, Promethee, Oreste. The paper presents an application of one of the most popular variant ranking methods – Electre III method. The algorithm of Electre III method usage is presented in detail and then its application for assessment of variants of urban public transport system integration in Cracow is shown. The final ranking of eight variants of integration of urban public transport system in Cracow (from the best to the worst variant was drawn up with the application of the Electre III method. For assessment purposes 10 criteria were adopted: economical, technical, environmental, and social; they form a consistent criteria family. The problem was analyzed with taking into account different points of view: city authorities, public transport operators, city units responsible for transport management, passengers and others users. Separate models of preferences for all stakeholders were created.

2. Reduced caudate volume and enhanced striatal-DMN integration in chess experts.

Science.gov (United States)

Duan, Xujun; He, Sheng; Liao, Wei; Liang, Dongmei; Qiu, Lihua; Wei, Luqing; Li, Yuan; Liu, Chengyi; Gong, Qiyong; Chen, Huafu

2012-04-02

The superior capability of chess experts largely depends on quick automatic processing skills which are considered to be mediated by the caudate nucleus. We asked whether continued practice or rehearsal of the skill over a long period of time can lead to structural changes in this region. We found that, comparing to novice controls, grandmaster and master level Chinese chess players (GM/Ms), who had a mean period of over 10years of tournament and training practice, exhibited significant smaller gray-matter volume in the bilateral caudate nuclei. When these regions were used as seeds in functional connectivity analysis in resting-state fMRI, significantly enhanced integration was found in GM/Ms between the caudate and the default mode network (DMN), a constellation of brain areas important for goal-directed cognitive performance and theory of mind. These findings demonstrate the structural changes in the caudate nucleus in response to its extensive engagement in chess problem solving, and its enhanced functional integration with widely distributed circuitry to better support high-level cognitive control of behavior. Copyright Â© 2012 Elsevier Inc. All rights reserved.

3. Nuclear methods - an integral part of the NBS certification program

International Nuclear Information System (INIS)

Gills, T.E.

1984-01-01

Within the past twenty years, new techniques and methods have emerged in response to new technologies that are based upon the performance of high-purity and well-characterized materials. The National Bureau of Standards, through its Standard Reference Materials (SRM's) Program, provides standards in the form of many of these materials to ensure accuracy and the compatibility of measurements throughout the US and the world. These standards, defined by the National Bureau of Standards as Standard Reference Materials (SRMs), are developed by using state-of-the-art methods and procedures for both preparation and analysis. Nuclear methods-activation analysis constitute an integral part of that analysis process

4. A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers

KAUST Repository

Bagci, Hakan

2015-01-01

Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability

5. A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers

KAUST Repository

Bagci, Hakan

2015-01-07

Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability

6. Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Ultrasonic Method

International Nuclear Information System (INIS)

Jeong, Hyun Jo

1998-01-01

A nondestructive ultrasonic technique is presented for estimating the reinforcement volume fractions of particulate composites. The proposed technique employs a theoretical model which accounts for composite microstructures, together with a measurement of ultrasonic velocity to determine the reinforcement volume fractions. The approach is used for a wide range of SiC particulate reinforced Al matrix (SiC p /AI) composites. The method is considered to be reliable in determining the reinforcement volume fractions. The technique could be adopted in a production unit for the quality assessment of the metal matrix particulate composite extrusions

7. Impedance ratio method for urine conductivity-invariant estimation of bladder volume

Directory of Open Access Journals (Sweden)

Thomas Schlebusch

2014-09-01

Full Text Available Non-invasive estimation of bladder volume could help patients with impaired bladder volume sensation to determine the right moment for catheterisation. Continuous, non-invasive impedance measurement is a promising technology in this scenario, although influences of body posture and unknown urine conductivity limit wide clinical use today. We studied impedance changes related to bladder volume by simulation, in-vitro and in-vivo measurements with pigs. In this work, we present a method to reduce the influence of urine conductivity to cystovolumetry and bring bioimpedance cystovolumetry closer to a clinical application.

8. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

Directory of Open Access Journals (Sweden)

Hendry Sakke Tira

2016-05-01

Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

9. Effect of Water Volume and Biogas Volumetric Flowrate in Biogas Purification Through Water Scrubbing Method

Directory of Open Access Journals (Sweden)

Hendry Sakke Tira

2014-10-01

Full Text Available Energy supply is a crucial issue in the world in the last few years. The increase in energy demand caused by population growth and resource depletion of world oil reserves provides determination to produce and to use renewable energies. One of the them is biogas. However, until now the use of biogas has not yet been maximized because of its poor purity. According to the above problem, the research has been carried out using the method of water absorption. Under this method it is expected that the rural community is able to apply it. Therefore, their economy and productivity can be increased. This study includes variations of absorbing water volume (V and input biogas volume flow rate (Q. Raw biogas which is flowed into the absorbent will be analyzed according to the determined absorbing water volume and input biogas volume rate. Improvement on biogas composition through the biogas purification method was obtained. The level of CO2 and H2S was reduced significantly specifically in the early minutes of purification process. On the other hand, the level of CH4 was increased improving the quality of raw biogas. However, by the time of biogas purification the composition of purified biogas was nearly similar to the raw biogas. The main reason for this result was an increasing in pH of absorbent. It was shown that higher water volume and slower biogas volume rate obtained better results in reducing the CO2 and H2S and increasing CH4 compared to those of lower water volume and higher biogas volume rate respectively. The purification method has a good promising in improving the quality of raw biogas and has advantages as it is cheap and easy to be operated.

10. Direct integration multiple collision integral transport analysis method for high energy fusion neutronics

International Nuclear Information System (INIS)

Koch, K.R.

1985-01-01

A new analysis method specially suited for the inherent difficulties of fusion neutronics was developed to provide detailed studies of the fusion neutron transport physics. These studies should provide a better understanding of the limitations and accuracies of typical fusion neutronics calculations. The new analysis method is based on the direct integration of the integral form of the neutron transport equation and employs a continuous energy formulation with the exact treatment of the energy angle kinematics of the scattering process. In addition, the overall solution is analyzed in terms of uncollided, once-collided, and multi-collided solution components based on a multiple collision treatment. Furthermore, the numerical evaluations of integrals use quadrature schemes that are based on the actual dependencies exhibited in the integrands. The new DITRAN computer code was developed on the Cyber 205 vector supercomputer to implement this direct integration multiple-collision fusion neutronics analysis. Three representative fusion reactor models were devised and the solutions to these problems were studied to provide suitable choices for the numerical quadrature orders as well as the discretized solution grid and to understand the limitations of the new analysis method. As further verification and as a first step in assessing the accuracy of existing fusion-neutronics calculations, solutions obtained using the new analysis method were compared to typical multigroup discrete ordinates calculations

11. Fast multiview three-dimensional reconstruction method using cost volume filtering

Science.gov (United States)

Lee, Seung Joo; Park, Min Ki; Jang, In Yeop; Lee, Kwan H.

2014-03-01

As the number of customers who want to record three-dimensional (3-D) information using a mobile electronic device increases, it becomes more and more important to develop a method which quickly reconstructs a 3-D model from multiview images. A fast multiview-based 3-D reconstruction method is presented, which is suitable for the mobile environment by constructing a cost volume of the 3-D height field. This method consists of two steps: the construction of a reliable base surface and the recovery of shape details. In each step, the cost volume is constructed using photoconsistency and then it is filtered according to the multiscale. The multiscale-based cost volume filtering allows the 3-D reconstruction to maintain the overall shape and to preserve the shape details. We demonstrate the strength of the proposed method in terms of computation time, accuracy, and unconstrained acquisition environment.

12. Method of phase-Doppler anemometry free from the measurement-volume effect.

Science.gov (United States)

Qiu, H; Hsu, C T

1999-05-01

A novel method is developed to improve the accuracy of particle sizing in laser phase-Doppler anemometry (PDA). In this method the vector sum of refractive and reflective rays is taken into consideration in describing a dual-mechanism-scattering model caused by a nonuniformly illuminated PDA measurement volume. The constraint of the single-mechanism-scattering model in the conventional PDA is removed. As a result the error caused by the measurement-volume effect, which consists of a Gaussian-beam defect and a slit effect, can be eliminated. This new method can be easily implemented with minimal modification of the conventional PDA system. The results of simulation based on the generalized Lorenz-Mie theory show that the new method can provide a PDA system free from the measurement-volume effect.

13. Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids

Directory of Open Access Journals (Sweden)

Sudi Mungkasi

2016-01-01

Full Text Available This paper presents a numerical entropy production (NEP scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volume method. Numerical simulations show that NEP is successful to be a refinement/coarsening indicator in the adaptive mesh finite volume method, as the method refines the mesh or grids around nonsmooth regions and coarsens them around smooth regions.

14. A novel OPC method to reduce mask volume with yield-aware dissection

International Nuclear Information System (INIS)

Xie Chunlei; Chen Ye; Shi Zheng

2013-01-01

Growing data volume of masks tremendously increases manufacture cost. The cost increase is partially due to the complicated optical proximity corrections applied on mask design. In this paper, a yield-aware dissection method is presented. Based on the recognition of yield related mask context, the dissection result provides sufficient degrees of freedom to keep fidelity on critical sites while still retaining the frugality of modified designs. Experiments show that the final mask volume using the new method is reduced to about 50% of the conventional method. (semiconductor technology)

15. Using gas blow methods to realize accurate volume measurement of radioactivity liquid

International Nuclear Information System (INIS)

Zhang Caiyun

2010-01-01

For liquid which has radioactivity, Realized the accurate volume measurement uncertainty less than 0.2% (k=2) by means of gas blow methods presented in the 'American National Standard-Nuclear Material Control-Volume Calibration Methods(ANSI N15.19-1989)' and the 'ISO Committee Drafts (ISO/TC/85/SC 5N 282 )' and Explored a set methods of Data Processing. In the article, the major problems is to solve data acquisition and function foundation and measurement uncertainty estimate. (authors)

16. A lattice Boltzmann coupled to finite volumes method for solving phase change problems

Directory of Open Access Journals (Sweden)

El Ganaoui Mohammed

2009-01-01

Full Text Available A numerical scheme coupling lattice Boltzmann and finite volumes approaches has been developed and qualified for test cases of phase change problems. In this work, the coupled partial differential equations of momentum conservation equations are solved with a non uniform lattice Boltzmann method. The energy equation is discretized by using a finite volume method. Simulations show the ability of this developed hybrid method to model the effects of convection, and to predict transfers. Benchmarking is operated both for conductive and convective situation dominating solid/liquid transition. Comparisons are achieved with respect to available analytical solutions and experimental results.

17. Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method

International Nuclear Information System (INIS)

Xi Li-Ying; Chen Huan-Ming; Zheng Fu; Gao Hua; Tong Yang; Ma Zhi

2015-01-01

Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg–Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems. (paper)

18. The discrete ordinate method in association with the finite-volume method in non-structured mesh; Methode des ordonnees discretes associee a la methode des volumes finis en maillage non structure

Energy Technology Data Exchange (ETDEWEB)

Le Dez, V; Lallemand, M [Ecole Nationale Superieure de Mecanique et d Aerotechnique (ENSMA), 86 - Poitiers (France); Sakami, M; Charette, A [Quebec Univ., Chicoutimi, PQ (Canada). Dept. des Sciences Appliquees

1997-12-31

The description of an efficient method of radiant heat transfer field determination in a grey semi-transparent environment included in a 2-D polygonal cavity with surface boundaries that reflect the radiation in a purely diffusive manner is proposed, at the equilibrium and in radiation-conduction coupling situation. The technique uses simultaneously the finite-volume method in non-structured triangular mesh, the discrete ordinate method and the ray shooting method. The main mathematical developments and comparative results with the discrete ordinate method in orthogonal curvilinear coordinates are included. (J.S.) 10 refs.

19. The discrete ordinate method in association with the finite-volume method in non-structured mesh; Methode des ordonnees discretes associee a la methode des volumes finis en maillage non structure

Energy Technology Data Exchange (ETDEWEB)

Le Dez, V.; Lallemand, M. [Ecole Nationale Superieure de Mecanique et dAerotechnique (ENSMA), 86 - Poitiers (France); Sakami, M.; Charette, A. [Quebec Univ., Chicoutimi, PQ (Canada). Dept. des Sciences Appliquees

1996-12-31

The description of an efficient method of radiant heat transfer field determination in a grey semi-transparent environment included in a 2-D polygonal cavity with surface boundaries that reflect the radiation in a purely diffusive manner is proposed, at the equilibrium and in radiation-conduction coupling situation. The technique uses simultaneously the finite-volume method in non-structured triangular mesh, the discrete ordinate method and the ray shooting method. The main mathematical developments and comparative results with the discrete ordinate method in orthogonal curvilinear coordinates are included. (J.S.) 10 refs.

20. An innovative method of planning and displaying flap volume in DIEP flap breast reconstructions.

Science.gov (United States)

Hummelink, S; Verhulst, Arico C; Maal, Thomas J J; Hoogeveen, Yvonne L; Schultze Kool, Leo J; Ulrich, Dietmar J O

2017-07-01

Determining the ideal volume of the harvested flap to achieve symmetry in deep inferior epigastric artery perforator (DIEP) flap breast reconstructions is complex. With preoperative imaging techniques such as 3D stereophotogrammetry and computed tomography angiography (CTA) available nowadays, we can combine information to preoperatively plan the optimal flap volume to be harvested. In this proof-of-concept, we investigated whether projection of a virtual flap planning onto the patient's abdomen using a projection method could result in harvesting the correct flap volume. In six patients (n = 9 breasts), 3D stereophotogrammetry and CTA data were combined from which a virtual flap planning was created comprising perforator locations, blood vessel trajectory and flap size. All projected perforators were verified with Doppler ultrasound. Intraoperative flap measurements were collected to validate the determined flap delineation volume. The measured breast volume using 3D stereophotogrammetry was 578 ± 127 cc; on CTA images, 527 ± 106 cc flap volumes were planned. The nine harvested flaps weighed 533 ± 109 g resulting in a planned versus harvested flap mean difference of 5 ± 27 g (flap density 1.0 g/ml). In 41 out of 42 projected perforator locations, a Doppler signal was audible. This proof-of-concept shows in small numbers that flap volumes can be included into a virtual DIEP flap planning, and transferring the virtual planning to the patient through a projection method results in harvesting approximately the same volume during surgery. In our opinion, this innovative approach is the first step in consequently achieving symmetric breast volumes in DIEP flap breast reconstructions. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

1. An Integrated Method of Supply Chains Vulnerability Assessment

Directory of Open Access Journals (Sweden)

Jiaguo Liu

2016-01-01

Full Text Available Supply chain vulnerability identification and evaluation are extremely important to mitigate the supply chain risk. We present an integrated method to assess the supply chain vulnerability. The potential failure mode of the supply chain vulnerability is analyzed through the SCOR model. Combining the fuzzy theory and the gray theory, the correlation degree of each vulnerability indicator can be calculated and the target improvements can be carried out. In order to verify the effectiveness of the proposed method, we use Kendall’s tau coefficient to measure the effect of different methods. The result shows that the presented method has the highest consistency in the assessment compared with the other two methods.

2. Field Method for Integrating the First Order Differential Equation

Institute of Scientific and Technical Information of China (English)

JIA Li-qun; ZHENG Shi-wang; ZHANG Yao-yu

2007-01-01

An important modern method in analytical mechanics for finding the integral, which is called the field-method, is used to research the solution of a differential equation of the first order. First, by introducing an intermediate variable, a more complicated differential equation of the first order can be expressed by two simple differential equations of the first order, then the field-method in analytical mechanics is introduced for solving the two differential equations of the first order. The conclusion shows that the field-method in analytical mechanics can be fully used to find the solutions of a differential equation of the first order, thus a new method for finding the solutions of the first order is provided.

3. Computing thermal Wigner densities with the phase integration method

International Nuclear Information System (INIS)

Beutier, J.; Borgis, D.; Vuilleumier, R.; Bonella, S.

2014-01-01

We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta and coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems

4. Computing thermal Wigner densities with the phase integration method.

Science.gov (United States)

Beutier, J; Borgis, D; Vuilleumier, R; Bonella, S

2014-08-28

We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta and coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems.

5. Methods for Developing Emissions Scenarios for Integrated Assessment Models

Energy Technology Data Exchange (ETDEWEB)

Prinn, Ronald [MIT; Webster, Mort [MIT

2007-08-20

The overall objective of this research was to contribute data and methods to support the future development of new emissions scenarios for integrated assessment of climate change. Specifically, this research had two main objectives: 1. Use historical data on economic growth and energy efficiency changes, and develop probability density functions (PDFs) for the appropriate parameters for two or three commonly used integrated assessment models. 2. Using the parameter distributions developed through the first task and previous work, we will develop methods of designing multi-gas emission scenarios that usefully span the joint uncertainty space in a small number of scenarios. Results on the autonomous energy efficiency improvement (AEEI) parameter are summarized, an uncertainty analysis of elasticities of substitution is described, and the probabilistic emissions scenario approach is presented.

6. Methods in Entrepreneurship Education Research: A Review and Integrative Framework

DEFF Research Database (Denmark)

Blenker, Per; Trolle Elmholdt, Stine; Frederiksen, Signe Hedeboe

2014-01-01

is fragmented both conceptually and methodologically. Findings suggest that the methods applied in entrepreneurship education research cluster in two groups: 1. quantitative studies of the extent and effect of entrepreneurship education, and 2. qualitative single case studies of different courses and programmes....... It integrates qualitative and quantitative techniques, the use of research teams consisting of insiders (teachers studying their own teaching) and outsiders (research collaborators studying the education) as well as multiple types of data. To gain both in-depth and analytically generalizable studies...... a variety of helpful methods, explore the potential relation between insiders and outsiders in the research process, and discuss how different types of data can be combined. The integrated framework urges researchers to extend investments in methodological efforts and to enhance the in-depth understanding...

7. A control volume based finite difference method for solving the equilibrium equations in terms of displacements

DEFF Research Database (Denmark)

Hattel, Jesper; Hansen, Preben

1995-01-01

This paper presents a novel control volume based FD method for solving the equilibrium equations in terms of displacements, i.e. the generalized Navier equations. The method is based on the widely used cv-FDM solution of heat conduction and fluid flow problems involving a staggered grid formulati....... The resulting linear algebraic equations are solved by line-Gauss-Seidel....

8. System integrational and migrational concepts and methods within healthcare

DEFF Research Database (Denmark)

Endsleff, F; Loubjerg, P

1997-01-01

In this paper an overview and comparison of the basic concepts and methods behind different system integrational implementations is given, including the DHE, which is based on the coming Healthcare Information Systems Architecture pre-standard HISA, developed by CEN TC251. This standard and the DHE...... (Distributed Healthcare Environment) not only provides highly relevant standards, but also provides an efficient and well structured platform for Healthcare IT Systems....

9. A geometrical method towards first integrals for dynamical systems

International Nuclear Information System (INIS)

Labrunie, S.; Conte, R.

1996-01-01

We develop a method, based on Darboux close-quote s and Liouville close-quote s works, to find first integrals and/or invariant manifolds for a physically relevant class of dynamical systems, without making any assumption on these elements close-quote forms. We apply it to three dynamical systems: Lotka endash Volterra, Lorenz and Rikitake. copyright 1996 American Institute of Physics

10. Towards risk-based structural integrity methods for PWRs

International Nuclear Information System (INIS)

Chapman, O.J.V.; Lloyd, R.B.

1992-01-01

This paper describes the development of risk-based structural integrity assurance methods and their application to Pressurized Water Reactor (PWR) plant. In-service inspection is introduced as a way of reducing the failure probability of high risk sites and the latter are identified using reliability analysis; the extent and interval of inspection can also be optimized. The methodology is illustrated by reference to the aspect of reliability of weldments in PWR systems. (author)

11. INTEGRATED APPLICATION OF OPTICAL DIAGNOSTIC METHODS IN ULCERATIVE COLITIS

Directory of Open Access Journals (Sweden)

E. V. Velikanov

2013-01-01

Full Text Available Abstract. Our results suggest that the combined use of optical coherent tomography (OCT and fluorescence diagnosis helps to refine the nature and boundaries of the pathological process in the tissue of the colon in ulcerative colitis. Studies have shown that an integrated optical diagnostics allows us to differentiate lesions respectively to histology and to decide on the need for biopsy and venue. This method is most appropriate in cases difficult for diagnosis.

12. Long-Term Prediction of Emergency Department Revenue and Visitor Volume Using Autoregressive Integrated Moving Average Model

Directory of Open Access Journals (Sweden)

Chieh-Fan Chen

2011-01-01

Full Text Available This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume.

13. The development of a volume element model for energy systems engineering and integrative thermodynamic optimization

Science.gov (United States)

Yang, Sam

The dissertation presents the mathematical formulation, experimental validation, and application of a volume element model (VEM) devised for modeling, simulation, and optimization of energy systems in their early design stages. The proposed model combines existing modeling techniques and experimental adjustment to formulate a reduced-order model, while retaining sufficient accuracy to serve as a practical system-level design analysis and optimization tool. In the VEM, the physical domain under consideration is discretized in space using lumped hexahedral elements (i.e., volume elements), and the governing equations for the variable of interest are applied to each element to quantify diverse types of flows that cross it. Subsequently, a system of algebraic and ordinary differential equations is solved with respect to time and scalar (e.g., temperature, relative humidity, etc.) fields are obtained in both spatial and temporal domains. The VEM is capable of capturing and predicting dynamic physical behaviors in the entire system domain (i.e., at system level), including mutual interactions among system constituents, as well as with their respective surroundings and cooling systems, if any. The VEM is also generalizable; that is, the model can be easily adapted to simulate and optimize diverse systems of different scales and complexity and attain numerical convergence with sufficient accuracy. Both the capability and generalizability of the VEM are demonstrated in the dissertation via thermal modeling and simulation of an Off-Grid Zero Emissions Building, an all-electric ship, and a vapor compression refrigeration (VCR) system. Furthermore, the potential of the VEM as an optimization tool is presented through the integrative thermodynamic optimization of a VCR system, whose results are used to evaluate the trade-offs between various objective functions, namely, coefficient of performance, second law efficiency, pull-down time, and refrigerated space temperature, in

14. Structural reliability calculation method based on the dual neural network and direct integration method.

Science.gov (United States)

Li, Haibin; He, Yun; Nie, Xiaobo

2018-01-01

Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.

15. Evaluation of the filtered leapfrog-trapezoidal time integration method

International Nuclear Information System (INIS)

Roache, P.J.; Dietrich, D.E.

1988-01-01

An analysis and evaluation are presented for a new method of time integration for fluid dynamic proposed by Dietrich. The method, called the filtered leapfrog-trapezoidal (FLT) scheme, is analyzed for the one-dimensional constant-coefficient advection equation and is shown to have some advantages for quasi-steady flows. A modification (FLTW) using a weighted combination of FLT and leapfrog is developed which retains the advantages for steady flows, increases accuracy for time-dependent flows, and involves little coding effort. Merits and applicability are discussed

16. Investigation of Optimal Integrated Circuit Raster Image Vectorization Method

Directory of Open Access Journals (Sweden)

Leonas Jasevičius

2011-03-01

Full Text Available Visual analysis of integrated circuit layer requires raster image vectorization stage to extract layer topology data to CAD tools. In this paper vectorization problems of raster IC layer images are presented. Various line extraction from raster images algorithms and their properties are discussed. Optimal raster image vectorization method was developed which allows utilization of common vectorization algorithms to achieve the best possible extracted vector data match with perfect manual vectorization results. To develop the optimal method, vectorized data quality dependence on initial raster image skeleton filter selection was assessed.Article in Lithuanian

17. A simple, quantitative method using alginate gel to determine rat colonic tumor volume in vivo.

Science.gov (United States)

Irving, Amy A; Young, Lindsay B; Pleiman, Jennifer K; Konrath, Michael J; Marzella, Blake; Nonte, Michael; Cacciatore, Justin; Ford, Madeline R; Clipson, Linda; Amos-Landgraf, James M; Dove, William F

2014-04-01

Many studies of the response of colonic tumors to therapeutics use tumor multiplicity as the endpoint to determine the effectiveness of the agent. These studies can be greatly enhanced by accurate measurements of tumor volume. Here we present a quantitative method to easily and accurately determine colonic tumor volume. This approach uses a biocompatible alginate to create a negative mold of a tumor-bearing colon; this mold is then used to make positive casts of dental stone that replicate the shape of each original tumor. The weight of the dental stone cast correlates highly with the weight of the dissected tumors. After refinement of the technique, overall error in tumor volume was 16.9% ± 7.9% and includes error from both the alginate and dental stone procedures. Because this technique is limited to molding of tumors in the colon, we utilized the Apc(Pirc/+) rat, which has a propensity for developing colonic tumors that reflect the location of the majority of human intestinal tumors. We have successfully used the described method to determine tumor volumes ranging from 4 to 196 mm³. Alginate molding combined with dental stone casting is a facile method for determining tumor volume in vivo without costly equipment or knowledge of analytic software. This broadly accessible method creates the opportunity to objectively study colonic tumors over time in living animals in conjunction with other experiments and without transferring animals from the facility where they are maintained.

18. Finite volume method for radiative heat transfer in an unstructured flow solver for emitting, absorbing and scattering media

International Nuclear Information System (INIS)

Gazdallah, Moncef; Feldheim, Véronique; Claramunt, Kilian; Hirsch, Charles

2012-01-01

This paper presents the implementation of the finite volume method to solve the radiative transfer equation in a commercial code. The particularity of this work is that the method applied on unstructured hexahedral meshes does not need a pre-processing step establishing a particular marching order to visit all the control volumes. The solver simply visits the faces of the control volumes as numbered in the hexahedral unstructured mesh. A cell centred mesh and a spatial differencing step scheme to relate facial radiative intensities to nodal intensities is used. The developed computer code based on FVM has been integrated in the CFD solver FINE/Open from NUMECA Int. Radiative heat transfer can be evaluated within systems containing uniform, grey, emitting, absorbing and/or isotropically or linear anisotropically scattering medium bounded by diffuse grey walls. This code has been validated for three test cases. The first one is a three dimensional rectangular enclosure filled with emitting, absorbing and anisotropically scattering media. The second is the differentially heated cubic cavity. The third one is the L-shaped enclosure. For these three test cases a good agreement has been observed when temperature and heat fluxes predictions are compared with references taken, from literature.

19. 3D automatic segmentation method for retinal optical coherence tomography volume data using boundary surface enhancement

Directory of Open Access Journals (Sweden)

Yankui Sun

2016-03-01

Full Text Available With the introduction of spectral-domain optical coherence tomography (SD-OCT, much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, there is a critical need for the development of three-dimensional (3D segmentation methods for processing these data. We present here a novel 3D automatic segmentation method for retinal OCT volume data. Briefly, to segment a boundary surface, two OCT volume datasets are obtained by using a 3D smoothing filter and a 3D differential filter. Their linear combination is then calculated to generate new volume data with an enhanced boundary surface, where pixel intensity, boundary position information, and intensity changes on both sides of the boundary surface are used simultaneously. Next, preliminary discrete boundary points are detected from the A-Scans of the volume data. Finally, surface smoothness constraints and a dynamic threshold are applied to obtain a smoothed boundary surface by correcting a small number of error points. Our method can extract retinal layer boundary surfaces sequentially with a decreasing search region of volume data. We performed automatic segmentation on eight human OCT volume datasets acquired from a commercial Spectralis OCT system, where each volume of datasets contains 97 OCT B-Scan images with a resolution of 496×512 (each B-Scan comprising 512 A-Scans containing 496 pixels; experimental results show that this method can accurately segment seven layer boundary surfaces in normal as well as some abnormal eyes.

20. Numerical method for solving integral equations of neutron transport. II

International Nuclear Information System (INIS)

Loyalka, S.K.; Tsai, R.W.

1975-01-01

In a recent paper it was pointed out that the weakly singular integral equations of neutron transport can be quite conveniently solved by a method based on subtraction of singularity. This previous paper was devoted entirely to the consideration of simple one-dimensional isotropic-scattering and one-group problems. The present paper constitutes interesting extensions of the previous work in that in addition to a typical two-group anisotropic-scattering albedo problem in the slab geometry, the method is also applied to an isotropic-scattering problem in the x-y geometry. These results are compared with discrete S/sub N/ (ANISN or TWOTRAN-II) results, and for the problems considered here, the proposed method is found to be quite effective. Thus, the method appears to hold considerable potential for future applications. (auth)

1. Transient analysis of electromagnetic wave interactions on high-contrast scatterers using volume electric field integral equation

KAUST Repository

Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

2014-01-01

A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using

2. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms.

Science.gov (United States)

Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian

2015-02-09

A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible.

3. Altered gray matter volume and white matter integrity in college students with mobile phone dependence

Directory of Open Access Journals (Sweden)

Yongming eWang

2016-05-01

Full Text Available Mobile phone dependence (MPD is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI. Gray matter volume (GMV and white matter (WM integrity (four indexes: fractional anisotropy, FA; mean diffusivity, MD; axial diffusivity, AD; and radial diffusivity, RD were calculated via voxel-based morphometry (VBM and tract-based spatial statistics (TBSS analysis, respectively. Sixty-eight college students (42 female were enrolled and separated into two groups (MPD group, N=34; control group, N=34 based on Mobile Phone Addiction Index (MPAI scale score. Trait impulsivity was also measured using the Barrett Impulsivity Scale (BIS-11. In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG, right inferior frontal gyrus (iFG, and bilateral thalamus (Thal. In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of white matter integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH. Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with phone-overuse, and may help to better understand the neural mechanisms of MPD in relation with other behavioral and substance addiction disorders.

4. Altered Gray Matter Volume and White Matter Integrity in College Students with Mobile Phone Dependence.

Science.gov (United States)

Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d'Oleire Uquillas, Federico; Huang, Xiting

2016-01-01

Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); and radial diffusivity (RD)] were calculated via voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis, respectively. Sixty-eight college students (42 female) were enrolled and separated into two groups [MPD group, N = 34; control group (CG), N = 34] based on Mobile Phone Addiction Index (MPAI) scale score. Trait impulsivity was also measured using the Barratt Impulsiveness Scale (BIS-11). In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG), right inferior frontal gyrus (iFG), and bilateral thalamus (Thal). In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of WM integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH). Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with mobile phone overuse, and may help to better understand the neural mechanisms of MPD in relation to other behavioral and substance addiction disorders.

5. Altered Gray Matter Volume and White Matter Integrity in College Students with Mobile Phone Dependence

Science.gov (United States)

Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d’Oleire Uquillas, Federico; Huang, Xiting

2016-01-01

Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); and radial diffusivity (RD)] were calculated via voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis, respectively. Sixty-eight college students (42 female) were enrolled and separated into two groups [MPD group, N = 34; control group (CG), N = 34] based on Mobile Phone Addiction Index (MPAI) scale score. Trait impulsivity was also measured using the Barratt Impulsiveness Scale (BIS-11). In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG), right inferior frontal gyrus (iFG), and bilateral thalamus (Thal). In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of WM integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH). Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with mobile phone overuse, and may help to better understand the neural mechanisms of MPD in relation to other behavioral and substance addiction disorders. PMID:27199831

6. Volume of Structures in the Fetal Brain Measured with a New Semiautomated Method.

Science.gov (United States)

Ber, R; Hoffman, D; Hoffman, C; Polat, A; Derazne, E; Mayer, A; Katorza, E

2017-11-01

Measuring the volume of fetal brain structures is challenging due to fetal motion, low resolution, and artifacts caused by maternal tissue. Our aim was to introduce a new, simple, Matlab-based semiautomated method to measure the volume of structures in the fetal brain and present normal volumetric curves of the structures measured. The volume of the supratentorial brain, left and right hemispheres, cerebellum, and left and right eyeballs was measured retrospectively by the new semiautomated method in MR imaging examinations of 94 healthy fetuses. Four volume ratios were calculated. Interobserver agreement was calculated with the intraclass correlation coefficient, and a Bland-Altman plot was drawn for comparison of manual and semiautomated method measurements of the supratentorial brain. We present normal volumetric curves and normal percentile values of the structures measured according to gestational age and of the ratios between the cerebellum and the supratentorial brain volume and the total eyeball and the supratentorial brain volume. Interobserver agreement was good or excellent for all structures measured. The Bland-Altman plot between manual and semiautomated measurements showed a maximal relative difference of 7.84%. We present a technologically simple, reproducible method that can be applied prospectively and retrospectively on any MR imaging protocol, and we present normal volumetric curves measured. The method shows results like manual measurements while being less time-consuming and user-dependent. By applying this method on different cranial and extracranial structures, anatomic and pathologic, we believe that fetal volumetry can turn from a research tool into a practical clinical one. © 2017 by American Journal of Neuroradiology.

7. Endoscopic clipping for gastrointestinal tumors. A method to define the target volume more precisely

International Nuclear Information System (INIS)

Riepl, M.; Klautke, G.; Fehr, R.; Fietkau, R.; Pietsch, A.

2000-01-01

Background: In many cases it is not possible to exactly define the extension of carcinoma of the gastrointestinal tract with the help of computertomography scans made for 3-D-radiation treatment planning. Consequently, the planning of external beam radiotherapy is made more difficult for the gross tumor volume as well as, in some cases, also for the clinical target volume. Patients and Methods: Eleven patients with macrosocpic tumors (rectal cancer n = 5, cardiac cancer n = 6) were included. Just before 3-D planning, the oral and aboral border of the tumor was marked endoscopically with hemoclips. Subsequently, CT scans for radiotherapy planning were made and the clinical target volume was defined. Five to 6 weeks thereafter, new CT scans were done to define the gross tumor volume for boost planning. Two investigators independently assessed the influence of the hemoclips on the different planning volumes, and whether the number of clips was sufficient to define the gross tumor volume. Results: In all patients, the implantation of the clips was done without complications. Start of radiotherapy was not delayed. With the help of the clips it was possible to exactly define the position and the extension of the primary tumor. The clinical target volume was modified according to the position of the clips in 5/11 patients; the gross tumor volume was modified in 7/11 patients. The use of the clips made the documentation and verification of the treatment portals by the simulator easier. Moreover, the clips helped the surgeon to define the primary tumor region following marked regression after neoadjuvant therapy in 3 patients. Conclusions: Endoscopic clipping of gastrointestinal tumors helps to define the tumor volumes more precisely in radiation therapy. The clips are easily recognized on the portal films and, thus, contribute to quality control. (orig.) [de

8. Comparison of Three Different Methods for Pile Integrity Testing on a Cylindrical Homogeneous Polyamide Specimen

Science.gov (United States)

Lugovtsova, Y. D.; Soldatov, A. I.

2016-01-01

Three different methods for pile integrity testing are proposed to compare on a cylindrical homogeneous polyamide specimen. The methods are low strain pile integrity testing, multichannel pile integrity testing and testing with a shaker system. Since the low strain pile integrity testing is well-established and standardized method, the results from it are used as a reference for other two methods.

9. Weibull statistics effective area and volume in the ball-on-ring testing method

DEFF Research Database (Denmark)

Frandsen, Henrik Lund

2014-01-01

The ball-on-ring method is together with other biaxial bending methods often used for measuring the strength of plates of brittle materials, because machining defects are remote from the high stresses causing the failure of the specimens. In order to scale the measured Weibull strength...... to geometries relevant for the application of the material, the effective area or volume for the test specimen must be evaluated. In this work analytical expressions for the effective area and volume of the ball-on-ring test specimen is derived. In the derivation the multiaxial stress field has been accounted...

10. A simple reliability block diagram method for safety integrity verification

International Nuclear Information System (INIS)

Guo Haitao; Yang Xianhui

2007-01-01

IEC 61508 requires safety integrity verification for safety related systems to be a necessary procedure in safety life cycle. PFD avg must be calculated to verify the safety integrity level (SIL). Since IEC 61508-6 does not give detailed explanations of the definitions and PFD avg calculations for its examples, it is difficult for common reliability or safety engineers to understand when they use the standard as guidance in practice. A method using reliability block diagram is investigated in this study in order to provide a clear and feasible way of PFD avg calculation and help those who take IEC 61508-6 as their guidance. The method finds mean down times (MDTs) of both channel and voted group first and then PFD avg . The calculated results of various voted groups are compared with those in IEC61508 part 6 and Ref. [Zhang T, Long W, Sato Y. Availability of systems with self-diagnostic components-applying Markov model to IEC 61508-6. Reliab Eng System Saf 2003;80(2):133-41]. An interesting outcome can be realized from the comparison. Furthermore, although differences in MDT of voted groups exist between IEC 61508-6 and this paper, PFD avg of voted groups are comparatively close. With detailed description, the method of RBD presented can be applied to the quantitative SIL verification, showing a similarity of the method in IEC 61508-6

11. Parallel PWTD-Accelerated Explicit Solution of the Time Domain Electric Field Volume Integral Equation

KAUST Repository

Liu, Yang

2016-03-25

A parallel plane-wave time-domain (PWTD)-accelerated explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) is presented. The proposed scheme leverages pulse functions and Lagrange polynomials to spatially and temporally discretize the electric flux density induced throughout the scatterers, and a finite difference scheme to compute the electric fields from the Hertz electric vector potentials radiated by the flux density. The flux density is explicitly updated during time marching by a predictor-corrector (PC) scheme and the vector potentials are efficiently computed by a scalar PWTD scheme. The memory requirement and computational complexity of the resulting explicit PWTD-PC-EFVIE solver scale as ( log ) s s O N N and ( ) s t O N N , respectively. Here, s N is the number of spatial basis functions and t N is the number of time steps. A scalable parallelization of the proposed MOT scheme on distributed- memory CPU clusters is described. The efficiency, accuracy, and applicability of the resulting (parallelized) PWTD-PC-EFVIE solver are demonstrated via its application to the analysis of transient electromagnetic wave interactions on canonical and real-life scatterers represented with up to 25 million spatial discretization elements.

12. Cannula Tip With Integrated Volume Sensor for Rotary Blood Pump Control: Early-Stage Development.

Science.gov (United States)

Cysyk, Joshua; Newswanger, Ray; Popjes, Eric; Pae, Walter; Jhun, Choon-Sik; Izer, Jenelle; Weiss, William; Rosenberg, Gerson

2018-05-10

The lack of direct measurement of left ventricular unloading is a significant impediment to the development of an automatic speed control system for continuous-flow left ventricular assist devices (cf-LVADs). We have developed an inlet cannula tip for cf-LVADs with integrated electrodes for volume sensing based on conductance. Four platinum-iridium ring electrodes were installed into grooves on a cannula body constructed from polyetheretherketone (PEEK). A sinusoidal current excitation waveform (250 μA pk-pk, 50 kHz) was applied across one pair of electrodes, and the conductance-dependent voltage was sensed across the second pair of electrodes. The conductance catheter was tested in an acute ovine model (n = 3) in conjunction with the HeartMate II rotary blood pump to provide circulatory support and unload the ventricle. Echocardiography was used to measure ventricular size during pump support for verification for the conductance measurements. The conductance measurements correlated linearly with the echocardiography dimension measurements more than the full range of pump support from minimum support to suction. This cannula tip will enable the development of automatic control systems to optimize pump support based on a real-time measurement of ventricular size.

13. Recent advances in marching-on-in-time schemes for solving time domain volume integral equations

KAUST Repository

Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

2015-01-01

Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are constructed by setting the summation of the incident and scattered field intensities to the total field intensity on the volumetric support of the scatterer. The unknown can be the field intensity or flux/current density. Representing the total field intensity in terms of the unknown using the relevant constitutive relation and the scattered field intensity in terms of the spatiotemporal convolution of the unknown with the Green function yield the final form of the TDVIE. The unknown is expanded in terms of local spatial and temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation at discrete times yield a system of equations that is solved by the marching on-in-time (MOT) scheme. At each time step, a smaller system of equations, termed MOT system is solved for the coefficients of the expansion. The right-hand side of this system consists of the tested incident field and discretized spatio-temporal convolution of the unknown samples computed at the previous time steps with the Green function.

14. Parallel PWTD-Accelerated Explicit Solution of the Time Domain Electric Field Volume Integral Equation

KAUST Repository

Liu, Yang; Al-Jarro, Ahmed; Bagci, Hakan; Michielssen, Eric

2016-01-01

A parallel plane-wave time-domain (PWTD)-accelerated explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) is presented. The proposed scheme leverages pulse functions and Lagrange polynomials to spatially and temporally discretize the electric flux density induced throughout the scatterers, and a finite difference scheme to compute the electric fields from the Hertz electric vector potentials radiated by the flux density. The flux density is explicitly updated during time marching by a predictor-corrector (PC) scheme and the vector potentials are efficiently computed by a scalar PWTD scheme. The memory requirement and computational complexity of the resulting explicit PWTD-PC-EFVIE solver scale as ( log ) s s O N N and ( ) s t O N N , respectively. Here, s N is the number of spatial basis functions and t N is the number of time steps. A scalable parallelization of the proposed MOT scheme on distributed- memory CPU clusters is described. The efficiency, accuracy, and applicability of the resulting (parallelized) PWTD-PC-EFVIE solver are demonstrated via its application to the analysis of transient electromagnetic wave interactions on canonical and real-life scatterers represented with up to 25 million spatial discretization elements.

15. Recent advances in marching-on-in-time schemes for solving time domain volume integral equations

KAUST Repository

2015-05-16

Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are constructed by setting the summation of the incident and scattered field intensities to the total field intensity on the volumetric support of the scatterer. The unknown can be the field intensity or flux/current density. Representing the total field intensity in terms of the unknown using the relevant constitutive relation and the scattered field intensity in terms of the spatiotemporal convolution of the unknown with the Green function yield the final form of the TDVIE. The unknown is expanded in terms of local spatial and temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation at discrete times yield a system of equations that is solved by the marching on-in-time (MOT) scheme. At each time step, a smaller system of equations, termed MOT system is solved for the coefficients of the expansion. The right-hand side of this system consists of the tested incident field and discretized spatio-temporal convolution of the unknown samples computed at the previous time steps with the Green function.

16. A novel method for the evaluation of uncertainty in dose-volume histogram computation.

Science.gov (United States)

Henríquez, Francisco Cutanda; Castrillón, Silvia Vargas

2008-03-15

Dose-volume histograms (DVHs) are a useful tool in state-of-the-art radiotherapy treatment planning, and it is essential to recognize their limitations. Even after a specific dose-calculation model is optimized, dose distributions computed by using treatment-planning systems are affected by several sources of uncertainty, such as algorithm limitations, measurement uncertainty in the data used to model the beam, and residual differences between measured and computed dose. This report presents a novel method to take them into account. To take into account the effect of associated uncertainties, a probabilistic approach using a new kind of histogram, a dose-expected volume histogram, is introduced. The expected value of the volume in the region of interest receiving an absorbed dose equal to or greater than a certain value is found by using the probability distribution of the dose at each point. A rectangular probability distribution is assumed for this point dose, and a formulation that accounts for uncertainties associated with point dose is presented for practical computations. This method is applied to a set of DVHs for different regions of interest, including 6 brain patients, 8 lung patients, 8 pelvis patients, and 6 prostate patients planned for intensity-modulated radiation therapy. Results show a greater effect on planning target volume coverage than in organs at risk. In cases of steep DVH gradients, such as planning target volumes, this new method shows the largest differences with the corresponding DVH; thus, the effect of the uncertainty is larger.

17. Numerical Simulation of Antennas with Improved Integral Equation Method

International Nuclear Information System (INIS)

Ma Ji; Fang Guang-You; Lu Wei

2015-01-01

Simulating antennas around a conducting object is a challenge task in computational electromagnetism, which is concerned with the behaviour of electromagnetic fields. To analyze this model efficiently, an improved integral equation-fast Fourier transform (IE-FFT) algorithm is presented in this paper. The proposed scheme employs two Cartesian grids with different size and location to enclose the antenna and the other object, respectively. On the one hand, IE-FFT technique is used to store matrix in a sparse form and accelerate the matrix-vector multiplication for each sub-domain independently. On the other hand, the mutual interaction between sub-domains is taken as the additional exciting voltage in each matrix equation. By updating integral equations several times, the whole electromagnetic system can achieve a stable status. Finally, the validity of the presented method is verified through the analysis of typical antennas in the presence of a conducting object. (paper)

18. Fluence map optimization (FMO) with dose–volume constraints in IMRT using the geometric distance sorting method

International Nuclear Information System (INIS)

Lan Yihua; Li Cunhua; Ren Haozheng; Zhang Yong; Min Zhifang

2012-01-01

the dose sorting method. By integrating a smart constraint adding/deleting scheme within the iteration framework, the new technique builds up an improved algorithm for solving the fluence map optimization with dose–volume constraints. (paper)

19. Fluence map optimization (FMO) with dose-volume constraints in IMRT using the geometric distance sorting method.

Science.gov (United States)

Lan, Yihua; Li, Cunhua; Ren, Haozheng; Zhang, Yong; Min, Zhifang

2012-10-21

sorting method. By integrating a smart constraint adding/deleting scheme within the iteration framework, the new technique builds up an improved algorithm for solving the fluence map optimization with dose-volume constraints.

20. A method for bubble volume calculating in vertical two-phase flow

International Nuclear Information System (INIS)

Wang, H Y; Dong, F

2009-01-01

The movement of bubble is a basic subject in gas-liquid two-phase flow research. A method for calculating bubble volume which is one of the most important characters in bubble motion research was proposed. A suit of visualized experimental device was designed and set up. Single bubble rising in stagnant liquid in a rectangular tank was studied using the high-speed video system. Bubbles generated by four orifice with different diameter (1mm, 2mm, 3mm, 4mm) were recorded respectively. Sequences of recorded high-speed images were processed by digital image processing method, such as image noise remove, binary image transform, bubble filling, and so on. then, Several parameters could be obtained from the processed image. Bubble area, equivalent diameter, bubble velocity, bubble acceleration are all indispensable in bubble volume calculating. In order to get the force balance equation, forces that work on bubble along vertical direction, including drag force, virtual mass force, buoyancy, gravity and liquid thrust, were analyzed. Finally, the bubble volume formula could be derived from the force balance equation and bubble parameters. Examples were given to shown the computing process and results. Comparison of the bubble volume calculated by geomettic method and the present method have shown the superiority of the proposed method in this paper.

1. A comparison of non-integrating reprogramming methods

Science.gov (United States)

Schlaeger, Thorsten M; Daheron, Laurence; Brickler, Thomas R; Entwisle, Samuel; Chan, Karrie; Cianci, Amelia; DeVine, Alexander; Ettenger, Andrew; Fitzgerald, Kelly; Godfrey, Michelle; Gupta, Dipti; McPherson, Jade; Malwadkar, Prerana; Gupta, Manav; Bell, Blair; Doi, Akiko; Jung, Namyoung; Li, Xin; Lynes, Maureen S; Brookes, Emily; Cherry, Anne B C; Demirbas, Didem; Tsankov, Alexander M; Zon, Leonard I; Rubin, Lee L; Feinberg, Andrew P; Meissner, Alexander; Cowan, Chad A; Daley, George Q

2015-01-01

Human induced pluripotent stem cells (hiPSCs1–3) are useful in disease modeling and drug discovery, and they promise to provide a new generation of cell-based therapeutics. To date there has been no systematic evaluation of the most widely used techniques for generating integration-free hiPSCs. Here we compare Sendai-viral (SeV)4, episomal (Epi)5 and mRNA transfection mRNA6 methods using a number of criteria. All methods generated high-quality hiPSCs, but significant differences existed in aneuploidy rates, reprogramming efficiency, reliability and workload. We discuss the advantages and shortcomings of each approach, and present and review the results of a survey of a large number of human reprogramming laboratories on their independent experiences and preferences. Our analysis provides a valuable resource to inform the use of specific reprogramming methods for different laboratories and different applications, including clinical translation. PMID:25437882

2. Improved parallel solution techniques for the integral transport matrix method

Energy Technology Data Exchange (ETDEWEB)

Zerr, R. Joseph, E-mail: rjz116@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA (United States); Azmy, Yousry Y., E-mail: yyazmy@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Burlington Engineering Laboratories, Raleigh, NC (United States)

2011-07-01

Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution time by up to 10´ when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing cases are optically thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block pre conditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient pre conditioner. (author)

3. Improved parallel solution techniques for the integral transport matrix method

International Nuclear Information System (INIS)

Zerr, R. Joseph; Azmy, Yousry Y.

2011-01-01

Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution time by up to 10´ when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing cases are optically thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block pre conditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient pre conditioner. (author)

4. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.

Science.gov (United States)

Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat

2015-01-01

Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.

5. /sup 3/H-dextran method for measurements of the blood volume in the rat choroid

Energy Technology Data Exchange (ETDEWEB)

Matsusaka, T [Osaka Prefectural Center for Adult Diseases (Japan); Morimoto, K; Kikkawa, Y

1980-01-01

A new method was developed using /sup 3/H-dextran for measuring the blood volume in the choroid. Under pentobarbital-anesthesia, albino rats weighing 200 grams were perfused through the left ventricle with a 2.5 percent glutaraldehyde solution containing the radioactive dextran. The procedure allowed exchange of the choroidal blood with the /sup 3/H-dextran solution with a simultaneous fixation of the choroid. The blood volume in the choroid was calculated from the radioactivity count, which is estimated to be 1.690 x 10/sup -4/ ml per mg wet weight and 5.070 x 10/sup -4/ ml per mg dry weight. Epinephrine subconjunctivally injected diminished the blood volume in the choroid by 68 percent. Pretreatment with lidocaine almost nullified the effect of epinephrine. Applicability of this method to the analytical study of the choroidal circulation is discussed.

6. 3H-dextran method for measurements of the blood volume in the rat choroid

International Nuclear Information System (INIS)

Matsusaka, Toshihiko; Morimoto, Kazuhiro; Kikkawa, Yoshizo.

1980-01-01

A new method was developed using 3 H-dextran for measuring the blood volume in the choroid. Under pentobarbital-anesthesia, albino rats weighing 200 grams were perfused through the left ventricle with a 2.5 percent glutaraldehyde solution containing the radioactive dextran. The procedure allowed exchange of the choroidal blood with the 3 H-dextran solution with a simultaneous fixation of the choroid. The blood volume in the choroid was calculated from the radioactivity count, which is estimated to be 1.690 x 10 -4 ml per mg wet weight and 5.070 x 10 -4 ml per mg dry weight. Epinephrine subconjunctivally injected diminished the blood volume in the choroid by 68 percent. Pretreatment with lidocaine almost nullified the effect of epinephrine. Applicability of this method to the analytical study of the choroidal circulation is discussed. (author)

7. A Novel Grey Wave Method for Predicting Total Chinese Trade Volume

Directory of Open Access Journals (Sweden)

Kedong Yin

2017-12-01

Full Text Available The total trade volume of a country is an important way of appraising its international trade situation. A prediction based on trade volume will help enterprises arrange production efficiently and promote the sustainability of the international trade. Because the total Chinese trade volume fluctuates over time, this paper proposes a Grey wave forecasting model with a Hodrick–Prescott filter (HP filter to forecast it. This novel model first parses time series into long-term trend and short-term cycle. Second, the model uses a general GM (1,1 to predict the trend term and the Grey wave forecasting model to predict the cycle term. Empirical analysis shows that the improved Grey wave prediction method provides a much more accurate forecast than the basic Grey wave prediction method, achieving better prediction results than autoregressive moving average model (ARMA.

8. Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis

Science.gov (United States)

Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

1998-01-01

Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.

9. Irradiation of the chest wall and regional nodes as an integrated volume with IMRT for breast cancer after mastectomy: from dosimetry to clinical side-effects

International Nuclear Information System (INIS)

Ma Jinli; Li Jiongxiong; Zhu Chuanying

2012-01-01

Objective: To discuss dosimetric characteristics of an intensity-modulated radiotherapy (IMRT) technique for treating the chest wall and regional nodes as an integrated volume after modified radical mastectomy (MRM), and observe acute side-effects following irradiation. Methods: From June 2009 to August 2010, 75 patients were randomly enrolled. Of these, 41 had left-sided breast cancer. Each eligible patient had a planning CT in treatment position, on which the chest wall, supraclavicular,and infraclavicular nodes, +/-internal mammary region, were contoured as an integrated volume. A multi-beam IMRT plan was designed with the target either as a whole or two segments divided at below the clavicle head. A dose of 50 Gy in 25 fractions was prescribed to cover at least 90% of the PTV. Internal mammary region was included in 31 cases. Dose volume histograms were used to evaluate the IMRT plans. The acute side effects were followed up regularly during and after irradiation. The independent two-sample t-test was used to compare the dosimetric parameters between integrated and segmented plans. Results: Planning design was completed for all patients, including 55 integrated and 20 segmented plans, with median number of beams of 8. The conformity index and homogeneity index was 1.43 ± 0.15 and 0.14 ± 0.02, respectively. Patients with internal mammary region included in PTV had higher homogeneity index PT. The percent volume of PTV receiving > 110% prescription dose was max , D mean V 107% , and V 110% , between integrated and segmented plans (t=2.19 -2.53, P=0.013-0.031). ≥ grade 2 radiation dermatitis was identified in 3 2 patients (grade 2 in 22 patients, grade 3 in 10 patients), mostly occurred within 1 - 2 weeks after treatment. The sites of moist desquamation were anterior axillary fold (27/37) and chest wall (10/37). Only 2 patients developed grade 2 radiation pneumonitis. Conclusions: The IMRT technique applied after MRM with integrated locoregional target volume

10. Method for deposition of a conductor in integrated circuits

Science.gov (United States)

Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.

1997-01-01

A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.

11. [Development method of healthcare information system integration based on business collaboration model].

Science.gov (United States)

Li, Shasha; Nie, Hongchao; Lu, Xudong; Duan, Huilong

2015-02-01

Integration of heterogeneous systems is the key to hospital information construction due to complexity of the healthcare environment. Currently, during the process of healthcare information system integration, people participating in integration project usually communicate by free-format document, which impairs the efficiency and adaptability of integration. A method utilizing business process model and notation (BPMN) to model integration requirement and automatically transforming it to executable integration configuration was proposed in this paper. Based on the method, a tool was developed to model integration requirement and transform it to integration configuration. In addition, an integration case in radiology scenario was used to verify the method.

12. Integrated Data Collection Analysis (IDCA) Program - SSST Testing Methods

Energy Technology Data Exchange (ETDEWEB)

Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Phillips, Jason J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Shelley, Timothy J. [Bureau of Alcohol, Tobacco and Firearms (ATF), Huntsville, AL (United States); Reyes, Jose A. [Applied Research Associates, Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

2013-03-25

The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the methods used for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis during the IDCA program. These methods changed throughout the Proficiency Test and the reasons for these changes are documented in this report. The most significant modifications in standard testing methods are: 1) including one specified sandpaper in impact testing among all the participants, 2) diversifying liquid test methods for selected participants, and 3) including sealed sample holders for thermal testing by at least one participant. This effort, funded by the Department of Homeland Security (DHS), is putting the issues of safe handling of these materials in perspective with standard military explosives. The study is adding SSST testing results for a broad suite of different HMEs to the literature. Ultimately the study will suggest new guidelines and methods and possibly establish the SSST testing accuracies needed to develop safe handling practices for HMEs. Each participating testing laboratory uses identical test materials and preparation methods wherever possible. The testing performers involved are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Indian Head Division, Naval Surface Warfare Center, (NSWC IHD), Sandia National Laboratories (SNL), and Air Force Research Laboratory (AFRL/RXQL). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to compare results when these testing variables cannot be made consistent.

13. Gastropod shell size and architecture influence the applicability of methods used to estimate internal volume.

Science.gov (United States)

Ragagnin, Marilia Nagata; Gorman, Daniel; McCarthy, Ian Donald; Sant'Anna, Bruno Sampaio; de Castro, Cláudio Campi; Turra, Alexander

2018-01-11

Obtaining accurate and reproducible estimates of internal shell volume is a vital requirement for studies into the ecology of a range of shell-occupying organisms, including hermit crabs. Shell internal volume is usually estimated by filling the shell cavity with water or sand, however, there has been no systematic assessment of the reliability of these methods and moreover no comparison with modern alternatives, e.g., computed tomography (CT). This study undertakes the first assessment of the measurement reproducibility of three contrasting approaches across a spectrum of shell architectures and sizes. While our results suggested a certain level of variability inherent for all methods, we conclude that a single measure using sand/water is likely to be sufficient for the majority of studies. However, care must be taken as precision may decline with increasing shell size and structural complexity. CT provided less variation between repeat measures but volume estimates were consistently lower compared to sand/water and will need methodological improvements before it can be used as an alternative. CT indicated volume may be also underestimated using sand/water due to the presence of air spaces visible in filled shells scanned by CT. Lastly, we encourage authors to clearly describe how volume estimates were obtained.

14. The Development of a Finite Volume Method for Modeling Sound in Coastal Ocean Environment

Energy Technology Data Exchange (ETDEWEB)

Long, Wen; Yang, Zhaoqing; Copping, Andrea E.; Jung, Ki Won; Deng, Zhiqun

2015-10-28

: As the rapid growth of marine renewable energy and off-shore wind energy, there have been concerns that the noises generated from construction and operation of the devices may interfere marine animals’ communication. In this research, a underwater sound model is developed to simulate sound prorogation generated by marine-hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite volume and finite difference methods are developed to solve the 3D Helmholtz equation of sound propagation in the coastal environment. For finite volume method, the grid system consists of triangular grids in horizontal plane and sigma-layers in vertical dimension. A 3D sparse matrix solver with complex coefficients is formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method is applied to efficiently solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model is then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generated by human activities in a range-dependent setting, such as offshore wind energy platform constructions and tidal stream turbines. As a proof of concept, initial validation of the finite difference solver is presented for two coastal wedge problems. Validation of finite volume method will be reported separately.

15. Life cycle integrated thermoeconomic assessment method for energy conversion systems

International Nuclear Information System (INIS)

Kanbur, Baris Burak; Xiang, Liming; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

2017-01-01

Highlights: • A new LCA integrated thermoeconomic approach is presented. • The new unit fuel cost is found 4.8 times higher than the classic method. • The new defined parameter increased the sustainability index by 67.1%. • The case studies are performed for countries with different CO 2 prices. - Abstract: Life cycle assessment (LCA) based thermoeconomic modelling has been applied for the evaluation of energy conversion systems since it provided more comprehensive and applicable assessment criteria. This study proposes an improved thermoeconomic method, named as life cycle integrated thermoeconomic assessment (LCiTA), which combines the LCA based enviroeconomic parameters in the production steps of the system components and fuel with the conventional thermoeconomic method for the energy conversion systems. A micro-cogeneration system is investigated and analyzed with the LCiTA method, the comparative studies show that the unit cost of fuel by using the LCiTA method is 3.8 times higher than the conventional thermoeconomic model. It is also realized that the enviroeconomic parameters during the operation of the system components do not have significant impacts on the system streams since the exergetic parameters are dominant in the thermoeconomic calculations. Moreover, the improved sustainability index is found roundly 67.2% higher than the previously defined sustainability index, suggesting that the enviroeconomic and thermoeconomic parameters decrease the impact of the exergy destruction in the sustainability index definition. To find the feasible operation conditions for the micro-cogeneration system, different assessment strategies are presented. Furthermore, a case study for Singapore is conducted to see the impact of the forecasted carbon dioxide prices on the thermoeconomic performance of the micro-cogeneration system.

16. IEA Wind Task 24 Integration of Wind and Hydropower Systems; Volume 1: Issues, Impacts, and Economics of Wind and Hydropower Integration

Energy Technology Data Exchange (ETDEWEB)

Acker, T.

2011-12-01

This report describes the background, concepts, issues and conclusions related to the feasibility of integrating wind and hydropower, as investigated by the members of IEA Wind Task 24. It is the result of a four-year effort involving seven IEA member countries and thirteen participating organizations. The companion report, Volume 2, describes in detail the study methodologies and participant case studies, and exists as a reference for this report.

17. The reduced basis method for the electric field integral equation

International Nuclear Information System (INIS)

Fares, M.; Hesthaven, J.S.; Maday, Y.; Stamm, B.

2011-01-01

We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, for many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.

18. Integrating Multiple Teaching Methods into a General Chemistry Classroom

Science.gov (United States)

Francisco, Joseph S.; Nicoll, Gayle; Trautmann, Marcella

1998-02-01

In addition to the traditional lecture format, three other teaching strategies (class discussions, concept maps, and cooperative learning) were incorporated into a freshman level general chemistry course. Student perceptions of their involvement in each of the teaching methods, as well as their perceptions of the utility of each method were used to assess the effectiveness of the integration of the teaching strategies as received by the students. Results suggest that each strategy serves a unique purpose for the students and increased student involvement in the course. These results indicate that the multiple teaching strategies were well received by the students and that all teaching strategies are necessary for students to get the most out of the course.

19. Integral equation methods for vesicle electrohydrodynamics in three dimensions

Science.gov (United States)

Veerapaneni, Shravan

2016-12-01

In this paper, we develop a new boundary integral equation formulation that describes the coupled electro- and hydro-dynamics of a vesicle suspended in a viscous fluid and subjected to external flow and electric fields. The dynamics of the vesicle are characterized by a competition between the elastic, electric and viscous forces on its membrane. The classical Taylor-Melcher leaky-dielectric model is employed for the electric response of the vesicle and the Helfrich energy model combined with local inextensibility is employed for its elastic response. The coupled governing equations for the vesicle position and its transmembrane electric potential are solved using a numerical method that is spectrally accurate in space and first-order in time. The method uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with the governing equations.

20. Integrated Phoneme Subspace Method for Speech Feature Extraction

Directory of Open Access Journals (Sweden)

Park Hyunsin

2009-01-01

Full Text Available Speech feature extraction has been a key focus in robust speech recognition research. In this work, we discuss data-driven linear feature transformations applied to feature vectors in the logarithmic mel-frequency filter bank domain. Transformations are based on principal component analysis (PCA, independent component analysis (ICA, and linear discriminant analysis (LDA. Furthermore, this paper introduces a new feature extraction technique that collects the correlation information among phoneme subspaces and reconstructs feature space for representing phonemic information efficiently. The proposed speech feature vector is generated by projecting an observed vector onto an integrated phoneme subspace (IPS based on PCA or ICA. The performance of the new feature was evaluated for isolated word speech recognition. The proposed method provided higher recognition accuracy than conventional methods in clean and reverberant environments.

1. Volume Measurement Algorithm for Food Product with Irregular Shape using Computer Vision based on Monte Carlo Method

Directory of Open Access Journals (Sweden)

Joko Siswantoro

2014-11-01

Full Text Available Volume is one of important issues in the production and processing of food product. Traditionally, volume measurement can be performed using water displacement method based on Archimedes’ principle. Water displacement method is inaccurate and considered as destructive method. Computer vision offers an accurate and nondestructive method in measuring volume of food product. This paper proposes algorithm for volume measurement of irregular shape food product using computer vision based on Monte Carlo method. Five images of object were acquired from five different views and then processed to obtain the silhouettes of object. From the silhouettes of object, Monte Carlo method was performed to approximate the volume of object. The simulation result shows that the algorithm produced high accuracy and precision for volume measurement.

2. ACARP Project C10059. ACARP manual of modern coal testing methods. Volume 1: The manual

Energy Technology Data Exchange (ETDEWEB)

Sakurovs, R.; Creelman, R.; Pohl, J.; Juniper, L. [CSIRO Energy Technology, Sydney, NSW (Australia)

2002-07-01

The Manual summarises the purpose, applicability, and limitations of a range of standard and modern coal testing methods that have potential to assist the coal company technologist to better evaluate coal performance. The first volume sets out the Modern Coal Testing Methods in summarised form that can be used as a quick guide to practitioners to assist in selecting the best technique to solve their problems.

3. Precision of a new bedside method for estimation of the circulating blood volume

DEFF Research Database (Denmark)

Christensen, P; Eriksen, B; Henneberg, S W

1993-01-01

The present study is a theoretical and experimental evaluation of a modification of the carbon monoxide method for estimation of the circulating blood volume (CBV) with respect to the precision of the method. The CBV was determined from measurements of the CO-saturation of hemoglobin before and a......, determination of CBV can be performed with an amount of CO that gives rise to a harmless increase in the carboxyhemoglobin concentration.(ABSTRACT TRUNCATED AT 250 WORDS)...

4. New finite volume methods for approximating partial differential equations on arbitrary meshes

International Nuclear Information System (INIS)

Hermeline, F.

2008-12-01

This dissertation presents some new methods of finite volume type for approximating partial differential equations on arbitrary meshes. The main idea lies in solving twice the problem to be dealt with. One addresses the elliptic equations with variable (anisotropic, antisymmetric, discontinuous) coefficients, the parabolic linear or non linear equations (heat equation, radiative diffusion, magnetic diffusion with Hall effect), the wave type equations (Maxwell, acoustics), the elasticity and Stokes'equations. Numerous numerical experiments show the good behaviour of this type of method. (author)

5. Accelerometer method and apparatus for integral display and control functions

Science.gov (United States)

Bozeman, Richard J., Jr.

1992-06-01

Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily

6. Constitutive Modelling in Thermomechanical Processes, Using The Control Volume Method on Staggered Grid

DEFF Research Database (Denmark)

Thorborg, Jesper

, however, is constituted by the implementation of the $J_2$ flow theory in the control volume method. To apply the control volume formulation on the process of hardening concrete viscoelastic stress-strain models has been examined in terms of various rheological models. The generalized 3D models are based...... on two different suggestions in the literature, that is compressible or incompressible behaviour of the viscos response in the dashpot element. Numerical implementation of the models has shown very good agreement with corresponding analytical solutions. The viscoelastic solid mechanical model is used...

7. Simulation of pore pressure accumulation under cyclic loading using Finite Volume Method

DEFF Research Database (Denmark)

Tang, Tian; Hededal, Ole

2014-01-01

This paper presents a finite volume implementation of a porous, nonlinear soil model capable of simulating pore pressure accumulation under cyclic loading. The mathematical formulations are based on modified Biot’s coupled theory by substituting the original elastic constitutive model...... with an advanced elastoplastic model suitable for describing monotonic as well as cyclic loading conditions. The finite volume method is applied to discretize these formulations. The resulting set of coupled nonlinear algebraic equations are then solved by a ’segregated’ solution procedure. An efficient return...

8. Acoustic 3D modeling by the method of integral equations

Science.gov (United States)

Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.

2018-02-01

This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method could accurately calculate the seismic field for the models with sharp material boundaries and a point source and receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources. The practical examples and efficiency tests are presented as well.

9. Hierarchical Matrices Method and Its Application in Electromagnetic Integral Equations

Directory of Open Access Journals (Sweden)

Han Guo

2012-01-01

Full Text Available Hierarchical (H- matrices method is a general mathematical framework providing a highly compact representation and efficient numerical arithmetic. When applied in integral-equation- (IE- based computational electromagnetics, H-matrices can be regarded as a fast algorithm; therefore, both the CPU time and memory requirement are reduced significantly. Its kernel independent feature also makes it suitable for any kind of integral equation. To solve H-matrices system, Krylov iteration methods can be employed with appropriate preconditioners, and direct solvers based on the hierarchical structure of H-matrices are also available along with high efficiency and accuracy, which is a unique advantage compared to other fast algorithms. In this paper, a novel sparse approximate inverse (SAI preconditioner in multilevel fashion is proposed to accelerate the convergence rate of Krylov iterations for solving H-matrices system in electromagnetic applications, and a group of parallel fast direct solvers are developed for dealing with multiple right-hand-side cases. Finally, numerical experiments are given to demonstrate the advantages of the proposed multilevel preconditioner compared to conventional “single level” preconditioners and the practicability of the fast direct solvers for arbitrary complex structures.

10. A method for establishing integrity in software-based systems

International Nuclear Information System (INIS)

Staple, B.D.; Berg, R.S.; Dalton, L.J.

1997-01-01

In this paper, the authors present a digital system requirements specification method that has demonstrated a potential for improving the completeness of requirements while reducing ambiguity. It assists with making proper digital system design decisions, including the defense against specific digital system failures modes. It also helps define the technical rationale for all of the component and interface requirements. This approach is a procedural method that abstracts key features that are expanded in a partitioning that identifies and characterizes hazards and safety system function requirements. The key system features are subjected to a hierarchy that progressively defines their detailed characteristics and components. This process produces a set of requirements specifications for the system and all of its components. Based on application to nuclear power plants, the approach described here uses two ordered domains: plant safety followed by safety system integrity. Plant safety refers to those systems defined to meet the safety goals for the protection of the public. Safety system integrity refers to systems defined to ensure that the system can meet the safety goals. Within each domain, a systematic process is used to identify hazards and define the corresponding means of defense and mitigation. In both domains, the approach and structure are focused on the completeness of information and eliminating ambiguities in the generation of safety system requirements that will achieve the plant safety goals

11. Curvature computation in volume-of-fluid method based on point-cloud sampling

Science.gov (United States)

Kassar, Bruno B. M.; Carneiro, João N. E.; Nieckele, Angela O.

2018-01-01

This work proposes a novel approach to compute interface curvature in multiphase flow simulation based on Volume of Fluid (VOF) method. It is well documented in the literature that curvature and normal vector computation in VOF may lack accuracy mainly due to abrupt changes in the volume fraction field across the interfaces. This may cause deterioration on the interface tension forces estimates, often resulting in inaccurate results for interface tension dominated flows. Many techniques have been presented over the last years in order to enhance accuracy in normal vectors and curvature estimates including height functions, parabolic fitting of the volume fraction, reconstructing distance functions, coupling Level Set method with VOF, convolving the volume fraction field with smoothing kernels among others. We propose a novel technique based on a representation of the interface by a cloud of points. The curvatures and the interface normal vectors are computed geometrically at each point of the cloud and projected onto the Eulerian grid in a Front-Tracking manner. Results are compared to benchmark data and significant reduction on spurious currents as well as improvement in the pressure jump are observed. The method was developed in the open source suite OpenFOAM® extending its standard VOF implementation, the interFoam solver.

12. A simple method to estimate restoration volume as a possible predictor for tooth fracture.

Science.gov (United States)

Sturdevant, J R; Bader, J D; Shugars, D A; Steet, T C

2003-08-01

Many dentists cite the fracture risk posed by a large existing restoration as a primary reason for their decision to place a full-coverage restoration. However, there is poor agreement among dentists as to when restoration placement is necessary because of the inability to make objective measurements of restoration size. The purpose of this study was to compare a new method to estimate restoration volumes in posterior teeth with analytically determined volumes. True restoration volume proportion (RVP) was determined for 96 melamine typodont teeth: 24 each of maxillary second premolar, mandibular second premolar, maxillary first molar, and mandibular first molar. Each group of 24 was subdivided into 3 groups to receive an O, MO, or MOD amalgam preparation design. Each preparation design was further subdivided into 4 groups of increasingly larger size. The density of amalgam used was calculated according to ANSI/ADA Specification 1. The teeth were weighed before and after restoration with amalgam. Restoration weight was calculated, and the density of amalgam was used to calculate restoration volume. A liquid pycnometer was used to calculate coronal volume after sectioning the anatomic crown from the root horizontally at the cementoenamel junction. True RVP was calculated by dividing restoration volume by coronal volume. An occlusal photograph and a bitewing radiograph were made of each restored tooth to provide 2 perpendicular views. Each image was digitized, and software was used to measure the percentage of the anatomic crown restored with amalgam. Estimated RVP was calculated by multiplying the percentage of the anatomic crown restored from the 2 views together. Pearson correlation coefficients were used to compare estimated RVP with true RVP. The Pearson correlation coefficient of true RVP with estimated RVP was 0.97 overall (Pvolume of restorative material in coronal tooth structure. The fact that it can be done in a nondestructive manner makes it attractive for

13. An integrated approach for facilities planning by ELECTRE method

Science.gov (United States)

Elbishari, E. M. Y.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Rahman, Nur Salihah Binti Abdul

2018-01-01

Facility planning is concerned with the design, layout, and accommodation of people, machines and activities of a system. Most of the researchers try to investigate the production area layout and the related facilities. However, few of them try to investigate the relationship between the production space and its relationship with service departments. The aim of this research to is to integrate different approaches in order to evaluate, analyse and select the best facilities planning method that able to explain the relationship between the production area and other supporting departments and its effect on human efforts. To achieve the objective of this research two different approaches have been integrated: Apple’s layout procedure as one of the effective tools in planning factories, ELECTRE method as one of the Multi Criteria Decision Making methods (MCDM) to minimize the risk of getting poor facilities planning. Dalia industries have been selected as a case study to implement our integration the factory have been divided two main different area: the whole facility (layout A), and the manufacturing area (layout B). This article will be concerned with the manufacturing area layout (Layout B). After analysing the data gathered, the manufacturing area was divided into 10 activities. There are five factors that the alternative were compared upon which are: Inter department satisfactory level, total distance travelled for workers, total distance travelled for the product, total time travelled for the workers, and total time travelled for the product. Three different layout alternatives have been developed in addition to the original layouts. Apple’s layout procedure was used to study and evaluate the different alternatives layouts, the study and evaluation of the layouts was done by calculating scores for each of the factors. After obtaining the scores from evaluating the layouts, ELECTRE method was used to compare the proposed alternatives with each other and with

14. A flexible and accurate digital volume correlation method applicable to high-resolution volumetric images

Science.gov (United States)

Pan, Bing; Wang, Bo

2017-10-01

Digital volume correlation (DVC) is a powerful technique for quantifying interior deformation within solid opaque materials and biological tissues. In the last two decades, great efforts have been made to improve the accuracy and efficiency of the DVC algorithm. However, there is still a lack of a flexible, robust and accurate version that can be efficiently implemented in personal computers with limited RAM. This paper proposes an advanced DVC method that can realize accurate full-field internal deformation measurement applicable to high-resolution volume images with up to billions of voxels. Specifically, a novel layer-wise reliability-guided displacement tracking strategy combined with dynamic data management is presented to guide the DVC computation from slice to slice. The displacements at specified calculation points in each layer are computed using the advanced 3D inverse-compositional Gauss-Newton algorithm with the complete initial guess of the deformation vector accurately predicted from the computed calculation points. Since only limited slices of interest in the reference and deformed volume images rather than the whole volume images are required, the DVC calculation can thus be efficiently implemented on personal computers. The flexibility, accuracy and efficiency of the presented DVC approach are demonstrated by analyzing computer-simulated and experimentally obtained high-resolution volume images.

15. A New Class of Non-Linear, Finite-Volume Methods for Vlasov Simulation

International Nuclear Information System (INIS)

Banks, J.W.; Hittinger, J.A.

2010-01-01

Methods for the numerical discretization of the Vlasov equation should efficiently use the phase space discretization and should introduce only enough numerical dissipation to promote stability and control oscillations. A new high-order, non-linear, finite-volume algorithm for the Vlasov equation that discretely conserves particle number and controls oscillations is presented. The method is fourth-order in space and time in well-resolved regions, but smoothly reduces to a third-order upwind scheme as features become poorly resolved. The new scheme is applied to several standard problems for the Vlasov-Poisson system, and the results are compared with those from other finite-volume approaches, including an artificial viscosity scheme and the Piecewise Parabolic Method. It is shown that the new scheme is able to control oscillations while preserving a higher degree of fidelity of the solution than the other approaches.

16. Pleural liquid clearance rate measured in awake sheep by the volume of dilution method

International Nuclear Information System (INIS)

Broaddus, V.C.; Wiener-Kronish, J.P.; Berthiaume, Y.; Staub, N.C.

1986-01-01

The authors reported 24h clearance of mock pleural effusions measured terminally in sheep. To measure effusion volume at different times in the same sheep, they injected 111 In-transferrin and measured its dilution. In 5 sheep with effusions of known sizes, the method was accurate to +/-10%. In 5 awake sheep, the authors injected 10 ml/kg of a 1% protein solution via a non-penetrating rib capsule. At 6h, the authors measured the volume by the dilution method and at 24h by direct recovery. The clearance rate in each animal was constant at 2.9-6.0%/h (average 4.8 +/- 1.3%/h). This new method gives a reliable two point clearance rate and requires fewer animals

17. ALE finite volume method for free-surface Bingham plastic fluids with general curvilinear coordinates

International Nuclear Information System (INIS)

Nagai, Katsuaki; Ushijima, Satoru

2010-01-01

A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.

18. ALE finite volume method for free-surface Bingham plastic fluids with general curvilinear coordinates

Science.gov (United States)

Nagai, Katsuaki; Ushijima, Satoru

2010-06-01

A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.

19. A spatial discretization of the MHD equations based on the finite volume - spectral method

International Nuclear Information System (INIS)

Miyoshi, Takahiro

2000-05-01

Based on the finite volume - spectral method, we present new discretization formulae for the spatial differential operators in the full system of the compressible MHD equations. In this approach, the cell-centered finite volume method is adopted in a bounded plane (poloidal plane), while the spectral method is applied to the differential with respect to the periodic direction perpendicular to the poloidal plane (toroidal direction). Here, an unstructured grid system composed of the arbitrary triangular elements is utilized for constructing the cell-centered finite volume method. In order to maintain the divergence free constraint of the magnetic field numerically, only the poloidal component of the rotation is defined at three edges of the triangular element. This poloidal component is evaluated under the assumption that the toroidal component of the operated vector times the radius, RA φ , is linearly distributed in the element. The present method will be applied to the nonlinear MHD dynamics in an realistic torus geometry without the numerical singularities. (author)

20. Know your tools - concordance of different methods for measuring brain volume change after ischemic stroke

Energy Technology Data Exchange (ETDEWEB)

Yassi, Nawaf; Campbell, Bruce C.V.; Davis, Stephen M.; Bivard, Andrew [The University of Melbourne, Departments of Medicine and Neurology, Melbourne Brain Centre rate at The Royal Melbourne Hospital, Parkville, Victoria (Australia); Moffat, Bradford A.; Steward, Christopher; Desmond, Patricia M. [The University of Melbourne, Department of Radiology, The Royal Melbourne Hospital, Parkville (Australia); Churilov, Leonid [The University of Melbourne, The Florey Institute of Neurosciences and Mental Health, Parkville (Australia); Parsons, Mark W. [University of Newcastle and Hunter Medical Research Institute, Priority Research Centre for Translational Neuroscience and Mental Health, Newcastle (Australia)

2015-07-15

Longitudinal brain volume changes have been investigated in a number of cerebral disorders as a surrogate marker of clinical outcome. In stroke, unique methodological challenges are posed by dynamic structural changes occurring after onset, particularly those relating to the infarct lesion. We aimed to evaluate agreement between different analysis methods for the measurement of post-stroke brain volume change, and to explore technical challenges inherent to these methods. Fifteen patients with anterior circulation stroke underwent magnetic resonance imaging within 1 week of onset and at 1 and 3 months. Whole-brain as well as grey- and white-matter volume were estimated separately using both an intensity-based and a surface watershed-based algorithm. In the case of the intensity-based algorithm, the analysis was also performed with and without exclusion of the infarct lesion. Due to the effects of peri-infarct edema at the baseline scan, longitudinal volume change was measured as percentage change between the 1 and 3-month scans. Intra-class and concordance correlation coefficients were used to assess agreement between the different analysis methods. Reduced major axis regression was used to inspect the nature of bias between measurements. Overall agreement between methods was modest with strong disagreement between some techniques. Measurements were variably impacted by procedures performed to account for infarct lesions. Improvements in volumetric methods and consensus between methodologies employed in different studies are necessary in order to increase the validity of conclusions derived from post-stroke cerebral volumetric studies. Readers should be aware of the potential impact of different methods on study conclusions. (orig.)

1. Know your tools - concordance of different methods for measuring brain volume change after ischemic stroke

International Nuclear Information System (INIS)

Yassi, Nawaf; Campbell, Bruce C.V.; Davis, Stephen M.; Bivard, Andrew; Moffat, Bradford A.; Steward, Christopher; Desmond, Patricia M.; Churilov, Leonid; Parsons, Mark W.

2015-01-01

Longitudinal brain volume changes have been investigated in a number of cerebral disorders as a surrogate marker of clinical outcome. In stroke, unique methodological challenges are posed by dynamic structural changes occurring after onset, particularly those relating to the infarct lesion. We aimed to evaluate agreement between different analysis methods for the measurement of post-stroke brain volume change, and to explore technical challenges inherent to these methods. Fifteen patients with anterior circulation stroke underwent magnetic resonance imaging within 1 week of onset and at 1 and 3 months. Whole-brain as well as grey- and white-matter volume were estimated separately using both an intensity-based and a surface watershed-based algorithm. In the case of the intensity-based algorithm, the analysis was also performed with and without exclusion of the infarct lesion. Due to the effects of peri-infarct edema at the baseline scan, longitudinal volume change was measured as percentage change between the 1 and 3-month scans. Intra-class and concordance correlation coefficients were used to assess agreement between the different analysis methods. Reduced major axis regression was used to inspect the nature of bias between measurements. Overall agreement between methods was modest with strong disagreement between some techniques. Measurements were variably impacted by procedures performed to account for infarct lesions. Improvements in volumetric methods and consensus between methodologies employed in different studies are necessary in order to increase the validity of conclusions derived from post-stroke cerebral volumetric studies. Readers should be aware of the potential impact of different methods on study conclusions. (orig.)

2. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 4: Functional specification for the prototype Automated Integrated Receive System (AIRS)

Science.gov (United States)

Chie, C. M.

1984-01-01

The functional requirements for the performance, design, and testing for the prototype Automated Integrated Receive System (AIRS) to be demonstrated for the TDRSS S-Band Single Access Return Link are presented.

3. Life sciences payload definition and integration study, task C and D. Volume 2: Payload definition, integration, and planning studies

Science.gov (United States)

1973-01-01

The Life Sciences Payload Definition and Integration Study was composed of four major tasks. Tasks A and B, the laboratory definition phase, were the subject of prior NASA study. The laboratory definition phase included the establishment of research functions, equipment definitions, and conceptual baseline laboratory designs. These baseline laboratories were designated as Maxi-Nom, Mini-30, and Mini-7. The outputs of Tasks A and B were used by the NASA Life Sciences Payload Integration Team to establish guidelines for Tasks C and D, the laboratory integration phase of the study. A brief review of Tasks A and B is presented provide background continuity. The tasks C and D effort is the subject of this report. The Task C effort stressed the integration of the NASA selected laboratory designs with the shuttle sortie module. The Task D effort updated and developed costs that could be used by NASA for preliminary program planning.

4. Integrated project delivery methods for energy renovation of social housing

Directory of Open Access Journals (Sweden)

2015-11-01

renting them. As such, SHOs are used to dealing with renovations on a professional basis. The limited financial capacity of SHOs to realise energy renovations magnifies the importance of improving process performance in order to get the best possible outcomes. In the last 30 years numerous authors have addressed the need to improve the performance of traditional construction processes via alternative project delivery methods. However, very little is known about the specifics of renovations processes for social housing, the feasibility of applying innovative construction management methods and the consequences for the process, for the role of all the actors involved and for the results of the projects. The aim of this study is to provide an insight into the project delivery methods available for SHOs when they are undertaking energy renovation projects and to evaluate how these methods could facilitate the achievement of a higher process performance. The main research question is: How can Social Housing Organisations improve the performance of energy renovation processes using more integrated project delivery methods? The idea of a PhD thesis about social housing renovation processes originated from the participation of TU Delft as research partner in the Intelligent Energy Europe project SHELTER1 which was carried out between 2010 and 2013. The aim of the SHELTER project was to promote and facilitate the use of new models of cooperation, inspired by integrated design, for the energy renovation of social housing. The SHELTER project was a joint effort between six social housing organisations (Arte Genova, Italy; Black Country Housing Group, United Kingdom; Bulgarian Housing Association, Bulgaria; Dynacité, France; Logirep, France and Société Wallonne du Logement, Belgium, three European professional federations based in Brussels (Architects Council of Europe, Cecodhas Housing Europe and European Builders Confederation and one research partner (Delft University of

5. Phase-integral method allowing nearlying transition points

CERN Document Server

Fröman, Nanny

1996-01-01

The efficiency of the phase-integral method developed by the present au­ thors has been shown both analytically and numerically in many publica­ tions. With the inclusion of supplementary quantities, closely related to new Stokes constants and obtained with the aid of comparison equation technique, important classes of problems in which transition points may approach each other become accessible to accurate analytical treatment. The exposition in this monograph is of a mathematical nature but has important physical applications, some examples of which are found in the adjoined papers. Thus, we would like to emphasize that, although we aim at mathematical rigor, our treatment is made primarily with physical needs in mind. To introduce the reader into the background of this book, we start by de­ scribing the phase-integral approximation of arbitrary order generated from an unspecified base function. This is done in Chapter 1, which is reprinted, after minor changes, from a review article. Chapter 2 is the re...

6. Comparative study of finite element method, isogeometric analysis, and finite volume method in elastic wave propagation of stress discontinuities

Czech Academy of Sciences Publication Activity Database

Berezovski, A.; Kolman, Radek; Blažek, Jiří; Kopačka, Ján; Gabriel, Dušan; Plešek, Jiří

2014-01-01

Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] R&D Projects: GA ČR(CZ) GAP101/11/0288; GA ČR(CZ) GAP101/12/2315 Institutional support: RVO:61388998 Keywords : elastic wave propagation * finite element method * isogeometric analysis * finite volume method * stress discontinuities * spurious oscillations Subject RIV: JR - Other Machinery http://www.ndt.net/events/ECNDT2014/app/content/Paper/25_Berezovski_Rev1.pdf

7. Integrating financial theory and methods in electricity resource planning

Energy Technology Data Exchange (ETDEWEB)

Felder, F.A. [Economics Resource Group, Cambridge, MA (United States)

1996-02-01

Decision makers throughout the world are introducing risk and market forces in the electric power industry to lower costs and improve services. Incentive based regulation (IBR), which replaces cost of service ratemaking with an approach that divorces costs from revenues, exposes the utility to the risk of profits or losses depending on their performance. Regulators also are allowing for competition within the industry, most notably in the wholesale market and possibly in the retail market. Two financial approaches that incorporate risk in resource planning are evaluated: risk adjusted discount rates (RADR) and options theory (OT). These two complementary approaches are an improvement over the standard present value revenue requirement (PVRR). However, each method has some important limitations. By correctly using RADR and OT and understanding their limitations, decision makers can improve their ability to value risk properly in power plant projects and integrated resource plans. (Author)

8. Apparatus and method for defect testing of integrated circuits

Science.gov (United States)

Cole, Jr., Edward I.; Soden, Jerry M.

2000-01-01

An apparatus and method for defect and failure-mechanism testing of integrated circuits (ICs) is disclosed. The apparatus provides an operating voltage, V.sub.DD, to an IC under test and measures a transient voltage component, V.sub.DDT, signal that is produced in response to switching transients that occur as test vectors are provided as inputs to the IC. The amplitude or time delay of the V.sub.DDT signal can be used to distinguish between defective and defect-free (i.e. known good) ICs. The V.sub.DDT signal is measured with a transient digitizer, a digital oscilloscope, or with an IC tester that is also used to input the test vectors to the IC. The present invention has applications for IC process development, for the testing of ICs during manufacture, and for qualifying ICs for reliability.

9. Integrated airfoil and blade design method for large wind turbines

DEFF Research Database (Denmark)

Zhu, Wei Jun; Shen, Wen Zhong

2013-01-01

This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and tip speed ratio, the optimal airfoils are designed based on the local speed ratios. To achieve high power performance at low cost, the airfoils are designed...... with an objective of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on the previous in-house airfoil family which were optimized at a Reynolds number of 3...... million. A novel shape perturbation function is introduced to optimize the geometry on the existing airfoils and thus simplify the design procedure. The viscos/inviscid code Xfoil is used as the aerodynamic tool for airfoil optimization where the Reynolds number is set at 16 million with a free...

10. Integrated airfoil and blade design method for large wind turbines

DEFF Research Database (Denmark)

Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

2014-01-01

This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed...... with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number...... of 3 million. A novel shape perturbation function is introduced to optimize the geometry based on the existing airfoils which simplifies the design procedure. The viscous/inviscid interactive code XFOIL is used as the aerodynamic tool for airfoil optimization at a Reynolds number of 16 million...

11. A self-sampling method to obtain large volumes of undiluted cervicovaginal secretions.

Science.gov (United States)

Boskey, Elizabeth R; Moench, Thomas R; Hees, Paul S; Cone, Richard A

2003-02-01

Studies of vaginal physiology and pathophysiology sometime require larger volumes of undiluted cervicovaginal secretions than can be obtained by current methods. A convenient method for self-sampling these secretions outside a clinical setting can facilitate such studies of reproductive health. The goal was to develop a vaginal self-sampling method for collecting large volumes of undiluted cervicovaginal secretions. A menstrual collection device (the Instead cup) was inserted briefly into the vagina to collect secretions that were then retrieved from the cup by centrifugation in a 50-ml conical tube. All 16 women asked to perform this procedure found it feasible and acceptable. Among 27 samples, an average of 0.5 g of secretions (range, 0.1-1.5 g) was collected. This is a rapid and convenient self-sampling method for obtaining relatively large volumes of undiluted cervicovaginal secretions. It should prove suitable for a wide range of assays, including those involving sexually transmitted diseases, microbicides, vaginal physiology, immunology, and pathophysiology.

12. Flow simulation of a Pelton bucket using finite volume particle method

International Nuclear Information System (INIS)

Vessaz, C; Jahanbakhsh, E; Avellan, F

2014-01-01

The objective of the present paper is to perform an accurate numerical simulation of the high-speed water jet impinging on a Pelton bucket. To reach this goal, the Finite Volume Particle Method (FVPM) is used to discretize the governing equations. FVPM is an arbitrary Lagrangian-Eulerian method, which combines attractive features of Smoothed Particle Hydrodynamics and conventional mesh-based Finite Volume Method. This method is able to satisfy free surface and no-slip wall boundary conditions precisely. The fluid flow is assumed weakly compressible and the wall boundary is represented by one layer of particles located on the bucket surface. In the present study, the simulations of the flow in a stationary bucket are investigated for three different impinging angles: 72°, 90° and 108°. The particles resolution is first validated by a convergence study. Then, the FVPM results are validated with available experimental data and conventional grid-based Volume Of Fluid simulations. It is shown that the wall pressure field is in good agreement with the experimental and numerical data. Finally, the torque evolution and water sheet location are presented for a simulation of five rotating Pelton buckets

13. Noninvasive measurement of cardiopulmonary blood volume: evaluation of the centroid method

International Nuclear Information System (INIS)

Fouad, F.M.; MacIntyre, W.J.; Tarazi, R.C.

1981-01-01

Cardiopulmonary blood volume (CPV) and mean pulmonary transit time (MTT) determined by radionuclide measurements (Tc-99m HSA) were compared with values obtained from simultaneous dye-dilution (DD) studies (indocyanine green). The mean transit time was obtained from radionuclide curves by two methods: the peak-to-peak time and the interval between the two centroids determined from the right and left-ventricular time-concentration curves. Correlation of dye-dilution MTT and peak-to-peak time was significant (r = 0.79, p < 0.001), but its correlation with centroid-derived values was better (r = 0.86, p < 0.001). CPV values (using the centroid method for radionuclide technique) correlated significantly with values derived from dye-dilution curves (r = 0.74, p < 0.001). Discrepancies between the two were greater the more rapid the circulation (r = 0.61, p < 0.01), suggesting that minor inaccuracies of dye-dilution methods, due to positioning or delay of the system, can become magnified in hyperkinetic conditions. The radionuclide method is simple, repeatable, and noninvasive, and it provides simultaneous evaluation of pulmonary and systemic hemodynamics. Further, calculation of the ratio of cardiopulmonary to total blood volume can be used as an index of overall venous distensibility and relocation of intravascular blood volume

14. ARE METHODS USED TO INTEGRATE STANDARDIZED MANAGEMENT SYSTEMS A CONDITIONING FACTOR OF THE LEVEL OF INTEGRATION? AN EMPIRICAL STUDY

Directory of Open Access Journals (Sweden)

Merce Bernardo

2011-09-01

Full Text Available Organizations are increasingly implementing multiple Management System Standards (M SSs and considering managing the related Management Systems (MSs as a single system.The aim of this paper is to analyze if methods us ed to integrate standardized MSs condition the level of integration of those MSs. A descriptive methodology has been applied to 343 Spanish organizations registered to, at least, ISO 9001 and ISO 14001. Seven groups of these organizations using different combinations of methods have been analyzed Results show that these organizations have a high level of integration of their MSs. The most common method used, was the process map. Organizations using a combination of different methods achieve higher levels of integration than those using a single method. However, no evidence has been found to confirm the relationship between the method used and the integration level achieved.

15. Novel bed integrated ventilation method for hospital patient rooms

DEFF Research Database (Denmark)

Bivolarova, Mariya Petrova; Melikov, Arsen Krikor; Kokora, Monika

2014-01-01

This study presents a novel method for advanced ventilation of hospital wards leading to improved air quality at reduced ventilation rate. The idea is to evacuate the bio-effluents generated from patients’ body by local exhaustion before being spread in the room. This concept was realized by using...... a mattress having a suction opening from which bio-effluents generated from human body are exhausted. Experiments were conducted in a full-scale two-bed hospital room mock-up, 4.7 x 5.3 x 2.6 m3 (W x L x H). Only one of the patients’ beds was equipped with the ventilated mattress. The room was air...... conditioned via mixing total volume ventilation system supplying air through a ceiling mounted diffuser. All experiments were performed at room air temperature of 23ºC. A thermal manikin was used to simulate a polluting patient on the bed equipped with the ventilated mattress. Two heated dummies were used...

16. Characterization of hazardous waste sites: a methods manual. Volume 2. Available sampling methods (second edition)

International Nuclear Information System (INIS)

Ford, P.J.; Turina, P.J.; Seely, D.E.

1984-12-01

Investigations at hazardous waste sites and sites of chemical spills often require on-site measurements and sampling activities to assess the type and extent of contamination. This document is a compilation of sampling methods and materials suitable to address most needs that arise during routine waste site and hazardous spill investigations. The sampling methods presented in this document are compiled by media, and were selected on the basis of practicality, economics, representativeness, compatability with analytical considerations, and safety, as well as other criteria. In addition to sampling procedures, sample handling and shipping, chain-of-custody procedures, instrument certification, equipment fabrication, and equipment decontamination procedures are described. Sampling methods for soil, sludges, sediments, and bulk materials cover the solids medium. Ten methods are detailed for surface waters, groundwater and containerized liquids; twelve are presented for ambient air, soil gases and vapors, and headspace gases. A brief discussion of ionizing radiation survey instruments is also provided

17. Methods of assessing total doses integrated across pathways

International Nuclear Information System (INIS)

Grzechnik, M.; Camplin, W.; Clyne, F.; Allott, R.; Webbe-Wood, D.

2006-01-01

Calculated doses for comparison with limits resulting from discharges into the environment should be summed across all relevant pathways and food groups to ensure adequate protection. Current methodology for assessments used in the radioactivity in Food and the Environment (R.I.F.E.) reports separate doses from pathways related to liquid discharges of radioactivity to the environment from those due to gaseous releases. Surveys of local inhabitant food consumption and occupancy rates are conducted in the vicinity of nuclear sites. Information has been recorded in an integrated way, such that the data for each individual is recorded for all pathways of interest. These can include consumption of foods, such as fish, crustaceans, molluscs, fruit and vegetables, milk and meats. Occupancy times over beach sediments and time spent in close proximity to the site is also recorded for inclusion of external and inhalation radiation dose pathways. The integrated habits survey data may be combined with monitored environmental radionuclide concentrations to calculate total dose. The criteria for successful adoption of a method for this calculation were: Reproducibility can others easily use the approach and reassess doses? Rigour and realism how good is the match with reality?Transparency a measure of the ease with which others can understand how the calculations are performed and what they mean. Homogeneity is the group receiving the dose relatively homogeneous with respect to age, diet and those aspects that affect the dose received? Five methods of total dose calculation were compared and ranked according to their suitability. Each method was labelled (A to E) and given a short, relevant name for identification. The methods are described below; A) Individual doses to individuals are calculated and critical group selection is dependent on dose received. B) Individual Plus As in A, but consumption and occupancy rates for high dose is used to derive rates for application in

18. An enhanced finite volume method to model 2D linear elastic structures

CSIR Research Space (South Africa)

Suliman, Ridhwaan

2014-04-01

Full Text Available . Suliman) Preprint submitted to Applied Mathematical Modelling July 22, 2013 Keywords: finite volume, finite element, locking, error analysis 1. Introduction Since the 1960s, the finite element method has mainly been used for modelling the mechanics... formulation provides higher accuracy 2 for displacement solutions. It is well known that the linear finite element formulation suffers from sensitivity to element aspect ratio or shear locking when subjected to bend- ing [16]. Fallah [8] and Wheel [6] present...

19. Application of the finite volume method in the simulation of saturated flows of binary mixtures

International Nuclear Information System (INIS)

Murad, M.A.; Gama, R.M.S. da; Sampaio, R.

1989-12-01

This work presents the simulation of saturated flows of an incompressible Newtonian fluid through a rigid, homogeneous and isotropic porous medium. The employed mathematical model is derived from the Continuum Theory of Mixtures and generalizes the classical one which is based on Darcy's Law form of the momentum equation. In this approach fluid and porous matrix are regarded as continuous constituents of a binary mixture. The finite volume method is employed in the simulation. (author) [pt

20. Benefit-Cost Analysis of Integrated Paratransit Systems : Volume 6. Technical Appendices.

Science.gov (United States)

1979-09-01

This last volume, includes five technical appendices which document the methodologies used in the benefit-cost analysis. They are the following: Scenario analysis methodology; Impact estimation; Example of impact estimation; Sensitivity analysis; Agg...

1. Path integral methods for primordial density perturbations - sampling of constrained Gaussian random fields

International Nuclear Information System (INIS)

Bertschinger, E.

1987-01-01

Path integrals may be used to describe the statistical properties of a random field such as the primordial density perturbation field. In this framework the probability distribution is given for a Gaussian random field subjected to constraints such as the presence of a protovoid or supercluster at a specific location in the initial conditions. An algorithm has been constructed for generating samples of a constrained Gaussian random field on a lattice using Monte Carlo techniques. The method makes possible a systematic study of the density field around peaks or other constrained regions in the biased galaxy formation scenario, and it is effective for generating initial conditions for N-body simulations with rare objects in the computational volume. 21 references

2. Corticospinal tract integrity and lesion volume play different roles in chronic hemiparesis and its improvement through motor practice.

Science.gov (United States)

Sterr, Annette; Dean, Phil J A; Szameitat, Andre J; Conforto, Adriana Bastos; Shen, Shan

2014-05-01

Initial evidence suggests that the integrity of the ipsilesional corticospinal tract (CST) after stroke is strongly related to motor function in the chronic state but not the treatment gain induced by motor rehabilitation. We examined the association of motor status and treatment benefit by testing patients with a wide range of severity of hemiparesis of the left and right upper extremity. Diffusion tensor imaging was performed in 22 patients beyond 12 months after onset of stroke with severe to moderate hemiparesis. Motor function was tested before and after 2 weeks of modified constraint-induced movement therapy. CST integrity, but not lesion volume, correlated with the motor ability measures of the Wolf Motor Function Test and the Motor Activity Log. No differences were found between left and right hemiparesis. Motor performance improved significantly with the treatment regime, and did so equally for patients with left and right arm paresis. However, treatment benefit was not associated with either CST integrity or lesion volume. CST integrity correlated best in this small trial with chronic long-term status but not treatment-induced improvements. The CST may play a different role in the mechanisms mediating long-term outcome compared to those underlying practice-induced gains after a chronic plateau in motor function.

3. Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

Energy Technology Data Exchange (ETDEWEB)

Seo, Man Su; Park, Hana; Yoo, Don Gyu; Jeong, Sang Kwon [Cryogenic Engineering Laboratory, Department of Mechanical Engineering, KAIST, Daejeon (Korea, Republic of); Jung, Young Suk [Launcher Systems Development Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of)

2014-06-15

Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid.

4. Pressure-volume-temperature gauging method experiment using liquid nitrogen under microgravity condition of parabolic flight

International Nuclear Information System (INIS)

Seo, Man Su; Park, Hana; Yoo, Don Gyu; Jeong, Sang Kwon; Jung, Young Suk

2014-01-01

Measuring an exact amount of remaining cryogenic liquid propellant under microgravity condition is one of the important issues of rocket vehicle. A Pressure-Volume-Temperature (PVT) gauging method is attractive due to its minimal additional hardware and simple gauging process. In this paper, PVT gauging method using liquid nitrogen is investigated under microgravity condition with parabolic flight. A 9.2 litre metal cryogenic liquid storage tank containing approximately 30% of liquid nitrogen is pressurized by ambient temperature helium gas. During microgravity condition, the inside of the liquid tank becomes near-isothermal condition within 1 K difference indicated by 6 silicon diode sensors vertically distributed in the middle of the liquid tank. Helium injection with higher mass flow rate after 10 seconds of the waiting time results in successful measurements of helium partial pressure in the tank. Average liquid volume measurement error is within 11% of the whole liquid tank volume and standard deviation of errors is 11.9. As a result, the applicability of PVT gauging method to liquid

5. Preliminary analysis of an integrated logistics system for OSSA payloads. Volume 2: OSSA integrated logistics support strategy

Science.gov (United States)

Palguta, T.; Bradley, W.; Stockton, T.

1988-01-01

The purpose is to outline an Office of Space Science and Applications (OSSA) integrated logistics support strategy that will ensure effective logistics support of OSSA payloads at an affordable life-cycle cost. Program objectives, organizational relationships, and implementation of the logistics strategy are discussed.

6. Optimization of radiation therapy, III: a method of assessing complication probabilities from dose-volume histograms

International Nuclear Information System (INIS)

Lyman, J.T.; Wolbarst, A.B.

1987-01-01

To predict the likelihood of success of a therapeutic strategy, one must be able to assess the effects of the treatment upon both diseased and healthy tissues. This paper proposes a method for determining the probability that a healthy organ that receives a non-uniform distribution of X-irradiation, heat, chemotherapy, or other agent will escape complications. Starting with any given dose distribution, a dose-cumulative-volume histogram for the organ is generated. This is then reduced by an interpolation scheme (involving the volume-weighting of complication probabilities) to a slightly different histogram that corresponds to the same overall likelihood of complications, but which contains one less step. The procedure is repeated, one step at a time, until there remains a final, single-step histogram, for which the complication probability can be determined. The formalism makes use of a complication response function C(D, V) which, for the given treatment schedule, represents the probability of complications arising when the fraction V of the organ receives dose D and the rest of the organ gets none. Although the data required to generate this function are sparse at present, it should be possible to obtain the necessary information from in vivo and clinical studies. Volume effects are taken explicitly into account in two ways: the precise shape of the patient's histogram is employed in the calculation, and the complication response function is a function of the volume

7. Integrated method for the measurement of trace nitrogenous atmospheric bases

Directory of Open Access Journals (Sweden)

D. Key

2011-12-01

Full Text Available Nitrogenous atmospheric bases are thought to play a key role in the global nitrogen cycle, but their sources, transport, and sinks remain poorly understood. Of the many methods available to measure such compounds in ambient air, few meet the current need of being applicable to the complete range of potential analytes and fewer still are convenient to implement using instrumentation that is standard to most laboratories. In this work, an integrated approach to measuring trace, atmospheric, gaseous nitrogenous bases has been developed and validated. The method uses a simple acid scrubbing step to capture and concentrate the bases as their phosphite salts, which then are derivatized and analyzed using GC/MS and/or LC/MS. The advantages of both techniques in the context of the present measurements are discussed. The approach is sensitive, selective, reproducible, as well as convenient to implement and has been validated for different sampling strategies. The limits of detection for the families of tested compounds are suitable for ambient measurement applications (e.g., methylamine, 1 pptv; ethylamine, 2 pptv; morpholine, 1 pptv; aniline, 1 pptv; hydrazine, 0.1 pptv; methylhydrazine, 2 pptv, as supported by field measurements in an urban park and in the exhaust of on-road vehicles.

8. Stress estimation in reservoirs using an integrated inverse method

Science.gov (United States)

Mazuyer, Antoine; Cupillard, Paul; Giot, Richard; Conin, Marianne; Leroy, Yves; Thore, Pierre

2018-05-01

Estimating the stress in reservoirs and their surroundings prior to the production is a key issue for reservoir management planning. In this study, we propose an integrated inverse method to estimate such initial stress state. The 3D stress state is constructed with the displacement-based finite element method assuming linear isotropic elasticity and small perturbations in the current geometry of the geological structures. The Neumann boundary conditions are defined as piecewise linear functions of depth. The discontinuous functions are determined with the CMA-ES (Covariance Matrix Adaptation Evolution Strategy) optimization algorithm to fit wellbore stress data deduced from leak-off tests and breakouts. The disregard of the geological history and the simplified rheological assumptions mean that only the stress field, statically admissible and matching the wellbore data should be exploited. The spatial domain of validity of this statement is assessed by comparing the stress estimations for a synthetic folded structure of finite amplitude with a history constructed assuming a viscous response.

9. A 3-D method for delineation of activity distributions and assessment of functional organ volumes with SPECT

International Nuclear Information System (INIS)

Wang, Y.; Karolinska Hospital and Karolinska Inst., Stockholm; Jacobsson, H.; Jacobson, S.H.; Kimiaei, S.; Larsson, S.A.

1995-01-01

The distrubution volume of an organ may have a clinical impact in many cases and various methods have been designed to make volume assessments. In this paper, we describe a new method for delineation of the distribution outline and volume determination. The method is based on smoothing, differentiation, image relaxation and voxel counting of single photon emission computer tomography (SPECT) image sets with 3-D operators. A special routine corrects for the inherent thickness of the voxel-based outline. Phantom experiments, using a SPECT system with LEGP-collimator and a 64x64 acquisition matrix with 6.3x6.3 mm 2 pixel size, demonstrated good correlation between the measured and the true volumes. For volumes larger than 120 cc the correlation coefficient was 0.9999 with SE 1.0 cc and an average relative deviation of 0.49%. For volumes below 120 cc, the accuracy was impaired due to low resolution power. By improving the system spatial resolution with an LEHR-collimator and a smaller pixel-size (4.1x4.1 mm 2 ), good accuracy was achieved also for volumes in the range from 3 to 120 cc. Measurements of 15 differently shaped phantoms of volumes between 3 and 104 cc demonstrated high correlation between measured and true volumes: R=0.9921 and SE=0.74 cc (5.3%). For volumes as small as 3 and 5 cc, the difference between the true and the assessed volume was 0.6 cc. The reproducibility of the method was within 3% for volumes above 120 cc and within 7% for volumes below. Due to this accuracy, we conclude that the method can be applied for various clinical routine and research applications using SPECT. (orig.)

10. Report of a CSNI workshop on uncertainty analysis methods. Volume 1 + 2

International Nuclear Information System (INIS)

1994-08-01

The OECD NEA CSNI Principal Working Group 2 (PWG2) Task Group on Thermal Hydraulic System Behaviour (TGTHSB) has, in recent years, received presentations of a variety of different methods to analyze the uncertainty in the calculations of advanced unbiased (best estimate) codes. Proposals were also made for an International Standard Problem (ISP) to compare the uncertainty analysis methods. The objectives for the Workshop were to discuss and fully understand the principles of uncertainty analysis relevant to LOCA modelling and like problems, to examine the underlying issues from first principles, in preference to comparing and contrasting the currently proposed methods, to reach consensus on the issues identified as far as possible while not avoiding the controversial aspects, to identify as clearly as possible unreconciled differences, and to issue a Status Report. Eight uncertainty analysis methods were presented. A structured discussion of various aspects of uncertainty analysis followed - the need for uncertainty analysis, identification and ranking of uncertainties, characterisation, quantification and combination of uncertainties and applications, resources and future developments. As a result, the objectives set out above were, to a very large extent, achieved. Plans for the ISP were also discussed. Volume 1 contains a record of the discussions on uncertainty methods. Volume 2 is a compilation of descriptions of the eight uncertainty analysis methods presented at the workshop

11. Does Categorization Method Matter in Exploring Volume-Outcome Relation? A Multiple Categorization Methods Comparison in Coronary Artery Bypass Graft Surgery Surgical Site Infection.

Science.gov (United States)

Yu, Tsung-Hsien; Tung, Yu-Chi; Chung, Kuo-Piao

2015-08-01

Volume-infection relation studies have been published for high-risk surgical procedures, although the conclusions remain controversial. Inconsistent results may be caused by inconsistent categorization methods, the definitions of service volume, and different statistical approaches. The purpose of this study was to examine whether a relation exists between provider volume and coronary artery bypass graft (CABG) surgical site infection (SSI) using different categorization methods. A population-based cross-sectional multi-level study was conducted. A total of 10,405 patients who received CABG surgery between 2006 and 2008 in Taiwan were recruited. The outcome of interest was surgical site infection for CABG surgery. The associations among several patient, surgeon, and hospital characteristics was examined. The definition of surgeons' and hospitals' service volume was the cumulative CABG service volumes in the previous year for each CABG operation and categorized by three types of approaches: Continuous, quartile, and k-means clustering. The results of multi-level mixed effects modeling showed that hospital volume had no association with SSI. Although the relation between surgeon volume and surgical site infection was negative, it was inconsistent among the different categorization methods. Categorization of service volume is an important issue in volume-infection study. The findings of the current study suggest that different categorization methods might influence the relation between volume and SSI. The selection of an optimal cutoff point should be taken into account for future research.

12. Semiautomatic volume of interest drawing for 18F-FDG image analysis - method and preliminary results

International Nuclear Information System (INIS)

Green, A.J.; Baig, S.; Begent, R.H.J.; Francis, R.J.

2008-01-01

Functional imaging of cancer adds important information to the conventional measurements in monitoring response. Serial 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET), which indicates changes in glucose metabolism in tumours, shows great promise for this. However, there is a need for a method to quantitate alterations in uptake of FDG, which accounts for changes in tumour volume and intensity of FDG uptake. Selection of regions or volumes [ROI or volumes of interest (VOI)] by hand drawing, or simple thresholding, suffers from operator-dependent drawbacks. We present a simple, robust VOI growing method for this application. The method requires a single seed point within the visualised tumour and another in relevant normal tissue. The drawn tumour VOI is insensitive to the operator inconsistency and is, thus, a suitable basis for comparative measurements. The method is validated using a software phantom. We demonstrate the use of the method in the assessment of tumour response in 31 patients receiving chemotherapy for various carcinomas. Valid assessment of tumour response could be made 2-4 weeks after starting chemotherapy, giving information for clinical decision making which would otherwise have taken 9-12 weeks. Survival was predicted from FDG-PET 2-4 weeks after starting chemotherapy (p = 0.04) and after 9-12 weeks FDG-PET gave a better prediction of survival (p = 0.002) than CT or MRI (p = 0.015). FDG-PET using this method of analysis has potential as a routine tool for optimising use of chemotherapy and improving its cost effectiveness. It also has potential for increasing the accuracy of response assessment in clinical trials of novel therapies. (orig.)

13. The Integral Method, a new approach to quantify bactericidal activity.

Science.gov (United States)

Gottardi, Waldemar; Pfleiderer, Jörg; Nagl, Markus

2015-08-01

The bactericidal activity (BA) of antimicrobial agents is generally derived from the results of killing assays. A reliable quantitative characterization and particularly a comparison of these substances, however, are impossible with this information. We here propose a new method that takes into account the course of the complete killing curve for assaying BA and that allows a clear-cut quantitative comparison of antimicrobial agents with only one number. The new Integral Method, based on the reciprocal area below the killing curve, reliably calculates an average BA [log10 CFU/min] and, by implementation of the agent's concentration C, the average specific bactericidal activity SBA=BA/C [log10 CFU/min/mM]. Based on experimental killing data, the pertaining BA and SBA values of exemplary active halogen compounds were established, allowing quantitative assertions. N-chlorotaurine (NCT), chloramine T (CAT), monochloramine (NH2Cl), and iodine (I2) showed extremely diverging SBA values of 0.0020±0.0005, 1.11±0.15, 3.49±0.22, and 291±137log10 CFU/min/mM, respectively, against Staphylococcus aureus. This immediately demonstrates an approximately 550-fold stronger activity of CAT, 1730-fold of NH2Cl, and 150,000-fold of I2 compared to NCT. The inferred quantitative assertions and conclusions prove the new method suitable for characterizing bactericidal activity. Its application comprises the effect of defined agents on various bacteria, the consequence of temperature shifts, the influence of varying drug structure, dose-effect relationships, ranking of isosteric agents, comparison of competing commercial antimicrobial formulations, and the effect of additives. Copyright © 2015 Elsevier B.V. All rights reserved.

14. A comparative study of lattice Boltzmann and volume of fluid method for two dimensional multiphase flows

Energy Technology Data Exchange (ETDEWEB)

Ryu, Seung Yeob [Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of); Ko, Sung Ho [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of)

2012-08-15

The volume of fluid (VOF) model of FLUENT and the lattice Boltzmann method (LBM) are used to simulate two-phase flows. Both methods are validated for static and dynamic bubble test cases and then compared to experimental results. The VOF method does not reduce the spurious currents of the static droplet test and does not satisfy the Laplace law for small droplets at the acceptable level, as compared with the LBM. For single bubble flows, simulations are executed for various Eotvos numbers, Morton numbers and Reynolds numbers, and the results of both methods agree well with the experiments in the case of low Eotvos numbers. For high Eotvos numbers, the VOF results deviated from the experiments. For multiple bubbles, the bubble flow characteristics are related by the wake of the leading bubble. The coaxial and oblique coalescence of the bubbles are simulated successfully and the subsequent results are presented. In conclusion, the LBM performs better than the VOF method.

15. Extrusion Process by Finite Volume Method Using OpenFoam Software

International Nuclear Information System (INIS)

Matos Martins, Marcelo; Tonini Button, Sergio; Divo Bressan, Jose; Ivankovic, Alojz

2011-01-01

The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process.

16. Hanford environmental analytical methods: Methods as of March 1990. Volume 3, Appendix A2-I

Energy Technology Data Exchange (ETDEWEB)

Goheen, S.C.; McCulloch, M.; Daniel, J.L.

1993-05-01

This paper from the analytical laboratories at Hanford describes the method used to measure pH of single-shell tank core samples. Sludge or solid samples are mixed with deionized water. The pH electrode used combines both a sensor and reference electrode in one unit. The meter amplifies the input signal from the electrode and displays the pH visually.

17. Relationship between CT visual score and lung volume which is measured by helium dilution method and body plethysmographic method in patients with pulmonary emphysema

International Nuclear Information System (INIS)

Toyoshima, Hideo; Ishibashi, Masayoshi; Senju, Syoji; Tanaka, Hideki; Aritomi, Takamichi; Watanabe, Kentaro; Yoshida, Minoru

1997-01-01

We examined the relationship between CT visual score and pulmonary function studies in patients with pulmonary emphysema. Lung volume was measured using helium dilution method and body plethysmographic method. Although airflow obstruction and overinflation measured by helium dilution method did not correlate with CT visual score, CO diffusing capacity per alveolar volume (DL CO /V A ) showed significant negative correlation with CT visual score (r=-0.49, p CO /V A reflect pathologic change in pulmonary emphysema. Further, both helium dilution method and body plethysmographic method are required to evaluate lung volume of pulmonary emphysema because of its ventilatory unevenness. (author)

18. Non Machinable Volume Calculation Method for 5-Axis Roughing Based on Faceted Models through Closed Bounded Area Evaluation

Directory of Open Access Journals (Sweden)

Kiswanto Gandjar

2017-01-01

Full Text Available The increase in the volume of rough machining on the CBV area is one of the indicators of increased efficiencyof machining process. Normally, this area is not subject to the rough machining process, so that the volume of the rest of the material is still big. With the addition of CC point and tool orientation to CBV area on a complex surface, the finishing will be faster because the volume of the excess material on this process will be reduced. This paper presents a method for volume calculation of the parts which do not allow further occurrence of the machining process, particulary for rough machining on a complex object. By comparing the total volume of raw materials and machining area volume, the volume of residual material,on which machining process cannot be done,can be determined. The volume of the total machining area has been taken into account for machiningof the CBV and non CBV areas. By using delaunay triangulation for the triangle which includes the machining and CBV areas. The volume will be calculated using Divergence(Gaussian theorem by focusing on the direction of the normal vector on each triangle. This method can be used as an alternative to selecting tothe rough machining methods which select minimum value of nonmachinable volume so that effectiveness can be achieved in the machining process.

19. Predicting uncertainty in future marine ice sheet volume using Bayesian statistical methods

Science.gov (United States)

Davis, A. D.

2015-12-01

The marine ice instability can trigger rapid retreat of marine ice streams. Recent observations suggest that marine ice systems in West Antarctica have begun retreating. However, unknown ice dynamics, computationally intensive mathematical models, and uncertain parameters in these models make predicting retreat rate and ice volume difficult. In this work, we fuse current observational data with ice stream/shelf models to develop probabilistic predictions of future grounded ice sheet volume. Given observational data (e.g., thickness, surface elevation, and velocity) and a forward model that relates uncertain parameters (e.g., basal friction and basal topography) to these observations, we use a Bayesian framework to define a posterior distribution over the parameters. A stochastic predictive model then propagates uncertainties in these parameters to uncertainty in a particular quantity of interest (QoI)---here, the volume of grounded ice at a specified future time. While the Bayesian approach can in principle characterize the posterior predictive distribution of the QoI, the computational cost of both the forward and predictive models makes this effort prohibitively expensive. To tackle this challenge, we introduce a new Markov chain Monte Carlo method that constructs convergent approximations of the QoI target density in an online fashion, yielding accurate characterizations of future ice sheet volume at significantly reduced computational cost.Our second goal is to attribute uncertainty in these Bayesian predictions to uncertainties in particular parameters. Doing so can help target data collection, for the purpose of constraining the parameters that contribute most strongly to uncertainty in the future volume of grounded ice. For instance, smaller uncertainties in parameters to which the QoI is highly sensitive may account for more variability in the prediction than larger uncertainties in parameters to which the QoI is less sensitive. We use global sensitivity

20. Integrating respiratory-gated PET-based target volume delineation in liver SBRT planning, a pilot study

International Nuclear Information System (INIS)

Riou, Olivier; Thariat, Juliette; Serrano, Benjamin; Azria, David; Paulmier, Benoit; Villeneuve, Remy; Fenoglietto, Pascal; Artenie, Antonella; Ortholan, Cécile; Faraggi, Marc

2014-01-01

To assess the feasibility and benefit of integrating four-dimensional (4D) Positron Emission Tomography (PET) – computed tomography (CT) for liver stereotactic body radiation therapy (SBRT) planning. 8 patients with 14 metastases were accrued in the study. They all underwent a non-gated PET and a 4D PET centered on the liver. The same CT scan was used for attenuation correction, registration, and considered the planning CT for SBRT planning. Six PET phases were reconstructed for each 4D PET. By applying an individualized threshold to the 4D PET, a Biological Internal Target Volume (BITV) was generated for each lesion. A gated Planning Target Volume (PTVg) was created by adding 3 mm to account for set-up margins. This volume was compared to a manual Planning Target Volume (PTV) delineated with the help of a semi-automatic Biological Target Volume (BTV) obtained from the non-gated exam. A 5 mm radial and a 10 mm craniocaudal margins were applied to account for tumor motion and set-up margins to create the PTV. One undiagnosed liver metastasis was discovered thanks to the 4D PET. The semi-automatic BTV were significantly smaller than the BITV (p = 0.0031). However, after applying adapted margins, 4D PET allowed a statistically significant decrease in the PTVg as compared to the PTV (p = 0.0052). In comparison to non-gated PET, 4D PET may better define the respiratory movements of liver targets and improve SBRT planning for liver metastases. Furthermore, non respiratory-gated PET exams can both misdiagnose liver metastases and underestimate the real internal target volumes

1. Solid Waste Integrated Forecast Technical (SWIFT) Report FY 2001 to FY 2046 Volume 2

International Nuclear Information System (INIS)

BARCOT, R.A.

2001-01-01

The SWIFT Report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. This report is a mid-year update to the SWIFT 2001.0 report that was published in August 2000. The data contained in this report is the official data for solid waste forecasting until the SWIFT 2002.0 data is published in August 2001. This particular volume provides the following data reports: Annual volume data by waste generator; Summary volume data by location and DOE Office; Annual container type data by volume and count; and Annual physical waste form and waste specification record volume. This report also includes several minor changes from previous versions in an effort to increase the usability of the data and align with current Hanford Site organization changes. The changes include: Minor changes to waste generator names to make them more recognizable; Grouping of the waste generators into DOE Office and location (e.g, Office of River Protection, Fluor Hanford, Bechtel, etc); Addition of WSRd and Container Count sections; and Elimination of the ''functional group'' organization of the data (e.g., Facilities Transition, Spent Nuclear Fuel, etc)

2. A novel finite volume discretization method for advection-diffusion systems on stretched meshes

Science.gov (United States)

Merrick, D. G.; Malan, A. G.; van Rooyen, J. A.

2018-06-01

This work is concerned with spatial advection and diffusion discretization technology within the field of Computational Fluid Dynamics (CFD). In this context, a novel method is proposed, which is dubbed the Enhanced Taylor Advection-Diffusion (ETAD) scheme. The model equation employed for design of the scheme is the scalar advection-diffusion equation, the industrial application being incompressible laminar and turbulent flow. Developed to be implementable into finite volume codes, ETAD places specific emphasis on improving accuracy on stretched structured and unstructured meshes while considering both advection and diffusion aspects in a holistic manner. A vertex-centered structured and unstructured finite volume scheme is used, and only data available on either side of the volume face is employed. This includes the addition of a so-called mesh stretching metric. Additionally, non-linear blending with the existing NVSF scheme was performed in the interest of robustness and stability, particularly on equispaced meshes. The developed scheme is assessed in terms of accuracy - this is done analytically and numerically, via comparison to upwind methods which include the popular QUICK and CUI techniques. Numerical tests involved the 1D scalar advection-diffusion equation, a 2D lid driven cavity and turbulent flow case. Significant improvements in accuracy were achieved, with L2 error reductions of up to 75%.

3. An efficicient data structure for three-dimensional vertex based finite volume method

Science.gov (United States)

Akkurt, Semih; Sahin, Mehmet

2017-11-01

A vertex based three-dimensional finite volume algorithm has been developed using an edge based data structure.The mesh data structure of the given algorithm is similar to ones that exist in the literature. However, the data structures are redesigned and simplied in order to fit requirements of the vertex based finite volume method. In order to increase the cache efficiency, the data access patterns for the vertex based finite volume method are investigated and these datas are packed/allocated in a way that they are close to each other in the memory. The present data structure is not limited with tetrahedrons, arbitrary polyhedrons are also supported in the mesh without putting any additional effort. Furthermore, the present data structure also supports adaptive refinement and coarsening. For the implicit and parallel implementation of the FVM algorithm, PETSc and MPI libraries are employed. The performance and accuracy of the present algorithm are tested for the classical benchmark problems by comparing the CPU time for the open source algorithms.

4. Single x-ray absorptiometry method for the quantitative mammographic measure of fibroglandular tissue volume

International Nuclear Information System (INIS)

Malkov, Serghei; Wang, Jeff; Kerlikowske, Karla; Cummings, Steven R.; Shepherd, John A.

2009-01-01

Purpose: This study describes the design and characteristics of a highly accurate, precise, and automated single-energy method to quantify percent fibroglandular tissue volume (%FGV) and fibroglandular tissue volume (FGV) using digital screening mammography. Methods: The method uses a breast tissue-equivalent phantom in the unused portion of the mammogram as a reference to estimate breast composition. The phantom is used to calculate breast thickness and composition for each image regardless of x-ray technique or the presence of paddle tilt. The phantom adheres to the top of the mammographic compression paddle and stays in place for both craniocaudal and mediolateral oblique screening views. We describe the automated method to identify the phantom and paddle orientation with a three-dimensional reconstruction least-squares technique. A series of test phantoms, with a breast thickness range of 0.5-8 cm and a %FGV of 0%-100%, were made to test the accuracy and precision of the technique. Results: Using test phantoms, the estimated repeatability standard deviation equaled 2%, with a ±2% accuracy for the entire thickness and density ranges. Without correction, paddle tilt was found to create large errors in the measured density values of up to 7%/mm difference from actual breast thickness. This new density measurement is stable over time, with no significant drifts in calibration noted during a four-month period. Comparisons of %FGV to mammographic percent density and left to right breast %FGV were highly correlated (r=0.83 and 0.94, respectively). Conclusions: An automated method for quantifying fibroglandular tissue volume has been developed. It exhibited good accuracy and precision for a broad range of breast thicknesses, paddle tilt angles, and %FGV values. Clinical testing showed high correlation to mammographic density and between left and right breasts.

5. Uncertainty associated with assessing semen volume: are volumetric and gravimetric methods that different?

Science.gov (United States)

Woodward, Bryan; Gossen, Nicole; Meadows, Jessica; Tomlinson, Mathew

2016-12-01

The World Health Organization laboratory manual for the examination of human semen suggests that an indirect measurement of semen volume by weighing (gravimetric method) is more accurate than a direct measure using a serological pipette. A series of experiments were performed to determine the level of discrepancy between the two methods using pipettes and a balance which had been calibrated to a traceable standard. The median weights of 1.0ml and 5.0ml of semen were 1.03 g (range 1.02-1.05 g) and 5.11 g (range 4.95-5.16 g), respectively, suggesting a density for semen between 1.03g and 1.04 g/ml. When the containers were re-weighed after the removal of 5.0 ml semen using a serological pipette, the mean residual loss was 0.12 ml (120 μl) or 0.12 g (median 100 μl, range 70-300 μl). Direct comparison of the volumetric and gravimetric methods in a total of 40 samples showed a mean difference of 0.25ml (median 0.32 ± 0.67ml) representing an error of 8.5%. Residual semen left in the container by weight was on average 0.11 g (median 0.10 g, range 0.05-0.19 g). Assuming a density of 1 g/ml then the average error between volumetric and gravimetric methods was approximately 8% (p gravimetric measurement of semen volume. Laboratories may therefore prefer to provide in-house quality assurance data in order to be satisfied that 'estimating' semen volume is 'fit for purpose' as opposed to assuming a lower uncertainty associated with the WHO recommended method.

6. Monte Carlo method for critical systems in infinite volume: The planar Ising model.

Science.gov (United States)

Herdeiro, Victor; Doyon, Benjamin

2016-10-01

In this paper we propose a Monte Carlo method for generating finite-domain marginals of critical distributions of statistical models in infinite volume. The algorithm corrects the problem of the long-range effects of boundaries associated to generating critical distributions on finite lattices. It uses the advantage of scale invariance combined with ideas of the renormalization group in order to construct a type of "holographic" boundary condition that encodes the presence of an infinite volume beyond it. We check the quality of the distribution obtained in the case of the planar Ising model by comparing various observables with their infinite-plane prediction. We accurately reproduce planar two-, three-, and four-point of spin and energy operators. We also define a lattice stress-energy tensor, and numerically obtain the associated conformal Ward identities and the Ising central charge.

7. Developing integrated methods to address complex resource and environmental issues

Science.gov (United States)

Smith, Kathleen S.; Phillips, Jeffrey D.; McCafferty, Anne E.; Clark, Roger N.

2016-02-08

IntroductionThis circular provides an overview of selected activities that were conducted within the U.S. Geological Survey (USGS) Integrated Methods Development Project, an interdisciplinary project designed to develop new tools and conduct innovative research requiring integration of geologic, geophysical, geochemical, and remote-sensing expertise. The project was supported by the USGS Mineral Resources Program, and its products and acquired capabilities have broad applications to missions throughout the USGS and beyond.In addressing challenges associated with understanding the location, quantity, and quality of mineral resources, and in investigating the potential environmental consequences of resource development, a number of field and laboratory capabilities and interpretative methodologies evolved from the project that have applications to traditional resource studies as well as to studies related to ecosystem health, human health, disaster and hazard assessment, and planetary science. New or improved tools and research findings developed within the project have been applied to other projects and activities. Specifically, geophysical equipment and techniques have been applied to a variety of traditional and nontraditional mineral- and energy-resource studies, military applications, environmental investigations, and applied research activities that involve climate change, mapping techniques, and monitoring capabilities. Diverse applied geochemistry activities provide a process-level understanding of the mobility, chemical speciation, and bioavailability of elements, particularly metals and metalloids, in a variety of environmental settings. Imaging spectroscopy capabilities maintained and developed within the project have been applied to traditional resource studies as well as to studies related to ecosystem health, human health, disaster assessment, and planetary science. Brief descriptions of capabilities and laboratory facilities and summaries of some

8. Metriplectic Gyrokinetics and Discretization Methods for the Landau Collision Integral

Science.gov (United States)

Hirvijoki, Eero; Burby, Joshua W.; Kraus, Michael

2017-10-01

We present two important results for the kinetic theory and numerical simulation of warm plasmas: 1) We provide a metriplectic formulation of collisional electrostatic gyrokinetics that is fully consistent with the First and Second Laws of Thermodynamics. 2) We provide a metriplectic temporal and velocity-space discretization for the particle phase-space Landau collision integral that satisfies the conservation of energy, momentum, and particle densities to machine precision, as well as guarantees the existence of numerical H-theorem. The properties are demonstrated algebraically. These two result have important implications: 1) Numerical methods addressing the Vlasov-Maxwell-Landau system of equations, or its reduced gyrokinetic versions, should start from a metriplectic formulation to preserve the fundamental physical principles also at the discrete level. 2) The plasma physics community should search for a metriplectic reduction theory that would serve a similar purpose as the existing Lagrangian and Hamiltonian reduction theories do in gyrokinetics. The discovery of metriplectic formulation of collisional electrostatic gyrokinetics is strong evidence in favor of such theory and, if uncovered, the theory would be invaluable in constructing reduced plasma models. Supported by U.S. DOE Contract Nos. DE-AC02-09-CH11466 (EH) and DE-AC05-06OR23100 (JWB) and by European Union's Horizon 2020 research and innovation Grant No. 708124 (MK).

9. Boundary integral method for torsion of composite shafts

International Nuclear Information System (INIS)

Chou, S.I.; Mohr, J.A.

1987-01-01

The Saint-Venant torsion problem for homogeneous shafts with simply or multiply-connected regions has received a great deal of attention in the past. However, because of the mathematical difficulties inherent in the problem, very few problems of torsion of shafts with composite cross sections have been solved analytically. Muskhelishvili (1963) studied the torsion problem for shafts with cross sections having several solid inclusions surrounded by an elastic material. The problem of a circular shaft reinforced by a non-concentric round inclusion, a rectangular shaft composed of two rectangular parts made of different materials were solved. In this paper, a boundary integral equation method, which can be used to solve problems more complex than those considered by Katsikadelis et. al., is developed. Square shaft with two dissimilar rectangular parts, square shaft with a square inclusion are solved and the results compared with those given in the reference cited above. Finally, a square shaft composed of two rectangular parts with circular inclusion is solved. (orig./GL)

10. Integration of rock typing methods for carbonate reservoir characterization

International Nuclear Information System (INIS)

Aliakbardoust, E; Rahimpour-Bonab, H

2013-01-01

Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

11. High-integrity software, computation and the scientific method

International Nuclear Information System (INIS)

Hatton, L.

2012-01-01

Computation rightly occupies a central role in modern science. Datasets are enormous and the processing implications of some algorithms are equally staggering. With the continuing difficulties in quantifying the results of complex computations, it is of increasing importance to understand its role in the essentially Popperian scientific method. In this paper, some of the problems with computation, for example the long-term unquantifiable presence of undiscovered defect, problems with programming languages and process issues will be explored with numerous examples. One of the aims of the paper is to understand the implications of trying to produce high-integrity software and the limitations which still exist. Unfortunately Computer Science itself suffers from an inability to be suitably critical of its practices and has operated in a largely measurement-free vacuum since its earliest days. Within computer science itself, this has not been so damaging in that it simply leads to unconstrained creativity and a rapid turnover of new technologies. In the applied sciences however which have to depend on computational results, such unquantifiability significantly undermines trust. It is time this particular demon was put to rest. (author)

12. High temperature spectral emissivity measurement using integral blackbody method

Science.gov (United States)

Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

2016-10-01

Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.

13. Methods for assessing NPP containment pressure boundary integrity

International Nuclear Information System (INIS)

Naus, D.J.; Ellingwood, B.R.; Graves, H.L.

2004-01-01

Research is being conducted to address aging of the containment pressure boundary in light-water reactor plants. Objectives of this research are to (1) understand the significant factors relating to corrosion occurrence, efficacy of inspection, and structural capacity reduction of steel containments and of liners of concrete containments; (2) provide the U.S. Nuclear Regulatory Commission (USNRC) reviewers a means of establishing current structural capacity margins or estimating future residual structural capacity margins for steel containments and concrete containments as limited by liner integrity; and (3) provide recommendations, as appropriate, on information to be requested of licensees for guidance that could be utilized by USNRC reviewers in assessing the seriousness of reported incidences of containment degradation. Activities include development of a degradation assessment methodology; reviews of techniques and methods for inspection and repair of containment metallic pressure boundaries; evaluation of candidate techniques for inspection of inaccessible regions of containment metallic pressure boundaries; establishment of a methodology for reliability-based condition assessments of steel containments and liners; and fragility assessments of steel containments with localized corrosion

14. Clinical determination of the volume of the neurocranium in infancy. A presentation of two new methods.

Science.gov (United States)

Mösch, D; Mösch, H P; Kaiser, G

1983-05-01

Two useful methods for the exact volumetric measurement of the neurocranium are introduced. Using these methods in a transversal study, mean ratio and range for normal boys and girls from birth to six months can be defined. Longitudinal studies and comparative literature research confirm the accuracy of these standard values. The application to pathological cases shows that hypogenesis of the neurocranium can be recognized earlier and more accurately by measuring the volume than by measuring the circumference of the head. Both methods are easy to apply and can be expected of every child. However, method B (dipping in the neurocranium and measuring the displaced water on a scale) has proved to be more accurate, simpler and faster.

15. Precision of a new bedside method for estimation of the circulating blood volume

DEFF Research Database (Denmark)

Christensen, P; Eriksen, B; Henneberg, S W

1993-01-01

The present study is a theoretical and experimental evaluation of a modification of the carbon monoxide method for estimation of the circulating blood volume (CBV) with respect to the precision of the method. The CBV was determined from measurements of the CO-saturation of hemoglobin before...... ventilation with the CO gas mixture. The amount of CO administered during each determination of CBV resulted in an increase in the CO saturation of hemoglobin of 2.1%-3.9%. A theoretical noise propagation analysis was performed by means of the Monte Carlo method. The analysis showed that a CO dose...... patients. The coefficients of variation were 6.2% and 4.7% in healthy and diseased subjects, respectively. Furthermore, the day-to-day variation of the method with respect to the total amount of circulating hemoglobin (nHb) and CBV was determined from duplicate estimates separated by 24-48 h. In conclusion...

16. Numerical simulation of bubble deformation in magnetic fluids by finite volume method

International Nuclear Information System (INIS)

Yamasaki, Haruhiko; Yamaguchi, Hiroshi

2017-01-01

Bubble deformation in magnetic fluids under magnetic field is investigated numerically by an interface capturing method. The numerical method consists of a coupled level-set and VOF (Volume of Fluid) method, combined with conservation CIP (Constrained Interpolation Profile) method with the self-correcting procedure. In the present study considering actual physical properties of magnetic fluid, bubble deformation under given uniform magnetic field is analyzed for internal magnetic field passing through a magnetic gaseous and liquid phase interface. The numerical results explain the mechanism of bubble deformation under presence of given magnetic field. - Highlights: • A magnetic field analysis is developed to simulate the bubble dynamics in magnetic fluid with two-phase interface. • The elongation of bubble increased with increasing magnetic flux intensities due to strong magnetic normal force. • Proposed technique explains the bubble dynamics, taking into account of the continuity of the magnetic flux density.

17. A Multi-Objective Optimization Method to integrate Heat Pumps in Industrial Processes

OpenAIRE

Becker, Helen; Spinato, Giulia; Maréchal, François

2011-01-01

Aim of process integration methods is to increase the efficiency of industrial processes by using pinch analysis combined with process design methods. In this context, appropriate integrated utilities offer promising opportunities to reduce energy consumption, operating costs and pollutants emissions. Energy integration methods are able to integrate any type of predefined utility, but so far there is no systematic approach to generate potential utilities models based on their technology limit...

18. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

Energy Technology Data Exchange (ETDEWEB)

1981-12-01

This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs.

19. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

International Nuclear Information System (INIS)

1981-12-01

This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs

20. Evaluation of methods for MR imaging of human right ventricular heart volumes and mass

International Nuclear Information System (INIS)

Jauhiainen, T.; Jaervinen, V.M.; Hekali, P.E.

2002-01-01

Purpose: To assess the utility of two different imaging directions in the evaluation of human right ventricular (RV) heart volumes and mass with MR imaging; to compare breath-hold vs. non-breath-hold imaging in volume analysis; and to compare turbo inversion recovery imaging (TIR) with gradient echo imaging in RV mass measurement. Material and Methods: We examined 12 healthy volunteers (age 27-59 years). Breath-hold gradient echo MR imaging was performed in two imaging planes: 1) perpendicular to the RV inflow tract (RVIT view), and 2) in the transaxial view (TA view). The imaging was repeated in the TA view while the subjects were breathing freely. To analyze RV mass using TIR images, the RV was again imaged at end-diastole using the two views. The RV end-diastolic cavity (RVEDV) and muscle volume as well as end-systolic cavity volume (RVESV) were determined with the method of discs. All measurements were done blindly twice to assess repeatability of image analysis. To assess reproducibility of the measurements, 6 of the subjects were imaged twice at an interval of 5-9 weeks. Results: RVEDV averaged 133.2 ml, RVESV 61.5 ml and the RVmass 46.2 g in the RVIT view and 119.9 ml, 56.9 ml and 38.3 g in the TA view, respectively. The volumes obtained with breath-holding were slightly but not significantly smaller than the volumes obtained during normal breathing. There were no marked differences in the RV muscle mass obtained with gradient echo imaging compared to TIR imaging in either views. Repeatability of volume analysis was better in TA than RVIT view: the mean differences were 0.7±4.0 ml and 5.4±14.0 ml in end-diastole and 1.6±3.1 ml and 1.5±13.9 ml in end-systole, respectively. Repeatability of mass analysis was good in both TIR and cine images in the RVIT view but slightly better in TIR images: 0.5±2.4 g compared to 0.8±2.9 g in cine images. Reproducibility of imaging was good, mean differences for RVEDV and RVESV were 1.0±4.8 ml and 0.8±2.8 ml

1. Evaluation of bias-correction methods for ensemble streamflow volume forecasts

Directory of Open Access Journals (Sweden)

T. Hashino

2007-01-01

Full Text Available Ensemble prediction systems are used operationally to make probabilistic streamflow forecasts for seasonal time scales. However, hydrological models used for ensemble streamflow prediction often have simulation biases that degrade forecast quality and limit the operational usefulness of the forecasts. This study evaluates three bias-correction methods for ensemble streamflow volume forecasts. All three adjust the ensemble traces using a transformation derived with simulated and observed flows from a historical simulation. The quality of probabilistic forecasts issued when using the three bias-correction methods is evaluated using a distributions-oriented verification approach. Comparisons are made of retrospective forecasts of monthly flow volumes for a north-central United States basin (Des Moines River, Iowa, issued sequentially for each month over a 48-year record. The results show that all three bias-correction methods significantly improve forecast quality by eliminating unconditional biases and enhancing the potential skill. Still, subtle differences in the attributes of the bias-corrected forecasts have important implications for their use in operational decision-making. Diagnostic verification distinguishes these attributes in a context meaningful for decision-making, providing criteria to choose among bias-correction methods with comparable skill.

2. Simulation of Jetting in Injection Molding Using a Finite Volume Method

Directory of Open Access Journals (Sweden)

Shaozhen Hua

2016-05-01

Full Text Available In order to predict the jetting and the subsequent buckling flow more accurately, a three dimensional melt flow model was established on a viscous, incompressible, and non-isothermal fluid, and a control volume-based finite volume method was employed to discretize the governing equations. A two-fold iterative method was proposed to decouple the dependence among pressure, velocity, and temperature so as to reduce the computation and improve the numerical stability. Based on the proposed theoretical model and numerical method, a program code was developed to simulate melt front progress and flow fields. The numerical simulations for different injection speeds, melt temperatures, and gate locations were carried out to explore the jetting mechanism. The results indicate the filling pattern depends on the competition between inertial and viscous forces. When inertial force exceeds the viscous force jetting occurs, then it changes to a buckling flow as the viscous force competes over the inertial force. Once the melt contacts with the mold wall, the melt filling switches to conventional sequential filling mode. Numerical results also indicate jetting length increases with injection speed but changes little with melt temperature. The reasonable agreements between simulated and experimental jetting length and buckling frequency imply the proposed method is valid for jetting simulation.

3. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase one, volume 2 : knowledge modeling and database development.

Science.gov (United States)

2009-12-01

The Integrated Remote Sensing and Visualization System (IRSV) is being designed to accommodate the needs of todays Bridge Engineers at the : state and local level from several aspects that were documented in Volume One, Summary Report. The followi...

4. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase one, volume 3 : use of scanning LiDAR in structural evaluation of bridges.

Science.gov (United States)

2009-12-01

This volume introduces several applications of remote bridge inspection technologies studied in : this Integrated Remote Sensing and Visualization (IRSV) study using ground-based LiDAR : systems. In particular, the application of terrestrial LiDAR fo...

5. Ocean Thermal Energy Conversion (OTEC) platform configuration and integration. Volume II. Conceptual design. Final report

Energy Technology Data Exchange (ETDEWEB)

None

1978-06-01

The purpose of this project is to evaluate six candidate hullforms as candidates for the OTEC commercial plant. This volume is a summary of the conceptual design including facility requirements, cost, schedule, and site sensitivity. Two OTEC commercial plant configurations are considered in this study: the ship and the semi-submersible. Engineering drawings are presented. (WHR)

6. Attention in spina bifida myelomeningocele: Relations with brain volume and integrity

Directory of Open Access Journals (Sweden)

Paulina A. Kulesz

2015-01-01

Full Text Available This study investigated the relations of tectal volume and superior parietal cortex, as well as alterations in tectocortical white matter connectivity, with the orienting and executive control attention networks in individuals with spina bifida myelomeningocele (SBM. Probabilistic diffusion tractography and quantification of tectal and superior parietal cortical volume were performed on 74 individuals aged 8–29 with SBM and a history of hydrocephalus. Behavioral assessments measured posterior (covert orienting and anterior (conflict resolution, attentional control attention network functions. Reduced tectal volume was associated with slower covert orienting; reduced superior parietal cortical volume was associated with slower conflict resolution; and increased axial diffusivity and radial diffusivity along both frontal and parietal tectocortical pathways were associated with reduced attentional control. Results suggest that components of both the orienting and executive control attention networks are impaired in SBM. Neuroanatomical disruption to the orienting network appears more robust and a direct consequence of characteristic midbrain dysmorphology; whereas, executive control difficulties may emerge from parietal cortical anomalies and reduced frontal and parietal cortical–subcortical white matter pathways susceptible to the pathophysiological effects of congenital hydrocephalus.

7. Cerebral volumes, neuronal integrity and brain inflammation measured by MRI in patients receiving PI monotherapy or triple therapy.

Science.gov (United States)

Valero, Ignacio Pérez; Baeza, Alicia Gonzalez; Hernandez-Tamames, Juan Antonio; Monge, Susana; Arnalich, Francisco; Arribas, Jose Ramon

2014-01-01

Penetration of protease inhibitors (PI) in the central nervous system (CNS) is limited. Therefore, there are concerns about the capacity of PI monotherapy (MT) to control HIV in CNS and preserve brain integrity. Exploratory case-control study designed to compare neuronal integrity and brain inflammation in HIV-suppressed patients (>2 years) with and without neurocognitive impairment (NI), treated with MT or triple therapy (TT), 3-Tesla cerebral magnetic resonance image (MRI) and spectroscopy (MRS) were used to evaluate neuronal integrity (volume of cerebral structures and MRS levels of N-acetyl-aspartate (NAA)) and brain inflammation (MRS levels of myo-inositol (MI) and choline (CHO)). MRS biomarkers were measured in 4 voxels located in basal ganglia, frontal (2) and parietal lobes. A comprehensive battery of tests (14 tests - 7 domains) was used to diagnose neurocognitive impairment (1). We included 18 neurocognitively impaired patients (MT: 10, TT: 8) and 21 without NI (MT: 9; TT: 12, Table 1). Subset of patients with NI: cerebral volumes and MRS biomarkers were mostly similar between MT and TT with exception of the right cingulate nucleolus volume (MT: 8854±1851 vs TT: 10482±1107 mm(3); p<0.04), CHO levels in basal ganglia (MT: 0.44±0.05 vs TT: 0.37±0.03 MMOL/L; p<0.01) and the NAA levels in parietal lobe (MT: 1.49±0.12 vs 1.70±0.13 MMOL/L; p<0.01). Subset of patients without NI: cerebral volumes and MRS biomarkers were mostly similar between MT and TT with exception of MI levels in frontal lobe (MT: 1.20±0.36 vs 0.81±0.25 MMOL/L; p=0.01). We did not find significant differences in cerebral volumes or MRS biomarkers in most areas of the brain. However, we found higher levels of inflammation and neuronal damage in some brain areas of patients who received MT. This observation has to be taken into caution while we could not adjust our results by potential confounders. Further investigation is needed to confirm these preliminary results.

8. Evaluation of two-phase flow solvers using Level Set and Volume of Fluid methods

Science.gov (United States)

Bilger, C.; Aboukhedr, M.; Vogiatzaki, K.; Cant, R. S.

2017-09-01

Two principal methods have been used to simulate the evolution of two-phase immiscible flows of liquid and gas separated by an interface. These are the Level-Set (LS) method and the Volume of Fluid (VoF) method. Both methods attempt to represent the very sharp interface between the phases and to deal with the large jumps in physical properties associated with it. Both methods have their own strengths and weaknesses. For example, the VoF method is known to be prone to excessive numerical diffusion, while the basic LS method has some difficulty in conserving mass. Major progress has been made in remedying these deficiencies, and both methods have now reached a high level of physical accuracy. Nevertheless, there remains an issue, in that each of these methods has been developed by different research groups, using different codes and most importantly the implementations have been fine tuned to tackle different applications. Thus, it remains unclear what are the remaining advantages and drawbacks of each method relative to the other, and what might be the optimal way to unify them. In this paper, we address this gap by performing a direct comparison of two current state-of-the-art variations of these methods (LS: RCLSFoam and VoF: interPore) and implemented in the same code (OpenFoam). We subject both methods to a pair of benchmark test cases while using the same numerical meshes to examine a) the accuracy of curvature representation, b) the effect of tuning parameters, c) the ability to minimise spurious velocities and d) the ability to tackle fluids with very different densities. For each method, one of the test cases is chosen to be fairly benign while the other test case is expected to present a greater challenge. The results indicate that both methods can be made to work well on both test cases, while displaying different sensitivity to the relevant parameters.

9. Direct and indirect methods for the quantification of leg volume: Comparison between water displacement volumetry, the disk model method and the frustum sign model method, using the correlation coefficient and the limits of agreement

NARCIS (Netherlands)

D.M.K.S. Kaulesar Sukul (D. M K S); P.Th. den Hoed (Pieter); T. Johannes (Tanja); R. van Dolder (R.); E. Benda (Eric)

1993-01-01

textabstractVolume changes can be measured either directly by water-displacement volumetry or by various indirect methods in which calculation of the volume is based on circumference measurements. The aim of the present study was to determine the most appropriate indirect method for lower leg volume

10. Space Flight Human System Standards (SFHSS). Volume 2; Human Factors, Habitability and Environmental Factors" and Human Integration Design Handbook (HIDH)

Science.gov (United States)

Davis, Jeffrey R.; Fitts, David J.

2009-01-01

This viewgraph presentation reviews the standards for space flight hardware based on human capabilities and limitations. The contents include: 1) Scope; 2) Applicable documents; 3) General; 4) Human Physical Characteristics and Capabilities; 5) Human Performance and Cognition; 6) Natural and Induced Environments; 7) Habitability Functions; 8) Architecture; 9) Hardware and Equipment; 10) Crew Interfaces; 11) Spacesuits; 12) Operatons: Reserved; 13) Ground Maintenance and Assembly: Reserved; 14) Appendix A-Reference Documents; 15) Appendix N-Acronyms and 16) Appendix C-Definition. Volume 2 is supported by the Human Integration Design Handbook (HIDH)s.

11. AC/ARNG Integrated Division Concept Study, Main Report, Volume 1

National Research Council Canada - National Science Library

Twohig, John

1997-01-01

...) division headquarters. The US Army Training and Doctrine Command (TRADOC) was tasked to conduct a viability assessment of the AC/ARNG Integrated Division concept and focus on merits and implementation issues...

12. Investigation Of The Effects Of Reflow Profile Parameters On Lead-free Solder Bump Volumes And Joint Integrity

Science.gov (United States)

Amalu, E. H.; Lui, Y. T.; Ekere, N. N.; Bhatti, R. S.; Takyi, G.

2011-01-01

The electronics manufacturing industry was quick to adopt and use the Surface Mount Technology (SMT) assembly technique on realization of its huge potentials in achieving smaller, lighter and low cost product implementations. Increasing global customer demand for miniaturized electronic products is a key driver in the design, development and wide application of high-density area array package format. Electronic components and their associated solder joints have reduced in size as the miniaturization trend in packaging continues to be challenged by printing through very small stencil apertures required for fine pitch flip-chip applications. At very narrow aperture sizes, solder paste rheology becomes crucial for consistent paste withdrawal. The deposition of consistent volume of solder from pad-to-pad is fundamental to minimizing surface mount assembly defects. This study investigates the relationship between volume of solder paste deposit (VSPD) and the volume of solder bump formed (VSBF) after reflow, and the effect of reflow profile parameters on lead-free solder bump formation and the associated solder joint integrity. The study uses a fractional factorial design (FFD) of 24-1 Ramp-Soak-Spike reflow profile, with all main effects and two-way interactions estimable to determine the optimal factorial combination. The results from the study show that the percentage change in the VSPD depends on the combination of the process parameters and reliability issues could become critical as the size of solder joints soldered on the same board assembly vary greatly. Mathematical models describe the relationships among VSPD, VSBF and theoretical volume of solder paste. Some factors have main effects across the volumes and a number of interactions exist among them. These results would be useful for R&D personnel in designing and implementing newer applications with finer-pitch interconnect.

13. Review of Exploration Systems Development (ESD) Integrated Hazard Development Process. Appendices; Volume 2

Science.gov (United States)

Smiles, Michael D.; Blythe, Michael P.; Bejmuk, Bohdan; Currie, Nancy J.; Doremus, Robert C.; Franzo, Jennifer C.; Gordon, Mark W.; Johnson, Tracy D.; Kowaleski, Mark M.; Laube, Jeffrey R.

2015-01-01

The Chief Engineer of the Exploration Systems Development (ESD) Office requested that the NASA Engineering and Safety Center (NESC) perform an independent assessment of the ESD's integrated hazard development process. The focus of the assessment was to review the integrated hazard analysis (IHA) process and identify any gaps/improvements in the process (e.g. missed causes, cause tree completeness, missed hazards). This document contains the outcome of the NESC assessment.

14. Review of Exploration Systems Development (ESD) Integrated Hazard Development Process. Volume 1; Appendices

Science.gov (United States)

Smiles, Michael D.; Blythe, Michael P.; Bejmuk, Bohdan; Currie, Nancy J.; Doremus, Robert C.; Franzo, Jennifer C.; Gordon, Mark W.; Johnson, Tracy D.; Kowaleski, Mark M.; Laube, Jeffrey R.

2015-01-01

The Chief Engineer of the Exploration Systems Development (ESD) Office requested that the NASA Engineering and Safety Center (NESC) perform an independent assessment of the ESD's integrated hazard development process. The focus of the assessment was to review the integrated hazard analysis (IHA) process and identify any gaps/improvements in the process (e.g., missed causes, cause tree completeness, missed hazards). This document contains the outcome of the NESC assessment.

15. Methods for external event screening quantification: Risk Methods Integration and Evaluation Program (RMIEP) methods development

International Nuclear Information System (INIS)

Ravindra, M.K.; Banon, H.

1992-07-01

In this report, the scoping quantification procedures for external events in probabilistic risk assessments of nuclear power plants are described. External event analysis in a PRA has three important goals; (1) the analysis should be complete in that all events are considered; (2) by following some selected screening criteria, the more significant events are identified for detailed analysis; (3) the selected events are analyzed in depth by taking into account the unique features of the events: hazard, fragility of structures and equipment, external-event initiated accident sequences, etc. Based on the above goals, external event analysis may be considered as a three-stage process: Stage I: Identification and Initial Screening of External Events; Stage II: Bounding Analysis; Stage III: Detailed Risk Analysis. In the present report, first, a review of published PRAs is given to focus on the significance and treatment of external events in full-scope PRAs. Except for seismic, flooding, fire, and extreme wind events, the contributions of other external events to plant risk have been found to be negligible. Second, scoping methods for external events not covered in detail in the NRC's PRA Procedures Guide are provided. For this purpose, bounding analyses for transportation accidents, extreme winds and tornadoes, aircraft impacts, turbine missiles, and chemical release are described

16. Experimental studies for the development of a new method for stroke volume measuring using X-ray videodensitometry

International Nuclear Information System (INIS)

Odenthal, H.J.

1982-01-01

Quantitative videodensitometry was studied with a view to its possible application as a new, non-invasive method of measuring cardiac stroke volume. To begin with, the accuracy of roentgen volumetric measurements was determined. After this, blood volume variations were measured by densitometry in five animal experiments. The findings were compared with the volumes measured by a flowmeter in the pulmonary artery. The total stroke volume was found to be proportional to the difference between the maximum and mean densitometric volume. A comparison between videodensitometry and other non-invasive methods showed that, in a stable circulatory system, the results of videodensitometry are equally reliable as, or even more reliable than, those of the conventional methods. (orig./MG) [de

17. Bayesian prediction of future ice sheet volume using local approximation Markov chain Monte Carlo methods

Science.gov (United States)

Davis, A. D.; Heimbach, P.; Marzouk, Y.

2017-12-01

We develop a Bayesian inverse modeling framework for predicting future ice sheet volume with associated formal uncertainty estimates. Marine ice sheets are drained by fast-flowing ice streams, which we simulate using a flowline model. Flowline models depend on geometric parameters (e.g., basal topography), parameterized physical processes (e.g., calving laws and basal sliding), and climate parameters (e.g., surface mass balance), most of which are unknown or uncertain. Given observations of ice surface velocity and thickness, we define a Bayesian posterior distribution over static parameters, such as basal topography. We also define a parameterized distribution over variable parameters, such as future surface mass balance, which we assume are not informed by the data. Hyperparameters are used to represent climate change scenarios, and sampling their distributions mimics internal variation. For example, a warming climate corresponds to increasing mean surface mass balance but an individual sample may have periods of increasing or decreasing surface mass balance. We characterize the predictive distribution of ice volume by evaluating the flowline model given samples from the posterior distribution and the distribution over variable parameters. Finally, we determine the effect of climate change on future ice sheet volume by investigating how changing the hyperparameters affects the predictive distribution. We use state-of-the-art Bayesian computation to address computational feasibility. Characterizing the posterior distribution (using Markov chain Monte Carlo), sampling the full range of variable parameters and evaluating the predictive model is prohibitively expensive. Furthermore, the required resolution of the inferred basal topography may be very high, which is often challenging for sampling methods. Instead, we leverage regularity in the predictive distribution to build a computationally cheaper surrogate over the low dimensional quantity of interest (future ice

18. Analysis of the neutron flux in an annular pulsed reactor by using finite volume method

Energy Technology Data Exchange (ETDEWEB)

Silva, Mário A.B. da; Narain, Rajendra; Bezerra, Jair de L., E-mail: mabs500@gmail.com, E-mail: narain@ufpe.br, E-mail: jairbezerra@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociências. Departamento de Energia Nuclear

2017-07-01

Production of very intense neutron sources is important for basic nuclear physics and for material testing and isotope production. Nuclear reactors have been used as sources of intense neutron fluxes, although the achievement of such levels is limited by the inability to remove fission heat. Periodic pulsed reactors provide very intense fluxes by a rotating modulator near a subcritical core. A concept for the production of very intense neutron fluxes that combines features of periodic pulsed reactors and steady state reactors was proposed by Narain (1997). Such a concept is known as Very Intense Continuous High Flux Pulsed Reactor (VICHFPR) and was analyzed by using diffusion equation with moving boundary conditions and Finite Difference Method with Crank-Nicolson formalism. This research aims to analyze the flux distribution in the Very Intense Continuous Flux High Pulsed Reactor (VICHFPR) by using the Finite Volume Method and compares its results with those obtained by the previous computational method. (author)

19. Methods of Celestial Mechanics Volume II: Application to Planetary System, Geodynamics and Satellite Geodesy

CERN Document Server

Beutler, Gerhard

2005-01-01

G. Beutler's Methods of Celestial Mechanics is a coherent textbook for students as well as an excellent reference for practitioners. Volume II is devoted to the applications and to the presentation of the program system CelestialMechanics. Three major areas of applications are covered: (1) Orbital and rotational motion of extended celestial bodies. The properties of the Earth-Moon system are developed from the simplest case (rigid bodies) to more general cases, including the rotation of an elastic Earth, the rotation of an Earth partly covered by oceans and surrounded by an atmosphere, and the rotation of an Earth composed of a liquid core and a rigid shell (Poincaré model). (2) Artificial Earth Satellites. The oblateness perturbation acting on a satellite and the exploitation of its properties in practice is discussed using simulation methods (CelestialMechanics) and (simplified) first order perturbation methods. The perturbations due to the higher-order terms of the Earth's gravitational potential and reso...

20. Hybrid Multiscale Finite Volume method for multiresolution simulations of flow and reactive transport in porous media

Science.gov (United States)

Barajas-Solano, D. A.; Tartakovsky, A. M.

2017-12-01

We present a multiresolution method for the numerical simulation of flow and reactive transport in porous, heterogeneous media, based on the hybrid Multiscale Finite Volume (h-MsFV) algorithm. The h-MsFV algorithm allows us to couple high-resolution (fine scale) flow and transport models with lower resolution (coarse) models to locally refine both spatial resolution and transport models. The fine scale problem is decomposed into various "local'' problems solved independently in parallel and coordinated via a "global'' problem. This global problem is then coupled with the coarse model to strictly ensure domain-wide coarse-scale mass conservation. The proposed method provides an alternative to adaptive mesh refinement (AMR), due to its capacity to rapidly refine spatial resolution beyond what's possible with state-of-the-art AMR techniques, and the capability to locally swap transport models. We illustrate our method by applying it to groundwater flow and reactive transport of multiple species.

1. Analysis of the neutron flux in an annular pulsed reactor by using finite volume method

International Nuclear Information System (INIS)

Silva, Mário A.B. da; Narain, Rajendra; Bezerra, Jair de L.

2017-01-01

Production of very intense neutron sources is important for basic nuclear physics and for material testing and isotope production. Nuclear reactors have been used as sources of intense neutron fluxes, although the achievement of such levels is limited by the inability to remove fission heat. Periodic pulsed reactors provide very intense fluxes by a rotating modulator near a subcritical core. A concept for the production of very intense neutron fluxes that combines features of periodic pulsed reactors and steady state reactors was proposed by Narain (1997). Such a concept is known as Very Intense Continuous High Flux Pulsed Reactor (VICHFPR) and was analyzed by using diffusion equation with moving boundary conditions and Finite Difference Method with Crank-Nicolson formalism. This research aims to analyze the flux distribution in the Very Intense Continuous Flux High Pulsed Reactor (VICHFPR) by using the Finite Volume Method and compares its results with those obtained by the previous computational method. (author)

2. Diagrammatical methods within the path integral representation for quantum systems

International Nuclear Information System (INIS)

Alastuey, A

2014-01-01

The path integral representation has been successfully applied to the study of equilibrium properties of quantum systems for a long time. In particular, such a representation allowed Ginibre to prove the convergence of the low-fugacity expansions for systems with short-range interactions. First, I will show that the crucial trick underlying Ginibre's proof is the introduction of an equivalent classical system made with loops. Within the Feynman-Kac formula for the density matrix, such loops naturally emerge by collecting together the paths followed by particles exchanged in a given cyclic permutation. Two loops interact via an average of two- body genuine interactions between particles belonging to different loops, while the interactions between particles inside a given loop are accounted for in a loop fugacity. It turns out that the grand-partition function of the genuine quantum system exactly reduces to its classical counterpart for the gas of loops. The corresponding so-called magic formula can be combined with standard Mayer diagrammatics for the classical gas of loops. This provides low-density representations for the quantum correlations or thermodynamical functions, which are quite useful when collective effects must be taken into account properly. Indeed, resummations and or reorganizations of Mayer graphs can be performed by exploiting their remarkable topological and combinatorial properties, while statistical weights and bonds are purely c-numbers. The interest of that method will be illustrated through a brief description of its application to two long-standing problems, namely recombination in Coulomb systems and condensation in the interacting Bose gas.

3. Scintigraphic method for evaluating reductions in local blood volumes in human extremities

DEFF Research Database (Denmark)

2000-01-01

were carried out. No significant differences between results obtained by the use of one or two scintigraphic projections were found. The between-subject coefficient of variation was 14% in the lower limb experiment and 11% in the upper limb experiment. The within-subject coefficient of variation was 6......% in the lower limb experiment and 6% in the upper limb experiment. We found a significant relation (r = 0.42, p = 0.018) between the results obtained by the scintigraphic method and the plethysmographic method. In fractions, a mean reduction in blood volume of 0.49+0.14 (2 SD) was found after 1 min of elevation...... of the lower limb and a mean reduction of 0.45+/-0.10 (2 SD) after half a minute of elevation of the upper limb. We conclude that the method is precise and can be used in investigating physiologic and pathophysiologic mechanisms in relation to blood volumes of limbs not subject to research previously....

4. Integration of gas chromatography mass spectrometry methods for differentiating ricin preparation methods.

Science.gov (United States)

Wunschel, David S; Melville, Angela M; Ehrhardt, Christopher J; Colburn, Heather A; Victry, Kristin D; Antolick, Kathryn C; Wahl, Jon H; Wahl, Karen L

2012-05-07

The investigation of crimes involving chemical or biological agents is infrequent, but presents unique analytical challenges. The protein toxin ricin is encountered more frequently than other agents and is found in the seeds of Ricinus communis, commonly known as the castor plant. Typically, the toxin is extracted from castor seeds utilizing a variety of different recipes that result in varying purity of the toxin. Moreover, these various purification steps can also leave or differentially remove a variety of exogenous and endogenous residual components with the toxin that may indicate the type and number of purification steps involved. We have applied three gas chromatography-mass spectrometry (GC-MS) based analytical methods to measure the variation in seed carbohydrates and castor oil ricinoleic acid, as well as the presence of solvents used for purification. These methods were applied to the same samples prepared using four previously identified toxin preparation methods, starting from four varieties of castor seeds. The individual data sets for seed carbohydrate profiles, ricinoleic acid, or acetone amount each provided information capable of differentiating different types of toxin preparations across seed types. However, the integration of the data sets using multivariate factor analysis provided a clear distinction of all samples based on the preparation method, independent of the seed source. In particular, the abundance of mannose, arabinose, fucose, ricinoleic acid, and acetone were shown to be important differentiating factors. These complementary tools provide a more confident determination of the method of toxin preparation than would be possible using a single analytical method.

5. Method for volume reduction and encapsulation of water-bearing, low-level radioactive wastes

International Nuclear Information System (INIS)

1982-01-01

The invention relates to the processing of water-bearing wastes, especially those containing radioactive materials from nuclear power plants like light-water moderated and cooled reactors. The invention provides a method to reduce the volume of wastes like contaminated coolants and to dispose them safely. According to the invention, azeotropic drying is applied to remove the water. Distilation temperatures are chosen to be lower than the lowest boiling point of the mixture components. In the preferred version, a polymerizing monomer is used to obtain the azeotropic mixture. In doing so, encapsulation is possible by combination with a co-reactive polymer that envelopes the waste material. (G.J.P.)

6. A finite volume method for density driven flows in porous media

Directory of Open Access Journals (Sweden)

Hilhorst Danielle

2013-01-01

Full Text Available In this paper, we apply a semi-implicit finite volume method for the numerical simulation of density driven flows in porous media; this amounts to solving a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation for the pressure. We compute the solutions for two specific problems: a problem involving a rotating interface between salt and fresh water and the classical but difficult Henry’s problem. All solutions are compared to results obtained by running FEflow, a commercial software package for the simulation of groundwater flow, mass and heat transfer in porous media.

7. The ratio of right ventricular volume to left ventricular volume reflects the impact of pulmonary regurgitation independently of the method of pulmonary regurgitation quantification

International Nuclear Information System (INIS)

Śpiewak, Mateusz; Małek, Łukasz A.; Petryka, Joanna; Mazurkiewicz, Łukasz; Miłosz, Barbara; Biernacka, Elżbieta K.; Kowalski, Mirosław; Hoffman, Piotr; Demkow, Marcin; Miśko, Jolanta; Rużyłło, Witold

2012-01-01

Background: Previous studies have advocated quantifying pulmonary regurgitation (PR) by using PR volume (PRV) instead of commonly used PR fraction (PRF). However, physicians are not familiar with the use of PRV in clinical practice. The ratio of right ventricle (RV) volume to left ventricle volume (RV/LV) may better reflect the impact of PR on the heart than RV end-diastolic volume (RVEDV) alone. We aimed to compare the impact of PRV and PRF on RV size expressed as either the RV/LV ratio or RVEDV (mL/m 2 ). Methods: Consecutive patients with repaired tetralogy of Fallot were included (n = 53). PRV, PRF and ventricular volumes were measured with the use of cardiac magnetic resonance. Results: RVEDV was more closely correlated with PRV when compared with PRF (r = 0.686, p 2.0 [area under the curve (AUC) PRV = 0.770 vs AUC PRF = 0.777, p = 0.86]. Conversely, with the use of the RVEDV-based criterion (>170 mL/m 2 ), PRV proved to be superior over PRF (AUC PRV = 0.770 vs AUC PRF = 0.656, p = 0.0028]. Conclusions: PRV and PRF have similar significance as measures of PR when the RV/LV ratio is used instead of RVEDV. The RV/LV ratio is a universal marker of RV dilatation independent of the method of PR quantification applied (PRF vs PRV)

8. Volume-monitored chest CT: a simplified method for obtaining motion-free images near full inspiratory and end expiratory lung volumes

Energy Technology Data Exchange (ETDEWEB)

Mueller, Kathryn S. [The Ohio State University College of Medicine, Columbus, OH (United States); Long, Frederick R. [Nationwide Children' s Hospital, The Children' s Radiological Institute, Columbus, OH (United States); Flucke, Robert L. [Nationwide Children' s Hospital, Department of Pulmonary Medicine, Columbus, OH (United States); Castile, Robert G. [The Research Institute at Nationwide Children' s Hospital, Center for Perinatal Research, Columbus, OH (United States)

2010-10-15

Lung inflation and respiratory motion during chest CT affect diagnostic accuracy and reproducibility. To describe a simple volume-monitored (VM) method for performing reproducible, motion-free full inspiratory and end expiratory chest CT examinations in children. Fifty-two children with cystic fibrosis (mean age 8.8 {+-} 2.2 years) underwent pulmonary function tests and inspiratory and expiratory VM-CT scans (1.25-mm slices, 80-120 kVp, 16-40 mAs) according to an IRB-approved protocol. The VM-CT technique utilizes instruction from a respiratory therapist, a portable spirometer and real-time documentation of lung volume on a computer. CT image quality was evaluated for achievement of targeted lung-volume levels and for respiratory motion. Children achieved 95% of vital capacity during full inspiratory imaging. For end expiratory scans, 92% were at or below the child's end expiratory level. Two expiratory exams were judged to be at suboptimal volumes. Two inspiratory (4%) and three expiratory (6%) exams showed respiratory motion. Overall, 94% of scans were performed at optimal volumes without respiratory motion. The VM-CT technique is a simple, feasible method in children as young as 4 years to achieve reproducible high-quality full inspiratory and end expiratory lung CT images. (orig.)

9. A carbon emissions reduction index: Integrating the volume and allocation of regional emissions

International Nuclear Information System (INIS)

Chen, Jiandong; Cheng, Shulei; Song, Malin; Wu, Yinyin

2016-01-01

Highlights: • We build a carbon emissions reduction index (CERI). • The aim is to quantify the pressure on policymakers to reduce emissions. • Scale-related effects and carbon emissions allocations are included in the CERI. • Different standards of carbon emissions allocations are also considered. • We decompose the Gini coefficient to evaluate the effects of three factors. - Abstract: Given the acceleration of global warming and rising greenhouse gas emissions, all countries are facing the harsh reality of the need to reduce carbon emissions. In this study, we propose an index to quantify the pressure faced by policymakers to reduce such emissions, termed the carbon emissions reduction index. This index allows us to observe the effect of carbon emissions volume on the pressure faced by policymakers and study the impact of optimizing interregional carbon emissions on reducing this pressure. In addition, we account for several carbon emissions standards in constructing the index. We conclude that the variation in the index is likely to be attributable to carbon emissions volume, regional ranking, and population (population can also be replaced by GDP, resource endowment, or other factors). In addition, based on empirical data on the world’s largest emitter of carbon dioxide (China), this study analyzes the evolution of pressure to reduce emissions on a country’s policymakers. The results show that the growing volume and unsuitable allocation of carbon emissions from 1997 to 2012 imposed increasing pressure on the Chinese government in this regard. In addition, reductions in carbon emissions volume and regional ranking are primary factors that impact pressure on policymakers.

10. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

Energy Technology Data Exchange (ETDEWEB)

NONE

1998-05-01

This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

11. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

International Nuclear Information System (INIS)

1998-05-01

This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist

12. A discontinous Galerkin finite element method with an efficient time integration scheme for accurate simulations

KAUST Repository

Liu, Meilin; Bagci, Hakan

2011-01-01

A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results

13. Integrating Evidence Within and Across Evidence Streams Using Qualitative Methods

Science.gov (United States)

There is high demand in environmental health for adoption of a structured process that evaluates and integrates evidence while making decisions transparent. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework holds promise to address this deman...

14. Integral methods of solving boundary-value problems of nonstationary heat conduction and their comparative analysis

Science.gov (United States)

Kot, V. A.

2017-11-01

The modern state of approximate integral methods used in applications, where the processes of heat conduction and heat and mass transfer are of first importance, is considered. Integral methods have found a wide utility in different fields of knowledge: problems of heat conduction with different heat-exchange conditions, simulation of thermal protection, Stefantype problems, microwave heating of a substance, problems on a boundary layer, simulation of a fluid flow in a channel, thermal explosion, laser and plasma treatment of materials, simulation of the formation and melting of ice, inverse heat problems, temperature and thermal definition of nanoparticles and nanoliquids, and others. Moreover, polynomial solutions are of interest because the determination of a temperature (concentration) field is an intermediate stage in the mathematical description of any other process. The following main methods were investigated on the basis of the error norms: the Tsoi and Postol’nik methods, the method of integral relations, the Gudman integral method of heat balance, the improved Volkov integral method, the matched integral method, the modified Hristov method, the Mayer integral method, the Kudinov method of additional boundary conditions, the Fedorov boundary method, the method of weighted temperature function, the integral method of boundary characteristics. It was established that the two last-mentioned methods are characterized by high convergence and frequently give solutions whose accuracy is not worse that the accuracy of numerical solutions.

15. Evaluation of left ventricular volume by MRI using modified Simpson's rule method

International Nuclear Information System (INIS)

Okamura, Masahiro; Kondo, Takeshi; Anno, Naoko

1990-01-01

The conventional contrast left ventriculogrpahy (LVG) has been the gold standard for estimating left ventricular volume (LVV), but it is an invasive technique, and volume overload must be caused by contrast medium. the true left ventricular (LV) long axis may not be obtained by LVG in routine right anterior oblique (RAO) projection. MRI, on the other hand, is noninvasive, does not require contrast medium, and permits to obtain the true LV long axis sections. Thus, MRI seems the ideal technique for estimating LVV. To estimate LVV, we have developed the on-line programs for calculating LVV by single-plane (SMS) or biplane modified Simpson's rule method (BMS), and have applied these programs to the water in the bottle with the elliptic short axis plane, normal volunteer and patients with various heart diseases. In the water phantom, the water volume calculated by the BMS was more accurate than the SMS. In nine normal volunteers, multiple LV short axis sections in each end-systole and end-diastole were obtained by ECG-gated spin echo MRI, LVV as standard was calculated by true Simpson's rule method (TS) on these images. Then both vertical and horizontal LV long axis sections were also obtained by ECG-gated field echo (FE) rephasing cine MRI, LVV was calculated by the BMS or SMS on these images. The BMS or SMS significantly correlated (r=0.974, r=0.927, 0.947) with TS for estimating LVV, respectively. In 20 patients with various heart diseases, both vertical and horizontal LV long axis sections were obtained by FE cine MRI. LVV (r=0.907 and r=0.901) and EF (r=0.822 and r=0.938) calculated by the SMS on the vertical or horizontal LV long axis sections significantly correlated with the conventional RAO-LVG, respectively. In conclusion, the MRI using our on-line programs would be clinically useful for estimating LVV and EF. (author)

16. SOLA-VOF, 2-D Transient Hydrodynamic Using Fractional Volume of Fluid Method

International Nuclear Information System (INIS)

Nichols, B.D.; Hirt, C.W.; Hotchkiss, R.S.

1991-01-01

1 - Description of problem or function: SOLA-VOF is a program for the solution of two-dimensional transient fluid flow with free boundaries, based on the concept of a fractional volume of fluid (VOF). Its basic mode of operation is for single fluid calculations having multiple free surfaces. However, SOLA-VOF can also be used for calculations involving two fluids separated by a sharp interface. In either case, the fluids may be treated as incompressible or as having limited compressibility. Surface tension forces with wall adhesion are permitted in both cases. Internal obstacles may be defined by blocking out any desired combination of cells in the mesh, which is composed of rectangular cells of variable size. 2 - Method of solution: The basis of the SOLA-VOF method is the fractional volume of fluid scheme for tracking free boundaries. In this technique, a function F(x,y,t) is defined whose value is unity at any point occupied by fluid and zero elsewhere. When averaged over the cells of a computational mesh, the average value of F in a cell is equal to the fractional volume of the cell occupied by fluid. In particular, a unit value of F corresponds to a cell full of fluid, whereas a zero value indicates that the cell contains no fluid. Cells with F values between zero and one contain a free surface. SOLA-VOF uses an Eulerian mesh of rectangular cells having variable sizes. The fluid equations solved are the finite difference approximations of the Navier-Stokes equations. 3 - Restrictions on the complexity of the problem: The setting of array dimensions is controlled through PARAMETER statements

17. The integrated circuit IC EMP transient state disturbance effect experiment method investigates

International Nuclear Information System (INIS)

Li Xiaowei

2004-01-01

Transient state disturbance characteristic study on the integrated circuit, IC, need from its coupling path outset. Through cable (aerial) coupling, EMP converts to an pulse current voltage and results in the impact to the integrated circuit I/O orifice passing the cable. Aiming at the armament system construction feature, EMP effect to the integrated circuit, IC inside the system is analyzed. The integrated circuit, IC EMP effect experiment current injection method is investigated and a few experiments method is given. (authors)

18. Method of mechanical quadratures for solving singular integral equations of various types

Science.gov (United States)

Sahakyan, A. V.; Amirjanyan, H. A.

2018-04-01

The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.

19. High order spectral volume and spectral difference methods on unstructured grids

Science.gov (United States)

Kannan, Ravishekar

The spectral volume (SV) and the spectral difference (SD) methods were developed by Wang and Liu and their collaborators for conservation laws on unstructured grids. They were introduced to achieve high-order accuracy in an efficient manner. Recently, these methods were extended to three-dimensional systems and to the Navier Stokes equations. The simplicity and robustness of these methods have made them competitive against other higher order methods such as the discontinuous Galerkin and residual distribution methods. Although explicit TVD Runge-Kutta schemes for the temporal advancement are easy to implement, they suffer from small time step limited by the Courant-Friedrichs-Lewy (CFL) condition. When the polynomial order is high or when the grid is stretched due to complex geometries or boundary layers, the convergence rate of explicit schemes slows down rapidly. Solution strategies to remedy this problem include implicit methods and multigrid methods. A novel implicit lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation method is employed as an iterative smoother. It is compared to the explicit TVD Runge-Kutta smoothers. For some p-multigrid calculations, combining implicit and explicit smoothers for different p-levels is also studied. The multigrid method considered is nonlinear and uses Full Approximation Scheme (FAS). An overall speed-up factor of up to 150 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Euler equations for the 3rd order SD method. A study of viscous flux formulations was carried out for the SV method. Three formulations were used to discretize the viscous fluxes: local discontinuous Galerkin (LDG), a penalty method and the 2nd method of Bassi and Rebay. Fourier analysis revealed some interesting advantages for the penalty method. These were implemented in the Navier Stokes solver. An implicit and p-multigrid method was also implemented for the above. An overall speed

20. High integrity software for nuclear power plants: Candidate guidelines, technical basis and research needs. Executive summary: Volume 1

International Nuclear Information System (INIS)

Seth, S.; Bail, W.; Cleaves, D.; Cohen, H.; Hybertson, D.; Schaefer, C.; Stark, G.; Ta, A.; Ulery, B.

1995-06-01

The work documented in this report was performed in support of the US Nuclear Regulatory Commission to examine the technical basis for candidate guidelines that could be considered in reviewing and evaluating high integrity computer software used in the safety systems of nuclear power plants. The framework for the work consisted of the following software development and assurance activities: requirements specification; design; coding; verification and validation, including static analysis and dynamic testing; safety analysis; operation and maintenance; configuration management; quality assurance; and planning and management. Each activity (framework element) was subdivided into technical areas (framework subelements). The report describes the development of approximately 200 candidate guidelines that span the entire range of software life-cycle activities; the assessment of the technical basis for those candidate guidelines; and the identification, categorization and prioritization of research needs for improving the technical basis. The report has two volumes: Volume 1, Executive Summary, includes an overview of the framework and of each framework element, the complete set of candidate guidelines, the results of the assessment of the technical basis for each candidate guideline, and a discussion of research needs that support the regulatory function; Volume 2 is the main report

1. High integrity software for nuclear power plants: Candidate guidelines, technical basis and research needs. Main report, Volume 2

International Nuclear Information System (INIS)

Seth, S.; Bail, W.; Cleaves, D.; Cohen, H.; Hybertson, D.; Schaefer, C.; Stark, G.; Ta, A.; Ulery, B.

1995-06-01

The work documented in this report was performed in support of the US Nuclear Regulatory Commission to examine the technical basis for candidate guidelines that could be considered in reviewing and evaluating high integrity computer e following software development and assurance activities: Requirements specification; design; coding; verification and validation, inclukding static analysis and dynamic testing; safety analysis; operation and maintenance; configuration management; quality assurance; and planning and management. Each activity (framework element) was subdivided into technical areas (framework subelements). The report describes the development of approximately 200 candidate guidelines that span the entire ran e identification, categorization and prioritization of technical basis for those candidate guidelines; and the identification, categorization and prioritization of research needs for improving the technical basis. The report has two volumes: Volume 1, Executive Summary includes an overview of the framwork and of each framework element, the complete set of candidate guidelines, the results of the assessment of the technical basis for each candidate guideline, and a discussion of research needs that support the regulatory function; this document, Volume 2, is the main report

2. High integrity software for nuclear power plants: Candidate guidelines, technical basis and research needs. Main report, Volume 2

Energy Technology Data Exchange (ETDEWEB)

Seth, S.; Bail, W.; Cleaves, D.; Cohen, H.; Hybertson, D.; Schaefer, C.; Stark, G.; Ta, A.; Ulery, B. [Mitre Corp., McLean, VA (United States)

1995-06-01

The work documented in this report was performed in support of the US Nuclear Regulatory Commission to examine the technical basis for candidate guidelines that could be considered in reviewing and evaluating high integrity computer e following software development and assurance activities: Requirements specification; design; coding; verification and validation, inclukding static analysis and dynamic testing; safety analysis; operation and maintenance; configuration management; quality assurance; and planning and management. Each activity (framework element) was subdivided into technical areas (framework subelements). The report describes the development of approximately 200 candidate guidelines that span the entire ran e identification, categorization and prioritization of technical basis for those candidate guidelines; and the identification, categorization and prioritization of research needs for improving the technical basis. The report has two volumes: Volume 1, Executive Summary includes an overview of the framwork and of each framework element, the complete set of candidate guidelines, the results of the assessment of the technical basis for each candidate guideline, and a discussion of research needs that support the regulatory function; this document, Volume 2, is the main report.

3. DNFSB Recommendation 94-1 Hanford site integrated stabilization management plan, volumes 1 and 2

International Nuclear Information System (INIS)

Gerber, E.W.

1996-01-01

This document comprises the Hanford Site Integrated Stabilization Management Plan (SISMP). This document describes the DOE's plans at the Hanford Site to address concerns identified in Defense Nuclear Facilites Safety Board (DNFSB) Recommendation 94-1. This document also identifies plans for other spent nuclear fuel (SNF) inventories at the Hanford Site which are not within the scope of DNFSB Recommendation 94-1 for reference purposes because of their interrelationship with plans for SNF within the scope of DNFSB Recommendation 94-1. The SISMP was also developed to assist DOE in initial formulation of the Research and Development Plan and the Integrated Facilities Plan

4. The influence of a balanced volume replacement concept on inflammation, endothelial activation, and kidney integrity in elderly cardiac surgery patients.

Science.gov (United States)

Boldt, Joachim; Suttner, Stephan; Brosch, Christian; Lehmann, Andreas; Röhm, Kerstin; Mengistu, Andinet

2009-03-01

A balanced fluid replacement strategy appears to be promising for correcting hypovolemia. The benefits of a balanced fluid replacement regimen were studied in elderly cardiac surgery patients. In a randomized clinical trial, 50 patients aged >75 years undergoing cardiac surgery received a balanced 6% HES 130/0.42 plus a balanced crystalloid solution (n = 25) or a non-balanced HES in saline plus saline solution (n = 25) to keep pulmonary capillary wedge pressure/central venous pressure between 12-14 mmHg. Acid-base status, inflammation, endothelial activation (soluble intercellular adhesion molecule-1, kidney integrity (kidney-specific proteins glutathione transferase-alpha; neutrophil gelatinase-associated lipocalin) were studied after induction of anesthesia, 5 h after surgery, 1 and 2 days thereafter. Serum creatinine (sCr) was measured approximately 60 days after discharge. A total of 2,750 +/- 640 mL of balanced and 2,820 +/- 550 mL of unbalanced HES were given until the second POD. Base excess (BE) was significantly reduced in the unbalanced (from +1.21 +/- 0.3 to -4.39 +/- 1.0 mmol L(-1) 5 h after surgery; P volume replacement strategy including a balanced HES and a balanced crystalloid solution resulted in moderate beneficial effects on acid-base status, inflammation, endothelial activation, and kidney integrity compared to a conventional unbalanced volume replacement regimen.

5. Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique

Directory of Open Access Journals (Sweden)

Jahedul Islam Chowdhury

2015-12-01

Full Text Available The evaporator is an important component in the Organic Rankine Cycle (ORC-based Waste Heat Recovery (WHR system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.

6. Dynamics study of free volume properties of SMA/SMMA blends by PAL method

International Nuclear Information System (INIS)

Jiang, Z.Y.; Jiang, X.Q.; Huang, Y.J.; Lin, J.; Li, S.M.; Li, S.Z.; Hsia, Y.F.

2006-01-01

Miscibility of poly(styrene-co-maleic anhydride) (containing 7 wt% maleic anhydride)/poly(styrene-co-methyl methacrylate) (containing 40 wt% styrene) blends were previously studied. It was obtained that SMA70 (containing 70 wt% of SMA in SMA/SMMA blends) is miscible in molecular level but SMA20 is not. In this paper, the two blends selected were used to investigate the temperature dependence of free volume parameters. It showed there are different deviations of free volume parameters in SMA20 and SMA70, and it was interesting that temperature dependence of ortho-positronium lifetime τ 3 of the SMA20 mixture exhibits two breaks in the range temperature from 90 deg. C to 120 deg. C, which revealed that the mixture has two glass transition ranges. Also, ortho-positronium lifetime τ 3 of the SMA20 mixture is nearly constant in the temperature range from 130 deg. C to 160 deg. C. These indicated that SMA20 blend is phase-separated in room temperature and become miscible above 130 deg. C, which may be due to steric hindrance effect of phenyl rings of SMMA and SMA. From the deviation of o-Ps lifetimes of SMA70, the single glass transition temperature of SMA70 blend was shown. Combining the previous study, it was further concluded that PAL method seems to be a powerful method to detect in situ phase behavior of immiscible polymer blends and glass transition of miscible polymer blends

7. Measurement of disintegration rates of 60Co volume sources by the sum-peak method

International Nuclear Information System (INIS)

Kawano, Takao; Ebihara, Hiroshi

1991-01-01

The sum-peak method has been applied to the determination of the disintegration rates of 60 Co volume sources (1.05 x 10 4 Bq, 1.05 x 10 3 Bq and 1.05 x 10 2 Bq, in 100-ml polyethylene bottles) by using a NaI(Tl) detector of a diameter of 50 mm and a height of 50 mm. The experimental results showed that decreasing the disintegration rates resulted in enlarged underestimation in comparison with the true disintegration rates. It was presumed that the underestimations of the disintegration rates determined by the sum-peak method resulted from the overestimations of the areas under the sum peaks caused by the overlap of the area under the Compton scattering of the γ-ray (2614 keV) emitted from a naturally occurring radionuclide 208 Tl under the sum peaks. (author)

8. Gas permeation measurement under defined humidity via constant volume/variable pressure method

KAUST Repository

Jan Roman, Pauls

2012-02-01

Many industrial gas separations in which membrane processes are feasible entail high water vapour contents, as in CO 2-separation from flue gas in carbon capture and storage (CCS), or in biogas/natural gas processing. Studying the effect of water vapour on gas permeability through polymeric membranes is essential for materials design and optimization of these membrane applications. In particular, for amine-based CO 2 selective facilitated transport membranes, water vapour is necessary for carrier-complex formation (Matsuyama et al., 1996; Deng and Hägg, 2010; Liu et al., 2008; Shishatskiy et al., 2010) [1-4]. But also conventional polymeric membrane materials can vary their permeation behaviour due to water-induced swelling (Potreck, 2009) [5]. Here we describe a simple approach to gas permeability measurement in the presence of water vapour, in the form of a modified constant volume/variable pressure method (pressure increase method). © 2011 Elsevier B.V.

9. Characterization methods of integrated optics for mid-infrared interferometry

Science.gov (United States)

Labadie, Lucas; Kern, Pierre Y.; Schanen-Duport, Isabelle; Broquin, Jean-Emmanuel

2004-10-01

his article deals with one of the important instrumentation challenges of the stellar interferometry mission IRSI-Darwin of the European Space Agency: the necessity to have a reliable and performant system for beam combination has enlightened the advantages of an integrated optics solution, which is already in use for ground-base interferometry in the near infrared. Integrated optics provides also interesting features in terms of filtering, which is a main issue for the deep null to be reached by Darwin. However, Darwin will operate in the mid infrared range from 4 microns to 20 microns where no integrated optics functions are available on-the-shelf. This requires extending the integrated optics concept and the undergoing technology in this spectral range. This work has started with the IODA project (Integrated Optics for Darwin) under ESA contract and aims to provide a first component for interferometry. In this paper are presented the guidelines of the characterization work that is implemented to test and validate the performances of a component at each step of the development phase. We present also an example of characterization experiment used within the frame of this work, is theoretical approach and some results.

10. Test Functions for Three-Dimensional Control-Volume Mixed Finite-Element Methods on Irregular Grids

National Research Council Canada - National Science Library

Naff, R. L; Russell, T. F; Wilson, J. D

2000-01-01

.... For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error...

11. Case-study application of venture analysis: the integrated energy utility. Volume 3. Appendices

Energy Technology Data Exchange (ETDEWEB)

Fein, E; Gordon, T J; King, R; Kropp, F G; Shuchman, H L; Stover, J; Hausz, W; Meyer, C

1978-11-01

The appendices for a case-study application of venture analysis for an integrated energy utility for commercialization are presented. The following are included and discussed: utility interviews; net social benefits - quantitative calculations; the financial analysis model; market penetration decision model; international district heating systems; political and regulatory environment; institutional impacts.

12. Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry

NARCIS (Netherlands)

Gilardi, G.; Beccherelli, R.

2013-01-01

We propose and numerically investigate an integrated optics refractometric nano-opto-fluidic sensor based on whispering gallery modes in sapphire microspheres. A measurand fluid is injected in a micromachined reservoir defined in between the microsphere and an optical waveguide. The wavelength shift

13. From Volume to Value: Prospects and Pitfalls in Organising Integrated Dry Eye Practice Units

NARCIS (Netherlands)

J.P. Goh (Jody Paige); D.F. de Korne (Dirk); L. Tong (Louis)

2017-01-01

markdownabstractWith the advent of aging populations, chronic multifactorial diseases will dominate and strain existing models of health care. A model of healthcare delivery that emphasizes seamless, integrated, team-based care and remuneration for patient outcomes, have proven advantageous in

14. DNFSB Recommendation 94-1 Hanford Site Integrated Stabilization Management Plan. Volume 1

Energy Technology Data Exchange (ETDEWEB)

Gerber, E.W.

1995-10-01

The US Department of Energy (DOE) has developed an Integrated Program Plan (IPP) to address concerns identified in Defense Nuclear Facilities Safety Board Recommendation 94-1. The IPP describes the actions that DOE plans to implement at its various sites to convert excess fissile materials to forms or conditions suitable for safe interim storage. The baseline IPP was issued as DOEs Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 Implementation Plan (IP), which was transmitted to the DNFSB on February 28, 1995. The IPP is being further developed to include complex-wide requirements for research and development and a long-range facility requirements section. The planned additions to the baseline IPP are being developed based on a systems engineering approach that integrates facilities and capabilities at the various DOE sites and focuses on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 and to provide a basis for formulating planned additions to the IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the baseline DNFSB Recommendation 94-1 IPP. The SISMPs will be periodically updated to reflect improved integration between DOE sites as identified during the IPP systems engineering evaluations.

15. DNFSB Recommendation 94-1 Hanford Site Integrated Stabilization Management Plan. Volume 1

International Nuclear Information System (INIS)

Gerber, E.W.

1995-10-01

The US Department of Energy (DOE) has developed an Integrated Program Plan (IPP) to address concerns identified in Defense Nuclear Facilities Safety Board Recommendation 94-1. The IPP describes the actions that DOE plans to implement at its various sites to convert excess fissile materials to forms or conditions suitable for safe interim storage. The baseline IPP was issued as DOE's Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 Implementation Plan (IP), which was transmitted to the DNFSB on February 28, 1995. The IPP is being further developed to include complex-wide requirements for research and development and a long-range facility requirements section. The planned additions to the baseline IPP are being developed based on a systems engineering approach that integrates facilities and capabilities at the various DOE sites and focuses on attaining safe interim storage with minimum safety risks and environmental impacts. Each affected DOE site has developed a Site Integrated Stabilization Management Plan (SISMP) to identify individual site plans to implement the DNFSB Recommendation 94-1 and to provide a basis for formulating planned additions to the IPP. The SISMPs were developed based on the objectives, requirements, and commitments identified in the baseline DNFSB Recommendation 94-1 IPP. The SISMPs will be periodically updated to reflect improved integration between DOE sites as identified during the IPP systems engineering evaluations

16. ATLAS, an integrated structural analysis and design system. Volume 4: Random access file catalog

Science.gov (United States)

Gray, F. P., Jr. (Editor)

1979-01-01

A complete catalog is presented for the random access files used by the ATLAS integrated structural analysis and design system. ATLAS consists of several technical computation modules which output data matrices to corresponding random access file. A description of the matrices written on these files is contained herein.

17. Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan

Science.gov (United States)

1974-01-01

The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.

18. New digital measurement methods for left ventricular volume using real-time three-dimensional echocardiography: comparison with electromagnetic flow method and magnetic resonance imaging

Science.gov (United States)

Qin, J. J.; Jones, M.; Shiota, T.; Greenberg, N. L.; Firstenberg, M. S.; Tsujino, H.; Zetts, A. D.; Sun, J. P.; Cardon, L. A.; Odabashian, J. A.;

2000-01-01

AIM: The aim of this study was to investigate the feasibility and accuracy of using symmetrically rotated apical long axis planes for the determination of left ventricular (LV) volumes with real-time three-dimensional echocardiography (3DE). METHODS AND RESULTS: Real-time 3DE was performed in six sheep during 24 haemodynamic conditions with electromagnetic flow measurements (EM), and in 29 patients with magnetic resonance imaging measurements (MRI). LV volumes were calculated by Simpson's rule with five 3DE methods (i.e. apical biplane, four-plane, six-plane, nine-plane (in which the angle between each long axis plane was 90 degrees, 45 degrees, 30 degrees or 20 degrees, respectively) and standard short axis views (SAX)). Real-time 3DE correlated well with EM for LV stroke volumes in animals (r=0.68-0.95) and with MRI for absolute volumes in patients (r-values=0.93-0.98). However, agreement between MRI and apical nine-plane, six-plane, and SAX methods in patients was better than those with apical four-plane and bi-plane methods (mean difference = -15, -18, -13, vs. -31 and -48 ml for end-diastolic volume, respectively, Pmethods of real-time 3DE correlated well with reference standards for calculating LV volumes. Balancing accuracy and required time for these LV volume measurements, the apical six-plane method is recommended for clinical use.

19. Energy Technology Data Exchange (ETDEWEB)

Grimalt, Joan O.; Carrizo, Daniel; Otero, Raquel; Vizcaino, Esther [Institute of Environmental Assessment and Water Research (IDAeA-CSIC), Department of Environmental Chemistry, Barcelona, Catalonia (Spain); Howsam, Mike [Universite de Lille 2, Centre Universitaire de Mesure et d' Analyse, Faculte de Pharmacie, Lille (France); Rodrigues de Marchi, Mary Rosa [Institute of Chemistry UNESP, Department of Analytical Chemistry, Araraquara, SP (Brazil)

2010-03-15

A rapid, robust and economical method for the analysis of persistent halogenated organic compounds in small volumes of human serum and umbilical cord blood is described. The pollutants studied cover a broad range of molecules of contemporary epidemiological and legislative concern, including polychlorobiphenyls (PCBs), polychlorobenzenes (CBs), hexachlorocyclohexanes (HCHs), DDTs, polychlorostyrenes (PCSs) and polybromodiphenyl ethers (PBDEs). Extraction and clean-up with n-hexane and concentrated sulphuric acid was followed with analysis by gas chromatography coupled to electron capture (GC-ECD) and GC coupled to negative ion chemical ionisation mass spectrometry (GC-NICI-MS). The advantages of this method rest in the broad range of analytes and its simplicity and robustness, while the use of concentrated sulphuric acid extraction/clean-up destroys viruses that may be present in the samples. Small volumes of reference serum between 50 and 1000{mu}L were extracted and the limits of detection/quantification and repeatability were determined. Recoveries of spiked compounds for the extraction of small volumes ({>=}300 {mu}L) of the spiked reference serum were between 90% and 120%. The coefficients of variation of repeatability ranged from 0.1-14%, depending on the compound. Samples of 4-year-old serum and umbilical cord blood (n=73 and 40, respectively) from a population inhabiting a village near a chloro-alkali plant were screened for the above-mentioned halogenated pollutants using this method and the results are briefly described. (orig.)

20. Robins Air Force Base integrated resource assessment. Volume 3, Resource assessment

Energy Technology Data Exchange (ETDEWEB)

Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

1993-10-01

The US Air Force Materiel Command (AFMC) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Robins Air Force Base (AFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the AFMC Robins AFB facility located approximately 15 miles south of Macon, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 13 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative-description of each ERO is provided, including information on the installed cost, energy and dollar savings; impacts on operation and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.