2014-10-06
applications of multiplexed volume bragg gratings in photo- thermo -refractive glass Volume Bragg grating (VBG) structures are capable of diffracting...research in the holographic recording of volume Bragg gratings in photo- thermo -refractive (PTR) glass has shown that these gratings are extremely...ABSTRACT Holographic recording and applications of multiplexed volume bragg gratings in photo- thermo -refractive glass Report Title Volume Bragg grating (VBG
Cao, Liangcai; Wu, Shenghan; Zong, Song; Zhang, Hao; Jin, Guofan
2016-09-01
Enhanced volume holographic refractive index grating by employing a strong volume holographic absorption grating induced by the periodic spatial distribution of gold nanoparticles due to the polymerization-driven multicomponent diffusion in a bulk gold nanoparticles doped photopolymer is noticeable. Till now most works are only focused on changing the concentration of nanoparticles and the radius of sphere nanoparticles. We propose an approach to improve the volume holographic grating by changing the size and shape of doped nanoparticles. The difference between nanorods and nanospheres is analyzed by the finite difference time domain(FDTD) method and the holographic kinetic model. The simulation results indicate that the nanorods has stronger localized surface plasmon resonance effect. The size and the aspect ratio of gold nanorods are optimized for the best absorption at a certain wavelength of recording light. The experiment results verify that the nanoparticles can be designed to achieve higher diffraction efficiency in a mixed volume holographic grating.
Spectral multiplexing using stacked volume-phase holographic gratings - I
Zanutta, A.; Landoni, M.; Riva, M.; Bianco, A.
2017-08-01
Many focal-reducer spectrographs, currently available at state-of-the-art telescopes facilities, would benefit from a simple refurbishing that could increase both the resolution and spectral range in order to cope with the progressively challenging scientific requirements, but, in order to make this update appealing, it should minimize the changes in the existing structure of the instrument. In the past, many authors proposed solutions based on stacking subsequently layers of dispersive elements and recording multiple spectra in one shot (multiplexing). Although this idea is promising, it brings several drawbacks and complexities that prevent the straightforward integration of such a device in a spectrograph. Fortunately, nowadays, the situation has changed dramatically, thanks to the successful experience achieved through photopolymeric holographic films, used to fabricate common volume-phase holographic gratings (VPHGs). Thanks to the various advantages made available by these materials in this context, we propose an innovative solution to design a stacked multiplexed VPHG that is able to secure efficiently different spectra in a single shot. This allows us to increase resolution and spectral range enabling astronomers to greatly economize their awarded time at the telescope. In this paper, we demonstrate the applicability of our solution, both in terms of expected performance and feasibility, supposing the upgrade of the Gran Telescopio CANARIAS (GTC) Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS).
Volume Phase Holographic Gratings: Polarization Properties and Diffraction Efficiency
Baldry, I K; Robertson, J G
2004-01-01
We discuss the polarization properties and first-order diffraction efficiencies of volume phase holographic (VPH) transmission gratings, which can be exploited to improve the throughput of modern spectrographs. The wavelength of peak efficiency can be tuned by adjustment of the incidence angle. We show that the variation of the Kogelnik efficiency versus Bragg angle depends only on one parameter, given by $P_{tune} = (\\Delta n d)/(n \\Lambda)$, where: $\\Delta n$ is semi-amplitude of the refractive index modulation; $n$ is the average index; $d$ is the thickness of the active layer; and $\\Lambda$ is the grating period. The efficiency has a well defined dependence on polarization. In particular, it is possible to obtain theoretical 100% diffraction efficiency with one linear polarization at any angle or to obtain 100% efficiency with unpolarized light at specific angles. In the latter case, high efficiency is the result of aligning the peaks of the s- and p-polarization efficiency-versus-thickness curves. The fi...
Arns, James A.
2016-07-01
Volume phase holographic (VPH) gratings are proven dispersing elements in astronomical spectrographs over the visible spectrum. VPH gratings have also been successfully deployed for use at cryogenic temperatures. Recent advances in production technology now permit the production of gratings for use in the near infrared up to 2450 nm at cryogenic conditions. This paper describes the requirements of VPH gratings for use in the H (wavelengths from 1500 nm to 1800 nm) and K (wavelengths from 1950 nm to 2450 nm) bands, gives the theoretical performances of diffraction efficiency for the production designs and presents the measured performances on the production gratings
Transmitted wavefront error of a volume phase holographic grating at cryogenic temperature.
Lee, David; Taylor, Gordon D; Baillie, Thomas E C; Montgomery, David
2012-06-01
This paper describes the results of transmitted wavefront error (WFE) measurements on a volume phase holographic (VPH) grating operating at a temperature of 120 K. The VPH grating was mounted in a cryogenically compatible optical mount and tested in situ in a cryostat. The nominal root mean square (RMS) wavefront error at room temperature was 19 nm measured over a 50 mm diameter test aperture. The WFE remained at 18 nm RMS when the grating was cooled. This important result demonstrates that excellent WFE performance can be obtained with cooled VPH gratings, as required for use in future cryogenic infrared astronomical spectrometers planned for the European Extremely Large Telescope.
Optimization of multi-grating volume holographic spectrum splitters for photovoltaic applications.
Ingersoll, G B; Leger, J R
2016-07-10
Recent research has shown that using multiple diverse-bandgap photovoltaic (PV) cells in conjunction with a spectrum splitting optical system can significantly improve PV power generation efficiency. Although volume Bragg gratings (VBGs) can serve as effective spectrum splitters, the inherent dispersion of a VBG can be detrimental given a broad-spectrum input. The performance of a single holographic spectrum splitter element can be improved by utilizing multiple single volume gratings, each operating in a slightly different spectral band. However, care must be taken to avoid inter-grating coupling effects that limit the ultimate performance. This work explores broadband two-grating holographic optical elements (HOEs) in multiplexed (single element) and sandwiched-grating arrangements. Particle swarm optimization is used to tailor these systems to the solar spectrum, taking into account both efficiency and dispersion. Both multiplexed and sandwiched two-grating systems exhibit performance improvements over single-grating solutions, especially when reduced dispersion is required. Under a ±2° constraint on output angular spread from wavelength dispersion, sandwiched-, multiplexed-, and single-grating systems exhibit power conversion efficiencies of 82.1%, 80.9%, and 77.5%, respectively, compared to an ideal bandpass spectrum splitter. Dispersion performance can be further improved by employing more than two VBGs in the spectrum splitter, but efficiency is compromised by additional cross-coupling effects. Multiplexed-grating systems are especially susceptible to these effects, but have the advantage of utilizing only a single HOE.
Ott, Daniel B; Divliansky, Ivan B; Segall, Marc A; Glebov, Leonid B
2014-02-20
Volume Bragg gratings serve an important role in laser development as devices that are able to manipulate both the wavelength and angular spectrum of light. A common method for producing gratings is holographic recording of a two collimated beam interference pattern in a photosensitive material. This process requires stability of the recording system at a level of a fraction of the recording wavelength. A new method for measuring and stabilizing the phase of the recording beams is presented that is extremely flexible and simple to integrate into an existing holographic recording setup and independent of the type of recording media. It is shown that the presented method increases visibility of an interference pattern and for photo-thermo-refractive glass enables enhancement of the spatial refractive index modulation. The use of this technique allows for longer recording times that can lead to the use of expanded recording beams for large aperture gratings.
Cryogenic tests of volume-phase holographic gratings: results at 100 K
Tamura, N; Luke, P; Blackburn, C; Robertson, D J; Dipper, N A; Sharples, R M; Allington-Smith, J R; Tamura, Naoyuki; Murray, Graham J.; Luke, Peter; Blackburn, Colin; Robertson, David J.; Dipper, Nigel A.; Sharples, Ray M.; Allington-Smith, Jeremy R.
2006-01-01
We present results from cryogenic tests of Volume-Phase Holographic(VPH) gratings at 100 K. The aims of these tests are to see whether the diffraction efficiency as a function of wavelength is significantly different at a low temperature from that at room temperature and to see how the performance of a VPH grating is affected by a number of thermal cycles. We have completed 10 cycles between room temperature and 100 $K$, and find no clear evidence that the diffraction efficiency changes with temperature or with successive thermal cycle.
Arns, James A.
2016-08-01
The Subaru Prime Focus Spectrograph[1] (PFS) requires a suite of volume phase holographic (VPH) gratings that parse the observational spectrum into three sub-spectral regions. In addition, the red region has a second, higher resolution arm that includes a VPH grating that will eventually be incorporated into a grism. This paper describes the specifications of the four grating types, gives the theoretical performances of diffraction efficiency for the production designs and presents the measured performances on the gratings produced to date.
Burgh, Eric B; Westfall, Kyle B; Nordsieck, Kenneth H
2007-01-01
We report the discovery of optical ghosts generated when using Volume Phase Holographic (VPH) gratings in spectrographs employing the Littrow configuration. The ghost is caused by light reflected off the detector surface, recollimated by the camera, recombined by, and reflected from, the grating and reimaged by the camera onto the detector. This recombination can occur in two different ways. We observe this ghost in two spectrographs being developed by the University of Wisconsin - Madison: the Robert Stobie Spectrograph for the Southern African Large Telescope and the Bench Spectrograph for the WIYN 3.5m telescope. The typical ratio of the brightness of the ghost relative to the integrated flux of the spectrum is of order 10^-4, implying a recombination efficiency of the VPH gratings of order 10^-3 or higher, consistent with the output of rigorous coupled wave analysis. Any spectrograph employing VPH gratings, including grisms, in Littrow configuration will suffer from this ghost, though the general effect i...
Field lens multiplexing in holographic 3D displays by using Bragg diffraction based volume gratings
Fütterer, G.
2016-11-01
Applications, which can profit from holographic 3D displays, are the visualization of 3D data, computer-integrated manufacturing, 3D teleconferencing and mobile infotainment. However, one problem of holographic 3D displays, which are e.g. based on space bandwidth limited reconstruction of wave segments, is to realize a small form factor. Another problem is to provide a reasonable large volume for the user placement, which means to provide an acceptable freedom of movement. Both problems should be solved without decreasing the image quality of virtual and real object points, which are generated within the 3D display volume. A diffractive optical design using thick hologram gratings, which can be referred to as Bragg diffraction based volume gratings, can provide a small form factor and high definition natural viewing experience of 3D objects. A large collimated wave can be provided by an anamorphic backlight unit. The complex valued spatial light modulator add local curvatures to the wave field he is illuminated with. The modulated wave field is focused onto to the user plane by using a volume grating based field lens. Active type liquid crystal gratings provide 1D fine tracking of approximately +/- 8° deg. Diffractive multiplex has to be implemented for each color and for a set of focus functions providing coarse tracking. Boundary conditions of the diffractive multiplexing are explained. This is done in regards to the display layout and by using the coupled wave theory (CWT). Aspects of diffractive cross talk and its suppression will be discussed including longitudinal apodized volume gratings.
Chen, Shaojie; Wright, Shelley A; Moore, Anna M; Larkin, James E; Maire, Jerome; Mieda, Etsuko; Simard, Luc
2014-01-01
Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We have two gratings with the specifications needed for IRIS current design: 1.51-1.82{\\mu}m (H-band) to produce a spectral resolution of 4000 and 1.19- 1.37 {\\mu}m (J-band) to produce a spectral resolution of 8000....
Mass production of volume phase holographic gratings for the VIRUS spectrograph array
Chonis, Taylor S.; Frantz, Amy; Hill, Gary J.; Clemens, J. Christopher; Lee, Hanshin; Tuttle, Sarah E.; Adams, Joshua J.; Marshall, J. L.; DePoy, D. L.; Prochaska, Travis
2014-07-01
The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wavelengths within the VIRUS spectral range. This device has been used to perform both in-situ tests to monitor the effects of adjustments to the production prescription as well as to carry out the final acceptance tests of the gratings' diffraction efficiency. Finally, we present the as-built performance results for the entire suite of VPH gratings.
Cryogenic Tests of Volume-Phase Holographic Gratings: I. Results at 200 K
Tamura, N; Luke, P N; Blackburn, C; Robertson, D J; Dipper, N A; Sharples, R M; Allington-Smith, J R; Tamura, Naoyuki; Murray, Graham J.; Luke, Peter; Blackburn, Colin; Robertson, David J.; Dipper, Nigel A.; Sharples, Ray M.; Allington-Smith, Jeremy R.
2003-01-01
We present results from cryogenic tests of a Volume-Phase Holographic (VPH) grating at 200 K measured at near-infrared wavelengths. The aims of these tests were to see whether the diffraction efficiency and angular dispersion of a VPH grating are significantly different at a low temperature from those at a room temperature, and to see how many cooling and heating cycles the grating can withstand. We have completed 5 cycles between room temperature and 200 K, and find that the performance is nearly independent of temperature, at least over the temperature range which we are investigating. In future, we will not only try more cycles between these temperatures but also perform measurements at a much lower temperature (e.g., 80 K).
Muslimov, Eduard R; Fabrika, Sergey N; Pavlycheva, Nadezhda K
2016-01-01
We present an optical design of astronomic spectrograph based on a cascade of volume-phase holographic gratings. The cascade consists of three gratings. Each of them provides moderately high spectral resolution in a narrow range of 83 nm. Thus the spectrum image represents three lines covering region 430-680 nm. Two versions of the scheme are described: a full-scale one with estimated resolving power of 5300-7900 and a small-sized one intended for creation of a lab prototype, which provides the resolving power of 1500-3000. Diffraction efficiency modeling confirms that the system throughput can reach 75 %, while stray light caused by the gratings crosstalk is negligible. We also propose a design of image slicer and focal reducer allowing to couple the instrument with the 6-m telescope. Finally, we present concept of the opto-mechanical design.
Heijmans, J. A. C.; Gers, L.; Faught, B.
2011-10-01
We report on the grating development for the High Efficiency and Resolution Multi Element Spectrograph (HERMES). This paper discusses the challenges of designing, optimizing, and tolerancing large aperture volume phase holographic (VPH) gratings for HERMES. The high spectral resolution requirements require steep angles of incidence, of 67.2 degrees, and high line densities, ranging between 2400 and 3800 lines per mm, resulting in VPH gratings that are highly s-polarized that push the fabrication process to its limits.
Yan, Xiaona; Dai, Ye; Gao, Zixuan; Chen, Yuanyuan; Yang, Xihua; Ma, Guohong
2013-03-25
Based on the modified Kogelnik's coupled-wave theory, time- and frequency-domain diffractions of a femtosecond pulse from transmitted volume holographic gratings (VHGs) are theoretically studied. Results show that when the refractive index modulation of the VHG changes in a certain range, the number of temporal diffracted pulse will evolve from one to two, then to three, and this pulse number evolution is periodic. This particular phenomenon can be explained by diffraction intensity spectrum and the overmodulation effect of refractive index modulation of transmitted VHG. Moreover, we find centers of all temporal diffracted pulses translate along the negative time axis, and the translation is irrelevant to the refractive index modulations. We will use time delay of volume grating to give a reasonable explanation.
Carretero, Luis; Blaya, Salvador; Acebal, Pablo; Fimia, Antonio; Madrigal, Roque; Murciano, Angel
2011-04-11
We present a holographic system that can be used to manipulate the group velocity of light pulses. The proposed structure is based on the multiplexing of two sequential holographic volume gratings, one in transmission and the other in reflection geometry, where one of the recording beams must be the same for both structures. As in other systems such as grating induced transparency (GIT) or coupled-resonator-induced transparency (CRIT), by using the coupled wave theory it is shown that this holographic structure represents a classical analogue of the electromagnetically induced transparency (EIT). Analytical expressions were obtained for the transmittance induced at the forbidden band (spectral hole) and conditions where the group velocity was slowed down were analyzed. Moreover, the propagation of Gaussian pulses is analyzed for this system by obtaining, after further approximations, analytical expressions for the distortion of the transmitted field. As a result, we demonstrate the conditions where the transmitted pulse is slowed down and its shape is only slightly distorted. Finally, by comparing with the exact solutions obtained, the range of validity of all the analytical formulae was verified, demonstrating that the error is very low.
Development of a large mosaic volume phase holographic (VPH) grating for APOGEE
Arns, James; Wilson, John C.; Skrutskie, Mike; Smee, Steve; Barkhouser, Robert; Eisenstein, Daniel; Gunn, Jim; Hearty, Fred; Harding, Al; Maseman, Paul; Holtzman, Jon; Schiavon, Ricardo; Gillespie, Bruce; Majewski, Steven
2010-07-01
Volume phase holographic (VPH) gratings are increasingly being used as diffractive elements in astronomical instruments due to their potential for very high peak diffraction efficiencies and the possibility of a compact instrument design when the gratings are used in transmission. Historically, VPH grating (VPHG) sizes have been limited by the size of manufacturer's holographic recording optics. We report on the design, specification and fabrication of a large, 290 mm × 475 mm elliptically-shaped, mosaic VPHG for the Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph. This high-resolution near-infrared multi-object spectrograph is in construction for the Sloan Digital Sky Survey III (SDSS III). The 1008.6 lines/mm VPHG was designed for optimized performance over a wavelength range from 1.5 to 1.7 μm. A step-and-repeat exposure method was chosen to fabricate a three-segment mosaic on a 305 mm × 508 mm monolithic fused-silica substrate. Specification considerations imposed on the VPHG to assure the mosaic construction will satisfy the end use requirements are discussed. Production issues and test results of the mosaic VPHG are discussed.
Measurement of Throughput Variation Across A Large Format Volume-Phase Holographic Grating
Tamura, N; Sharples, R M; Robertson, D J; Allington-Smith, J R; Tamura, Naoyuki; Murray, Graham J.; Sharples, Ray M.; Robertson, David J.
2005-01-01
In this paper, we report measurements of diffraction efficiency and angular dispersion for a large format (~ 25 cm diameter) Volume-Phase Holographic (VPH) grating optimized for near-infrared wavelengths (0.9 -- 1.8 micron). The aim of this experiment is to see whether optical characteristics vary significantly across the grating. We sampled three positions in the grating aperture with a separation of 5 cm between each. A 2 cm diameter beam is used to illuminate the grating. At each position, throughput and diffraction angle were measured at several wavelengths. It is found that whilst the relationship between diffraction angle and wavelength is nearly the same at the three positions, the throughputs vary by up to ~ 10\\% from position to position. We explore the origin of the throughput variation by comparing the data with predictions from coupled-wave analysis. We find that it can be explained by a combination of small variations over the grating aperture in gelatin depth and/or refractive index modulation a...
Mass production of volume phase holographic gratings for the VIRUS spectrograph array
Chonis, Taylor S; Hill, Gary J; Clemens, J Christopher; Lee, Hanshin; Tuttle, Sarah E; Adams, Joshua J; Marshall, J L; DePoy, D L; Prochaska, Travis
2014-01-01
The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350-550 nm. Including witness samples, a suite of 170 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wav...
Combined narrowband imager-spectrograph with volume-phase holographic gratings
Muslimov, Eduard R.; Fabrika, Sergei N.; Valyavin, Gennady G.
2017-06-01
In the present work we discuss a possibility to build an instrument with two operation modes - spectral and imaging ones. The key element of such instrument is a dispersive and filtering unit consisting of two narrowband volume-phase holographic gratings. Each of them provides high diffraction efficiency in a relatively narrow spectral range of a few tens of nanometers. Besides, the position of this working band is highly dependent on the angle of incidence. So we propose to use a couple of such gratings to implement the two operational modes. The gratings are mounted in a collimated beam one after another. In the spectroscopic mode the gratings are turned on such angle that the diffraction efficiency curves coincide, thus the beams diffracted on the first grating are diffracted twice on the second one and a high-dispersion spectrum in a narrow range is formed. If the collimating and camera lenses are corrected for a wide field it is possible to use a long slit and register the spectra from its different points separately. In the imaging mode the gratings are turned to such angle that the efficiency curves intersect in a very narrow wavelength range. So the beams diffracted on the first grating are filtered out by the second one except of the spectral component, which forms the image. In this case the instrument works without slit diaphragm on the entrance. We provide an example design to illustrate the proposed concept. This optical scheme works in the region around 656 nm with F/# of 6.3. In the spectroscopic mode it provides a spectrum for the region from 641 to 671 nm with reciprocal linear dispersion of 1.4 nm/mm and the spectral resolving power higher than 14000. In the imaging mode it covers linear 12mm x 12mm field of view with spatial resolution of 15- 30 lines/mm.
Barkhouser, Robert H.; Arns, James; Gunn, James E.
2014-08-01
The Prime Focus Spectrograph (PFS) is a major instrument under development for the 8.2 m Subaru telescope on Mauna Kea. Four identical, fixed spectrograph modules are located in a room above one Nasmyth focus. A 55 m fiber optic cable feeds light into the spectrographs from a robotic fiber positioner mounted at the telescope prime focus, behind the wide field corrector developed for Hyper Suprime-Cam. The positioner contains 2400 fibers and covers a 1.3 degree hexagonal field of view. Each spectrograph module will be capable of simultaneously acquiring 600 spectra. The spectrograph optical design consists of a Schmidt collimator, two dichroic beamsplitters to separate the light into three channels, and for each channel a volume phase holographic (VPH) grating and a dual- corrector, modified Schmidt reimaging camera. This design provides a 275 mm collimated beam diameter, wide simultaneous wavelength coverage from 380 nm to 1.26 µm, and good imaging performance at the fast f/1.1 focal ratio required from the cameras to avoid oversampling the fibers. The three channels are designated as the blue, red, and near-infrared (NIR), and cover the bandpasses 380-650 nm (blue), 630-970 nm (red), and 0.94-1.26 µm (NIR). A mosaic of two Hamamatsu 2k×4k, 15 µm pixel CCDs records the spectra in the blue and red channels, while the NIR channel employs a 4k×4k, substrate-removed HAWAII-4RG array from Teledyne, with 15 µm pixels and a 1.7 µm wavelength cutoff. VPH gratings have become the dispersing element of choice for moderate-resolution astronomical spectro- graphs due their potential for very high diffraction efficiency, low scattered light, and the more compact instru- ment designs offered by transmissive dispersers. High quality VPH gratings are now routinely being produced in the sizes required for instruments on large telescopes. These factors made VPH gratings an obvious choice for PFS. In order to reduce risk to the project, as well as fully exploit the performance
Barkhouser, Robert; Gunn, James E
2014-01-01
The Prime Focus Spectrograph (PFS) is a major instrument under development for the 8.2 m Subaru telescope. Four identical spectrograph modules are located in a room above one Nasmyth focus. A 55~m fiber optic cable feeds light to the spectrographs from a robotic positioner at the prime focus, behind the wide-field corrector developed for Hyper Suprime-Cam. The positioner contains 2400 fibers and covers a 1.3~degree hexagonal field of view. The spectrograph optical design consists of a Schmidt collimator, two dichroic beamsplitters to split the light into three channels, and for each channel a volume phase holographic (VPH) grating and a dual-corrector, modified Schmidt reimaging camera. This design provides a 275~mm collimated beam diameter, wide simultaneous wavelength coverage from 380~nm to 1.26~\\textmu m, and good imaging performance at the fast f/1.05 focal ratio required from the cameras to avoid oversampling the fibers. The three channels are designated as the blue, red, and near-infrared (NIR), and co...
Lv, Yanlu; Cai, Chuangjian; Bai, Jing; Luo, Jianwen
2016-12-01
Traditional spectral imaging systems mainly rely on spatial scanning or spectral scanning methods to acquire spatial and spectral features. The acquisition is time-consuming and cannot fully satisfy the need of monitoring dynamic phenomenon and observing different structures of the specimen simultaneously. To overcome these barriers, we develop a video-rate simultaneous multispectral imaging system built with a spectral multiplexed volume holographic grating (VHG) and few optical components. Four spectral multiplexed volume holograms optimized for four discrete spectral bands (centered at 488 nm, 530 nm, 590 nm and 620 nm) are recorded into an 8×12 mm photo-thermal refractive glass. The diffraction efficiencies of all the holograms within the multiplexed VHG are greater than 80%. With the high throughout multiplexed VHG, the system can work with both reflection and fluorescence modes and allow simultaneous acquisition of spectral and spatial information with a single exposure. Imaging experiments demonstrate that the multispectral images of the target illuminated with white light source can be obtained. Fluorescence images of multiple fluorescence objects (two glass beads filled with 20 uL 1.0 mg/mL quantum dots solutions that emit 530 +/- 15 nm and 620 +/- 15 nm fluorescence, respectively) buried 3 mm below the surface of a tissue mimicking phantom are acquired. The results demonstrate that the system can provide complementary information in fluorescence imaging. The design diagram of the proposed system is given to explain the advantage of compactness and flexibility in integrating with other imaging platforms.
Picosecond Holographic-Grating Spectroscopy
Duppen, K.
1987-01-01
Interfering light waves produce an optical interference pattern in any medium that interacts with light. This modulation of some physical parameter of the system acts as a classical holographic grating for optical radiation. When such a grating is produced through interaction of pulsed light waves w
Francés, J.; Bleda, S.; Neipp, C.; Márquez, A.; Pascual, I.; Beléndez, A.
2013-03-01
The finite-difference time-domain method (FDTD) allows electromagnetic field distribution analysis as a function of time and space. The method is applied to analyze holographic volume gratings (HVGs) for the near-field distribution at optical wavelengths. Usually, this application requires the simulation of wide areas, which implies more memory and time processing. In this work, we propose a specific implementation of the FDTD method including several add-ons for a precise simulation of optical diffractive elements. Values in the near-field region are computed considering the illumination of the grating by means of a plane wave for different angles of incidence and including absorbing boundaries as well. We compare the results obtained by FDTD with those obtained using a matrix method (MM) applied to diffraction gratings. In addition, we have developed two optimized versions of the algorithm, for both CPU and GPU, in order to analyze the improvement of using the new NVIDIA Fermi GPU architecture versus highly tuned multi-core CPU as a function of the size simulation. In particular, the optimized CPU implementation takes advantage of the arithmetic and data transfer streaming SIMD (single instruction multiple data) extensions (SSE) included explicitly in the code and also of multi-threading by means of OpenMP directives. A good agreement between the results obtained using both FDTD and MM methods is obtained, thus validating our methodology. Moreover, the performance of the GPU is compared to the SSE+OpenMP CPU implementation, and it is quantitatively determined that a highly optimized CPU program can be competitive for a wider range of simulation sizes, whereas GPU computing becomes more powerful for large-scale simulations.
Imaging characteristics of a volume holographic lens
Yang, Jing; Jiang, Zhu-qing; Xu, Zhi-qiang; Liu, Shao-jie; Sun, Ya-jun; Tao, Shi-quan
2009-07-01
A volume holographic grating lens can reconstruct the three-dimensional information by conducting multiple optical slicing of an object based on Bragg selectivity of the volume holographic grating. In this paper, we employ the point-spread function of volume holographic imaging system to theoretically analyze its imaging resolution. In the experiments, the volume holographic gratings are made with a spherical reference (SR) and a planar reference (PR), respectively, and used as volume holographic imaging lens in our imaging system. The longitudinal and lateral defocusing characteristics of volume holographic lens with SR and with PR are investigated experimentally by displacing the interested objects from original reference location, respectively. The effects of the parameters of the volume holographic lens on the longitudinal and lateral resolution are also discussed. The experimental results show that increasing the size of the volume holographic lens can improve the depth resolution, and in particular, it has greater influence on SR VHI. The lateral selectivity of SR VHI is more sensitive than that of PR VHI, and the Bragg degenerate diffraction of PR VHI on the y axis is obviously observed.
Sangac interferometer on the holographic bragg grating
Tikhonov, E A
2015-01-01
The ring interferometer with zero optical path difference known as Sagnac one is offered with a diffraction splitting of the entering light beam. As the beamsplitter, a transmission holographic Bragg grating is used. Conditions of normal operation of this interferometer achieve under the equal intensity of beam copies and the adjustable phase shift between them in its two interferometer shoulders. These conditions are met with the holographic grating, which provides the phase shift 180^0 on the central Bragg wavelength. Experimental approbation of the modified interferometer validates the expected results.
Liu, Hongpeng; Yu, Dan; Zhou, Ke; Mao, Dongyao; Liu, Langbo; Wang, Hui; Wang, Weibo; Song, Qinggong
2016-12-10
Temperature-induced diffraction spectrum responses of holographic gratings are characterized for exploring the temperature-sensing capability of a holographic sensor. Linear blue shift of peak wavelength and linear diffraction reduction are observed. It provides quantitative expressions for sensing applications. Inorganic nanoparticles are dispersed into the binder to improve sensing properties. Obvious improvement of sensing parameters, including wavelength shift and diffraction change, is confirmed. The sensitivity, response rate, and linear response region of holographic sensors are determined to evaluate sensing capacity. Influence of relative humidity on holographic sensing response is discussed. Expansion of humidity range provides a probability for extending the range of wavelength shift. Finally, the temperature response reversibility of a holographic sensor is evaluated. These experimental results can expand the practical application field of holographic sensing strategy and accelerate the development of holographic sensors.
Liu, Hongpeng; Yu, Dan; Zhou, Ke; Mao, Dongyao; Liu, Langbo; Wang, Hui; Wang, Weibo; Song, Qinggong
2016-12-10
The temperature response mechanism of a diffraction spectrum in a holographic grating is characterized. Two possible major factors, changes in the refractive index and thermal expansion, are measured and analyzed to identify the sensing physical mechanism. Average refractive indices at various temperatures and relative humidity values are independently measured. Thermal optical coefficients of polymers are estimated quantitatively to evaluate the temperature response capability of the refractive index. Angle selectivity of multiplexing gratings is scanned at various temperatures to obtain magnitudes of Bragg angle detuning. The linear thermal expansion coefficients are extracted by the nonlinear fitting reading angle dependence of angle detuning. The significance of the thermal optical coefficient and the thermal expansion coefficient for holographic sensing is discussed. Finally, the primary factor for temperature-induced wavelength blueshift is analyzed theoretically.
DEFF Research Database (Denmark)
Naydenova, I; Nikolova, L; Todorov, T
1998-01-01
We investigate the polarization properties of holographic gratings in side-chain azobenzene polyesters in which an anisotropic grating that is due to photoinduced linear and circular birefringence is recorded in the volume of the material and a relief grating appears on the surface. A theoretical...... photobirefringences, and at larger intensity the influence of the surface relief dominates the effect of the circular anisotropy. Owing to the high recording efficiency of the polyesters, the +/-1-order diffracted waves change the polarization interference pattern during the holographic recording, resulting...... in the appearance of a surface relief with doubled frequency....
Holographic Grating Formation in Cationic Photopolymers with Dark Reaction
Institute of Scientific and Technical Information of China (English)
WEI Hao-Yun; CAO Liang-Cai; GU Claire; XU Zhen-Feng; HE Ming-Zhao; HE Qing-Sheng; HE Shu-Rong; JIN Guo-Fan
2006-01-01
@@ We propose a new formula to describe the dynamics of holographic grating formation under low intensity pulse exposures in cationic photopolymers, in which the dark reaction contributes dominantly to the grating strength.The formula is based on the living polymerization mechanism and the diffusion-free approximation. The analytical solution indicates that the grating formation time depends on the termination rate constant, while the final grating strength depends linearly on the total exposure energy. These theoretical predictions are verified experimentally using the Aprilis HMC-400μm photopolymer. The results can provide guidelines for the control and optimization of the holographic recording conditions in practical applications.
Characterization of the holographic imaging grating of GOMOS UVIS spectrometer
Graeffe, Jussi; Saari, Heikki K.; Astola, Heikki; Rainio, Kari; Mazuray, Lorand; Pierot, Dominique; Craen, Pierre; Gruslin, Michel; Lecat, Jean-Herve; Bonnemason, Francis; Flamand, Jean; Thevenon, Alain
1996-11-01
A Finnish-French group has proposed an imaging spectrometer- based instrument for the ENVISAT Earth observation satellite of ESA, which yields a global mapping of the vertical profile of ozone and other related atmospheric gases. The GOMOS instrument works by measuring the UV-visible spectrum of a star that is occulting behind the Earth's atmosphere. The prime contractor of GOMOS is Matra Marconi Space France. The focal plane optics are designed and manufactured by Spacebel Instrumentation S.A. and the holographic grating by Jobin-Yvon. VTT Automation, Measurement Technology has participated in the GOMOS studies since 1989 and is presently responsible for the verification tests of the imaging quality and opto-mechanical interfaces of the holographic imaging grating of GOMOS. The UVIS spectrometer of GOMOS consists of a holographic, aberration corrected grating and of a CCD detector. The alignment of the holographic grating needs as an input very accurate knowledge of the mechanical interfaces. VTT Automation has designed, built and tested a characterization system for the holographic grating. This system combines the accurate optical imaging measurements with the absolute knowledge of the geometrical parameters at the accuracy of plus or minus 10 micrometers which makes the system unique. The developed system has been used for two breadboard gratings and the qualification model grating. The imaging quality results and their analysis together with alignment procedure utilizing of the knowledge of mechanical interfaces is described.
Analysis of the optical parameters of phase holographic gratings
Directory of Open Access Journals (Sweden)
Є.О. Тихонов
2008-03-01
Full Text Available Suitability of 2- wave approximation of the coupled waves theory tor description of holographic phase gratings recorded on photopolymer compound ФПК-488 is proved. Using the basic formulas of the theory, main grating optical parameters - a depth of modulation and finished thickness are not measured immediately are determined.
Asymmetric dynamic phase holographic grating in nematic liquid crystal
Ren, Chang-Yu; Shi, Hong-Xin; Ai, Yan-Bao; Yin, Xiang-Bao; Wang, Feng; Ding, Hong-Wei
2016-09-01
A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal (NLC) was presented. An oblique incidence beam was used to record the thin asymmetric dynamic phase holographic grating. The diffraction efficiency we achieved is more than 40%, exceeding the theoretical limit for symmetric profile gratings. Both facts can be explained by assuming that a grating with an asymmetric saw-tooth profile is formed in the NLC. Finally, physical mechanism and mathematical model for characterizing the asymmetric phase holographic grating were presented, based on the photo-refractive-like (PR-like) effect. Project supported by the Science and Technology Programs of the Educational Committee of Heilongjiang Province, China (Grant No. 12541730) and the National Natural Science Foundation of China (Grant No. 61405057).
Real-time holographic recording of high efficient reflective gratings on photopolymer composite
Tikhonov, Eugene A.; Smirnova, Tatiana N.; Sorbaev, T. A.
1994-06-01
Some years ago we had elaborated the new photopolymer composite to record in real time (or quasi real time) the various volume phase transmission-transmission holographical devices: gratings, lenses, beam-multiplicators, narrow-band filters. The nonreversible real-time recording on the photopolymers was based on the chain radical polymerication reaction and resulted in phase transition from liquid monomer/olygomer mixture to a solid with spatially modulated surface and volume. Unfortunately, in most cases the polymerizing recording is followed simultaneously by the shrinkage and the variation of the bulk index reaction. Unlike the transmission holograms the recording of the reflection holograms in real-time mode becomes impossible until these effects can be limited or aborted. The present paper contains the corresponding results of investigation of the photopolymer recording real-time modes of the reflection holographic gratings: (1) photopolymer composites with the smallest variation of the bulk refraction index during the real-time recording, (2) effect of a shrinkage on the diffraction efficiency of gratings, (3) limitations of the post-polymerized amplification of a holographic recording for the reflection gratings, and (4) the capillary-induced filling of the phase plates of the reflective hologram gratings as the tentative explanation of the positive results.
Holographic construction of open structure, dispersion transmission gratings
Dijkstra, J.H.; Lantwaard, L.J.
1975-01-01
A method of fabricating free-standing transmission gratings with line densities of the order of 1000 /nm is described. The technique involves a combination of two well-known procedures: application of photoresist and electroplating for the production of fine metal grids, and holographic (interferogr
Holographic liquid crystal polarization grating with Fabry-Perot structure.
Sakamoto, Moritsugu; Yamaguchi, Haruki; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi
2016-03-15
A holographic liquid crystal polarization grating with a Fabry-Perot structure was developed. Because of its resonant structure, the device offers high levels of control of the diffraction properties of incident-polarized light beams, depending on the resonance conditions. The diffracted light beams are emitted in both the reflection and transmission directions, and the device thus works as a multibranch polarization grating with double optical paths, unlike a conventional polarization grating. These device features were experimentally demonstrated and were also explained theoretically.
Color multiplexing using directional holographic gratings and linear polarization
Energy Technology Data Exchange (ETDEWEB)
Lugo, L I; Rodriguez, A; Ramirez, G; Guel, S; Nunez, O F, E-mail: roca@cactus.iico.uaslp.mx [Instituto de Investigacion en Comunicacion Optica (IICO) Universidad Autonoma de San Luis Potosi, S.L.P. (UASLP) (Mexico)
2011-01-01
We propose a system of multiplexing and de-multiplexing, which uses a holographic diffraction grating to compel modulated light of different colors to be sent through an optical fiber. Diffraction gratings were fabricated specifically to pick the desired direction in which we wanted the light of different wavelengths to impinge the optic fiber, and also to be separated at the output. It was been found that the system preserves the polarization of light, which give us a one more freedom degree, allowing us to process twice the original information amount.
Analysis of higher order harmonics with holographic reflection gratings
Mas-Abellan, P.; Madrigal, R.; Fimia, A.
2017-05-01
Silver halide emulsions have been considered one of the most energetic sensitive materials for holographic applications. Nonlinear recording effects on holographic reflection gratings recorded on silver halide emulsions have been studied by different authors obtaining excellent experimental results. In this communication specifically we focused our investigation on the effects of refractive index modulation, trying to get high levels of overmodulation that will produce high order harmonics. We studied the influence of the overmodulation and its effects on the transmission spectra for a wide exposure range by use of 9 μm thickness films of ultrafine grain emulsion BB640, exposed to single collimated beams using a red He-Ne laser (wavelength 632.8 nm) with Denisyuk configuration obtaining a spatial frequency of 4990 l/mm recorded on the emulsion. The experimental results show that high overmodulation levels of refractive index produce second order harmonics with high diffraction efficiency (higher than 75%) and a narrow grating bandwidth (12.5 nm). Results also show that overmodulation produce diffraction spectra deformation of the second order harmonic, transforming the spectrum from sinusoidal to approximation of square shape due to very high overmodulation. Increasing the levels of overmodulation of refractive index, we have obtained higher order harmonics, obtaining third order harmonic with diffraction efficiency (up to 23%) and narrowing grating bandwidth (5 nm). This study is the first step to develop a new easy technique to obtain narrow spectral filters based on the use of high index modulation reflection gratings.
Holographic dielectric grating: theory and practice.
Chang, M; George, N
1970-03-01
Lossy dielectric gratings have been analyzed using a Raman-Nath formalism modified to incorporate losses. Four second-order coupled wave equations are retained for computation of the zero, first- and second-order diffracted beams for a multitude of practical cases. Significant differences are found in comparison with computations in which only two coupled waves are retained. The entire range of losses and thicknesses encountered for holograms in film emulsions has been studied using this unified approach. Graphs have been prepared to show the efficiency, i.e., power diffracted in the first-order relative to the total incident power, vs the index modulation for a wide range of thicknesses and losses. At a given thickness, optimum frequency requires a specific exposure. The efficiency for an optimum exposure is plotted vs the loss factor with thickness as a parameter. New experimental data are presented for bleached gratings in which several diffracted orders are measured and compared to our theory for a wide range of index modulation and loss factors.
Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K
2008-09-15
A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.
Numerical simulations of volume holographic imaging system resolution characteristics
Sun, Yajun; Jiang, Zhuqing; Liu, Shaojie; Tao, Shiquan
2009-05-01
Because of the Bragg selectivity of volume holographic gratings, it helps VHI system to optically segment the object space. In this paper, properties of point-source diffraction imaging in terms of the point-spread function (PSF) are investigated, and characteristics of depth and lateral resolutions in a VHI system is numerically simulated. The results show that the observed diffracted field obviously changes with the displacement in the z direction, and is nearly unchanged with displacement in the x and y directions. The dependence of the diffracted imaging field on the z-displacement provides a way to possess 3-D image by VHI.
High efficiency holographic Bragg grating with optically prolonged memory
Khoo, Iam Choon; Chen, Chun-Wei; Ho, Tsung-Jui
2016-10-01
In this paper, we show that photosensitive azo-dye doped Blue-phase liquid crystals (BPLC) formed by natural molecular self-assembly are capable of high diffraction efficiency holographic recording with memory that can be prolonged from few seconds to several minutes by uniform illumination with the reference beam. Operating in the Bragg regime, we have observed 50 times improvement in the grating diffraction efficiency and shorter recording time compared to previous investigations. The enabling mechanism is BPLC’s lattice distortion and index modulation caused by the action of light on the azo-dopant; upon photo-excitation, the azo-molecules undergo transformation from the oblong-shaped Trans-state to the bent-shaped Cis-state, imparting disorder and also cause the surrounding BPLC molecules to undergo coupled flow & reorientation leading to lattice distortion and index modulation. We also showed that the same mechanism at work here that facilitates lattice distortion can be used to frustrate free relaxation of the lattice distortion, thereby prolonging the lifetime of the written grating, provided the reference beam is kept on after recording. Due to the ease in BPLC fabrication and the availability of azo-dopants with photosensitivity throughout the entire visible spectrum, one can optimize the controlling material and optical parameters to obtain even better performance.
Multiplexed Volume Bragg Gratings in Narrowand Broad-band Spectral Systems: Analysis and Application
Ingersoll, Gregory B.
Volume Bragg gratings (VBGs) are important holographic optical elements in many spectral systems. Using multiple volume gratings, whether multiplexed or arranged sequentially, provides advantages to many types of systems in overall efficiency, dispersion performance, flexibility of design, etc. However, the use of multiple gratings---particularly when the gratings are multiplexed in a single holographic optical element (HOE)---is subject to inter-grating coupling effects that ultimately limit system performance. Analyzing these coupling effects requires a more complex mathematical model than the straightforward analysis of a single volume grating. We present a matrix-based algorithm for determining diffraction efficiencies of significant coupled waves in these multiplexed grating holographic optical elements (HOEs). Several carefully constructed experiments with spectrally multiplexed gratings in dichromated gelatin verify our conclusions. Applications of this theory to broad- and narrow-band systems are explored in detailed simulations. Broadband systems include spectrum splitters for diverse-bandgap photovoltaic (PV) cells. Volume Bragg gratings can serve as effective spectrum splitters, but the inherent dispersion of a VBG can be detrimental given a broad-spectrum input. The performance of a holographic spectrum splitter element can be improved by utilizing multiple volume gratings, each operating in a slightly different spectral band. However, care must be taken to avoid inter-grating coupling effects that limit ultimate performance. We explore broadband multi-grating holographic optical elements (HOEs) in sandwiched arrangements where individual single-grating HOEs are placed in series, and in multiplexed arrangements where multiple gratings are recorded in a single HOE. Particle swarm optimization (PSO) is used to tailor these systems to the solar spectrum taking into account both efficiency and dispersion. Both multiplexed and sandwiched two-grating systems
DEFF Research Database (Denmark)
Sánchez, C.; Alcalá, R.; Hvilsted, Søren
2000-01-01
Biphotonic holographic gratings have been recorded in a side-chain azobenzene liquid crystalline polyester using a blue incoherent source and a He-Ne laser. Intensity gratings and the appearance of surface relief have been observed when two linearly polarized beams from a He-Ne laser are made...
Microstructure of Reflection Holographic Grating Inscribed in an Absorptive Azopolymer Film
Choi, Hyunhee
2015-01-01
Microstructure of reflection holographic grating fabricated via a photo-isomerization process in an absorptive azopolymer film is analyzed. A surface relief formation takes place on the film surface even in the reflection holographic configuration. The polarization-dependent diffraction efficiency and the polarization analysis reveal that the polarization grating structure inside the film strongly depends on the amount of optical absorption experienced by the two writing beams. Theoretical analysis shows that the reflection polarization grating, while mimicking a cholesteric liquid crystal structure, is composed of elliptic polarizations with the ellipticity going through a periodic modulation.
Modulation of the characteristics of complex holographic gratings under an additional laser pulse
Energy Technology Data Exchange (ETDEWEB)
Kucherenko, M G; Rusinov, A P; Fedorov, D S [Orenburg State University, Orenburg (Russian Federation)
2012-08-31
Recording of elementary holographic gratings in polymer films and solutions coloured with organic dyes has been investigated. Possible mechanisms of modifying a recorded grating by an additional laser pulse are considered. A theoretical model is proposed to describe the processes of recording/relaxation and modification of gratings recorded on triplet states of photochrome molecules; the predictions of this model are found to be in good agreement with the experimental data. (holography)
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
An optically active polymer (PM1) containing azobenzene moieties with a chiral group (s-2-methyl-butyl) was synthesized by homopolymerization of monomer, 4-[2-(methacryloyloxy)ethyloxy]-4'-(s-2-methyl-1-butyloxycarbonyl)azobenzene, using the free radical polymerization method. The polymer dissolved in tetrahydrofuran (THF) could be easily processed into high optical quality films. The optical anisotropy of the polymer films was investigated by polarizing optical microscopy (POM). The experimental results showed that irradiation with a circularly polarized beam could align the orientation of the molecules in the polymer films. Moreover, the holographic phase gratings of photo-induced polymer films were detected by atomic force microscopy (AFM) and POM. In comparison with polymer containing no chiral group, it was found from the preliminary measurement of the photo-induced holographic phase gratings that PM1 containing a chiral group could form holographic phase gratings buried in the films.
Ellabban, Mostafa A.; Glavan, Gašper; Flauger, Peter; Klepp, Jürgen; Fally, Martin
2017-05-01
We investigated recording and readout of transmission gratings in composites of poly(ethylene glycol) dimethacrylate (PEGDMA) and ionic liquids (IL) in detail. Gratings were recorded using a two-wave mixing technique for different grating periods, exposures and a series of film thicknesses. The recording kinetics as well as the post-exposure behavior of the gratings were studied by diffraction experiments. We found that - depending on the parameters - different grating types (pure phase or mixed) are generated, and at elevated thicknesses strong light-induced scattering develops. Gratings with thicknesses up to 85 micrometers are of the required quality with excellent optical properties, thicker gratings exhibit strong detrimental light-induced scattering. The obtained results are particularly valuable when considering PEGDMA-ionic liquid composites for applications as e.g., holographic storage materials or as neutron optic diffractive elements.
Holographic Grating Formation in Photochromic Diarylethene-Doped Polymeric Thin Films
Institute of Scientific and Technical Information of China (English)
LUO Shou-Jun; LIU Guo-Dong; HE Qing-Sheng; JIN Guo-Fan
2005-01-01
We introduce a modeJ to describe real-time grating formation in holographic photochromic diarylethene-dopedpolymeric thin films. This model, which combines photochromic chemical reaction with the coupled-wave theory, indicates that the grating recording time depends on the molecular absorption coefficient of molecules and the quantum yield of the photochromic reaction at a certain holographic recording intensity. The model is validated by comparing its predictions with the experimental results in which photochromic molecule 1,2-bis(2-methyl-5-(4-formylphenyl)-3-thienyl) perfluorocyclopentene doped PMMA films were used.
Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters.
Luo, Yuan; Gelsinger, Paul J; Barton, Jennifer K; Barbastathis, George; Kostuk, Raymond K
2008-03-15
Holographic gratings formed in thick phenanthrenquinone- (PQ-) doped poly(methyl methacrylate) (PMMA) can be made to have narrowband spectral and spatial transmittance filtering properties. We present the design and performance of angle-multiplexed holographic filters formed in PQ-PMMA at 488 nm and reconstructed with a LED operated at approximately 630 nm. The dark delay time between exposure and the preillumination exposure of the polymer prior to exposure of the holographic area are varied to optimize the diffraction efficiency of multiplexed holographic filters. The resultant holographic filters can enhance the performance of four-dimensional spatial-spectral imaging systems. The optimized filters are used to simultaneously sample spatial and spectral information at five different depths separated by 50 microm within biological tissue samples.
Diarylethene Materials for Rewritable Volume Holographic Data Storage
Institute of Scientific and Technical Information of China (English)
刘国栋; 何庆声; 丁德华; 邬敏贤; 金国藩; 蒲守智; 张复实; 刘学东; 袁鹏
2003-01-01
The photochromic diarylethene, 1,2-bis(2-methyl-5-(4-formyIphenyl)-thien-3-yl)perfluorocyclopentene ( 1 a) is studied and its applicable potential in rewritable volume holographic data storage is verified. Holographic recording films of 10-μm thickness have been fabricated. The refractive index modulation (△n = 1.15 × 10-3) between the open- and close-ring forms is detected to be large enough so that the films are suitable for the production of volume holographic storage. The experiments of angle multiplexing and rewriting holograms show that the materials are fit for volume holographic data storage.
Hyperbranched-polymer dispersed nanocomposite volume gratings for holography and diffractive optics
Tomita, Yasuo; Takeuchi, Shinsuke; Oyaizu, Satoko; Urano, Hiroshi; Fukamizu, Taka-aki; Nishimura, Naoya; Odoi, Keisuke
2016-10-01
We review our experimental investigations of photopolymerizable nanoparticle-polymer composites (NPCs) for holography and diffractive optics. Various types of hyperbranched polymer (HBP) were systhesized and used as transporting organic nanoparticles. These HBPs include hyperbranched poly(ethyl methacrylate) (HPEMA), hyperbranched polystyrene (HPS) and hyperbranched triazine/aromatic polymer units (HTA) whose refractive indices are 1.51, 1.61 and 1.82, respectively. Each HBP was dispersed in (meth)acrylate monomer whose refractive index was so chosen that a refractive index difference between HBP and the formed polymer was large. Such monomer-HBP syrup was mixed with a titanocene photoinitiator for volume holographic recording in the green. We used a two-beam interference setup to write an unslanted transmission volume grating at grating spacing of 1 μm and at a wavelength of 532 nm. It is shown that NPC volume gratings with the saturated refractive index modulation amplitudes as large as 0.008, 0.004 and 0.02 can be recorded in NPCs incorporated with HPEMA, HPS and HTA at their optimum concentrations of 34, 34 and 25 vol.%, respectively. We show the usefulness of HBP-dispersed NPC volume gratings for holographic applications such as holographic data storage and diffractive optical devices.
[Optimization of broad-band flat-field holographic concave grating without astigmatism].
Kong, Peng; Tang, Yu-guo; Bayanheshig; Li, Wen-hao; Cui, Jin-jiang
2012-02-01
The desirable imaging locations of the flat-field holographic concave gratings should be in a plane. And the object can be imaged perfectly by the grating when the tangential focal curve and sagittal focal curve both superpose the intersection of the image plane and dispersion plane. But actually, the defocus can not be eliminated over the entire wavelength range, while the astigmatism vanishes when the grating parameters satisfy some conditions. An optimization method for broad-band flat-field holographic concave gratings with absolute astigmatism correction was proposed. The ray tracing software ZEMAX was used for investigating the imaging properties of the grating. And we made a comparison between spectral performance of gratings designed by this new method and that by conventional method, respectively. The results indicated that the spectral performance of gratings designed by using the absolute astigmatism correction method can be as good as gratings designed with the conventional method. And the focusing performance in the sagittal direction is much better, so that the S/N ratio can be greatly improved.
Institute of Scientific and Technical Information of China (English)
LI Wen-hao; Bayanheshig; QI Xiang-dong; TANG Yu-guo
2008-01-01
A novel technology to manufacture holographic ion beam etched diffraction gratings based on surface thermokinematics is presented.The surface roughness of photoresist gratings is solved by this technology.According to this technology,a holographic ion beam etched blazed grating of 1200 1/mm for use in the ultraviolet region is manufactured.The experimental results show that the grating has good surface quality,low stray light and high diffraction efficiency.In addition,the performance of thes gratings satisfies the operating requirements of ultraviolet spectrograph.
Optical and electric properties of dynamic holographic gratings with arbitrary contrast
DEFF Research Database (Denmark)
Kukhtarev, Nickolai; Buchhave, Preben; Lyuksyutov, Sergei
1997-01-01
An analytical solution of the photoconductive material equations for dynamic holographic gratings of arbitrary contrast has been obtained. A method of measuring high-contrast correlation functions has been suggested and tested experimentally. Good agreement with the analytical expression for the ...
Holographic Gratings in Azobenzene Side-Chain Polymethacrylates
DEFF Research Database (Denmark)
Andruzzi, Luisa; Altomare, Angelina; Ciardelli, Francesco
1999-01-01
Optical storage properties of thin unoriented liquid crystalline and amorphous side-chain azobenzene polymethacrylate films are examined by polarization holographic measurements. The investigated materials are free radical copolymers derived from two photochromic monomers, 6-(4-oxy-4'-cyanoazoben......Optical storage properties of thin unoriented liquid crystalline and amorphous side-chain azobenzene polymethacrylate films are examined by polarization holographic measurements. The investigated materials are free radical copolymers derived from two photochromic monomers, 6-(4-oxy-4...
Holographic gratings in photorefractive polymers without external electric field
DEFF Research Database (Denmark)
Kukhtarev, N.; Lyuksyutov, S.; Buchhave, Preben
1997-01-01
Using anomalous large diffusion we report a recording of reflection type gratings in a PVK-based photorefractive polymer without any external electric field. The diffraction efficiency of the gratings was measured to be 7%. An efficient modulation of beams during two-beam coupling up to 12...
Fujisawa, M; Shin, S
2001-01-01
Holographically recorded, ion etched ruled gratings can be obtained for the varied line spacing plane grating (VPG) monochromator at the Photon Factory BL19B. A new holographic recording method makes it possible to manufacture VPGs with large varied line coefficients for reducing the aberration terms in the optical path function. The efficiency at higher photon energies and the quantity of stray light are improved in comparison with mechanically ruled gratings. The calculation shows that the much lower efficiency at higher photon energies is not intrinsic for saw-tooth type gratings. It seems to be caused instead by carbon contamination, radiation damage, deformation at manufacturing and so on.
Dynamics recording of holographic gratings in a photochromic crystal of calcium fluoride
Borisov, Vladimir N.; Barausova, Ekaterina V.; Veniaminov, Andrey V.; Andervaks, Alexandr E.; Shcheulin, Alexandr S.; Ryskin, Alexandr I.
2016-08-01
Dynamics of diffraction efficiency was monitored during recording a holographic grating in additively coloured CaF2 photochromic crystal at 180-200°C. Reciprocity failure revealed in the study was attributed to diffusion playing the crucial role in grating formation: recording at larger laser power goes faster but requires more energy. The efficiency of a recorded hologram is found to depend on the temperature; maximum diffraction is measured at the temperature far below that of recording, supposedly because of dramatic distortions suffered by the crystal along with exposure.
Nonlinear Blind Equalization for Volume Holographic Data Storage
Institute of Scientific and Technical Information of China (English)
商未雄; 何庆声; 金国藩
2004-01-01
We investigate the nonlinear blind equalization for volume holographic data storage channel. Base on the recurrent neural network channel model, we describe a novel blind equalizer for the volume holographic data storage system to improve the bit error rate and hence to make the storage densities achievable. The experimental results also indicate that a significant improvement in the bit error rate to 2.55 × 10-3 is possible with the nonlinear blind equalization.
Computer-Generated Holographic Gratings in Soft Matter
Zito, Gianluigi; Piccirillo, Bruno; Tkachenko, Volodymyr; Santamato, Enrico; Abbate, Giancarlo
2013-01-01
Standard multiple-beam holography has been largely used to produce gratings in polymer-liquid crystal composites, like POLICRYPS, H-PDLC gratings and POLIPHEM [1]. In this work we present a different approach to liquid crystalpolymeric grating production, based on the Computer-Generated Holography (CGH). The great advantage of using CGH is that interferometer-based schemes are no longer necessary, avoiding problems related to long term stability of the interference pattern and multi-beam complex optical setup. Moreover, the CGH technique allows a wider choice of pattern designs. In this preliminary work, we obtained promising results, as for instance the patterning of a square-wave refractive index modulation of a LCpolymeric composite, a pattern which is not achievable with standard two-beam holography.
Directory of Open Access Journals (Sweden)
N.S. Mazhari
2017-03-01
Full Text Available The holographic complexity and fidelity susceptibility have been defined as new quantities dual to different volumes in AdS. In this paper, we will use these new proposals to calculate both of these quantities for a variety of interesting deformations of AdS. We obtain the holographic complexity and fidelity susceptibility for an AdS black hole, Janus solution, a solution with cylindrical symmetry, an inhomogeneous background and a hyperscaling violating background. It is observed that the holographic complexity depends on the size of the subsystem for all these solutions and the fidelity susceptibility does not have any such dependence.
Mazhari, N S; Bahamonde, Sebastian; Faizal, Mir; Myrzakulov, Ratbay
2016-01-01
The holographic complexity and fidelity susceptibility have been defined as new quantities dual to different volumes in AdS. In this paper, we will use these new proposals to calculate both of these quantities for a variety of interesting deformations of AdS. We obtain the holographic complexity and fidelity susceptibility for an AdS black hole, Janus solution and a solution with cylindrically symmetry, an inhomogeneous background and a hyperscaling violating background. It is observed that the holographic complexity depends on the size of the subsystem for all these solutions and the fidelity susceptibility does not any such dependence.
Wang, Kangni; Zheng, Jihong; Liu, Yourong; Gao, Hui; Zhuang, Songlin
2017-06-01
An electrically tunable two-dimensional (2D) holographic polymer-dispersed liquid crystal (H-PDLC) grating with variable period was fabricated by inserting a cylindrical lens in a conventional holographic interference beam. The interference between the plane wave and cylindrical wave resulting in varying intersection angles on the sample, combined with dual exposure along directions perpendicular to each other, generates a 2D H-PDLC grating with varied period. We have identified periods varying from 3.109 to 5.158 μm across a 16 mm width, with supporting theoretical equations for the period. The period exhibits a symmetrical square lattice in a diagonal direction, with an asymmetrical rectangular lattice in off-diagonal locations. With the first exposure at 2 s and the second exposure at 60 s, the phase separation between the prepolymer and liquid crystal was most evident. The diffraction properties and optic-electric characteristics were also studied. The diffraction efficiency of first-order light was observed to be 13.5% without external voltage, and the transmission efficiency of non-diffracted light was 78% with an applied voltage of 100 V. The proposed method provides the capability of generating period variation to the conventional holographic interference path, with potential application in diffractive optics such as tunable multi-wavelength organic lasing from a dye-doped 2D H-PDLC grating.
Review of Random Phase Encoding in Volume Holographic Storage
Directory of Open Access Journals (Sweden)
Wei-Chia Su
2012-09-01
Full Text Available Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.
Fabrication of low straylight holographic gratings for space applications
Steiner, R.; Pesch, A.; Erdmann, L.H.; Burkhardt, M.; Gatto, A.; Wipf, R.; Diehl, T.; Vink, H.J.P.; Bosch, B.G. van den
2013-01-01
The main challenges of fabricating diffraction gratings for use in earth monitoring spectrometers are given by the requirements for low stray light, high diffraction efficiency and a low polarization sensitivity. Furthermore the use in space also requires a high environmental stability of these grat
Yu, Yeh-Wei; Xiao, Shuai; Cheng, Chih-Yuan; Sun, Ching-Cherng
2016-05-16
A simple method to decode the stored phase signal of volume holographic data storage with adequate wave aberration tolerance is highly demanded. We proposed and demonstrated a one-shot scheme to decode a binary-phase encoding signal through double-frequency-grating based shearing interferometry (DFGSI). The lateral shearing amount is dependent on the focal length of the collimated lens and the frequency difference between the gratings. Diffracted waves with phase encoding were successfully decoded through experimentation. An optical model for the DFGSI was built to analyze phase-error induction and phase-difference control by shifting the double-frequency grating longitudinally and laterally, respectively. The optical model was demonstrated experimentally. Finally, a high aberration tolerance of the DFGSI was demonstrated using the optical model.
Lin, Cunbao; Yan, Shuhua; You, Fusheng
2017-01-01
A cross-grating with short period and double layer is designed, and a method combining holographic lithography and lithography-etch-lithography-etch is proposed to manufacture it. The scalar diffraction theory and the rigorous coupled wave analysis are employed to analyze the diffraction characteristics of the double-layer cross-grating (DLCG). It reveals that the efficiencies of the (±1,±1) orders possess perfect complementarity under normal incidence. The equivalent high efficiency for TE and TM polarization can be realized which means the high signal-to-noise ratio and fringe contrast can be simultaneously achieved for heterodyne grating interferometers (HGIs). Furthermore, a gold-coated DLCG with grating pitch of 2 μm and pattern area of 60 mm×60 mm etched on the quartz substrate is fabricated with the proposed method. The displacement resolution, measurement range and long-term stability can be reliably guaranteed for HGIs with this grating. The characteristics of the DLCG are also experimentally tested and compared with the theoretical analysis. Reasonable consistency is obtained and the capabilities of both the DLCG and the fabrication method are verified.
Cambiasso, Javier; Garate, Hernan; D'Accorso, Norma; Ledesma, Silvia; Goyanes, Silvia
2015-11-01
A novel photoaddressable copolymer with low glass transition temperature was synthesised and its optical properties were studied. The photoresponsive material was obtained from chemical modification of a poly(styrene-co-acrylic acid) copolymer. A holographic polarization grating was recorded in the material and was monitored by measuring its diffraction efficiency. It is shown that the holographic grating stored in the material is highly stable in time, despite the fact that the polymer glass transition temperature is near room temperature. This stability is a consequence of electrostatic interactions between the azo-groups and the carboxylic substituent group of the main polymer chain.
DEFF Research Database (Denmark)
Nikolova, Ludmila; Todorov, T.; Ivanov, Mario Tonev
1996-01-01
We investigate thin phase polarization holographic gratings recorded with two waves with orthogonal linear polarizations in materials in which illumination with linearly/circularly polarized light gives rise to linear/circular birefringence. The theoretical analysis shows that the presence...... of circular photoanisotropy changes significantly the diffraction characteristics of the gratings. The intensities of the waves diffracted in the +1 and -1 orders of diffraction and their ratio depend substantially on the reconstructing-wave polarization. Experiments with films of side-chain liquid......-crystalline azobenzene polyester that is a photoanisotropic material of the considered type confirm the unusual polarization properties. It is shown that polarization holography may be used for real-time simultaneous measurement of photoinduced linear and circular birefringence....
Mueller imaging polarimetry of holographic polarization gratings inscribed in azopolymer films.
Martinez-Ponce, Geminiano
2016-09-19
Three types of polarization gratings have been recorded in azopolymer films by the symmetrical superposition of different orthogonal pairs of polarized beams. The inscribed holographic elements have been analyzed microscopically in a Mueller polarimeter in order to image the optical anisotropies photoinduced in the film. In the most of cases, the spatial modulation of diattenuation, birefringence, and optical rotation reproduced quite well previous results reported in the literature. Nevertheless, in the particular case of coherent superposition of p- and s-polarized beams, the spatial frequency for optical rotation (related to the Stokes parameter V) was different from the one observed in linear anisotropy (related to the Stokes parameter U). It is shown by theory and experiment that, in the polarized field used to record this polarization grating, the fourth-Stokes parameter changes sign, which implies a change in circular polarization handedness, practically once between two adjacent maxima.
High brightness diode lasers controlled by volume Bragg gratings
Glebov, Leonid
2017-02-01
Volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass are holographic optical elements that are effective spectral and angular filters withstanding high power laser radiation. Reflecting VBGs are narrow-band spectral filters while transmitting VBGs are narrow-band angular filters. The use of these optical elements in external resonators of semiconductor lasers enables extremely resonant feedback that provides dramatic spectral and angular narrowing of laser diodes radiation without significant power and efficiency penalty. Spectral narrowing of laser diodes by reflecting VBGs demonstrated in wide spectral region from near UV to 3 μm. Commercially available VBGs have spectral width ranged from few nanometers to few tens of picometers. Efficient spectral locking was demonstrated for edge emitters (single diodes, bars, modules, and stacks), vertical cavity surface emitting lasers (VCSELs), grating coupled surface emitting lasers (GCSELs), and interband cascade lasers (ICLs). The use of multiplexed VBGs provides multiwavelength emission from a single emitter. Spectrally locked semiconductor lasers demonstrated CW power from milliwatts to a kilowatt. Angular narrowing by transmitting VBGs enables single transverse mode emission from wide aperture diode lasers having resonators with great Fresnel numbers. This feature provides close to diffraction limit divergence along a slow axis of wide stripe edge emitters. Radiation exchange between lasers by means of spatially profiled or multiplexed VBGs enables coherent combining of diode lasers. Sequence of VBGs or multiplexed VBGs enable spectral combining of spectrally narrowed diode lasers or laser modules. Thus the use of VBGs for diode lasers beam control provides dramatic increase of brightness.
WDM hybrid microoptical transceiver with Bragg volume grating
Jeřábek, Vitezslav; Armas, Julio; Mareš, David; Prajzler, Václav
2012-02-01
The paper presents the design, simulation and construction results of the wavelength division multiplex bidirectional transceiver module (WDM transceiver) for the passive optical network (PON) of a fiber to the home (FTTH) topology network. WDM transceiver uses a microoptical hybrid integration technology with volume holographic Bragg grating triplex filter -VHGT and a collimation lenses imagine system for wavelength multiplexing/ demultiplexing. This transmission type VHGT filter has high diffraction angle, very low insertion loses and optical crosstalk, which guide to very good technical parameters of transceiver module. WDM transceiver has been constructed using system of a four micromodules in the new circle topology. The optical micromodule with VHGT filter and collimation and decollimation lenses, two optoelectronics microwave receiver micromodules for receiving download information (internet and digital TV signals) and optoelectronic transmitter micromodule for transmitting upload information. In the paper is presented the optical analysis of the optical imagine system by ray-transfer matrix. We compute and measure VHGT characteristics such as diffraction angle, diffraction efficiency and diffraction crosstalk of the optical system for 1310, 1490 and 1550 nm wavelength radiation. For the design of optoelectronic receiver micromodule was used the low signal electrical equivalent circuit for the dynamic performance signal analysis. In the paper is presented the planar form WDM transceiver with polymer optical waveguides and two stage interference demultiplexing optical filter as well.
Feng, Shaodong; Wang, Mingjun; Wu, Jigang
2016-10-01
High resolution is always a pursuing target in the imaging field, as a new prospective technique in imaging applications, digital in-line holography has become a very active field for compactness, more information and low-cost. However, for compact system, the resolution is often limited by sensor pixel size. To overcome this problem, we propose an iterative reconstruction method with data interpolation based on the grating illumination. In our method, the Talbot self-image of a Ronchi grating is exerted in the sample plane as a priori constraint which lead to the convergence of the iteration, the iteration between the sample plane and the sensor plane can provide some extra information with interpolation in the sensor plane based on the a priori constraint, furthermore, the iteration reconstruction can also eliminates the twin-image to improve the image quality. Numerical simulation has been conducted to show the effectiveness of this method. In order to make a further verification, we have developed a lensless in-line holographic microscope with a compact and wide field-of-view design. In our setup, the sample was under the Talbot image illumination of the Ronchi grating, which was illuminated by a collimated laser beam, and holograms were recorded by a digital imaging sensor. We can shift the grating laterally to get a wide-field image. We demonstrated the resolution of our imaging system by using the USAF resolution target as a sample, and the results shown the resolution improvement of the image.
Sano, K
2003-01-01
Laminar-type varied-line-spacing gratings have been widely used for soft x-ray monochromator recently because of the features of low stray lights and higher order lights. We have developed and advanced holographic recording and an ion-beam etching methods for the laminar type varied-line spacing gratings. This report describes a short review of the soft x-ray spectrometers using varied-line-spacing gratings, the fabrication process of the laminar-type holographic gratings, and the performance of the flat field spectrographs equipped with the laminar type varied-line spacing gratings comparing with the mechanically ruled replica gratings. It is concluded that, for the sake of the advanced design and fabrication processes and excellent spectroscopic performance, laminar-type holographic gratings will be widely used for soft x-ray spectrometers for various purposes in the near future. (author)
The Volume Holographic Optical Storage Potential in Azobenzene Containing Polymers
DEFF Research Database (Denmark)
Hvilsted, Søren; Sanchez, Carlos; Alcalá, Rafael
2009-01-01
Volume holographic data storage is one of the most promising techniques to improve both the storage capacity of devices and the transfer data rate. Among the materials proposed as storage data media, azobenzene containing polymers have received much attention. Some of their properties seem to be ...
1×2 demultiplexer for a light waveguide communications system based on a holographic grating
Ren, Xuechang; Zhang, Xiangsu; Wang, Canhui; Liu, Shou
2009-05-01
2-channel multiplexer/demultiplexer (Muxer/Demuxer) is a key component for bidirectional data traffics applied for optical communication. Up to date various types of Muxer/Demuxer have been proposed and demonstrated. A grating coupler diffracts light into substrates or waveguides, along which light beam propagates by total internal reflection. In addition, one can exploit the dispersive and filtering characteristics of gratings, for dropping or separating one or several wavelengths from one another. When a laser beam containing two wavelengths is striking the surface of the grating with an incident angle within certain range, four diffracted beams will be generated. If two diffracted beams, corresponding to different wavelengths, meet the condition of total internal reflection, they will propagate inside the glass substrate (performs as a waveguide). While the third one cannot meet total reflection condition, and the last one should become the evanescent wave. Therefore it can separate two signals and couple signals to different waveguides. These functions are suited for WDM application and directional couplers. For convenience sake, the visible lights at 458nm and 633nm were used as the incident laser beams. To give a simple sample for 1×2 demultiplexing system, a holographic grating was recorded, with the period around 441nm which was chose discretionally within the certain range. The primary experimental results indicate that the two-wavelength signal can be separated and coupled into the respective waveguide as long as the grating is recorded and operated complying with the certain condition. The average insertion loss and crosstalk of the device were presented in this paper.
Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD.
Wan, Wenqiang; Qiao, Wen; Huang, Wenbin; Zhu, Ming; Ye, Yan; Chen, Xiangyu; Chen, Linsen
2017-01-23
Limited by the refreshable data volume of commercial spatial light modulator (SLM), electronic holography can hardly provide satisfactory 3D live video. Here we propose a holography based multiview 3D display by separating the phase information of a lightfield from the amplitude information. In this paper, the phase information was recorded by a 5.5-inch 4-view phase plate with a full coverage of pixelated nano-grating arrays. Because only amplitude information need to be updated, the refreshing data volume in a 3D video display was significantly reduced. A 5.5 inch TFT-LCD with a pixel size of 95 μm was used to modulate the amplitude information of a lightfield at a rate of 20 frames per second. To avoid crosstalk between viewing points, the spatial frequency and orientation of each nano-grating in the phase plate was fine tuned. As a result, the transmission light converged to the viewing points. The angular divergence was measured to be 1.02 degrees (FWHM) by average, slightly larger than the diffraction limit of 0.94 degrees. By refreshing the LCD, a series of animated sequential 3D images were dynamically presented at 4 viewing points. The resolution of each view was 640 × 360. Images for each viewing point were well separated and no ghost images were observed. The resolution of the image and the refreshing rate in the 3D dynamic display can be easily improved by employing another SLM. The recoded 3D videos showed the great potential of the proposed holographic 3D display to be used in mobile electronics.
DEFF Research Database (Denmark)
Forcén, Patricia; Oriol, Luis; Alcala, Rafael
2008-01-01
Recording of anisotropy and holographic polarization gratings using 532 nm, 4 ns light pulses has been carried out in thin films of polymers with the same azobenzene content (20 wt %) and different molecular architectures. Random and block copolymers comprising azobenzene and methylmethacrylate...... (MMA) moieties as well as statistical terpolymers with azobenzene, biphenyl, and MMA units have been compared in terms of recording sensitivity and stability upon pulsed excitation. Photoinduced anisotropy just after the pulse was significantly higher in the case of the block copolymers than in the two...... statistical copolymers. The stability of the recorded anisotropy has also been studied. While a stationary value of the photoinduced anisotropy (approximately 50% of the initial photoinduced value) is reached for the block copolymer, photoinduced anisotropy almost vanished after a few hours in the statistical...
Investigation of high thickness holographic gratings in acrylamide-based photopolymer
Wang, Heng; Xu, Shifeng; Ma, Jia; Wang, Zhaoyang; Hou, Enzhu
2016-11-01
We studied the holographic characteristics of acrylamide-based photopolymer layers ranging in thickness from 300 μm to 1000 μm. Scattering patterns of various materials were presented, and both transmittance and scattering ratio were measured. Then, theoretical and experimental Bragg selectivity curves of two samples with thicknesses of 300 μm and 510 μm were analyzed, demonstrating the effective optical thickness inside photopolymer, which was responsible for the width of Bragg selectivity curve. Through the simulation for the spatial dynamics of refractive index distribution inside materials with different thicknesses, the attenuation of grating along the direction of thickness inside photopolymer was presented. Moreover, the photo-induced polymer chain length was evaluated, and a growing tendency of polymer chain length as increasing depth of material thickness was presented for the first time, in other words, there were polymers with longer chain length in deeper layer of material.
Kowalski, M. P.; Cruddace, R. G.; Heidemann, K. F.; Lenke, R.; Kierey, H.; Barbee, T. W., Jr.; Hunter, W. R.
2004-12-01
We have measured the extreme-ultraviolet (EUV) efficiency of a polymer-overcoated blazed ion-etched holographic test grating. The grating had a magnetron-sputtered Mo2C /Si multilayer coating matched to the grating blaze angle of 2.78°. At an angle of incidence of 5.6° and a wavelength of 15.79 nm, the measured efficiency peaks in the second outside order at 29.9%. The derived groove efficiency is 53.0%. To the best of our knowledge these are the highest values obtained yet at EUV wavelengths from a holographic ion-etched blazed grating.
Read-only high accuracy volume holographic optical correlator
Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan
2011-10-01
A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.
Ogiwara, Akifumi; Kakiuchida, Hiroshi
2014-02-01
A microperiodic structure composed of polymer and liquid crystal (LC) phases, called holographic polymer dispersed liquid crystal (HPDLC), was fabricated based on a photo-induced phase separation technique by laser interferometric exposure. The diffraction wavelength of HPDLC gratings formed by different LC composites and grating structures was experimentally investigated by spectroscopic measurements as a function of temperature at around 30 °C. The HPDLC gratings composed of nematic LC having low nematic to isotropic temperature (TNI) and film thickness of 25 μm showed the switch of diffraction wavelength between visible and infrared lights by the change of temperature. The optical characteristics achieved in HPDLC gratings are expected to be applicable for the basis of diffractive type of thermodriven light controller which can supply visibility constantly for solar-ray control windows.
Driemeier, W.
1990-04-01
A new concept is presented for the easy preparation of polymer systems which are characterized by a persistent photoinduced refractive-index change. These organic materials are based upon highly viscous prepolymers, reactive multifunctional thinners and uv-photoinitiators used in very high concentrations of max. 25%. Waveguiding thin films are applied for the optical recording of refractive-index gratings. The index modulation is enhanced by a dry development at 20-50°C up to 1.0×10 -2. A holographically produced grating coupler reaches efficiencies of 33% for an incident HeNe laser beam.
DEFF Research Database (Denmark)
Ramanujam, P.S.; Holme, N.C.R.; Hvilsted, S.
1996-01-01
Atomic force and scanning near-field optical microscopic investigations have been carried out on a polarization holographic grating recorded in an azobenzene side-chain Liquid crystalline polyester. It has been found that immediately following laser irradiation, a topographic surface grating...
d'Alessandro, Antonio; Donisi, Domenico; De Sio, Luciano; Beccherelli, Romeo; Asquini, Rita; Caputo, Roberto; Umeton, Cesare
2008-06-23
We report the fabrication and the optical characterization of a hybrid tunable integrated optical filter. It consists of a diffused ion-exchanged channel waveguide on a borosilicate glass substrate with a cover of the same glass to form a gap filled with a holographic grating. The grating morphology, called POLICRYPS (POlymer LIquid CRYstal Polymer Slices), is made of alternating stripes of polymer and liquid crystal acting as overlayer for the underneath waveguide. The filter structure includes aluminum coplanar electrodes to electrically control the grating properties, allowing the tunability of the filter. The electric driving power required to tune the filter obtained was in the range of submilliwatts due to the efficient liquid crystal electro-optic effect.
Performance of volume phase gratings manufactured using ultrafast laser inscription
Lee, David; Cunningham, Colin R
2012-01-01
Ultrafast laser inscription (ULI) is a rapidly maturing technique which uses focused ultrashort laser pulses to locally modify the refractive index of dielectric materials in three-dimensions (3D). Recently, ULI has been applied to the fabrication of astrophotonic devices such as integrated beam combiners, 3D integrated waveguide fan-outs and multimode-to-single mode convertors (photonic lanterns). Here, we outline our work on applying ULI to the fabrication of volume phase gratings (VPGs) in fused silica and gallium lanthanum sulphide (GLS) glasses. The VPGs we fabricated had a spatial frequency of 333 lines/mm. The optimum fused silica grating was found to exhibit a first order diffraction efficiency of 40 % at 633 nm, but exhibited approximately 40 % integrated scattered light. The optimum GLS grating was found to exhibit a first order diffraction efficiency of 71 % at 633 nm and less than 5 % integrated scattered light. Importantly for future astronomy applications, both gratings survived cooling to 20 K....
The Notched Filtering Characteristics of Stratified Volume Holographic Grating
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Utilizing the tool of beam propagation method(BPM) to calculate the zeroth order diffraction beam intensity,we find SVHG displays notched diffraction response as a function of the readout wavelength.Using the method of SA and considering the variance of refractive index as the readout wavelength changes, a practiced notch filter can be designed and the period of the filter is discussed.
Zheng, Jihong; Wang, Kangni; Gao, Hui; Lu, Feiyue; Sun, Lijia; Zhuang, Songlin
2016-09-01
Multi-wavelength sensitive holographic polymer dispersed liquid crystal (H-PDLC) grating and its application within image splitter for autostereoscopic display are reported in this paper. Two initiator systems consisting of photoinitiator, Methylene Blue and coinitiator, p-toluenesulfonic acid as well as photoinitiator, Rose Bengal and coinitiator, Nphenylglycine are employed. We demonstrate that Bragg gratings can be formed in this syrup polymerized under three lasers simultaneously including 632.8nm from He-Ne laser, 532nm from Verdi solid state laser, and 441.6nm from He- Cd laser. The diffraction efficiency of three kinds of gratings with different exposure wavelength are 57%, 75% and 33%, respectively. The threshold driving voltages of those gratings are 2.8, 3.05, and 2.85 V/μm, respectively. We also present the results for the feasibility of this proposed H-PDLC grating applied into image splitter without color dispersion for autostereoscopic display according to experimental splitting effect.
Sasaki, Tomoyuki; Shoho, Takashi; Noda, Kohei; Kawatsuki, Nobuhiro; Ono, Hiroshi
2014-04-01
A polarization holographic grating was recorded in a transparent thin film formed from polymethacrylate with N-benzylideneaniline (NBA) derivative side groups. We measured the real time diffraction properties. The data were analyzed based on a theoretical model that accounted for the distribution of optical anisotropy caused by molecular reorientation as well as for surface relief (SR) deformation caused by molecular motion. Optical anisotropy rapidly increased and then slowly decreased, with increasing recording time. This phenomenon was described based on photoisomerization and photocleavage reactions of the NBA side groups. SR deformation was also induced in the film by polarization holographic recording, without any subsequent processes. The photoinduced optical anisotropy and SR deformation were retained after the recording was turned off.
Wu, Shun-Der; Glytsis, Elias N.
2002-10-01
The effects of finite number of periods (FNP) and finite incident beams on the diffraction efficiencies of holographic gratings are investigated by the finite-difference frequency-domain (FDFD) method. Gratings comprising 20, 15, 10, 5, and 3 periods illuminated by TE and TM incident light with various beam sizes are analyzed with the FDFD method and compared with the rigorous coupled-wave analysis (RCWA). Both unslanted and slanted gratings are treated in transmission as well as in reflection configurations. In general, the effect of the FNP is a decrease in the diffraction efficiency with a decrease in the number of periods of the grating. Similarly, a decrease in incident-beam width causes a decrease in the diffraction efficiency. Exceptions appear in off-Bragg incidence in which a smaller beam width could result in higher diffraction efficiency. For beam widths greater than 10 grating periods and for gratings with more than 20 periods in width, the diffraction efficiencies slowly converge to the values predicted by the RCWA (infinite incident beam and infinite-number-of-periods grating) for both TE and TM polarizations. Furthermore, the effects of FNP holographic gratings on their diffraction performance are found to be comparable to their counterparts of FNP surface-relief gratings. 2002 Optical Society of America
Study of Lau fringes generated by a photorefractive volume grating
Forte, Gustavo; Tebaldi, Myrian; Bolognini, Nestor
2017-08-01
In this work the Lau fringes generated by using a combination of an amplitude grating and a photorefractive volume phase grating is theoretically and experimentally analyzed. A model based on the path integral formalism to calculate the patterns intensity is employed. We show that the Lau pattern behavior is governed by the output pupil diameter of the imaging recording system, the DC external electric field and the crystal thickness. The introduction of a phase modulation that gathers the previously mentioned parameters allows determining the condition to optimize the fringe visibility. In this case, the visibility maintains a sinusoidal dependence as it happened with planar grating experiments. The experimental results confirm the theoretical model proposed.
Pietralunga, Silvia M.; Geroldi, Alessandro; Serafini, Mirko
2012-06-01
We have implemented a Finite-Beam Rigorous Coupled-Wave Approach (FB-RCWA) to solve for guided-optics propagation in the presence of holographic slanted Bragg gratings, embedded in the core of slab waveguides and operated in Extreme Asymmetrical Scattering (EAS) configuration. In EAS a resonance condition can be established, as proceeding from the design parameters. Diffraction efficiency can be evaluated as the ratio of the flux of diffracted power P1, on a suitably defined cross-section along the propagation of diffracted beam, and input power P0. By FBRCWA, no limitation in the depth of grating modulation is assumed. The first-order diffracted field in resonant Bragg condition propagates along the waveguide. EAS in thick waveguides operating in highly multimodal regime can be investigated, as well as macroscopic volumes and widely extended illuminated regions up to a few millimeters. In thick slabs, η > 90% is demonstrated, for input illuminated apertures of length L >= Lc, where Lc is the optimum coupling length. The effects of detuning from Bragg condition, both in distribution and amplitude of the diffracted field, are quantified. Diffraction efficiency, i.e. optical coupling, bandwidth is evaluated.
High Resolving Power Volume Diffractive Gratings for 400-2700 nm Spectral Range Project
National Aeronautics and Space Administration — The purpose of this NASA SBIR Phase I proposal is to develop a novel type of high resolving power diffraction gratings based on volume Bragg gratings technology. The...
High Resolving Power Volume Diffractive Gratings for 400-2700 nm Spectral Range Project
National Aeronautics and Space Administration — The main purpose of this NASA SBIR Phase II proposal is development of a novel type of high resolving power diffraction gratings based on volume Bragg gratings...
Dynamic Gain Equalizer Based on the H-PDLC Volume Phase Grating
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The structure and Bragg diffraction characteristics of volume phase gratings based on H-PDLC technology are presented, and the principles and simulation aided design of dynamic gain equalizers with the gratings are discussed.
Arns, James A.
2016-08-01
The ESPRESSO spectrograph [1], a new addition to the European Southern Observatory's (ESO) Very Large Telescope (VLT), requires two volume phase holographic (VPH) grisms, one blue and the other red, splitting the overall spectral range of the instrument to maximize throughput while achieving high resolution. The blue grism covers the spectral range from 375 nm to 520 nm with a dispersion of 0.88 degrees/nm at the central wavelength of 438 nm. The red grism operates from 535 nm to 780 nm with a dispersion of 0.47 degrees/nm at 654.8 nm. Both designs use a single input prism to enhance the dispersion of the grism assembly. The grisms are relatively large in size with a working aperture of 185 mm x 185 mm for the blue grism and 215 nm x 185 mm for the red grism respectively. This paper describes the specifications of the two grating types, gives the rigorous coupled wave analysis (RCWA) theoretical performances of diffraction efficiency for the production designs and presents the measured performances of each of the delivered grisms.
Liu, Minghuan; Liu, Yonggang; Peng, Zenghui; Mu, Quanquan; Cao, Zhaoliang; Lu, Xinghai; Ma, Ji; Xuan, Li
2017-08-01
This paper reports the ultra-broad 149.1 nm lasing emission from 573.2 to 722.3 nm using a simple [4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] (DCM)-doped holographic polymer-dispersed liquid crystal (HPDLC) grating quasi-waveguide configuration by varying the grating period. The lasing emission beams show s-polarization property. The quasi-waveguide structure, which contained the cover glass, the DCM-doped HPDLC grating, the semiconducting polymer film poly[-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV), and the substrate were confirmed to decrease lasing threshold and broaden lasing wavelength. The operational lifetime of the device is 240 000 pulses, which corresponds to an overall laser duration of more than 6 h at a repetition rate of 10 Hz. In addition, the dual-wavelength lasing range from the 8th and 9th order is over 40 nm. The electrical tunability of the dual-wavelength lasing emission is over 1 nm. The experimental results facilitated the decreased lasing threshold and broadened lasing wavelength range of organic solid-state lasers.
Kowalski, Michael P.; Barbee, Troy W.; Hunter, William R.
2006-01-01
Using synchrotron radiation, we have measured the efficiency at an angle of incidence of 10° of a holographic ion-etched spherical blazed grating and three of its fourth-generation replicas. The measured efficiency profile of replicas 1 and 3 prior to multilayer coating oscillated from thin-film interference produced by the replicas' Al/Al2O3/SiO2 structure. A Mo2C/Si multilayer coating was applied to the master grating and replicas 1 and 2. After coating, the maximum grating efficiency occurred in the -2nd order and the maximum values were 12.4% at 143.8 Å for the master and 11.6% at 145.2 Å for replicas 1 and 2. On the basis of measurements obtained after coating, the derived groove efficiency was 22.2% for the master, 19.4% for replica 1, and 19.3% for replica 2. The groove efficiency of the uncoated replica 3 was 24.3% at 142.5 Å. We find that the replicas are reasonably faithful copies of the ion-etched master, and models based on measured atomic force microscope groove profiles are in general agreement with measured results. However, subtle issues remain regarding the widths of the peak order profile and the location of its maximum wavelength.
Energy Technology Data Exchange (ETDEWEB)
Klepp, J.; Fally, M. [Faculty of Physics, University of Vienna, 1090 Wien (Austria); Tomita, Y. [Department of Engineering Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182 (Japan); Pruner, C. [Department of Materials Science and Physics, University of Salzburg, 5020 Salzburg (Austria); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)
2012-10-08
Diffraction of slow neutrons by nanoparticle-polymer composite gratings has been observed. By carefully choosing grating parameters such as grating thickness and spacing, a three-port beam splitter operation for slow neutrons - splitting the incident neutron intensity equally into the {+-}1st and the 0th diffraction orders - has been realized. As a possible application, a Zernike three-path interferometer is briefly discussed.
Fast method for dynamic thresholding in volume holographic memories
Porter, Michael S.; Mitkas, Pericles A.
1998-11-01
It is essential for parallel optical memory interfaces to incorporate processing that dynamically differentiates between databit values. These thresholding points will vary as a result of system noise -- due to contrast fluctuations, variations in data page composition, reference beam misalignment, etc. To maintain reasonable data integrity it is necessary to select the threshold close to its optimal level. In this paper, a neural network (NN) approach is proposed as a fast method of determining the threshold to meet the required transfer rate. The multi-layered perceptron network can be incorporated as part of a smart photodetector array (SPA). Other methods have suggested performing the operation by means of histogram or by use of statistical information. These approaches fail in that they unnecessarily switch to a 1-D paradigm. In this serial domain, global thresholding is pointless since sequence detection could be applied. The discussed approach is a parallel solution with less overhead than multi-rail encoding. As part of this method, a small set of values are designated as threshold determination data bits; these are interleaved with the information data bits and are used as inputs to the NN. The approach has been tested using both simulated data as well as data obtained from a volume holographic memory system. Results show convergence of the training and an ability to generalize upon untrained data for binary and multi-level gray scale datapage images. Methodologies are discussed for improving the performance by a proper training set selection.
Double-Grating Minitype Flat-Field Holographic Concave Grating Spectrograph%双光栅切换微型平场全息凹面光栅光谱仪
Institute of Scientific and Technical Information of China (English)
孔鹏; 唐玉国; 巴音贺希格; 齐向东; 李文昊; 崔锦江
2013-01-01
The minitype flat-field holographic concave grating spectrograph equipped with CCD detectors are widely used for spectral analysis. They are accepted for some remarkable advantages, such as compact structure and rapid and efficient testing process. However, restricted by imaging distance of the spectrometer, it is difficult to improve the spectral resolution greatly just by optimization of the holographic concave grating. A design method of double-grating minitype flat-field holographic concave grating spectrograph is proposed. The single grating in conventional spectrograph is replaced by two gratings which are equipped with the same geometry. A double grating flat-field spectrograph with a wavelength range from 400 nm to 1000 nm is designed. The calculation results show that the resolution of the newly designed spectrograph can be almost two and a half times as great as the conventional spectrograph. The light throughput efficiency can also be greatly improved, which is demonstrated by analyzing diffraction efficiency of the grating. The double-grating minitype flat-field holographic concave grating spectrograph is developed and adjusted. The experimental results agree with the theoretical calculations very well.%基于CCD的微型平场全息凹面光栅光谱仪,以其简单紧凑的结构和快速高效的工作方式在光谱分析领域获得了广泛的应用.但是,由于受限于色散距离,单纯依靠优化光栅像差很难进一步使光谱分辨率获得大幅提高.提出一种双光栅切换微型平场全息凹面光栅光谱仪的设计方法,用两个使用结构相同的光栅代替传统的单光栅设计,给出一个光谱范围为400～1000 nm光谱仪的具体设计,计算显示光谱分辨率最大可提高为原来的2.5倍.通过对光栅衍射效率的计算分析,说明此方法能够显著改善仪器的通光效率.设计制作了原理样机,进行了装调测试,实验结果与理论计算相吻合.
Cryogenic VPH gratings for the CELT/TMT
Blais-Ouellette, Sebastien; Guzman, Dani; Elgamil, Amal; Rallison, Richard
2004-09-01
Characterization of Volume Phase Holographic gratings at cryogenic temperatures have been conducted using a new test facility at Caltech. The new test bench includes a cryostat that allows large angles for incident and diffracted light. Gratings under tests are shielded from thermal background, and precisely and uniformly temperature controlled. Preliminary results are presented and show little temperature dependence of the efficiency function.
Spherical grating spectrometers
O'Donoghue, Darragh; Clemens, J. Christopher
2014-07-01
We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.
RGB imaging volumes alignment method for color holographic displays
Zaperty, Weronika; Kozacki, Tomasz; Gierwiało, Radosław; Kujawińska, Małgorzata
2016-09-01
Recent advances in holographic displays include increased interest in multiplexing techniques, which allow for extension of viewing angle, hologram resolution increase, or color imaging. In each of these situations, the image is obtained by a composition of a several light wavefronts and therefore some wavefront misalignment occurs. In this work we present a calibration method, that allows for correction of these misalignments by a suitable numerical manipulation of holographic data. For this purpose, we have developed an automated procedure that is based on a measurement of positions of reconstructed synthetic hologram of a target object with focus at two different reconstruction distances. In view of relatively long reconstruction distances in holographic displays, we focus on angular deviations of light beams, which result in a noticeable mutual lateral shift and inclination of the component images in space. A method proposed in this work is implemented in a color holographic display unit (single Spatial Light Modulator - SLM) utilizing Space- Division Method (SDM). In this technique, also referred as Aperture Field Division (AFD) method, a significant wavefront inclination is introduced by a color filter glass mosaic plate (mask) placed in front of the SLM. It is verified that an accuracy of the calibration method, obtained for reconstruction distance 700mm, is 34.5 μm and 0.02°, for the lateral shift and for the angular compensation, respectively. In the final experiment the presented method is verified through real-world object color image reconstruction.
Recording multiple holographic gratings in silver-doped photopolymer using peristrophic multiplexing
Indian Academy of Sciences (India)
V Pramitha; Rani Joseph; K Sreekumar; C Sudha Kartha
2010-12-01
Plane-wave transmission gratings were stored in the same location of silver-doped photopolymer film using peristrophic multiplexing techniques. Constant and variable exposure scheduling methods were adopted for storing gratings in the film using He–Ne laser (632.8 nm). The role of recording geometry on the dynamic range of the material was studied by comparing the results obtained from both techniques. Peristrophic multiplexing with rotation of the film in a plane normal to the bisector of the incident beams resulted in better homogenization of diffraction efficiencies and larger /# value.
Zhou, Qian; Li, Xinghui; Ni, Kai; Tian, Rui; Pang, Jinchao
2016-01-25
We present a new design for the fabrication of concave gratings with large grating constants for flat-field miniature spectrometers with a wide spectral band. In this new design, one of the two optical paths for the holographic lithography of a curved grating structure with variable line spacing is modified by adding a concave lens in front of the point source. The addition of the concave lens allows the real point source, as well as the spatial filter for generating this point source, to be moved back. In this manner, the two spatial filters for generating two point sources are separated. Avoiding the physical conflict between these two spatial filters reduces the difficulty of fabricating large-constant concave gratings. Experimental results verify the feasibility of the proposed design in fabricating concave gratings with large grating constants. The resolution of a spectrometer using the fabricated concave grating is evaluated and found to be better than 1.1 nm across a spectral band ranging from 360 nm to 825 nm.
Infrared Femtosecond Laser Direct-Writing Digital Volume Gratings in Fused Silica
Wang, Ying; Li, Yu-Hua; Lu, Pei-Xiang
2010-04-01
We demonstrate that digital volume gratings can be fabricated in fused silica glass conveniently by direct femtosecond laser writing. The diffraction efficiencies of volume gratings can be essentially modulated by simply stacking and offsetting the unit structure. A series of volume gratings, which have the pitches of 5 μm and the size of 1 mm × 1 mm, have been fabricated with the writing speed of 500 μm/s, with which the processing period of each grating layer could be reduced to several minutes with a 1-kHz femtosecond laser system. Results show that the power spectrum of the diffracted waves of the volume gratings are dependent on the layer gap and layer offsetting.
Broadband behavior of transmission volume holographic optical elements for solar concentration.
Bañares-Palacios, Paula; Álvarez-Álvarez, Samuel; Marín-Sáez, Julia; Collados, María-Victoria; Chemisana, Daniel; Atencia, Jesús
2015-06-01
A ray tracing algorithm is developed to analyze the energy performance of transmission and phase volume holographic lenses that operate with broadband illumination. The agreement between the experimental data and the theoretical treatment has been tested. The model has been applied to analyze the optimum recording geometry for solar concentration applications.
Holographic gratings recorded in poly(lactic acid)/azo-dye films
Cambiasso, Javier; Goyanes, Silvia; Ledesma, Silvia
2015-09-01
Diffraction gratings were recorded in biodegradable polymer films of poly(lactic acid) doped with the photoisomerisable azo-dye (Disperse Orange 3). It is shown that the diffraction efficiency of the recorded grating can be improved by 220% via an all-optical treatment. This all-optical treatment consists of a pre-irradiation of the sample with the writing laser beam at high power during a short period of time, preventing damage of the material, followed by a much longer inscription at relatively low power. Furthermore, it is shown that the addition of a small amount of 0.05 wt% of multi-walled carbon nanotubes to the photoresponsive polymer increases the maximum diffraction efficiency as well as the remanent efficiency by 20%. Finally, this last photoresponsive nano-composite is also sensitive to the pre-irradiation treatment.
Metrology measurements for large-aperture VPH gratings
Zheng, Jessica R.; Gers, Luke; Heijmans, Jeroen
2013-09-01
The High Efficiency and Resolution Multi Element Spectrograph (HERMES) for the Australian Astronomical Observatory (AAO) uses four large aperture, high angle of incidence volume phase holographic gratings (VPHG) for high resolution `Galactic archaeology' spectroscopy. The large clear aperture, the high diffraction efficiency, the line frequency homogeneity, and mosaic alignment made manufacturing and testing challenging. We developed new metrology systems at the AAO to verify the performance of these VPH gratings. The measured diffraction efficiencies and line frequency of the VPH gratings received so far meet the vendor's provided data. The wavefront quality for the Blue VPH grating is good but the Green and Red VPH gratings need to be post polishing.
Curved VPH gratings for novel spectrographs
Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.
2014-07-01
The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.
Zito, Gianluigi
2013-01-01
A polymer/liquid crystal-based fiber Bragg grating (PLC-FBG) is fabricated with visible two-beam holography by photo-induced modulation of a pre-polymer/LC solution infiltrated into the hollow channels of a solid core photonic crystal fiber (PCF). The fabrication process and effects related to the photonic bandgap guidance into the infiltrated PCF, and characterization of the PLC-FBG are discussed. Experimental data here presented, demonstrate that the liquid crystal inclusions of the PLC-FBG lead to high thermal and bending sensitivities. The microscopic behavior of the polymer/liquid crystal phase separation inside the PCF capillaries is examined using scanning electron microscopy, while further discussed.
Mechanism of multiple grating formation in high-energy recording of holographic sensors
Energy Technology Data Exchange (ETDEWEB)
Yetisen, Ali K., E-mail: ay283@cam.ac.uk; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Montelongo, Yunuen [Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Farandos, Nicholas M. [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Naydenova, Izabela [Centre for Industrial and Engineering Optics, School of Physics, College of Sciences and Health, Dublin Institute of Technology, Dublin 8 (Ireland); Lowe, Christopher R. [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT (United Kingdom)
2014-12-29
We report numerical analyses of Bragg diffraction by Denisyuk reflection holograms recorded by a high-energy pulsed laser. An intensity threshold must be passed to pattern a multilayer reflection and transmission hologram, which exhibits a nonlinear fringe structure. Numerical evaluations are provided for the laser light intensity, readout diffraction offset angle, transmission of the layer, and thickness of the polymer matrix during hologram recording. A non-sinusoidal surface pattern is formed at the top of the multilayer structure, and its effect on the diffraction properties of the structure becomes significant when the recording tilt angle is increased. Experimental results show that the angle of the diffracted light increases nonlinearly according to the tilt geometry in grating formation.
Transmitting volume Bragg gratings in PTR glass written with femtosecond Bessel beams
Cheng, G. H.; Zhang, Y. J.; Liu, Q.
2017-05-01
Transmitting volume Bragg gratings were fabricated in photo-thermo-refractive glass using femtosecond laser Bessel beams and thermal treatment. The phase contrast images of gratings under different writing power were investigated before and after annealing. Microstructures composed of nano-sized crystals were observed in the exposed regions. Optimized writing power (100 mW) achieved dense nano-crystals distribution. A maximum diffraction efficiency of 92.36% was achieved with 1 mm grating thickness at period of 5 μm.
Kulishov, Mykola; Kress, Bernard
2015-01-01
We study the diffraction produced by a slab of purely reflective PT-symmetric volume Bragg grating that combines modulations of refractive index and gain/loss of the same periodicity with a quarter-period shift between them. Such a complex grating has a directional coupling between the different diffraction orders, which allows us to find an analytic solution for the first three orders of the full Maxwell equations without resorting to the paraxial approximation. This is important, because only with the full equations can the boundary conditions, allowing for the reflections, be properly implemented. Using our solution we analyze unidirectional invisibility of such a grating in a wide variety of configurations.
Associative data search in phase-encoded volume holographic storage systems
Berger, G.; Dietz, M.; Brauckmann, N.; Denz, C.
2008-08-01
We present a technique that enables true associative data search in phase-encoded volume holographic storage systems. The technique overcomes crucial shortcomings related to the only two methods proposed for associative searches in phase-encoded systems so far. An additional interferometric readout during content addressing is utilized to ascertain the cross-correlations between an input information and all data pages that are recorded by superposition in one location of the storage media. We present experimental investigations and thoroughly discuss the reliability of the technique. Under realistic conditions the inevitable normalization procedure, used to determine absolute correlation values, as well as the probability of small correlation values crucially affect the capabilities of associative search in phase-encoded holographic storage systems.
Volume Hologram Formation in SU-8 Photoresist
Directory of Open Access Journals (Sweden)
Tina Sabel
2017-05-01
Full Text Available In order to further understand the mechanism of volume hologram formation in photosensitive polymers, light-induced material response is analyzed in commonly used epoxy-based negative photoresist Epon SU-8. For this purpose, time-resolved investigation of volume holographic grating growth is performed in the SU-8 based host–guest system and in the pure SU-8 material, respectively. The comparison of grating growth curves from doped and undoped system allows us to draw conclusions on the impact of individual components on the grating formation process. The successive formation of transient absorption as well as phase gratings in SU-8 is observed. Influence of exposure duration and UV flood cure on the grating growth are investigated. Observed volume holographic grating formation in SU-8 can be explained based on the generation and subsequent diffusion of photoacid as well as time-delayed polymerization of exposed and unexposed areas.
Berger, G.; Stumpe, M.; Höhne, M.; Denz, C.
2005-10-01
We investigate the characteristics of correlation signals accomplished by content addressing in a phase encoded volume holographic storage system under different realistic conditions. In particular, we explore two crucial cases with respect to the structure of the data. The first one deals with a scenario where only partial or defective data are available for content addressing. The second case takes similarities among the stored data sets into account, which significantly differ from their statistical correlation. For both the cases we provide, for the first time, a theoretical approach and present experimental results when employing phase-code multiplexing. Finally, we discuss the reliability of the employed methods.
Rotation Invariant Pattern Recognition with a Volume Holographic Wavelet Correlation Processor
Institute of Scientific and Technical Information of China (English)
Wenzhao TAN(檀文钊); Qingzeng XUE(薛庆增); Yingbai YAN(严瑛白); Guofan JIN(金国藩)
2003-01-01
A volume holographic wavelet correlation processor for performing rotation invariant pattern recognition is suggested. It uses wavelet transform to get the digital edge extraction of the original object. Simultaneously a single circular harmonic component is used as the matched filter to get good rotation invariance. The new filter used in this method is called Wavelet Circular Harmonic Component Filter (WCHCF). Simulation results validate the theory and the experiment to recognize human faces with any rotation angle shows the utility of the newly proposed method.
Stretching of Picosecond Laser Pulses with Uniform Reflecting Volume Bragg Gratings
Mokhov, Sergiy
It is shown that a uniform reflecting volume Bragg grating (VBG) can be used as a compact monolithic stretcher of high-power picosecond laser pulses in cases when chirped Bragg gratings with an appropriate chirp rate are difficult to fabricate. A chirp-free reflected stretched pulse is generated of almost rectangular shape when incident short pulse propagates along a grating and experiences local Bragg diffraction. The increase in duration of the reflected pulse is approximately equal to twice the propagation times along the grating. We derived the analytic expression for diffraction efficiency, which incorporates incident pulse duration, grating thickness, and amplitude of refractive index modulation, enabling an optimum selection of the grating for pulse stretching. The typical expected theoretical value of diffraction efficiency is about 10% after taking into account the spectral narrowing of the reflected emission. We believe that the relatively low energy efficiency of the proposed method is more than offset by a number of advantages, which are chirp-free spectrum of a stretched pulse, compactness, robustness, preservation of setup alignment and beam quality, and tolerance to high power. Obtained pulses of several tens of picoseconds can be amplified by standard methods which are not requiring special measures to avoid undesirable non-linear effects. We propose a simple and reliable method to control the temporal parameters of the high-power picosecond pulses using the same laser source and the VGB of variable thickness that can significantly simplify the experiments requiring different pulse durations.
Bruder, Friedrich-Karl; Fäcke, Thomas; Grote, Fabian; Hagen, Rainer; Hönel, Dennis; Koch, Eberhard; Rewitz, Christian; Walze, Günther; Wewer, Brita
2017-05-01
Volume Holographic Optical Elements (vHOEs) gained wide attention as optical combiners for the use in smart glasses and augmented reality (SG and AR, respectively) consumer electronics and automotive head-up display applications. The unique characteristics of these diffractive grating structures - being lightweight, thin and flat - make them perfectly suitable for use in integrated optical components like spectacle lenses and car windshields. While being transparent in Off-Bragg condition, they provide full color capability and adjustable diffraction efficiency. The instant developing photopolymer Bayfol® HX film provides an ideal technology platform to optimize the performance of vHOEs in a wide range of applications. Important for any commercialization are simple and robust mass production schemes. In this paper, we present an efficient and easy to control one-beam recording scheme to copy a so-called master vHOE in a step-and-repeat process. In this contact-copy scheme, Bayfol® HX film is laminated to a master stack before being exposed by a scanning laser line. Subsequently, the film is delaminated in a controlled fashion and bleached. We explain working principles of the one-beam copy concept, discuss the opto-mechanical construction and outline the downstream process of the installed vHOE replication line. Moreover, we focus on aspects like performance optimization of the copy vHOE, the bleaching process and the suitable choice of protective cover film in the re-lamination step, preparing the integration of the vHOE into the final device.
Bruder, Friedrich-Karl; Fäcke, Thomas; Grote, Fabian; Hagen, Rainer; Hönel, Dennis; Koch, Eberhard; Rewitz, Christian; Walze, Günther; Wewer, Brita
2017-03-01
Volume Holographic Optical Elements (vHOEs) gained wide attention as optical combiners for the use in augmented and virtual reality (AR and VR, respectively) consumer electronics and automotive head-up display applications. The unique characteristics of these diffractive grating structures - being lightweight, thin and flat - make them perfectly suitable for use in integrated optical components like spectacle lenses and car windshields. While being transparent in Off-Bragg condition, they provide full color capability and adjustable diffraction efficiency. The instant developing photopolymer Bayfol® HX film provides an ideal technology platform to optimize the performance of vHOEs in a wide range of applications. Important for any commercialization are simple and robust mass production schemes. In this paper, we present an efficient and easy to control one-beam recording scheme to copy a so-called master vHOE in a step-and-repeat process. In this contact-copy scheme, Bayfol® HX film is laminated to a master stack before being exposed by a scanning laser line. Subsequently, the film is delaminated in a controlled fashion and bleached. We explain working principles of the one-beam copy concept and discuss the mechanical construction of the installed vHOE replication line. Moreover, we treat aspects like master design, effects of vibration and suppression of noise gratings. Furthermore, digital vHOEs are introduced as master holograms. They enable new ways of optical design and paths to large scale vHOEs.
Zheng, Tianxiang; Cao, Liangcai; Zhao, Tian; He, Qingsheng; Jin, Guofan
2012-10-01
Volume holographic optical correlator can compute the correlation results between images at a super-high speed. In the application of remote imaging processing such as scene matching, 6,000 template images have been angularly multiplexed in the photorefractive crystal and the 6,000 parallel processing channels are achieved. In order to detect the correlation pattern of images precisely and distinguishingly, an on-off pixel inverted technology of images is proposed. It can fully use the CCD's linear range for detection and expand the normalized correlation value differences as the target image rotates. Due to the natural characteristics of the remote sensing images, the statistical formulas between the rotation distortions and the correlation results can be estimated. The rotation distortion components can be estimated by curve fitting method with the data of correlation results. The intensities of the correlation spots are related to the distortion between the two images. The rotation distortion could be derived from the intensities in the post processing procedure. With 18 rotations of the input image and sending them into the volume holographic system, the detection of the rotation variation in the range of 180° can be fulfilled. So the large range rotation distortion detection is firstly realized. It offers a fast, large range rotation measurement method for image distortions.
Lumeau, Julien; Koc, Cihan; Mokhun, Oleksiy; Smirnov, Vadim; Lequime, Michel; Glebov, Leonid B
2011-05-15
A new class of Fabry-Perot filters produced by a multilayer dielectric mirror deposited on top of a reflecting volume Bragg grating is described. The first fabricated prototype for the 852 nm region demonstrates a 30 pm bandwidth, 90+% transmission at resonance, and a good agreement with theoretical simulation. © 2011 Optical Society of America
Marín-Sáez, Julia; Atencia, Jesús; Chemisana, Daniel; Collados, María-Victoria
2016-03-21
Volume Holographic Optical Elements (HOEs) present interesting characteristics for photovoltaic applications as they can select spectrum for concentrating the target bandwidth and avoiding non-desired wavelengths, which can cause the decrease of the performance on the cell, for instance by overheating it. Volume HOEs have been recorded on Bayfol HX photopolymer to test the suitability of this material for solar concentrating photovoltaic systems. The HOEs were recorded at 532 nm and provided a dynamic range, reaching close to 100% efficiency at 800 nm. The diffracted spectrum had a FWHM of 230 nm when illuminating at Bragg angle. These characteristics prove HOEs recorded on Bayfol HX photopolymer are suitable for concentrating solar light onto photovoltaic cells sensitive to that wavelength range.
Institute of Scientific and Technical Information of China (English)
CAO Liangcai; HE Qingsheng; WEI Haoyun; LIU Guodong; OUYANG Chuan; ZHAO Jian; WU Minxian; JIN Guofan
2004-01-01
The general idea of holographic optical data storage (HODS) is briefly introduced. Based on the recent advances of HODS, the key techniques and the challenges of HODS are discussed. Some new techniques are proposed to improve the system. A miniaturized volume holographic data storage and correlation system is presented. It can achieve a density of 10 Gb/cm3 and a fast correlation recognition rate of more than 2000 images per second. It shows the attracting potential advantages over other conventional storage methods in the information storage as well as information processing.
Rappaz, Benjamin; Barbul, Alexander; Emery, Yves; Korenstein, Rafi; Depeursinge, Christian; Magistretti, Pierre J; Marquet, Pierre
2008-10-01
Red blood cell (RBC) parameters such as morphology, volume, refractive index, and hemoglobin content are of great importance for diagnostic purposes. Existing approaches require complicated calibration procedures and robust cell perturbation. As a result, reference values for normal RBC differ depending on the method used. We present a way for measuring parameters of intact individual RBCs by using digital holographic microscopy (DHM), a new interferometric and label-free technique with nanometric axial sensitivity. The results are compared with values achieved by conventional techniques for RBC of the same donor and previously published figures. A DHM equipped with a laser diode (lambda = 663 nm) was used to record holograms in an off-axis geometry. Measurements of both RBC refractive indices and volumes were achieved via monitoring the quantitative phase map of RBC by means of a sequential perfusion of two isotonic solutions with different refractive indices obtained by the use of Nycodenz (decoupling procedure). Volume of RBCs labeled by membrane dye Dil was analyzed by confocal microscopy. The mean cell volume (MCV), red blood cell distribution width (RDW), and mean cell hemoglobin concentration (MCHC) were also measured with an impedance volume analyzer. DHM yielded RBC refractive index n = 1.418 +/- 0.012, volume 83 +/- 14 fl, MCH = 29.9 pg, and MCHC 362 +/- 40 g/l. Erythrocyte MCV, MCH, and MCHC achieved by an impedance volume analyzer were 82 fl, 28.6 pg, and 349 g/l, respectively. Confocal microscopy yielded 91 +/- 17 fl for RBC volume. In conclusion, DHM in combination with a decoupling procedure allows measuring noninvasively volume, refractive index, and hemoglobin content of single-living RBCs with a high accuracy.
DEFF Research Database (Denmark)
Forcen, Patricia; Oriol, Luis; Sanchez, Carlos
2008-01-01
Blends of polymethylmethacrylate (PMMA) and diblock methacrylic azopolymers have been investigated for holographic storage with short light pulses. Transmission electron microscopy measurements show that the dilution of the block copolymer in PMMA changes the microstructure from a lamellar...... to a spherical morphology. Besides the optical anisotropy induced with linearly polarized 488 nm light is smaller and less stable in the blends than in the block copolymer films. Holographic gratings induced with light pulses of 1 s are not as stable as the ones achieved with writing times of several minutes...... (both in the blend and in the block copolymer) but a final efficiency remains. Up to 20 polarization gratings have been multiplexed, using light pulses of 1 s, 300 ms and 100 ms, in thick (500 mu m) blend films. The equilibrium values of the efficiencies are higher than 10(-5) for all the gratings...
Kawai, K.; Sakamoto, M.; Noda, K.; Sasaki, T.; Kawatsuki, N.; Ono, H.
2017-02-01
Liquid crystal grating with three-dimensionally modulated anisotropic structure is fabricated by one-step exposure of an empty glass cell whose inner walls are coated with photocrosslinkable polymer liquid crystals to four-beam polarization interference UV beams. The diffraction properties were probed with a 633 nm wavelength laser and a 532 nm wavelength laser which were the coaxial incident. The novel properties, which diffraction directions are threedimensionally different depending on the wavelengths, are realized by the resultant liquid crystal grating. Furthermore, the resultant liquid crystal grating can be also applied to an advanced polarizing beam splitter which opposite circular polarization and linear polarizations are diffracted simultaneously. These diffraction properties were well-explained by Jones calculus. The resultant liquid crystal grating has the plural of the functions of optical elements such as wave plates, polarization beam splitter, dichroic beam splitter, Wollaston/Rochon prism, and tunable wavelength filter. Therefore, the resultant liquid crystal grating can contribute to miniaturization, sophistication, and cost reduction of optical systems using for, such as optical measurement, communication, and information processing.
Reduction of blurring in broadband volume holographic imaging using a deconvolution method
Lv, Yanlu; Zhang, Xuanxuan; Zhang, Dong; Zhang, Lin; Luo, Yuan; Luo, Jianwen
2016-01-01
Volume holographic imaging (VHI) is a promising biomedical imaging tool that can simultaneously provide multi-depth or multispectral information. When a VHI system is probed with a broadband source, the intensity spreads in the horizontal direction, causing degradation of the image contrast. We theoretically analyzed the reason of the horizontal intensity spread, and the analysis was validated by the simulation and experimental results of the broadband impulse response of the VHI system. We proposed a deconvolution method to reduce the horizontal intensity spread and increase the image contrast. Imaging experiments with three different objects, including bright field illuminated USAF test target and lung tissue specimen and fluorescent beads, were carried out to test the performance of the proposed method. The results demonstrated that the proposed method can significantly improve the horizontal contrast of the image acquire by broadband VHI system. PMID:27570703
Holographic Structuring of Elastomer Actuator: First True Monolithic Tunable Elastomer Optics.
Ryabchun, Alexander; Kollosche, Matthias; Wegener, Michael; Sakhno, Oksana
2016-12-01
Volume diffraction gratings (VDGs) are inscribed selectively by diffusive introduction of benzophenone and subsequent UV-holographic structuring into an electroactive dielectric elastomer actuator (DEA), to afford a continuous voltage-controlled grating shift of 17%. The internal stress coupling of DEA and optical domain allows for a new generation of true monolithic tunable elastomer optics with voltage controlled properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Holographic storage and multiplexing in azopolyester blends using low energy pulses down to 2 ms
DEFF Research Database (Denmark)
Berges, C.; Javakhishvili, I.; Hvilsted, S.
2013-01-01
Three different blends containing side-chain azobenzene polyesters and poly(methyl methacrylate) homopolymers have been prepared for recording volume holographic polarization gratings using 488 nm light pulses. The final azo content in the blends has been decreased down to 0.2 wt. , and their mor...
Berberova, N.; Daskalova, D.; Strijkova, V.; Kostadinova, D.; Nazarova, D.; Nedelchev, L.; Stoykova, E.; Marinova, V.; Chi, C. H.; Lin, S. H.
2017-02-01
Recently, a birefringence enhancement effect was observed in azopolymers doped with various nanoparticles. The paper presents comparison between the parameters of polarization holographic gratings recorded in a pure azopolymer PAZO (Poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt]) and in a hybrid PAZO-based organic/inorganic material with incorporated ZnO nanoparticles of size less than 50 nm. Laser emitting at 491 nm is used for the holographic recording. Along with the anisotropic grating in the volume of the media, surface relief is also formed. Gratings with different spatial frequencies are obtained by varying the recording angle. The time dependence of the diffraction efficiency is probed at 635 nm and the height of the relief gratings is determined by AFM. Our results indicate that both the diffraction efficiency and the height of the surface relief for the hybrid samples are enhanced with respect to the pure azopolymer films.
Zheng, Yujin; Kurita, Takashi; Sekine, Takashi; Kato, Yoshinori; Kawashima, Toshiyuki
2016-10-01
We demonstrate the tunable continuous-wave dual-wavelength laser based on a double external-cavity superluminescent diode (SLD). The double external cavity consisted of a volume Bragg grating (VBG) and a diffraction grating bracketing the SLD's two facets. The VBG was used as an output coupler to enable the external-cavity SLD to achieve a stable wavelength. A narrow bandwidth of 0.25 nm was achieved in single-wavelength operation. The diffraction grating served as an end mirror to create another tunable wavelength external cavity for the SLD. A wavelength tuning range of 23 nm was achieved. The laser output of the double external-cavity SLD had a tunable spectral separation with dual-wavelengths from +6.42 to -16.94 nm. An output power of up to 37.7 mW was achieved with a frequency difference of 7.1 THz.
Novel diffraction gratings for next generation spectrographs with high spectral dispersion
Ebizuka, N.; Okamoto, T.; Hosobata, T.; Yamagata, Y.; Sasaki, M.; Uomoto, M.; Shimatsu, T.; Sato, S.; Hashimoto, N.; Tanaka, I.; Hattori, T.; Ozaki, S.; Aoki, W.
2016-07-01
As a transmission grating, a surface-relief (SR) grating with sawtooth shaped ridges and volume phase holographic (VPH) grating are widely used for instruments of astronomical observations. However the SR grating is difficult to achieve high diffraction efficiency at high angular dispersion, and the VPH grating has low diffraction efficiency in high diffraction orders. We propose novel gratings that solve these problems. We introduce the hybrid grism which combines a high refractive index prism with a replicated transmission grating, which has sawtooth shaped ridges of an acute apex angle. The birefringence VPH (B-VPH) grating which contains an anisotropic medium, such as a liquid crystal, achieves diffraction efficiency up to 100% at the first diffraction order for natural polarization and for circular polarization. The quasi-Bragg (QB) grating which consists of long rectangular mirrors aligned in parallel precisely, like a window blind, achieves diffraction efficiency of 60% or more in higher than the 4th diffraction order. The volume binary (VB) grating with narrow grooves also achieves diffraction efficiency of 60% or more in higher than the 6th diffraction order. The reflector facet transmission (RFT) grating which is a SR grating with sawtooth shaped ridges of an acute apex angle achieves diffraction efficiency up to 80% in higher than the 4th diffraction order.
Institute of Scientific and Technical Information of China (English)
韩建; 巴音贺希格; 李文昊; 孔鹏
2011-01-01
刻线密度准确与否直接影响光栅色散及给定波长的衍射方向,进而影响光谱仪器结构设计.为了提高全息光栅刻线密度的制作精度,提出了平面全息光栅刻线密度的倍频式调整方法.将给定刻线密度的基准光栅放在干涉场曝光区域内,调节光束干涉角,干涉场曝光光束经基准光栅衍射后,根据调整光栅刻线密度的不同选择不同的衍射级次相互叠加形成莫尔条纹,以基准光栅刻线密度的倍数来确定待制作光栅的刻线密度.理论证明了基准光栅周期与光栅像周期之间存在倍数关系,指出了基准光栅刻线密度选择在倍频式调整方法中的等效规则,分析了基准光栅宽度不同对光栅刻线密度制作精度的影响.计算结果表明,当基准光栅宽度达到100 mm时,制作300 line/mm光栅其刻线密度误差小于1 nm,刻线密度越大误差越小,故以基准光栅的刻线密度来确定待制作全息光栅刻线密度的倍频式调整方法能够满足全息光栅的制作要求.%The precision of the groove density influence the dispersion and the diffraction of gratings and the configuration of the spectrograph. In order to improve the precision of the groove density of the plane holographic gratings, a method of adjusting the groove density spatial frequency multiplication of plane holographic grating is proposed. A reference grating with a specific groove density is set in the exposure area. Adjusting the interference angle, different orders of the two diffraction wavefronts match and form Moire pattern at the screen in a special orientation. The groove desity multiple of the reference gratings can be obtained. The relation between the period of the reference grating and the interference fringe pattern is proved in theory. The equation regulation of the reference grating for groove density alignment is pointed out. The precision relation between the groove density of the interference fringe pattern and
Institute of Scientific and Technical Information of China (English)
王津楠; 何树荣; 何庆声; 黄东; 金国藩
2003-01-01
If a diode pumped solid state laser is used in a holographic storage system, its multi longitudinal modes may damage the angular selectivity of the hologram and introduce more cross talk in the system. By theoretical analysis, we found that with adopting the speckle multiplexing scheme, holographic systems are no longer sensitive to the multi longitudinal modes of the laser source, and consequently the damage described above could be well suppressed. Moreover, the following high density storage experimental results also express strong advocacy of this conclusion. This result may greatly prompt the miniaturization of a holographic storage system.
DEFF Research Database (Denmark)
Berges, C.; Díez, I.; Javakhishvili, Irakli
2014-01-01
Volume holographic polarization gratings have been stored in thick films of blends of a side-chain azobenzene polyester and a poly(methyl methacrylate) (PMMA) homopolymers. The azobenzene content in the blend is 0.2wt%, and the holograms are recorded by using 2ms 4mJ/cm2 488nm light pulses. The d...
Novel gratings for next-generation instruments of astronomical observations
Ebizuka, N.; Okamoto, T.; Takeda, M.; Hosobata, T.; Yamagata, Y.; Sasaki, M.; Uomoto, M.; Shimatsu, T.; Sato, S.; Hashimoto, N.; Tanaka, I.; Hattori, T.; Ozaki, S.; Aoki, W.
2017-05-01
We will introduce current status of development of a birefringence volume phase holographic (B-VPH) grating, volume binary (VB) grating and reflector facet transmission (RFT) grating developing as the novel dispersive optical element for astronomical instruments for the 8.2m Subaru Telescope, for next generation 30 m class huge ground-based telescopes and for next generation large space-bone telescopes. We will also introduce a hybrid grism developed for MOIRCS (Multi-Object InfraRed Camera and Spectrograph) of the Subaru Telescope and a quasi-Bragg (QB) immersion grating. Test fabrication of B-VPH gratings with a liquid crystal (LC) of UV curable and normal LCs or a resin of visible light curable are performed. We successfully fabricated VB gratings of silicon as a mold with ridges of a high aspect ratio by means of the cycle etching process, oxidation and removal of silicon oxide. The RFT grating which is a surface-relief (SR) transmission grating with sawtooth shaped ridges of an acute vertex angle. The hybrid grism, as a prototype of the RFT grating, combines a high-index prism and SR transmission grating with sawtooth shape ridges of an acute vertex angle. The mold of the SR grating for the hybrid grism on to a work of Ni-P alloy of non-electrolysic plating successfully fabricated by using our ultra-precision machine and a single-crystal diamond bite. The QB immersion grating was fabricated by a combination of an inclined QB grating, Littrow prism and surface reflection mirror.
Bruder, Friedrich-Karl; Hagen, Rainer; Rölle, Thomas; Weiser, Marc-Stephan; Fäcke, Thomas
2011-05-09
Optical data storage has had a major impact on daily life since its introduction to the market in 1982. Compact discs (CDs), digital versatile discs (DVDs), and Blu-ray discs (BDs) are universal data-storage formats with the advantage that the reading and writing of the digital data does not require contact and is therefore wear-free. These formats allow convenient and fast data access, high transfer rates, and electricity-free data storage with low overall archiving costs. The driving force for development in this area is the constant need for increased data-storage capacity and transfer rate. The use of holographic principles for optical data storage is an elegant way to increase the storage capacity and the transfer rate, because by this technique the data can be stored in the volume of the storage material and, moreover, it can be optically processed in parallel. This Review describes the fundamental requirements for holographic data-storage materials and compares the general concepts for the materials used. An overview of the performance of current read-write devices shows how far holographic data storage has already been developed.
Institute of Scientific and Technical Information of China (English)
孔鹏; 巴音贺希格; 李文昊; 唐玉国; 崔锦江
2011-01-01
通过对Ⅰ型全息凹面光栅制作参量误差对光谱像的影响进行数值计算发现:1)两记录臂长的相对误差而不是绝对误差决定光谱像的展宽程度,即使绝对误差较大,只要两记录臂长的误差值相同,像宽也没有明显改变；2)由于Ⅰ型光栅的记录臂一般较长,记录角度误差对像宽的影响不大,但会影响光栅的刻线密度,导致光谱成像位置的偏移；3)曲率半径误差对像宽的影响较大.通过数值模拟明确了Ⅰ型全息凹面光栅制作的误差容许范围,找到了对光谱像宽度影响较大的误差来源,从而为此类光栅的制作提供理论指导,有助于制作出高质量光栅,降低罗兰圆光谱仪的调节难度.%The imaging performance of type I holographic concave gratings would be seriously deteriorated by the recording parameters error during fabrication of the gratings. A numerical simulation was made for analyzing the effect of recording parameters error on imaging performance of the grating. The following conclusions can be obtained from the simulation results. Firstly, the larger the difference between errors of the two recording distances, the worse the imaging performance becomes. Secondly, the recording angle error remains very small because the recording distances for type I gratings are usually very long. The image widths would not change significantly. But the locations of the images would change because the grating constant is different from the desired value. Finally, it is very important to make the curvature radius as close to the namely value as possible, because the radius error would greatly deteriorated the focusing abilities of the gratings. This study can give theoretical guidance to the fabrication for type I holographic concave gratings and reduce the alignment difficulty for the Rowland circle spectrographs.
Pérez López, C.; Hernández Montes, M. S.; Mendoza Santoyo, F.; Gutiérrez Hernandez, D. A.
2011-08-01
The optical non-destructive digital holographic interferometry (DHI) technique has proven to be a powerful tool in measuring vibration phenomena with a spatial resolution ranging from a few hundreds of nanometers to tens of micrometers. With the aid of high speed digital cameras it is possible to achieve simultaneously spatial and temporal resolution, and thus capable of measuring the entire object mechanical oscillation trajectory from one to several cycles. It is important to mention that due to faster computers with large data storage capacity there is an increasing interest in applying numerical simulation methods to mimic different real life objects for example, in the field of modern elastic materials and biological systems. The complex algorithms involved cannot render significant results mainly due to the rather large number of variables. In order to test these numerical simulations some experiments using optical techniques have been designed and reported. This is very important for example in measurements of the dynamic elastic properties of materials. In this work we present some preliminary results from experiments that use DHI to measure vibrations of an elastic spherical object subject to a mechanical excitation that induces resonant vibration modes in its volume. We report on the spatial and temporal effects that by their nature have a non-linear mechanical response. The use of a high speed CMOS camera in DHI assures the measurement of this nonlinear behavior as a sum of linear effects that happen during very short time lapses and with very small displacement amplitudes. We conclude by stating that complex numerical models may be compared to results using DHI, thus proposing an alternative method to prove and verify the mathematical models vs. real measurements on volumetric elastic objects.
Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers.
Drachenberg, Derrek R; Andrusyak, Oleksiy; Venus, George; Smirnov, Vadim; Glebov, Leonid B
2014-02-20
High-radiance lasers are desired for many applications in defense and manufacturing. Spectral beam combining (SBC) by volume Bragg gratings (VBGs) is a very promising method for high-radiance lasers that need to achieve 100 kW level power. Laser-induced heating of VBGs under high-power radiation presents a challenge for maintaining Bragg resonance at various power levels without mechanical realignment. A novel thermal tuning technique and apparatus is presented that enables maintaining peak efficiency operation of the SBC system at various power levels without any mechanical adjustment. The method is demonstrated by combining two high-power ytterbium fiber lasers with high efficiency from low power to full combined power of 300 W (1.5 kW effective power), while maintaining peak combining efficiency within 0.5%.
Associative recall in a volume holographic storage system based on phase-code multiplexing
Berger, G.; Denz, C.; Orlov, S. S.; Phillips, B.; Hesselink, L.
2001-12-01
We present two different techniques on how to realize a content-addressed holographic memory when using phase-code multiplexing, relying on simple intensity measurements rather than phase distributions. Theoretical and experimental results of associative recall in a phase-coded system designed for digital data storage will be presented and compared to the corresponding method when using angular multiplexing.
Institute of Scientific and Technical Information of China (English)
李文萃; 舒新建; 杨燚; 黄文彬
2014-01-01
为了提高聚合物/液晶（HPDLC）光栅的衍射效率并改善光栅的表面形貌，研究了表面垂直取向处理对HPDLC光栅的影响。首先，研究了表面垂直处理对液晶分子的取向作用，发现垂直取向层对液晶的锚定作用随着盒厚的增加而逐渐减弱，取向层的作用范围大概在3μm ～5μm之间；其次，对相分离程度进行了实验表征，结果表明，随着液晶盒厚度的增加，相分离开始的时间越来越快，并且分离程度也越来越彻底。最后，讨论了表面垂直取向对 HPDLC光栅衍射效率的影响，随着盒厚的增加，相分离出来的液晶微滴形成连续的区域，光栅的衍射效率逐渐升高，当盒厚增加到一定程度，其衍射效率和无取向处理的光栅接近。当盒厚过大时，垂直取向处理对HPDLC光栅散射损失并没有太大的改善，只有当盒厚适中（12μm）时，光栅的衍射效率最高，散射损失最小。%In order to get the holographic polymer dispersed liquid crystal (HPDLC ) grating with high diffraction efficiency and perfect morphology ,the effect of surface vertical alignment on the properties of HPDLC grating was investigated .Firstly ,the effect of the vertical surface treatment on the orientation of liquid crystal molecules was studied .It is found that the vertical anchor effect of liquid crystal decreases with the increase of cell gap and the orientation depth is about 3 μm ~ 5 μm .Secondary ,the characterization experiment of separation was done .And results show that as the cell gap increases ,the surface effect on the bulk LC droplets reduces due to the longer distance .For the thinner cell ,almost all the LC droplets are confined on the inner surfaces of the substrates which cannot flow and coalesce with the neighboring droplets , so the phase separate is not good .However ,if the cell is too thick ,the effect of vertical align‐ment on the LC droplets in the middle of the
Watson, John; Alexander, Stephen J.; Craig, Gary; Hendry, David C.; Hobson, Peter R.; Lampitt, R. S.; Marteau, J.-M.; Nareid, Helge; Nebrensky, J. J.; Player, Michael A.; Saw, Kevin; Tipping, Keith
2002-06-01
We describe the development, construction and sea testing of An underwater holographic camera (HoloCam) for in situ recording of marine organisms and particles in large volumes of sea water. HoloCam comprises a laser, power supply, holographic recording optics, and plate holders, a water- tight housing and a support frame. Added to this are control electronics such that the entire camera is remotely operable and controllable from ship or dock-side. Uniquely the camera can simultaneously record both in-line and off-axis holograms using a pulsed frequency double Nd:YAG laser. In- line holography is capable of producing images of organisms with a resolution of better than 10 micrometers . Off-axis holograms of aquatic systems of up to 50,000 cm3 volume, have been recorded. Following initial laboratory testing, the holo-camera was evaluated in an observation tank and ultimately was tested in Loch Etive, Scotland. In-line and off-axis holograms were recorded to a depth of 100 m. We will present result on the ste dives and evaluation of the camera performance.
Shrinkage measurement for holographic recording materials
Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Navarro Fuster, V.; Neipp, C.; Ortuño, M.; Beléndez, A.; Pascual, I.
2017-05-01
There is an increasing demand for new holographic recording materials. One of them are photopolymers, which are becoming a classic media in this field. Their versatility is well known and new possibilities are being created by including new components, such as nanoparticles or dispersed liquid crystal molecules in classical formulations, making them interesting for additional applications in which the thin film preparation and the structural modification have a fundamental importance. Prior to obtaining a wide commercialization of displays based on photopolymers, one of the key aspects is to achieve a complete characterization of them. In this sense, one of the main parameters to estimate and control is the shrinkage of these materials. The volume variations change the angular response of the hologram in two aspects, the angular selectivity and the maximum diffraction efficiency. One criteria for the recording material to be used in a holographic data storage application is the shrinkage, maximum of 0.5%. Along this work, we compare two different methods to measure the holographic recording material shrinkage. The first one is measuring the angle of propagation for both diffracted orders +/-1 when slanted gratings are recorded, so that an accurate value of the grating vector can be calculated. The second one is based on interference measurements at zero spatial frequency limit. We calculate the shrinkage for three different photopolymers: a polyvinyl alcohol acrylamide (PVA/AA) based photopolymer, one of the greenest photopolymers whose patent belongs to the Alicante University called Biophotopol and on the last place a holographic-dispersed liquid crystal photopolymer (H-PDLC).
Narrow band SWIR hyperspectral imaging: a new approach based on volume Bragg grating
Verhaegen, M.; Lessard, S.; Blais-Ouellette, S.
2012-06-01
Volume Bragg grating technology has enabled the development of a new type of staring hyperspectral camera. Based on Bragg Tunable filters, these hyperspectral cameras have both high spectral and spatial resolution, and significantly higher sensitivity than competing technologies like push broom spectrometer, liquid crystal tunable filters, or acousto-optic tunable filters. They are minimally sensitive to polarization and their spectral isolation can reach 106. Here we thus present an innovative tool to collect SWIR hyperspectral data with high spectral and spatial resolution. This new instrument is based on a 3nm bandwidth Bragg Tunable Filter, continuously tunable from 1.0um and 2.5um. Because high spectral resolution also means less light per channel, a low noise custom HgCdTe (MCT) camera was also developed to meet the requirement of the filter. The high speed capability of more than 300 fps and the low operating temperature of 200K (deep cooled option to 77K) allow full frame 500 spectral channel datacube acquisitions in minimal time. Basic principle of this imaging filter will be reviewed as well as the custom MCT camera performances. High resolution hyperspectral measurements will be demonstrated between 1.0um and 2.5um on different objects.
Cross-talk in phase encoded volume holographic memories employing unitary matrices
Zhang, X.; Berger, G.; Dietz, M.; Denz, C.
2006-12-01
The cross-talk noise in phase encoded holographic memories employing unitary matrices is theoretically investigated. After reviewing some earlier work in this area, we derive a relationship for the noise-to-signal ratio for phase-code multiplexing with unitary matrices. The noise-to-signal ratio rises in a zigzag way on increasing the storage capacity. Cross-talk is mainly caused by high-frequency phase codes. Unitary matrices of even orders have only one bad code, while unitary matrices of odd orders have four bad codes. The signal-to-noise ratios of all other codes can in each case be drastically improved by omission of these bad codes. We summarize the optimal orders of Hadamard and unitary matrices for recording a given number of holograms. The unitary matrices can enable us to adjust the available spatial light modulators to achieve the maximum possible storage capacity in both circumstances with and without bad codes.
Study of an acrylamide-based photopolymer for use as a holographic data storage medium
Sherif, H.; Naydenova, I.; Martin, S.; McGinn, C.; Berger, G.; Denz, C.; Toal, V.
2005-06-01
An acrylamide-based photopolymer formulated in the Centre for Industrial and Engineering Optics has been investigated with a view to further optimisation for holographic optical storage. Series of 15 to 30 gratings were angularly multiplexed in a volume of the photopolymer layers with different thickness at a spatial frequency of 1500 lines/mm. Since the photopolymer is a saturable material, an exposure scheduling method was used to exploit the entire dynamic range of the material and allow equal strength gratings to be recorded. From this investigation the photopolymer layer's M/# was determined with regard to the recording geometry used. The temporal stability of photopolymer layers was studied in terms of diffraction efficiency and change of the reconstructed angle due to material shrinkage. In addition, the potential of the photopolymer as a holographic data storage medium was demonstrated by recording bit data-pages.
Jang, Changwon; Lee, Chang-Kun; Jeong, Jinsoo; Li, Gang; Lee, Seungjae; Yeom, Jiwoon; Hong, Keehoon; Lee, Byoungho
2016-01-20
The principles and characteristics of see-through 3D displays are presented. We especially focus on the integral-imaging display system using a holographic optical element (IDHOE), which is able to display 3D images and satisfy the see-through property at the same time. The technique has the advantage of the high transparency and capability of displaying autostereoscopic 3D images. We have analyzed optical properties of IDHOE for both recording and displaying stages. Furthermore, various studies of new applications and system improvements for IDHOE are introduced. Thanks to the characteristics of holographic volume grating, it is possible to implement a full-color lens-array holographic optical element and conjugated reconstruction as well as 2D/3D convertible IDHOE. Studies on the improvements of viewing characteristics including a viewing angle, fill factor, and resolution are also presented. Lastly, essential issues and their possible solutions are discussed as future work.
Shu, Hong; Mokhov, Sergiy; Zeldovich, Boris Ya; Bass, Michael
2009-01-01
A further extension of the iteration method for beam propagation calculation is presented that can be applied for volume Bragg gratings (VBGs) with extremely large grating strength. A reformulation of the beam propagation formulation is presented for analyzing the reflection of a laser beam by a deformed VBG. These methods will be shown to be very accurate and efficient. A VBG with generic z-dependent distortion has been analyzed using these methods.
Depth-resolved imaging by using volume holograms
Xu, Zhiqiang; Jiang, Zhuqing; Yang, Jing; Tao, Shiquan
2009-07-01
In this paper the reconstructing images of a tiny object with a volume hologram are investigated by examining the effect of Bragg mismatch on the quality of imaging. The imaging depth resolutions of the volume holograms with the different radii are compared. Furthermore, the simultaneous imaging ability of the volume holographic gratings for the different depths of the object space is demonstrated experimentally by recording two holographic gratings in the same material. The results show that the depth resolution of the VHI system is 2.1mm in our experiments, in which a volume hologram is recorded in a 2-mm-thick LiNbO3:Fe:Cu crystal with two recording beams interfering at the wavelength of 532nm, and is located at a working distance of f=75mm away from the object lens.
Nanoporous Polymeric Grating-Based Biosensors
Gao, Tieyu
2012-05-02
We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.
High brightness sub-nanosecond Q-switched laser using volume Bragg gratings
Anderson, Brian M.; Hale, Evan; Venus, George; Ott, Daniel; Divliansky, Ivan; Glebov, Leonid
2016-03-01
The design of Q-switched lasers capable of producing pulse widths of 100's of picoseconds necessitates the cavity length be shorter than a few centimeters. Increasing the amount of energy extracted per pulse requires increasing the mode area of the resonator that for the same cavity length causes exciting higher order transverse modes and decreasing the brightness of the output radiation. To suppress the higher order modes of these multimode resonators while maintaining the compact cavity requires the use of intra-cavity angular filters. A novel Q-switched laser design is presented using transmitting Bragg gratings (TBGs) as angular filters to suppress the higher order transverse modes. The laser consists of a 5 mm thick slab of Nd:YAG, a 3 mm thick slab of Cr:YAG with a 20% transmission, one TBG aligned to suppress the higher order modes along the x-axis, and a 40% output coupler. The gratings are recorded in photo-thermo-refractive (PTR) glass, which has a high damage threshold that can withstand both the high peak powers and high average powers present within the resonator. Using a 4.1 mrad TBG in a 10.8 mm long resonator with an 800μm x 400 μm pump beam, a nearly diffraction limited beam quality of M2 = 1.3 is obtained in a 0.76 mJ pulse with a pulse width of 614 ps.
Gratings in polymeric waveguides
Mishakov, G.; Sokolov, V.; Kocabas, A.; Aydinli, A.
2007-04-01
Laser-induced formation of polymer Bragg grating filters for Dense Wavelength Division Multiplexing (DWDM) applications is discussed. Acrylate monomers halogenated with both fluorine and chlorine, which possess absorption losses less than 0.25 dB/cm and wide choice of refractive indices (from 1.3 to 1.5) in the 1.5 μm telecom wavelength region were used. The monomers are highly intermixable thus permitting to adjust the refractive index of the composition within +/-0.0001. Moreover they are photocurable under UV exposure and exhibit high contrast in polymerization. These properties make halogenated acrylates very promising for fabricating polymeric waveguides and photonic circuits. Single-mode polymer waveguides were fabricated on silicon wafers using resistless contact lithography. Submicron index gratings have been written in polymer waveguides using holographic exposure with He-Cd laser beam (325 nm) through a phase mask. Both uniform and apodized gratings have been fabricated. The gratings are stable and are not erased by uniform UV exposure. The waveguide gratings possess narrowband reflection spectra in the 1.5 μm wavelength region of 0.4 nm width, nearly rectangular shape of the stopband and reflectivity R > 99%. The fabricated Bragg grating filters can be used for multiplexing/demultiplexing optical signals in high-speed DWDM optical fiber networks.
Holographic films from carotenoid pigments
Toxqui-López, S.; Lecona-Sánchez, J. F.; Santacruz-Vázquez, C.; Olivares-Pérez, A.; Fuentes-Tapia, I.
2014-02-01
Carotenoids pigments presents in pineapple can be more than just natural dyes, which is one of the applications that now at day gives the chemical industry. In this research shown that can be used in implementing of holographic recording Films. Therefore we describe the technique how to obtain this kind of pigments trough spay drying of natural pineapple juice, which are then dissolved with water in a proportion of 0.1g to 1mL. The obtained sample is poured into glass substrates using the gravity method, after a drying of 24 hours in laboratory normal conditions the films are ready. The films are characterized by recording transmission holographic gratings (LSR 445 NL 445 nm) and measuring the diffraction efficiency holographic parameter. This recording material has good diffraction efficiency and environmental stability.
Holographic Spherically Symmetric Metrics
Petri, Michael
The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.
Electromagnetically Induced Quantum Holographic Imaging
Qiu, Tian-Hui; Xie, Min; Ma, Hong-Yang; Zheng, Chun-Hong; Chen, Li-Bo
2016-05-01
We study the quantum holographic imaging of one-dimensional electromagnetically induced grating created by a strong standing wave in an atomic medium. Entangled photon pairs, generated in a spontaneous parametric down-conversion process, are employed as the imaging light to realize coincidence recording. By theoretical analysis and numerical simulation, we find that both the amplitude and phase information of the object can be imaged with the characteristic of imaging nonlocally and of arbitrarily controllable image variation in size.
Institute of Scientific and Technical Information of China (English)
陈兰莉
2006-01-01
Using scanning electron microscope and polarizing optical microscope, the author investigates the relationship between the alignment properties of a nematic liquid crystal (LC) and the thickness of the LC layers on a holographic grating. As the thickness of the LC layer (d) increases, the LC alignment properties are found to change dramatically. Unidirectional LC alignment is achieved along the microgrooves only for moderately thick LC layers (1 ＜ d＜10 μm), but not for thin (d＜ 1.0 μm) or thick (d＞10 μm) LC layers. The thickness-dependent LC alignment properties are explained in terms of the competitions between the microgroove-introduced physical confinement effect and the embossed-ridge introduced extra surface anchoring effect.%利用电子扫描显微镜和极化光学显微镜,研究了全息光栅液晶向列(LC)排列的性质和厚度之间的关系.研究发现,随着LC厚度的增加,LC排列的性质变化很大.单向的LC不是沿厚度小(d＜1.0)或大(d＞10μm)的纹沟方向,而是沿着中等厚度(1＜d＜10μm)的细微纹沟方向排列.这种厚度相关的LC排列性质可以解释为细微纹沟的物理限制效应和额外表面的浮雕脊的锚效应竞争的结果.
DEFF Research Database (Denmark)
Ramanujam, P.S.; Holme, NCR; Berg, RH
1999-01-01
A Two-dimensional holographic memory for archival storage is described. Assuming a coherent transfer function, an A4 page can be stored at high resolution in an area of 1 mm(2). Recently developed side-chain liquid crystalline azobenzene polyesters are found to be suitable media for holographic...... storage. They exhibit high resolution, high diffraction efficiency, have long storage life, are fully erasable and are mechanically stable....
Sutcliffe, Paul M.
Skyrmions are topological solitons that describe baryons within a nonlinear theory of pions. In holographic QCD, baryons correspond to topological solitons in a bulk theory with an extra spatial dimension: thus the three-dimensional Skyrmion lifts to a four-dimensional holographic Skyrmion in the bulk. We begin this review with a description of the simplest example of this correspondence, where the holographic Skyrmion is exactly the self-dual Yang-Mills instanton in flat space. This places an old result of Atiyah and Manton within a holographic framework and reveals that the associated Skyrme model extends the nonlinear pion theory to include an infinite tower of vector mesons, with specific couplings for a BPS theory. We then describe the more complicated curved space version that arises from the string theory construction of Sakai and Sugimoto. The basic concepts remain the same but the technical difficulty increases as the holographic Skyrmion is a curved space version of the Yang-Mills instanton, so self-duality and integrability are lost. Finally, we turn to a low-dimensional analogue of holographic Skyrmions, where aspects such as multi-baryons and finite baryon density are amenable to both numerical computation and an approximate analytic treatment.
LDA optical setup using holographic imaging configuration
Ghosh, Abhijit; Nirala, A. K.
2015-11-01
This paper describes one of the possible ways for improving fringe quality at LDA measuring volume using a holographic imaging configuration consisting of a single hololens. For its comparative study with a conventional imaging configuration, a complete characterization of fringes formed at the measurement volume by both the configuration is presented. Results indicate the qualitative as well as quantitative improvement of the fringes formed at measurement volume by the holographic imaging configuration. Hence it is concluded that use of holographic imaging configuration for making LDA optical setup is a better choice than the conventional one.
Aref'eva, Irina
2016-01-01
There are successful applications of the holographic AdS/CFT correspondence to high energy and condensed matter physics. We apply the holographic approach to photosynthesis that is an important example of nontrivial quantum phenomena relevant for life which is being studied in the emerging field of quantum biology. Light harvesting complexes of photosynthetic organisms are many-body quantum systems, in which quantum coherence has recently been experimentally shown to survive for relatively long time scales even at the physiological temperature despite the decohering effects of their environments. We use the holographic approach to evaluate the time dependence of entanglement entropy and quantum mutual information in the Fenna-Matthews-Olson (FMO) protein-pigment complex in green sulfur bacteria during the transfer of an excitation from a chlorosome antenna to a reaction center. It is demonstrated that the time evolution of the mutual information simulating the Lindblad master equation in some cases can be obt...
Halyo, E
2004-01-01
Using the de Sitter/CFT correspondence we describe a scenario of holographic inflation which is driven by a three dimensional boundary field theory. We find that inflationary constraints severely restrict the $\\beta$--function, the anomalous dimensions and the value of the $C$--function of the boundary theory. The scenario has model independent predictions such as $\\epsilon<< \\eta$, $n_T<0.04$, $P_{tensor}/P_{scalar}<0.08$ and $H<10^{14} GeV$. We consider some simple boundary theories and find that they do not lead to inflation. Thus, building an acceptable holographic inflation model remains a challenge. We also describe holographic quintessence and find that it closely resembles a cosmological constant.
Odhner, Jefferson E.
2016-07-01
Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.
New recording materials for the holographic industry
Jurbergs, David; Bruder, Friedrich-Karl; Deuber, Francois; Fäcke, Thomas; Hagen, Rainer; Hönel, Dennis; Rölle, Thomas; Weiser, Marc-Stephan; Volkov, Andy
2009-02-01
This paper describes a new class of recording materials for volume holographic applications suitable to meet commercial manufacturing needs. These next-generation holographic photopolymers have the ability to satisfy the unmet demand for color and depth tuning that is only possible with volume holograms. Unlike earlier holographic photopolymers, these new materials offer the advantages of no chemical or thermal processing combined with low shrinkage and detuning. Furthermore, these materials exhibit high transparency, a high resolution of more than 5000 lines/mm and are environmentally robust. Bayer MaterialScience plans to commercialize these materials, which combine excellent holographic characteristics with compatibility to mass-production processes. In this paper, we will briefly discuss the potential markets and applications for a new photopolymer, describe the attributes of this new class of photopolymers, relate their ease of use in holographic recording, and discuss potential applications of such materials..
Meyer, Elliot; Wright, Shelley A; Moore, Anna M; Larkin, James E; Simard, Luc; Maire, Jerome; Mieda, Etsuko; Gordon, Jacob
2014-01-01
We present the efficiency of near-infrared reflective ruled diffraction gratings designed for the InfraRed Imaging Spectrograph (IRIS). IRIS is a first light, integral field spectrograph and imager for the Thirty Meter Telescope (TMT) and narrow field infrared adaptive optics system (NFIRAOS). We present our experimental setup and analysis of the efficiency of selected reflective diffraction gratings. These measurements are used as a comparison sample against selected candidate Volume Phase Holographic (VPH) gratings (see Chen et al., this conference). We investigate the efficiencies of five ruled gratings designed for IRIS from two separate vendors. Three of the gratings accept a bandpass of 1.19-1.37 {\\mu}m (J band) with ideal spectral resolutions of R=4000 and R=8000, groove densities of 249 and 516 lines/mm, and blaze angles of 9.86 and 20.54 degrees, respectively. The other two gratings accept a bandpass of 1.51-1.82 {\\mu}m (H Band) with an ideal spectral resolution of R=4000, groove density of 141 lines...
Intelligent holographic databases
Barbastathis, George
Memory is a key component of intelligence. In the human brain, physical structure and functionality jointly provide diverse memory modalities at multiple time scales. How could we engineer artificial memories with similar faculties? In this thesis, we attack both hardware and algorithmic aspects of this problem. A good part is devoted to holographic memory architectures, because they meet high capacity and parallelism requirements. We develop and fully characterize shift multiplexing, a novel storage method that simplifies disk head design for holographic disks. We develop and optimize the design of compact refreshable holographic random access memories, showing several ways that 1 Tbit can be stored holographically in volume less than 1 m3, with surface density more than 20 times higher than conventional silicon DRAM integrated circuits. To address the issue of photorefractive volatility, we further develop the two-lambda (dual wavelength) method for shift multiplexing, and combine electrical fixing with angle multiplexing to demonstrate 1,000 multiplexed fixed holograms. Finally, we propose a noise model and an information theoretic metric to optimize the imaging system of a holographic memory, in terms of storage density and error rate. Motivated by the problem of interfacing sensors and memories to a complex system with limited computational resources, we construct a computer game of Desert Survival, built as a high-dimensional non-stationary virtual environment in a competitive setting. The efficacy of episodic learning, implemented as a reinforced Nearest Neighbor scheme, and the probability of winning against a control opponent improve significantly by concentrating the algorithmic effort to the virtual desert neighborhood that emerges as most significant at any time. The generalized computational model combines the autonomous neural network and von Neumann paradigms through a compact, dynamic central representation, which contains the most salient features
Holographic complexity and spacetime singularities
Energy Technology Data Exchange (ETDEWEB)
Barbón, José L.F. [Instituto de Física Teórica IFT UAM/CSIC,C/ Nicolás Cabrera 13, Campus Universidad Autónoma de Madrid,Madrid 28049 (Spain); Rabinovici, Eliezer [Racah Institute of Physics, The Hebrew University,Jerusalem 91904 (Israel); Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)
2016-01-15
We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.
Anninos, Dionysios; Denef, Frederik; Peeters, Lucas
2013-01-01
We establish the existence of stable and metastable stationary black hole bound states at finite temperature and chemical potentials in global and planar four-dimensional asymptotically anti-de Sitter space. We determine a number of features of their holographic duals and argue they represent structural glasses. We map out their thermodynamic landscape in the probe approximation, and show their relaxation dynamics exhibits logarithmic aging, with aging rates determined by the distribution of barriers.
Holographic Complexity for Time-Dependent Backgrounds
Momeni, Davood; Bahamonde, Sebastian; Myrzakulov, Ratbay
2016-01-01
In this paper, we will analyse the holographic complexity for time-dependent asymptotically $AdS$ geometries. We will first use a covariant zero mean curvature slicing of the time-dependent bulk geometries, and then use this co-dimension one spacelike slice of the bulk spacetime to define a co-dimension two minimal surface. The time-dependent holographic complexity will be defined using the volume enclosed by this minimal surface. This time-dependent holographic complexity will reduce to the usual holographic complexity for static geometries. We will analyse the time-dependence as a perturbation of the asymptotically $AdS$ geometries. Thus, we will obtain time-dependent asymptotically $AdS$ geometries, and we will calculate the holographic complexity for such a time-dependent geometries.
Holographic Optical Data Storage
Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)
2000-01-01
Although the basic idea may be traced back to the earlier X-ray diffraction studies of Sir W. L. Bragg, the holographic method as we know it was invented by D. Gabor in 1948 as a two-step lensless imaging technique to enhance the resolution of electron microscopy, for which he received the 1971 Nobel Prize in physics. The distinctive feature of holography is the recording of the object phase variations that carry the depth information, which is lost in conventional photography where only the intensity (= squared amplitude) distribution of an object is captured. Since all photosensitive media necessarily respond to the intensity incident upon them, an ingenious way had to be found to convert object phase into intensity variations, and Gabor achieved this by introducing a coherent reference wave along with the object wave during exposure. Gabor's in-line recording scheme, however, required the object in question to be largely transmissive, and could provide only marginal image quality due to unwanted terms simultaneously reconstructed along with the desired wavefront. Further handicapped by the lack of a strong coherent light source, optical holography thus seemed fated to remain just another scientific curiosity, until the field was revolutionized in the early 1960s by some major breakthroughs: the proposition and demonstration of the laser principle, the introduction of off-axis holography, and the invention of volume holography. Consequently, the remainder of that decade saw an exponential growth in research on theory, practice, and applications of holography. Today, holography not only boasts a wide variety of scientific and technical applications (e.g., holographic interferometry for strain, vibration, and flow analysis, microscopy and high-resolution imagery, imaging through distorting media, optical interconnects, holographic optical elements, optical neural networks, three-dimensional displays, data storage, etc.), but has become a prominent am advertising
The traveltime holographic principle
Huang, Y.
2014-11-06
Fermat\\'s interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat\\'s interferometric principle. We denote this principle as the ‘traveltime holographic principle’, by analogy with the holographic principle in cosmology where information in a volume is encoded on the region\\'s boundary.
Ghosh, Abhijit; Nirala, A. K.
2016-05-01
In the present study we have proposed a technique for improving fringe quality at laser Doppler anemometry measurement volume in real time using single hololens imaging configuration over conventional imaging configuration with Gaussian beam optics. In order to remove interference fringe gradients as well as higher order diffraction noise formed at measurement volume in the former approach, a combined hololens imaging system has also been proposed. For qualitative as well as quantitative analysis of fringes formed at measurement volume, atomic force microscopy (AFM) analysis has been performed.
Palais, Joseph C.; Miller, Mark E.
1996-09-01
A unique method for the construction and display of a 3D holographic movie is developed. An animated film is produced by rotating a 3D object in steps between successive holographic exposures. Strip holograms were made on 70-mm AGFA 8E75 Holotest roll film. Each hologram was about 11-mm high and 55-mm high and 55-mm wide. The object was rotated 2 deg between successive exposures. A complete cycle of the object motion was recorded on 180 holograms using the lensless Fourier transform construction. The ends of the developed film were spliced together to produce a continuous loop. Although the film moves continuously on playback and there is not shutter, there is no flicker or image displacement because of the Fourier transform hologram construction, as predicted by the theoretical analysis. The movie can be viewed for an unlimited time because the object motion is cyclical and the film is continuous. The film is wide enough such that comfortable viewing with both eyes is possible, enhancing the 3D effect. Viewers can stand comfortably away from the film since no viewing slit or aperture is necessary. Several people can simultaneously view the movie.
Institute of Scientific and Technical Information of China (English)
陈火耀; 刘正坤; 王庆博; 易涛; 杨国洪; 洪义麟; 付绍军
2014-01-01
软X射线平焦场光栅光谱仪是等离子体诊断的重要仪器,其核心光学元件全息平焦场光栅通常采用非球面波记录光路制作,因此光栅条纹存在弯曲的现象.光栅条纹的弯曲会影响光谱成像质量,从而影响系统的光谱分辨率.记录光路的优化,只保证光栅子午面的线密度分布,因此优化的记录光路并不是惟一的,所以在保证子午面的线密度分布的同时能制作具有不同弯曲程度条纹的光栅.针对应用于0.8—6 nm的全息平焦场光栅,利用光线追迹方法分析了不同弯曲程度条纹光栅的光谱成像,发现采用柱面反射镜制作的接近于直条纹的光栅具有较好的光谱成像质量.相对于弯曲条纹的光栅,接近于直条纹的光栅理论光谱分辨率有明显的提高,入射波长为3 nm时,光谱分辨率从626提升到953,入射波长为5 nm时,光谱分辨率从635提高到1222.%The soft X-ray spectrograph is an important instrument for plasma diagnostics. As the core optical element of spectrograph, holographic flat-field grating is fabricated by aspheric wave-front recording optics, so grooves on the surface are curve. The curve grooves of the grating would affect the spectral image properties, thus influencing spectral resolutions. In the design of recording optics, only the groove density distribution on the surface in meridian line should be guaranteed, so optimized recording optics is not unique. Thus gratings with different curvatures of grooves but with expected groove density distribution could be obtained. For holographic flat-field gratings used in a 0.8–6 nm region, we analyze the influences of different curve grooves on the spectral image by ray tracing, and find that the almost straight grooves which are obtained by means of cylinder mirror can obtain the better spectral images. The theoretical results show that the spectral resolutions of grating with almost straight grooves are obviously improved compared
Latorre, Jose I
2015-01-01
There exists a remarkable four-qutrit state that carries absolute maximal entanglement in all its partitions. Employing this state, we construct a tensor network that delivers a holographic many body state, the H-code, where the physical properties of the boundary determine those of the bulk. This H-code is made of an even superposition of states whose relative Hamming distances are exponentially large with the size of the boundary. This property makes H-codes natural states for a quantum memory. H-codes exist on tori of definite sizes and get classified in three different sectors characterized by the sum of their qutrits on cycles wrapped through the boundaries of the system. We construct a parent Hamiltonian for the H-code which is highly non local and finally we compute the topological entanglement entropy of the H-code.
Takeuchi, Shingo
2013-01-01
We propose a holographic model of the SQUID (Superconducting QUantum Interference Device) composed of two Josephson junctions connected each other in a circle with the magnetic flux penetrating the circuit of the SQUID and the supercurrents flowing in both Josephson junction. The gravity in this paper is the Einstein-Maxwell-complex scalar field model on the four-dimensional Anti-de Sitter Schwarzschild black brane geometry in which one space direction is compactified into a circle, and we arrange the profile of the coefficient of the time component of the gauge field having the role for the chemical potential of the cooper pair. The magnetic flux is involved by the rewriting of the surface integral of the magnetic field to the contour integral of the gauge field.
Theory of photorefractive dynamic grating formulation
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The photorefractive holographic recording and two-beam coupling are both dynamic grating formulation process. The interference light intensity of the two coherent beams induces a phase grating though photo-induced refractive index variation and the phase grating changing the intensities of the two beams through beam-coupling take place at the same time. By solving simultaneously the band transport equations and wave-coupled equations, and using the light intensity modulation as the main variable, the analytic solution is obtained, which is valid for any light intensity modulation and constant light excitation efficiency. Here all the mechanics of drift, diffusion and photovoltaic effect are considered. The result shows that the modulation of the dynamic grating varies more slowly compared with that of the linear modulation approximation.
Chann, B; Goyal, A K; Fan, T Y; Sanchez-Rubio, A; Volodin, B L; Ban, V S
2006-05-01
We report a method of scaling the spatial brightness from commercial off-the-shelf diode laser stacks through wavelength beam combining, by use of a linearly wavelength-chirped volume Bragg grating (VBG). Using a three-bar commercial stack of broad-area lasers and a VBG, we demonstrate 89.5 W cw of beam-combined output with a beam-combining efficiency of 75%. The output beam has a propagation factor M2 approximately 26 on the slow axis and M2 approximately 21 on the fast axis. This corresponds to a brightness of approximately 20 MW/cm2 sr. To our knowledge, this is the highest brightness broad-area diode laser system. We achieve 81% coupling efficiency into a 100 microm, 0.22 N.A. fiber.
Zhang, Jingfei; ZHANG Xin; Liu, Hongya
2007-01-01
We propose in this Letter a holographic model of tachyon dark energy. A connection between the tachyon scalar-field and the holographic dark energy is established, and accordingly, the potential of the holographic tachyon field is constructed. We show that the holographic evolution of the universe with $c\\geqslant 1$ can be described completely by the resulting tachyon model in a certain way.
Institute of Scientific and Technical Information of China (English)
李志永; 谭荣清; 徐程; 李琳; 刘世明; 赵志龙; 黄伟
2013-01-01
采用步进电机控制光栅角度,对φ200 μm和φ600 μm圆柱透镜准直的体布拉格光栅(VBG)外腔单管C封装半导体激光器进行了系统研究.实验结果表明:激光二极管(LD)驱动电流越大,准直效果越好,VBG的角度调整容差越小；快轴方向的准直效果越好,慢轴方向的光栅调节角度容差越大；对于衍射效率28％、厚1.4 mm的光栅,LD快轴发散角为7.3 mrad时,快轴方向的角度容差不大于3.2 mrad,慢轴方向的角度容差较快轴大约一个数量级.%For high power linewidth-narrowed diode lasers, it's important to study rotation angle tolerance of the volume Bragg grating (VBG) for narrowing the spectral linewidth of two dimensional diode laser stacks. The diode laser with the VBG' s external cavity and C-mounted modules is collimated by Φ200 μm and Φ600μm cylindrical lens separately in the paper. The VBG's angle tolerance is acquired by two stepper motors. According to the research, more accuracy is needed for the VBG's adjustment with higher driving current and better beam collimation. If the laser diode is collimated better in fast axis direction, rotation angle tolerance in slow axis direction will be bigger. When a VBG with a diffraction efficiency of 28% and thickness of 1. 4 mm is used to lock the wavelength of a laser diode with a fast axis divergence angle of 7. 3 mrad, the grating's rotation angle tolerance is no more than 3. 2 mrad in the fast axis direction and that for the slow axis direction is one order of magnitude bigger.
Reusable holographic velocimetry system based on polarization multiplexing in Bacteriorhodopsin
Koek, W.D.; Chan, V.S.S.; Ooms, T.A.; Bhattacharya, N.; Westerweel, J.; Braat, J.J.M.
2005-01-01
We present a novel holographic particle image velocimetry (HPIV) system using a reversible holographic material as the recording medium. In HPIV the three-dimensional flow field throughout a volume is detected by adding small tracer particles to a normally transparent medium. By recording the
Fidelity Susceptibility as Holographic PV criticality
Momeni, Davood; Myrzakulov, Ratbay
2016-01-01
Motivated by the fact that the quantum entanglement entropy is dual to an area in AdS, quantities dual to a volume in the AdS have also been recently proposed. These include the holographic complexity and fidelity susceptibility of a quantum system. Even though both of them are dual to an volume in the bulk, there are some interesting difference between them. In this letter, we will explicitly compare them for an $ AdS _4$ solution, and clarify the main differences between them from thermodynamic point of the view. We will also obtain the correct and appropriate holographic dual of the thermodynamic volume of AdS blackhole, and demonstrate that to explain therodynamic in extended phase PV picture, from the AdS/CFT point of view,fidelity susceptibility is the preferred quantity in comparison to holographic complexity.
Comments on Holographic Complexity
Carmi, Dean; Rath, Pratik
2016-01-01
We study two recent conjectures for holographic complexity: the complexity=action conjecture and the complexity=volume conjecture. In particular, we examine the structure of the UV divergences appearing in these quantities, and show that the coefficients can be written as local integrals of geometric quantities in the boundary. We also consider extending these conjectures to evaluate the complexity of the mixed state produced by reducing the pure global state to a specific subregion of the boundary time slice. The UV divergences in this subregion complexity have a similar geometric structure, but there are also new divergences associated with the geometry of the surface enclosing the boundary region of interest. We discuss possible implications arising from the geometric nature of these UV divergences.
Johnson, Clifford V
2014-01-01
It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.
Precision phase-shifting applied to fiber Bragg gratings
DEFF Research Database (Denmark)
Canning, John; Deyerl, Hans-Jürgen; Kristensen, Martin
2005-01-01
A simple method of displacing a holographic interferogram within a waveguide based on translation along a slightly tilted fringe pattern of the optical interferogram is presented. By way of example, phase-shifted fibre gratings are produced this way. The spatial resolution in fringe shift is sepa...
Precision phase-shifting applied to fiber Bragg gratings
DEFF Research Database (Denmark)
Canning, John; Deyerl, Hans-Jürgen; Kristensen, Martin
2005-01-01
A simple method of displacing a holographic interferogram within a waveguide based on translation along a slightly tilted fringe pattern of the optical interferogram is presented. By way of example, phase-shifted fibre gratings are produced this way. The spatial resolution in fringe shift is sepa...
Design, simulation, and optimization of an RGB polarization independent transmission volume hologram
Mahamat, Adoum Hassan
Volume phase holographic (VPH) gratings have been designed for use in many areas of science and technology such as optical communication, medical imaging, spectroscopy and astronomy. The goal of this dissertation is to design a volume phase holographic grating that provides diffraction efficiencies of at least 70% for the entire visible wavelengths and higher than 90% for red, green, and blue light when the incident light is unpolarized. First, the complete design, simulation and optimization of the volume hologram are presented. The optimization is done using a Monte Carlo analysis to solve for the index modulation needed to provide higher diffraction efficiencies. The solutions are determined by solving the diffraction efficiency equations determined by Kogelnik's two wave coupled-wave theory. The hologram is further optimized using the rigorous coupled-wave analysis to correct for effects of absorption omitted by Kogelnik's method. Second, the fabrication or recording process of the volume hologram is described in detail. The active region of the volume hologram is created by interference of two coherent beams within the thin film. Third, the experimental set up and measurement of some properties including the diffraction efficiencies of the volume hologram, and the thickness of the active region are conducted. Fourth, the polarimetric response of the volume hologram is investigated. The polarization study is developed to provide insight into the effect of the refractive index modulation onto the polarization state and diffraction efficiency of incident light.
Holographic entropy production
Tian, Yu; Wu, Xiao-Ning; Zhang, Hongbao
2014-10-01
The suspicion that gravity is holographic has been supported mainly by a variety of specific examples from string theory. In this paper, we propose that such a holography can actually be observed in the context of Einstein's gravity and at least a class of generalized gravitational theories, based on a definite holographic principle where neither is the bulk space-time required to be asymptotically AdS nor the boundary to be located at conformal infinity, echoing Wilson's formulation of quantum field theory. After showing the general equilibrium thermodynamics from the corresponding holographic dictionary, in particular, we provide a rather general proof of the equality between the entropy production on the boundary and the increase of black hole entropy in the bulk, which can be regarded as strong support to this holographic principle. The entropy production in the familiar holographic superconductors/superfluids is investigated as an important example, where the role played by the holographic renormalization is explained.
Holographic Entropy Production
Tian, Yu; Zhang, Hong-Bao
2014-01-01
The suspicion that gravity is holographic has been supported mainly by a variety of specific examples from string theory. In this paper, we propose that such a holography can actually be observed in the context of Einstein's gravity and at least a class of generalized gravitational theories, based on a definite holographic principle where neither is the bulk space-time required to be asymptotically AdS nor the boundary to be located at conformal infinity, echoing Wilson's formulation of quantum field theory. After showing the general equilibrium thermodynamics from the corresponding holographic dictionary, in particular, we provide a rather general proof of the equality between the entropy production on the boundary and the increase of black hole entropy in the bulk, which can be regarded as strong support to this holographic principle. The entropy production in the familiar holographic superconductors/superfluids is investigated as an important example, where the role played by the holographic renormalizatio...
Holographically Encoded Volume Phase Masks
2015-07-13
Photonics, P.O. Box 162700, Orlando , Florida 32816-2700, United States Abstract. Wepresent here amethod to create spectrally addressable phasemasks by...aperture and consequently it cannot be assumed that this one-dimensional dependence will still hold. In this particular study , we are only interested in...probe beams that exactly satisfy the Bragg condition. In this case , the coupled wave equations become 1 kp kp;x ∂A ∂x þ kp;y ∂A ∂y þ kp;z ∂A ∂z
Coherent Beam Combining Element for Five 150-W Fiber Lasers by Volume Bragg Gratings in PTR Glass
2011-08-03
glasses,” Glass Science and Technology 75 C1 (2002) 73-90. 8. O.M. Efimov , L.B. Glebov, V.I. Smirnov, and L.N. Glebova, “Process for production of...high efficiency volume diffractive elements in photo-thermo-refractive glass,” U.S. Patent 6,586,141 (2003). 9. O.M. Efimov , L.B. Glebov, and V.I
Wang, Jia; Song, Yang; Li, Zhen-hua; He, An-zhi
2012-11-01
Volume optical computerized tomography (VOCT), which can realize real 3D measurement rather than traditional 2D OCT, has great superiority in quantitatively measuring the thermo physical parameters of transient flow field. Among the refractive index reconstruction techniques, filtered back-projection (FBP) method performs better than algebraic reconstruction techniques (ARTs) with higher accuracy and computationally efficient. In order to apply FBP to VOCT, the radial second-order derivative of projection wave front passes through the tested phase object should be obtained firstly. In this paper, a projection device with two circular gratings is established. In particular, owing to an inherent phase shift exists between moiré fringes of +1 and -1 diffraction orders, a two-step phase-shifting algorithm is utilized to extract the wave front's radial first-order derivative which is contained in the moiré fringes. The reliability of the two-step phase-shifting algorithm is proved by a computer simulation. Finally, the radial first-order derivative of wave front passing through a propane flame is measured and retrieved by these methods.
Hengesbach, Stefan; Klein, Sarah; Holly, Carlo; Witte, Ulrich; Traub, Martin; Hoffmann, Dieter
2016-03-01
Multiplexing technologies enable the development of high-brightness diode lasers for direct industrial applications. We present a High-Power Dense Wavelength Division Multiplexer (HP-DWDM) with an average channel spacing of 1.7 (1.5) nm and a subsequent external cavity mirror to provide feedback for frequency stabilization and multiplexing in one step. The "self-optimizing" multiplexing unit consists of four reflective Volume Bragg Gratings (VBGs) with 99% diffraction efficiency and seven dielectric mirrors to overlay the radiation of five input channels with an adjustable channel spacing of 1-2 nm. In detail, we focus on the analysis of the overall optical efficiency, the change of the beam parameter product and the spectral width. The performance is demonstrated using five 90 μm multimode 9xx single emitters with M2angular intensity distribution changes strongly and the beam parameter product decreases by a factor of 1.2 to 1.9. Thereby the angular intensity distribution is more affected than the width of the beam waist. The spectral width per emitter decreases to 3-200 pm (FWHM) depending on the injection current and the reflectance of the feedback mirror (0.75%, 1.5%, 4%, 6% or 8%). The overall optical multiplexing efficiency ranges between 77% and 86%. With some modifications (e.g. enhanced AR-coatings) we expect 90-95%.
Astronomical telescope with holographic primary objective
Ditto, Thomas D.; Friedman, Jeffrey F.; Content, David A.
2011-09-01
A dual dispersion telescope with a plane grating primary objective was previously disclosed that can overcome intrinsic chromatic aberration of dispersive optics while allowing for unprecedented features such as million object spectroscopy, extraordinary étendue, flat primary objective with a relaxed figure tolerance, gossamer membrane substrate stowable as an unsegmented roll inside a delivery vehicle, and extensibility past 100 meter aperture at optical wavelengths. The novel design meets many criteria for space deployment. Other embodiments are suitable for airborne platforms as well as terrestrial and lunar sites. One problem with this novel telescope is that the grazing exodus configuration necessary to achieve a large aperture is traded for throughput efficiency. Now we show how the hologram of a point source used in place of the primary objective plane grating can improve efficiency by lowering the diffraction angle below grazing exodus. An intermediate refractive element is used to compensate for wavelength dependent focal lengths of the holographic primary objective.
Riboflavin Sensitized Photopolymer Materials for Holographic Storage
Institute of Scientific and Technical Information of China (English)
ZHAI Feng-Xiao; WANG Ai-Rong; YIN Qiong; LIU Jun-Hui; HUANG Ming-Ju
2005-01-01
@@ Riboflavin is employed as the photosensitizer of a novel photopolymer material for holographic recording. This material has a broad absorption spectrum range (more than 200nm) due to the addition of this dye. The experimental results show that our material has high diffraction efficiency and large refractive index modulation.The maximum diffraction efficiency of the photopolymer is about 56%. The digital data pages are stored in this medium and the reconstructed data page has a good fidelity, with the bit-error-ratio of about 1.8 × 10-4. It is found that the photopolymer material is suitable for high-density volume holographic digital storage.
Nicotri, Stefano
2009-01-01
A holographic description of scalar mesons is presented, in which two- and three-point functions are holographically reconstructed. Mass spectrum, decay constants, eigenfunctions and the coupling of the scalar states with two pseu- doscalars are found. A comparison of the results with current phenomenology is discussed.
Nopal Cactus (Opuntia Ficus-Indica as a Holographic Material
Directory of Open Access Journals (Sweden)
Santa Toxqui-López
2012-11-01
Full Text Available The nopal cactus (Opuntia ficus-indica releases a substance through its mucilage, which comes from the degradation of pectic substances and chlorophyll. Combined in a polyvinyl alcohol matrix, this substance can be used as a recording medium. The resulting extract material has excellent photosensitizer properties, is easy to handle, has a low cost, and low toxicity. This material has the property of self-developing, and it can be used in holographic applications. The polyvinyl alcohol and extract from the nopal cactus was deposited by a gravity technique on a glass substrate, which dried to form a photosensitive emulsion. We show experimental results on a holographic grating using this material, written by a He-Cd laser (442 nm. We obtained diffraction gratings by transmission with a diffraction efficiency of approximately 32.3% to first order.
Methacrylic azopolymers for holographic storage: A comparison among different polymer types
DEFF Research Database (Denmark)
Forcen, P.; Oriol, L.; Sanchez, C.;
2007-01-01
The photoinduced anisotropy and volume holographic storage in a series of polymers with different architectures and azo contents of 7% and 20% in weight have been investigated. Measurements of the birefringence (An) induced with nearly polarised 488 nm light show that for polymers with an azo con...... copolymers, as volume holographic storage material....
Holographic Complexity Equals Bulk Action?
Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying
2016-05-01
We conjecture that the quantum complexity of a holographic state is dual to the action of a certain spacetime region that we call a Wheeler-DeWitt patch. We illustrate and test the conjecture in the context of neutral, charged, and rotating black holes in anti-de Sitter spacetime, as well as black holes perturbed with static shells and with shock waves. This conjecture evolved from a previous conjecture that complexity is dual to spatial volume, but appears to be a major improvement over the original. In light of our results, we discuss the hypothesis that black holes are the fastest computers in nature.
Hydraulic Capacity of an ADA Compliant Street Drain Grate
Energy Technology Data Exchange (ETDEWEB)
Lottes, Steven A. [Argonne National Lab. (ANL), Argonne, IL (United States); Bojanowski, Cezary [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-09-01
Resurfacing of urban roads with concurrent repairs and replacement of sections of curb and sidewalk may require pedestrian ramps that are compliant with the American Disabilities Act (ADA), and when street drains are in close proximity to the walkway, ADA compliant street grates may also be required. The Minnesota Department of Transportation ADA Operations Unit identified a foundry with an available grate that meets ADA requirements. Argonne National Laboratory’s Transportation Research and Analysis Computing Center used full scale three dimensional computational fluid dynamics to determine the performance of the ADA compliant grate and compared it to that of a standard vane grate. Analysis of a parametric set of cases was carried out, including variation in longitudinal, gutter, and cross street slopes and the water spread from the curb. The performance of the grates was characterized by the fraction of the total volume flow approaching the grate from the upstream that was captured by the grate and diverted into the catch basin. The fraction of the total flow entering over the grate from the side and the fraction of flow directly over a grate diverted into the catch basin were also quantities of interest that aid in understanding the differences in performance of the grates. The ADA compliant grate performance lagged that of the vane grate, increasingly so as upstream Reynolds number increased. The major factor leading to the performance difference between the two grates was the fraction of flow directly over the grates that is captured by the grates.
Cryogenic Volume-Phase Holograpic Grisms for MOIRCS
Ebizuka, Noboru; Yamada, Toru; Tokoku, Chihiro; Onodera, Masato; Hanesaka, Mai; Kodate, Kashiko; Uchimoto, Yuka Katsuno; Maruyama, Miyoko; Shimasaku, Kazuhiro; Tanaka, Ichi; Yoshikawa, Tomohiro; Kashikawa, Nobunari; Iye, Masanori; Ichikawa, Takashi
2011-01-01
We have developed high dispersion VPH (volume phase holographic) grisms with zinc selenide (ZnSe) prisms for the cryogenic optical system of MOIRCS (Multi-Object near InfraRed Camera and Spectrograph) for Y-, J-, H- and K- band observations. We fabricated the VPH gratings using a hologram resin. After several heat cycles at between room temperature and 120 K, the VPH gratings were assembled to grisms by gluing with two ZnSe prisms. Several heat cycles were also carried out for the grisms before being installed into MOIRCS. We measured the efficiencies of the VPH grisms in a laboratory, and found them to be 70% - 82%. The performances obtained by observations of MOIRCS with the 8.2 m Subaru Telescope have been found to be very consistent with the results in the laboratory test. This is the first astronomical application of cryogenic VPH grisms.
Voltage-controlled compression for period tuning of optical surface relief gratings.
Kollosche, Matthias; Döring, Sebastian; Stumpe, Joachim; Kofod, Guggi
2011-04-15
This Letter reports on new methods and a consistent model for voltage tunable optical transmission gratings. Elastomeric gratings were molded from holographically written surface relief gratings in an azobenzene sol-gel material. These were placed on top of a transparent electroactive elastomeric substrate. Two different electro-active substrate elastomers were employed, with a large range of prestretches. A novel finite-deformation theory was found to match the device response excellently, without fitting parameters. The results clearly show that the grating underwent pure-shear deformation, and more surprisingly, that the mechanical properties of the electro-active substrate did not affect device actuation.
Residual strain evaluation of curved surface by grating-transferring technique and GPA
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
This paper investigates an advanced grating-transferring technique combined with geometric phase analysis (GPA) for residual strain evaluation of curved surface.A standard holographic grating is first transferred to a pre-produced epoxy resin film and then consolidated to a test region of curved surface.With a rubber mold and silicone rubber the deformed grating is replicated to a sheet metal after hole-drilling for release of residual stress.After that the grating is transferred from the sheet metal to the...
Merged vector gratings recorded in a photocrosslinkable polymer liquid crystal film for polarimetry
Energy Technology Data Exchange (ETDEWEB)
Sasaki, Tomoyuki, E-mail: sasaki-tomoy@vos.nagaokaut.ac.jp; Wada, Takumi; Noda, Kohei; Ono, Hiroshi [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Kawatsuki, Nobuhiro [Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan)
2014-01-14
A merged vector grating, which is holographically fabricated in an anisotropic medium by irradiation with interference light with intensity modulation and polarization modulation, was designed to detect the polarization of light. The merged vector grating is recorded by the interference of two elliptically polarized beams with equal intensities, parallel azimuths, equal ellipticities, and different directions of rotation. We clarified theoretically that the Stokes parameters of the incident light beam are described by the diffraction efficiency of the merged vector grating. Also, to apply this property to formation of a polarimeter without any moving parts or mechanisms, two merged vector gratings with different grating vectors were recorded in a photocrosslinkable polymer liquid crystal film by angle-multiplexed holography. By investigation of the diffraction properties of the gratings obtained, we demonstrated the applicability of the merged vector gratings for use in polarimetry.
Full Color Holographic Endoscopy
Osanlou, A.; Bjelkhagen, H.; Mirlis, E.; Crosby, P.; Shore, A.; Henderson, P.; Napier, P.
2013-02-01
The ability to produce color holograms from the human tissue represents a major medical advance, specifically in the areas of diagnosis and teaching. This has been achieved at Glyndwr University. In corporation with partners at Gooch & Housego, Moor Instruments, Vivid Components and peninsula medical school, Exeter, UK, for the first time, we have produced full color holograms of human cell samples in which the cell boundary and the nuclei inside the cells could be clearly focused at different depths - something impossible with a two-dimensional photographic image. This was the main objective set by the peninsula medical school at Exeter, UK. Achieving this objective means that clinically useful images essentially indistinguishable from the object human cells could be routinely recorded. This could potentially be done at the tip of a holo-endoscopic probe inside the body. Optimised recording exposure and development processes for the holograms were defined for bulk exposures. This included the optimisation of in-house recording emulsions for coating evaluation onto polymer substrates (rather than glass plates), a key step for large volume commercial exploitation. At Glyndwr University, we also developed a new version of our in-house holographic (world-leading resolution) emulsion.
Holographic Quantum Entanglement Negativity
Chaturvedi, Pankaj; Sengupta, Gautam
2016-01-01
We propose a holographic prescription to compute the entanglement negativity for conformal field theories at finite temperatures which exactly reproduces the entanglement negativity for (1+1)- dimensional conformal field theories at finite temperatures dual to (2+1)- dimensional bulk Euclidean BTZ black holes. We observe that the holographic entanglement negativity captures the distillable pure quantum entanglement and is related to the holographic mutual information. The application of our prescription to higher dimensional conformal field theories at finite temperatures within a $AdS_{d+1}/CFT_{d}$ scenario involving dual bulk $AdS$-Schwarzschild black holes is discussed to elucidate the universality of our conjecture.
Environmental stability study of holographic solar spectrum splitting materials
Chrysler, Benjamin D.; Ayala Pelaez, Silvana; Wu, Yuechen; Vorndran, Shelby D.; Kostuk, Raymond K.
2016-09-01
In this study the impact of outdoor temperature variations and solar illumination exposure on spectral filter material and holographic optical elements is examined. Although holographic components have been shown to be useful for solar spectrum splitting designs, relatively little quantitative data exist to demonstrate the extent to which these materials can withstand outdoor conditions. As researchers seek to investigate practical spectrum splitting designs, the environmental stability of holographic materials should be considered as an important factor. In the experiment presented, two holographic materials, Covestro Bayfol HX photopolymer and dichromated gelatin, and 3M reflective polymer filter materials are exposed to outdoor conditions for a period of several months. The environmental effect on absorption, spectral and angular bandwidth, peak efficiency, and Bragg matching conditions for the holograms are examined. Spectral bandwidth and transmittance of the 3M reflective filter material are also monitored. Holographic gratings are recorded, measured, and mounted on glass substrates and then sealed with a glass cover plate. The test samples are then mounted on a photovoltaic panel to simulate realistic temperature conditions and placed at an outdoor test facility in Tucson, Arizona. A duplicate set of holograms and 3M filter material is stored as a control group and periodically compared over the test period.
Haque, S Shajidul
2016-01-01
We propose a simple and generic holographic $c$-function that is defined purely from geometry by using the non-affine expansion for null congruences. We examined the proposal for BPS black solutions in $\\mathcal{N}=2$ gauged supergravity that interpolate between two different dimensional AdS spacetimes and also for domain wall solutions. Moreover, we commented on the relation of this geometric proposal with the one from the holographic entanglement entropy.
Novel biphotonic holographic storage in a side-chain liquid crystalline polyester
DEFF Research Database (Denmark)
Ramanujam, P.S.; Hvilsted, S.; Andruzzi, F.
1993-01-01
We report novel biphotonic holographic storage of text and gratings on unoriented films of a side-chain liquid crystalline polyester capable of high density storage and complete erasure. The holograms have a typical size of 1 mm. The recording utilizes unusual photochemistry involving azo dye...
Polarization holographic recording in Disperse Red1 doped polyurethane polymer film
Aleksejeva, J.; Gerbreders, A.; Gertners, U.; Reinfelde, M.; Teteris, J.
2011-06-01
In this report holographic recording of polarisation and surface relief gratings in Disperse Red 1 (DR1) doped polyurethane polymer films was studied. In this material DR1 is chemically bounded to polyurethane polymer main chain. Polarization holographic recording was performed by two orthogonal circularly polarized 532 nm laser beams. Photoinduced birefringence is a precondition for polarization holograms recording, therefore a detailed study of a photoinduced birefringence and changes of optical properties was performed. The lasers with wavelengths of 375nm, 448nm, 532 nm and 632.8 nm were used as pumping beam for sample excitation. The photoinduced birefringence Δn was measured at 532 nm and 632.8 nm wavelengths. The photoinduced birefringence dependence on the pumping beam wavelength and intensity was investigated. Surface relief grating (SRG) formation was observed during polarization holographic recording process. A profile of SRG was studied by AFM. A relationship between SRG formation and photoinduced birefringence has been discussed.
Holographic investigation of silver electromigration in nano-sized As2S3 films
Sainov, S.; Todorov, R.; Bodurov, I.; Yovcheva, Temenuzhka
2013-10-01
Holographic gratings with a diffraction efficiency (DE) greater than 8% and a spatial resolution of 2237 mm-1 are recorded in very thin As2S3 films with a thickness of 100 nm. Silver photo-diffusion is observed during the holographic recording process while applying a corona discharge. We use the method of holographic grating relaxation spectroscopy (forced Rayleigh scattering) based on the evanescent waves to determine that the silver diffusion coefficient in the thin As2S3 film is in the range of (0.9-10.3) × 10-13 cm2 s-1 depending on the corona charge polarity. This work is dedicated to the 90th anniversary of the birth of Academician Jordan Malinowski.
Quantum-Holographic Informational Consciousness
National Research Council Canada - National Science Library
Francisco Di Biase
2009-01-01
The author propose a quantum-informational holographic model of brain-consciousness-universe interactions based in the holonomic neural networks of Karl Pribram, in the holographic quantum theory...
Printable ink lenses, diffusers, and 2D gratings.
Ahmed, Rajib; Yetisen, Ali K; Khoury, Anthony El; Butt, Haider
2017-01-07
Advances in holography have led to applications including data storage, displays, security labels, and colorimetric sensors. However, existing top-down approaches for the fabrication of holographic devices are complex, expensive, and expertise dependent, limiting their use in practical applications. Here, ink-based holographic devices have been created for a wide range of applications in diffraction optics. A single pulse of a 3.5 ns Nd:YAG laser allowed selective ablation of ink to nanofabricate planar optical devices. The practicality of this method is demonstrated by fabricating ink-based diffraction gratings, 2D holographic patterns, optical diffusers, and Fresnel zone plate (FZP) lenses by using the ink. The fabrication processes were rationally designed using predictive computational modeling and the devices were fabricated within a few minutes demonstrating amenability for large scale printable optics through industrial manufacturing. It is anticipated that ink will be a promising diffraction optical material for the rapid printing of low-cost planar nanophotonic devices.
Holographic memories with encryption-selectable function
Su, Wei-Chia; Lee, Xuan-Hao
2006-03-01
Volume holographic storage has received increasing attention owing to its potential high storage capacity and access rate. In the meanwhile, encrypted holographic memory using random phase encoding technique is attractive for an optical community due to growing demand for protection of information. In this paper, encryption-selectable holographic storage algorithms in LiNbO 3 using angular multiplexing are proposed and demonstrated. Encryption-selectable holographic memory is an advance concept of security storage for content protection. It offers more flexibility to encrypt the data or not optionally during the recording processes. In our system design, the function of encryption and non-encryption storage is switched by a random phase pattern and a uniform phase pattern. Based on a 90-degree geometry, the input patterns including the encryption and non-encryption storage are stored via angular multiplexing with reference plane waves at different incident angles. Image is encrypted optionally by sliding the ground glass into one of the recording waves or removing it away in each exposure. The ground glass is a key for encryption. Besides, it is also an important key available for authorized user to decrypt the encrypted information.
Khitun, Alexander; Kozhevnikov, Alexander; Gertz, Frederick; Filimonov, Yuri
2015-03-01
Collective oscillation of spins in magnetic lattice known as spin waves (magnons) possess relatively long coherence length at room temperature, which makes it possible to build sub-micrometer scale holographic devices similar to the devices developed in optics. In this work, we present a prototype 2-bit magnonic holographic memory. The memory consists of the double-cross waveguide structure made of Y3Fe2(FeO4)3 with magnets placed on the top of waveguide junctions. Information is encoded in the orientation of the magnets, while the read-out is accomplished by the spin waves generated by the micro-antennas placed on the edges of the waveguides. The interference pattern produced by multiple spin waves makes it possible to build a unique holographic image of the magnetic structure and recognize the state of the each magnet. The development of magnonic holographic devices opens a new horizon for building scalable holographic devices compatible with conventional electronic devices. This work was supported in part by the FAME Center, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA and by the National Science Foundation under the NEB2020 Grant ECCS-1124714.
Talbot, Michael
1991-01-01
'There is evidence to suggest that our world and everything in it - from snowflakes to maple trees to falling stars and spinning electrons - are only ghostly images, projections from a level of reality literally beyond both space and time.' This is the astonishing idea behind the holographic theory of the universe, pioneered by two eminent thinkers: physicist David Bohm, a former protege of Albert Einstein, and quantum physicist Karl Pribram. The holographic theory of the universe encompasses consciousness and reality as we know them, but can also explain such hitherto unexplained phenomena as telepathy, out-of-body experiences and even miraculous healing. In this remarkable book, Michael Talbot reveals the extraordinary depth and power of the holographic theory of the universe, illustrating how it makes sense of the entire range of experiences within our universe - and in other universes beyond our own.
Wang, Shuang; Li, Miao
2016-01-01
We review the paradigm of holographic dark energy (HDE), which arises from a theoretical attempt of applying the holographic principle (HP) to the dark energy (DE) problem. Making use of the HP and the dimensional analysis, we derive the general formula of the energy density of HDE. Then, we describe the properties of HDE model, in which the future event horizon is chosen as the characteristic length scale. We also introduce the theoretical explorations and the observational constraints for this model. Next, in the framework of HDE, we discuss various topics, such as spatial curvature, neutrino, instability of perturbation, time-varying gravitational constant, inflation, black hole and big rip singularity. In addition, from both the theoretical and the observational aspects, we introduce the interacting holographic dark energy scenario, where the interaction between dark matter and HDE is taken into account. Furthermore, we discuss the HDE scenario in various modified gravity (MG) theories, such as Brans-Dick...
Holographic Entanglement Entropy
Rangamani, Mukund
2016-01-01
We review the developments in the past decade on holographic entanglement entropy, a subject that has garnered much attention owing to its potential to teach us about the emergence of spacetime in holography. We provide an introduction to the concept of entanglement entropy in quantum field theories, review the holographic proposals for computing the same, providing some justification for where these proposals arise from in the first two parts. The final part addresses recent developments linking entanglement and geometry. We provide an overview of the various arguments and technical developments that teach us how to use field theory entanglement to detect geometry. Our discussion is by design eclectic; we have chosen to focus on developments that appear to us most promising for further insights into the holographic map. This is a preliminary draft of a few chapters of a book which will appear sometime in the near future, to be published by Springer. The book in addition contains a discussion of application o...
Phenomenology of Holographic Quenches
da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2015-10-01
We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.
Brehm, Enrico M
2016-01-01
In this work, we introduce classical holographic codes. These can be understood as concatenated probabilistic codes and can be represented as networks uniformly covering hyperbolic space. In particular, classical holographic codes can be interpreted as maps from bulk degrees of freedom to boundary degrees of freedom. Interestingly, they are shown to exhibit features similar to those expected from the AdS/CFT correspondence. Among these are a version of the Ryu-Takayanagi formula and intriguing properties regarding bulk reconstruction and boundary representations of bulk operations. We discuss the relation of our findings with expectations from AdS/CFT and, in particular, with recent results from quantum error correction.
Holographic microrheology of biofilms
Chiong Cheong, Fook; Duarte, Simone; Grier, David
2008-03-01
We present microrheological measurements of polymeric matrices, including the extra-cellular polysaccharide gel synthesized by the dental pathogen S. mutans. As part of this study, we introduce the use of precision three-dimensional particle tracking based on video holographic microscopy. This technique offers nanometer-scale resolution at video rates, thereby providing detailed information on the gels' complex viscoelastic moduli, including insights into their heterogeneity. The particular application to dental biofilms complements previous studies based on macroscopic rheology, and demonstrates the utility of holographic microrheology for soft-matter physics and biomedical research.
New holographic polymeric composition based on plexiglass, polyvinyl butyral, and phenanthrenquinone
Matusevich, Vladislav; Tolstik, Elen; Kowarschik, Richard; Egorova, Elena; Matusevich, Yuri I.; Krul, Leonid
2013-05-01
The newly developed Plexiglas films containing polyvinyl butyral resins and phenanthrenequinone molecules as photosensitive dopant, which are proposed for the practical application as interlayer of laminated safety glass, are shown for the first time. The injection of the phenanthrenequinone-poly(methyl methacrylate) into the polyvinyl butyral protective interlayer provides a homogenous distribution of the recording holographic medium in the layer and allows fixing the entire surface grating in the laminated glass. In addition, the original properties of polyvinyl butyral as a connecting material were preserved during manufacturing of the laminated glass. This allows a recording of holographic structures directly after baking of the laminated glass, thus reducing the destruction of the gratings due to the elevated temperatures. The diffractive structures in phenanthrenequinone-poly(methyl methacrylate)-polyvinyl butyral polymeric layers with thicknesses of hundreds of microns are sealed between two panels of glass (so-called laminated glass) and are generated by illumination with an Argon-laser of 514 nm. Efficiently fixed and long-term stable holographic gratings recorded in the phenanthrenequinone-poly(methyl methacrylate)-polyvinyl butyral layer enable to produce transparent laminated glass with inserted diffractive elements, which can be used e.g. for Head-up Displays in automobile windshields or as holographic light concentrators for solar cells.
Holographic analysis of photopolymers
Sullivan, Amy C.; Alim, Marvin D.; Glugla, David J.; McLeod, Robert R.
2017-05-01
Two-beam holographic exposure and subsequent monitoring of the time-dependent first-order Bragg diffraction is a common method for investigating the refractive index response of holographic photopolymers for a range of input writing conditions. The experimental set up is straightforward, and Kogelnik's well-known coupled wave theory (CWT)[1] can be used to separate measurements of the change in index of refraction (Δn) and the thickness of transmission and reflection holograms. However, CWT assumes that the hologram is written and read out with a plane wave and that the hologram is uniform in both the transverse and depth dimensions, assumptions that are rarely valid in practical holographic testing. The effect of deviations from these assumptions on the measured thickness and Δn become more pronounced for over-modulated exposures. As commercial and research polymers reach refractive index modulations on the order of 10-2, even relatively thin (refractive index in a material system. We use this analysis to study a model high Δn two-stage photopolymer holographic material using both transmission and reflection holograms.
Holographic renormalization and supersymmetry
Genolini, Pietro Benetti; Cassani, Davide; Martelli, Dario; Sparks, James
2017-02-01
Holographic renormalization is a systematic procedure for regulating divergences in observables in asymptotically locally AdS spacetimes. For dual boundary field theories which are supersymmetric it is natural to ask whether this defines a supersymmetric renormalization scheme. Recent results in localization have brought this question into sharp focus: rigid supersymmetry on a curved boundary requires specific geometric structures, and general arguments imply that BPS observables, such as the partition function, are invariant under certain deformations of these structures. One can then ask if the dual holographic observables are similarly invariant. We study this question in minimal N = 2 gauged supergravity in four and five dimensions. In four dimensions we show that holographic renormalization precisely reproduces the expected field theory results. In five dimensions we find that no choice of standard holographic counterterms is compatible with supersymmetry, which leads us to introduce novel finite boundary terms. For a class of solutions satisfying certain topological assumptions we provide some independent tests of these new boundary terms, in particular showing that they reproduce the expected VEVs of conserved charges.
Heterodyned holographic spectroscopy
Douglas, NG
1997-01-01
In holographic spectroscopy an image of an interference pattern is projected onto a detector and transformed back to the input spectrum. The general characteristics are similar to those of Fourier transform spectroscopy, but the spectrum is obtained without scanning. In the heterodyned arrangement o
Spatio-angularly multiplexed (SAM) holographic storage in photorefractive crystals
Tao, Shiquan
In this thesis a novel multiplexing scheme for dense holographic storage in photorefractive crystals, Spatio-Angular Multiplexing (or SAM), is described in detail. In SAM Fourier transform holograms are formed in spatially overlapping regions of a crystal and are distinguished from one another by using variously angled reference beams. SAM takes advantage of both the high storage density possible using angularly multiplexed volume holograms and also the low crosstalk possible using spatially multiplexed Fourier transform holograms. Compared to pure spatial multiplexing, SAM increases the storage capacity by fully utilising the volume of the storage medium. On the other hand, SAM reduces the number of holograms overlapping any one hologram in a given volume, and so increases the diffraction efficiency achievable as compared to pure angular multiplexing. SAM offers the possibility of incorporating the recorded crystal into a content addressable memory (CAM) system for parallel access of all stored patterns. In order to obtain the maximum diffraction efficiency and signal to noise ratio, the hologram must be replayed by a readout beam incident at the correct angle of readout beam. The optimum angle may be shifted away from the angle used in recording by a ''Bragg-shift", caused (under certain conditions) by phase coupling between the two writing beams during recording. Although this Bragg shift is small, a large diffraction efficiency enhancement is obtained when the grating is read out at the optimum angle. We have calculated the Bragg shift, using a numerical calculation based on an earlier theory, and have obtained good agreement with experiment. Using the novel SAM scheme, we have succeeded in storing 756 high resolution binary patterns in an Fe:LiNbO3 crystal of volume 1cm3, with an average diffraction efficiency of 0.5%. This large database is designed for practical use in a novel associative memory system, called a high order feedback neural network (HOFNET
Indian Academy of Sciences (India)
C S Rajesh; R Anjana; S S Sreeroop; C Sudha Kartha
2014-02-01
Photopolymer systems can produce good image quality holograms that does not require any post-processing and are environmentally stable with good diffraction efficiency. The present work reports the development of a methylene blue-sensitized polyvinyl alcohol acrylamide (MBPVA/AA) photopolymer system for recording white light reflection holograms. Reflection gratings were recorded in the photopolymer films with different concentrations of methylene blue (MB). Various parameters affecting the holographic properties of the samples were also studied. The holographic performance of the material is found to depend on its chemical composition and the recording parameters.
Blaya, S; Acebal, P; Carretero, L; Murciano, A; Madrigal, R F; Fimia, A
2010-01-18
The recent results reported in reference 1 have produced an increased interest in explaining deviations from the ideal behavior of the energetic variation of the diffraction efficiency of holographic gratings. This ideal behavior occurs when uniform gratings are recorded, and the index modulation is proportional to the energetic exposure. As a result, a typical sin(2) curve is obtained reaching a maximum diffraction efficiency and saturation at or below this value. However, linear deviations are experimentally observed when the first maximum on the curve is lower than the second. This effect does not correspond to overmodulation and recently in PVA/acrylamide photopolymers of high thickness it has been explained by the dye concentration in the layer and the resulting molecular weight of the polymer chains generated in the polymerization process. In this work, new insights into these deviations are gained from the analysis of the non-uniform gratings recorded. Therefore, we show that deviations from the linear response can be explained by taking into account the energetic evolution of the index modulation as well as the fringe bending in the grating.
A Holographic Bound for D3-Brane
Momeni, Davood; Bahamonde, Sebastian; Myrzakul, Aizhan; Myrzakulov, Ratbay
2016-01-01
In this paper, we will calculate the holographic entanglement entropy, holographic complexity, and fidelity susceptibility for a D3-brane. It will be demonstrated that for a D3-brane the holographic complexity is always greater than or equal to than the fidelity susceptibility. Furthermore, we will also demonstrate that the holographic complexity is related to the holographic entanglement entropy for this system. Thus, we will obtain a holographic bound involving holographic complexity, holographic entanglement entropy and fidelity susceptibility of a D3-brane.
Holographic Reversed-Mode Polymer-Stabilized Liquid Crystal Grating
Institute of Scientific and Technical Information of China (English)
MA Ji; SONG Jing; LIU Yong-Gang; RUAN Sheng-Ping; XUAN Li
2005-01-01
@@ We demonstrate the "reversed-mode" polymer-stabilized liquid crystal device. The incidence light goes through the film without the applied voltage and is diffracted with it. Because of relatively high liquid crystal percentage of 94%, the operating voltage of the device is less than 20 V. We explain this phenomenon using the molecularorientation model and the refractive index profile. The device can be used as display, optical switch, optical modulator and especially optical cross-connect deflector.
PVA with nopal dye as holographic recording material
Toxqui-López, S.; Olivares-Pérez, A.; Fuentes-Tapia, I.; Pinto-Iguanero, B.
2011-09-01
Cactus nopal dye is introduced into a polyvinyl alcohol matrix achieving a like brown appearance thick film, such that they can be used as a recording medium. This dye material provides excellent property as photosensitizer, i.e., easy handling, low cost and can be used in real time holographic recording applications. The experimental results show the diffraction efficiencies obtained by recording grating patterns induced by a He-Cd laser (442nm). For the samples, a thick film of polyvinyl alcohol and dye from cactus nopal was deposited by the gravity technique on a glass substrate. This mixture dries to form a photosensitive emulsion.
Digital holographic microscopy characterization of superdirective beam by metamaterial.
Di Caprio, Giuseppe; Dardano, Principia; Coppola, Giuseppe; Cabrini, Stefano; Mocella, Vito
2012-04-01
Digital holographic microscopy (DHM) has been successfully applied for the first time to characterize the radiative out-of-plane emission properties of a superdirective device. Complementarily to near-field microscopy, DHM allows us to reconstruct the beam in the far-field region. The angular dispersion of the light beam radiated from a grating composed of air and anti-air metamaterial has been determined, and the proposed technique has highlighted a collimation degree higher than 0.04°, as already evaluated in a previous work. Further considerations on the retrieved phase map of the beam in the acquisition plane are presented.
A remarkably efficient azobenzene peptide for holographic information storage
DEFF Research Database (Denmark)
Rasmussen, P.H.; Ramanujam, P.S.; Hvilsted, S.
1999-01-01
A new family of proline-based azobenzene peptides (DNO) for holographic information storage is reported.:By use of polarization holography, it was found that gratings with extraordinarily high diffraction efficiency (up to 80%) can be recorded in hundreds of milliseconds in a similar to 13-mu m......-thick film of dimer 10. This represents a decrease of the response time by more than 2 orders of magnitude when compared to that of the ornithine-based DNO dimer previously reported. Furthermore, it supports the expectation that increasing the rigidity of the peptide backbone is: crucial in the design...
Review of the design and manufacturing procedures for large-format holographic optical elements
Stojanoff, Christo G.; Schuette, Hartmut; Schulat, Jochen; Froning, Philipp
1998-10-01
The objective of this research program was the development of the technology for the industrial manufacturing of HOEs for technical applications such as: holographic solar concentrators for utilization in photovoltaic energy conversion and solar photochemistry, and integrated holographic stacks for daylighting, glazing and shading in buildings. Some of the fabricated HOEs exhibit apertures in the order of 8 square meters. The accomplished technology facilitates the continuous fabrication of the holographic films on glass or plastic substrata. The standard holographic material we use for the fabrication of HOEs is dichromated gelatin (DCG) on glass or plastic film (PET) substrata. The dichromated gelatin layer could be prepared with different compositions to accommodate the desired exposures and chemical processing procedures. At present we manufacture holographic plates on glass substrata in sizes of up to 1 meter square. The holographic film on plastic substratum is 20 cm wide and could be made in lengths of hundredths of meters. The inexpensive fabrication of such large formats is attained by automation of the entire process: film manufacturing, hologram copying, development and test. We present in this paper the design considerations and the developed manufacturing procedures. These comprise the fabrication of large format reflective holograms for concentrating mirrors and the copying of transmissive holograms, such as gratings and lenses, using in-plane contact copying in checkerboard arrangement or rotating drum continuous copying onto an endless plastic film.
Deriving covariant holographic entanglement
Dong, Xi; Lewkowycz, Aitor; Rangamani, Mukund
2016-11-01
We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Rényi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.
Deriving covariant holographic entanglement
Dong, Xi; Rangamani, Mukund
2016-01-01
We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Renyi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.
Vorticity in holographic fluids
Caldarelli, Marco M; Petkou, Anastasios C; Petropoulos, P Marios; Pozzoli, Valentina; Siampos, Konstadinos
2012-01-01
In view of the recent interest in reproducing holographically various properties of conformal fluids, we review the issue of vorticity in the context of AdS/CFT. Three-dimensional fluids with vorticity require four-dimensional bulk geometries with either angular momentum or nut charge, whose boundary geometries fall into the Papapetrou--Randers class. The boundary fluids emerge in stationary non-dissipative kinematic configurations, which can be cyclonic or vortex flows, evolving in compact or non-compact supports. A rich network of Einstein's solutions arises, naturally connected with three-dimensional Bianchi spaces. We use Fefferman--Graham expansion to handle holographic data from the bulk and discuss the alternative for reversing the process and reconstruct the exact bulk geometries.
Energy Technology Data Exchange (ETDEWEB)
Kim, Eun-Hee; Jung, Yeon-Gil, E-mail: jungyg@changwon.ac.kr
2015-12-01
Simultaneous angular multiplexing of transmission gratings in a holographic polymer dispersed liquid crystal (HPDLC) film as a function of resin and film compositions, irradiation intensity, and cell thickness has been studied by exposing the material to three coherent laser beams. It was found that the diffraction efficiency monotonically increases with irradiation intensity and cell gap, whereas a maximum of 43% is obtained at specific compositions of trimethylolpropane triacrylate (TMPTA)/N-vinylpyrrolidone (NVP) = 8/1 and polymer/LC = 65/35. The multiplexed gratings have been captured using SEM imaging and the reconstructed images using a charge-coupled device camera, showing successful reconstructed images of gratings. - Highlights: • Multiplex images were well recorded using simultaneous angular method. • The periodic structures of the LC and polymer regions were well prepared. • The angular selectivity was variable nevertheless fabrication by three beams. • The images were successfully reconstructed in gratings of same spot.
Luminet, Jean-Pierre
2016-01-01
I give a critical review of the holographic hypothesis, which posits that a universe with gravity can be described by a quantum field theory in fewer dimensions. I first recall how the idea originated from considerations on black hole thermodynamics and the so-called information paradox that arises when Hawking radiation is taken into account. String Quantum Gravity tried to solve the puzzle using the AdS/CFT correspondence, according to which a black hole in a 5-D anti-de Sitter space is like a flat 4-D field of particles and radiation. Although such an interesting holographic property, also called gauge/gravity duality, has never been proved rigorously, it has impulsed a number of research programs in fields as diverse as nuclear physics, condensed matter physics, general relativity and cosmology. I finally discuss the pros and cons of the holographic conjecture, and emphasizes the key role played by black holes for understanding quantum gravity and possible dualities between distant fields of theoretical p...
Holographic entanglement entropy
Rangamani, Mukund
2017-01-01
This book provides a comprehensive overview of developments in the field of holographic entanglement entropy. Within the context of the AdS/CFT correspondence, it is shown how quantum entanglement is computed by the area of certain extremal surfaces. The general lessons one can learn from this connection are drawn out for quantum field theories, many-body physics, and quantum gravity. An overview of the necessary background material is provided together with a flavor of the exciting open questions that are currently being discussed. The book is divided into four main parts. In the first part, the concept of entanglement, and methods for computing it, in quantum field theories is reviewed. In the second part, an overview of the AdS/CFT correspondence is given and the holographic entanglement entropy prescription is explained. In the third part, the time-dependence of entanglement entropy in out-of-equilibrium systems, and applications to many body physics are explored using holographic methods. The last part f...
Kim, J M; Choi, B S; Kim, S I; Kim, J M; Bjelkhagen, H I; Phillips, N J
2001-02-10
Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOE's). The drawback of DCG is its low sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-high-resolution silver halide emulsions. An optimized processing technique for transmission HOE's recorded in these materials is introduced. Diffraction efficiencies over 90% can be obtained for transmissive diffraction gratings. Understanding the importance of the selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOE's.
Iwata, Fujio
2001-06-01
Toppan Printing Co., Ltd. originated the name of 'grating image'. It means an image that consists of diffraction grating dots that look similar to the halftone dots of conventional printing. We proposed this new display method using simple gratings in order to enhance the visual effects when illumination is made by a fluorescent lamp. We considered the use of simple gratings as elemental dots, and used a number of elemental dots to display a 2D image. This method produces an effect something like the halftone dots of printing. The grating image technology grows from its starting to become able to produce 3D images and a 3D-video system using an electron beam grating-writing system.
A set of innovative immersed grating based spectrometer designs for METIS
Agócs, T.; Navarro, R.; Venema, L.; Amerongen, A.H. van; Tol, P.J.J.; Brug, H. van; Brandl, B.R.; Molster, F.; Todd, S.
2014-01-01
We present innovative, immersed grating based optical designs for the SMO (Spectrograph Main Optics) module of the Mid-infrared E-ELT Imager and Spectrograph, METIS. The immersed grating allows a significant reduction of SMO volume compared to conventional echelle grating designs, because the diffra
Iwata, Fujio
1995-07-01
The word 'grating image' was first named by Toppan Printing Company, Ltd. It means that an image consists of grating dots. In 1988, we presented this new technology at the Optical Security Systems Symposium, in Switzerland. Then it was improved and applied in display application. Recently, it was further applied in 3D video systems. In this report, the development history and the recent situations of grating image technology are described.
Holographic predictions for cosmological 3-point functions
Bzowski, A.; McFadden, P.; Skenderis, K.
2012-01-01
We present the holographic predictions for cosmological 3-point correlators, involving both scalar and tensor modes, for a universe which started in a non-geometric holographic phase. Holographic formulae relate the cosmological 3-point functions to stress tensor correlation functions of a holograph
Laser addressed holographic memory system
Gange, R. A.; Wagle, E. M.; Steinmetz, C. C.
1973-01-01
Holographic recall and storage system uses red-lipid microcrystalline wax as storage medium. When laser beam strikes wax, its energy heats point of incidence enough to pass wax through transition temperature. Holograph image can then be written or erased in softened wax.
Institute of Scientific and Technical Information of China (English)
Gong Qiao-Xia; Wang Su-Lian; Huang Ming-Ju; Gan Fu-Xi
2005-01-01
A new polyvinylalcohol-based photopolymeric holographic recording material has been developed. The recording is obtained by the copolymerization of acrylamide and N-hydroxymethyl acrylamide. Diffraction efficiencies near 50% are obtained with energetic exposure of 80m J/cm2. N-hydroxymethyl acrylamide can improve the optical quality of the film. With the increase of the concentration of N-hydroxymethyl acrylamide, the flatness of the film increases, scattering reduces and the straight image is clearer with a small distortion. The postexposure effect on the grating is also studied.The diffraction efficiency of grating increases further during postexposure, gradient of monomer exists after exposure.
Holographic representation of local bulk operators
Hamilton, A; Lifschytz, G; Lowe, D A; Hamilton, Alex; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.
2006-01-01
The Lorentzian AdS/CFT correspondence implies a map between local operators in supergravity and non-local operators in the CFT. By explicit computation we construct CFT operators which are dual to local bulk fields in the semiclassical limit. The computation is done for general dimension in global, Poincare and Rindler coordinates. We find that the CFT operators can be taken to have compact support in a region of the complexified boundary whose size is set by the bulk radial position. We show that at finite N the number of independent commuting operators localized within a bulk volume saturates the holographic bound.
Research and development of a stabilizing holographic interference fringe system based on linear CCD
Li, Chaoming; Chen, Xinrong; Wu, Jianhong; Ju, Jianzhi; Zhu, Yayi; Hu, Zuyuan
2009-07-01
A method that is to stabilize holographic interference fringe during holographic recording process is put forward in this paper. As the kernel of this method, a negative feedback system based on linear CCD and piezoelectric ceramics (PZT) which is used to compensate the interference fringe random drift caused by various external vibrations in long time recording process was introduced in details. The proportion-integral-derivative method (PID) is adopted to control the moving of PZT which is used to compensate the drift of the interference fringes accurately. Thus the interference fringe can be frozen. Experiment results shows that this negative feedback system by controlling the optical path difference can effectively compensate the interference fringe random drift caused by various external vibrations in long time recording process. After using this system, the mean squared error of the interference fringe drift value can be under λ / 60 and the quality of the holographic grating is improved greatly.
A holographic bound for D3-brane
Energy Technology Data Exchange (ETDEWEB)
Momeni, Davood; Myrzakul, Aizhan; Myrzakulov, Ratbay [Eurasian National University, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Eurasian National University, Department of General Theoretical Physics, Astana (Kazakhstan); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom)
2017-06-15
In this paper, we will regularize the holographic entanglement entropy, holographic complexity and fidelity susceptibility for a configuration of D3-branes. We will also study the regularization of the holographic complexity from the action for a configuration of D3-branes. It will be demonstrated that for a spherical shell of D3-branes the regularized holographic complexity is always greater than or equal to the regularized fidelity susceptibility. Furthermore, we will also demonstrate that the regularized holographic complexity is related to the regularized holographic entanglement entropy for this system. Thus, we will obtain a holographic bound involving regularized holographic complexity, regularized holographic entanglement entropy and regularized fidelity susceptibility of a configuration of D3-brane. We will also discuss a bound for regularized holographic complexity from action, for a D3-brane configuration. (orig.)
Measurement of anisotropic energy transport in flowing polymers by using a holographic technique
Schieber, Jay D.; Venerus, David C.; Bush, Kendall; Balasubramanian, Venkat; SMOUKOV, Stoyan
2004-01-01
Almost no experimental data exist to test theories for the nonisothermal flow of complex fluids. To provide quantitative tests for newly proposed theories, we have developed a holographic grating technique to study energy transport in an amorphous polymer melt subject to flow. Polyisobutylene with weight-averaged molecular mass of 85 kDa is sheared at a rate of 10 s–1, and all nonzero components of the thermal conductivity tensor are measured as a function of time, after cessation. Our result...
Real Observers and the Holographic Principle
Dance, M C
2004-01-01
The holographic principle asserts that the observable number of degrees of freedom inside a volume is proportional not to the volume, but to the surface area bounding the volume. There is currently a need to explain the principle in terms of a more fundamental microscopic theory. This paper suggests a potential explanation. This paper suggests that in general, for an observer to observe the r coordinate of an event, the process of making that observation must generate at least as much entropy as the information that the observation gains. Following on from that, this paper sets out a simple argument that leads to the result that observers on the surface of a sphere can observe an amount of information about the enclosed system that is no more than an amount that is proportional to the surface area of the sphere.
An elastomeric grating coupler
Kocabas, A.; Ay, F.; Dana, A.; Aydinli, A.
2006-01-01
We report on a novel nondestructive and reversible method for coupling free space light to planar optical waveguides. In this method, an elastomeric grating is used to produce an effective refractive index modulation on the surface of the optical waveguide. The external elastomeric grating binds to
DEFF Research Database (Denmark)
Zhang, C.; Webb, D.J.; Kalli, K.
We report for the first time fibre Bragg grating inscription in microstructured optical fibre fabricated from Topas® cyclic olefin copolymer. The temperature sensitivity of the grating was studied revealing a positive Bragg wavelength shift of approximately 0.8 nmK-1,the largest sensitivity yet...
Holographic interference filters
Diehl, Damon W.
Holographic mirrors have wavelength-selection properties and thus qualify as a class of interference filters. Two theoretical methods for analyzing such structures are developed. The first method uses Hill's matrix method to yield closed-forms solutions in terms of the Floquet-Bloch waves within a periodic structure. A process is developed for implementing this solution method on a computer, using sparse-matrix memory allocation, numerical root-finding algorithms, and inverse-iteration techniques. It is demonstrated that Hill's matrix method is valid for the analysis of finite and multi-periodic problems. The second method of theoretical analysis is a transfer-matrix technique, which is herein termed thin-film decomposition. It is shown that the two methods of solution yield results that differ by, at worst, a fraction of a percent. Using both calculation techniques, a number of example problems are explored. Of key importance is the construction of a set of curves that are useful for the design and characterization of holographic interference filters. In addition to the theoretical development, methods are presented for the fabrication of holographic interference filters using DuPont HRF-800X001 photopolymer. Central to the exposure system is a frequency-stabilized, tunable dye laser. The types of filters fabricated include single-tone reflection filters, two types of multitone reflection filters, and reflection filters for infrared wavelengths. These filters feature index profiles that are not easily attainable through other fabrication methods. As a supplement to the body of the dissertation, the computer algorithms developed to implement Hill's matrix method and thin-film decomposition are also included as an appendix. Further appendices provide more information on Floquet's theorem and Hill's matrix method. A final appendix presents a design for an infrared laser spectrophotometer.
Triple Encrypted Holographic Storage and Digital Holographic System
Institute of Scientific and Technical Information of China (English)
ZHU Yi-Chao; ZHANG Jia-Sen; GONG Qi-Huang
2008-01-01
We propose a triple encrypted holographic memory containing a digital holographic system. The original image is encrypted using double random phase encryption and stored in a LiNbO3:Fe crystal with shift-multiplexing. Both the reference beams of the memory and the digital holographic system are random phase encoded. We theoretically and experimentally demonstrate the encryption and decryption of multiple images and the results show high quality and good fault tolerance. The total key length of this system is larger than 4.7×1033.
Holographic Magnetisation Density Waves
Donos, Aristomenis
2016-01-01
We numerically construct asymptotically $AdS$ black brane solutions of $D=4$ Einstein theory coupled to a scalar and two $U(1)$ gauge fields. The solutions are holographically dual to $d=3$ CFTs in a constant external magnetic field along one of the $U(1)$'s. Below a critical temperature the system's magnetisation density becomes inhomogeneous, leading to spontaneous formation of current density waves. We find that the transition can be of second order and that the solutions which minimise the free energy locally in the parameter space of solutions have averaged stressed tensor of a perfect fluid.
Holographic charge density waves
Donos, Aristomenis
2013-01-01
We show that strongly coupled holographic matter at finite charge density can exhibit charge density wave phases which spontaneously break translation invariance while preserving time-reversal and parity invariance. We show that such phases are possible within Einstein-Maxwell-dilaton theory in general spacetime dimensions. We also discuss related spatially modulated phases when there is an additional coupling to a second vector field, possibly with non-zero mass. We discuss how these constructions, and others, should be associated with novel spatially modulated ground states.
Holographic charge density waves
Donos, Aristomenis; Gauntlett, Jerome P.
2013-06-01
We show that strongly coupled holographic matter at finite charge density can exhibit charge density wave phases which spontaneously break translation invariance while preserving time-reversal and parity invariance. We show that such phases are possible within Einstein-Maxwell-dilaton theory in general spacetime dimensions. We also discuss related spatially modulated phases when there is an additional coupling to a second vector field, possibly with nonzero mass. We discuss how these constructions, and others, should be associated with novel spatially modulated ground states.
Holographic effective field theories
Energy Technology Data Exchange (ETDEWEB)
Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)
2016-06-28
We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.
Explaining Holographic Dark Energy
Directory of Open Access Journals (Sweden)
Shan Gao
2013-10-01
Full Text Available The possible holographic origin of dark energy is investigated. The main existing explanations, namely the UV/IR connection argument of Cohen et al., Thomas’ bulk holography argument, and Ng’s spacetime foam argument, are shown to be not wholly satisfactory. A new explanation is then proposed based on the ideas of Thomas and Ng. It is suggested that dark energy originates from the quantum fluctuations of spacetime limited by the event horizon of the universe. Several potential problems of the explanation are also discussed.
Holographic quantum computing.
Tordrup, Karl; Negretti, Antonio; Mølmer, Klaus
2008-07-25
We propose to use a single mesoscopic ensemble of trapped polar molecules for quantum computing. A "holographic quantum register" with hundreds of qubits is encoded in collective excitations with definite spatial phase variations. Each phase pattern is uniquely addressed by optical Raman processes with classical optical fields, while one- and two-qubit gates and qubit readout are accomplished by transferring the qubit states to a stripline microwave cavity field and a Cooper pair box where controllable two-level unitary dynamics and detection is governed by classical microwave fields.
Geller, Michael; Telem, Ofri
2015-05-15
We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.
Digital color management in full-color holographic three-dimensional printer.
Yang, Fei; Murakami, Yuri; Yamaguchi, Masahiro
2012-07-01
We propose a new method of color management for a full-color holographic, three-dimensional (3D) printer, which produces a volume reflection holographic stereogram using red, green, and blue three-color lasers. For natural color management in the holographic 3D printer, we characterize its color reproduction characteristics based on the spectral measurement of reproduced light. Then the color conversion formula, which comprises a one-dimensional lookup table and a 3×3 matrix, was derived from the measurement data. The color reproducibility was evaluated by printing a color chart hologram, and the average CIELAB ΔE=13.19 is fairly small.
Direct laser writing defects in holographic lithography-created photonic lattices.
Sun, Hong-Bo; Nakamura, Atsushi; Kaneko, Koshiro; Shoji, Satoru; Kawata, Satoshi
2005-04-15
As a well-established laser fabrication approach, holographic lithography, or multibeam interference patterning, is known for its capability to create long-range ordered large-volume photonic crystals (PhCs) rapidly. Its broad use is, however, hampered by difficulty in inducing artificially designed defects for device functions. We use pinpoint femtosecond laser ablation to remove and two-photon photopolymerization to add desired defective features to obtain photonic acceptors and photonic donors, respectively, in an otherwise complete PhC matrix produced by holographic lithography. The combined use of the two direct laser writing technologies would immediately make holographic lithography a promising industrial tool for PhC manufacture.
A wideband sensitive holographic photopolymer
Institute of Scientific and Technical Information of China (English)
Mingju Huang; Sulian Wang; Airong Wang; Qiaoxia Gong; Fuxi Gan
2005-01-01
A novel wideband sensitive dry holographic photopolymer sensitized by rose bengal (RB) and methylene blue (MB) is fabricated, the holographic storage characteristics of which are investigated under different exposure wavelengths. The result shows that the sensitive spectral band exceeds 200 nm in visible light range, the maximum diffraction efficiency under different exposure wavelengths is more than 40% and decreases with the decrease of exposure wavelength, the exposure sensitivity is not change with the exposure wavelength.This photopolymer is appropriate for wavelength multiplexing or multi-wavelength recording in digital holographic storage.
Introduction to Holographic Superconductor Models
Cai, Rong-Gen; Li, Li-Fang; Yang, Run-Qiu
2015-01-01
In the last years it has been shown that some properties of strongly coupled superconductors can be potentially described by classical general relativity living in one higher dimension, which is known as holographic superconductors. This paper gives a quick and introductory overview of some holographic superconductor models with s-wave, p-wave and d-wave orders in the literature from point of view of bottom-up, and summarizes some basic properties of these holographic models in various regimes. The competition and coexistence of these superconductivity orders are also studied in these superconductor models.
Hopwood, Anthony I.
1991-10-01
This paper discusses a new type of holographic overlay, FLASHPRINT, which may be used in both security and packaging applications. Unlike the more common embossed holograms currently used, FLASHPRINT leads to reduced set-up costs and offers a simpler process. This reduces the long lead times characteristic of the existing technology and requires the customer to provide only two-dimensional artwork. The overlay material contains a covert 2-D image. The image may be switched on or off by simply tilting the overlay in a light source. The overlay is replayed in the 'on' position to reveal the encoded security message as a highly saturated gold colored image. This effect is operable for a wide range of lighting conditions and viewing geometries. In the 'off' position the overlay is substantially transparent. These features make the visual effect of the overlay attractive to incorporate into product design. They may be laminated over complex printed artwork such as labels and security passes without masking the printed message. When switched 'on' the image appears both sharp and more than seven times brighter than white paper. The image remains sharp and clear even in less favorable lighting conditions. Although the technique offers a low set-up cost for the customer, through its simplicity, it remains as technically demanding and difficult to counterfeit as any holographic process.
Cryogenic holographic distortion testing
Michel, David G.
1994-06-01
Hughes cryogenic holographic test facility allows for the rapid characterization of optical components and mechanical structures at elevated and reduced temperatures. The facility consists of a 1.6 meter diameter thermal vacuum chamber, vibration isolated experiment test platform, and a holographic camera assembly. Temperatures as low as 12 Kelvin and as high as 350 Kelvin have been demonstrated. Complex aspheric mirrors are tested without the need for auxiliary null lenses and may be tested in either the polished or unpolished state. Structural elements such as optical benches, solar array panels, and spacecraft antennas have been tested. Types of materials tested include beryllium, silicon carbide, aluminum, graphite epoxy, silicon/aluminum matrix material and injection molded plastics. Sizes have ranged from 7 cm X 15 cm to 825 cm X 1125 cm and have weighed as little as 0.2 Kg and as much as 130 Kg. Surface figure changes as little as (lambda) /10 peak-to-valley ((lambda) equals .514 micrometers ) are routinely measured.
Vahey, D. W.
1982-01-01
Comparator is integrated-optical system constructed on a LiNb03sub. waveguide chip. Only the laser, lens and detector are external to chip. Aluminized surface gratings serve as input coupler and beam splitter. Light beams striking edges are returned by ordinary total internal reflection. Three operating modes are possible: A "screening" mode, an "identification" mode and a novel "self-subtraction" mode.
Institute of Scientific and Technical Information of China (English)
彭飞; 杨德兴; 张攀; 康明武; 周拥军; 马百恒
2013-01-01
以Kogelnik耦合波理论为基础,从理论上分析了反射体全息光栅衍射效率的影响因素,提出了采用多光栅重叠衍射拓展体全息光栅角带宽的方法.针对衍射均匀性的要求,分析了多重光栅重叠衍射的物理过程,给出了相邻光栅拼接时的布拉格角偏移量,得到了多重光栅衍射角带宽随光栅重数和折射率调制度的变化关系.理论计算结果表明,多重光栅衍射角带宽与多重光栅数量和光栅折射率调制度均呈现出线性增加的关系.在合适的折射率调制度下,通过增加光栅数量可显著增加衍射角带宽.
Laser formation of Bragg gratings in polymer nanocomposite materials
Energy Technology Data Exchange (ETDEWEB)
Nazarov, M M; Khaydukov, K V; Sokolov, V I; Khaydukov, E V [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation)
2016-01-31
The method investigated in this work is based on the laser-induced, spatially inhomogeneous polymerisation of nanocomposite materials and allows control over the motion and structuring of nanoparticles. The mechanisms of nanoparticle concentration redistribution in the process of radical photopolymerisation are studied. It is shown that under the condition of spatially inhomogeneous illumination of a nanocomposite material, nanoparticles are diffused from the illuminated areas into the dark fields. Diffraction gratings with a thickness of 8 μm and a refractive index modulation of 1 × 10{sup -2} are written in an OCM-2 monomer impregnated by silicon nanoparticles. The gratings may be used in the development of narrowband filters, in holographic information recording and as dispersion elements in integrated optical devices. (interaction of laser radiation with matter. laser plasma)
Comparison of holographic lens and filter systems for lateral spectrum splitting
Vorndran, Shelby; Chrysler, Benjamin; Kostuk, Raymond K.
2016-09-01
Spectrum splitting is an approach to increasing the conversion efficiency of a photovoltaic (PV) system. Several methods can be used to perform this function which requires efficient spatial separation of different spectral bands of the incident solar radiation. In this paper several of holographic methods for implementing spectrum splitting are reviewed along with the benefits and disadvantages associated with each approach. The review indicates that a volume holographic lens has many advantages for spectrum splitting in terms of both power conversion efficiency and energy yield. A specific design for a volume holographic spectrum splitting lens is discussed for use with high bandgap InGaP and low bandgap silicon PV cells. The holographic lenses are modeled using rigorous coupled wave analysis, and the optical efficiency is evaluated using non-sequential raytracing. A proof-of-concept off-axis holographic lens is also recorded in dichromated gelatin film and the spectral diffraction efficiency of the hologram is measured with multiple laser sources across the diffracted spectral band. The experimental volume holographic lens (VHL) characteristics are compared to an ideal spectrum splitting filter in terms of power conversion efficiency and energy yield in environments with high direct normal incidence (DNI) illumination and high levels of diffuse illumination. The results show that the experimental VHL can achieve 62.5% of the ideal filter power conversion efficiency, 64.8% of the ideal filter DNI environment energy yield, and 57.7% of the ideal diffuse environment energy yield performance.
Generalized Semi-Holographic Universe
Li, Hui; Zhang, Yi
2012-01-01
We study the semi-holographic idea in context of decaying dark components. The energy flow between dark energy and the compensating dark matter is thermodynamically generalized to involve a particle number variable dark component with non-zero chemical potential. It's found that, unlike the original semi-holographic model, no cosmological constant is needed for a dynamical evolution of the universe. A transient phantom phase appears while a non-trivial dark energy-dark matter scaling solution keeps at late time, which evades the big-rip and helps to resolve the coincidence problem. For reasonable parameters, the deceleration parameter is well consistent with current observations. The original semi-holographic model is extended and it also suggests that the concordance model may be reconstructed from the semi-holographic idea.
Adventures in Holographic Dimer Models
Energy Technology Data Exchange (ETDEWEB)
Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Karch, Andreas; /Washington U., Seattle; Yaida, Sho; /Stanford U., Phys. Dept.
2011-08-12
We abstract the essential features of holographic dimer models, and develop several new applications of these models. Firstly, semi-holographically coupling free band fermions to holographic dimers, we uncover novel phase transitions between conventional Fermi liquids and non-Fermi liquids, accompanied by a change in the structure of the Fermi surface. Secondly, we make dimer vibrations propagate through the whole crystal by way of double trace deformations, obtaining nontrivial band structure. In a simple toy model, the topology of the band structure experiences an interesting reorganization as we vary the strength of the double trace deformations. Finally, we develop tools that would allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard model.
Code properties from holographic geometries
Pastawski, Fernando
2016-01-01
Almheiri, Dong, and Harlow [hep-th/1411.7041] proposed a highly illuminating connection between the AdS/CFT holographic correspondence and operator algebra quantum error correction (OAQEC). Here we explore this connection further. We derive some general results about OAQEC, as well as results that apply specifically to quantum codes which admit a holographic interpretation. We introduce a new quantity called `price', which characterizes the support of a protected logical system, and find constraints on the price and the distance for logical subalgebras of quantum codes. We show that holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit `uberholography', meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure. We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive curvature, the boundary physics must be highly nonlocal, an observation with potential implications for black holes and for q...
Marshall, Christopher David
A general theoretical and experimental treatment of transient grating diffraction is developed for interfacial holographic gratings in thin film structures. The gratings are assumed to have nonuniform spatial amplitude throughout the sample. Both reflection and transmission diffraction geometries are examined where the probe beam is incident on either side of the film-substrate interface with the grating wave-vector parallel to the interface. For samples in which the grating amplitude perpendicular to the sample interface varies slowly relative to the optical wavelength, the majority of the reflection geometry signal amplified is shown to arise from the surface or interfacial region. In contrast, the transmission geometry signal amplitude is dominated by contributions from the bulk of the sample. Three different material systems are examined. The first is a thin (impedance matching. The frequency, wave-vector, and acoustic damping rate of high frequency (>1 GHz) acoustic Rayleigh waveguide modes are measured in the YBCO films from 17 to 300 K.
Directly photoinscribed refractive index change and Bragg gratings in Ohara WMS-15 glass ceramic.
Krug, Peter A; Rogojan, Rodica Matei; Albert, Jacques
2009-06-20
We inscribed thick volume gratings in WMS-15 glass ceramic by ultraviolet light at 193 and 248 nm. Unlike earlier work in ceramic materials, the inscription process modified the optical properties of the material without the need for any additional chemical or thermal processing. Experimental evidence from measurements of grating growth, thermal annealing, and spectral absorption indicates that two distinct physical mechanisms are responsible for the grating formation. Weak, easily thermally bleached gratings resulted from exposure fluences below 0.3 kJ/cm2. Optical absorption measurements suggest that these low fluence gratings are predominantly absorption gratings. More thermally stable gratings, found to be refractive index gratings with unsaturated refractive index modulation amplitude as large as 6 x 10(-5) were formed at cumulative fluences of 1 kJ/cm2 and above.
Akbari, Hoda; Naydenova, Izabela; Martin, Suzanne
2014-03-01
A holographic device is under development that aims to improve light collection in solar cells. The aim is to explore the potential of using photopolymer holographic optical elements (HOEs) to collect light from a moving source, such as the sun, and redirect it for concentration by a holographic lens. A working range of 45° is targeted for such a device to be useful in solar applications without tracking. A photopolymer HOE is capable of efficiently redirecting light, but the angular selectivity of a single grating is usually of the order of one degree at the thicknesses required for high efficiency. The challenge here is to increase the angular and wavelength range of the gratings so that a reasonable number may be multiplexed and/or combined to create a device that can concentrate light incident from a large range of angles. In this paper, low spatial frequency holographic recording is explored to increase the angular and wavelength range of an individual grating. Ultimately, a combination of gratings will be used so that a broad range of angles of incidence are accepted. A design is proposed for the combination of such elements into a holographic solar collector. The first step in achieving this is optimization of recording at low spatial frequency. This requires a photopolymer material with unique properties, such as a fast monomer diffusion rate. This paper reports results on the efficiency of holograms recorded in an acrylamide-based photopolymer at low spatial frequencies (100, 200, and 300 l/mm). The diffraction efficiency and angular selectivity of recorded holograms have been studied for various photopolymer layer thicknesses and different intensities of the recording beams. A diffraction efficiency of over 80% was achieved at a spatial frequency of 200 l/mm. The optimum intensity of recording at this spatial frequency was found to be 1 mW/cm2. Individual gratings and focusing elements with high efficiency and FWHM angles of 3° are
Production of the laminar gratings in the VUV and soft x-ray region
Energy Technology Data Exchange (ETDEWEB)
Sato, Makoto; Sasai, Hiroyuki; Sano, Kazuo; Harada, Yoshihisa [Shimadzu Corp., Production Engineering Laboratory, Kyoto (Japan)
2000-03-01
The appearance of third-generation synchrotron radiation sources has demanded the high performance grazing-incidence monochromators for VUV and soft x-ray region. Also the diffraction gratings which were optical elements have been required the characteristic of high heat-resistant, well cooling, with a large size and low-micro- roughness. In this paper, how to product of the laming gratings by means of holographic exposure method and ion-beam etching technology, with direct etched in the silicon crystal blank are reviewed. (author)
Hyperspectral holographic Fourier-microscopy
Energy Technology Data Exchange (ETDEWEB)
Kalenkov, G S [Moscow Institute of Physics and Technology (State University), Moscow (Russian Federation); Kalenkov, S G [Moscow State University of Mechanical Engineering, Moscow (Russian Federation); Shtan' ko, A E [Moscow State University of Technology ' Stankin' , Moscow (Russian Federation)
2015-04-30
A detailed theory of the method of holographic recording of hyperspectral wave fields is developed. New experimentally obtained hyperspectral holographic images of microscopic objects are presented. The possibilities of the method are demonstrated experimentally using the examples of urgent microscopy problems: speckle noise suppression, obtaining hyperspectral image of a microscopic object, as well as synthesis of a colour image and obtaining an optical profile of a phase object. (holography)
Holo-GPC: Holographic Generalized Phase Contrast
DEFF Research Database (Denmark)
Bañas, Andrew; Glückstad, Jesper
2017-01-01
Light shaping methods based on spatial phase-only modulation can be classified depending on whether they distribute multiple beams or shape the individual beams. Diffractive optics or holography can be classified as the former, as it spatially distributes a plurality of focal spots over a working...... volume. On the other hand, Generalized Phase Contrast (GPC) forms beams with well-defined lateral shapes and could be classified as the latter. To certain extents, GPC and holography can also perform both beam distribution and beam shaping. But despite the overlap in beam distribution and beam shaping...... of GPC in forming well-defined speckle-free shapes that can be distributed over an extended 3D volume through holographic means. The combined strengths of the two photon-efficient phase-only light shaping modalities open new possibilities for contemporary laser sculpting applications....
Segmented holographic spectrum splitting concentrator
Ayala, Silvana P.; Vorndran, Shelby; Wu, Yuechen; Chrysler, Benjamin; Kostuk, Raymond K.
2016-09-01
This paper presents a segmented parabolic concentrator employing holographic spectral filters that provide focusing and spectral bandwidth separation capability to the system. Strips of low band gap silicon photovoltaic (PV) cells are formed into a parabolic surface as shown by Holman et. al. [1]. The surface of the PV segments is covered with holographic elements formed in dichromated gelatin. The holographic elements are designed to transmit longer wavelengths to silicon cells, and to reflect short wavelength light towards a secondary collector where high-bandgap PV cells are mounted. The system can be optimized for different combinations of diffuse and direct solar illumination conditions for particular geographical locations by controlling the concentration ratio and filtering properties of the holographic elements. In addition, the reflectivity of the back contact of the silicon cells is used to increase the optical path length and light trapping. This potentially allows the use of thin film silicon for the low bandgap PV cell material. The optical design combines the focusing properties of the parabolic concentrator and the holographic element to control the concentration ratio and uniformity of the spectral distribution at the high bandgap cell location. The presentation concludes with a comparison of different spectrum splitting holographic filter materials for this application.
Taylor, Marika
2016-01-01
The F theorem states that, for a unitary three dimensional quantum field theory, the F quantity defined in terms of the partition function on a three sphere is positive, stationary at fixed point and decreases monotonically along a renormalization group flow. We construct holographic renormalization group flows corresponding to relevant deformations of three-dimensional conformal field theories on spheres, working to quadratic order in the source. For these renormalization group flows, the F quantity at the IR fixed point is always less than F at the UV fixed point, but F increases along the RG flow for deformations by operators of dimension $3/2 < \\Delta < 5/2$. Therefore the strongest version of the F theorem is in general violated.
Losing Forward Momentum Holographically
Balasubramanian, Koushik
2013-01-01
We present a numerical scheme for solving Einstein's Equations in the presence of a negative cosmological constant and an event horizon with planar topology. Our scheme allows for the introduction of a particular metric source at the conformal boundary. Such a spacetime has a dual holographic description in terms of a strongly interacting quantum field theory at nonzero temperature. By introducing a sinusoidal static metric source that breaks translation invariance, we study momentum relaxation in the field theory. In the long wavelength limit, our results are consistent with the fluid-gravity correspondence and relativistic hydrodynamics. In the small amplitude limit, our results are consistent with the memory function prediction for the momentum relaxation rate. Our numerical scheme allows us to study momentum relaxation outside these two limits as well.
Brünner, Frederic; Rebhan, Anton
2014-01-01
We announce new results on glueball decay rates in the Sakai-Sugimoto model, a realization of holographic QCD from first principles that has only one coupling constant and an overall mass scale as free parameters. We extend a previous investigation by Hashimoto, Tan, and Terashima who have considered the lowest scalar glueball which arises from a somewhat exotic polarization of supergravity modes and whose mass is uncomfortably small in comparison with lattice results. On the other hand, the scalar glueball dual to the dilaton turns out to have a mass of about twice the mass of the rho meson (1487 MeV), very close to the scalar meson $f_0(1500)$ that is frequently interpreted as predominantly glue. Calculating the decay rate into two pions we find a surprisingly good agreement with experimental data for the $f_0(1500)$. We have also obtained decay widths for tensor and excited scalar glueballs, indicating universal narrowness.
Engineering holographic phase diagrams
Chen, Jiunn-Wei; Dai, Shou-Huang; Maity, Debaprasad; Zhang, Yun-Long
2016-10-01
By introducing interacting scalar fields, we tried to engineer physically motivated holographic phase diagrams which may be interesting in the context of various known condensed matter systems. We introduce an additional scalar field in the bulk which provides a tunable parameter in the boundary theory. By exploiting the way the tuning parameter changes the effective masses of the bulk interacting scalar fields, desired phase diagrams can be engineered for the boundary order parameters dual to those scalar fields. We give a few examples of generating phase diagrams with phase boundaries which are strikingly similar to the known quantum phases at low temperature such as the superconducting phases. However, the important difference is that all the phases we have discussed are characterized by neutral order parameters. At the end, we discuss if there exists any emerging scaling symmetry associated with a quantum critical point hidden under the dome in this phase diagram.
Holographic Special Relativity
Wise, Derek K
2013-01-01
We reinterpret special relativity, or more precisely its de Sitter deformation, in terms of 3d conformal geometry, as opposed to (3+1)d spacetime geometry. An inertial observer, usually described by a geodesic in spacetime, becomes instead a choice of ways to reverse the conformal compactification of a Euclidean vector space up to scale. The observer's "current time," usually given by a point along the geodesic, corresponds to the choice of scale in the decompactification. We also show how arbitrary conformal 3-geometries give rise to "observer space geometries," as defined in recent work, from which spacetime can be reconstructed under certain integrability conditions. We conjecture a relationship between this kind of "holographic relativity" and the "shape dynamics" proposal of Barbour and collaborators, in which conformal space takes the place of spacetime in general relativity. We also briefly survey related pictures of observer space, including the AdS analog and a representation related to twistor theor...
Covariant holographic entanglement negativity
Chaturvedi, Pankaj; Sengupta, Gautam
2016-01-01
We conjecture a holographic prescription for the covariant entanglement negativity of $d$-dimensional conformal field theories dual to non static bulk $AdS_{d+1}$ gravitational configurations in the framework of the $AdS/CFT$ correspondence. Application of our conjecture to a $AdS_3/CFT_2$ scenario involving bulk rotating BTZ black holes exactly reproduces the entanglement negativity of the corresponding $(1+1)$ dimensional conformal field theories and precisely captures the distillable quantum entanglement. Interestingly our conjecture for the scenario involving dual bulk extremal rotating BTZ black holes also accurately leads to the entanglement negativity for the chiral half of the corresponding $(1+1)$ dimensional conformal field theory at zero temperature.
Dissecting holographic conductivities
Davison, Richard A
2015-01-01
The DC thermoelectric conductivities of holographic systems in which translational symmetry is broken can be efficiently computed in terms of the near-horizon data of the dual black hole. By calculating the frequency dependent conductivities to the first subleading order in the momentum relaxation rate, we give a physical explanation for these conductivities in the simplest such example, in the limit of slow momentum relaxation. Specifically, we decompose each conductivity into the sum of a coherent contribution due to momentum relaxation and an incoherent contribution, due to intrinsic current relaxation. This decomposition is different from those previously proposed, and is consistent with the known hydrodynamic properties in the translationally invariant limit. This is the first step towards constructing a consistent theory of charged hydrodynamics with slow momentum relaxation.
Jokela, Niko; Järvinen, Matti; Lippert, Matthew
2017-04-01
Holographic models provide unique laboratories to investigate nonlinear physics of transport in inhomogeneous systems. We provide a detailed account of both dc and ac conductivities in a defect conformal field theory with spontaneous stripe order. The spatial symmetry is broken at large chemical potential, and the resulting ground state is a combination of a spin and charge density wave. An infinitesimal applied electric field across the stripes will cause the stripes to slide over the underlying density of smeared impurities, a phenomenon which can be associated with the Goldstone mode for the spontaneously broken translation symmetry. We show that the presence of a spatially modulated background magnetization current thwarts the expression of some dc conductivities in terms of horizon data.
Modern Theory of Gratings Resonant Scattering: Analysis Techniques and Phenomena
Sirenko, Yuriy K
2010-01-01
Diffraction gratings are one of the most popular objects of analysis in electromagnetic theory. The requirements of applied optics and microwave engineering lead to many new problems and challenges for the theory of diffraction gratings, which force us to search for new methods and tools for their resolution. In Modern Theory of Gratings, the authors present results of the electromagnetic theory of diffraction gratings that will constitute the base of further development of this theory, which meet the challenges provided by modern requirements of fundamental and applied science. This volume covers: spectral theory of gratings (Chapter 1) giving reliable grounds for physical analysis of space-frequency and space-time transformations of the electromagnetic field in open periodic resonators and waveguides; authentic analytic regularization procedures (Chapter 2) that, in contradistinction to the traditional frequency-domain approaches, fit perfectly for the analysis of resonant wave scattering processes; paramet...
Andersen, G.
For the last two decades adaptive optics has been used as a technique for correcting imaging applications and directed energy/laser targeting and laser communications systems affected by atmospheric turbulence. Typically these systems are bulky and limited to system with the potential to operate at speeds of MHz. The system utilizes a hologram to perform an all-optical wavefront analysis that removes the need for any computer. Finally, the sensing is made on a modal basis so it is largely insensitive to scintillation and obscuration. We have constructed a prototype device and will present experimental results from our research. The holographic adaptive optics system begins with the creation of a multiplexed hologram. This hologram is created by recording the maximum and minimum response functions of every actuator in the deformable mirror against a unique focused reference beam. When a wavefront of some arbitrary phase is incident on the processed hologram, a number of focal spots are created -- one pair for each actuator in the DM. The absolute phase error at each particular actuator location is simply related to the ratio of the intensity of each pair of spots. In this way we can use an array of photodetectors to give a direct readout of phase error without the need for any calculations. The advantages of holographic adaptive optics are many. To begin with, the measurement of phase error is made all optically, so the wavefront sensor directly controls the actuators in the DM without any computers. Using fast, photon counting photodetectors allows for closed loop correction limited only by the speed of the deformable mirror which in the case of MEMS devices can be 100 kHz or more. All this can be achieved in an extremely compact and lightweight package making it perfectly suited to applications such as UAV surveillance imagery and free space optical communications systems. Lastly, since the correction is made on a modal basis instead of zonal, it is virtually
Holographic free-electron light source
Li, Guanhai; Clarke, Brendan P.; So, Jin-Kyu; MacDonald, Kevin F.; Zheludev, Nikolay I.
2016-12-01
Recent advances in the physics and technology of light generation via free-electron proximity and impact interactions with nanostructures (gratings, photonic crystals, nano-undulators, metamaterials and antenna arrays) have enabled the development of nanoscale-resolution techniques for such applications as mapping plasmons, studying nanoparticle structural transformations and characterizing luminescent materials (including time-resolved measurements). Here, we introduce a universal approach allowing generation of light with prescribed wavelength, direction, divergence and topological charge via point-excitation of holographic plasmonic metasurfaces. It is illustrated using medium-energy free-electron injection to generate highly-directional visible to near-infrared light beams, at selected wavelengths in prescribed azimuthal and polar directions, with brightness two orders of magnitude higher than that from an unstructured surface, and vortex beams with topological charge up to ten. Such emitters, with micron-scale dimensions and the freedom to fully control radiation parameters, offer novel applications in nano-spectroscopy, nano-chemistry and sensing.
Development of an efficient large-aperture high damage-threshold sol-gel diffraction grating.
Energy Technology Data Exchange (ETDEWEB)
Ashley, Carol S.; Rambo, Patrick K.; Schwarz, Jens; Dunphy, Darren Robert; Branson, Eric D.; Smith, Ian Craig; Johnson, William Arthur; Reed, Scott T.; Cook, Adam W.
2005-03-01
In order to develop the next generation of high peak intensity lasers, new grating technology providing higher damage thresholds and large apertures is required. The current assumption is that this technical innovation will be multilayer dielectric gratings, wherein the uppermost layer of a thin film mirror is etched to create the desired binary phase grating. A variant of this is explored with the upper grating layer being a lower density gelatin-based volume phase grating in either sol-gel or dichromated gelatin. One key benefit is the elimination of the etching step.
Distributed delay-line interferometer based on a Bragg grating in transmission mode
Preciado, Miguel A; Shu, Xuewen; Sugden, Kate
2016-01-01
A novel approach for a delay line interferometer (DLI) based purely on forward Bragg scattering is proposed. We have numerically and experimentally demonstrated that a Bragg grating can deliver the functionality of a DLI in its transmission mode along a single common interfering optical path, instead of the conventional DLI implementation with two interfering optical paths. As a proof of concept, a fiber Bragg grating has been designed and fabricated, showing the desired functionality in the transmission mode of the Bragg grating. The proposed "Bragg-DLI" approach is applicable to any kind of Bragg grating technology, such as volume Bragg gratings, dielectric mirrors, silicon photonics, and other optical waveguide based Bragg structures.
3D holographic printer: fast printing approach.
Morozov, Alexander V; Putilin, Andrey N; Kopenkin, Sergey S; Borodin, Yuriy P; Druzhin, Vladislav V; Dubynin, Sergey E; Dubinin, German B
2014-02-10
This article describes the general operation principles of devices for synthesized holographic images such as holographic printers. Special emphasis is placed on the printing speed. In addition, various methods to increase the printing process are described and compared.
Holographic Waveguided See-Through Display Project
National Aeronautics and Space Administration — To address the NASA need for lightweight, space suit-mounted displays, Luminit proposes a novel Holographic Waveguided See-Through Display. Our proposed Holographic...
Phase transition of holographic entanglement entropy in massive gravity
Energy Technology Data Exchange (ETDEWEB)
Zeng, Xiao-Xiong, E-mail: xxzeng@itp.ac.cn [School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Hongbao, E-mail: hzhang@vub.ac.be [Department of Physics, Beijing Normal University, Beijing 100875 (China); Theoretische Natuurkunde, Vrije Universiteit Brussel, and The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)
2016-05-10
The phase structure of holographic entanglement entropy is studied in massive gravity for the quantum systems with finite and infinite volumes, which in the bulk is dual to calculating the minimal surface area for a black hole and black brane respectively. In the entanglement entropy–temperature plane, we find for both the black hole and black brane there is a Van der Waals-like phase transition as the case in thermal entropy–temperature plane. That is, there is a first order phase transition for the small charge and a second order phase transition at the critical charge. For the first order phase transition, the equal area law is checked and for the second order phase transition, the critical exponent of the heat capacity is obtained. All the results show that the phase structure of holographic entanglement entropy is the same as that of thermal entropy regardless of the volume of the spacetime on the boundary.
Progress toward a general grating patterning technology using phase-locked scanning beams
Schattenburg, Mark L.; Chen, Carl G.; Heilmann, Ralf K.; Konkola, Paul T.; Pati, G. S.
2002-01-01
The fabrication of large high-quality diffraction gratings remains one of the most challenging tasks in optical fabrication. Traditional direct-write methods, such as diamond ruling or electron-beam lithography, can be extremely slow and result in gratings with undesired phase errors. Holographic methods, while generally resulting in gratings with smoother phase, frequently require large aspheres and lengthy optical setup in order to achieve desired period chirps. In this paper we describe a novel interference lithography method called scanning-beam interference lithography (SBIL) that utilizes small phase-locked scanning beams to write general periodic patterns onto large substrates. Small mutually coherent beams are phase controlled by high-bandwidth electro-optic components and caused to overlap and interfere, generating a small grating image. The image is raster-scanned over the substrate by use of a high-precision interferometer-controlled air bearing stage, resulting in large grating patterns. We will describe a prototype system in our laboratory designed to write gratings with extremely low phase distortion. The system is being generalized to pattern gratings with arbitrary period progressions (chirps). This technology, with extensions, will allow the rapid, low cost patterning of high-fidelity periodic patterns of arbitrary geometry on large substrates that could be of great interest to astronomers.
Bragg grating chemical sensor with hydrogel as sensitive element
Institute of Scientific and Technical Information of China (English)
Xiaomei Liu(刘小梅); Shilie Zheng(郑史烈); Xianmin Zhang(章献民); Jun Cong(丛军); Kangsheng Chen(陈抗生); Jian Xu(徐坚)
2004-01-01
A novel fiber Bragg grating (FBG) based chemical sensor using hydrogel, a swellable polymer, as sensitive element is demonstrated. The sensing mechanism relies on the shift of Bragg wavelength due to the stress resulted from volume change of sensitive swellable hydrogel responding to the change of external environment. A polyacrylamide hydrogel fiber grating chemical sensor is made, and the experiments on its sensitivity to the salinity are performed. The sensitivity is low due to the less stress from the shrinking or swelling of hydrogels. Reducing the cross diameter of the grating through etching with hydrofluoric acid can greatly improve the sensitivity of the sensor.
Fourier holographic display for augmented reality using holographic optical element
Li, Gang; Lee, Dukho; Jeong, Youngmo; Lee, Byoungho
2016-03-01
A method for realizing a three-dimensional see-through augmented reality in Fourier holographic display is proposed. A holographic optical element (HOE) with the function of Fourier lens is adopted in the system. The Fourier hologram configuration causes the real scene located behind the lens to be distorted. In the proposed method, since the HOE is transparent and it functions as the lens just for Bragg matched condition, there is not any distortion when people observe the real scene through the lens HOE (LHOE). Furthermore, two optical characteristics of the recording material are measured for confirming the feasibility of using LHOE in the proposed see-through augmented reality holographic display. The results are verified experimentally.
Loop Quantum Gravity, Exact Holographic Mapping, and Holographic Entanglement Entropy
Han, Muxin
2016-01-01
The relation between Loop Quantum Gravity (LQG) and tensor network is explored from the perspectives of bulk-boundary duality and holographic entanglement entropy. We find that the LQG spin-network states in a space $\\Sigma$ with boundary $\\partial\\Sigma$ is an exact holographic mapping similar to the proposal in arXiv:1309.6282. The tensor network, understood as the boundary quantum state, is the output of the exact holographic mapping emerging from a coarse graining procedure of spin-networks. Furthermore, when a region $A$ and its complement $\\bar{A}$ are specified on the boundary $\\partial\\Sigma$, we show that the boundary entanglement entropy $S(A)$ of the emergent tensor network satisfies the Ryu-Takayanagi formula in the semiclassical regime, i.e. $S(A)$ is proportional to the minimal area of the bulk surface attached to the boundary of $A$ in $\\partial\\Sigma$.
El-Schich, Zahra; Mölder, Anna; Tassidis, Helena; Härkönen, Pirkko; Falck Miniotis, Maria; Gjörloff Wingren, Anette
2015-03-01
We are using the label-free technique of holographic microscopy to analyze cellular parameters including cell number, confluence, cellular volume and area directly in the cell culture environment. We show that death-induced cells can be distinguished from untreated counterparts by the use of holographic microscopy, and we demonstrate its capability for cell death assessment. Morphological analysis of two representative cell lines (L929 and DU145) was performed in the culture flasks without any prior cell detachment. The two cell lines were treated with the anti-tumour agent etoposide for 1-3days. Measurements by holographic microscopy showed significant differences in average cell number, confluence, volume and area when comparing etoposide-treated with untreated cells. The cell volume of the treated cell lines was initially increased at early time-points. By time, cells decreased in volume, especially when treated with high doses of etoposide. In conclusion, we have shown that holographic microscopy allows label-free and completely non-invasive morphological measurements of cell growth, viability and death. Future applications could include real-time monitoring of these holographic microscopy parameters in cells in response to clinically relevant compounds.
Holographic Duality in Condensed Matter Physics
Zaanen, Jan; Liu, Yan; Sun, Ya-Wen; Schalm, Koenraad
2015-11-01
Preface; 1. Introduction; 2. Condensed matter: the charted territory; 3. Condensed matter: the challenges; 4. Large N field theories for holography and condensed matter; 5. The AdS/CFT correspondence as computational device: the dictionary; 6. Finite temperature magic: black holes and holographic thermodynamics; 7. Holographic hydrodynamics; 8. Finite density: the Reissner-Nordström black hole and strange metals; 9. Holographic photoemission and the RN metal: the fermions as probes; 10. Holographic superconductivity; 11. Holographic Fermi liquids; 12. Breaking translational invariance; 13. AdS/CMT from the top down; 14. Outlook: holography and quantum matter; References; Index.
Holographic Pomeron: Saturation and DIS
Stoffers, Alexander
2012-01-01
We briefly review the approach to dipole-dipole scattering in holographic QCD developed in ARXIV:1202.0831. The Pomeron is modeled by exchanging closed strings between the dipoles and yields Regge behavior for the elastic amplitude. We calculate curvature corrections to this amplitude in both a conformal and confining background, identifying the holographic direction with the virtuality of the dipoles. The it wee-dipole density is related to the string tachyon diffusion in both virtuality and the transverse directions. We give an explicit derivation of the dipole saturation momentum both in the conformal and confining metric. Our holographic result for the dipole-dipole cross section and the it wee-dipole density in the conformal limit are shown to be identical in form to the BFKL pomeron result when the non-critical string transverse dimension is $D_\\perp=3$. The total dipole-dipole cross section is compared to DIS data from HERA.
Gauge invariance and holographic renormalization
Directory of Open Access Journals (Sweden)
Keun-Young Kim
2015-10-01
Full Text Available We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalization: the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry (RGS. By extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand the problem in the context of general holographic embedding of a global symmetry at the boundary into the local gauge symmetry in the bulk.
Planar double-grating microspectrometer.
Grabarnik, Semen; Wolffenbuttel, Reinoud; Emadi, Arwin; Loktev, Mikhail; Sokolova, Elena; Vdovin, Gleb
2007-03-19
We report on a miniature spectrometer with a volume of 0.135 cm(3) and dimensions of 3x3x11 mm, mounted directly on the surface of a CCD sensor. The spectrometer is formed by two flat diffraction gratings that are designed to perform both the dispersion and imaging functions, eliminating the need for any spherical optics. Two separate parts of the device were fabricated with the single-mask 1 mum lithography on a single glass wafer. The wafer was diced and the device was assembled and directly mounted onto a CCD sensor. The resolution of 3 nm, spectral range of 450 to 750 nm and the optical throughput of ~9% were measured to be in a complete agreement with the model used for the development of the device.
Ultra-High Temperature Gratings
Institute of Scientific and Technical Information of China (English)
John Canning; Somnath Bandyopadhyay; Michael Stevenson; Kevin Cook
2008-01-01
Regenerated gratings seeded by type-Ⅰ gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.
An elastomeric grating coupler
Kocabas, Askin; Ay, Feridun; Dâna, Aykutlu; Aydinli, Atilla
2006-01-01
We report on a novel nondestructive and reversible method for coupling free space light to planar optical waveguides. In this method, an elastomeric grating is used to produce an effective refractive index modulation on the surface of the optical waveguide. The external elastomeric grating binds to the surface of the waveguide with van der Waals forces and makes conformal contact without any applied pressure. As a demonstration of the feasibility of the approach, we use it to measure the refractive index of a silicon oxynitride film. This technique is nondestructive, reversible, low cost and can easily be applied to the characterization of optical materials for integrated optics.
Maystre, Daniel
2014-01-01
The chapter contains a detailed presentation of the surface integral theory for modelling light diffraction by surface-relief diffraction gratings having a one-dimensional periodicity. Several different approaches are presented, leading either to a single integral equation, or to a system of coupled integral equations. Special attention is paid to the singularities of the kernels, and to different techniques to accelerate the convergence of the numerical computations. The theory is applied to gratings having different profiles with or without edges, to real metal and dielectrics, and to perfectly conducting substrates.
Gao, Nan; Zhang, Yuchao; Xie, Changqing
2011-11-01
We introduce circular Fibonacci gratings (CFGs) that combine the concept of circular gratings and Fibonacci structures. Theoretical analysis shows that the diffraction pattern of CFGs is composed of fractal distributions of impulse rings. Numerical simulations are performed with two-dimensional fast Fourier transform to reveal the fractal behavior of the diffraction rings. Experimental results are also presented and agree well with the numerical results. The fractal nature of the diffraction field should be of great theoretical interest, and shows potential to be further developed into practical applications, such as in laser measurement with wideband illumination.
Toward a Holographic Theory for General Spacetimes
Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J
2016-01-01
We study a holographic theory of general spacetimes that does not rely on the existence of asymptotic regions. This theory is to be formulated in a holographic space. When a semiclassical description is applicable, the holographic space is assumed to be a holographic screen: a codimension-1 surface that is capable of encoding states of the gravitational spacetime. Our analysis is guided by conjectured relationships between gravitational spacetime and quantum entanglement in the holographic description. To understand basic features of this picture, we catalog predictions for the holographic entanglement structure of cosmological spacetimes. We find that qualitative features of holographic entanglement entropies for such spacetimes differ from those in AdS/CFT but that the former reduce to the latter in the appropriate limit. The Hilbert space of the theory is analyzed, and two plausible structures are found: a direct sum and "spacetime equals entanglement" structure. The former preserves a naive relationship b...
Vercruysse, Dries; Mukund, Vignesh; Jansen, Roelof; Stahl, Richard; Van Dorpe, Pol; Lagae, Liesbet; Rottenberg, Xavier
2016-05-01
these gratings can couple out more complex holographic patterns. These density controlled out-coupling gratings let us efficiently address the near-field on optical chips, making them ideal waveguide components for on-chip optical trapping, holographic imaging or fluorescent excitation.[3
Cellular Dynamics Revealed by Digital Holographic Microscopy☆
Marquet, P.
2016-11-22
Digital holographic microscopy (DHM) is a new optical method that provides, without the use of any contrast agent, real-time, three-dimensional images of transparent living cells, with an axial sensitivity of a few tens of nanometers. They result from the hologram numerical reconstruction process, which permits a sub wavelength calculation of the phase shift, produced on the transmitted wave front, by the optically probed cells, namely the quantitative phase signal (QPS). Specifically, in addition to measurements of cellular surface morphometry and intracellular refractive index (RI), various biophysical cellular parameters including dry mass, absolute volume, membrane fluctuations at the nanoscale and biomechanical properties, transmembrane water permeability as swell as current, can be derived from the QPS. This article presents how quantitative phase DHM (QP-DHM) can explored cell dynamics at the nanoscale with a special attention to both the study of neuronal dynamics and the optical resolution of local neuronal network.
Holographic vortices in the presence of dark matter sector
Rogatko, Marek
2015-01-01
The {\\it dark matter} seem to be an inevitable ingredient of the total matter configuration in the Universe and the knowledge how the {\\it dark matter} affects the properties of superconductors is of vital importance for the experiments aimed at its direct detection. The homogeneous magnetic field acting perpendicularly to the surface of (2+1) dimensional s-wave holographic superconductor in the theory with {\\it dark matter} sector has been modeled by the additional $U(1)$-gauge field representing dark matter and coupled to the Maxwell one. As expected the free energy for the vortex configuration turns out to be negative. Importantly its value is lower in the presence of {\\it dark matter} sector. This feature can explain why in the Early Universe first the web of {\\it dark matter} appeared and next on these gratings the ordinary matter forming cluster of galaxies has formed.
Holographic Multi-Band Superconductor
Huang, Ching-Yu; Maity, Debaprasad
2011-01-01
We propose a gravity dual for the holographic superconductor with multi-band carriers. Moreover, the currents of these carriers are unified under a global non-Abelian symmetry, which is dual to the bulk non-Abelian gauge symmetry. We study the phase diagram of our model, and find it qualitatively agrees with the one for the realistic 2-band superconductor, such as MgB2. We also evaluate the holographic conductivities and find the expected mean-field like behaviors in some cases. However, for a wide range of the parameter space, we also find the non-mean-field like behavior with negative conductivities.
DHMI: dynamic holographic microscopy interface
He, Xuefei; Zheng, Yujie; Lee, Woei Ming
2016-12-01
Digital holographic microscopy (DHM) is a powerful in-vitro biological imaging tool. In this paper, we report a fully automated off-axis digital holographic microscopy system completed with a graphical user interface in the Matlab environment. The interface primarily includes Fourier domain processing, phase reconstruction, aberration compensation and autofocusing. A variety of imaging operations such as region of interest selection, de-noising mode (filtering and averaging), low frame rate imaging for immediate reconstruction and high frame rate imaging routine ( 27 fps) are implemented to facilitate ease of use.
Holographic Conductivity in Disordered Systems
Ryu, Shinsei; Ugajin, Tomonori
2011-01-01
The main purpose of this paper is to holographically study the behavior of conductivity in 2+1 dimensional disordered systems. We analyze probe D-brane systems in AdS/CFT with random closed string and open string background fields. We give a prescription of calculating the DC conductivity holographically in disordered systems. In particular, we find an analytical formula of the conductivity in the presence of codimension one randomness. We also systematically study the AC conductivity in various probe brane setups without disorder and find analogues of Mott insulators.
Holographic superconductors without translational symmetry
Zeng, Hua Bi
2014-01-01
A holographic superconductor is constructed in the background of a massive gravity theory. In the normal state without condensation, the conductivity exhibits a Drude peak that approaches a delta function in the massless gravity limit as studied by David Vegh. In the superconducting state, besides the infinite DC conductivity, the AC conductivity has Drude behavior at low frequency followed by a power law-fall. These results are in agreement with that found earlier by Horowitz and Santos, who studied a holographic superconductor with an implicit periodic potential beyond the probe limit. The results also agree with measurements on some cuprates.
Lin, Qiaowen; Wang, Dayong; Wang, Yunxin; Rong, Lu; Chang, Shifeng
2015-03-01
A super-resolution imaging method using dynamic grating based on liquid-crystal spatial light modulator (SLM) is developed to improve the resolution of a digital holographic system. The one-dimensional amplitude cosine grating is loaded on the SLM, which is placed between the object and hologram plane in order to collect more high-frequency components towards CCD plane. The point spread function of the system is given to confirm the separation condition of reconstructed images for multiple diffraction orders. The simulation and experiments are carried out for a standard resolution test target as a sample, which confirms that the imaging resolution is improved from 55.7 μm to 31.3 μm compared with traditional lensless Fourier transform digital holography. The unique advantage of the proposed method is that the period of the grating can be programmably adjusted according to the separation condition.
Low Driving Voltage and Analysis of Azobenzene Polymer Doped Liquid Crystal Grating
Institute of Scientific and Technical Information of China (English)
SONG Jing; LIU Yong-Gang; MA Ji; XUAN Li
2006-01-01
We mix azobenzene polymer and liquid crystal in certain ratio. Then the mixture is injected into cells. Nonlinearly photoinduced birefringence takes place when linearly polarized ultraviolet is applied with the pattern photomask covering on the cells, which results in the formation of azobenzene polymer doped liquid crystalgrating. The obtained grating is characterized by an optical microscope and a He-Ne laser. The results indicate that the samples have clear grating structure, and the diffraction efficiencies can be modulated by electric field. The sample driving voltage is 0.6 V/μm. It is lower than the driving voltage of holographic polymer dispersed liquid crystal transmission grating and could be matched with the driving integrated circuit.
Kim, Jong Man; Choi, Byung So; Choi, Yoon Sun; Kim, Jong Min; Bjelkhagen, Hans I; Phillips, Nicholas J
2002-03-10
Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOEs). The drawback of DCG is its low energetic sensitivity and limited spectral response. Silver halide materials can be processed in such away that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-fine-grain silver halide (AgHal) emulsions. In particular, high spatial-frequency fringes associated with HOEs of the reflection type are difficult to construct when SHSG processing methods are employed. Therefore an optimized processing technique for reflection HOEs recorded in the new AgHal materials is introduced. Diffraction efficiencies over 90% can be obtained repeatably for reflection diffraction gratings. Understanding the importance of a selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOEs, also including high-quality display holograms of the reflection type in both monochrome and full color.
Holographic microscopy in low coherence
Chmelík, Radim; Petráček, Jiří; Slabá, Michala; Kollárová, Věra; Slabý, Tomáš; Čolláková, Jana; Komrska, Jiří; Dostál, Zbyněk.; Veselý, Pavel
2016-03-01
Low coherence of the illumination substantially improves the quality of holographic and quantitative phase imaging (QPI) by elimination of the coherence noise and various artefacts and by improving the lateral resolution compared to the coherent holographic microscopy. Attributes of coherence-controlled holographic microscope (CCHM) designed and built as an off-axis holographic system allowing QPI within the range from complete coherent to incoherent illumination confirmed these expected advantages. Low coherence illumination also furnishes the coherence gating which constraints imaging of some spatial frequencies of an object axially thus forming an optical section in the wide sense. In this way the depth discrimination capability of the microscope is introduced at the price of restricting the axial interval of possible numerical refocusing. We describe theoretically these effects for the whole range of illumination coherence. We also show that the axial refocusing constraints can be overcome using advanced mode of imaging based on mutual lateral shift of reference and object image fields in CCHM. Lowering the spatial coherence of illumination means increasing its numerical aperture. We study how this change of the illumination geometry influences 3D objects QPI and especially the interpretation of live cells QPI in terms of the dry mass density measurement. In this way a strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data including a chance of time-lapse watching of live cells even in optically turbid milieu.
Lecture Notes on Holographic Renormalization
Skenderis, K
2002-01-01
We review the formalism of holographic renormalization. We start by discussing mathematical results on asymptotically anti-de Sitter spacetimes. We then outline the general method of holographic renormalization. The method is illustrated by working all details in a simple example: a massive scalar field on anti-de Sitter spacetime. The discussion includes the derivation of the on-shell renormalized action, of holographic Ward identities, anomalies and RG equations, and the computation of renormalized one-, two- and four-point functions. We then discuss the application of the method to holographic RG flows. We also show that the results of the near-boundary analysis of asymptotically AdS spacetimes can be analytically continued to apply to asymptotically de Sitter spacetimes. In particular, it is shown that the Brown-York stress energy tensor of de Sitter spacetime is equal, up to a dimension dependent sign, to the Brown-York stress energy tensor of an associated AdS spacetime.
Holographic dark-energy models
Del Campo, Sergio; Fabris, Júlio. C.; Herrera, Ramón; Zimdahl, Winfried
2011-06-01
Different holographic dark-energy models are studied from a unifying point of view. We compare models for which the Hubble scale, the future event horizon or a quantity proportional to the Ricci scale are taken as the infrared cutoff length. We demonstrate that the mere definition of the holographic dark-energy density generally implies an interaction with the dark-matter component. We discuss the relation between the equation-of-state parameter and the energy density ratio of both components for each of the choices, as well as the possibility of noninteracting and scaling solutions. Parameter estimations for all three cutoff options are performed with the help of a Bayesian statistical analysis, using data from supernovae type Ia and the history of the Hubble parameter. The ΛCDM model is the clear winner of the analysis. According to the Bayesian information criterion (BIC), all holographic models should be considered as ruled out, since the difference ΔBIC to the corresponding ΛCDM value is >10. According to the Akaike information criterion (AIC), however, we find ΔAIC<2 for models with Hubble-scale and Ricci-scale cutoffs, indicating, that they may still be competitive. As we show for the example of the Ricci-scale case, also the use of certain priors, reducing the number of free parameters to that of the ΛCDM model, may result in a competitive holographic model.
Range Compressed Holographic Aperture Ladar
2017-06-01
digital holography, laser, active imaging, remote sensing, laser imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 8...slow speed tunable lasers, while relaxing the need to precisely track the transceiver or target motion. In the following section we describe a scenario...contrast targets. As shown in Figure 28, augmenting holographic ladar with range compression relaxes the dependence of image reconstruction on
Code Properties from Holographic Geometries
Pastawski, Fernando; Preskill, John
2017-04-01
Almheiri, Dong, and Harlow [J. High Energy Phys. 04 (2015) 163., 10.1007/JHEP04(2015)163] proposed a highly illuminating connection between the AdS /CFT holographic correspondence and operator algebra quantum error correction (OAQEC). Here, we explore this connection further. We derive some general results about OAQEC, as well as results that apply specifically to quantum codes that admit a holographic interpretation. We introduce a new quantity called price, which characterizes the support of a protected logical system, and find constraints on the price and the distance for logical subalgebras of quantum codes. We show that holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit uberholography, meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure. We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive curvature, the boundary physics must be highly nonlocal, an observation with potential implications for black holes and for quantum gravity in AdS space at distance scales that are small compared to the AdS curvature radius.
Code Properties from Holographic Geometries
Directory of Open Access Journals (Sweden)
Fernando Pastawski
2017-05-01
Full Text Available Almheiri, Dong, and Harlow [J. High Energy Phys. 04 (2015 163.JHEPFG1029-847910.1007/JHEP04(2015163] proposed a highly illuminating connection between the AdS/CFT holographic correspondence and operator algebra quantum error correction (OAQEC. Here, we explore this connection further. We derive some general results about OAQEC, as well as results that apply specifically to quantum codes that admit a holographic interpretation. We introduce a new quantity called price, which characterizes the support of a protected logical system, and find constraints on the price and the distance for logical subalgebras of quantum codes. We show that holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit uberholography, meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure. We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive curvature, the boundary physics must be highly nonlocal, an observation with potential implications for black holes and for quantum gravity in AdS space at distance scales that are small compared to the AdS curvature radius.
Unbalanced holographic superconductors and spintronics
Bigazzi, F.; Cotrone, A.L.; Musso, D.; Pinzani Fokeeva, N.; Seminara, D.
2012-01-01
We present a minimal holographic model for s-wave superconductivity with unbalanced Fermi mixtures, in 2 + 1 dimensions at strong coupling. The breaking of a U(1)A “charge” symmetry is driven by a non-trivial profile for a charged scalar field in a charged asymptotically AdS4 black hole. The chemica
Study of surface relief gratings on azo organometallic films in picosecond regime.
Luc, J; Bouchouit, K; Czaplicki, R; Fillaut, J-L; Sahraoui, B
2008-09-29
Materials for optical data storage and optical information processing must exhibit good holographic properties. Many materials for these applications have been already proposed. Here we describe a grating inscription process characterized by short inscription time and long-time stability. A series of ruthenium-acetylide organometallic complexes containing an azobenzene fragment were synthesized. Photo-induced gratings were produced by short pulse (16 ps, 532 nm) laser irradiation. The surface relief gratings formed at the same time were observed by atomic force microscope. In this work, we highlight the short inscription times brought into play as well as the good temporal stability of these gratings stored at room temperature. We study the influence of the polarization states and the light intensity of writing beams on the dynamics of the surface relief gratings formation and we compare these results with those of a known representative of azobenzene derivative (Disperse Red 1). Lastly, we show that it is possible to write two-dimensional surface relief gratings.
Gallego, Sergi; Ortuño, Manuel; Neipp, Cristian; Márquez, Andrés; Beléndez, Augusto; Pascual, Inmaculada
2005-10-01
Several theoretical models have been proposed to predict the behavior of photopolymers as holographic recording materials. Basically these models have been applied to study thin layers (around 100 µm thick). The increasing importance of holographic memories recorded in photopolymers (thickness of >500 µm) makes it necessary to extend the ideas proposed by these models to study thick photopolymer layers. We calculate the temporal evolution of the diffraction efficiencies for thick layers using a first-harmonic diffusion model, and the results obtained are compared with the corresponding values for thin layers. Furthermore, the values of the average diffusivity of the polymer chains after the grating is formed are also obtained. In general, we find that the monomer and polymer diffusivity increases when higher values of thickness are used.
Sensored fiber reinforced polymer grate
Energy Technology Data Exchange (ETDEWEB)
Ross, Michael P.; Mack, Thomas Kimball
2017-08-01
Various technologies described herein pertain to a sensored grate that can be utilized for various security fencing applications. The sensored grate includes a grate framework and an embedded optical fiber. The grate framework is formed of a molded polymer such as, for instance, molded fiber reinforced polymer. Further, the grate framework includes a set of elongated elements, where the elongated elements are spaced to define apertures through the grate framework. The optical fiber is embedded in the elongated elements of the grate framework. Moreover, bending or breaking of one or more of the elongated elements can be detected based on a change in a characteristic of input light provided to the optical fiber compared to output light received from the optical fiber.
Strong Optical Confinement between Flat Dielectric Gratings
Li, Jingjing; Fiorentino, Marco; Beausoleil, Raymond G
2011-01-01
We present a novel type of optical micro-cavity based on a Fabry-Perot resonance between parallel high contrast gratings with non-periodic patterns. Tight lateral confinement is obtained via the phase front distortion properties of these gratings. In such cavities, energy stored in the optical field resides primarily in free space, therefore is readily accessible to particles (atoms, molecules, nanocrystals, etc.) for sensing, trapping, or spectroscopic applications. We describe the physics of these resonators, and propose a design method based on stochastic optimization. We present numerical simulations of two and three dimensional cavities that have diffraction-limited mode volumes with quality factors in the range of $10^4$--$10^6$. The cavity has a purely planar geometry and can be fabricated in silicon for near-infrared applications using standard CMOS processes. These ideas can be extended to the visible domain using commonly available III-V materials.
Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications
Directory of Open Access Journals (Sweden)
Y. J. Liu
2008-01-01
Full Text Available By combining polymer-dispersed liquid crystal (PDLC and holography, holographic PDLC (H-PDLC has emerged as a new composite material for switchable or tunable optical devices. Generally, H-PDLC structures are created in a liquid crystal cell filled with polymer-dispersed liquid crystal materials by recording the interference pattern generated by two or more coherent laser beams which is a fast and single-step fabrication. With a relatively ideal phase separation between liquid crystals and polymers, periodic refractive index profile is formed in the cell and thus light can be diffracted. Under a suitable electric field, the light diffraction behavior disappears due to the index matching between liquid crystals and polymers. H-PDLCs show a fast switching time due to the small size of the liquid crystal droplets. So far, H-PDLCs have been applied in many promising applications in photonics, such as flat panel displays, switchable gratings, switchable lasers, switchable microlenses, and switchable photonic crystals. In this paper, we review the current state-of-the-art of H-PDLCs including the materials used to date, the grating formation dynamics and simulations, the optimization of electro-optical properties, the photonic applications, and the issues existed in H-PDLCs.
Rewritable three-dimensional holographic data storage via optical forces
Yetisen, Ali K.; Montelongo, Yunuen; Butt, Haider
2016-08-01
The development of nanostructures that can be reversibly arranged and assembled into 3D patterns may enable optical tunability. However, current dynamic recording materials such as photorefractive polymers cannot be used to store information permanently while also retaining configurability. Here, we describe the synthesis and optimization of a silver nanoparticle doped poly(2-hydroxyethyl methacrylate-co-methacrylic acid) recording medium for reversibly recording 3D holograms. We theoretically and experimentally demonstrate organizing nanoparticles into 3D assemblies in the recording medium using optical forces produced by the gradients of standing waves. The nanoparticles in the recording medium are organized by multiple nanosecond laser pulses to produce reconfigurable slanted multilayer structures. We demonstrate the capability of producing rewritable optical elements such as multilayer Bragg diffraction gratings, 1D photonic crystals, and 3D multiplexed optical gratings. We also show that 3D virtual holograms can be reversibly recorded. This recording strategy may have applications in reconfigurable optical elements, data storage devices, and dynamic holographic displays.
Rewritable three-dimensional holographic data storage via optical forces
Energy Technology Data Exchange (ETDEWEB)
Yetisen, Ali K., E-mail: ayetisen@mgh.harvard.edu [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, Massachusetts 02139 (United States); Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Montelongo, Yunuen [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Butt, Haider [Nanotechnology Laboratory, School of Engineering Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom)
2016-08-08
The development of nanostructures that can be reversibly arranged and assembled into 3D patterns may enable optical tunability. However, current dynamic recording materials such as photorefractive polymers cannot be used to store information permanently while also retaining configurability. Here, we describe the synthesis and optimization of a silver nanoparticle doped poly(2-hydroxyethyl methacrylate-co-methacrylic acid) recording medium for reversibly recording 3D holograms. We theoretically and experimentally demonstrate organizing nanoparticles into 3D assemblies in the recording medium using optical forces produced by the gradients of standing waves. The nanoparticles in the recording medium are organized by multiple nanosecond laser pulses to produce reconfigurable slanted multilayer structures. We demonstrate the capability of producing rewritable optical elements such as multilayer Bragg diffraction gratings, 1D photonic crystals, and 3D multiplexed optical gratings. We also show that 3D virtual holograms can be reversibly recorded. This recording strategy may have applications in reconfigurable optical elements, data storage devices, and dynamic holographic displays.
Cloud particle size distributions measured with an airborne digital in-line holographic instrument
Directory of Open Access Journals (Sweden)
J. P. Fugal
2009-03-01
Full Text Available Holographic data from the prototype airborne digital holographic instrument HOLODEC (Holographic Detector for Clouds, taken during test flights are digitally reconstructed to obtain the size (equivalent diameters in the range 23 to 1000 μm, three-dimensional position, and two-dimensional profile of ice particles and then ice particle size distributions and number densities are calculated using an automated algorithm with minimal user intervention. The holographic method offers the advantages of a well-defined sample volume size that is not dependent on particle size or airspeed, and offers a unique method of detecting shattered particles. The holographic method also allows the volume sample rate to be increased beyond that of the prototype HOLODEC instrument, limited solely by camera technology.
HOLODEC size distributions taken in mixed-phase regions of cloud compare well to size distributions from a PMS FSSP probe also onboard the aircraft during the test flights. A conservative algorithm for detecting shattered particles utilizing the particles depth-position along the optical axis eliminates the obvious ice particle shattering events from the data set. In this particular case, the size distributions of non-shattered particles are reduced by approximately a factor of two for particles 15 to 70 μm in equivalent diameter, compared to size distributions of all particles.
Holographic kinetic k-essence model
Energy Technology Data Exchange (ETDEWEB)
Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Gonzalez-Diaz, Pedro F.; Rozas-Fernandez, Alberto [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail: a.rozas@cfmac.csic.es; Sanchez, Guillermo [Departamento de Matematica y Ciencia de la Computacion, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: gsanchez@usach.cl
2009-08-31
We consider a connection between the holographic dark energy density and the kinetic k-essence energy density in a flat FRW universe. With the choice c{>=}1, the holographic dark energy can be described by a kinetic k-essence scalar field in a certain way. In this Letter we show this kinetic k-essential description of the holographic dark energy with c{>=}1 and reconstruct the kinetic k-essence function F(X)
Holographic complexity in gauge/string superconductors
Directory of Open Access Journals (Sweden)
Davood Momeni
2016-05-01
Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (T
Holographic entanglement entropy in imbalanced superconductors
Dutta, Arghya
2014-01-01
We study the behavior of holographic entanglement entropy (HEE) for imbalanced holographic superconductor. It is found that HEE for this imbalanced system decreases with the increase of imbalance in chemical potentials. Also for an arbitrary mismatch between two chemical potentials, below the critical temperature, superconducting phase has a lower HEE in comparison to the AdS-Reissner-Nordstrom black hole phase. This suggests entanglement entropy to be a useful physical probe for understanding the imbalanced holographic superconductors.
Holographic entanglement entropy in general holographic superconductor models
Peng, Yan
2014-01-01
We study the entanglement entropy of general holographic dual models both in AdS soliton and AdS black hole backgrounds with full backreaction. We find that the entanglement entropy is a good probe to explore the properties of the holographic superconductors and provides richer physics in the phase transition. We obtain the effects of the scalar mass, model parameter and backreaction on the entropy, and argue that the jump of the entanglement entropy may be a quite general feature for the first order phase transition. In strong contrast to the insulator/superconductor system, we note that the backreaction coupled with the scalar mass can not be used to trigger the first order phase transition if the model parameter is below its bottom bound in the metal/superconductor system.
Holographic QCD: Past, Present, and Future
Kim, Youngman; Tsukioka, Takuya
2012-01-01
At the dawn of a new theoretical tool based on AdS/CFT for non-perturbative aspects of quantum chromodynamics, we give an interim review on the the new tool, holographic QCD, with some of its accomplishment. We try to give an A-to-Z picture of the holographic QCD, from string theory to a few selected top-down holographic QCD models with one or two physical applications in each model. We may not attempt to collect diverse results from various holographic QCD model studies.
Holographic Two-Photon Induced Photopolymerization
Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...
Understanding strongly coupling magnetism from holographic duality
Cai, Rong-Gen
2016-01-01
The unusual magnetic materials are significant in both science and technology. However, because of the strongly correlated effects, it is difficult to understand their novel properties from theoretical aspects. Holographic duality offers a new approach to understanding such systems from gravity side. This paper will give a brief review of our recent works on the applications of holographic duality in understanding unusual magnetic materials. Some quantitative compare between holographic results and experimental data will be shown and some predictions from holographic duality models will be discussed.
Li, Ming Shian; Wu, Shing Trong; Fuh, Andy Ying-Guey
2010-12-06
A continuous multiple exposure diffraction grating (CMEDG) is fabricated holographically on polymer dispersed liquid crystal (PDLC) films using two-beam interference with multiple exposures. The grating is fabricated by exposing a PDLC film to 18 repeated exposure/non-exposure cycles with an angular step of ~10°/10° while it revolves a circle on a rotation stage. The structure of the sample thus formed is analyzed using a scanning electron microscope (SEM) and shows arc-ripples around the center. From the diffraction patterns of the formed grating obtained using a normally incident laser beam, some or all of the 18 recorded arc beams can be reconstructed, as determined by the probing location. Thus, it can be applied for use as a beam-vibration sensor for a laser.
Methacryluic Azopolymers for Holographic Storage: A Comparison among Different Polymer Types
DEFF Research Database (Denmark)
Forcén, Patricia; Oriol, Luis; Sánchez, Carlos
2007-01-01
The photoinduced anisotropy and volume holographic storage in a series of polymers with different architectures and azo contents of 7% and 20% in weight have been investigated. Measurements of the birefringence (An) induced with im- early polarised 488 nm light show that for polymers with an azo ...
Stealths on Anisotropic Holographic Backgrounds
Ayón-Beato, Eloy; Juárez-Aubry, María Montserrat
2015-01-01
In this paper, we are interested in exploring the existence of stealth configurations on anisotropic backgrounds playing a prominent role in the non-relativistic version of the gauge/gravity correspondence. By stealth configuration, we mean a nontrivial scalar field nonminimally coupled to gravity whose energy-momentum tensor evaluated on the anisotropic background vanishes identically. In the case of a Lifshitz spacetime with a nontrivial dynamical exponent z, we spotlight the role played by the anisotropy to establish the holographic character of the stealth configurations, i.e. the scalar field is shown to only depend on the radial holographic direction. This configuration which turns out to be massless and without integration constants is possible for a unique value of the nonminimal coupling parameter. Then, using a simple conformal argument, we map this configuration into a stealth solution defined on the so-called hyperscaling violation metric which is conformally related to the Lifshitz spacetime. Thi...
Holographic Fabry-Perot spectrometer.
Martínez-Matos, O; Rodrigo, José A; Vaveliuk, P; Calvo, M L
2011-02-15
We propose a spectrum analyzer based on the properties of a hologram recorded with the field transmitted by a Fabry-Perot etalon. The spectral response of this holographic Fabry-Perot spectrometer (HFPS) is analytically investigated in the paraxial approximation and compared with a conventional Fabry-Perot etalon of similar characteristics. We demonstrate that the resolving power is twice increased and the free spectral range (FSR) is reduced to one-half. The proposed spectrometer could improve the operational performance of the etalon because it can exhibit high efficiency and it would be insensible to environmental conditions such as temperature and vibrations. Our analysis also extends to another variant of the HFPS based on holographic multiplexing of the transmitted field of a Fabry-Perot etalon. This device increases the FSR, keeping the same HFPS performance.
Holographic Quenches with a Gap
da Silva, Emilia; Mas, Javier; Serantes, Alexandre
2016-01-01
In order to holographically model quenches with a gapped final hamiltonian, we consider a gravity-scalar theory in anti-de Sitter space with an infrared hard wall. We allow a time dependent profile for the scalar field at the wall. This induces an energy exchange between bulk and wall and generates an oscillating scalar pulse. We argue that such backgrounds are the counterpart of quantum revivals in the dual field theory. We perform a qualitative comparison with the quench dynamics of the massive Schwinger model, which has been recently analyzed using tensor network techniques. Agreement is found provided the width of the oscillating scalar pulse is inversely linked to the energy density communicated by the quench. We propose this to be a general feature of holographic quenches.
Holographic Mott-like insulator
Ling, Yi; Wu, Jian-Pin
2015-01-01
In this paper we show that a gravity dual model with Q-lattice structure can provide a holographic description of a Mott-like insulator, which is an extension of our previous work in arXiv:1507.02514. We construct the bulk geometry with two gauge fields and introduce a coupling between the lattice and the Maxwell field. It turns out that an insulating ground state with hard gap as well as vanishing DC conductivity can be achieved in the zero temperature limit, which can be viewed as a substantial progress towards the holographic construction of Mott-like insulator. The non-Drude behavior in optical conductivity is also discussed.
Holographic Chern-Simons Defects
Fujita, Mitsutoshi; Meyer, Rene; Sugimoto, Shigeki
2016-01-01
We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7-branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for two-dimensional QCD.
Fabrication Technique of Holographic Sight
Institute of Scientific and Technical Information of China (English)
LIN Ling; LIU Shou; ZHANG Xiang-su
2005-01-01
There are several types of sights used for small arms. All of them have advantages and disadvantages. A new type of sight-holographic sight-is introduced in the paper, with the emphasis on the fabrication technique of the hologram which is the most important part in the sight. A Gaussian dot and a reticle pattern are recorded in the hologram. When illuminated by a laser diode, the virtual images of the dot and the reticle pattern for aiming are observed through the hologram. Compared with other sights, the holographic sight provides quicker, more accurate and covert aiming at moving targets, particularly in close quarter combat situations. It significantly improves the capability of small arms used in close quarter fighting in all weathers.
Holographic Mutual Information is Monogamous
Hayden, Patrick; Maloney, Alexander
2013-01-01
We identify a special information-theoretic property of quantum field theories with holographic duals: the mutual informations among arbitrary disjoint spatial regions A,B,C obey the inequality I(A:BC) >= I(A:B)+I(A:C), provided entanglement entropies are given by the Ryu-Takayanagi formula. Inequalities of this type are known as monogamy relations and are characteristic of measures of quantum entanglement. This suggests that correlations in holographic theories arise primarily from entanglement rather than classical correlations. We also show that the Ryu-Takayanagi formula is consistent with all known general inequalities obeyed by the entanglement entropy, including an infinite set recently discovered by Cadney, Linden, and Winter; this constitutes strong evidence in favour of its validity.
Holographic mutual information is monogamous
Hayden, Patrick; Headrick, Matthew; Maloney, Alexander
2013-02-01
We identify a special information-theoretic property of quantum field theories with holographic duals: the mutual informations among arbitrary disjoint spatial regions A, B, C obey the inequality I(A∶B∪C)≥I(A∶B)+I(A∶C), provided entanglement entropies are given by the Ryu-Takayanagi formula. Inequalities of this type are known as monogamy relations and are characteristic of measures of quantum entanglement. This suggests that correlations in holographic theories arise primarily from entanglement rather than classical correlations. We also show that the Ryu-Takayanagi formula is consistent with all known general inequalities obeyed by the entanglement entropy, including an infinite set recently discovered by Cadney et al.; this constitutes strong evidence in favor of its validity.
Holographic quenches with a gap
da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2016-06-01
In order to holographically model quenches with a gapped final hamiltonian, we consider a gravity-scalar theory in anti-de Sitter space with an infrared hard wall. We allow a time dependent profile for the scalar field at the wall. This induces an energy exchange between bulk and wall and generates an oscillating scalar pulse. We argue that such backgrounds are the counterpart of quantum revivals in the dual field theory. We perform a qualitative comparison with the quench dynamics of the massive Schwinger model, which has been recently analyzed using tensor network techniques. Agreement is found provided the width of the oscillating scalar pulse is inversely linked to the energy density communicated by the quench. We propose this to be a general feature of holographic quenches.
Holographic multiverse and conformal invariance
Energy Technology Data Exchange (ETDEWEB)
Garriga, Jaume [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08193 Barcelona (Spain); Vilenkin, Alexander, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, 212 College Ave., Medford, MA 02155 (United States)
2009-11-01
We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV.
Generalized Superconductors and Holographic Optics
Mahapatra, Subhash; Sarkar, Tapobrata
2013-01-01
We study generalized holographic s-wave superconductors in four dimensional R-charged black hole backgrounds, in the probe limit. We first establish the superconducting nature of the boundary theory, and then study its optical properties. Numerical analysis indicates that a negative index of refraction appears at low frequencies in the theory, for certain temperature ranges, for specific values of the charge parameter. The corresponding cut-off values for these are numerically established in several cases.
Holographic superconductors with Weyl corrections
Momeni, Davood; Raza, Muhammad; Myrzakulov, Ratbay
2016-10-01
A quick review on the analytical aspects of holographic superconductors (HSCs) with Weyl corrections has been presented. Mainly, we focus on matching method and variational approaches. Different types of such HSC have been investigated — s-wave, p-wave and Stúckelberg ones. We also review the fundamental construction of a p-wave type, in which the non-Abelian gauge field is coupled to the Weyl tensor. The results are compared from numerics to analytical results.
Holographic renormalization in teleparallel gravity
Energy Technology Data Exchange (ETDEWEB)
Krssak, Martin [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)
2017-01-15
We consider the problem of IR divergences of the action in the covariant formulation of teleparallel gravity in asymptotically Minkowski spacetimes. We show that divergences are caused by inertial effects and can be removed by adding an appropriate surface term, leading to the renormalized action. This process can be viewed as a teleparallel analog of holographic renormalization. Moreover, we explore the variational problem in teleparallel gravity and explain how the variation with respect to the spin connection should be performed. (orig.)
Constructive use of holographic projections
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Institut fuer Theoretische Physik der FU, Berlin (Germany)
2008-07-01
Revisiting the old problem of existence of interacting models of QFT with new conceptual ideas and mathematical tools, one arrives at a novel view about the nature of QFT. The recent success of algebraic methods in establishing the existence of factorizing models suggests new directions for a more intrinsic constructive approach beyond Lagrangian quantization. Holographic projection simplifies certain properties of the bulk theory and hence is a promising new tool for these new attempts. (author)
Entanglement Entropy in a Holographic Kondo Model
Erdmenger, Johanna; Hoyos, Carlos; Newrzella, Max-Niklas; Wu, Jackson M S
2015-01-01
We calculate entanglement and impurity entropies in a recent holographic model of a magnetic impurity interacting with a strongly coupled system. There is an RG flow to an IR fixed point where the impurity is screened, leading to a decrease in impurity degrees of freedom. This information loss corresponds to a volume decrease in our dual gravity model, which consists of a codimension one hypersurface embedded in a BTZ black hole background in three dimensions. There are matter fields defined on this hypersurface which are dual to Kondo field theory operators. In the large N limit, the formation of the Kondo cloud corresponds to the condensation of a scalar field. The entropy is calculated according to the Ryu-Takayanagi prescription. This requires to determine the backreaction of the hypersurface on the BTZ geometry, which is achieved by solving the Israel junction conditions. We find that the larger the scalar condensate gets, the more the volume of constant time slices in the bulk is reduced, shortening the...
Holographic interferometry in construction analysis
Energy Technology Data Exchange (ETDEWEB)
Hartikainen, T.
1995-12-31
In this work techniques for visualizing phase and opaque objects by ruby laser interferometry are introduced. A leakage flow as a phase object is studied by holographic interferometry and the intensity distribution of the interferograms presenting the leakage flow are computer-simulated. A qualitative and quantitative analysis of the leakage flow is made. The analysis is based on the experimental and theoretical results presented in this work. The holographic setup and the double pass method for visualizing leakage flow are explained. A vibrating iron plate is the opaque object. Transient impact waves are generated by a pistol bullet on the iron plate and visualized by holographic interferometry. An apparatus with the capability of detecting and calculating the delays necessary for laser triggering is introduced. A time series of interferograms presenting elastic wave formation in an iron plate is shown. A computer-simulation of the intensity distributions of these interferograms is made. An analysis based on the computer-simulation and the experimental data of the transient elastic wave is carried out and the results are presented. (author)
Towards Holographic Quantum Energy Teleportation
Giataganas, Dimitrios; Liu, Pei-Hua
2016-01-01
We propose a protocol of quantum energy teleportation (QET) for holographic conformal field theory (CFT) in 3-dimensional anti-de Sitter space with or without black hole. A generic QET protocol contains two steps: (i) Alice injects the energy into ground state by performing local measurement; (ii) the distant Bob extracts energy by performing local operation according to Alice's measurement outcome. In our holographic protocol, we mimic the step (i) by local projection of an interval of CFT ground state into an excited state described by Banados geometry. For the step (ii) we adopt the surface/state duality to evaluate the energy extraction by local deformation of UV surface as the holographic dual of Bob's local unitary operations. Our results show that this protocol always gains energy extraction. Moreover, the ratio of Bob's extraction energy density to the energy density of the excited state after Alice's local projection is a positive semi-definite and bounded function of the UV surface deformation profi...
Divergences in holographic complexity
Reynolds, Alan; Ross, Simon F.
2017-05-01
We study the UV divergences in the action of the ‘Wheeler-de Witt patch’ in asymptotically AdS spacetimes, which has been conjectured to be dual to the computational complexity of the state of the dual field theory on a spatial slice of the boundary. We show that including a surface term in the action on the null boundaries which ensures invariance under coordinate transformations has the additional virtue of removing a stronger than expected divergence, making the leading divergence proportional to the proper volume of the boundary spatial slice. We compare the divergences in the action to divergences in the volume of a maximal spatial slice in the bulk, finding that the qualitative structure is the same, but subleading divergences have different relative coefficients in the two cases.
Low crosstalk Arrayed Waveguide Grating with Cascaded Waveguide Grating Filter
Energy Technology Data Exchange (ETDEWEB)
Deng Yang; Liu Yuan; Gao Dingshan, E-mail: dsgao@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)
2011-02-01
We propose a highly compact and low crosstalk arrayed waveguide grating (AWG) with cascaded waveguide grating (CWGF). The side lobes of the silicon nanowire AWG, which are normally introduced by fabrication errors, can be effectively suppressed by the CWGF. And the crosstalk can be improved about 15dB.
Monitoring by holographic radar systems
Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco
2013-04-01
Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to
Holographic preamplifier for a quantum amplifier
Energy Technology Data Exchange (ETDEWEB)
Zemskov, K.I.; Kazarian, M.A.; Orlova, N.G.; Liuksiutov, S.F.; Odulov, S.G.
1988-08-01
Successive amplification of a weak optical signal was realized experimentally in holographic and quantum amplifiers. The signal was a coherent one with an intensity less than the actual noise of the copper-vapor active medium; the technique involved the use of a coherent holographic preamplifier based on a lithium niobate/sodium photorefractive crystal. 8 references.
The surface density of holographic entropy
Kiselev, V V
2010-01-01
On the basis of postulates for the holographic description of gravity and the introduction of entropic force in E. Verlinde's article [arXiv:1001.0785], for static sources we derive the universal law: the entropy of a holographic screen is equal to quarter of its area in the Planck system of units.
The holographic screen at low temperatures
Kiselev, V V
2010-01-01
A permissible spectrum of transverse vibrations for the holographic screen modifies both a distribution of thermal energy over bits at low temperatures and the law of gravitation at small accelerations of free fall in agreement with observations of flat rotation curves in spiral galaxies. This modification relates holographic screen parameters in de Sitter space-time with the Milgrom acceleration in MOND.
Ultra-High Capacity Holographic Memories
2007-11-02
Momtahan, G. H. Cadena , and A. Adibi, "Sensitivity variation in two-center holographic recording," submitted to Op’tics Letters. 7. H. Pishro-Nik and F...34 Optics in the Southeast Meeting, Huntsville, AL, October 2002. 6. 0. Momtahan, G. H. Cadena , and A. Adibi, "Stabilized Two-Center Holographic
Grating inscription in picosecond regime in thin films of functionalized DNA.
Czaplicki, R; Krupka, O; Essaidi, Z; El-Ghayoury, A; Kajzar, F; Grote, J G; Sahraoui, B
2007-11-12
Polymers containing azo-benzene groups are useful holographic recording materials. In these materials the efficient mixed amplitude and phase gratings, frequently accompanied with photoinduced-surface relief gratings, can be inscribed with polarized laser light. The light-induced trans-cis-trans photoisomerization of azo-benzene groups is responsible for optical anisotropy in such systems. The aim of the present work is to study the dynamics of grating inscription in Disperse Red 1 doped deoxyrbonucleic acid- hexadecyltrimethylammonium material (DR1-DNACTMA) using 16 ps laser pulses (532 nm, 1.3 mJ). Results are compared with that obtained for other polymeric matrices loaded with DR1. The dynamics of the grating growth, due to repeated pulses from picosecond laser with 10 Hz repetition rate, was probed by measuring the intensity of the first order of diffraction of a cw He-Ne. We report results in function of the light polarization of writing beams. In this paper we present the first results of the grating inscription in functionalized DNA (in the picosecond pulse regime).
Long-term large-scale holographic storage in iron doped lithium niobate
An, Xin
1998-11-01
important holographic noise source, the inter-pixel grating noise, is evaluated theoretically based on a linear (small-signal) model, followed by experimental investigation of its influence on the system error performance of a large-scale memory. Random-phase modulation in the signal beam is discussed and demonstrated as an effective way to suppress this holographic noise.
Color holographic display with white light LED source and single phase only SLM.
Kozacki, Tomasz; Chlipala, Maksymilian
2016-02-08
This work presents color holographic display, which is based on a single phase only spatial light modulator (SLM). In the display entire area of the SLM is illuminated by an on-axis white light beam generated by a single large LED. The holographic display fully utilizes SLM bandwidth and has capability of full-color, full frame rate imaging of outstanding quality. This is achieved through: (i) optimal use of the source coherence volume, (ii) application of the single white light LED source, (iii) a development of a novel concept of color multiplexing technique with color filter mask in Fourier plane of the SLM, (iv) and a complex coding with improved diffraction efficiency. Within experimental part of the paper we show single color, full-color holographic 2D and 3D images generated for reconstruction depth exceeding 10 cm.
Microbial population dynamics by digital in-line holographic microscopy
Frentz, Zak; Kuehn, Seppe; Hekstra, Doeke; Leibler, Stanislas
2010-08-01
Measurements of population dynamics are ubiquitous in experiments with microorganisms. Studies with microbes elucidating adaptation, selection, and competition rely on measurements of changing populations in time. Despite this importance, quantitative methods for measuring population dynamics microscopically, with high time resolution, across many replicates remain limited. Here we present a new noninvasive method to precisely measure microbial spatiotemporal population dynamics based on digital in-line holographic (DIH) microscopy. Our inexpensive, replicate DIH microscopes imaged hundreds of swimming algae in three dimensions within a volume of several microliters on a time scale of minutes over periods of weeks.
Microbial population dynamics by digital in-line holographic microscopy.
Frentz, Zak; Kuehn, Seppe; Hekstra, Doeke; Leibler, Stanislas
2010-08-01
Measurements of population dynamics are ubiquitous in experiments with microorganisms. Studies with microbes elucidating adaptation, selection, and competition rely on measurements of changing populations in time. Despite this importance, quantitative methods for measuring population dynamics microscopically, with high time resolution, across many replicates remain limited. Here we present a new noninvasive method to precisely measure microbial spatiotemporal population dynamics based on digital in-line holographic (DIH) microscopy. Our inexpensive, replicate DIH microscopes imaged hundreds of swimming algae in three dimensions within a volume of several microliters on a time scale of minutes over periods of weeks.
Spontaneously induced general relativity with holographic interior and general exterior
Shen, Xiao-Qing; Yang, Guo-Hong
2012-01-01
The general relativity (GR) might be viewed as a spontaneously induced theory from the scalar-tensor gravity, in which the would-have-been horizon connects the exterior solution of GR with a novel core of vanishing spatial volume. Using a simple but robust analytic method, we give the nontrivial core metric for the general exterior. Then we show that all the nontrivial features of the core, including the locally holographic entropy packing, are not influenced by the general exterior. We also investigate whether other modified theories of gravity can permit the nontrivial core.
Stretchable diffraction gratings for spectrometry
Simonov, A.N.; Grabarnik, S.; Vdovine, G.V
2007-01-01
We have investigated the possibility of using transparent stretchable diffraction gratings for spectrometric applications. The gratings were fabricated by replication of a triangular-groove master into a transparent viscoelastic. The sample length, and hence the spatial period, can be reversibly cha
Pezeshki, Bardia; Hagberg, Mats; Zelinski, Michael; Zou, Sarah; Kolev, Emil I.
1999-04-01
We have demonstrated a number of high power and single- frequency lasers at 635 - 680 nm by incorporating a grating reflector within the device, including DBRs, tunable DBRs, monolithic MOPAs, DFBs, and angled-grating DFBs. The DBR laser, with an unpumped grating as the rear reflector, is the simplest single-frequency structure, with about 20 mW output power. The device can be tuned about 3 nm by injecting current in the rear grating. Higher output power can be obtained by combining the DBR with a flared amplifier to form a monolithic MOPA with over 250 mW CW output power. Unlike DBR structures, the DFBs have a grating throughout their gain region, and therefore show no mode hops. Wavelengths as short as 634 nm and output powers as high as 90 mW have been obtained with DFBs. An angle-grating DFB is a broad area device where the angled grating forces lasing in a single spatial and longitudinal mode. More than 400 mW in single-frequency power has been obtained at 660 nm from such a structure. In general, grating-based red lasers are useful for interferometry, spectroscopy, and fiber-coupling applications.
Holographic and e-Beam Image Recording in Ge5As37S58-Se Nanomultilayer Structures
Stronski, A.; Achimova, E.; Paiuk, O.; Meshalkin, A.; Abashkin, V.; Lytvyn, O.; Sergeev, S.; Prisacar, A.; Triduh, G.
2016-01-01
Processes of e-beam and holographic recording of surface relief structures using Ge5As37S58-Se multilayer nanostructures as registering media were studied in this paper. Optical properties of Ge5As37S58, Se layers, and Ge5As37S58-Se multilayer nanostructures were investigated. Spectral dependencies of refractive index were analyzed within the frames of single oscillator model. Values of optical band gaps for Ge5As37S58, Se layers, and Ge5As37S58-Se multilayer nanostructures were obtained from Tauc dependencies. Using e-beam and holographic recording, diffraction gratings were fabricated in Ge5As37S58-Se multilayer nanostructures. Images of Ukraine and Moldova state emblems were obtained by e-beam recording. Image size consisted of 512 × 512 pixels (size of 1 pixel was ~2 μm). Ge5As37S58-Se multilayer nanostructures are perspective for the direct recording of holographic diffraction gratings and other optical elements.
Mao, Dongyao; Geng, Yaohui; Liu, Hongpeng; Zhou, Ke; Xian, Lihong; Yu, Dan
2016-08-10
Holographic sensing of alcohol organic vapor is characterized in detail at transmission and reflection geometries in Y nanozeolites dispersed acrylamide photopolymer. The two-way shift of the diffraction spectrum and its temporal evolution with various vapor concentrations are measured. Obvious blueshifts of diffraction spectrum peaks are observed and analyzed in two recording geometries. The competition mechanism between decreasing the average refractive index and swelling the grating fringe space is proposed for exploring the wavelength shift mechanism. In the reflection grating, as organic vapor increases, the redshift after the blueshift of the wavelength peaks are observed clearly. We further demonstrate the significance of this competition mechanism. In the low concentration region, at transmission blueshift of the wavelength is a significant factor in identifying an organic vapor with a low refractive index. These experimental results provide a probability for improving the applicability of a holographic sensor. This work can accelerate the development of the holographic sensing strategy and provide a novel identification method for organic vapor.
Slow plasmons in grating cavities
Aydinli, Atilla; Karademir, Ertugrul; Balci, Sinan; Kocabas, Coskun
2016-03-01
Recent research on surface plasmon polaritons and their applications have brought forward a wealth of information and continues to be of interest to many. In this report, we concentrate on propagating surface plasmon polaritons (SPPs) and their interaction with matter. Using grating based metallic structures, it is possible to control the electrodynamics of propagating SPPs. Biharmonic gratings loaded with periodic Si stripes allow excitation of SPPs that are localized inside the band gap with grating coupling. The cavity state is formed due to periodic effective index modulation obtained by one harmonic of the grating and loaded Si stripes. More complicated grating structures such as metallic Moiré surfaces have also been shown to form a localized state inside the band gap when excited with Kretschmann configuration.
LLE Review Quarterly Report (January-March 2000). Volume 82
Energy Technology Data Exchange (ETDEWEB)
Radha, P. B. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics
2000-03-01
This volume of the LLE Review, covering the period January-March 2000, includes a report on OMEGA cryogenic target designs for the soon-to-be-commissioned OMEGA Cryogenic Target Handling System. R. P. J. Town, J. A. Delettrez, R. Epstein, V. N. Goncharov, P. W. McKenty, P. B. Radha, and S. Skupsky use two-dimensional hydrodynamic simulations in conjunction with a stability analysis model to study the performance of OMEGA cryogenic capsules. They show that these targets are energy-scaled from the NIF ignition designs and have similar 1-D behavior and stability properties. This similarity will facilitate the extrapolation of cryogenic target studies on OMEGA to ignition targets on the NIF. Other articles in this volume are: Imprint Reduction using an Intensity Spike in Omega Cryogenic Targets; Measurement of Preheat Due to Fast Electrons in Laser Implosions; Holographic Transmission Gratings for Spectral Dispersion; Laser Beam Smoothing Caused by the Small-Spatial-Scale B-Integral; Three-Dimensional Modeling of Capsule Implosions in OMEGA Tetrahedral Hohlraums; and, Nanoindentation Hardness of Particles Used in Magnetoheological finishing (MRF).
Holographic superconductors with hyperscaling violation
Fan, ZhongYing
2013-01-01
We investigate holographic superconductors in asympototically geometries with hyperscaling violation. The mass of the scalar field decouples from the UV dimension of the dual scalar operator and can be chosen as negative as we want, without disturbing the Breitenlohner-Freedman bound. We first numerically find that the scalar condenses below a critical temperature and a gap opens in the real part of the conductivity, indicating the onset of superconductivity. We further analytically explore the effects of the hyperscaling violation on the superconducting transition temperature. We find that the critical temperature increases with the increasing of hyperscaling violation.
The holographic supersymmetric Casimir energy
Genolini, Pietro Benetti; Martelli, Dario; Sparks, James
2016-01-01
We consider a general class of asymptotically locally AdS_5 solutions of minimal gauged supergravity, that are dual to superconformal field theories on curved backgrounds S^1 x M_3 preserving two supercharges. We demonstrate that standard holographic renormalization corresponds to a scheme that breaks supersymmetry. We propose new boundary terms that restore supersymmetry, and show that for smooth solutions with topology S^1 x R^4 the improved on-shell action reproduces both the supersymmetric Casimir energy and the field theory BPS relation between charges.
Theta angle in holographic QCD
Jarvinen, Matti
2016-01-01
V-QCD is a class of effective holographic models for QCD which fully includes the backreaction of quarks to gluon dynamics. The physics of the theta-angle and the axial anomaly can be consistently included in these models. We analyze their phase diagrams over ranges of values of the quark mass, N_f/N_c, and theta, computing observables such as the topological susceptibility and the meson masses. At small quark mass, where effective chiral Lagrangians are reliable, they agree with the predictions of V-QCD.
Holographic d-wave superconductors
Kim, Keun-Young
2013-01-01
We construct top down models for holographic d-wave superfluids in which the order parameter is a charged spin two field in the bulk. Close to the transition temperature the condensed phase can be captured by a charged spin two field in an R-charged black hole background (downstairs picture) or equivalently by specific graviton perturbations of a spinning black brane (upstairs picture). We analyse the necessary conditions on the mass and the charge of the spin two field for a condensed phase to exist and we discuss the competition of the d-wave phase with other phases such as s-wave superfluids.
Holographic s+p Superconductors
Amado, Irene; Jimenez-Alba, Amadeo; Melgar, Luis; Landea, Ignacio Salazar
2014-01-01
We study the phase diagram of a holographic model realizing a U(2) global symmetry on the boundary and show that at low temperature a phase with both scalar s and vector p condensates exists. This is the s+p-wave phase where the global U(2) symmetry and also the spatial rotational symmetry are spontaneously broken. By studying the free energy we show that this phase is preferred when it exists. We also consider unbalanced configurations where a second chemical potential is turned on. They present a rich phase diagram characterized by the competition and coexistence of the s and p order parameters.
The holographic supersymmetric Casimir energy
Benetti Genolini, Pietro; Cassani, Davide; Martelli, Dario; Sparks, James
2017-01-01
We consider a general class of asymptotically locally AdS5 solutions of minimal gauged supergravity, which are dual to superconformal field theories on curved backgrounds S1×M3 preserving two supercharges. We demonstrate that standard holographic renormalization corresponds to a scheme that breaks supersymmetry. We propose new boundary terms that restore supersymmetry, and show that for smooth solutions with topology S1×R4 the improved on-shell action reproduces both the supersymmetric Casimir energy and the field theory supersymmetric relation between charges.
Generalized superconductors and holographic optics
Energy Technology Data Exchange (ETDEWEB)
Mahapatra, Subhash; Phukon, Prabwal; Sarkar, Tapobrata [Department of Physics, Indian Institute of Technology,Kanpur 208016 (India)
2014-01-24
We study generalized holographic s-wave superconductors in four dimensional R-charged black hole and Lifshitz black hole backgrounds, in the probe limit. We first establish the superconducting nature of the boundary theories, and then study their optical properties. Numerical analysis indicates that a negative Depine-Lakhtakia index may appear at low frequencies in the theory dual to the R-charged black hole, for certain temperature ranges, for specific values of the charge parameter. The corresponding cut-off values for these are numerically established in several cases. Such effects are seen to be absent in the Lifshitz background where this index is always positive.
Holographic Thermalization with Weyl Corrections
Dey, Anshuman; Sarkar, Tapobrata
2015-01-01
We consider holographic thermalization in the presence of a Weyl correction in five dimensional AdS space. We numerically analyze the time dependence of the two point correlation functions and the expectation values of rectangular Wilson loops in the boundary field theory. The subtle interplay between the Weyl coupling constant and the chemical potential is studied in detail. An outcome of our analysis is the appearance of a swallow tail behaviour in the thermalization curve, and we give evidence that this might indicate distinct physical situations relating to different length scales in the problem.
Semi-holographic model revisited
Cárdenas, Víctor H; Magaña, Juan
2013-01-01
In a recent work Zhang, Li and Noh [Phys. Lett. B {\\bf 694}, 177 (2010)]proposed a model for dark energy assuming this component strictly obeys the holographic principle. They performed a dynamical system analysis, finding a scaling solution which is helpful to solve the coincidence problem. However they need explicitly a cosmological constant. In this paper we derive an explicit analytical solution, without $\\Lambda$, that shows agreement with the Supernovae data. However this solution is not physical because violate all the energy conditions.
Aketagawa, M.; Madden, M.; Uesugi, S.; Kumagai, T.; Maeda, Y.; Okuyama, E.
2012-11-01
In the conventional methods to measure radial, axial and angular motions of spindles, complicated artifacts with relative large volume (such as two balls linked with a cylinder) are required. Small volume artifact is favorable from the viewpoint of the accurate and practical measurement of the spindle motion. This paper describes a concurrent measurement of spindle radial, axial and angular motions using concentric circle grating and phase modulation interferometers. In the measurement, the concentric circle grating with fine pitch is installed on top of the spindle of interest. The grating is a reference artifact in the method. Three optical sensors are fixed over the concentric circle grating, and observe the proper positions of the grating. The optical sensor consists of a frequency modulated laser diode as a light source, and two interferometers. One interferometer observes an interference fringe between reflected light form a fixed mirror and 0-th order diffraction light from the grating to measure the axial motion. Another interferometer observes an interference fringe between +/-2nd diffraction lights from the grating to measure the radial motion. Using three optical sensors, three radial displacements and three axial displacements of the proper observed position of the grating can be measured. From these measured displacements, radial, axial and angular motions of the spindle can be calculated concurrently. In the paper, a measurement instrument, a novel fringe interpolation technique by sinusoidal phase modulation and experimental results are discussed.
Moving through a multiplex holographic scene
Mrongovius, Martina
2013-02-01
This paper explores how movement can be used as a compositional element in installations of multiplex holograms. My holographic images are created from montages of hand-held video and photo-sequences. These spatially dynamic compositions are visually complex but anchored to landmarks and hints of the capturing process - such as the appearance of the photographer's shadow - to establish a sense of connection to the holographic scene. Moving around in front of the hologram, the viewer animates the holographic scene. A perception of motion then results from the viewer's bodily awareness of physical motion and the visual reading of dynamics within the scene or movement of perspective through a virtual suggestion of space. By linking and transforming the physical motion of the viewer with the visual animation, the viewer's bodily awareness - including proprioception, balance and orientation - play into the holographic composition. How multiplex holography can be a tool for exploring coupled, cross-referenced and transformed perceptions of movement is demonstrated with a number of holographic image installations. Through this process I expanded my creative composition practice to consider how dynamic and spatial scenes can be conveyed through the fragmented view of a multiplex hologram. This body of work was developed through an installation art practice and was the basis of my recently completed doctoral thesis: 'The Emergent Holographic Scene — compositions of movement and affect using multiplex holographic images'.
Holographic probes of collapsing black holes
Hubeny, Veronika E
2013-01-01
We continue the programme of exploring the means of holographically decoding the geometry of spacetime inside a black hole using the gauge/gravity correspondence. To this end, we study the behaviour of certain extremal surfaces (focusing on those relevant for equal-time correlators and entanglement entropy in the dual CFT) in a dynamically evolving asymptotically AdS spacetime, specifically examining how deep such probes reach. To highlight the novel effects of putting the system far out of equilibrium and at finite volume, we consider spherically symmetric Vaidya-AdS, describing black hole formation by gravitational collapse of a null shell, which provides a convenient toy model of a quantum quench in the field theory. Extremal surfaces anchored on the boundary exhibit rather rich behaviour, whose features depend on dimension of both the spacetime and the surface, as well as on the anchoring region. The main common feature is that they reach inside the horizon even in the post-collapse part of the geometry. ...
DEFF Research Database (Denmark)
Marckmann, Carl Johan
2003-01-01
The subject of this ph.d. thesis was the development of an electrically switchable Bragg grating made in an optical waveguide using thermal poling to be applied within optical telecommunication systems. The planar waveguides used in this thesis were fabricated at the Micro- and Nanotechnology....... This result is very useful in the production of telecommunication devices since polarization independence of the second-order nonlinearity is wanted. In order to increase the second-order nonlinearity, it was found that the introduction of a high refractive index trapping layer was favorable. During...... the thesis, the thermal poling induced second-order nonlinearity was increased by approximately 64% making a silica based optical switch possible. Finally, a possible explanation to the very high, but short-lived, poling results obtained by some groups was discovered....
Yaqoob, Zahid; Arain, Muzammil A; Riza, Nabeel A
2003-09-10
A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.
Optical Fiber Grating based Sensors
DEFF Research Database (Denmark)
Michelsen, Susanne
2003-01-01
In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...
Holographic entanglement entropy on generic time slices
Kusuki, Yuya; Takayanagi, Tadashi; Umemoto, Koji
2017-06-01
We study the holographic entanglement entropy and mutual information for Lorentz boosted subsystems. In holographic CFTs at zero and finite temperature, we find that the mutual information gets divergent in a universal way when the end points of two subsystems are light-like separated. In Lifshitz and hyperscaling violating geometries dual to non-relativistic theories, we show that the holographic entanglement entropy is not well-defined for Lorentz boosted subsystems in general. This strongly suggests that in non-relativistic theories, we cannot make a real space factorization of the Hilbert space on a generic time slice except the constant time slice, as opposed to relativistic field theories.
Order parameter fluctuations in the holographic superconductor
Plantz, N. W. M.; Stoof, H. T. C.; Vandoren, S.
2017-03-01
We investigate the effect of order parameter fluctuations in the holographic superconductor. In particular, following an introduction to the concept of intrinsic dynamics and its implementation within holographic models, we compute the intrinsic spectral functions of the order parameter in both the normal and the superconducting phase, using a fully backreacted bulk geometry. We also present a vector-like large-N version of the Ginzburg–Landau model that accurately describes our long-wavelength results in both phases. Our results indicate that the holographic superconductor describes a relativistic multi-component superfluid in the universal regime of the BEC–BCS crossover.
Baryon Transition in Holographic QCD
Li, Siwen
2015-01-01
We propose a mechanism of holographic baryon transition in the Sakai-Sugimoto (SS) model: baryons in this model can jump to different states under the mediated effect of gravitons (or glueballs by holography). We consider a time-dependent gravitational perturbation from M5-brane solution of D=11 supergravity and by employing the relations between 11D M-theory and IIA string theory, we get its 10 dimensional counterpart in the SS model. Such a perturbation is received by the D4-branes wrapped on the $S^{4}$ part of the 10D background, namely the baryon vertex. Technically, baryons in the SS model are described by BPST instanton ansatz and their dynamics can be analyzed using the quantum mechanical system in the instanton's moduli space. In this way, different baryonic states are marked by quantum numbers of moduli space quantum mechanics. By holographic spirit, the gravitational perturbation enters the Hamiltonian as a time-dependent perturbation and it is this time-dependent perturbative Hamiltonian produces ...
Bit threads and holographic entanglement
Freedman, Michael
2016-01-01
The Ryu-Takayanagi (RT) formula relates the entanglement entropy of a region in a holographic theory to the area of a corresponding bulk minimal surface. Using the max flow-min cut principle, a theorem from network theory, we rewrite the RT formula in a way that does not make reference to the minimal surface. Instead, we invoke the notion of a "flow", defined as a divergenceless norm-bounded vector field, or equivalently a set of Planck-thickness "bit threads". The entanglement entropy of a boundary region is given by the maximum flux out of it of any flow, or equivalently the maximum number of bit threads that can emanate from it. The threads thus represent entanglement between points on the boundary, and naturally implement the holographic principle. As we explain, this new picture clarifies several conceptual puzzles surrounding the RT formula. We give flow-based proofs of strong subadditivity and related properties; unlike the ones based on minimal surfaces, these proofs correspond in a transparent manner...
Holographic duals of Boundary CFTs
Chiodaroli, Marco; Gutperle, Michael
2012-01-01
New families of regular half-BPS solutions to 6-dimensional Type 4b supergravity with $m$ tensor multiplets are constructed exactly. Their space-time consists of $AdS_2 \\times S^2$ warped over a Riemann surface with an arbitrary number of boundary components, and arbitrary genus. The solutions have an arbitrary number of asymptotic $AdS_3 \\times S^3$ regions. In addition to strictly single-valued solutions to the supergravity equations whose scalars live in the coset $SO(5,m)/SO(5)\\times SO(m)$, we also construct stringy solutions whose scalar fields are single-valued up to transformations under the $U$-duality group $SO(5,m;\\bZ)$, and live in the coset $SO(5,m;\\bZ)\\backslash SO(5,m)/SO(5)\\times SO(m)$. We argue that these Type 4b solutions are holographically dual to general classes of interface and boundary CFTs arising at the juncture of the end-points of 1+1-dimensional bulk CFTs. We evaluate their corresponding holographic entanglement and boundary entropy, and discuss their brane interpretation. We conj...
Exploring holographic Composite Higgs models
Croon, Djuna; Huber, Stephan J; Sanz, Veronica
2015-01-01
Simple Composite Higgs models predict new vector-like fermions not too far from the electroweak scale, yet LHC limits are now sensitive to the TeV scale. Motivated by this tension, we explore the holographic dual of the minimal model, MCHM5, to understand how far naive 4D predictions are from their 5D duals. Interestingly, we find that the usual hierarchy among the vector-like quarks is not generic, hence ameliorating the tuning issue. We also find that lowering the hierarchy of scales in the 5D picture allows for heavier top partners, while keeping the mass of the Higgs boson at its observed value. In the 4D dual this corresponds to increasing the number of colours N. Furthermore, in anticipation of the ongoing efforts at the LHC to put bounds on the top Yukawa, we demonstrate that deviations from the SM can be suppressed or enhanced with respect to what is expected from mere symmetry arguments in 4D. We conclude that the 5D holographic realisation of the MCHM5 with a small hierarchy of scales may not in ten...
Unbalanced Holographic Superconductors and Spintronics
Bigazzi, Francesco; Musso, Daniele; Fokeeva, Natalia Pinzani; Seminara, Domenico
2011-01-01
We present a minimal holographic model for s-wave superconductivity with unbalanced Fermi mixtures, in 2+1 dimensions at strong coupling. The breaking of a U(1)_A "charge" symmetry is driven by a non-trivial profile for a charged scalar field in a charged asymptotically AdS_4 black hole. The chemical potential imbalance is implemented by turning on the temporal component of a U(1)_B "spin" field under which the scalar field is uncharged. We study the phase diagram of the model and comment on the eventual (non) occurrence of LOFF-like inhomogeneous superconducting phases. Moreover, we study "charge" and "spin" transport, implementing a holographic realization (and a generalization thereof to superconducting setups) of Mott's two-current model which provides the theoretical basis of modern spintronics. Finally we comment on possible string or M-theory embeddings of our model and its higher dimensional generalizations, within consistent Kaluza-Klein truncations and brane-anti brane setups.
Bit Threads and Holographic Entanglement
Freedman, Michael; Headrick, Matthew
2016-11-01
The Ryu-Takayanagi (RT) formula relates the entanglement entropy of a region in a holographic theory to the area of a corresponding bulk minimal surface. Using the max flow-min cut principle, a theorem from network theory, we rewrite the RT formula in a way that does not make reference to the minimal surface. Instead, we invoke the notion of a "flow", defined as a divergenceless norm-bounded vector field, or equivalently a set of Planck-thickness "bit threads". The entanglement entropy of a boundary region is given by the maximum flux out of it of any flow, or equivalently the maximum number of bit threads that can emanate from it. The threads thus represent entanglement between points on the boundary, and naturally implement the holographic principle. As we explain, this new picture clarifies several conceptual puzzles surrounding the RT formula. We give flow-based proofs of strong subadditivity and related properties; unlike the ones based on minimal surfaces, these proofs correspond in a transparent manner to the properties' information-theoretic meanings. We also briefly discuss certain technical advantages that the flows offer over minimal surfaces. In a mathematical appendix, we review the max flow-min cut theorem on networks and on Riemannian manifolds, and prove in the network case that the set of max flows varies Lipshitz continuously in the network parameters.
Zhu, Jianhua; Xu, Min; Chen, Ligong; Guo, Yongkang; Guo, Lurong
2005-09-01
A high-quality single-layer panchromatic dichromated gelatin material is achieved successfully by employing new types of multi-color photosensitizers and photochemical promoters to conventional photo-crosslinking gelatin system. Its holographic recording characteristics such as spectral response, the photosensitivity of three primary colors, spectral selectivity of volume reflection hologram, angular and wavelength selectivity of volume transmission hologram, are studied in detail. Using red, green and blue lasers, namely three primary colors, the bright volume transmission and reflection holograms can be recorded on the panchromatic material at the exposure level of 30 mJ/cm2. Some preliminary results of space, angle and wavelength multiplexing holographic storage for storing multiple binary and grey-tone optical images, are also reported in this paper.
Large N Phase Transitions, Finite Volume, and Entanglement Entropy
Johnson, Clifford V
2014-01-01
Holographic studies of the entanglement entropy of field theories dual to charged and neutral black holes in asymptotically global AdS4 spacetimes are presented. The goal is to elucidate various properties of the quantity that are peculiar to working in finite volume, and to gain access to the behaviour of the entanglement entropy in the rich thermodynamic phase structure that is present at finite volume and large N. The entropy is followed through various first order phase transitions, and also a novel second order phase transition. Behaviour is found that contrasts interestingly with an earlier holographic study of a second order phase transition dual to an holographic superconductor.
Extreme Silica Optical Fibre Gratings
Directory of Open Access Journals (Sweden)
Kevin Cook
2008-10-01
Full Text Available A regenerated optical fibre Bragg grating that survives temperature cycling up to 1,295Ã‚Â°C is demonstrated. A model based on seeded crystallisation or amorphisation is proposed.
A Mach-Zender Holographic Microscope for Quantifying Bacterial Motility
Niraula, B.; Nadeau, J. L.; Serabyn, E.; Wallace, J. K.; Liewer, K.; Kuhn, J.; Graff, E.; Lindensmith, C.
2014-12-01
New microscopic techniques have revolutionized cell biology over the past two decades. However, there are still biological processes whose details elude us, especially those involving motility: e.g. feeding behavior of microorganisms in the ocean, or migration of cancer cells to form metastases. Imaging prokaryotes, which range in size from several hundred nm to a few microns, is especially challenging. An emerging technique to address these issues is Digital Holographic Microscopy (DHM). DHM is an imaging technique that uses the interference of light to record and reproduce three-dimensional magnified images of objects. This approach has several advantages over ordinary brightfield microscopy for fieldwork: a larger depth of field, hands-off operation, robustness regarding environmental conditions, and large sampling volumes with quantitative 3D records of motility behavior. Despite these promising features, real-time DHM was thought to be impractical for technological and computational reasons until recently, and there has so far been very limited application of DHM to biology. Most existing instruments are limited in performance by their particular (e.g. in-line, lens-less, phase-shifting) approach to holography. These limitations can be mitigated with an off-axis dual-path configuration. Here we describe the design and implementation of a design for a Mach-Zehnder-type holographic microscope with diffraction-limited lateral resolution, with intended applications in environmental microbiology. We have achieved sub-micron resolution and three-dimensional tracking of prokaryotic and eukaryotic test strains designed to represent different modes and speeds of microbial motility. Prokaryotes are Escherichia coli, Vibrio alginolyticus, and Bacillus subtilis. Each shows a characteristic motility pattern, as we illustrate in holographic videos in sample chambers 0.6 mm in depth. The ability to establish gradients of attractants with bacterial taxis towards the
Barillé, R.; Tajalli, P.; Roy, P.; Ahmadi-kandjani, S.; Kucharski, S.; Ortyl, E.
2012-02-01
We propose a new type of hollow-core fiber where the propagation is ensured by a photoinduced self-pattern acting as a surface relief grating (SRG). The SRG is written by launching a suitable laser beam with proper polarization in a capillary glass fiber with the inner surface previously coated with an azopolymer thin film. Such a grating acts as a wavelength/angle dependant reflective mirror and enhances the confinement and the propagation of the light.
MEMS Bragg grating force sensor
DEFF Research Database (Denmark)
Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole
2011-01-01
We present modeling, design, fabrication and characterization of a new type of all-optical frequency modulated MEMS force sensor based on a mechanically amplified double clamped waveguide beam structure with integrated Bragg grating. The sensor is ideally suited for force measurements in harsh...... environments and for remote and distributed sensing and has a measured sensitivity of -14 nm/N, which is several times higher than what is obtained in conventional fiber Bragg grating force sensors. © 2011 Optical Society of America....
Randall-Sundrum vs. Holographic Braneworld
Bilic, Neven
2016-01-01
A mapping between two braneworld cosmologies -- Randall-Sundrum and holographic -- is explicitly constructed. The cosmologies are governed by the appropriate modified Friedman equations. A relationship between the corresponding Hubble rates is established.
G-corrected holographic dark energy model
Malekjani, M
2013-01-01
Here we investigate the holographic dark energy model in the framework of FRW cosmology where the Newtonian gravitational constant,$G$, is varying with cosmic time. Using the complementary astronomical data which support the time dependency of $G$, the evolutionary treatment of EoS parameter and energy density of dark energy model are calculated in the presence of time variation of $G$. It has been shown that in this case, the phantom regime can be achieved at the present time. We also calculate the evolution of $G$- corrected deceleration parameter for holographic dark energy model and show that the dependency of $G$ on the comic time can influence on the transition epoch from decelerated expansion to the accelerated phase. Finally we perform the statefinder analysis for $G$- corrected holographic model and show that this model has a shorter distance from the observational point in $s-r$ plane compare with original holographic dark energy model.
Hybrid holographic non-destructive test system
Kurtz, R. L. (Inventor)
1978-01-01
An automatic hybrid holographic non-destructive testing (HNDT) method and system capable of detecting flaws or debonds contained within certain materials are described. This system incorporates the techniques of optical holography, acoustical/optical holography and holographic correlation in determining the structural integrity of a test object. An automatic processing system including a detector and automatic data processor is used in conjunction with the three holographic techniques for correlating and interpreting the information supplied by the non-destructive systems. The automatic system also includes a sensor which directly translates an optical data format produced by the holographic techniques into electrical signals and then transmits this information to a digital computer for indicating the structural properties of the test object. The computer interprets the data gathered and determines whether further testing is necessary as well as the format of this new testing procedure.
Some applications of holographic interferometry in biomechanics
Ebbeni, Jean P. L.
1992-03-01
Holographic interferometry is well adapted for the determination of 2D strain fields in osseous structures. The knowledge of those strain fields is important for the understanding of structure behavior such as arthrosis.
Holographic tachyon model of dark energy
Setare, M.R.
2007-01-01
In this paper we consider a correspondence between the holographic dark energy density and tachyon energy density in FRW universe. Then we reconstruct the potential and the dynamics of the tachyon field which describe tachyon cosmology.
Stretchable diffraction gratings for spectrometry.
Simonov, Aleksey N; Grabarnik, Semen; Vdovin, Gleb
2007-07-23
We have investigated the possibility of using transparent stretchable diffraction gratings for spectrometric applications. The gratings were fabricated by replication of a triangular-groove master into a transparent viscoelastic. The sample length, and hence the spatial period, can be reversibly changed by mechanical stretching. When used in a monochromator with two slits, the stretchable grating permits scanning the spectral components over the output slit, converting the monochromator into a scanning spectrometer. The spectral resolution of such a spectrometer was found to be limited mainly by the wave-front aberrations due to the grating deformation. A model relating the deformation-induced aberrations in different diffraction orders is presented. In the experiments, a 12-mm long viscoelastic grating with a spatial frequency of 600 line pairs/mm provided a full-width at half-maximum resolution of up to ~1.2 nm in the 580-680 nm spectral range when slowly stretched by a micrometer screw and ~3 nm when repeatedly stretched by a voice coil at 15 Hz. Comparison of aberrations in transmitted and diffracted beams measured by a Shack- Hartmann wave-front sensor showed that astigmatisms caused by stretch-dependent wedge deformation are the main factors limiting the resolution of the viscoelastic-grating-based spectrometer.
Strongly interacting matter from holographic QCD model
Chen, Yidian; Huang, Mei
2016-01-01
We introduce the 5-dimension dynamical holographic QCD model, which is constructed in the graviton-dilaton-scalar framework with the dilaton background field $\\Phi$ and the scalar field $X$ responsible for the gluodynamics and chiral dynamics, respectively. We review our results on the hadron spectra including the glueball and light meson spectra, QCD phase transitions and transport properties in the framework of the dynamical holographic QCD model.
Soft wall model for a holographic superconductor
Energy Technology Data Exchange (ETDEWEB)
Afonin, S.S.; Pusenkov, I.V. [Saint Petersburg State University, St.Petersburg (Russian Federation)
2016-06-15
We consider the soft wall holographic approach for description of the high-T{sub c} superconductivity. In comparison with the existing bottom-up holographic superconductors, the proposed approach is more phenomenological and does not describe the superconducting phase transition. On the other hand, technically it is simpler and has more freedom for fitting the conductivity properties of the real high-T{sub c} materials in the superconducting phase. Some examples of emerging models are analyzed. (orig.)
Soft wall model for a holographic superconductor
Afonin, S S
2015-01-01
We apply the soft wall holographic model from hadron physics to a description of the high-$T_c$ superconductivity. In comparison with the existing bottom-up holographic superconductors, the proposed approach is more phenomenological. On the other hand, it is much simpler and has more freedom for fitting the conductivity properties of the real high-$T_c$ materials. We demonstrate some examples of emerging models and discuss a possible origin of the approach.
Image Resolution of a Holographic System
1981-07-01
transfer function and linear systems theory to optical systems. This has also been applied to holographic image analysis (Refs. l I and 12). The...view point, the linear systems theory is applied in correlating the intensity distribution of a known point or line radiation source with the intensity...function of a holographic system, (2) a discussion of linear systems theory to allow a thorough description of a method for obtaining the line
Holographic Combiners for Head-Up Displays
1977-10-01
AFAL-TR-77 -110 S HOLOGRAPHIC COMBINERS FOR HEAD-UP DISPLAYS S Radar and Optics Division Environmental Research Institute of Michigan P.O. Box 8618...to 200. SECURITY CLASSIFICATION OF THIS PAGE(RWihen Data Entered) FOREWORD This report was prepared by the Radar and Optics Division of the...with fringes parallel to the surface......31 Figure 13. Raytrace through the F-4 HUD with a holographic combiner
Tunability of Nonuniform Reflection Holographic Filter
Institute of Scientific and Technical Information of China (English)
Shanhong You(游善红); Xinwan Li(李新碗); Jianhong Wu(吴建宏); Zongmin Yin(殷宗敏); Minxue Tang(唐敏学)
2003-01-01
The tunability of nonuniform reflection holographic filter is investigated theoretically and experimentally. It is shown that the reflection holographic filter has not only high optical density and narrow bandwidth, but also good tunability. The coupled wave theoretical model for uniform medium is compared with the model for nonuniform medium. It is identified that the coincidence of the theoretical results of the nonuniform model with the experimental results are better than that of the uniform model.
Polarization-dependent single-beam laser-induced grating-like effects on titanium films
Energy Technology Data Exchange (ETDEWEB)
Camacho-Lopez, Santiago [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico)], E-mail: camachol@cicese.mx; Evans, Rodger [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico); Escobar-Alarcon, Luis [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico DF 11801 (Mexico); Camacho-Lopez, Miguel A. [Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n, esq. Jesus Carranza, Toluca, Estado de Mexico 50120 (Mexico); Camacho-Lopez, Marco A. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Tollocan s/n, esq. Paseo Colon, Toluca, Estado de Mexico, 50110 (Mexico)
2008-12-30
In this paper we present results on polarization-dependent laser-induced effects on titanium (Ti) thin films. We irradiated the titanium films, in ambient air, using a nanosecond Nd:YAG laser (532 nm, 9 ns pulse duration, 10 Hz). Using a series of pulses of fluence well below the ablation threshold, it was possible to form grating-like structures, whose grooves run parallel to the linear polarization of the incident beam. No grating-like structures were obtained when circularly polarized light was used. Our results revealed the remarkable formation of tiny (100 nm and even smaller diameter) craters, which self-arrange quasi-periodically along the ridges (never on the valleys) of the grating-like structure. Optical and scanning electron microscopy were used to study the laser-induced changes on the surface of the titanium films. Micro-Raman spectroscopy was used to analyze the irradiated areas on the titanium films. The Raman analysis demonstrated that the grooves in the grating-like structure, build up from the laser-induced oxidation of titanium. This is the first time, to the best of our knowledge, that periodic surface structures are reported to be induced below the ablation threshold regime, with the grooves made of crystalline metal oxide, in this case TiO{sub 2} in the well-known Rutile phase. The laser irradiated areas on the film acquired selective (upon recording polarization) holographic reflectance.
Scattering-Suppression in Photochromic LiNbO3:Fe:Mn Non-volatile Holographic Recording
Institute of Scientific and Technical Information of China (English)
刘德安; 刘立人; 刘友文; 周常河; 徐良瑛
2001-01-01
We propose and experimentally investigate a new scheme capable of suppressing light-induced scattering by periodical incoherent erasure during every non-volatile holographic recording cycle in photochromic LiNbO3:Fe:Mn crystals. The results demonstrate that the scattering noise is suppressed effectively, and the final diffraction efficiency of the fixed grating is significantly enhanced, rather than decreased, by about 30％ compared with the conventional recording procedure. The period of the recording and incoherent erasure cycle is theoretically calculated and experimentally optimized.
Holographic quenches and anomalous transport
Ammon, Martin; Jimenez-Alba, Amadeo; Macedo, Rodrigo P; Melgar, Luis
2016-01-01
We study the response of the chiral magnetic effect due to continuous quenches induced by time dependent electric fields within holography. Concretely, we consider a holographic model with dual chiral anomaly and compute the electric current parallel to a constant, homogeneous magnetic field and a time dependent electric field in the probe approximation. We explicitly solve the PDEs by means of pseudospectral methods in spatial and time directions and study the transition to an universal "fast" quench response. Moreover, we compute the amplitudes, i.e.,~residues of the quasi normal modes, by solving the (ODE) Laplace transformed equations. We investigate the possibility of considering the asymptotic growth rate of the amplitudes as a well defined notion of initial time scale for linearized systems. Finally, we highlight the existence of Landau level resonances in the electrical conductivity parallel to a magnetic field at finite frequency and show explicitly that these only appear in presence of the anomaly. ...
Defect CFTs and holographic multiverse
Energy Technology Data Exchange (ETDEWEB)
Fiol, Bartomeu, E-mail: bfiol@ub.edu [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08193 Barcelona (Spain)
2010-07-01
We investigate some aspects of a recent proposal for a holographic description of the multiverse. Specifically, we focus on the implications on the suggested duality of the fluctuations of a bubble separating two universes with different cosmological constants. We do so by considering a similar problem in a 2+1 CFT with a codimension one defect, obtained by an M5-brane probe embedding in AdS{sub 4} × S{sup 7}, and studying its spectrum of fluctuations. Our results suggest that the kind of behavior required by the spectrum of bubble fluctuations is not likely to take place in defect CFTs with an AdS dual, although it might be possible if the defect supports a non-unitary theory.
Excited Baryons in Holographic QCD
Energy Technology Data Exchange (ETDEWEB)
de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-11-08
The light-front holographic QCD approach is used to describe baryon spectroscopy and the systematics of nucleon transition form factors. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. The transition from the hard-scattering perturbative domain to the non-perturbative region is sensitive to the detailed dynamics of confined quarks and gluons. Computations of such phenomena from first principles in QCD are clearly very challenging. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time; however, dynamical observables in Minkowski space-time, such as the time-like hadronic form factors are not amenable to Euclidean numerical lattice computations.
MOND cosmology from holographic principle
Zhang, Hongsheng
2011-01-01
We derive the MOND cosmology which is uniquely corresponding to the original MOND in galaxies via holographic approach of gravity. It inherits the key merit of MOND, that is, it reduces the byronic matter and mysterious non-byronic dark matter (dark matter for short) in the standard cosmology into byronic matter only. For the first time we derive the critical parameter in MOND, i.e., the transition acceleration $a_c$ on cosmological scale. We thus solve the long-standing coincidence problem $a_c\\sim cH_{0}$. More interestingly, a term like age-graphic dark energy emerges naturally. In the frame of this MOND cosmology, we only need byronic matter to describe both dark matter and dark energy in standard cosmology.
Holographic Renormalization in Dense Medium
Directory of Open Access Journals (Sweden)
Chanyong Park
2014-01-01
describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space.
Soft Pomeron in Holographic QCD
Ballon-Bayona, Alfonso; Costa, Miguel S; Djurić, Marko
2016-01-01
We study the graviton Regge trajectory in Holographic QCD as a model for high energy scattering processes dominated by soft pomeron exchange. This is done by considering spin J fields from the closed string sector that are dual to glueball states of even spin and parity. In particular, we construct a model that governs the analytic continuation of the spin J field equation to the region of real J < 2, which includes the scattering domain of negative Maldelstam variable t. The model leads to approximately linear Regge trajectories and is compatible with the measured values of 1.08 for the intercept and 0.25 GeV$^{-2}$ for the slope of the soft pomeron. The intercept of the secondary pomeron trajectory is in the same region of the subleading trajectories, made of mesons, proposed by Donnachie and Landshoff, and should therefore be taken into account.
On Effective Holographic Mott Insulators
Baggioli, Matteo
2016-01-01
We present a class of holographic models that behave effectively as prototypes of Mott insulators, materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers), which appears as a sharp manifestation of `traffic-jam'-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the amount of disorder in a specific way. These models imply a c...
Holographic Cosmology from BIonic Solutions
Sepehri, Alireza; Setare, Mohammad Reza; Ali, Ahmed Farag
2015-01-01
In this paper, we will use a BIonic solution for analysing the holographic cosmology. A BIonic solution is a configuration of a D-brane and an anti-D-brane connected by a wormhole. A BIonic configuration can form due to a transition of fundamental black strings. After the BIon has formed, the wormhole in the BIon will act act as a channel for the energy to flow into the D3-brane. This will increase the degrees of freedom of the D3-brane causing inflation. The inflation will end when the wormhole gets annihilated. However, as the distance between the D3-brane and the anti-D3-brane reduces, tachyonic states get created. These tachyonic states will lead to the formation of a new wormhole. This new wormhole will again increasing the degrees of freedom on the D3-brane causing late time acceleration.
Holographic Software for Quantum Networks
Jaffe, Arthur; Wozniakowski, Alex
2016-01-01
We introduce diagrammatic protocols and holographic software for quantum information. We give a dictionary to translate between diagrammatic protocols and the usual algebraic protocols. In particular we describe the intuitive diagrammatic protocol for teleportation. We introduce the string Fourier transform $\\mathfrak{F}_{s}$ in quantum information, which gives a topological quantum computer. We explain why the string Fourier transform maps the zero particle state to the multiple-qudit resource state, which maximizes the entanglement entropy. We give a protocol to construct this $n$-qudit resource state $|Max \\rangle$, which uses minimal cost. We study Pauli $X,Y,Z$ matrices, and their relation with diagrammatic protocols. This work provides bridges between the new theory of planar para algebras and quantum information, especially in questions involving communication in quantum networks.
A set of innovative immersed grating based spectrometer designs for METIS
Agócs, Tibor; Navarro, Ramon; Venema, Lars; van Amerongen, Aaldert H.; Tol, Paul J. J.; van Brug, Hedser; Brandl, Bernhard R.; Molster, Frank; Todd, Stephen
2014-07-01
We present innovative, immersed grating based optical designs for the SMO (Spectrograph Main Optics) module of the Mid-infrared E-ELT Imager and Spectrograph, METIS. The immersed grating allows a significant reduction of SMO volume compared to conventional echelle grating designs, because the diffraction takes place in high refractive index silicon. Additionally, using novel optimization techniques and technical solutions in silicon micromachining offered by the semiconductor industry, further improvements can be achieved. We show optical architectures based on compact, double-pass Three Mirror Anastigmat (TMA) designs, which appear advantageous in terms of one or several of the following: optical performance, reduction of volume, ease of manufacturing and testing. We explore optical designs, where the emphasis is put on manufacturability and we investigate optical solutions, where the ultimate goal is the highest possible optical performance. These novel, silicon immersed grating based design concepts are applicable for future earth and space based spectrometers.
System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy
Greenwood, Margaret S.
2008-07-08
A system for determining property of multiphase fluids based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum exhibits peaks whose relative size depends on the properties of the various phases of the multiphase fluid. For example, for particles in a liquid, the peaks exhibit dependence on the particle size and the particle volume fraction. Where the exact relationship is know know a priori, data from different peaks of the same reflection spectrum or data from the peaks of different spectra obtained from different diffraction gratings can be used to resolve the size and volume fraction.
Efficient iterative technique for designing bragg gratings
DEFF Research Database (Denmark)
Plougmann, Nikolai; Kristensen, Martin
2004-01-01
We present a new iterative method for designing Bragg gratings based on the Levenberg-Marquardt method of minimizing a chi-squared merit function. It is effective for designing both weak and strong gratings and is particularly well suited for unchirped gratings.......We present a new iterative method for designing Bragg gratings based on the Levenberg-Marquardt method of minimizing a chi-squared merit function. It is effective for designing both weak and strong gratings and is particularly well suited for unchirped gratings....
Model based control of grate combustion; Modellbaserad roststyrning
Energy Technology Data Exchange (ETDEWEB)
Broden, Henrik; Kjellstroem, Bjoern; Niklasson, Fredrik; Boecher Poulsen, Kristian
2006-12-15
An existing dynamic model for grate combustion has been further developed. The model has been used for studies of possible advantages that can be gained from utilisation of measurements of grate temperatures and fuel bed height for control of a boiler after disturbances caused by varying fuel moisture and fuel feeding. The objective was to asses the possibilities to develop a control system that would adjust for such disturbances quicker than measurements of steam output and oxygen in the exhaust. The model is based on dividing the fuel bed into three layers, where the different layers include fuel being dried, fuel being pyrolysed and char reacting with oxygen. The grate below the fuel bed is also considered. A mass balance, an energy balance and a volume balance is considered for each layer in 22 cells along the grate. The energy balances give the temperature distribution and the volume balances the bed height. The earlier version of the model could not handle layers that are consumed. This weakness has now been eliminated. Comparisons between predicted grate temperatures and measurements in a 25 MW boiler fuelled with biofuel have been used for validation of the model. The comparisons include effects of variations in primary air temperature, fuel moisture and output power. The model shows good agreement with observations for changes in the air temperature but the ability of the model to predict effects of changed fuel moisture is difficult to judge since the steam dome pressure control caused simultaneous changes of the primary air flow, which probably had a larger influence on the grate temperature. A linearised, tuned and reduced version of the model was used for design of a linear quadratic controller. This was used for studies of advantages of using measurements of grate temperatures and bed height for control of pusher velocity, grate speed, primary air flow and air temperature after disturbances of fuel moisture and fuel flow. Measurements of the grate
Gover, A Rod
2016-01-01
For any conformally compact manifold with hypersurface boundary we define a canonical renormalized volume functional and compute an explicit, holographic formula for the corresponding anomaly. For the special case of asymptotically Einstein manifolds, our method recovers the known results. The anomaly does not depend on any particular choice of regulator, but the coefficients of divergences do. We give explicit formulae for these divergences valid for any choice of regulating hypersurface; these should be relevant to recent studies of quantum corrections to entanglement entropies. The anomaly is expressed as a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. We show that the variation of these energy functionals is exactly the obstruction to solving a singular Yamabe type problem with boundary data along the...
Gover, A. Rod; Waldron, Andrew
2017-09-01
We develop a universal distributional calculus for regulated volumes of metrics that are suitably singular along hypersurfaces. When the hypersurface is a conformal infinity we give simple integrated distribution expressions for the divergences and anomaly of the regulated volume functional valid for any choice of regulator. For closed hypersurfaces or conformally compact geometries, methods from a previously developed boundary calculus for conformally compact manifolds can be applied to give explicit holographic formulæ for the divergences and anomaly expressed as hypersurface integrals over local quantities (the method also extends to non-closed hypersurfaces). The resulting anomaly does not depend on any particular choice of regulator, while the regulator dependence of the divergences is precisely captured by these formulæ. Conformal hypersurface invariants can be studied by demanding that the singular metric obey, smoothly and formally to a suitable order, a Yamabe type problem with boundary data along the conformal infinity. We prove that the volume anomaly for these singular Yamabe solutions is a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. Recently, Graham proved that the first variation of the volume anomaly recovers the density obstructing smooth solutions to this singular Yamabe problem; we give a new proof of this result employing our boundary calculus. Physical applications of our results include studies of quantum corrections to entanglement entropies.
Exploiting a Transmission Grating Spectrometer
Energy Technology Data Exchange (ETDEWEB)
Ronald E. Bell
2004-12-08
The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.
High Efficiency Low Scatter Echelle Grating Project
National Aeronautics and Space Administration — A high efficiency low scatter echelle grating will be developed using a novel technique of multiple diamond shaving cuts. The grating will have mirror surfaces on...
Polymer optical fiber bragg grating sensors
DEFF Research Database (Denmark)
Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren
2010-01-01
Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.
Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K
2015-01-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
Universality of Holographic Phase Transitions and Holographic Quantum Liquids
Benincasa, Paolo
2009-01-01
We explore the phase structure for defect theories in full generality using the gauge/gravity correspondence. On the gravity side, the systems are constructed by introducing M (probe) D(p+4-2k)-branes in a background generated by N Dp-branes to obtain a codimension-k intersection. The dual gauge theory is a U(N) Supersymmetric Yang-Mills theory on a (1+p-k)-dimensional defect with both adjoint and fundamental degrees of freedom. We focus on the phase structure in the chemical potential versus temperature plane. We observe the existence of two universality classes for holographic gauge theories, which are identified by the order of the phase transition in the interior of the chemical potential/temperature plane. Specifically, all the sensible systems with no defect show a third order phase transition. Gauge theories on a defect with (p-1)-spatial directions are instead characterised by a second order phase transition. One can therefore state that the order of this phase transition is intimately related to the ...
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics
Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.
2015-11-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
A Composite Grating for Moire Interferometry.
1987-07-01
shown in Figure 7 in which two virtual reference gratings of frequencies 2400 and 600 lines/mm were used. This arrangement corresponds to a fringe...fields at the two virtual reference grating frequencies of 2400/600 lines/mm. The light paths of the two virtual reference gratings are controlled by...frequencies were selectively recorded. Figure 10 and 11 shows two moire fringe patterns for virtual reference grating frequencies of 2400 lines/mm and 600
Fabrication of Polymer Optical Fibre (POF Gratings
Directory of Open Access Journals (Sweden)
Yanhua Luo
2017-03-01
Full Text Available Gratings inscribed in polymer optical fibre (POF have attracted remarkable interest for many potential applications due to their distinctive properties. This paper overviews the current state of fabrication of POF gratings since their first demonstration in 1999. In particular we summarize and discuss POF materials, POF photosensitivity, techniques and issues of fabricating POF gratings, as well as various types of POF gratings.
Grating-Coupled Waveguide Cloaking
Institute of Scientific and Technical Information of China (English)
WANG Jia-Fu; QU Shao-Bo; XU Zhuo; MA Hua; WANG Cong-Min; XIA Song; WANG Xin-Hua; ZHOU Hang
2012-01-01
Based on the concept of a grating-coupled waveguide (GCW),a new strategy for realizing EM cloaking is presented.Using metallic grating,incident waves are firstly coupled into the effective waveguide and then decoupled into free space behind,enabling EM waves to pass around the obstacle.Phase compensation in the waveguide keeps the wave-front shape behind the obstacle unchanged.Circular,rectangular and triangular cloaks are presented to verify the robustness of the GCW cloaking.Electric field animations and radar cross section (RCS)comparisons convincingly demonstrate the cloaking effect.
Grating exchange system of independent mirror supported by floating rotary stage
Zhang, Jianhuan; Tao, Jin; Liu, Yan; Nan, Yan
2015-10-01
The performance of The Grating Exchange System can satisfy the Thirty Meter Telescope - TMT for astronomical observation WFOS index requirements and satisfy the requirement of accuracy in the grating exchange. It is used to install in the MOBIE and a key device of MOBIE. The Wide Field Optical Spectrograph (WFOS) is one of the three first-light observing capabilities selected by the TMT Science Advisory Committee. The Multi-Object Broadband Imaging Echellette (MOBIE) instrument design concept has been developed to address the WFOS requirements as described in the TMT Science-Based Requirements Document (SRD). The Grating Exchange System uses a new type of separate movement way of three grating devices and a mirror device. Three grating devices with a mirror are able to achieve independence movement. This kind of grating exchange system can effectively solve the problem that the volume of the grating change system is too large and that the installed space of MOBIE instruments is too limit. This system adopts the good stability, high precision of rotary stage - a kind of using air bearing (Air bearing is famous for its ultra-high precision, and can meet the optical accuracy requirement) and rotation positioning feedback gauge turntable to support grating device. And with a kind of device which can carry greater weight bracket fixed on the MOBIE instrument, with two sets of servo motor control rotary stage and the mirror device respectively. And we use the control program to realize the need of exercising of the grating device and the mirror device. Using the stress strain analysis software--SolidWorks for stress and strain analysis of this structure. And then checking the structure of the rationality and feasibility. And prove that this system can realize the positioning precision under different working conditions can meet the requirements of imaging optical grating diffraction efficiency and error by the calculation and optical performance analysis.
Hybrid grating reflectors: Origin of ultrabroad stopband
DEFF Research Database (Denmark)
Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug
2016-01-01
Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well...
3D Printed Terahertz Focusing Grating Couplers
Jahn, David; Weidenbach, Marcel; Lehr, Jannik; Becker, Leonard; Beltrán-Mejía, Felipe; Busch, Stefan F.; Balzer, Jan C.; Koch, Martin
2017-02-01
We have designed, constructed and characterized a grating that focuses electromagnetic radiation at specific frequencies out of a dielectric waveguide. A simple theoretical model predicts the focusing behaviour of these chirped gratings, along with numerical results that support our assumptions and improved the grating geometry. The leaky waveguide was 3D printed and characterized at 120 GHz demonstrating its potential for manipulating terahertz waves.
Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond
2016-09-20
This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.
On effective holographic Mott insulators
Baggioli, Matteo; Pujolàs, Oriol
2016-12-01
We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of `traffic-jam'-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.
Holographic Entropy and Calabi's Diastasis
D'Hoker, Eric
2014-01-01
The entanglement entropy for interfaces and junctions of two-dimensional CFTs is evaluated on holographically dual half-BPS solutions to six-dimensional Type 4b supergravity with m anti-symmetric tensor supermultiplets. It is shown that the moduli space for an N-junction solution projects to N points in the Kaehler manifold SO(2,m)/( SO(2) x SO(m)). For N=2 the interface entropy is expressed in terms of the central charge and Calabi's diastasis function on SO(2,m)/(SO(2) x SO(m)), thereby lending support from holography to a proposal of Bachas, Brunner, Douglas, and Rastelli. For N=3, the entanglement entropy for a 3-junction decomposes into a sum of diastasis functions between pairs, weighed by combinations of the three central charges, provided the flux charges are all parallel to one another or, more generally, provided the space of flux charges is orthogonal to the space of unattracted scalars. Under similar assumptions for N>3, the entanglement entropy for the N-junction solves a variational problem whos...
A Holographic Quantum Hall Ferromagnet
Kristjansen, C; Semenoff, G W
2013-01-01
A detailed numerical study of a recent proposal for exotic states of the D3-probe D5 brane system with charge density and an external magnetic field is presented. The state has a large number of coincident D5 branes blowing up to a D7 brane in the presence of the worldvolume electric and magnetic fields which are necessary to construct the holographic state. Numerical solutions have shown that these states can compete with the the previously known chiral symmetry breaking and maximally symmetric phases of the D3-D5 system. Moreover, at integer filling fractions, they are incompressible with integer quantized Hall conductivities. In the dual superconformal defect field theory, these solutions correspond to states which break the chiral and global flavor symmetries spontaneously. The region of the temperature-density plane where the D7 brane has lower energy than the other known D5 brane solutions is identified. A hypothesis for the structure of states with filling fraction and Hall conductivity greater than on...
Holographic confinement in inhomogeneous backgrounds
Marolf, Donald; Wien, Jason
2016-08-01
As noted by Witten, compactifying a d-dimensional holographic CFT on an S 1 gives a class of ( d - 1)-dimensional confining theories with gravity duals. The proto-typical bulk solution dual to the ground state is a double Wick rotation of the AdS d+1 Schwarzschild black hole known as the AdS soliton. We generalize such examples by allowing slow variations in the size of the S 1, and thus in the confinement scale. Coefficients governing the second order response of the system are computed for 3 ≤ d ≤ 8 using a derivative expansion closely related to the fluid-gravity correspondence. The primary physical results are that i) gauge-theory flux tubes tend to align orthogonal to gradients and along the eigenvector of the Hessian with the lowest eigenvalue, ii) flux tubes aligned orthogonal to gradients are attracted to gradients for d ≤ 6 but repelled by gradients for d ≥ 7, iii) flux tubes are repelled by regions where the second derivative along the tube is large and positive but are attracted to regions where the eigenvalues of the Hessian are large and positive in directions orthogonal to the tube, and iv) for d > 3, inhomogeneities act to raise the total energy of the confining vacuum above its zeroth order value.
Holographic confinement in inhomogenous backgrounds
Marolf, Donald
2016-01-01
As noted by Witten, compactifying a $d$-dimensional holographic CFT on an $S^1$ gives a class of $(d-1)$-dimensional confining theories with gravity duals. The prototypical bulk solution dual to the ground state is a double Wick rotation of the AdS$_{d+1}$ Schwarzschild black hole known as the AdS soliton. We generalize such examples by allowing slow variations in the size of the $S^1$, and thus in the confinement scale. Coefficients governing the second order response of the system are computed for $3 \\le d \\le 8$ using a derivative expansion closely related to the fluid-gravity correspondence. The primary physical results are that i) gauge-theory flux tubes tend to align orthogonal to gradients and along the eigenvector of the Hessian with the lowest eigenvalue, ii) flux tubes aligned orthogonal to gradients are attracted to gradients for $d \\le 6$ but repelled by gradients for $d \\ge 7$, iii) flux tubes are repelled by regions where the second derivative along the tube is large and positive but are attract...
Holographic quenches and anomalous transport
Ammon, Martin; Grieninger, Sebastian; Jimenez-Alba, Amadeo; Macedo, Rodrigo P.; Melgar, Luis
2016-09-01
We study the response of the chiral magnetic effect due to continuous quenches induced by time dependent electric fields within holography. Concretely, we consider a holographic model with dual chiral anomaly and compute the electric current parallel to a constant, homogeneous magnetic field and a time dependent electric field in the probe approximation. We explicitly solve the PDEs by means of pseudospectral methods in spatial and time directions and study the transition to an universal "fast" quench response. Moreover, we compute the amplitudes, i.e., residues of the quasi normal modes, by solving the (ODE) Laplace transformed equations. We investigate the possibility of considering the asymptotic growth rate of the amplitudes as a well defined notion of initial time scale for linearized systems. Finally, we highlight the existence of Landau level resonances in the electrical conductivity parallel to a magnetic field at finite frequency and show explicitly that these only appear in presence of the anomaly. We show that the existence of these resonances induces, among others, a long-lived AC electric current once the electric field is switched off.
Linearity of Holographic Entanglement Entropy
Almheiri, Ahmed; Swingle, Brian
2016-01-01
We consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by computing the entanglement entropy, via the replica trick, in states dual to superpositions of macroscopically distinct geometries and find it consistent with evaluating the expectation value of the area operator within such states. However, we find that this fails once the number of semi-classical states in the superposition grows exponentially in the central charge of the CFT. Moreover, in certain such scenarios we find that the choice of surface on which to evaluate the area operator depends on the density matrix of the entire CFT. This nonlinearity is enforced in the bulk via the homology prescription of Ryu-Takayanagi. We thus conclude that the homology constraint is not a linear property in the CFT. We also discuss the existence of entropy operators in genera...
Theta dependence in Holographic QCD
Bartolini, Lorenzo; Bolognesi, Stefano; Cotrone, Aldo L; Manenti, Andrea
2016-01-01
We study the effects of the CP-breaking topological $\\theta$-term in the large $N_c$ QCD model by Witten, Sakai and Sugimoto with $N_f$ degenerate light flavors. We first compute the ground state energy density, the topological susceptibility and the masses of the lowest lying mesons, finding agreement with expectations from the QCD chiral effective action. Then, focusing on the $N_f=2$ case, we consider the baryonic sector and determine, to leading order in the small $\\theta$ regime, the related holographic instantonic soliton solutions. We find that while the baryon spectrum does not receive ${\\cal O}(\\theta)$ corrections, this is not the case for observables like the electromagnetic form factor of the nucleons. In particular, it exhibits a dipole term, which turns out to be vector-meson dominated. The resulting neutron electric dipole moment, which is exactly the opposite as that of the proton, is of the same order of magnitude of previous estimates in the literature. Finally, we compute the CP-violating p...
Towards Unquenched Holographic Magnetic Catalysis
Filev, Veselin G
2011-01-01
We propose a string dual to the SU(Nc) N=4 SYM coupled to Nf massless fundamental flavors in an external magnetic field. The flavors are introduced by homogeneously smeared Nf D7-branes and the external magnetic field via a non-trivial Kalb-Rammond B-field. Our solution is perturbative in a parameter that counts the number of internal flavor loops. In the limit of vanishing B-field the background reduces to the supersymmetric one obtained in hep-th/0612118. We introduce an additional probe D7--brane and in the supersymmetric limit of vanishing B-field perform a holographic renormalization of its "on-shell" action. We consider also non-supersymmetric probes with fixed worldvolume gauge field corresponding to a magnetic field coupled only to the fundamental fields of the probe brane. We study the influence of the backreacted flavors on the effect of dynamical mass generation. Qualitatively the physical picture remains unchanged. In the next step we consider the case when the magnetic field couples to both the b...
Collapse and Revival in Holographic Quenches
da Silva, Emilia; Mas, Javier; Serantes, Alexandre
2014-01-01
We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.
Phases of kinky holographic nuclear matter
Elliot-Ripley, Matthew; Zamaklar, Marija
2016-01-01
Holographic QCD at finite baryon number density and zero temperature is studied within the five-dimensional Sakai-Sugimoto model. We introduce a new approximation that models a smeared crystal of solitonic baryons by assuming spatial homogeneity to obtain an effective kink theory in the holographic direction. The kink theory correctly reproduces a first order phase transition to lightly bound nuclear matter. As the density is further increased the kink splits into a pair of half-kink constituents, providing a concrete realization of the previously suggested dyonic salt phase, where the bulk soliton splits into constituents at high density. The kink model also captures the phenomenon of baryonic popcorn, in which a first order phase transition generates an additional soliton layer in the holographic direction. We find that this popcorn transition takes place at a density below the dyonic salt phase, making the latter energetically unfavourable. However, the kink model predicts only one pop, rather than the seq...
Holographic duality in condensed matter physics
Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad
2015-01-01
A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...
Holographic Butterfly Effect at Quantum Critical Points
Ling, Yi; Wu, Jian-Pin
2016-01-01
When the Lyapunov exponent $\\lambda_L$ in a quantum chaotic system saturates the bound $\\lambda_L\\leqslant 2\\pi k_BT$, it is proposed that this system has a holographic dual described by a gravity theory. In particular, the butterfly effect as a prominent phenomenon of chaos can ubiquitously exist in a black hole system characterized by a shockwave solution near the horizon. In this letter we propose that the butterfly velocity $v_B$ can be used to diagnose quantum phase transition (QPT) in holographic theories. We provide evidences for this proposal with two holographic models exhibiting metal-insulator transitions (MIT), in which the second derivative of $v_B$ with respect to system parameters characterizes quantum critical points (QCP) with local extremes. We also point out that this proposal can be tested by experiments in the light of recent progress on the measurement of out-of-time-order correlation function (OTOC).
Collapse and revival in holographic quenches
da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2015-04-01
We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.
The holographic Weyl semi-metal
Directory of Open Access Journals (Sweden)
Karl Landsteiner
2016-02-01
Full Text Available We present a holographic model of a Weyl semi-metal. We show the evidences that upon varying a mass parameter the model undergoes a sharp crossover at small temperature from a topologically non-trivial state to a trivial one. The order parameter is the anomalous Hall effect (AHE and we find that it is very strongly suppressed above a critical value of the mass parameter. This can be taken as a hint for an underlying topological quantum phase transition. We give an interpretation of the results in terms of a holographic RG flow and compare to a weakly coupled field theoretical model. Since there are no fermionic quasiparticle excitations in the strongly coupled holographic model the presence of an anomalous Hall effect cannot be bound to notions of topology in momentum spaces.
Liquid crystals for holographic optical data storage
DEFF Research Database (Denmark)
Matharu, Avtar; Jeeva, S.; Ramanujam, P.S.
2007-01-01
A tutorial review is presented to inform and inspire the reader to develop and integrate strong scientific links between liquid crystals and holographic data storage, from a materials scientist's viewpoint. The principle of holographic data storage as a means of providing a solution...... to the information storage demands of the 21st century is detailed. Holography is a small subset of the much larger field of optical data storage and similarly, the diversity of materials used for optical data storage is enormous. The theory of polarisation holography which produces holograms of constant intensity......, is discussed. Polymeric liquid crystals play an important role in the development of materials for holographic storage and photoresponsive materials based on azobenzene are targeted for discussion due to their ease of photo- reversion between trans- and cis- states. Although the final polymer may not be liquid...
The holographic Weyl semi-metal
Energy Technology Data Exchange (ETDEWEB)
Landsteiner, Karl, E-mail: karl.landsteiner@csic.es; Liu, Yan, E-mail: yan.liu@csic.es
2016-02-10
We present a holographic model of a Weyl semi-metal. We show the evidences that upon varying a mass parameter the model undergoes a sharp crossover at small temperature from a topologically non-trivial state to a trivial one. The order parameter is the anomalous Hall effect (AHE) and we find that it is very strongly suppressed above a critical value of the mass parameter. This can be taken as a hint for an underlying topological quantum phase transition. We give an interpretation of the results in terms of a holographic RG flow and compare to a weakly coupled field theoretical model. Since there are no fermionic quasiparticle excitations in the strongly coupled holographic model the presence of an anomalous Hall effect cannot be bound to notions of topology in momentum spaces.
Holographic dark energy in the DGP model
Energy Technology Data Exchange (ETDEWEB)
Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Facultad de Ciencias, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile); Avelino, Arturo [Universidad de Guanajuato, Departamento de Fisica, DCI, Codigo Postal 37150, Leon, Guanajuato (Mexico)
2012-09-15
The braneworld model proposed by Dvali, Gabadadze, and Porrati leads to an accelerated universe without cosmological constant or any other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holographic dark energy is included, taking the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated flat universe (de Sitter-like expansion) for the two branches: {epsilon}={+-}1, of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter-like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating. (orig.)
Holographic bulk viscosity: GPR vs EO
Buchel, Alex; Kiritsis, Elias
2011-01-01
Recently Eling and Oz (EO) proposed a formula for the holographic bulk viscosity, in arXiv:1103.1657, derived from the null horizon focusing equation. This formula seems different from that obtained earlier by Gubser, Pufu and Rocha (GPR) in arXiv:0806.0407 calculated from the IR limit of the two-point function of the trace of the stress tensor. The two were shown to agree only for some simple scaling cases. We point out that the two formulae agree in two non-trivial holographic theories describing RG flows. The first is the strongly coupled N=2* gauge theory plasma. The second is the semi-phenomenological model of Improved Holographic QCD.
A holographic model for black hole complementarity
Lowe, David A
2016-01-01
In the version of black hole complementarity advocated by the authors, interior infalling degrees of freedom evolve according to the usual semiclassical effective field theory, generating the black hole interior via propagation along geodesics. Meanwhile the exterior degrees of freedom evolve according to an exact description of holographic origin. The infalling degrees of freedom have a complementary description in terms of outgoing Hawking radiation and must eventually decohere with respect to the exterior Hamiltonian, leading to apparent violations of quantum mechanics for an infaller. Trace distance is used to quantify the difference between these complementary time evolutions, and to define the decoherence time and the scrambling time. In a particular model for the holographic theory which exhibits fast scrambling, we show these timescales coincide. Moreover we propose a dictionary between the holographic theory and the bulk description where mean field evolution corresponds to the evolution with respect...
Anomalous transport and holographic momentum relaxation
Copetti, Christian; Fernández-Pendás, Jorge; Landsteiner, Karl; Megías, Eugenio
2017-09-01
The chiral magnetic and vortical effects denote the generation of dissipationless currents due to magnetic fields or rotation. They can be studied in holographic models with Chern-Simons couplings dual to anomalies in field theory. We study a holographic model with translation symmetry breaking based on linear massless scalar field backgrounds. We compute the electric DC conductivity and find that it can vanish for certain values of the translation symmetry breaking couplings. Then we compute the chiral magnetic and chiral vortical conductivities. They are completely independent of the holographic disorder couplings and take the usual values in terms of chemical potential and temperature. To arrive at this result we suggest a new definition of energy-momentum tensor in presence of the gravitational Chern-Simons coupling.
Directory of Open Access Journals (Sweden)
Elena Fernandez
2016-03-01
Full Text Available Holographic transmission gratings with a spatial frequency of 2658 lines/mm and reflection gratings with a spatial frequency of 4553 lines/mm were stored in a polyvinyl alcohol (PVA/acrylamide (AA based photopolymer. This material can reach diffraction efficiencies close to 100% for spatial frequencies about 1000 lines/mm. However, for higher spatial frequencies, the diffraction efficiency decreases considerably as the spatial frequency increases. To enhance the material response at high spatial frequencies, a chain transfer agent, the 4,4’-azobis (4-cyanopentanoic acid, ACPA, is added to the composition of the material. Different concentrations of ACPA are incorporated into the main composition of the photopolymer to find the concentration value that provides the highest diffraction efficiency. Moreover, the refractive index modulation and the optical thickness of the transmission and reflection gratings were obtained, evaluated and compared to procure more information about the influence of the ACPA on them.
Running gratings in photoconductive materials
DEFF Research Database (Denmark)
Kukhtarev, N. V.; Kukhtareva, T.; Lyuksyutov, S. F.
2005-01-01
gratings at small-contrast approximation and also are applicable for the description of space-charge wave domains. We discuss spatial domain and subharmonic beam formation in bismuth silicon oxide (BSO) crystals in the framework of the small-contrast approximation of STPM. The experimental results...
Holographic heat engines: general considerations and rotating black holes
Hennigar, Robie A.; McCarthy, Fiona; Ballon, Alvaro; Mann, Robert B.
2017-09-01
We perform the first study of holographic heat engines where the working material is a rotating black hole, obtaining exact results for the efficiency of a rectangular engine cycle. We also make general considerations in the context of benchmarking these engines on circular cycles. We find an exact expression that is valid for black holes with vanishing specific heat at constant volume and derive an upper bound, below the Carnot efficiency and independent of spacetime dimension, which holds for any black hole of this kind. We illustrate our results with applications to a variety of black holes, noting the effects of spacetime dimension, rotation, and higher curvature corrections on the efficiency of the cycle.
Digital holographic microscopy for the evaluation of human sperm structure
Coppola, Gianluca; Wilding, Martin; Ferraro, Pietro; Esposito, Giusy; Di Matteo, Loredana; Dale, Roberta; Coppola, Giuseppe; Dale, Brian
2013-01-01
The morphology of the sperm head has often been correlated with the outcome of in vitro fertilization (IVF), and has been shown to be the sole parameter in semen of value in predicting the success of intracytoplasmic sperm injection (ICSI) and intracytoplasmic morphologically selected sperm injection (IMSI). In this paper, we have studied whether Digital Holographic (DH) microscopy may be useful to obtain quantitative data on human sperm head structure and compared this technique to high power digitally enhanced Nomarski microscope. The main advantage of DH is that a high resolution 3-D quantitative sample imaging may be obtained thorugh numerical refocusing at different object planes without any mechanical scanning. We show that DH can furnish useful information on the dimensions and structure of human spermatozoo, that cannot be revealed by conventional phase contrast microscopy. In fact, in this paper DH has been used to evaluate volume and indicate precise location of vacuoles, thus suggesting its use as ...
Holographic flows and thermodynamics of Polyakov loop impurities
Kumar, S Prem
2016-01-01
We study holographic probes dual to heavy quark impurities interpolating between fundamental and symmetric/antisymmetric tensor representations in strongly coupled N=4 supersymmetric gauge theory. These correspond to non-conformal D3- and D5-brane probe embeddings in AdS_5 x S^5 exhibiting flows on their world-volumes. By examining the asymptotic regimes of the embeddings and the one-point function of static fields sourced by the boundary impurity, we conclude that the D5-brane embedding describes the screening of fundamental quarks in the UV into an antisymmetric source in the IR, whilst the non-conformal, D3-brane solution interpolates between the symmetric representation in the UV and fundamental sources in the IR. The D5-brane embeddings exhibit nontrivial thermodynamics with multiple branches of solutions, whilst the thermal analogue of the interpolating D3-brane solution does not appear to exist.
Nanoscopy of bacterial cells immobilized by holographic optical tweezers.
Diekmann, Robin; Wolfson, Deanna L; Spahn, Christoph; Heilemann, Mike; Schüttpelz, Mark; Huser, Thomas
2016-12-13
Imaging non-adherent cells by super-resolution far-field fluorescence microscopy is currently not possible because of their rapid movement while in suspension. Holographic optical tweezers (HOTs) enable the ability to freely control the number and position of optical traps, thus facilitating the unrestricted manipulation of cells in a volume around the focal plane. Here we show that immobilizing non-adherent cells by optical tweezers is sufficient to achieve optical resolution well below the diffraction limit using localization microscopy. Individual cells can be oriented arbitrarily but preferably either horizontally or vertically relative to the microscope's image plane, enabling access to sample sections that are impossible to achieve with conventional sample preparation and immobilization. This opens up new opportunities to super-resolve the nanoscale organization of chromosomal DNA in individual bacterial cells.
Holographic memory module with ultra-high capacity and throughput
Energy Technology Data Exchange (ETDEWEB)
Vladimir A. Markov, Ph.D.
2000-06-04
High capacity, high transfer rate, random access memory systems are needed to archive and distribute the tremendous volume of digital information being generated, for example, the human genome mapping and online libraries. The development of multi-gigabit per second networks underscores the need for next-generation archival memory systems. During Phase I we conducted the theoretical analysis and accomplished experimental tests that validated the key aspects of the ultra-high density holographic data storage module with high transfer rate. We also inspected the secure nature of the encoding method and estimated the performance of full-scale system. Two basic architectures were considered, allowing for reversible compact solid-state configuration with limited capacity, and very large capacity write once read many memory system.
Grebenyuk, Anton A.; Tarakanchikova, Yana V.; Ryabukho, Vladimir P.
2014-10-01
We propose an off-axis imaging approach for digital holographic microscopy (DHM) with quasimonochromatic partially spatially coherent illumination in transmission, which is intended to provide the advantages of off-axis partially coherent DHM imaging with a comparatively simple optical scheme. This approach does not require a diffraction grating for creating the off-axis modality and also allows for convenient control of the spatial frequency of carrier interference fringes for hologram sampling optimization. Theoretical analysis of the off-axis imaging process in this microscope is performed. An off-axis DHM based on the proposed approach is built and quantitative phase imaging of test objects is performed with suppressed coherent noise.
Measurement of anisotropic energy transport in flowing polymers by using a holographic technique.
Schieber, Jay D; Venerus, David C; Bush, Kendall; Balasubramanian, Venkat; Smoukov, Stoyan
2004-09-07
Almost no experimental data exist to test theories for the nonisothermal flow of complex fluids. To provide quantitative tests for newly proposed theories, we have developed a holographic grating technique to study energy transport in an amorphous polymer melt subject to flow. Polyisobutylene with weight-averaged molecular mass of 85 kDa is sheared at a rate of 10 s(-1), and all nonzero components of the thermal conductivity tensor are measured as a function of time, after cessation. Our results are consistent with proposed generalizations to the energy balance for microstructural fluids, including a generalized Fourier's law for anisotropic media. The data are also consistent with a proposed stress-thermal rule for amorphous polymer melts. Confirmation of the universality of these results would allow numerical modelers to make quantitative predictions for the nonisothermal flow of polymer melts.
Holographic RG flows with nematic IR phases
Cremonini, Sera; Rong, Junchen; Sun, Kai
2014-01-01
We construct zero-temperature geometries that interpolate between a Lifshitz fixed point in the UV and an IR phase that breaks spatial rotations but preserves translations. We work with a simple holographic model describing two massive gauge fields coupled to gravity and a neutral scalar. Our construction can be used to describe RG flows in non-relativistic, strongly coupled quantum systems with nematic order in the IR. In particular, when the dynamical critical exponent of the UV fixed point is z=2 and the IR scaling exponents are chosen appropriately, our model realizes holographically the scaling properties of the bosonic modes of the quadratic band crossing model.
Top-down Holographic Glueball Decay Rates
Brünner, F; Rebhan, A
2015-01-01
We present new results on the decay patterns of scalar and tensor glueballs in the top-down holographic Witten-Sakai-Sugimoto model. This model, which has only one free dimensionless parameter, gives semi-quantitative predictions for the vector meson spectrum, their decay widths, and also a gluon condensate in agreement with SVZ sum rules. The holographic predictions for scalar glueball decay rates are compared with experimental data for the widely discussed gluon candidates f0(1500) and f0(1710).
Digital holographic Michelson interferometer for nanometrology
Sevrygin, Alexander A.; Korotkov, V. I.; Pulkin, S. A.; Tursunov, I. M.; Venediktov, D. V.; Venediktov, V. Yu.; Volkov, O. V.
2014-11-01
The paper considers the dynamic holographic interferometry schemes with amplification (multiplication) of holographic fringes and with correction for distortions, imposed by the interferometer scheme elements. The use of digital microscope and of the matrix light modulator with direct addressing provides the completely digital closed-loop performance of the overall system for real-time evaluation of nano-scale objects size. Considered schemes were verified in the laboratory experiment, using the Michelson micro-interferometer, equipped by the USB-microscope and digital holography stage, equipped by the Holoeye spatial light modulator.
Holographic corrections to meson scattering amplitudes
Energy Technology Data Exchange (ETDEWEB)
Armoni, Adi; Ireson, Edwin, E-mail: 746616@swansea.ac.uk
2017-06-15
We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.
Holographic Corrections to Meson Scattering Amplitudes
Armoni, Adi
2016-01-01
We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.
Order parameter fluctuations in the holographic superconductor
Plantz, N W M; Vandoren, S
2015-01-01
We investigate the effect of order parameter fluctuations in the holographic superconductor. In particular, the fully backreacted spectral functions of the order parameter in both the normal and the superconducting phase are computed. We also present a vector-like large-$N$ version of the Ginzburg-Landau model that accurately describes our long-wavelength results in both phases. The large-$N$ limit of the latter model explains why the Higgs mode and the second-sound mode are not present in the spectral functions. Our results indicate that the holographic superconductor describes a relativistic multi-component superfluid in the universal regime of the BEC-BCS crossover.
Holographic Aspects of a Relativistic Nonconformal Theory
Directory of Open Access Journals (Sweden)
Chanyong Park
2013-01-01
Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.
On the Holographic Nature Of Rindler Energy
Halyo, Edi
2014-01-01
We show that the dimensionless Rindler energy of a black hole, $E_R$, is exactly the surface Hamiltonian obtained from the Einstein--Hilbert action evaluated on the horizon. Therefore, $E_R$ is given by a surface integral over the horizon and manifestly holographic. In the context of the AdS/CFT duality, Rindler energy corresponds, on the boundary, to a dimensionless energy given by the product of the AdS radius and the extensive part of the CFT energy. We find that, beyond General Relativity, $E_R$ is still holographic but not necessarily given by the surface Hamiltonian of the theory.