WorldWideScience

Sample records for volume high resolution

  1. High-quality multi-resolution volume rendering in medicine

    Institute of Scientific and Technical Information of China (English)

    XIE Kai; YANG Jie; LI Xiao-liang

    2007-01-01

    In order to perform a high-quality interactive rendering of large medical data sets on a single off-theshelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, which uses an adaptive scheme that renders the volume in a region-of-interest at a high resolution and the volume away from this region at lower resolutions. The algorithm is based on several important criteria, and rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells away from this area. In addition, our hierarchical level-of-detail representation guarantees consistent interpolation between different resolution levels. Experiments have been applied to a number of large medical data and have produced high quality images at interactive frame rates using standard PC hardware.

  2. Multi-Volume High Resolution RGB-D Mapping with Dynamic Volume Placement

    OpenAIRE

    Salvato, Michael; Finman, Ross; Leonard, John

    2015-01-01

    We present a novel RGB-D mapping system for generating 3D maps over spatially extended regions with higher resolution than current methods using multiple, dynamically placed mapping volumes. Our method takes in RGB-D frames and dynamically assigns multiple mapping volumes to the environment, exchanging mapping volumes between the CPU and GPU. Mapping volumes are added or removed as needed to allow for spatially extended, high resolution mapping. Our system is designed to maximize the resoluti...

  3. Volume Based DTM Generation from Very High Resolution Photogrammetric Dsms

    Science.gov (United States)

    Piltz, B.; Bayer, S.; Poznanska, A. M.

    2016-06-01

    In this paper we propose a new algorithm for digital terrain (DTM) model reconstruction from very high spatial resolution digital surface models (DSMs). It represents a combination of multi-directional filtering with a new metric which we call normalized volume above ground to create an above-ground mask containing buildings and elevated vegetation. This mask can be used to interpolate a ground-only DTM. The presented algorithm works fully automatically, requiring only the processing parameters minimum height and maximum width in metric units. Since slope and breaklines are not decisive criteria, low and smooth and even very extensive flat objects are recognized and masked. The algorithm was developed with the goal to generate the normalized DSM for automatic 3D building reconstruction and works reliably also in environments with distinct hillsides or terrace-shaped terrain where conventional methods would fail. A quantitative comparison with the ISPRS data sets Potsdam and Vaihingen show that 98-99% of all building data points are identified and can be removed, while enough ground data points (~66%) are kept to be able to reconstruct the ground surface. Additionally, we discuss the concept of size dependent height thresholds and present an efficient scheme for pyramidal processing of data sets reducing time complexity to linear to the number of pixels, O(WH).

  4. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Science.gov (United States)

    Watson, Alan M; Rose, Annika H; Gibson, Gregory A; Gardner, Christina L; Sun, Chengqun; Reed, Douglas S; Lam, L K Metthew; St Croix, Claudette M; Strick, Peter L; Klimstra, William B; Watkins, Simon C

    2017-01-01

    Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  5. High-throughput in-volume processing in glass with isotropic spatial resolutions in three dimensions

    CERN Document Server

    Tan, Yuanxin; Chu, Wei; Liao, Yang; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of three dimensional (3D) microstructures in glass with isotropic spatial resolutions. To achieve high throughput fabrication, we expand the focal spot size with a low-numerical-aperture lens, which naturally results in a degraded axial resolution. We solve the problem with simultaneous spatial temporal focusing which leads to an isotropic laser-affected volume with a spatial resolution of ~100 micron.

  6. High resolution finite volume scheme for the quantum hydrodynamic equations

    Science.gov (United States)

    Lin, Chin-Tien; Yeh, Jia-Yi; Chen, Jiun-Yeu

    2009-03-01

    The theory of quantum fluid dynamics (QFD) helps nanotechnology engineers to understand the physical effect of quantum forces. Although the governing equations of quantum fluid dynamics and classical fluid mechanics have the same form, there are two numerical simulation problems must be solved in QFD. The first is that the quantum potential term becomes singular and causes a divergence in the numerical simulation when the probability density is very small and close to zero. The second is that the unitarity in the time evolution of the quantum wave packet is significant. Accurate numerical evaluations are critical to the simulations of the flow fields that are generated by various quantum fluid systems. A finite volume scheme is developed herein to solve the quantum hydrodynamic equations of motion, which significantly improve the accuracy and stability of this method. The QFD equation is numerically implemented within the Eulerian method. A third-order modified Osher-Chakravarthy (MOC) upwind-centered finite volume scheme was constructed for conservation law to evaluate the convective terms, and a second-order central finite volume scheme was used to map the quantum potential field. An explicit Runge-Kutta method is used to perform the time integration to achieve fast convergence of the proposed scheme. In order to meet the numerical result can conform to the physical phenomenon and avoid numerical divergence happening due to extremely low probability density, the minimum value setting of probability density must exceed zero and smaller than certain value. The optimal value was found in the proposed numerical approach to maintain a converging numerical simulation when the minimum probability density is 10 -5 to 10 -12. The normalization of the wave packet remains close to unity through a long numerical simulation and the deviations from 1.0 is about 10 -4. To check the QFD finite difference numerical computations, one- and two-dimensional particle motions were

  7. Real-time volumetric visualization of high-resolution array and toroidal volume search sonar data

    Science.gov (United States)

    Cross, Robert A.

    1998-09-01

    The Advanced Volume Visualization Display (AVVD) research program is a joint research program between the Fraunhofer Center for Research in Computer Graphics, Inc. and Innovative Research and Development Corp. It is dedicated the application of the human visual system to real-time visualization of high- resolution volumetric sensor data sets. The AVVD program has successfully demonstrated its application to undersea imaging using data from the Naval Undersea Warfare Center -- Division Newport's High Resolution Array (HRA), and from the Naval Surface Warfare Center -- Coastal System Stations's Toroidal Volume Search Sonar (TVSS).

  8. High-Resolution Finite Volume Modeling of Wave Propagation in Orthotropic Poroelastic Media

    CERN Document Server

    Lemoine, Grady I; LeVeque, Randall J

    2012-01-01

    Poroelasticity theory models the dynamics of porous, fluid-saturated media. It was pioneered by Maurice Biot in the 1930s through 1960s, and has applications in several fields, including geophysics and modeling of in vivo bone. A wide variety of methods have been used to model poroelasticity, including finite difference, finite element, pseudospectral, and discontinuous Galerkin methods. In this work we use a Cartesian-grid high-resolution finite volume method to numerically solve Biot's equations in the time domain for orthotropic materials, with the stiff relaxation source term in the equations incorporated using operator splitting. This class of finite volume method has several useful properties, including the ability to use wave limiters to reduce numerical artifacts in the solution, ease of incorporating material inhomogeneities, low memory overhead, and an explicit time-stepping approach. To the authors' knowledge, this is the first use of high-resolution finite volume methods to model poroelasticity. T...

  9. Estimation of Stand Height and Forest Volume Using High Resolution Stereo Photography and Forest Type Map

    Science.gov (United States)

    Kim, K. M.

    2016-06-01

    Traditional field methods for measuring tree heights are often too costly and time consuming. An alternative remote sensing approach is to measure tree heights from digital stereo photographs which is more practical for forest managers and less expensive than LiDAR or synthetic aperture radar. This work proposes an estimation of stand height and forest volume(m3/ha) using normalized digital surface model (nDSM) from high resolution stereo photography (25cm resolution) and forest type map. The study area was located in Mt. Maehwa model forest in Hong Chun-Gun, South Korea. The forest type map has four attributes such as major species, age class, DBH class and crown density class by stand. Overlapping aerial photos were taken in September 2013 and digital surface model (DSM) was created by photogrammetric methods(aerial triangulation, digital image matching). Then, digital terrain model (DTM) was created by filtering DSM and subtracted DTM from DSM pixel by pixel, resulting in nDSM which represents object heights (buildings, trees, etc.). Two independent variables from nDSM were used to estimate forest stand volume: crown density (%) and stand height (m). First, crown density was calculated using canopy segmentation method considering live crown ratio. Next, stand height was produced by averaging individual tree heights in a stand using Esri's ArcGIS and the USDA Forest Service's FUSION software. Finally, stand volume was estimated and mapped using aerial photo stand volume equations by species which have two independent variables, crown density and stand height. South Korea has a historical imagery archive which can show forest change in 40 years of successful forest rehabilitation. For a future study, forest volume change map (1970s-present) will be produced using this stand volume estimation method and a historical imagery archive.

  10. A HIGH RESOLUTION FINITE VOLUME METHOD FOR SOLVING SHALLOW WATER EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A high-resolution finite volume numerical method for solving the shallow water equations is developed in this paper. In order to extend finite difference TVD scheme to finite volume method, a new geometry and topology of control bodies is defined by considering the corresponding relationships between nodes and elements. This solver is implemented on arbitrary quadrilateral meshes and their satellite elements, and based on a second-order hybrid type of TVD scheme in space discretization and a two-step Runge-Kutta method in time discretization. Then it is used to deal with two typical dam-break problems and very satisfactory results are obtained comparied with other numerical solutions. It can be considered as an efficient implement for the computation of shallow water problems, especially concerning those having discontinuities, subcritical and supercritical flows and complex geometries.

  11. Single CMOS sensor system for high resolution double volume measurement applied to membrane distillation system

    Science.gov (United States)

    Lorenz, M. G.; Izquierdo-Gil, M. A.; Sanchez-Reillo, R.; Fernandez-Pineda, C.

    2007-01-01

    Membrane distillation (MD) [1] is a relatively new process that is being investigated world-wide as a low cost, energy saving alternative to conventional separation processes such as distillation and reverse osmosis (RO). This process offers some advantages compared to other more popular separation processes, such as working at room conditions (pressure and temperature); low-grade, waste and/or alternative energy sources such as solar and geothermal energy may be used; a very high level of rejection with inorganic solutions; small equipment can be employed, etc. The driving force in MD processes is the vapor pressure difference across the membrane. A temperature difference is imposed across the membrane, which results in a vapor pressure difference. The principal problem in this kind of system is the accurate measurement of the recipient volume change, especially at very low flows. A cathetometer, with up to 0,05 mm resolution, is the instrument used to take these measurements, but the necessary human intervention makes this instrument not suitable for automated systems. In order to overcome this lack, a high resolution system is proposed, that makes automatic measurements of the volume of both recipients, cold and hot, at a rate of up to 10 times per second.

  12. Design and development of the high-resolution spectrograph HERMES and the unique volume phase holographic gratings

    Science.gov (United States)

    Heijmans, J. A. C.; Gers, L.; Faught, B.

    2011-10-01

    We report on the grating development for the High Efficiency and Resolution Multi Element Spectrograph (HERMES). This paper discusses the challenges of designing, optimizing, and tolerancing large aperture volume phase holographic (VPH) gratings for HERMES. The high spectral resolution requirements require steep angles of incidence, of 67.2 degrees, and high line densities, ranging between 2400 and 3800 lines per mm, resulting in VPH gratings that are highly s-polarized that push the fabrication process to its limits.

  13. HIGH-RESOLUTION DEBRIS FLOW VOLUME MAPPING WITH UNMANNED AERIAL SYSTEMS (UAS AND PHOTOGRAMMETRIC TECHNIQUES

    Directory of Open Access Journals (Sweden)

    M. S. Adams

    2016-06-01

    Full Text Available Debris flows cause an average € 30 million damages and 1-2 fatalities every year in Austria. Detailed documentation of their extent and magnitude is essential for understanding, preventing and mitigating these natural hazard events. The recent development of unmanned aerial systems (UAS has provided a new possibility for on-demand high-resolution monitoring and mapping. Here, we present a study, where the spatial extent and volume of a large debris flow event were mapped with different UAS, fitted with commercial off-the-shelf sensors. Orthophotos and digital terrain models (DTM were calculated using structure-from-motion photogrammetry software. Terrain height differences caused by the debris flow in the catchment and valley floor were derived by subtracting the pre-event airborne laser scanning (ALS DTM from a post-event UAS-DTM. The analysis of the volumetric sediment budget showed, that approximately 265,000 m³ material was mobilised in the catchment, of which 45,000 m³ settled there; of the material, which reached the valley floor, 120,000 m³ was deposited, while another 10,000 m³ was eroded from there. The UAS-results were validated against ALS data and imagery from a traditional manned-aircraft photogrammetry campaign. In conclusion, the UAS-data can reach an accuracy and precision comparable to manned aircraft data, but with the added benefits of higher flexibility, easier repeatability, less operational constraints and higher spatial resolution.

  14. Quantifying volume loss from ice cliffs on debris-covered glaciers using high-resolution terrestrial and aerial photogrammetry

    NARCIS (Netherlands)

    Brun, Fanny; Buri, Pascal; Miles, Evan S.; Wagnon, Patrick; Steiner, J.F.|info:eu-repo/dai/nl/119338653; Berthier, Etienne; Ragettli, S.; Kraaijenbrink, P.D.A.; Immerzeel, W.W.|info:eu-repo/dai/nl/290472113; Pellicciotti, Francesca

    Mass losses originating from supraglacial ice cliffs at the lower tongues of debris-covered glaciers are a potentially large component of the mass balance, but have rarely been quantified. In this study, we develop a method to estimate ice cliff volume losses based on high-resolution topographic

  15. High resolution triple resonance micro magic angle spinning NMR spectroscopy of nanoliter sample volumes.

    Science.gov (United States)

    Brauckmann, J Ole; Janssen, J W G Hans; Kentgens, Arno P M

    2016-02-14

    To be able to study mass-limited samples and small single crystals, a triple resonance micro-magic angle spinning (μMAS) probehead for the application of high-resolution solid-state NMR of nanoliter samples was developed. Due to its excellent rf performance this allows us to explore the limits of proton NMR resolution in strongly coupled solids. Using homonuclear decoupling we obtain unprecedented (1)H linewidths for a single crystal of glycine (Δν(CH2) = 0.14 ppm) at high field (20 T) in a directly detected spectrum. The triple channel design allowed the recording of high-resolution μMAS (13)C-(15)N correlations of [U-(13)C-(15)N] arginine HCl and shows that the superior (1)H resolution opens the way for high-sensitivity inverse detection of heteronuclei even at moderate spinning speeds and rf-fields. Efficient decoupling leads to long coherence times which can be exploited in many correlation experiments.

  16. Toward automatic estimation of urban green volume using airborne LiDAR data and high resolution Remote Sensing images

    Institute of Scientific and Technical Information of China (English)

    Yan HUANG; Bailang YU; Jianhua ZHOU; Chunlin HU; Wenqi TAN; Zhiming HU; Jianping WU

    2013-01-01

    Urban green volume is an important indicator for analyzing urban vegetation structure,ecological evaluation,and green-economic estimation,This paper proposes an object-based method for automated estimation of urban green volume combining three-dimensional (3D)information from airborne Light Detection and Ranging (LiDAR) data and vegetation information from high resolution remotely sensed images through a case study of the Lujiazui region,Shanghai,China.High resolution airborne near-infrared photographs are used for identifying the urban vegetation distribution.Airborne LiDAR data offer the possibility to extract individual trees and to measure the attributes of trees,such as tree height and crown diameter.In this study,individual trees and grassland are identified as the independent objects of urban vegetation,and the urban green volume is computed as the sum of two broad portions:individual trees volume and grassland volume.The method consists of following steps:generating and filtering the normalized digital surface model (nDSM),extracting the nDSM of urban vegetation based on the Normalized Difference Vegetation Index (NDVI),locating the local maxima points,segmenting the vegetation objects of individual tree crowns and grassland,and calculating the urban green volume of each vegetation object.The results show the quantity and distribution characteristics of urban green volume in the Lujiazui region,and provide valuable parameters for urban green planning and management.It is also concluded from this paper that the integrated application of LiDAR data and image data presents an effective way to estimate urban green volume.

  17. Using microcontact printing to fabricate microcoils on capillaries for high resolution proton nuclear magnetic resonance on nanoliter volumes

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.A.; Jackman, R.J.; Whitesides, G.M. [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Olson, D.L.; Sweedler, J.V. [Beckman Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    1997-05-01

    This letter describes a method for producing conducting microcoils for high resolution proton nuclear magnetic resonance ({sup 1}H-NMR) spectroscopy on nanoliter volumes. This technique uses microcontact printing and electroplating to form coils on microcapillaries. Nuclear magnetic resonance spectra collected using these microcoils, have linewidths less than 1 Hz for model compounds and a limit of detection (signal-to-noise ratio=3) for ethylbenzene of 2.6 nmol in 13 min. {copyright} {ital 1997 American Institute of Physics.}

  18. Accurately determining log and bark volumes of saw logs using high-resolution laser scan data

    Science.gov (United States)

    R. Edward Thomas; Neal D. Bennett

    2014-01-01

    Accurately determining the volume of logs and bark is crucial to estimating the total expected value recovery from a log. Knowing the correct size and volume of a log helps to determine which processing method, if any, should be used on a given log. However, applying volume estimation methods consistently can be difficult. Errors in log measurement and oddly shaped...

  19. A highly addressable static droplet array enabling digital control of a single droplet at pico-volume resolution.

    Science.gov (United States)

    Jeong, Heon-Ho; Lee, Byungjin; Jin, Si Hyung; Jeong, Seong-Geun; Lee, Chang-Soo

    2016-04-26

    Droplet-based microfluidics enabling exquisite liquid-handling has been developed for diagnosis, drug discovery and quantitative biology. Compartmentalization of samples into a large number of tiny droplets is a great approach to perform multiplex assays and to improve reliability and accuracy using a limited volume of samples. Despite significant advances in microfluidic technology, individual droplet handling in pico-volume resolution is still a challenge in obtaining more efficient and varying multiplex assays. We present a highly addressable static droplet array (SDA) enabling individual digital manipulation of a single droplet using a microvalve system. In a conventional single-layer microvalve system, the number of microvalves required is dictated by the number of operation objects; thus, individual trap-and-release on a large-scale 2D array format is highly challenging. By integrating double-layer microvalves, we achieve a "balloon" valve that preserves the pressure-on state under released pressure; this valve can allow the selective releasing and trapping of 7200 multiplexed pico-droplets using only 1 μL of sample without volume loss. This selectivity and addressability completely arranged only single-cell encapsulated droplets from a mixture of droplet compositions via repetitive selective trapping and releasing. Thus, it will be useful for efficient handling of miniscule volumes of rare or clinical samples in multiplex or combinatory assays, and the selective collection of samples.

  20. High Resolution 3-D Finite-Volume Coastal Ocean Modeling in Lower Campbell River and Discovery Passage, British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Yuehua Lin

    2014-03-01

    Full Text Available The 3-D unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM was used to simulate the flows in Discovery Passage including the adjoining Lower Campbell River, British Columbia, Canada. Challenges in the studies include the strong tidal currents (e.g., up to 7.8 m/s in Seymour Narrows and tailrace discharges, small-scale topographic features and steep bottom slopes, and stratification affected by the Campbell River freshwater discharges. Two applications of high resolution 3-D FVCOM modeling were conducted. One is for the Lower Campbell River extending upstream as far as the John Hart Hydroelectric dam. The horizontal resolution varies from 0.27 m to 32 m in the unstructured triangular mesh to resolve the tailrace flow. The bottom elevation decreases ~14 m within the distance of ~1.4 km along the river. This pioneering FVCOM river modeling demonstrated a very good performance in simulating the river flow structures. The second application is to compute ocean currents immediately above the seabed along the present underwater electrical cable crossing routes across Discovery Passage. Higher resolution was used near the bottom with inter-layer spacing ranging from 0.125 to 0.0005 of total water depth. The model behaves very well in simulating the strong tidal currents in the area at high resolution in both the horizontal and vertical. One year maximum near bottom tidal current along the routes was then analyzed using the model results.

  1. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images

    Energy Technology Data Exchange (ETDEWEB)

    Leong, Andrew F. T.; Islam, M. Sirajul; Kitchen, Marcus J. [School of Physics, Monash University, Victoria 3800 (Australia); Fouras, Andreas [Division of Biological Engineering, Monash University, Victoria 3800 (Australia); Wallace, Megan J.; Hooper, Stuart B. [Ritchie Centre and Department of Obstetrics and Gynaecology, Monash Institute of Medical Research, Monash University, Victoria 3168 (Australia)

    2013-04-15

    Purpose: Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. Methods: The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions {approx}16.2 {mu}m). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Results: Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. Conclusions: This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using

  2. Comparison of Canopy Volume Measurements of Scattered Eucalypt Farm Trees Derived from High Spatial Resolution Imagery and LiDAR

    Directory of Open Access Journals (Sweden)

    Niva Kiran Verma

    2016-05-01

    Full Text Available Studies estimating canopy volume are mostly based on laborious and time-consuming field measurements; hence, there is a need for easier and convenient means of estimation. Accordingly, this study investigated the use of remotely sensed data (WorldView-2 and LiDAR for estimating tree height, canopy height and crown diameter, which were then used to infer the canopy volume of remnant eucalypt trees at the Newholme/Kirby ‘SMART’ farm in north-east New South Wales. A regression model was developed with field measurements, which was then applied to remote-sensing-based measurements. LiDAR estimates of tree dimensions were generally lower than the field measurements (e.g., 6.5% for tree height although some of the parameters (such as tree height may also be overestimated by the clinometer/rangefinder protocols used. The WorldView-2 results showed both crown projected area and crown diameter to be strongly correlated to canopy volume, and that crown diameter yielded better results (Root Mean Square Error RMSE 31% than crown projected area (RMSE 42%. Although the better performance of LiDAR in the vertical dimension cannot be dismissed, as suggested by results obtained from this study and also similar studies conducted with LiDAR data for tree parameter measurements, the high price and complexity associated with the acquisition and processing of LiDAR datasets mean that the technology is beyond the reach of many applications. Therefore, given the need for easier and convenient means of tree parameters estimation, this study filled a gap and successfully used 2D multispectral WorldView-2 data for 3D canopy volume estimation with satisfactory results compared to LiDAR-based estimation. The result obtained from this study highlights the usefulness of high resolution data for canopy volume estimations at different locations as a possible alternative to existing methods.

  3. SCIL nanoimprint solutions: high-volume soft NIL for wafer scale sub-10nm resolution

    Science.gov (United States)

    Voorkamp, R.; Verschuuren, M. A.; van Brakel, R.

    2016-10-01

    Nano-patterning materials and surfaces can add unique functionalities and properties which cannot be obtained in bulk or micro-structured materials. Examples range from hetro-epitaxy of semiconductor nano-wires to guiding cell expression and growth on medical implants. [1] Due to the cost and throughput requirements conventional nano-patterning techniques such as deep UV lithography (cost and flat substrate demands) and electron-beam lithography (cost, throughput) are not an option. Self-assembly techniques are being considered for IC manufacturing, but require nano-sized guiding patterns, which have to be fabricated in any case.[2] Additionally, the self-assembly process is highly sensitive to the environment and layer thickness, which is difficult to control on non-flat surfaces such as PV silicon wafers or III/V substrates. Laser interference lithography can achieve wafer scale periodic patterns, but is limited by the throughput due to intensity of the laser at the pinhole and only regular patterns are possible where the pattern fill fraction cannot be chosen freely due to the interference condition.[3] Nanoimprint lithography (NIL) is a promising technology for the cost effective fabrication of sub-micron and nano-patterns on large areas. The challenges for NIL are related to the technique being a contact method where a stamp which holds the patterns is required to be brought into intimate contact with the surface of the product. In NIL a strong distinction is made between the type of stamp used, either rigid or soft. Rigid stamps are made from patterned silicon, silica or plastic foils and are capable of sub-10nm resolution and wafer scale patterning. All these materials behave similar at the micro- to nm scale and require high pressures (5 - 50 Bar) to enable conformal contact to be made on wafer scales. Real world conditions such as substrate bow and particle contaminants complicate the use of rigid stamps for wafer scale areas, reducing stamp lifetime and

  4. High-resolution dynamic angiography using flat-panel volume CT: feasibility demonstration for neuro and lower limb vascular applications

    Energy Technology Data Exchange (ETDEWEB)

    Mehndiratta, Amit [Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States); University of Oxford, Institute of Biomedical Engineering and Keble College, Oxford (United Kingdom); Indian Institute of Technology Delhi and All India Institute of Medical Science, Centre for Biomedical Engineering, New Delhi (India); Rabinov, James D. [Massachusetts General Hospital, Interventional Neuroradiology, Harvard Medical School, Boston, MA (United States); Grasruck, Michael [Siemens Medical Solutions, Forchheim (Germany); Liao, Eric C. [Massachusetts General Hospital, Department of Plastic and Reconstructive Surgery and Center for Regenerative Medicine, Harvard Medical School, Boston, MA (United States); Crandell, David [Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, MA (United States); Gupta, Rajiv [Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, MA (United States)

    2015-07-15

    This paper evaluates a prototype flat-panel volume CT (fpVCT) for dynamic in vivo imaging in a variety of neurovascular and lower limb applications. Dynamic CTA was performed on 12 patients (neuro = 8, lower limb = 4) using an fpVCT with 120 kVp, 50 mA, rotation time varying from 8 to 19 s, and field of view of 25 x 25 x 18 cm{sup 3}. Four-dimensional data sets (i.e. 3D images over time) were reconstructed and reviewed. Dynamic CTA demonstrated sufficient spatio-temporal resolution to elucidate first-pass and recirculation dynamics of contrast bolus through neurovasclar pathologies and phasic blood flow though lower-limb vasculature and grafts. The high spatial resolution of fpVCT resulted in reduced partial volume and metal beam-hardening artefacts. This facilitated assessment of vascular lumen in the presence of calcified plaque and evaluation of fractures, especially in the presence of fixation hardware. Evaluation of arteriovenous malformation using dynamic fpVCT angiography was of limited utility. Dynamic CTA using fpVCT can visualize time-varying phenomena in neuro and lower limb vascular applications and has sufficient diagnostic imaging quality to evaluate a number of pathologies affecting these regions. (orig.)

  5. Developing an Ice Volume Estimate of Jarvis Glacier, Alaska, using Ground-Penetrating Radar and High Resolution Satellite Imagery

    Science.gov (United States)

    Wu, N. L.; Campbell, S. W.; Douglas, T. A.; Osterberg, E. C.

    2013-12-01

    Jarvis Glacier is an important water source for Fort Greely and Delta Junction, Alaska. Yet with warming summer temperatures caused by climate change, the glacier is melting rapidly. Growing concern of a dwindling water supply has caused significant research efforts towards determining future water resources from spring melt and glacier runoff which feeds the community on a yearly basis. The main objective of this project was to determine the total volume of the Jarvis Glacier. In April 2012, a centerline profile of the Jarvis Glacier and 15 km of 100 MHz ground-penetrating radar (GPR) profiles were collected in cross sections to provide ice depth measurements. These depth measurements were combined with an interpreted glacier boundary (depth = 0 m) from recently collected high resolution WorldView satellite imagery to estimate total ice volume. Ice volume was calculated at 0.62 km3 over a surface area of 8.82 km2. However, it is likely that more glacier-ice exists within Jarvis Glacier watershed considering the value calculated with GPR profiles accounts for only the glacier ice within the valley and not for the valley side wall ice. The GLIMS glacier area database suggests that the valley accounts for approximately 50% of the total ice covered watershed. Hence, we are currently working to improve total ice volume estimates which incorporate the surrounding valley walls. Results from this project will be used in conjunction with climate change estimates and hydrological properties downstream of the glacier to estimate future water resources available to Fort Greely and Delta Junction.

  6. SyPRID sampler: A large-volume, high-resolution, autonomous, deep-ocean precision plankton sampling system

    Science.gov (United States)

    Billings, Andrew; Kaiser, Carl; Young, Craig M.; Hiebert, Laurel S.; Cole, Eli; Wagner, Jamie K. S.; Van Dover, Cindy Lee

    2017-03-01

    The current standard for large-volume (thousands of cubic meters) zooplankton sampling in the deep sea is the MOCNESS, a system of multiple opening-closing nets, typically lowered to within 50 m of the seabed and towed obliquely to the surface to obtain low-spatial-resolution samples that integrate across 10 s of meters of water depth. The SyPRID (Sentry Precision Robotic Impeller Driven) sampler is an innovative, deep-rated (6000 m) plankton sampler that partners with the Sentry Autonomous Underwater Vehicle (AUV) to obtain paired, large-volume plankton samples at specified depths and survey lines to within 1.5 m of the seabed and with simultaneous collection of sensor data. SyPRID uses a perforated Ultra-High-Molecular-Weight (UHMW) plastic tube to support a fine mesh net within an outer carbon composite tube (tube-within-a-tube design), with an axial flow pump located aft of the capture filter. The pump facilitates flow through the system and reduces or possibly eliminates the bow wave at the mouth opening. The cod end, a hollow truncated cone, is also made of UHMW plastic and includes a collection volume designed to provide an area where zooplankton can collect, out of the high flow region. SyPRID attaches as a saddle-pack to the Sentry vehicle. Sentry itself is configured with a flight control system that enables autonomous survey paths to low altitudes. In its verification deployment at the Blake Ridge Seep (2160 m) on the US Atlantic Margin, SyPRID was operated for 6 h at an altitude of 5 m. It recovered plankton samples, including delicate living larvae, from the near-bottom stratum that is seldom sampled by a typical MOCNESS tow. The prototype SyPRID and its next generations will enable studies of plankton or other particulate distributions associated with localized physico-chemical strata in the water column or above patchy habitats on the seafloor.

  7. High-resolution liquid- and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors

    Science.gov (United States)

    Kentgens, A. P. M.; Bart, J.; van Bentum, P. J. M.; Brinkmann, A.; van Eck, E. R. H.; Gardeniers, J. G. E.; Janssen, J. W. G.; Knijn, P.; Vasa, S.; Verkuijlen, M. H. W.

    2008-02-01

    The predominant means to detect nuclear magnetic resonance (NMR) is to monitor the voltage induced in a radiofrequency coil by the precessing magnetization. To address the sensitivity of NMR for mass-limited samples it is worthwhile to miniaturize this detector coil. Although making smaller coils seems a trivial step, the challenges in the design of microcoil probeheads are to get the highest possible sensitivity while maintaining high resolution and keeping the versatility to apply all known NMR experiments. This means that the coils have to be optimized for a given sample geometry, circuit losses should be avoided, susceptibility broadening due to probe materials has to be minimized, and finally the B1-fields generated by the rf coils should be homogeneous over the sample volume. This contribution compares three designs that have been miniaturized for NMR detection: solenoid coils, flat helical coils, and the novel stripline and microslot designs. So far most emphasis in microcoil research was in liquid-state NMR. This contribution gives an overview of the state of the art of microcoil solid-state NMR by reviewing literature data and showing the latest results in the development of static and micro magic angle spinning (microMAS) solenoid-based probeheads. Besides their mass sensitivity, microcoils can also generate tremendously high rf fields which are very useful in various solid-state NMR experiments. The benefits of the stripline geometry for studying thin films are shown. This geometry also proves to be a superior solution for microfluidic NMR implementations in terms of sensitivity and resolution.

  8. Derivation and Validation of Supraglacial Lake Volumes on the Greenland Ice Sheet from High-Resolution Satellite Imagery

    Science.gov (United States)

    Moussavi, Mahsa S.; Abdalati, Waleed; Pope, Allen; Scambos, Ted; Tedesco, Marco; MacFerrin, Michael; Grigsby, Shane

    2016-01-01

    Supraglacial meltwater lakes on the western Greenland Ice Sheet (GrIS) are critical components of its surface hydrology and surface mass balance, and they also affect its ice dynamics. Estimates of lake volume, however, are limited by the availability of in situ measurements of water depth,which in turn also limits the assessment of remotely sensed lake depths. Given the logistical difficulty of collecting physical bathymetric measurements, methods relying upon in situ data are generally restricted to small areas and thus their application to largescale studies is difficult to validate. Here, we produce and validate spaceborne estimates of supraglacial lake volumes across a relatively large area (1250 km(exp 2) of west Greenland's ablation region using data acquired by the WorldView-2 (WV-2) sensor, making use of both its stereo-imaging capability and its meter-scale resolution. We employ spectrally-derived depth retrieval models, which are either based on absolute reflectance (single-channel model) or a ratio of spectral reflectances in two bands (dual-channel model). These models are calibrated by usingWV-2multispectral imagery acquired early in the melt season and depth measurements from a high resolutionWV-2 DEM over the same lake basins when devoid of water. The calibrated models are then validated with different lakes in the area, for which we determined depths. Lake depth estimates based on measurements recorded in WV-2's blue (450-510 nm), green (510-580 nm), and red (630-690 nm) bands and dual-channel modes (blue/green, blue/red, and green/red band combinations) had near-zero bias, an average root-mean-squared deviation of 0.4 m (relative to post-drainage DEMs), and an average volumetric error of b1%. The approach outlined in this study - image-based calibration of depth-retrieval models - significantly improves spaceborne supraglacial bathymetry retrievals, which are completely independent from in situ measurements.

  9. Derivation and Validation of Supraglacial Lake Volumes on the Greenland Ice Sheet from High-Resolution Satellite Imagery

    Science.gov (United States)

    Moussavi, Mahsa S.; Abdalati, Waleed; Pope, Allen; Scambos, Ted; Tedesco, Marco; MacFerrin, Michael; Grigsby, Shane

    2016-01-01

    Supraglacial meltwater lakes on the western Greenland Ice Sheet (GrIS) are critical components of its surface hydrology and surface mass balance, and they also affect its ice dynamics. Estimates of lake volume, however, are limited by the availability of in situ measurements of water depth,which in turn also limits the assessment of remotely sensed lake depths. Given the logistical difficulty of collecting physical bathymetric measurements, methods relying upon in situ data are generally restricted to small areas and thus their application to largescale studies is difficult to validate. Here, we produce and validate spaceborne estimates of supraglacial lake volumes across a relatively large area (1250 km(exp 2) of west Greenland's ablation region using data acquired by the WorldView-2 (WV-2) sensor, making use of both its stereo-imaging capability and its meter-scale resolution. We employ spectrally-derived depth retrieval models, which are either based on absolute reflectance (single-channel model) or a ratio of spectral reflectances in two bands (dual-channel model). These models are calibrated by usingWV-2multispectral imagery acquired early in the melt season and depth measurements from a high resolutionWV-2 DEM over the same lake basins when devoid of water. The calibrated models are then validated with different lakes in the area, for which we determined depths. Lake depth estimates based on measurements recorded in WV-2's blue (450-510 nm), green (510-580 nm), and red (630-690 nm) bands and dual-channel modes (blue/green, blue/red, and green/red band combinations) had near-zero bias, an average root-mean-squared deviation of 0.4 m (relative to post-drainage DEMs), and an average volumetric error of b1%. The approach outlined in this study - image-based calibration of depth-retrieval models - significantly improves spaceborne supraglacial bathymetry retrievals, which are completely independent from in situ measurements.

  10. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  11. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    KAUST Repository

    Sicat, Ronell Barrera

    2014-12-31

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  12. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering.

    Science.gov (United States)

    Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus

    2014-12-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  13. A new virtual ring-based system matrix generator for iterative image reconstruction in high resolution small volume PET systems.

    Science.gov (United States)

    Li, K; Safavi-Naeini, M; Franklin, D R; Han, Z; Rosenfeld, A B; Hutton, B; Lerch, M L F

    2015-09-07

    A common approach to improving the spatial resolution of small animal PET scanners is to reduce the size of scintillation crystals and/or employ high resolution pixellated semiconductor detectors. The large number of detector elements results in the system matrix--an essential part of statistical iterative reconstruction algorithms--becoming impractically large. In this paper, we propose a methodology for system matrix modelling which utilises a virtual single-layer detector ring to greatly reduce the size of the system matrix without sacrificing precision. Two methods for populating the system matrix are compared; the first utilises a geometrically-derived system matrix based on Siddon's ray tracer method with the addition of an accurate detector response function, while the second uses Monte Carlo simulation to populate the system matrix. The effectiveness of both variations of the proposed technique is demonstrated via simulations of PETiPIX, an ultra high spatial resolution small animal PET scanner featuring high-resolution DoI capabilities, which has previously been simulated and characterised using classical image reconstruction methods. Compression factors of 5 x 10(7) and 2.5 x 10(7)are achieved using this methodology for the system matrices produced using the geometric and Monte Carlo-based approaches, respectively, requiring a total of 0.5-1.2 GB of memory-resident storage. Images reconstructed from Monte Carlo simulations of various point source and phantom models, produced using system matrices generated via both geometric and simulation methods, are used to evaluate the quality of the resulting system matrix in terms of achievable spatial resolution and the CRC, CoV and CW-SSIM index image quality metrics. The Monte Carlo-based system matrix is shown to provide the best image quality at the cost of substantial one-off computational effort and a lower (but still practical) compression factor. Finally, a straightforward extension of the virtual ring

  14. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  15. Quantification of gully volume using very high resolution DSM generated through 3D reconstruction from airborne and field digital imagery

    Science.gov (United States)

    Castillo, Carlos; Zarco-Tejada, Pablo; Laredo, Mario; Gómez, Jose Alfonso

    2013-04-01

    Major advances have been made recently in automatic 3D photo-reconstruction techniques using uncalibrated and non-metric cameras (James and Robson, 2012). However, its application on soil conservation studies and landscape feature identification is currently at the outset. The aim of this work is to compare the performance of a remote sensing technique using a digital camera mounted on an airborne platform, with 3D photo-reconstruction, a method already validated for gully erosion assessment purposes (Castillo et al., 2012). A field survey was conducted in November 2012 in a 250 m-long gully located in field crops on a Vertisol in Cordoba (Spain). The airborne campaign was conducted with a 4000x3000 digital camera installed onboard an aircraft flying at 300 m above ground level to acquire 6 cm resolution imagery. A total of 990 images were acquired over the area ensuring a large overlap in the across- and along-track direction of the aircraft. An ortho-mosaic and the digital surface model (DSM) were obtained through automatic aerial triangulation and camera calibration methods. For the field-level photo-reconstruction technique, the gully was divided in several reaches to allow appropriate reconstruction (about 150 pictures taken per reach) and, finally, the resulting point clouds were merged into a unique mesh. A centimetric-accuracy GPS provided a benchmark dataset for gully perimeter and distinguishable reference points in order to allow the assessment of measurement errors of the airborne technique and the georeferenciation of the photo-reconstruction 3D model. The uncertainty on the gully limits definition was explicitly addressed by comparison of several criteria obtained by 3D models (slope and second derivative) with the outer perimeter obtained by the GPS operator identifying visually the change in slope at the top of the gully walls. In this study we discussed the magnitude of planimetric and altimetric errors and the differences observed between the

  16. Do Red Edge and Texture Attributes from High-Resolution Satellite Data Improve Wood Volume Estimation in a Semi-Arid Mountainous Region?

    DEFF Research Database (Denmark)

    Schumacher, Paul; Mislimshoeva, Bunafsha; Brenning, Alexander;

    2016-01-01

    Remote sensing-based woody biomass quantification in sparsely-vegetated areas is often limited when using only common broadband vegetation indices as input data for correlation with ground-based measured biomass information. Red edge indices and texture attributes are often suggested as a means...... to overcome this issue. However, clear recommendations on the suitability of specific proxies to provide accurate biomass information in semi-arid to arid environments are still lacking. This study contributes to the understanding of using multispectral high-resolution satellite data (RapidEye), specifically...... red edge and texture attributes, to estimate wood volume in semi-arid ecosystems characterized by scarce vegetation. LASSO (Least Absolute Shrinkage and Selection Operator) and random forest were used as predictive models relating in situ-measured aboveground standing wood volume to satellite data...

  17. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  18. High-resolution headlamp

    Science.gov (United States)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  19. Influence of Meteorological Conditions on Changes in the Volume of the Pine Stem at the End of Vegetation Using High Resolution Dendrometers

    Directory of Open Access Journals (Sweden)

    Julius Taminskas

    2014-10-01

    Full Text Available Using dendrometers for measuring a radial increment of trees is efficient not only for investigation into the dynamics of the increment but also for changes in the tree stem in general, for a physiological condition of trees during certain periods of time, reliance on meteorological conditions and for tree-ring formation studies. The conducted research has applied to high resolution DRL 26 dendrometers that helped with identifying and distinguishing the impacts of climatic factors on the physiology and growth of trees. Also, the performed investigation assisted in assessing the impact of microclimate conditions on changes in tree stems. The location for installing dendrometers was selected with reference to the criteria such as representative research location, the degree of violation assessment, equal distribution of research sites in Lithuania and the estimation of climatic, hydrologic and anthropogenic conditions. Considering the above mentioned criteria, three raised bogs in which temperature, automatic water level devices in wells and dendrometers installed in measurement areas were chosen. The research period lasted from the end of the vegetation period to the beginning of dormancy season. For research purposes, 5 growing Scots pines (Pinus sylvestris were used for examining changes in the stem volume. Another objective was to find out how stems were affected by growing in bog surroundings and to analyse the synchronicity of volume changes between trees. The conducted research disclosed specific features of the dynamics of changes in the stem volume at the end of vegetation, and the beginning of dormancy season was found.

  20. Impact of the column hardware volume on resolution in very high pressure liquid chromatography non-invasive investigations.

    Science.gov (United States)

    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin

    2015-11-13

    The impact of the column hardware volume (≃ 1.7 μL) on the optimum reduced plate heights of a series of short 2.1 mm × 50 mm columns (hold-up volume ≃ 80-90 μL) packed with 1.8 μm HSS-T3, 1.7 μm BEH-C18, 1.7 μm CSH-C18, 1.6 μm CORTECS-C18+, and 1.7 μm BEH-C4 particles was investigated. A rapid and non-invasive method based on the reduction of the system dispersion (to only 0.15 μL(2)) of an I-class Acquity system and on the corrected plate heights (for system dispersion) of five weakly retained n-alkanophenones in RPLC was proposed. Evidence for sample dispersion through the column hardware volume was also revealed from the experimental plot of the peak capacities for smooth linear gradients versus the corrected efficiency of a weakly retained alkanophenone (isocratic runs). The plot is built for a constant gradient steepness irrespective of the applied flow rates (0.01-0.30 mL/min) and column lengths (2, 3, 5, and 10 cm). The volume variance caused by column endfittings and frits was estimated in between 0.1 and 0.7 μL(2) depending on the applied flow rate. After correction for system and hardware dispersion, the minimum reduced plate heights of short (5 cm) and narrow-bore (2.1mm i.d.) beds packed with sub-2 μm fully and superficially porous particles were found close to 1.5 and 0.7, respectively, instead of the classical h values of 2.0 and 1.4 for the whole column assembly.

  1. Methodological approaches to planar and volumetric scintigraphic imaging of small volume targets with high spatial resolution and sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Faculdade de Medicina. Dept. de Biologia Molecular], e-mail: mejia_famerp@yahoo.com.br; Braga, J. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Div. de Astrofisica; Correa, R. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Ciencia Espacial e Atmosferica; Leite, J.P. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Neurologia, Psiquiatria e Psicologia Medica; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica

    2009-08-15

    Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multi pinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target's radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals. (author)

  2. High Resolution Acoustical Imaging

    Science.gov (United States)

    1989-05-01

    1028 (September 1982). 26 G. Arfken , Mathematical Methods for Physicists (Academic Press, New York, 1971), 2nd printing, pp.662-666. 27 W. R. Hahn...difference in the approach used by the two methods , as noted in the previous paragraph, forming a direct mathematical com- parison may be impossible...examines high resolution methods which use a linear array to locate stationary objects which have scattered the fressure waves. Several;- new methods

  3. High resolution differential thermometer

    Directory of Open Access Journals (Sweden)

    Gotra Z. Yu.

    2009-11-01

    Full Text Available Main schematic solutions of differential thermometers with measurement resolution about 0.001°C are considered. Differential temperature primary transducer realized on a transistor differential circuit in microampere mode. Analytic calculation and schematic mathematic simulation of primary transducer are fulfilled. Signal transducer is realized on a high precision Zero-Drift Single-Supply Rail-to-Rail operation amplifier AD8552 and 24-Bit S-D microconverter ADuC834.

  4. Saturn's rings - high resolution

    Science.gov (United States)

    1981-01-01

    Voyager 2 obtained this high-resolution picture of Saturn's rings Aug. 22, when the spacecraft was 4 million kilometers (2.5 million miles) away. Evident here are the numerous 'spoke' features, in the B-ring; their very sharp, narrow appearance suggests short formation times. Scientists think electromagnetic forces are responsible in some way for these features, but no detailed theory has been worked out. Pictures such as this and analyses of Voyager 2's spoke movies may reveal more clues about the origins of these complex structures. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  5. High Resolution Laboratory Spectroscopy

    CERN Document Server

    Brünken, Sandra

    2016-01-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limita...

  6. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  7. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  8. Developing a semi/automated protocol to post-process large volume, High-resolution airborne thermal infrared (TIR) imagery for urban waste heat mapping

    Science.gov (United States)

    Rahman, Mir Mustafizur

    In collaboration with The City of Calgary 2011 Sustainability Direction and as part of the HEAT (Heat Energy Assessment Technologies) project, the focus of this research is to develop a semi/automated 'protocol' to post-process large volumes of high-resolution (H-res) airborne thermal infrared (TIR) imagery to enable accurate urban waste heat mapping. HEAT is a free GeoWeb service, designed to help Calgary residents improve their home energy efficiency by visualizing the amount and location of waste heat leaving their homes and communities, as easily as clicking on their house in Google Maps. HEAT metrics are derived from 43 flight lines of TABI-1800 (Thermal Airborne Broadband Imager) data acquired on May 13--14, 2012 at night (11:00 pm--5:00 am) over The City of Calgary, Alberta (˜825 km 2) at a 50 cm spatial resolution and 0.05°C thermal resolution. At present, the only way to generate a large area, high-spatial resolution TIR scene is to acquire separate airborne flight lines and mosaic them together. However, the ambient sensed temperature within, and between flight lines naturally changes during acquisition (due to varying atmospheric and local micro-climate conditions), resulting in mosaicked images with different temperatures for the same scene components (e.g. roads, buildings), and mosaic join-lines arbitrarily bisect many thousands of homes. In combination these effects result in reduced utility and classification accuracy including, poorly defined HEAT Metrics, inaccurate hotspot detection and raw imagery that are difficult to interpret. In an effort to minimize these effects, three new semi/automated post-processing algorithms (the protocol) are described, which are then used to generate a 43 flight line mosaic of TABI-1800 data from which accurate Calgary waste heat maps and HEAT metrics can be generated. These algorithms (presented as four peer-reviewed papers)---are: (a) Thermal Urban Road Normalization (TURN)---used to mitigate the microclimatic

  9. Controlling the position and the dislocation of the middle ear transducer with high-resolution computed tomography and digital volume tomography: implications for the transducers' design.

    Science.gov (United States)

    Kontorinis, Georgios; Giesemann, Anja M; Witt, Thomas; Goetz, Friedrich; Schwab, Burkard

    2012-04-01

    A minimal tip dislocation of the middle ear transducer (MET(®), Otologics Ltd) may result in poor hearing performance. Our objective was to examine if a defined MET dislocation can be diagnosed by high-resolution computed tomography (HRCT) or digital volume tomography (DVT). A human cadaver head was sequentially implanted with different MET tips (incus application) including a ceramic tip (T 1c), a titanium tip (T 1t), a new, thinner titanium tip (T 2), and a spherical titanium tip (Ts). HRCT and DVT studies were performed. Afterward, the tips were pulled back 0.5 mm, so that they were not attached to the incus. HRCT and DVT scans were repeated to identify the dislocation. Using the best plain in HRCT images, the dislocation of the transducer could be measured reliably and reproducibly in half of the cases. In particular, the precise positioning and the dislocation could be identified when T 1t and Ts were implanted, with the Ts showing the best visibility. DVT failed in recognizing the dislocation in all cases. The identification of MET tip's dislocation with HRCT depends on the shape, size, and material of the tip. This knowledge is useful for the design of the implants, as determination of the right position of the middle ear transducer may be proven important for the hearing outcome. In some cases, however, surgical exploration may still be required. Although DVT represents a promising imaging method for the otologists, it can barely help when MET dislocation is suspected.

  10. Visualization of inner ear dysplasias in patients with sensorineural hearing loss. High-resolution MR imaging and volume-rendered reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Klingebiel, R.; Bockmuehl, U. [Charite CM, Humboldt Univ., Berlin (Germany). Dept. of Radiology; Werbs, M. [Charite CM, Humboldt Univ., Berlin (Germany). ENT Dept.; Freigang, B. [O. von Guericke Univ., Magdeburg (Germany). ENT Dept.; Vorwerk, W. [St. Salvator Krankenhaus, Halberstadt (Germany). ENT Dept.; Thieme, N.; Lehmann, R. [Charite CM, Humboldt Univ., Berlin (Germany). Dept. of Radiology

    2001-11-01

    Purpose: We evaluated a data acquisition and post-processing protocol for inner ear (IE) assessment by MR imaging in patients, suffering from various labyrinth malformations. Material and Methods: MR IE studies of 158 consecutive patients (316 IEs) suffering from sensorineural hearing loss without evidence of an acoustic neurinoma were reviewed for pathologies of the IE and internal acoustic meatus. High-resolution MR data of all abnormal IE studies (n=45) were post-processed to previously standardized 3D volume rendered (VR) reconstructions. Results: In 9 patients (5.7%) the following IE dysplasias were detected: malformation of the cochlea (6 IEs), vestibulum (4 IEs), semicircular canals (12 IEs) and vestibular aqueduct/endolymphatic sac (10 IEs). One patient showed evidence of an aplasia of the vestibulocochlear nerve. In 4 patients multiple IE dysplasias were encountered. Comprehensive 3D visualization of all labyrinthine dysplasias was achieved by the use of two VR reconstructions. The overall time for bilateral IE assessment amounted to 30-35 min. Conclusion: The imaging protocol allows for rapid and comprehensive visualization of various IE dysplasias, based on a limited number of VR reconstructions.

  11. High resolution pipette

    Energy Technology Data Exchange (ETDEWEB)

    Beroz, Justin Douglas; Hart, Anastasios John

    2016-06-07

    A pipette includes a movable piston and a diaphragm that at least partly defines a fluid chamber enclosing a volume of working fluid. The piston displaces a volumetric amount of the working fluid in the chamber when moved. In response, the diaphragm displaces a smaller volumetric amount of fluid outside the chamber. A deamplification ratio is defined by the ratio of the volume displaced by the diaphragm to the volume displaced by the piston. The deamplification ratio is adjustable by adjusting or changing the diaphragm and/or by adjusting the size of the fluid chamber. The deamplifying pipette enables measuring and dispensing of very small volumes of liquid and is easily adapted to commercially available pipette components. Pipette components such as a pipette tip or adaptor may include a diaphragm to enable deamplification of the nominal volume capacity of a given pipette device.

  12. High Resolution Formaldehyde Photochemistry

    Science.gov (United States)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  13. Dispersed and piled woody residues volumes in coastal Douglas-fir cutblocks determined using high-resolution imagery from a UAV and from ground-based surveys.

    Science.gov (United States)

    Trofymow, J. A.; Gougeon, F.

    2015-12-01

    After forest harvest significant amounts of woody residues are left dispersed on site and some subsequently piled and burned. Quantification of residues is required for estimating C budgets, billable waste, harvest efficiency, bioenergy potential and smoke emissions. Trofymow (et al 2014 CJFR) compared remote sensing methods to ground-based waste and residue survey (WRS) methods for residue piles in 4 cutblocks in the Oyster River (OR) area in coastal BC. Compared to geospatial methods using 15cm orthophotos and LiDAR acquired in 2011 by helicopter, the WRS method underestimated pile wood by 30% to 50% while a USFS volume method overestimated pile wood by 50% if site specific packing ratios were not used. A geospatial method was developed in PCI Geomatica to analyze 2-bit images of logs >15cm diameters to determine dispersed wood residues in OR and compare to WRS methods. Across blocks, geospatial and WRS method wood volumes were correlated (R2=0.69), however volumes were 2.5 times larger for the geospatial vs WRS method. Methods for dispersed residues could not be properly compared as individual WRS plots were not georeferenced, only 12 plots were sampled in total, and low-resolution images poorly resolved logs. Thus, a new study in 2 cutblocks in the Northwest Bay (NWB) area acquired 2cm resolution RGB air-photography in 2014-15 using an Aeryon Sky Ranger UAV prior to and after burn pile construction. A total of 57 dispersed WRS plots and 24 WRS pile or accumulation plots were georeferenced and measured. Stero-pairs were used to generate point-clouds for pile bulk volumes. Images processed to 8-bit grey scale are being analyzed with a revised PCI method that better accounts for log overlaps. WRS methods depend on a good sample of plots and accurate determination of stratum (dispersed, roadside, piles, accumulations) areas. Analysis of NWB blocks shows WRS field methods for stratum area differ by 5-20% from that determined using orthophotos. Plot-level wood

  14. Global distributions of CO2 volume mixing ratio in the middle and upper atmosphere from daytime MIPAS high-resolution spectra

    Science.gov (United States)

    Aythami Jurado-Navarro, Á.; López-Puertas, Manuel; Funke, Bernd; García-Comas, Maya; Gardini, Angela; González-Galindo, Francisco; Stiller, Gabriele P.; von Clarmann, Thomas; Grabowski, Udo; Linden, Andrea

    2016-12-01

    Global distributions of the CO2 vmr (volume mixing ratio) in the mesosphere and lower thermosphere (from 70 up to ˜ 140 km) have been derived from high-resolution limb emission daytime MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) spectra in the 4.3 µm region. This is the first time that the CO2 vmr has been retrieved in the 120-140 km range. The data set spans from January 2005 to March 2012. The retrieval of CO2 has been performed jointly with the elevation pointing of the line of sight (LOS) by using a non-local thermodynamic equilibrium (non-LTE) retrieval scheme. The non-LTE model incorporates the new vibrational-vibrational and vibrational-translational collisional rates recently derived from the MIPAS spectra by [Jurado-Navarro et al.(2015)]. It also takes advantage of simultaneous MIPAS measurements of other atmospheric parameters (retrieved in previous steps), such as the kinetic temperature (derived up to ˜ 100 km from the CO2 15 µm region of MIPAS spectra and from 100 up to 170 km from the NO 5.3 µm emission of the same MIPAS spectra) and the O3 measurements (up to ˜ 100 km). The latter is very important for calculations of the non-LTE populations because it strongly constrains the O(3P) and O(1D) concentrations below ˜ 100 km. The estimated precision of the retrieved CO2 vmr profiles varies with altitude ranging from ˜ 1 % below 90 km to 5 % around 120 km and larger than 10 % above 130 km. There are some latitudinal and seasonal variations of the precision, which are mainly driven by the solar illumination conditions. The retrieved CO2 profiles have a vertical resolution of about 5-7 km below 120 km and between 10 and 20 km at 120-140 km. We have shown that the inclusion of the LOS as joint fit parameter improves the retrieval of CO2, allowing for a clear discrimination between the information on CO2 concentration and the LOS and also leading to significantly smaller systematic errors. The retrieved CO2 has an improved

  15. High resolution digital delay timer

    Science.gov (United States)

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  16. [Determination of short-chain chlorinated paraffins in ambient air using high-volume sampling combined with high resolutimi gas chromatography-electron capture negative ion-low resolution mass spectrometry].

    Science.gov (United States)

    Shi, Loimeng; Gao, Yuan; Hou, Xiaohong; Zhang, Haijun; Zhang, Yichi; Chen, Jiping

    2016-02-01

    An analytical method for quantifying short-chain chlorinated paraffins (SCCPs) in ambient air using high-volume sampling combined with high resolution gas chromatography-electron capture negative ion-low resolution mass spectrometry ( HRGC-ECNI-LRMS) was developed. An acidified silica gel column and a basic alumina column were used to optimize the cleanup procedures. The results showed a good linearity (R2>0. 99) between the total response factors and the degree of chlorination of SCCPs in the content range of 58. 1%-63. 3%. The limits of detection (S/N ≥3) and the limits of quantification (S/N ≥ 10) were 4. 2 and 12 µg, respectively. The method detection limit (MDL) for SCCPs was 0. 34 ng/m3 (n = 7). The recoveries of SCCPs in air samples were in the range of 81. 9% to 94. 2%. It is demonstrated that the method is suitable for the quantitative analysis of SCCPs in air samples.

  17. High Resolution Orientation Imaging Microscopy

    Science.gov (United States)

    2012-05-02

    carbon distribution as it relates to the presence of Bainite phase (with small tetragonality) interspersed among the cubic ferrite. An example of the...preferentially segregate. The view offered by these high resolution methods differs from what has been considered before: grains thought to be Bainite

  18. High-Resolution Instrumentation Radar.

    Science.gov (United States)

    1986-09-30

    30 September 1986 Los Angeles Air Force Station 13. NUMBER OF PAGES Los Angeles, Calif. 90009-2960 36 74. MONITORING AGENCY NAME & ADDRESS(If...TREE PLMUT ",-20 -CUTLIASS DumpER SED AN... TREE TRUNK, -0 - MERC BUMPER f - 40 H!-I -50 iI Fig. 7. High-Resolution Instrumentation Radar View of

  19. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  20. HRSC: High resolution stereo camera

    Science.gov (United States)

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  1. High-resolution mapping of a genetic locus regulating preferential carbohydrate intake, total kilocalories, and food volume on mouse chromosome 17.

    Directory of Open Access Journals (Sweden)

    Rodrigo Gularte-Mérida

    Full Text Available The specific genes regulating the quantitative variation in macronutrient preference and food intake are virtually unknown. We fine mapped a previously identified mouse chromosome 17 region harboring quantitative trait loci (QTL with large effects on preferential macronutrient intake-carbohydrate (Mnic1, total kilcalories (Kcal2, and total food volume (Tfv1 using interval-specific strains. These loci were isolated in the [C57BL/6J.CAST/EiJ-17.1-(D17Mit19-D17Mit50; B6.CAST-17.1] strain, possessing a ∼ 40.1 Mb region of CAST DNA on the B6 genome. In a macronutrient selection paradigm, the B6.CAST-17.1 subcongenic mice eat 30% more calories from the carbohydrate-rich diet, ∼ 10% more total calories, and ∼ 9% more total food volume per body weight. In the current study, a cross between carbohydrate-preferring B6.CAST-17.1 and fat-preferring, inbred B6 mice was used to generate a subcongenic-derived F2 mapping population; genotypes were determined using a high-density, custom SNP panel. Genetic linkage analysis substantially reduced the 95% confidence interval for Mnic1 (encompassing Kcal2 and Tfv1 from 40.1 to 29.5 Mb and more precisely established its boundaries. Notably, no genetic linkage for self-selected fat intake was detected, underscoring the carbohydrate-specific effect of this locus. A second key finding was the separation of two energy balance QTLs: Mnic1/Kcal2/Tfv1 for food intake and a newly discovered locus regulating short term body weight gain. The Mnic1/Kcal2/Tfv1 QTL was further de-limited to 19.0 Mb, based on the absence of nutrient intake phenotypes in subcongenic HQ17IIa mice. Analyses of available sequence data and gene ontologies, along with comprehensive expression profiling in the hypothalamus of non-recombinant, cast/cast and b6/b6 F2 controls, focused our attention on candidates within the QTL interval. Zfp811, Zfp870, and Btnl6 showed differential expression and also contain stop codons, but have no known biology

  2. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  3. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  4. High-resolution image analysis.

    Science.gov (United States)

    Preston, K

    1986-01-01

    In many departments of cytology, cytogenetics, hematology, and pathology, research projects using high-resolution computerized microscopy are now being mounted for computation of morphometric measurements on various structural components, as well as for determination of cellular DNA content. The majority of these measurements are made in a partially automated, computer-assisted mode, wherein there is strong interaction between the user and the computerized microscope. At the same time, full automation has been accomplished for both sample preparation and sample examination for clinical determination of the white blood cell differential count. At the time of writing, approximately 1,000 robot differential counting microscopes are in the field, analyzing images of human white blood cells, red blood cells, and platelets at the overall rate of about 100,000 slides per day. This mammoth through-put represents a major accomplishment in the application of machine vision to automated microscopy for hematology. In other areas of automated high-resolution microscopy, such as cytology and cytogenetics, no commercial instruments are available (although a few metaphase-finding machines are available and other new machines have been announced during the past year). This is a disappointing product, considering the nearly half century of research effort in these areas. This paper provides examples of the state of the art in automation of cell analysis for blood smears, cervical smears, and chromosome preparations. Also treated are new developments in multi-resolution automated microscopy, where images are now being generated and analyzed by a single machine over a range of 64:1 magnification and from 10,000 X 20,000 to 500 X 500 in total picture elements (pixels). Examples of images of human lymph node and liver tissue are presented. Semi-automated systems are not treated, although there is mention of recent research in the automation of tissue analysis.

  5. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  6. Ultra-high resolution AMOLED

    Science.gov (United States)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  7. High-resolution slug testing.

    Science.gov (United States)

    Zemansky, G M; McElwee, C D

    2005-01-01

    The hydraulic conductivity (K) variation has important ramifications for ground water flow and the transport of contaminants in ground water. The delineation of the nature of that variation can be critical to complete characterization of a site and the planning of effective and efficient remedial measures. Site-specific features (such as high-conductivity zones) need to be quantified. Our alluvial field site in the Kansas River valley exhibits spatial variability, very high conductivities, and nonlinear behavior for slug tests in the sand and gravel aquifer. High-resolution, multilevel slug tests have been performed in a number of wells that are fully screened. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been used to analyze the data, employing an automated processing system that runs within the Excel spreadsheet program. It is concluded that slug tests can provide the necessary data to identify the nature of both horizontal and vertical K variation in an aquifer and that improved delineation or higher resolution of K structure is possible with shorter test intervals. The gradation into zones of higher conductivity is sharper than seen previously, and the maximum conductivity observed is greater than previously measured. However, data from this project indicate that well development, the presence of fines, and the antecedent history of the well are important interrelated factors in regard to slug-test response and can prevent obtaining consistent results in some cases.

  8. High-resolution land topography

    Science.gov (United States)

    Massonnet, Didier; Elachi, Charles

    2006-11-01

    After a description of the background, methods of production and some scientific uses of high-resolution land topography, we present the current status and the prospect of radar interferometry, regarded as one of the best techniques for obtaining the most global and the most accurate topographic maps. After introducing briefly the theoretical aspects of radar interferometry - principles, limits of operation and various capabilities -, we will focus on the topographic applications that resulted in an almost global topographic map of the earth: the SRTM map. After introducing the Interferometric Cartwheel system, we will build on its expected performances to discuss the scientific prospects of refining a global topographic map to sub-metric accuracy. We also show how other fields of sciences such as hydrology may benefit from the products generated by interferometric radar systems. To cite this article: D. Massonnet, C. Elachi, C. R. Geoscience 338 (2006).

  9. High resolution emission tomography; Tomographie d`emission haute resolution

    Energy Technology Data Exchange (ETDEWEB)

    Charon, Y.; Laniece, P.; Mastrippolito, R.; Pinot, L.; Ploux, L.; Valda Ochoa, A.; Valentin, L. [Groupe I.P.B., Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-11-01

    We have developed an original high resolution tomograph for in-vivo small animal imaging. A first prototype is under evaluation. Initial results of its characterisation are presented. (authors) 3 figs.

  10. Numerical simulations of volume holographic imaging system resolution characteristics

    Science.gov (United States)

    Sun, Yajun; Jiang, Zhuqing; Liu, Shaojie; Tao, Shiquan

    2009-05-01

    Because of the Bragg selectivity of volume holographic gratings, it helps VHI system to optically segment the object space. In this paper, properties of point-source diffraction imaging in terms of the point-spread function (PSF) are investigated, and characteristics of depth and lateral resolutions in a VHI system is numerically simulated. The results show that the observed diffracted field obviously changes with the displacement in the z direction, and is nearly unchanged with displacement in the x and y directions. The dependence of the diffracted imaging field on the z-displacement provides a way to possess 3-D image by VHI.

  11. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  12. VT Hydrography Dataset - High Resolution NHD

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Vermont Hydrography Dataset (VHD) is compliant with the local resolution (also known as High Resolution) National Hydrography Dataset (NHD)...

  13. High-resolution infrared imaging

    Science.gov (United States)

    Falco, Charles M.

    2010-08-01

    The hands and mind of an artist are intimately involved in the creative process of image formation, intrinsically making paintings significantly more complex than photographs to analyze. In spite of this difficulty, several years ago the artist David Hockney and I identified optical evidence within a number of paintings that demonstrated artists began using optical projections as early as c1425 - nearly 175 years before Galileo - as aids for producing portions of their images. In the course of our work, Hockney and I developed insights that I have been applying to a new approach to computerized image analysis. Recently I developed and characterized a portable high resolution infrared for capturing additional information from paintings. Because many pigments are semi-transparent in the IR, in a number of cases IR photographs ("reflectograms") have revealed marks made by the artists that had been hidden under paint ever since they were made. I have used this IR camera to capture photographs ("reflectograms") of hundreds of paintings in over a dozen museums on three continents and, in some cases, these reflectograms have provided new insights into decisions the artists made in creating the final images that we see in the visible.

  14. High-resolution neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Mikerov, V.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Zhitnik, I.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Ignat`ev, A.P. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Isakov, A.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Korneev, V.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Krutov, V.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Kuzin, S.V. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Oparin, S.N. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Pertsov, A.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Podolyak, E.R. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Sobel`man, I.I. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Tindo, I.P. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation); Tukarev, B.A. [P.N. Lebedev Physical Inst., RAN, Moscow (Russian Federation)

    1995-12-31

    A neutron tomography technique with a coordinate resolution of several tens of micrometers has been developed. Our results indicate that the technique resolves details with dimensions less than 100 {mu}m and measures a linear attenuation of less than {approx} 0.1 cm{sup -1}. Tomograms can be reconstructed using incomplete data. Limits on the resolution of the restored pattern are analyzed, and ways to improve the sensitivity of the technique are discussed. (orig.).

  15. High-resolution electron microscopy

    CERN Document Server

    Spence, John C H

    2013-01-01

    This new fourth edition of the standard text on atomic-resolution transmission electron microscopy (TEM) retains previous material on the fundamentals of electron optics and aberration correction, linear imaging theory (including wave aberrations to fifth order) with partial coherence, and multiple-scattering theory. Also preserved are updated earlier sections on practical methods, with detailed step-by-step accounts of the procedures needed to obtain the highest quality images of atoms and molecules using a modern TEM or STEM electron microscope. Applications sections have been updated - these include the semiconductor industry, superconductor research, solid state chemistry and nanoscience, and metallurgy, mineralogy, condensed matter physics, materials science and material on cryo-electron microscopy for structural biology. New or expanded sections have been added on electron holography, aberration correction, field-emission guns, imaging filters, super-resolution methods, Ptychography, Ronchigrams, tomogr...

  16. DESIR high resolution separator at GANIL, France

    Directory of Open Access Journals (Sweden)

    Toprek Dragan

    2012-01-01

    Full Text Available A high-resolution separator for the SPIRAL2/DESIR project at GANIL has been designed. The extracted isotopes from SPIRAL2 will be transported to and cooled in a RFQ cooler yielding beams with very low transverse emittance and energy spread. These beams will then be accelerated to 60 keV and sent to a high-resolution mass separator where a specific isotope will be selected. The good beam properties extracted from the RFQ cooler will allow one to obtain a mass resolution of č26000 with the high-resolution mass separator.

  17. High resolution positron tomography using PCR-I

    Energy Technology Data Exchange (ETDEWEB)

    Brownell, G.L.; Burnham, C.A.; Sandrew, B.; Elmaleh, D.R.; Livni, E.; Kizuka, H.

    1984-01-01

    PCR-I is a high resolution positron tomograph developed by the Physics Research Laboratory of the Massachusetts General Hospital to explore resolution limits of positron tomographs. PCR-I currently obtains images with 4.8 mm FWHM resolution at the center. Plane thickness may be varied between 5 and 10 mm. The instrument uses analog coding to obtain high resolution images without mechanical motion. This permits rapid dynamic imaging and gated cardiac imaging as well as conventional high resolution imaging. A series of studies has been carried out to demonstrate the ability of PCR-I to image structures in small animals. F-18 in the rat skeleton is clearly defined and various structures such as the spinal processes can be clearly resolved. A sequence of images at different spacing provides a three-dimensional reconstruction of the rat skeleton. Blood volume and palmitic acid have been imaged in the dog heart. Again, the sequence of images provides a clear delineation of the three dimensional nature of the blood pools and of the surrounding musculature. Blood flow, blood volume and glucose metabolism have been studied in the monkey brain. Structures within the brain of the Resus monkey can be clearly resolved. Increased activity resulting from induced seizures in the squirrel monkey have been observed and delineated. All of these studies indicate areas of future animal and clinical research using the high resolution tomograph, PCR-I.

  18. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a plan to build a prototype small stroke, high precision deformable mirror suitable for space-based operation in systems for high-resolution...

  19. High-Resolution Data for a Low-Resolution World

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Brendan Williams [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-10

    In the past 15 years, the upper section of Cañon de Valle has been severely altered by wildfires and subsequent runoff events. Loss of root structures on high-angle slopes results in debris flow and sediment accumulation in the narrow canyon bottom. The original intent of the study described here was to better understand the changes occurring in watershed soil elevations over the course of several post-fire years. An elevation dataset from 5 years post-Cerro Grande fire was compared to high-resolution LiDAR data from 14 years post-Cerro Grande fire (also 3 years post-Las Conchas fire). The following analysis was motivated by a problematic comparison of these datasets of unlike resolution, and therefore focuses on what the data reveals of itself. The objective of this study is to highlight the effects vegetation can have on remote sensing data that intends to read ground surface elevation.

  20. Potential High Resolution Dosimeters For MRT

    Science.gov (United States)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron

  1. High resolution studies of massive primordial haloes

    CERN Document Server

    Latif, M A; Schmidt, W; Niemeyer, J

    2012-01-01

    Atomic cooling haloes with T_vir > 10^4 K are the most plausible sites for the formation of the first galaxies. In this article, we aim to study the implications of gravity driven turbulence in protogalactic haloes. By varying the resolution per Jeans length, we explore whether the turbulent cascade is resolved well enough to obtain converged results. We have performed high resolution cosmological simulations using the adaptive mesh refinement code Enzo including a subgrid-scale turbulence model to study the role of unresolved turbulence. We compared the results of three different Jeans resolutions from 16 to 64 cells. While radially averaged profiles roughly agree at different resolutions, differences in the morphology reveal that even the highest resolution employed provides no convergence. Moreover, taking into account unresolved turbulence significantly influences the morphology of a halo. We have quantified the properties of the high-density clumps in the halo. These clumps are gravitationally unbound wi...

  2. High volume data storage architecture analysis

    Science.gov (United States)

    Malik, James M.

    1990-01-01

    A High Volume Data Storage Architecture Analysis was conducted. The results, presented in this report, will be applied to problems of high volume data requirements such as those anticipated for the Space Station Control Center. High volume data storage systems at several different sites were analyzed for archive capacity, storage hierarchy and migration philosophy, and retrieval capabilities. Proposed architectures were solicited from the sites selected for in-depth analysis. Model architectures for a hypothetical data archiving system, for a high speed file server, and for high volume data storage are attached.

  3. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal we describe a plan to build a deformable mirror suitable for space-based operation in systems for high-resolution imaging. The prototype DM will be...

  4. High range resolution micro-Doppler analysis

    Science.gov (United States)

    Cammenga, Zachary A.; Smith, Graeme E.; Baker, Christopher J.

    2015-05-01

    This paper addresses use of the micro-Doppler effect and the use of high range-resolution profiles to observe complex targets in complex target scenes. The combination of micro-Doppler and high range-resolution provides the ability to separate the motion of complex targets from one another. This ability leads to the differentiation of targets based on their micro-Doppler signatures. Without the high-range resolution, this would not be possible because the individual signatures would not be separable. This paper also addresses the use of the micro-Doppler information and high range-resolution profiles to generate an approximation of the scattering properties of a complex target. This approximation gives insight into the structure of the complex target and, critically, is created without using a pre-determined target model.

  5. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  6. Using high-resolution displays for high-resolution cardiac data.

    Science.gov (United States)

    Goodyer, Christopher; Hodrien, John; Wood, Jason; Kohl, Peter; Brodlie, Ken

    2009-07-13

    The ability to perform fast, accurate, high-resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to visualization must evolve. In this paper, we address the interactive display of data from high-resolution magnetic resonance imaging scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled liquid crystal display panel display wall and associated software, which provides an interactive and intuitive user interface. The oView software is an OpenGL application that is written for the VR Juggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at the universities of both Leeds and Oxford. We discuss important factors to be considered for interactive two-dimensional display of large three-dimensional datasets, including the use of intuitive input devices and level of detail aspects.

  7. High resolution SAR applications and instrument design

    Science.gov (United States)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  8. The Impact of Horizontal and Temporal Resolution on Convection and Precipitation with High-Resolution GEOS-5

    Science.gov (United States)

    Putman, William P.

    2012-01-01

    Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.

  9. High-resolution absorption measurements of NH3 at high temperatures: 500–2100cm−1

    DEFF Research Database (Denmark)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2015-01-01

    High-resolution absorption spectra of NH3 in the region 500–2100 cm -1 at temperatures up to1027 1C and approximately atmospheric pressure (1013±20 mbar) are measured. NH3 concentrations of 1000 ppm,0.5% and 1% in volume fraction were used in the measurements. Spectra are recorded in high...... temperature gas flow cells using a FourierTransform Infrared (FTIR) spectrometer at a nominal resolution of 0.09cm-1. Measurements at 22.7 °C are compared to high-resolution cross sections available from thePacific Northwest National Laboratory (PNNL). The higher temperature spectra are analysed by comparison...

  10. 4MOST: the high-resolution spectrograph

    Science.gov (United States)

    Seifert, W.; Xu, W.; Buschkamp, P.; Feiz, C.; Saviauk, A.; Barden, S.; Quirrenbach, A.; Mandel, H.

    2016-08-01

    4MOST (4-meter Multi-Object Spectroscopic Telescope) is a wide-field, fiber-feed, high-multiplex spectroscopic survey facility to be installed on the 4-meter ESO telescope VISTA in Chile. It consists of two identical low resolution spectrographs and one high resolution spectrograph. The instrument is presently in the preliminary design phase and expected to get operational end of 2022. The high resolution spectrograph will afford simultaneous observations of up to 812 targets - over a hexagonal field of view of 4.1 sq.degrees on sky - with a spectral resolution R>18,000 covering a wavelength range from 393 to 679nm in three channels. In this paper we present the optical and mechanical design of the high resolution spectrograph (HRS) as prepared for the review at ESO, Garching. The expected performance including the highly multiplexed fiber slit concept is simulated and its impact on the optical performance given. We show the thermal and finite element analyses and the resulting stability of the spectrograph under operational conditions.

  11. High-resolution DEM Effects on Geophysical Flow Models

    Science.gov (United States)

    Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.

    2014-12-01

    Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be

  12. High-Resolution PET Detector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  13. A High Resolution Scale-of-four

    Science.gov (United States)

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  14. Single shot high resolution digital holography.

    Science.gov (United States)

    Khare, Kedar; Ali, P T Samsheer; Joseph, Joby

    2013-02-11

    We demonstrate a novel computational method for high resolution image recovery from a single digital hologram frame. The complex object field is obtained from the recorded hologram by solving a constrained optimization problem. This approach which is unlike the physical hologram replay process is shown to provide high quality image recovery even when the dc and the cross terms in the hologram overlap in the Fourier domain. Experimental results are shown for a Fresnel zone hologram of a resolution chart, intentionally recorded with a small off-axis reference beam angle. Excellent image recovery is observed without the presence of dc or twin image terms and with minimal speckle noise.

  15. Customized MFM probes with high lateral resolution

    Directory of Open Access Journals (Sweden)

    Óscar Iglesias-Freire

    2016-07-01

    Full Text Available Magnetic force microscopy (MFM is a widely used technique for magnetic imaging. Besides its advantages such as the high spatial resolution and the easy use in the characterization of relevant applied materials, the main handicaps of the technique are the lack of control over the tip stray field and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm topographic (magnetic lateral resolution by following an easy and quick low-cost approach. This allows one to not only customize the tip stray field, avoiding tip-induced changes in the sample magnetization, but also to optimize MFM imaging in vacuum (or liquid media by choosing tips mounted on hard (or soft cantilevers, a technology that is currently not available on the market.

  16. High-resolution electrohydrodynamic jet printing

    Science.gov (United States)

    Park, Jang-Ung; Hardy, Matt; Kang, Seong Jun; Barton, Kira; Adair, Kurt; Mukhopadhyay, Deep Kishore; Lee, Chang Young; Strano, Michael S.; Alleyne, Andrew G.; Georgiadis, John G.; Ferreira, Placid M.; Rogers, John A.

    2007-10-01

    Efforts to adapt and extend graphic arts printing techniques for demanding device applications in electronics, biotechnology and microelectromechanical systems have grown rapidly in recent years. Here, we describe the use of electrohydrodynamically induced fluid flows through fine microcapillary nozzles for jet printing of patterns and functional devices with submicrometre resolution. Key aspects of the physics of this approach, which has some features in common with related but comparatively low-resolution techniques for graphic arts, are revealed through direct high-speed imaging of the droplet formation processes. Printing of complex patterns of inks, ranging from insulating and conducting polymers, to solution suspensions of silicon nanoparticles and rods, to single-walled carbon nanotubes, using integrated computer-controlled printer systems illustrates some of the capabilities. High-resolution printed metal interconnects, electrodes and probing pads for representative circuit patterns and functional transistors with critical dimensions as small as 1μm demonstrate potential applications in printed electronics.

  17. Smartphone microendoscopy for high resolution fluorescence imaging

    CERN Document Server

    Hong, Xiangqian; Mugler, Dale H; Yu, Bing

    2016-01-01

    High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the gastrointestinal tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this letter we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 {\\mu}m. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle income countries.

  18. The future of high resolution electron microscopy

    Institute of Scientific and Technical Information of China (English)

    D Van Dyck

    2000-01-01

    The state of the art and the future in quantitative high resolution electron microscopy are discussed in the framework of parameter estimation. Reconstruction methods are then to be considered as direct methods to yield a starting structure for further refinement. With the increasing flexibility of the instruments, computer aided experimental strategy will become important.

  19. High resolution spectroscopy of planet bearing stars

    Directory of Open Access Journals (Sweden)

    M. C. Gálvez

    2007-01-01

    Full Text Available We present here the first steps of an extended spectroscopic survey in order to characterize the stellar hosts of extra-solar planets. We have selected several known stars with plan- ets and using high resolution spectroscopy, we have studied their properties.

  20. High-resolution seismic profiling on water

    OpenAIRE

    McGee, T.M.

    2000-01-01

    Herein is presented an overview of high-resolution seismic profiling on water. Included are basic concepts and terminology as well as discussions of types of sources and receivers, field practice, data recording and data processing. Emphasis is on digital single-channel profiling for engineering and environmental purposes.

  1. Compact high-resolution spectral phase shaper

    NARCIS (Netherlands)

    Postma, S.; Walle, van der P.; Offerhaus, H.L.; Hulst, van N.F.

    2005-01-01

    The design and operation of a high-resolution spectral phase shaper with a footprint of only 7×10 cm2 is presented. The liquid-crystal modulator has 4096 elements. More than 600 independent degrees of freedom can be positioned with a relative accuracy of 1 pixel. The spectral shaping of pulses fro

  2. A High-Resolution Stopwatch for Cents

    Science.gov (United States)

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  3. Compressive sensing for high resolution radar imaging

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Hoogeboom, P.

    2010-01-01

    In this paper we present some preliminary results on the application of Compressive Sensing (CS) to high resolution radar imaging. CS is a recently developed theory which allows reconstruction of sparse signals with a number of measurements much lower than what is required by the Shannon sampling th

  4. High Production Volume Information System (HPVIS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The High Production Volume Information System (HPVIS) provides access to select health and environmental effect information on chemicals that are manufactured in...

  5. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Stanford, S.; Wright, E.

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  6. High-resolution traction force microscopy.

    Science.gov (United States)

    Plotnikov, Sergey V; Sabass, Benedikt; Schwarz, Ulrich S; Waterman, Clare M

    2014-01-01

    Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental technique to visualize nanonewton forces at submicrometer spatial resolution. Here, we provide detailed protocols for measuring cellular forces exerted on two-dimensional elastic substrates with a high-resolution traction force microscopy (TFM) method. We describe fabrication of polyacrylamide substrates labeled with multiple colors of fiducial markers, functionalization of the substrates with ECM proteins, setting up the experiment, and imaging procedures. In addition, we provide the theoretical background of traction reconstruction and experimental considerations important to design a high-resolution TFM experiment. We describe the implementation of a new algorithm for processing of images of fiducial markers that are taken below the surface of the substrate, which significantly improves data quality. We demonstrate the application of the algorithm and explain how to choose a regularization parameter for suppression of the measurement error. A brief discussion of different ways to visualize and analyze the results serves to illustrate possible uses of high-resolution TFM in biomedical research. © 2014 Elsevier Inc. All rights reserved.

  7. Development of a high resolution and high dispersion Thomson parabola.

    Science.gov (United States)

    Jung, D; Hörlein, R; Kiefer, D; Letzring, S; Gautier, D C; Schramm, U; Hübsch, C; Öhm, R; Albright, B J; Fernandez, J C; Habs, D; Hegelich, B M

    2011-01-01

    Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE∕E parabola for ion energies of more than 30 MeV/nucleon.

  8. High resolution 3D nonlinear integrated inversion

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Wang Xuben; Li Zhirong; Li Qiong; Li Zhengwen

    2009-01-01

    The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.

  9. Progress toward high resolution EUV spectroscopy

    Science.gov (United States)

    Korendyke, C.; Doschek, G. A.; Warren, H.; Young, P. R.; Chua, D.; Hassler, D. M.; Landi, E.; Davila, J. M.; Klimchuck, J.; Tun, S.; DeForest, C.; Mariska, J. T.; Solar C Spectroscopy Working Group; LEMUR; EUVST Development Team

    2013-07-01

    HIgh resolution EUV spectroscopy is a critical instrumental technique to understand fundamental physical processes in the high temperature solar atmosphere. Spectroscopic observations are used to measure differential emission measure, line of sight and turbulent flows, plasma densities and emission measures. Spatially resolved, spectra of these emission lines with adequate cadence will provide the necessary clues linking small scale structures with large scale, energetic solar phenomena. The necessary observations to determine underlying physical processes and to provide comprehensive temperature coverage of the solar atmosphere above the chromosphere will be obtained by the proposed EUVST instrument for Solar C. This instrument and its design will be discussed in this paper. Progress on the VEry high Resolution Imaging Spectrograph (VERIS) sounding rocket instrument presently under development at the Naval Research Laboratory will also be discussed.

  10. Superconducting High Resolution Fast-Neutron Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hau, Ionel Dragos [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  11. High-Resolution US of Rheumatologic Diseases.

    Science.gov (United States)

    Taljanovic, Mihra S; Melville, David M; Gimber, Lana H; Scalcione, Luke R; Miller, Margaret D; Kwoh, C Kent; Klauser, Andrea S

    2015-01-01

    For the past 15 years, high-resolution ultrasonography (US) is being routinely and increasingly used for initial evaluation and treatment follow-up of rheumatologic diseases. This imaging technique is performed by using high-frequency linear transducers and has proved to be a powerful diagnostic tool in evaluation of articular erosions, simple and complex joint and bursal effusions, tendon sheath effusions, and synovitis, with results comparable to those of magnetic resonance imaging, excluding detection of bone marrow edema. Crystal deposition diseases including gouty arthropathy and calcium pyrophosphate deposition disease (CPPD) have characteristic appearances at US, enabling differentiation between these two diseases and from inflammatory arthropathies. Enthesopathy, which frequently accompanies psoriatic and reactive arthritis, also has a characteristic appearance at high-resolution US, distinguishing these two entities from other inflammatory and metabolic arthropathies. The presence of Doppler signal in examined joints, bursae, and tendon sheaths indicates active synovitis. Microbubble echo contrast agents augment detection of tissue vascularity and may act in the future as a drug delivery vehicle. Frequently, joint, tendon sheath, and bursal fluid aspirations and therapeutic injections are performed under US guidance. The authors describe the high-resolution US technique including gray-scale, color or power Doppler, and contrast agent-enhanced US that is used in evaluation of rheumatologic diseases of the wrist and hand and the ankle and foot in their routine clinical practice. This article demonstrates imaging findings of normal joints, rheumatoid arthritis, gouty arthritis, CPPD, psoriatic and reactive arthritis, and osteoarthritis.

  12. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M.

    2005-05-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  13. High-resolution flurescence spectroscopy in immunoanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Grubor, Nenad M. [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  14. High-resolution TOF with RPCs

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, P. E-mail: fonte@lipc.fis.uc.pt; Peskov, V

    2002-01-21

    In this work, we describe some recent results concerning the application of Resistive Plate Chambers operated in avalanche mode at atmospheric pressure for high-resolution time-of-flight measurements. A combination of multiple, mechanically accurate, thin gas gaps and state-of-the-art electronics yielded an overall (detector plus electronics) timing accuracy better than 50 ps {sigma} with a detection efficiency up to 99% for MIPs. Single gap chambers were also tested in order to clarify experimentally several aspects of the mode of operation of these detectors. These results open perspectives of affordable and reliable high granularity large area TOF detectors, with an efficiency and time resolution comparable to the existing scintillator-based TOF technology but with a significantly, up to an order of magnitude, lower price per channel.

  15. Monomer consumption in MAGIC-type polymer gels in the Bragg-peak of proton beams observed by volume selective 1H MR-spectroscopy (MRS): proof of principle for high resolution MRS-methodology with a sensitive rf-detector

    Science.gov (United States)

    Schmid, A. I.; Laistler, E.; Sieg, J.; Dymerska, B.; Wieland, M.; Naumann, J.; Jaekel, O.; Berg, A.

    2013-06-01

    Mono-energetic proton and heavy ion beams for tumour therapy feature high dose gradients laterally and at its penetration depth, characterized by the Bragg-peak. The 3-dimensional dosimetry of such Hadron particle beams poses high demands on the spatial resolution of the imaging methodology and linearity of the polymer gel dose response in a wide dose range and at high linear energy transfer (LET). In almost all polymer gels the Bragg-peak dose response is therefore quenched. Volume selective MR-spectroscopy is in principle capable of delivering information on the polymerization process. We here present the MR-methodology to obtain MR-spectroscopic (MRS) data on the monomer consumption at the very small voxel volumes necessary for resolving e.g. the Bragg-peak area. Using additional hardware components, i.e. a strong gradient system and a very sensitive rf-detector at a high field human 7T scanner, MR-microimaging and MRS with 600 μm depth resolution can be implemented at very short measurement time. The vinyl groups of methacrylic acid in a MAGIC-type polymer gel can be resolved by volume selective MRS. The complete monomer consumption in the Bragg-peak due to polymerization is demonstrated selectively in the Bragg-peak indicating one main reason for Bragg-peak quenching in the investigated polymer gel.

  16. Structural High-resolution Satellite Image Indexing

    OpenAIRE

    Xia, Gui-Song; YANG, WEN; Delon, Julie; Gousseau, Yann; Sun, Hong; Maître, Henri

    2010-01-01

    International audience; Satellite images with high spatial resolution raise many challenging issues in image understanding and pattern recognition. First, they allow measurement of small objects maybe up to 0.5 m, and both texture and geometrical structures emerge simultaneously. Second, objects in the same type of scenes might appear at different scales and orientations. Consequently, image indexing methods should combine the structure and texture information of images and comply with some i...

  17. Stellar Tools for High Resolution Population Synthesis

    Science.gov (United States)

    Chávez, M.; Bertone, E.; Rodríguez-Merino, L.; Buzzoni, A.

    2005-12-01

    We present preliminary results of the application of a new stellar library of high-resolution synthetic spectra (based upon ATLAS9 and SYNTHE codes developed by R. L. Kurucz) in the calculation of the ultraviolet-optical spectral energy distribution of simple stellar populations (SSPs). For this purpose, the library has been coupled with Buzzoni's population synthesis code. Part of this paper is also devoted to illustrate quantitatively the extent to which synthetic stellar libraries represent real stars.

  18. Petrous apex mucocele: high resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Memis, A. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Memis, A. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Alper, H. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Calli, C. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Ozer, H. [Dept. of Radiology, Hospital of Ege Univ., Bornova, Izmir (Turkey); Ozdamar, N. [Dept. of Neurosurgery, Hospital of Ege Univ., Bornova, Izmir (Turkey)

    1994-11-01

    Mucocele of the petrous apex is very rare, only three cases having been reported. Since this area is inaccessible to direct examination, imaging, preferably high resolution computed tomography (HR CT) is essential. We report a case showing an eroding, non enhancing mass with sharp, lobulated contours, within the petrous apex. The presence of a large air cell on the opposite side suggested a mucocele. (orig.)

  19. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  20. High Speed and High Resolution Table-Top Nanoscale Imaging

    CERN Document Server

    Tadesse, G K; Demmler, S; HÄdrich, S; Wahyutama, I; Steinert, M; Spielmann, C; ZÜrch, M; TÜnnermann, A; Limpert, J; Rothhardt, J

    2016-01-01

    We present a table-top coherent diffraction imaging (CDI) experiment based on high-order harmonics generated at 18 nm by a high average power femtosecond fiber laser system. The high photon flux, narrow spectral bandwidth and high degree of spatial coherence allow for ultra-high sub-wavelength resolution imaging at a high numerical aperture. Our experiments demonstrate a half-pitch resolution of 13.6 nm, very close to the actual Abbe-limit of 12.4 nm, which is the highest resolution achieved from any table-top XUV or X-ray microscope. In addition, 20.5 nm resolution was achieved with only 3 sec of integration time bringing live diffraction imaging and 3D tomography on the nanoscale one step closer to reality. The current resolution is solely limited by the wavelength and the detector size. Thus, table-top nanoscopes with only a few-nm resolutions are in reach and will find applications in many areas of science and technology.

  1. High Sensitivity, High Frequency and High Time Resolution Decimetric Spectroscope

    Science.gov (United States)

    Sawant, H. S.; Rosa, R. R.

    1990-11-01

    RESUMEN. Se ha desarrollado el primer espectroscopio decimetrico latino americano operando en una banda de 100 MHz con alta resoluci6n de fre- cuencia (100 KHz) y tiempo (10 ms), alrededor de cualquier centro de frecuencia en el intervalo de 2000-200 MHz. El prop6sito de esta nota es describir investigaciones solares y no solares que se planean, progra ma de investigaci6n y la situaci6n actual de desarrollo de este espectroscopio. ABSTRACT. First Latin American Decimetric Spectroscope operating over a band of 100 MHz with high resolution in frequency (100 KHz) and time (10 ms), around any center frequency in the range of 2000-200 MHz is being developed. The purpose of this note is to describe planned solar, and non-solar, research programmes and present status of development of this spectroscope. Keq wo : INSTRUMENTS - SPECTROSCOPY

  2. MANAGING HIGH-END, HIGH-VOLUME INNOVATIVE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Gembong Baskoro

    2008-01-01

    Full Text Available This paper discuses the concept of managing high-end, high-volume innovative products. High-end, high-volume consumer products are products that have considerable influence to the way of life. Characteristic of High-end, high-volume consumer products are (1 short cycle time, (2 quick obsolete time, and (3 rapid price erosion. Beside the disadvantages that they are high risk for manufacturers, if manufacturers are able to understand precisely the consumer needs then they have the potential benefit or success to be the market leader. High innovation implies to high utilization of the user, therefore these products can influence indirectly to the way of people life. The objective of managing them is to achieve sustainability of the products development and innovation. This paper observes the behavior of these products in companies operated in high-end, high-volume consumer product.

  3. High Resolution Measurement of the Glycolytic Rate

    Science.gov (United States)

    Bittner, Carla X.; Loaiza, Anitsi; Ruminot, Iván; Larenas, Valeria; Sotelo-Hitschfeld, Tamara; Gutiérrez, Robin; Córdova, Alex; Valdebenito, Rocío; Frommer, Wolf B.; Barros, L. Felipe

    2010-01-01

    The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis. PMID:20890447

  4. High resolution measurement of the glycolytic rate

    Directory of Open Access Journals (Sweden)

    Carla X Bittner

    2010-09-01

    Full Text Available The glycolytic rate is sensitive to physiological activity, hormones, stress, aging and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently-developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.

  5. CAIPIRINHA-Dixon-TWIST (CDT)-volume-interpolated breath-hold examination (VIBE): a new technique for fast time-resolved dynamic 3-dimensional imaging of the abdomen with high spatial resolution.

    Science.gov (United States)

    Michaely, Henrik J; Morelli, John N; Budjan, Johannes; Riffel, Philipp; Nickel, Dominik; Kroeker, Randall; Schoenberg, Stefan O; Attenberger, Ulrike I

    2013-08-01

    The purpose of this study was to assess the feasibility and image quality of a novel, highly accelerated T1-weighted sequence for time-resolved imaging of the abdomen during the first pass of contrast media transit using controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) under sampling, view-sharing techniques, and Dixon water-fat separation (CAIPRINHA-Dixon-time-resolved imaging with interleaved stochastic trajectories-volumetric interpolated breath-hold examination [CDT-VIBE]). In this retrospective, institutional review board-approved study, 47 patients (median age, 62 years; 25 men, 22 women) scanned on a 3.0-T magnetic resonance system (Skyra; Siemens) were included. The CDT-VIBE (repetition time/echo time1/echo time2, 4.1/1.33/2.56 milliseconds; acquisition time, 29 seconds) was used in place of the standard arterial phase acquisition and started 15 seconds after the injection of 0.1 mmol/kg Gd-DOTA (Dotarem, Guerbet). Within 29 seconds, 14 high spatial resolution (1.2 × 1.2 × 3 mm) 3-dimensional data sets were acquired and reconstructed using view sharing (temporal resolution, 2.1 seconds). The CDT-VIBE images were evaluated independently by 2 blinded, experienced radiologists with regard to image quality and the number of hepatic arterial-dominant phases present on an ordinal 5-point scale (5, excellent; 1, nondiagnostic). Added diagnostic information with CDT-VIBE relative to portal venous phase VIBE was assessed. In all patients, CDT-VIBE measurements were successfully acquired. The image quality was diagnostic in 46 of the 47 patients. Both readers assessed the highest image quality present in the data sets with a median score of 4 (range, 3-5 for both readers; κ, 0.789) and the worst image quality with a median score of 3 (range, 1-4 for both readers; κ, 0.689). With a range between 1 and 8 (median, 5), hepatic arterial-dominant data sets (of the 14 acquired) were obtained in each case. There was an added diagnostic

  6. SPIRAL2/DESIR high resolution mass separator

    Energy Technology Data Exchange (ETDEWEB)

    Kurtukian-Nieto, T., E-mail: kurtukia@cenbg.in2p3.fr [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver B.C., V6T 2A3 (Canada); Blank, B.; Chiron, T. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Davids, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Delalee, F. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Duval, M. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); El Abbeir, S.; Fournier, A. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Lunney, D. [CSNSM-IN2P3-CNRS, Université de Paris Sud, F-91405 Orsay (France); Méot, F. [BNL, Upton, Long Island, New York (United States); Serani, L. [Centre d’Études Nucléaires de Bordeaux Gradignan, Université Bordeaux 1-CNRS/IN2P3, BP 120, F-33175 Gradignan Cedex (France); Stodel, M.-H.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); and others

    2013-12-15

    DESIR is the low-energy part of the SPIRAL2 ISOL facility under construction at GANIL. DESIR includes a high-resolution mass separator (HRS) with a designed resolving power m/Δm of 31,000 for a 1 π-mm-mrad beam emittance, obtained using a high-intensity beam cooling device. The proposed design consists of two 90-degree magnetic dipoles, complemented by electrostatic quadrupoles, sextupoles, and a multipole, arranged in a symmetric configuration to minimize aberrations. A detailed description of the design and results of extensive simulations are given.

  7. Moderate resolution spectrophotometry of high redshift quasars

    Science.gov (United States)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  8. Radiation length imaging with high resolution telescopes

    CERN Document Server

    Stolzenberg, U; Schwenker, B; Wieduwilt, P; Marinas, C; Lütticke, F

    2016-01-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the $X$/$X_0$ imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of $X$/$X_0$ imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of ...

  9. High Resolution Bathymetry Estimation Improvement with Single ImageSuper Resolution Algorithm Super Resolution Forests

    Science.gov (United States)

    2017-01-26

    process of the SRF algorithm, we were able to further increase the mean PSNR score of the high resolution estimated data from previously used bicubic...This meant that implementing the edited variance before the bicubic estimates were created caused the mean PSNR to increase the most, and all...interpolation (by about 1 dB). Figure 7: PSNR comparison (with mean scores) between Bicubic Interpolation and SRF Figure 7 shows the comparison between

  10. High-time Resolution Astrophysics and Pulsars

    CERN Document Server

    Shearer, Andy

    2008-01-01

    The discovery of pulsars in 1968 heralded an era where the temporal characteristics of detectors had to be reassessed. Up to this point detector integration times would normally be measured in minutes rather seconds and definitely not on sub-second time scales. At the start of the 21st century pulsar observations are still pushing the limits of detector telescope capabilities. Flux variations on times scales less than 1 nsec have been observed during giant radio pulses. Pulsar studies over the next 10 to 20 years will require instruments with time resolutions down to microseconds and below, high-quantum quantum efficiency, reasonable energy resolution and sensitive to circular and linear polarisation of stochastic signals. This chapter is review of temporally resolved optical observations of pulsars. It concludes with estimates of the observability of pulsars with both existing telescopes and into the ELT era.

  11. Novel high-resolution VGA QWIP detector

    Science.gov (United States)

    Kataria, H.; Asplund, C.; Lindberg, A.; Smuk, S.; Alverbro, J.; Evans, D.; Sehlin, S.; Becanovic, S.; Tinghag, P.; Höglund, L.; Sjöström, F.; Costard, E.

    2017-02-01

    Continuing with its legacy of producing high performance infrared detectors, IRnova introduces its high resolution LWIR IDDCA (Integrated Detector Dewar Cooler assembly) based on QWIP (quantum well infrared photodetector) technology. The Focal Plane Array (FPA) has 640×512 pixels, with small (15μm) pixel pitch, and is based on the FLIRIndigo ISC0403 Readout Integrated Circuit (ROIC). The QWIP epitaxial structures are grown by metal-organic vapor phase epitaxy (MOVPE) at IRnova. Detector stability and response uniformity inherent to III/V based material will be demonstrated in terms of high performing detectors. Results showing low NETD at high frame rate will be presented. This makes it one of the first 15μm pitch QWIP based LWIR IDDCA commercially available on the market. High operability and stability of our other QWIP based products will also be shared.

  12. Large-Scale Multi-Resolution Representations for Accurate Interactive Image and Volume Operations

    KAUST Repository

    Sicat, Ronell B.

    2015-11-25

    The resolutions of acquired image and volume data are ever increasing. However, the resolutions of commodity display devices remain limited. This leads to an increasing gap between data and display resolutions. To bridge this gap, the standard approach is to employ output-sensitive operations on multi-resolution data representations. Output-sensitive operations facilitate interactive applications since their required computations are proportional only to the size of the data that is visible, i.e., the output, and not the full size of the input. Multi-resolution representations, such as image mipmaps, and volume octrees, are crucial in providing these operations direct access to any subset of the data at any resolution corresponding to the output. Despite its widespread use, this standard approach has some shortcomings in three important application areas, namely non-linear image operations, multi-resolution volume rendering, and large-scale image exploration. This dissertation presents new multi-resolution representations for large-scale images and volumes that address these shortcomings. Standard multi-resolution representations require low-pass pre-filtering for anti- aliasing. However, linear pre-filters do not commute with non-linear operations. This becomes problematic when applying non-linear operations directly to any coarse resolution levels in standard representations. Particularly, this leads to inaccurate output when applying non-linear image operations, e.g., color mapping and detail-aware filters, to multi-resolution images. Similarly, in multi-resolution volume rendering, this leads to inconsistency artifacts which manifest as erroneous differences in rendering outputs across resolution levels. To address these issues, we introduce the sparse pdf maps and sparse pdf volumes representations for large-scale images and volumes, respectively. These representations sparsely encode continuous probability density functions (pdfs) of multi-resolution pixel

  13. High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF.

    Science.gov (United States)

    Men, Zhirong; Wang, Pengbo; Li, Chunsheng; Chen, Jie; Liu, Wei; Fang, Yue

    2017-07-25

    Synthetic Aperture Radar (SAR) is a well-established and powerful imaging technique for acquiring high-spatial-resolution images of the Earth's surface. With the development of beam steering techniques, sliding spotlight and staring spotlight modes have been employed to support high-spatial-resolution applications. In addition to this strengthened high-spatial-resolution and wide-swath capability, high-temporal-resolution (short repeat-observation interval) represents a key capability for numerous applications. However, conventional SAR systems are limited in that the same patch can only be illuminated for several seconds within a single pass. This paper considers a novel high-squint-angle system intended to acquire high-spatial-resolution spaceborne SAR images with repeat-observation intervals varying from tens of seconds to several minutes within a single pass. However, an exponentially increased range cell migration would arise and lead to a conflict between the receive window and 'blind ranges'. An efficient data acquisition technique for high-temporal-resolution, high-spatial-resolution and high-squint-angle spaceborne SAR, in which the pulse repetition frequency (PRF) is continuously varied according to the changing slant range, is presented in this paper. This technique allows echo data to remain in the receive window instead of conflicting with the transmitted pulse or nadir echo. Considering the precision of hardware, a compromise and practical strategy is also proposed. Furthermore, a detailed performance analysis of range ambiguities is provided with respect to parameters of TerraSAR-X. For strong point-like targets, the range ambiguity of this technique would be better than that of uniform PRF technique. For this innovative technique, a resampling strategy and modified imaging algorithm have been developed to handle the non-uniformly sampled echo data. Simulations are performed to validate the efficiency of the proposed technique and the associated

  14. High-resolution absorption measurements of NH3 at high temperatures: 2100–5500 cm−1

    DEFF Research Database (Denmark)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2017-01-01

    High-resolution absorption spectra of NH3 in the region 2100–5500 cm−1 at 1027 °C and approximately atmospheric pressure (1045±3 mbar) are measured. An NH3 concentration of 10% in volume fraction is used in the measurements. Spectra are recorded in a high-temperature gas-flow cell using a Fourier...... Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm−1. The spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. 2308 lines have been assigned to 45 different bands, of which 1755 and 15 have been...

  15. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  16. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  17. Novel high resolution tactile robotic fingertips

    DEFF Research Database (Denmark)

    Drimus, Alin; Jankovics, Vince; Gorsic, Matija

    2014-01-01

    This paper describes a novel robotic fingertip based on piezoresistive rubber that can sense pressure tactile stimuli with a high spatial resolution over curved surfaces. The working principle is based on a three-layer sandwich structure (conductive electrodes on top and bottom and piezoresistive...... with specialized data acquisition electronics that acquire 500 frames per second provides rich information regarding contact force, shape and angle for bio- inspired robotic fingertips. Furthermore, a model of estimating the force of contact based on values of the cells is proposed....

  18. Fast Backprojection Techniques for High Resolution Tomography

    CERN Document Server

    Koshev, Nikolay; Miqueles, Eduardo X

    2016-01-01

    Fast image reconstruction techniques are becoming important with the increasing number of scientific cases in high resolution micro and nano tomography. The processing of the large scale three-dimensional data demands new mathematical tools for the tomographic reconstruction task because of the big computational complexity of most current algorithms as the sizes of tomographic data grow with the development of more powerful acquisition hardware and more refined scientific needs. In the present paper we propose a new fast back-projection operator for the processing of tomographic data and compare it against other fast reconstruction techniques.

  19. Operating mode of high pressure straws with high spatial resolution

    CERN Document Server

    Davkov, K I; Peshekhonov, V D; Cholakov, V D

    2013-01-01

    The article presents results of studying the operating mode of thin-walled drift tubes (straws) at flushing it with a high-pressure gas mixture, which allowed obtaining extremely high spatial resolution for straw detectors. The results of studying the radiation ageing of straws operating in this mode are also described.

  20. Digital interface for high-resolution displays

    Science.gov (United States)

    Hermann, David J.; Gorenflo, Ronald L.

    1999-08-01

    Commercial display interfaces are currently transitioning from analog to digital. Although this transition is in the very early stages, the military needs to begin planning their own transition to digital. There are many problems with the analog interface in high-resolution display systems that are solved by changing to a digital interface. Also, display system cost can be lower with a digital interface to a high resolution display. Battelle is under contract with DARPA to develop an advanced Display Interface (ADI) to replace the analog RGB interfaces currently used in high definition workstation displays. The goal is to create a standard digital display interface for military applications that is based on emerging commercial standards. Support for military application- specific functionality is addressed, including display test and control. The main challenges to implementing a digital display interface are described, along with approaches to address the problems. Conceptual ADI architectures are described and contrasted. The current and emerging commercial standards for digital display interfaces are reviewed in detail. Finally, the tasks required to complete the ADI effort are outlined and described.

  1. High resolution, MRI-based, segmented, computerized head phantom

    Energy Technology Data Exchange (ETDEWEB)

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.; Smith, A.L.; Krischlunas, P. [Yale Univ., New Haven, CT (United States). Dept. of Diagnostic Radiology

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 byte array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.

  2. High temporal resolution functional MRI using parallel echo volumar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F. [CEA Saclay, DSV, I2BM, Neurospin, F-91191 Gif Sur Yvette (France); Le Roux, P. [GEHC, Buc (France); Dehaine-Lambertz, G. [Unite INSERM 562, Gif Sur Yvette (France)

    2008-07-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  3. Crusta: Visualizing High-resolution Global Data

    Science.gov (United States)

    Bernardin, T. S.; Kreylos, O.; Bowles, C. J.; Cowgill, E.; Hamann, B.; Kellogg, L. H.

    2009-12-01

    Virtual globes have become indispensable tools for visualizing, understanding and presenting data from Earth and other planetary bodies. The scientific community has invested much effort into exploiting existing globes to their fullest potential by refining and adapting their capabilities to better satisfy specific needs. For example, Google Earth provides users with the ability to view hillshade images derived from airborne LiDAR data such as the 2007 Northern California GeoEarthScope data. However, because most available globes were not designed with the specific needs of geoscientists in mind, shortcomings are becoming increasingly evident in geoscience applications such as terrain visualization. In particular, earth scientists struggle to visualize digital elevation models with both high spatial resolution (0.5 - 1 square meters per sample) and large extent (>2000 square kilometers), such as those obtained with airborne LiDAR. To address the specific earth science need of real-time terrain visualization of LiDAR data, we are developing Crusta as part of a close collaboration involving earth and computer scientists. Crusta is a new virtual globe that differs from widely used globes by both providing accurate global data representation and the ability to easily visualize custom topographic and image data. As a result, Crusta enables real-time, interactive visualization of high resolution digital elevation data spanning thousands of square kilometers, such as the complete 2007 Northern California GeoEarthScope airborne LiDAR data set. To implement an accurate data representation and avoid distortion of the display at the poles, where other projections have singularities, Crusta represents the globe as a thirty-sided polyhedron. Each side of this polyhedron can be subdivided to an arbitrarily fine grid on the surface of the globe, which allows Crusta to accommodate input data of arbitrary resolution ranging from global (e.g., Blue Marble) to local (e.g., a tripod

  4. High-resolution noncontact atomic force microscopy.

    Science.gov (United States)

    Pérez, Rubén; García, Ricardo; Schwarz, Udo

    2009-07-01

    original papers authored by many of the leading groups in the field with the goal of providing a well-balanced overview on the state-of-the-art in this rapidly evolving field. These papers, many of which are based on notable presentations given during the Madrid conference, feature highlights such as (1) the development of sophisticated force spectroscopy procedures that are able to map the complete 3D tip-sample force field on different surfaces; (2) the considerable resolution improvement of Kelvin probe force microscopy (reaching, in some cases, the atomic scale), which is accompanied by a thorough, quantitative understanding of the contrast observed; (3) the perfecting of atomic resolution imaging on insulating substrates, which helps reshape our microscopic understanding of surface properties and chemical activity of these surfaces; (4) the description of instrumental and methodological developments that pave the way to the atomic-scale characterization of magnetic and electronic properties of nanostructures, and last but not least (5) the extension of dynamic imaging modes to high-resolution operation in liquids, ultimately achieving atomic resolution. The latter developments are already having a significant impact in the highly competitive field of biological imaging under physiological conditions. This special issue of Nanotechnology would not have been possible without the highly professional support from Nina Couzin, Amy Harvey, Alex Wotherspoon and the entire Nanotechnology team at IOP Publishing. We are thankful for their help in pushing this project forward. We also thank the authors who have contributed their excellent original articles to this issue, the referees whose comments have helped make the issue an accurate portrait of this rapidly moving field, and the entire NC-AFM community that continues to drive NC-AFM to new horizons.

  5. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  6. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  7. High-Resolution Scintimammography: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  8. High-resolution light microscopy of nanoforms

    Science.gov (United States)

    Vodyanoy, Vitaly; Pustovyy, Oleg; Vainrub, Arnold

    2007-09-01

    We developed a high resolution light imaging system. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects are clearly visible on a calibrated microscope test slide (Vainrub et al., Optics Letters, 2006, 31, 2855). The two-point resolution increase results from a known narrowing of the central diffraction peak for the annular aperture. Better visibility and advanced contrast of the smallest features in the image are due to enhancement of high spatial frequencies in the optical transfer function. The imaging system is portable, low energy, and battery operated. It has been adapted to use in both transmitting and reflecting light. It is particularly applicable for motile nanoform systems where structure and functions can be depicted in real time. We have isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1-2nm metallic nanoclusters containing 40-300 atoms. Proteons are capable of spontaneous assembling into higher nanoform systems assuming structure of complicated topology. The arrangement of complex proteon system mimics the structure of a small biological cell. It has structures that imitate membrane and nucleolus or nuclei. Some of these nanoforms are motile. They interact and divide. Complex nanoform systems can spontaneously reduce to simple proteons. The physical properties of these nanoforms could shed some light on the properties of early life forms or forms at extreme conditions.

  9. Design and modeling of a moderate-resolution astronomic spectrograph with volume-phase holographic gratings

    CERN Document Server

    Muslimov, Eduard R; Fabrika, Sergey N; Pavlycheva, Nadezhda K

    2016-01-01

    We present an optical design of astronomic spectrograph based on a cascade of volume-phase holographic gratings. The cascade consists of three gratings. Each of them provides moderately high spectral resolution in a narrow range of 83 nm. Thus the spectrum image represents three lines covering region 430-680 nm. Two versions of the scheme are described: a full-scale one with estimated resolving power of 5300-7900 and a small-sized one intended for creation of a lab prototype, which provides the resolving power of 1500-3000. Diffraction efficiency modeling confirms that the system throughput can reach 75 %, while stray light caused by the gratings crosstalk is negligible. We also propose a design of image slicer and focal reducer allowing to couple the instrument with the 6-m telescope. Finally, we present concept of the opto-mechanical design.

  10. Venus gravity - A high-resolution map

    Science.gov (United States)

    Reasenberg, R. D.; Goldberg, Z. M.; Macneil, P. E.; Shapiro, I. I.

    1981-01-01

    The Doppler data from the radio tracking of the Pioneer Venus Orbiter (PVO) have been used in a two-stage analysis to develop a high-resolution map of the gravitational potential of Venus, represented by a central mass and a surface mass density. The two-stage procedure invokes a Kalman filter-smoother to determine the orbit of the spacecraft, and a stabilized linear inverter to estimate the surface mass density. The resultant gravity map is highly correlated with the topographic map derived from the PVO radar altimeter data. However, the magnitudes of the gravity variations are smaller than would be expected if the topography were uncompensated, indicating that at least partial compensation has taken place.

  11. Ultra-high resolution computed tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Michael J. (Knoxville, TN); Sari-Sarraf, Hamed (Knoxville, TN); Tobin, Jr., Kenneth William (Harriman, TN); Gleason, Shaun S. (Knoxville, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  12. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  13. A prototype High Purity Germanium detector for high resolution gamma-ray spectroscopy at high count rates

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J., E-mail: rjcooper@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Amman, M.; Luke, P.N. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Vetter, K. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-09-21

    Where energy resolution is paramount, High Purity Germanium (HPGe) detectors continue to provide the optimum solution for gamma-ray detection and spectroscopy. Conventional large-volume HPGe detectors are typically limited to count rates on the order of ten thousand counts per second, however, limiting their effectiveness for high count rate applications. To address this limitation, we have developed a novel prototype HPGe detector designed to be capable of achieving fine energy resolution and high event throughput at count rates in excess of one million counts per second. We report here on the concept, design, and initial performance of the first prototype device.

  14. High-resolution colorimetric imaging of paintings

    Science.gov (United States)

    Martinez, Kirk; Cupitt, John; Saunders, David R.

    1993-05-01

    With the aim of providing a digital electronic replacement for conventional photography of paintings, a scanner has been constructed based on a 3000 X 2300 pel resolution camera which is moved precisely over a 1 meter square area. Successive patches are assembled to form a mosaic which covers the whole area at c. 20 pels/mm resolution, which is sufficient to resolve the surface textures, particularly craquelure. To provide high color accuracy, a set of seven broad-band interference filters are used to cover the visible spectrum. A calibration procedure based upon a least-mean-squares fit to the color of patches from a Macbeth Colorchecker chart yields an average color accuracy of better than 3 units in the CMC uniform color space. This work was mainly carried out as part of the VASARI project funded by the European Commission's ESPRIT program, involving companies and galleries from around Europe. The system is being used to record images for conservation research, for archival purposes and to assist in computer-aided learning in the field of art history. The paper will describe the overall system design, including the selection of the various hardware components and the design of controlling software. The theoretical basis for the color calibration methodology is described as well as the software for its practical implementation. The mosaic assembly procedure and some of the associated image processing routines developed are described. Preliminary results from the research will be presented.

  15. High resolution CT of temporal bone trauma

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Eun Kyung [Korea General Hospital, Seoul (Korea, Republic of)

    1986-10-15

    Radiographic studies of the temporal bone following head trauma are indicated when there is cerebrospinal fluid otorrhea or rhinorrhoea, hearing loss, or facial nerve paralysis. Plain radiography displays only 17-30% of temporal bone fractures and pluridirectional tomography is both difficult to perform, particularly in the acutely ill patient, and less satisfactory for the demonstration of fine fractures. Consequently, high resolution CT is the imaging method of choice for the investigation of suspected temporal bone trauma and allows special resolution of fine bony detail comparable to that attainable by conventional tomography. Eight cases of temporal bone trauma examined at Korea General Hospital April 1985 through May 1986. The results were as follows: Seven patients (87%) suffered longitudinal fractures. In 6 patients who had purely conductive hearing loss, CT revealed various ossicular chain abnormality. In one patient who had neuro sensory hearing loss, CT demonstrated intract ossicular with a fracture nearing lateral wall of the lateral semicircular canal. In one patient who had mixed hearing loss, CT showed complex fracture.

  16. High Resolution Radar Measurements of Snow Avalanches

    Science.gov (United States)

    McElwaine, Jim; Sovilla, Betty; Vriend, Nathalie; Brennan, Paul; Ash, Matt; Keylock, Chris

    2013-04-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallee de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  17. Pyramidal fractal dimension for high resolution images

    Science.gov (United States)

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024 ×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  18. Detection of proximal caries with high-resolution and standard resolution digital radiographic systems

    NARCIS (Netherlands)

    Berkhout, W.E.R.; Verheij, H.G.C.; Syriopoulos, K.; Li, G.; Sanderink, G.C.H.; van der Stelt, P.F.

    2007-01-01

    Aims: The aim of this study was to: (1) compare the diagnostic accuracy of the high-resolution and standard resolution settings of four digital imaging systems for caries diagnosis and (2) compare the effect on the diagnostic accuracy of reducing the high-resolution image sizes to the standard

  19. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  20. A new high-resolution TOF technology

    CERN Document Server

    Fonte, Paulo J R; Williams, M C S

    2000-01-01

    In the framework of the ALICE collaboration we have recently studied the performance of multigap Resistive Plate Chambers operated in avalanche mode and at atmospheric pressure for time-of-flight measurements. The detector provided an overall (detector plus electronics) timing accuracy of 120 ps sigma at an efficiency of 98% for MIPs. The chambers had 4 gas gaps of 0.3 mm, each limited by a metallised ceramic plate and a glass plate, with an active dimension of 4'4cm2. The gas mixture contained C2H2F4+5%isobutane+10%SF6. A few percent of streamer discharges, each releasing about 20 pC, was tolerated without any noticeable inconvenience. This detector opens perspectives of affordable and reliable high granularity large area TOF detectors, with an efficiency and a time resolution comparable to existing scintillator-based TOF technology but with significantly, up to an order of magnitude, lower price per channel.

  1. Speleothems as high-resolution paleoflood archives

    Science.gov (United States)

    Denniston, Rhawn F.; Luetscher, Marc

    2017-08-01

    Over the last two decades, speleothems have become widely utilized records of past environmental variability, typically through their stable isotopic and trace elemental chemistry. Numerous speleothem researchers have identified evidence of flooding recorded by detrital layers trapped within speleothems, but few studies have developed paleoflood reconstructions from such samples. Because they can be precisely dated, are generally immune to post-depositional distortion or erosion, and can be tied to a fixed elevational baseline, speleothems hold enormous potential as high-resolution archives of cave floods, and thus as proxies for extreme rainfall or other hydrologic drivers of cave flooding. Here we review speleothem-based paleoflood reconstruction methods, identify potential biases and pitfalls, and suggest standard practices for future studies.

  2. High-resolution CT of otosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Dewen, Yang; Kodama, Takao; Tono, Tetsuya; Ochiai, Reiji; Kiyomizu, Kensuke; Suzuki, Yukiko; Yano, Takanori; Watanabe, Katsushi [Miyazaki Medical Coll., Kiyotake (Japan)

    1997-11-01

    High-resolution CT (HRCT) scans of thirty-two patients (60 ears) with the clinical diagnosis of fenestral otosclerosis were evaluated retrospectively. HRCT was performed with 1-mm-thick targeted sections and 1-mm (36 ears) or 0.5-mm (10 ears) intervals in the semiaxial projection. Seven patients (14 ears) underwent helical scanning with a 1-mm slice thickness and 1-mm/sec table speed. Forty-five ears (75%) were found to have one or more otospongiotic or otosclerotic foci on HRCT. In most instances (30 ears), the otospongiotic foci were found in the region of the fissula ante fenestram. No significant correlations between CT findings and air conduction threshold were observed. We found a significant relationship between lesions of the labyrinthine capsule and sensorineural hearing loss. We conclude that HRCT is a valuable modality for diagnosing otosclerosis, especially when otospongiotic focus is detected. (author)

  3. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  4. GRANULOMETRIC MAPS FROM HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    Catherine Mering

    2011-05-01

    Full Text Available A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every pixel of the image according to the granulometric density inside a sliding neighbourhood. Granulometric mapping brings some advantages over traditional thematic mapping by remote sensing by focusing on fine spatial events and small changes in one peculiar category of the landscape.

  5. High resolution CT of Meckel's cave.

    Science.gov (United States)

    Chui, M; Tucker, W; Hudson, A; Bayer, N

    1985-01-01

    High resolution CT of the parasellar region was carried out in 50 patients studied for suspected pituitary microadenoma, but who showed normal pituitary gland or microadenoma on CT. This control group of patients all showed an ellipsoid low-density area in the posterior parasellar region. Knowledge of the gross anatomy and correlation with metrizamide cisternography suggest that the low density region represents Meckel's cave, rather than just the trigeminal ganglion alone. Though there is considerable variation in the size of Meckel's cave in different patients as well as the two sides of the same patient, the rather constant ellipsoid configuration of the cave in normal subjects will aid in diagnosing small pathological lesions, thereby obviating more invasive cisternography via the transovale or lumbar route. Patients with "idiopathic" tic douloureux do not show a Meckel's cave significantly different from the control group.

  6. Georadar - high resolution geophysical electromagnetic device

    Directory of Open Access Journals (Sweden)

    Janez Stern

    1995-12-01

    Full Text Available Georadar is a high resolution geophysical electromagnetic device that was developed in the first part of the 1980's. In Slovenia it was first tested in 1991 on several objects of economicgeological, geotechnical and hydrogeologic nature.Here its usefulness in karst studied is presented. The first part of the paper deals with description of measurement procedure and methodological bases, and the second part with experience and results of case histories. Shown are radargrams from ornamental stone quarry Hotavlje, calcite mine Stahovica, Golobja jama karstcave near Divača and from highway construction site Razdrto-Čebulovica. All measurements were performed with the georadar instrument Pulse EKKO IV with a lOOMHz antenna according to the method of reflection profiling.

  7. High-Resolution Movement EEG Classification

    Directory of Open Access Journals (Sweden)

    Jakub Štastný

    2007-01-01

    Full Text Available The aim of the contribution is to analyze possibilities of high-resolution movement classification using human EEG. For this purpose, a database of the EEG recorded during right-thumb and little-finger fast flexion movements of the experimental subjects was created. The statistical analysis of the EEG was done on the subject's basis instead of the commonly used grand averaging. Statistically significant differences between the EEG accompanying movements of both fingers were found, extending the results of other so far published works. The classifier based on hidden Markov models was able to distinguish between movement and resting states (classification score of 94–100%, but it was unable to recognize the type of the movement. This is caused by the large fraction of other (nonmovement related EEG activities in the recorded signals. A classification method based on advanced EEG signal denoising is being currently developed to overcome this problem.

  8. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    Science.gov (United States)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  9. High-resolution transcriptome of human macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Beyer

    Full Text Available Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like and alternative (M2-like polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7 as well as M2-associated (CD1a, CD1b, CD93, CD226 cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.

  10. Partial volume correction using structural-functional synergistic resolution recovery: comparison with geometric transfer matrix method.

    Science.gov (United States)

    Kim, Euitae; Shidahara, Miho; Tsoumpas, Charalampos; McGinnity, Colm J; Kwon, Jun Soo; Howes, Oliver D; Turkheimer, Federico E

    2013-06-01

    We validated the use of a novel image-based method for partial volume correction (PVC), structural-functional synergistic resolution recovery (SFS-RR) for the accurate quantification of dopamine synthesis capacity measured using [(18)F]DOPA positron emission tomography. The bias and reliability of SFS-RR were compared with the geometric transfer matrix (GTM) method. Both methodologies were applied to the parametric maps of [(18)F]DOPA utilization rates (ki(cer)). Validation was first performed by measuring repeatability on test-retest scans. The precision of the methodologies instead was quantified using simulated [(18)F]DOPA images. The sensitivity to the misspecification of the full-width-half-maximum (FWHM) of the scanner point-spread-function on both approaches was also assessed. In the in-vivo data, the ki(cer) was significantly increased by application of both PVC procedures while the reliability remained high (intraclass correlation coefficients >0.85). The variability was not significantly affected by either PVC approach (<10% variability in both cases). The corrected ki(cer) was significantly influenced by the FWHM applied in both the acquired and simulated data. This study shows that SFS-RR can effectively correct for partial volume effects to a comparable degree to GTM but with the added advantage that it enables voxelwise analyses, and that the FWHM used can affect the PVC result indicating the importance of accurately calibrating the FWHM used in the recovery model.

  11. High resolution X-ray CT for advanced electronics packaging

    Science.gov (United States)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  12. A high resolution, low background fast neutron spectrometer

    CERN Document Server

    Abdurashitov, J N; Kalikhov, A V; Matushko, V L; Shikhin, A A; Yants, V E; Zaborskaia, O S; Adams, J M; Nico, J S; Thompson, A K

    2002-01-01

    We discuss the possibility to create a spectrometer of full absorption based on liquid scintillator doped with enriched sup 6 Li. Of specific interest, the spectrometer will have energy resolution estimated to lie in the range 5-10% for 14 MeV neutrons. It will be sensitive to fluxes from 10 sup - sup 4 to 10 sup 6 cm sup - sup 2 s sup - sup 1 above a threshold of 1 MeV in a gamma-background of up to 10 sup 4 s sup - sup 1. The detector's efficiency will be determined by the volume of the scintillator only (approx 3 l) and is estimated to be 0.2-10%. The main reason for the poor resolution of an organic scintillator based spectrometer of full absorption is a non-linear light-yield of the scintillator for recoil protons. The neutron energy is occasionally distributed among recoil protons, and due to non-linear light-yield the total amount of light from all recoil protons ambiguously determines the initial neutron energy. The high-energy resolution will be achieved by compensation of the non-linear light-yield ...

  13. High-resolution 17-75 keV backlighters for high energy density experiments

    Science.gov (United States)

    Park, H.-S.; Maddox, B. R.; Giraldez, E.; Hatchett, S. P.; Hudson, L. T.; Izumi, N.; Key, M. H.; Le Pape, S.; MacKinnon, A. J.; MacPhee, A. G.; Patel, P. K.; Phillips, T. W.; Remington, B. A.; Seely, J. F.; Tommasini, R.; Town, R.; Workman, J.; Brambrink, E.

    2008-07-01

    17-75keV one- and two-dimensional high-resolution (1017W /cm2. High-resolution point projection one- and two-dimensional radiography has been achieved using microfoil and microwire targets attached to low-Z substrate materials. The microwire size was 10μm×10μm×300μm on a 300μm×300μm×5μm polystyrene substrate. The radiography experiments were performed using the Titan laser at Lawrence Livermore National Laboratory. The results show that the resolution is dominated by the microwire target size and there is very little degradation from the plasma plume, implying that the high-energy x-ray photons are generated mostly within the microwire volume. There are enough Kα photons created with a 300J, 1-ω, 40ps pulse laser from these small volume targets, and that the signal-to-noise ratio is sufficiently high, for single shot radiography experiments. This unique technique will be used on future high energy density experiments at many new high-power laser facilities.

  14. High-resolution downscaling for hydrological management

    Science.gov (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  15. The high resolution neutrino calorimeter KARMEN

    Energy Technology Data Exchange (ETDEWEB)

    Drexlin, G.; Eberhard, V.; Gemmeke, H.; Giorginis, G.; Grandegger, W.; Gumbsheimer, R.; Hucker, H.; Husson, L.; Kleinfeller, J.; Maschuw, R.; Plischke, P.; Spohrer, G.; Schmidt, F.K.; Wochele, J.; Woelfle, S.; Zeitnitz, B. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.). Inst. fuer Kernphysik 1 Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Experimentelle Kernphysik); Bodman, B.; Burtak, F.; Finckh, E.; Glombik, A.; Kretschmer, W.; Schilling, F.; Voetisch, D. (Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Physikalisches Inst.); Edgington, J.A.; Gorringe, T.; Malik, A. (Queen Mary Coll., London (UK)); Booth, N.E. (Oxford Univ. (UK)); Dodd, A.; Payne, A.G.D. (Rutherford Appleton Lab., Chilton (UK))

    1990-04-15

    KARMEN is a 56 t scintillation calorimeter designed for beam dump neutrino experiments at the neutron spallation facility ISIS of the Rutherford Appleton Laboratory. The calorimetric properties are demonstrated by cosmic muons and laser calibration. The measured energy resolution of the detector is {sigma}{sub E}/E{approx equal}11.5%/{radical}E(MeV), the position resolution {sigma}{sub x}=5 cm and the timing resolution {sigma}{sub t}{approx equal}350 ps. (orig.).

  16. Dynamic Resolution in GPU-Accelerated Volume Rendering to Autostereoscopic Multiview Lenticular Displays

    Directory of Open Access Journals (Sweden)

    Daniel Ruijters

    2008-09-01

    Full Text Available The generation of multiview stereoscopic images of large volume rendered data demands an enormous amount of calculations. We propose a method for hardware accelerated volume rendering of medical data sets to multiview lenticular displays, offering interactive manipulation throughout. The method is based on buffering GPU-accelerated direct volume rendered visualizations of the individual views from their respective focal spot positions, and composing the output signal for the multiview lenticular screen in a second pass. This compositing phase is facilitated by the fact that the view assignment per subpixel is static, and therefore can be precomputed. We decoupled the resolution of the individual views from the resolution of the composited signal, and adjust the resolution on-the-fly, depending on the available processing resources, in order to maintain interactive refresh rates. The optimal resolution for the volume rendered views is determined by means of an analysis of the lattice of the output signal for the lenticular screen in the Fourier domain.

  17. High resolution image reconstruction from projection of low resolution images differing in subpixel shifts

    Science.gov (United States)

    Mareboyana, Manohar; Le Moigne, Jacqueline; Bennett, Jerome

    2016-05-01

    In this paper, we demonstrate simple algorithms that project low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithms are very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. are used in projection. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML) algorithms. The algorithms are robust and are not overly sensitive to the registration inaccuracies.

  18. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    Science.gov (United States)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  19. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  20. How to get spatial resolution inside probe volumes of commercial 3D LDA systems

    Energy Technology Data Exchange (ETDEWEB)

    Strunck, V.; Sodomann, T.; Mueller, H.; Dopheide, D. [Section of Fluid Flow Measuring Techniques, Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116, Braunschweig (Germany)

    2004-01-01

    In laser Doppler anemometry (LDA) it is often the aim to determine the velocity profile for a given fluid flow. The spatial resolution of such velocity profiles is limited in principal by the size of the probe volume. The method of using time of flight data from two probe volumes allows improvements of the spatial resolution by at least one order of magnitude and measurements of small-scale velocity profiles inside the measuring volume along the optical axis of commercial available 3D anemometers without moving the probe. No change of the optical set-up is necessary. An increased spatial resolution helps to acquire more precise data in areas where the flow velocity changes rapidly as shown in the vicinity of the stagnation point of a cuboid. In the overlapping region of three measuring volumes a spatially resolved 3D velocity vector profile is obtained in the direction of the optical axis in near plane flow conditions. In plane laminar flows the probe volume is extended by a few millimetres. The limitation of the method to a plane flow is that it would require a two-component LDA in a very special off-axis arrangement, but this arrangement is available in most commercial 3D systems. (orig.)

  1. Logging Data High-Resolution Sequence Stratigraphy

    Institute of Scientific and Technical Information of China (English)

    Li Hongqi; Xie Yinfu; Sun Zhongchun; Luo Xingping

    2006-01-01

    The recognition and contrast of bed sets in parasequence is difficult in terrestrial basin high-resolution sequence stratigraphy. This study puts forward new methods for the boundary identification and contrast of bed sets on the basis of manifold logging data. The formation of calcareous interbeds, shale resistivity differences and the relation of reservoir resistivity to altitude are considered on the basis of log curve morphological characteristics, core observation, cast thin section, X-ray diffraction and scanning electron microscopy. The results show that the thickness of calcareous interbeds is between 0.5 m and 2 m, increasing on weathering crusts and faults. Calcareous interbeds occur at the bottom of Reservoir resistivity increases with altitude. Calcareous interbeds may be a symbol of recognition for the boundary of bed sets and isochronous contrast bed sets, and shale resistivity differences may confirm the stack relation and connectivity of bed sets. Based on this, a high-rcsolution chronostratigraphic framework of Xi-1 segment in Shinan area, Junggar basin is presented, and the connectivity of bed sets and oil-water contact is confirmed. In this chronostratigraphic framework, the growth order, stack mode and space shape of bed sets are qualitatively and quantitatively described.

  2. High resolution low frequency ultrasonic tomography.

    Science.gov (United States)

    Lasaygues, P; Lefebvre, J P; Mensah, S

    1997-10-01

    Ultrasonic reflection tomography results from a linearization of the inverse acoustic scattering problem, named the inverse Born approximation. The goal of ultrasonic reflection tomography is to obtain reflectivity images from backscattered measurements. This is a Fourier synthesis problem and the first step is to correctly cover the frequency space of the object. For this inverse problem, we use the classical algorithm of tomographic reconstruction by summation of filtered backprojections. In practice, only a limited number of views are available with our mechanical rig, typically 180, and the frequency bandwidth of the pulses is very limited, typically one octave. The resolving power of the system is them limited by the bandwidth of the pulse. Low and high frequencies can be restored by use of a deconvolution algorithm that enhances resolution. We used a deconvolution technique based on the Papoulis method. The advantage of this technique is conservation of the overall frequency information content of the signals. The enhancement procedure was tested by imaging a square aluminium rod with a cross-section less than the wavelength. In this application, the central frequency of the transducer was 250 kHz so that the central wavelength was 6 mm whereas the cross-section of the rod was 4 mm. Although the Born approximation was not theoretically valid in this case (high contrast), a good reconstruction was obtained.

  3. Automatic abundance analysis of high resolution spectra

    CERN Document Server

    Bonifacio, P; Bonifacio, Piercarlo; Caffau, Elisabetta

    2003-01-01

    We describe an automatic procedure for determining abundances from high resolution spectra. Such procedures are becoming increasingly important as large amounts of data are delivered from 8m telescopes and their high-multiplexing fiber facilities, such as FLAMES on ESO-VLT. The present procedure is specifically targeted for the analysis of spectra of giants in the Sgr dSph; however, the procedure may be, in principle, tailored to analyse stars of any type. Emphasis is placed on the algorithms and on the stability of the method; the external accuracy rests, ultimately, on the reliability of the theoretical models (model-atmospheres, synthetic spectra) used to interpret the data. Comparison of the results of the procedure with the results of a traditional analysis for 12 Sgr giants shows that abundances accurate at the level of 0.2 dex, comparable with that of traditional analysis of the same spectra, may be derived in a fast and efficient way. Such automatic procedures are not meant to replace the traditional ...

  4. Supporting observation campaigns with high resolution modeling

    Science.gov (United States)

    Klocke, Daniel; Brueck, Matthias; Voigt, Aiko

    2017-04-01

    High resolution simulation in support of measurement campaigns offers a promising and emerging way to create large-scale context for small-scale observations of clouds and precipitation processes. As these simulation include the coupling of measured small-scale processes with the circulation, they also help to integrate the research communities from modeling and observations and allow for detailed model evaluations against dedicated observations. In connection with the measurement campaign NARVAL (August 2016 and December 2013) simulations with a grid-spacing of 2.5 km for the tropical Atlantic region (9000x3300 km), with local refinement to 1.2 km for the western part of the domain, were performed using the icosahedral non-hydrostatic (ICON) general circulation model. These simulations are again used to drive large eddy resolving simulations with the same model for selected days in the high definition clouds and precipitation for advancing climate prediction (HD(CP)2) project. The simulations are presented with the focus on selected results showing the benefit for the scientific communities doing atmospheric measurements and numerical modeling of climate and weather. Additionally, an outlook will be given on how similar simulations will support the NAWDEX measurement campaign in the North Atlantic and AC3 measurement campaign in the Arctic.

  5. Volume measurement by using super-resolution MRI: application to prostate volumetry

    CERN Document Server

    Oubel, Estanislao; Iannessi, Antoine

    2015-01-01

    Accuracy and precision of measurements are important for patient follow up in oncology but, unfortunately, partial volume effects introduce an undesired variability between observers. Super resolution techniques (SR) combine multiple acquisitions of an object into a single image richer in details. Herein, the use of SR for reducing variability is investigated in the specific context of prostate measurements. Prostate is typically imaged by T2-weighted MRI in three perpendicular low resolution images, each of them presenting partial volume effects in the direction of the slice selection gradient. SR techniques allow to combine these images into an image presenting the same level of details in all directions. This is expected to increase the accuracy and reproducibility of volume measurements, which in turn improves other derived measurements like PSA density.

  6. High dynamic, low volume GPS receiver

    Science.gov (United States)

    Hurd, W. J.

    1983-01-01

    A new GPS receiver concept and design are presented to meet the high dynamic and low volume requirements for range applications in missiles and drones. The receiver has the potential to satisfy all range requirements with one basic receiver, which has significant potential economic benefit over the alternate approach of using a family of receivers, each tailored for specific applications. The main new concept is to use approximate maximum likelihood estimates of pseudo range and range-rate, rather than tracking with carrier phase locked loops and code delay locked loops. Preliminary analysis indicates that receivers accelerating at 50 g or more can track with position errors due to acceleration of approximately 0.2 m/g, or 10 m at 50 g. Implementation is almost entirely digital to meet the low volume requirements.

  7. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of correspo

  8. The High Time Resolution Radio Sky

    Science.gov (United States)

    Thornton, D.

    2013-11-01

    Pulsars are laboratories for extreme physics unachievable on Earth. As individual sources and possible orbital companions can be used to study magnetospheric, emission, and superfluid physics, general relativistic effects, and stellar and binary evolution. As populations they exhibit a wide range of sub-types, with parameters varying by many orders of magnitude signifying fundamental differences in their evolutionary history and potential uses. There are currently around 2200 known pulsars in the Milky Way, the Magellanic clouds, and globular clusters, most of which have been discovered with radio survey observations. These observations, as well as being suitable for detecting the repeating signals from pulsars, are well suited for identifying other transient astronomical radio bursts that last just a few milliseconds that either singular in nature, or rarely repeating. Prior to the work of this thesis non-repeating radio transients at extragalactic distances had possibly been discovered, however with just one example status a real astronomical sources was in doubt. Finding more of these sources was a vital to proving they were real and to open up the universe for millisecond-duration radio astronomy. The High Time Resolution Universe survey uses the multibeam receiver on the 64-m Parkes radio telescope to search the whole visible sky for pulsars and transients. The temporal and spectral resolution of the receiver and the digital back-end enable the detection of relatively faint, and distant radio sources. From the Parkes telescope a large portion of the Galactic plane can be seen, a rich hunting ground for radio pulsars of all types, while previously poorly surveyed regions away from the Galactic plane are also covered. I have made a number of pulsar discoveries in the survey, including some rare systems. These include PSR J1226-6208, a possible double neutron star system in a remarkably circular orbit, PSR J1431-471 which is being eclipsed by its companion with

  9. High Resolution Simulations of the Global and Local ISM

    CERN Document Server

    D'Avillez, M A; Avillez, Miguel A. de; Breitschwerdt, Dieter

    2003-01-01

    We present the first to date high resolution calculations of the ISM down to scales of 0.625 pc of the global and local ISM. The simulations show the morphology and structure of the different ISM phases and reproduce many of the features that have been observed in the Milky Way and other galaxies. In particular, they show that the hot gas has a moderately low volume filling factor (~20%) even in the absence of magnetic fields. Also, cold gas is mainly concentrated in filamentary structures running perpendicular to the midplane forming and dissipating within 10-12 Myr. Compression is the dominant process for their formation, but thermal instability also plays a role. Also the evolution of the Local Bubble is simulated by multi-supernova explosions; calculated extensions after ~13 Myr match observations.

  10. An Explicit High Resolution Scheme for Nonlinear Shallow Water Equations

    Institute of Scientific and Technical Information of China (English)

    FANG Ke-zhao; ZOU Zhi-li; WANG Yan

    2005-01-01

    The present study develops a numerical model of the two-dimensional fully nonlinear shallow water equations (NSWE) for the wave run-up on a beach. The finite volume method (FVM) is used to solve the equations, and a second-order explicit scheme is developed to improve the computation efficiency. The numerical fluxes are obtained by the two dimensional Roe's flux function to overcome the errors caused by the use of one dimensional fluxes in dimension splitting methods. The high-resolution Godunov-type TVD upwind scheme is employed and a second-order accuracy is achieved based on monotonic upstream schemes for conservation laws (MUSCL) variable extrapolation; a nonlinear limiter is applied to prevent unwanted spurious oscillation. A simple but efficient technique is adopted to deal with the moving shoreline boundary. The verification of the solution technique is carried out by comparing the model output with documented results and it shows that the solution technique is robust.

  11. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    Science.gov (United States)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2016-06-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).

  12. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    Directory of Open Access Journals (Sweden)

    Razenkov Ilya I.

    2016-01-01

    Full Text Available The High Spectral Resolution Lidar (HSRL designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm.

  13. AIRBORNE HIGH-RESOLUTION DIGITAL IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Prado-Molina, J.

    2006-04-01

    Full Text Available A low-cost airborne digital imaging system capable to perform aerial surveys with small-format cameras isintroduced. The equipment is intended to obtain high-resolution multispectral digital photographs constituting so aviable alternative to conventional aerial photography and satellite imagery. Monitoring software handles all theprocedures involved in image acquisition, including flight planning, real-time graphics for aircraft position updatingin a mobile map, and supervises the main variables engaged in the imaging process. This software also creates fileswith the geographical position of the central point of every image, and the flight path followed by the aircraftduring the entire survey. The cameras are mounted on a three-axis stabilized platform. A set of inertial sensorsdetermines platform's deviations independently from the aircraft and an automatic control system keeps thecameras at a continuous nadir pointing and heading, with a precision better than ± 1 arc-degree in three-axis. Thecontrol system is also in charge of saving the platform’s orientation angles when the monitoring software triggersthe camera. These external orientation parameters, together with a procedure for camera calibration give theessential elements for image orthocorrection. Orthomosaics are constructed using commercial GIS software.This system demonstrates the feasibility of large area coverage in a practical and economical way using smallformatcameras. Monitoring and automatization reduce the work while increasing the quality and the amount ofuseful images.

  14. High spatial resolution probes for neurobiology applications

    Science.gov (United States)

    Gunning, D. E.; Kenney, C. J.; Litke, A. M.; Mathieson, K.

    2009-06-01

    Position-sensitive biological neural networks, such as the brain and the retina, require position-sensitive detection methods to identify, map and study their behavior. Traditionally, planar microelectrodes have been employed to record the cell's electrical activity with device limitations arising from the electrode's 2-D nature. Described here is the development and characterization of an array of electrically conductive micro-needles aimed at addressing the limitations of planar electrodes. The capability of this array to penetrate neural tissue improves the electrode-cell electrical interface and allows more complicated 3-D networks of neurons, such as those found in brain slices, to be studied. State-of-the-art semiconductor fabrication techniques were used to etch and passivate conformally the metal coat and fill high aspect ratio holes in silicon. These are subsequently transformed into needles with conductive tips. This process has enabled the fabrication of arrays of unprecedented dimensions: 61 hexagonally close-packed electrodes, ˜200 μm tall with 60 μm spacing. Electroplating the tungsten tips with platinum ensure suitable impedance values (˜600 kΩ at 1 kHz) for the recording of neuronal signals. Without compromising spatial resolution of the neuronal recordings, this array adds a new and exciting dimension to the study of biological neural networks.

  15. High Spectral Resolution Lidar (HSRL) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, John [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-04-01

    High Spectral Resolution Lidar (HSRL) systems provide vertical profiles of optical depth, backscatter cross-section, depolarization, and backscatter phase function. All HSRL measurements are absolutely calibrated by reference to molecular scattering, which is measured at each point in the lidar profile. Like the Raman lidar but unlike simple backscatter lidars such as the micropulse lidar, the HSRL can measure backscatter cross-sections and optical depths without prior assumptions about the scattering properties of the atmosphere. The depolarization observations also allow robust discrimination between ice and water clouds. In addition, rigorous error estimates can be computed for all measurements. A very narrow, angular field of view reduces multiple scattering contributions. The small field of view, coupled with a narrow optical bandwidth, nearly eliminates noise due to scattered sunlight. There are two operational U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility HSRL systems, one at the Barrow North Slope of Alaska (NSA) site and the other in the second ARM Mobile Facility (AMF2) collection of instrumentation.

  16. Holographic high-resolution endoscopic image recording

    Science.gov (United States)

    Bjelkhagen, Hans I.

    1991-03-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  17. High-resolution imaging using endoscopic holography

    Science.gov (United States)

    Bjelkhagen, Hans I.

    1990-08-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  18. DUACS: Toward High Resolution Sea Level Products

    Science.gov (United States)

    Faugere, Y.; Gerald, D.; Ubelmann, C.; Claire, D.; Pujol, M. I.; Antoine, D.; Desjonqueres, J. D.; Picot, N.

    2016-12-01

    The DUACS system produces, as part of the CNES/SALP project, and the Copernicus Marine Environment and Monitoring Service, high quality multimission altimetry Sea Level products for oceanographic applications, climate forecasting centers, geophysic and biology communities... These products consist in directly usable and easy to manipulate Level 3 (along-track cross-calibrated SLA) and Level 4 products (multiple sensors merged as maps or time series) and are available in global and regional version (Mediterranean Sea, Arctic, European Shelves …).The quality of the products is today limited by the altimeter technology "Low Resolution Mode" (LRM), and the lack of available observations. The launch of 2 new satellites in 2016, Jason-3 and Sentinel-3A, opens new perspectives. Using the global Synthetic Aperture Radar mode (SARM) coverage of S3A and optimizing the LRM altimeter processing (retracking, editing, ...) will allow us to fully exploit the fine-scale content of the altimetric missions. Thanks to this increase of real time altimetry observations we will also be able to improve Level-4 products by combining these new Level-3 products and new mapping methodology, such as dynamic interpolation. Finally these improvements will benefit to downstream products : geostrophic currents, Lagrangian products, eddy atlas… Overcoming all these challenges will provide major upgrades of Sea Level products to better fulfill user needs.

  19. Laser wavelength comparison by high resolution interferometry.

    Science.gov (United States)

    Layer, H P; Deslattes, R D; Schweitzer, W G

    1976-03-01

    High resolution interferometry has been used to determine the wavelength ratio between two molecularly stabilized He-Ne lasers, one locked to a methane absorption at 3.39 microm and the other locked to the k peak of (129)I(2) at 633 nm. An optical beat frequency technique gave fractional orders while a microwave sideband method yielded the integer parts. Conventional (third derivative) peak seeking servoes stabilized both laser and cavity lengths. Reproducibility of the electronic control system and optics was a few parts in 10(12), while systematic errors associated with curvature of the cavity mirrors limited the accuracy of the wavelength ratio measurement to 2 parts in 10(10). The measured wavelength ratio of the methane stabilized He-Ne laser at 3.39 microm [P(7) line, nu(3) band] to the (129)I(2) (k peak) stabilized He-Ne laser at 633 nm was 5.359 049 260 6 (0.000 2 ppm). This ratio agrees with that calculated from the (lower accuracy) results of earlier wavelength measurements made relative to the (86)Kr standard. Its higher accuracy thus permits a provisional extension of the frequency scale based on the cesium oscillator into the visible spectrum.

  20. Annealing as grown large volume CZT single crystals increased spectral resolution

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Longxia Li

    2008-03-19

    The spectroscopic performance of current large-volume Cadmium 10% Zinc Telluride, Cd{sub 0.9}Zn{sub 0.1}Te, (CZT) detectors is impaired by cumulative effect of tellurium precipitates (secondary phases) presented in CZT single-crystal grown by low-pressure Bridgman techniques(1). This statistical effect may limit the energy resolution of large-volume CZT detectors (typically 2-5% at 662 keV for 12-mm thick devices). The stochastic nature of the interaction prevents the use of any electronic or digital charge correction techniques without a significant reduction in the detector efficiency. This volume constraint hampers the utility of CZT since the detectors are inefficient at detecting photons >1MeV and/or in low fluency situations. During the project, seven runs CZT ingots have been grown, in these ingots the indium dopant concentrations have been changed in the range between 0.5ppm to 6ppm. The I-R mapping imaging method has been employed to study the Te-precipitates. The Teprecipitates in as-grown CZT wafers, and after annealing wafers have been systematically studied by using I-R mapping system (home installed, resolution of 1.5 {micro}m). We employed our I-R standard annealing CZT (Zn=4%) procedure or two-steps annealing into radiation CZT (Zn=10%), we achieved the 'non'-Te precipitates (size < 1 {micro}m) CZT n+-type with resistivity > 10{sup 9-10} {Omega}-cm. We believe that the Te-precipitates are the p-type defects, its reducing number causes the CZT became n+-type, therefore we varied or reduced the indium dapant concentration during the growth and changed the Te-precipitates size and density by using different Cd-temperature and different annealing procedures. We have made the comparisons among Te-precipitates size, density and Indium dopant concentrations, and we found that the CZT with smaller size of Te-precipitates is suitable for radiation uses but non-Te precipitates is impossible to be used in the radiation detectors, because the CZT

  1. Optimized generation of high resolution breast anthropomorphic software phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Pokrajac, David D.; Maidment, Andrew D. A.; Bakic, Predrag R. [Computer and Information Sciences Department, Delaware State University, Dover, Delaware 19901 (United States); Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2012-04-15

    Purpose: The authors present an efficient method for generating anthropomorphic software breast phantoms with high spatial resolution. Employing the same region growing principles as in their previous algorithm for breast anatomy simulation, the present method has been optimized for computational complexity to allow for fast generation of the large number of phantoms required in virtual clinical trials of breast imaging. Methods: The new breast anatomy simulation method performs a direct calculation of the Cooper's ligaments (i.e., the borders between simulated adipose compartments). The calculation corresponds to quadratic decision boundaries of a maximum a posteriori classifier. The method is multiscale due to the use of octree-based recursive partitioning of the phantom volume. The method also provides user-control of the thickness of the simulated Cooper's ligaments and skin. Results: Using the proposed method, the authors have generated phantoms with voxel size in the range of (25-1000 {mu}m){sup 3}/voxel. The power regression of the simulation time as a function of the reciprocal voxel size yielded a log-log slope of 1.95 (compared to a slope of 4.53 of our previous region growing algorithm). Conclusions: A new algorithm for computer simulation of breast anatomy has been proposed that allows for fast generation of high resolution anthropomorphic software phantoms.

  2. High-resolution ophthalmic imaging system

    Science.gov (United States)

    Olivier, Scot S.; Carrano, Carmen J.

    2007-12-04

    A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.

  3. 大体积采样结合高分辨气相色谱-电子捕获负化学源-低分辨质谱法测定空气中的短链氯化石蜡%Determination of short-chain chlorinated paraffins in ambient air using high-volume sampling combined with high resolution gas chromatography-electron capture negative ion-low resolution mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    史蕾蒙; 高媛; 侯晓虹; 张海军; 张亦弛; 陈吉平

    2016-01-01

    建立了大体积采样结合高分辨气相色谱-电子捕获负化学源-低分辨质谱( HRGC-ECNI-LRMS)测定空气中短链氯化石蜡( SCCPs)的定量分析方法.联合使用酸化硅胶复合层析柱和碱性氧化铝层析柱净化处理空气样品中的 SCCPs,并对净化条件进行优化.使用该方法计算得到氯含量为58. 1%~63. 3%的 SCCPs系列标准储备溶液的总响应因子与氯含量线性相关,相关系数(R2)大于 0. 99.该方法的仪器检出限(S/N≥3)为 4. 2 pg,定量限(S/N≥10)为12 pg.SCCPs的方法检出限(MDL)为0. 34 ng/m3(n=7),实际样品加标回收率均达 80%以上.该方法灵敏度高、选择性好,能满足空气样品中 SCCPs的监测和分析需求.%An analytical method for quantifying short-chain chlorinated paraffins( SCCPs)in ambient air using high-volume sampling combined with high resolution gas chromatography-electron capture negative ion-low resolution mass spectrometry ( HRGC-ECNI-LRMS ) was developed. An acidified silica gel column and a basic alumina column were used to optimize the cleanup procedures. The results showed a good linearity(R2>0. 99)between the total response factors and the degree of chlorination of SCCPs in the content range of 58. 1%-63. 3%. The lim-its of detection( S/N≥3 ) and the limits of quantification( S/N≥10 ) were 4. 2 and 12 pg, respectively. The method detection limit( MDL)for SCCPs was 0. 34 ng/m 3( n=7). The recov-eries of SCCPs in air samples were in the range of 81. 9% to 94. 2%. It is demonstrated that the method is suitable for the quantitative analysis of SCCPs in air samples.

  4. High resolution modelling of the North Icelandic Irminger Current (NIIC

    Directory of Open Access Journals (Sweden)

    K. Logemann

    2006-01-01

    Full Text Available The northward inflow of Atlantic Water through Denmark Strait – the North Icelandic Irminger Current (NIIC – is simulated with a numerical model of the North Atlantic and Arctic Ocean. The model uses the technique of adaptive grid refinement which allows a high spatial resolution (1 km horizontal, 10 m vertical around Iceland. The model is used to assess time and space variability of volume and heat fluxes for the years 1997–2003. Passive tracers are applied to study origin and composition of NIIC water masses. The NIIC originates from two sources: the Irminger Current, flowing as part of the sub-polar gyre in 100–500 m depth along the Reykjanes Ridge and the shallow Icelandic coastal current, flowing north-westward on the south-west Icelandic shelf. The ratio of volume flux between the deep and shallow branch is around 2:1. The NIIC continues as a warm and saline branch northward through Denmark Strait where it entrains large amounts of polar water due to the collision with the southward flowing East Greenland Current. After passing Denmark Strait, the NIIC follows the coast line eastward being an important heat source for north Icelandic waters. At least 60% of the temporal temperature variability of north Icelandic waters is caused by the NIIC. The NIIC volume and heat transport is highly variable and depends strongly on the wind field north-east of Denmark Strait. Daily means can change from 1 Sv eastward to 2 Sv westward within a few days. Highest monthly mean transport rates occur in summer when winds from north are weak, whereas the volume flux is reduced by around 50% in winter. Summer heat flux rates can be even three times higher than in winter. The simulation also shows variability on the interannual scale. In particular weak winds from north during winter 2002/2003 combined with mild weather conditions south of Iceland led to anomalous high NIIC volume (+40% and heat flux (+60% rates. In this period, simulated north Icelandic

  5. The High Resolution IRAS Galaxy Atlas

    CERN Document Server

    Cao, Y; Prince, T A; Beichman, C A; Cao, Yu; Terebey, Susan; Prince, Thomas A.; Beichman, Charles A.

    1997-01-01

    An atlas of the Galactic plane (-4.7 deg < b < 4.7 deg) plus the molecular clouds in Orion, Rho Oph, and Taurus-Auriga has been produced at 60 and 100 micron from IRAS data. The Atlas consists of resolution-enhanced coadded images having 1 arcmin -- 2 arcmin resolution as well as coadded images at the native IRAS resolution. The IRAS Galaxy Atlas, together with the DRAO HI line / 21 cm continuum and FCRAO CO (1-0) line Galactic plane surveys, both with similar (approx. 1 arcmin) resolution, provide a powerful venue for studying the interstellar medium, star formation and large scale structure in our Galaxy. This paper documents the production and characteristics of the Atlas.

  6. High volume production of nanostructured materials

    Science.gov (United States)

    Ripley, Edward B.; Morrell, Jonathan S.; Seals, Roland D.; Ludtka, Gerard M.

    2009-10-13

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  7. High volume, multiple use, portable precipitator

    Science.gov (United States)

    Carlson, Duane C.

    2011-10-25

    A portable high air volume electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a collection electrode adapted to carry a variety of collecting media. An air intake is provided such that air to be analyzed flows through an ionization section with a transversely positioned ionization wire to ionize analytes in the air, and then flows over the collection electrode where ionized analytes are collected. Air flow is maintained at but below turbulent flow, Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the selected medium which can be removed for analysis.

  8. High resolution fire risk mapping in Italy

    Science.gov (United States)

    Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko

    2014-05-01

    extinguishing actions, leaving more resources to improve safety in areas at risk. With the availability of fire perimeters mapped over a period spanning from 5 to 10 years, depending by the region, a procedure was defined in order to assess areas at risk with high spatial resolution (900 m2) based on objective criteria by observing past fire events. The availability of fire perimeters combined with a detailed knowledge of topography and land cover allowed to understand which are the main features involved in forest fire occurrences and their behaviour. The seasonality of the fire regime was also considered, partitioning the analysis in two macro season (November- April and May- October). In addition, the total precipitation obtained from the interpolation of 30 years-long time series from 460 raingauges and the average air temperature obtained downscaling 30 years ERA-INTERIM data series were considered. About 48000 fire perimeters which burnt about 5500 km2 were considered in the analysis. The analysis has been carried out at 30 m spatial resolution. Some important considerations relating to climate and the territorial features that characterize the fire regime at national level contribute to better understand the forest fire phenomena. These results allow to define new strategies for forest fire prevention and management extensible to other geographical areas.

  9. Super-Resolution Reconstruction of High-Resolution Satellite ZY-3 TLC Images.

    Science.gov (United States)

    Li, Lin; Wang, Wei; Luo, Heng; Ying, Shen

    2017-05-07

    Super-resolution (SR) image reconstruction is a technique used to recover a high-resolution image using the cumulative information provided by several low-resolution images. With the help of SR techniques, satellite remotely sensed images can be combined to achieve a higher-resolution image, which is especially useful for a two- or three-line camera satellite, e.g., the ZY-3 high-resolution Three Line Camera (TLC) satellite. In this paper, we introduce the application of the SR reconstruction method, including motion estimation and the robust super-resolution technique, to ZY-3 TLC images. The results show that SR reconstruction can significantly improve both the resolution and image quality of ZY-3 TLC images.

  10. Large Scale, High Resolution, Mantle Dynamics Modeling

    Science.gov (United States)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  11. Super-resolution reconstruction in frequency, image, and wavelet domains to reduce through-plane partial voluming in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Ali, E-mail: ali.gholipour@childrens.harvard.edu; Afacan, Onur; Scherrer, Benoit; Prabhu, Sanjay P.; Warfield, Simon K. [Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aganj, Iman [Radiology Department, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts 02129 and Harvard Medical School, Boston, Massachusetts 02115 (United States); Sahin, Mustafa [Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts 02115 and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-12-15

    Purpose: To compare and evaluate the use of super-resolution reconstruction (SRR), in frequency, image, and wavelet domains, to reduce through-plane partial voluming effects in magnetic resonance imaging. Methods: The reconstruction of an isotropic high-resolution image from multiple thick-slice scans has been investigated through techniques in frequency, image, and wavelet domains. Experiments were carried out with thick-slice T2-weighted fast spin echo sequence on the Academic College of Radiology MRI phantom, where the reconstructed images were compared to a reference high-resolution scan using peak signal-to-noise ratio (PSNR), structural similarity image metric (SSIM), mutual information (MI), and the mean absolute error (MAE) of image intensity profiles. The application of super-resolution reconstruction was then examined in retrospective processing of clinical neuroimages of ten pediatric patients with tuberous sclerosis complex (TSC) to reduce through-plane partial voluming for improved 3D delineation and visualization of thin radial bands of white matter abnormalities. Results: Quantitative evaluation results show improvements in all evaluation metrics through super-resolution reconstruction in the frequency, image, and wavelet domains, with the highest values obtained from SRR in the image domain. The metric values for image-domain SRR versus the original axial, coronal, and sagittal images were PSNR = 32.26 vs 32.22, 32.16, 30.65; SSIM = 0.931 vs 0.922, 0.924, 0.918; MI = 0.871 vs 0.842, 0.844, 0.831; and MAE = 5.38 vs 7.34, 7.06, 6.19. All similarity metrics showed high correlations with expert ranking of image resolution with MI showing the highest correlation at 0.943. Qualitative assessment of the neuroimages of ten TSC patients through in-plane and out-of-plane visualization of structures showed the extent of partial voluming effect in a real clinical scenario and its reduction using SRR. Blinded expert evaluation of image resolution in

  12. High Resolution Pulse Compression Imaging Using Super Resolution FM-Chirp Correlation Method (SCM)

    Science.gov (United States)

    Fujiwara, M.; Okubo, K.; Tagawa, N.

    This study addresses the issue of the super-resolution pulse compression technique (PCT) for ultrasound imaging. Time resolution of multiple ultrasonic echoes using the FM-Chirp PCT is limited by the bandwidth of the sweep-frequency. That is, the resolution depends on the sharpness of auto-correlation function. We propose the Super resolution FM-Chirp correlation Method (SCM) and evaluate its performance. This method is based on the multiple signal classification (MUSIC) algorithm. Our simulations were made for the model assuming multiple signals reflected from some scatterers. We confirmed that SCM detects time delay of complicated reflected signals successfully with high resolution.

  13. Decadal prediction skill using a high-resolution climate model

    Science.gov (United States)

    Monerie, Paul-Arthur; Coquart, Laure; Maisonnave, Éric; Moine, Marie-Pierre; Terray, Laurent; Valcke, Sophie

    2017-02-01

    The ability of a high-resolution coupled atmosphere-ocean general circulation model (with a horizontal resolution of a quarter of a degree in the ocean and of about 0.5° in the atmosphere) to predict the annual means of temperature, precipitation, sea-ice volume and extent is assessed based on initialized hindcasts over the 1993-2009 period. Significant skill in predicting sea surface temperatures is obtained, especially over the North Atlantic, the tropical Atlantic and the Indian Ocean. The Sea Ice Extent and volume are also reasonably predicted in winter (March) and summer (September). The model skill is mainly due to the external forcing associated with well-mixed greenhouse gases. A decrease in the global warming rate associated with a negative phase of the Pacific Decadal Oscillation is simulated by the model over a suite of 10-year periods when initialized from starting dates between 1999 and 2003. The model ability to predict regional change is investigated by focusing on the mid-90's Atlantic Ocean subpolar gyre warming. The model simulates the North Atlantic warming associated with a meridional heat transport increase, a strengthening of the North Atlantic current and a deepening of the mixed layer over the Labrador Sea. The atmosphere plays a role in the warming through a modulation of the North Atlantic Oscillation: a negative sea level pressure anomaly, located south of the subpolar gyre is associated with a wind speed decrease over the subpolar gyre. This leads to a reduced oceanic heat-loss and favors a northward displacement of anomalously warm and salty subtropical water that both concur to the subpolar gyre warming. We finally conclude that the subpolar gyre warming is mainly triggered by ocean dynamics with a possible contribution of atmospheric circulation favoring its persistence.

  14. Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration

    DEFF Research Database (Denmark)

    Neldam, Camilla Albeck; Lauridsen, Torsten; Rack, Alexander

    2015-01-01

    The purpose of this study was to describe a refined method using high-resolution synchrotron radiation microtomography (SRmicro-CT) to evaluate osseointegration and peri-implant bone volume fraction after titanium dental implant insertion. SRmicro-CT is considered gold standard evaluating bone...... microarchitecture. Its high resolution, high contrast, and excellent high signal-to-noise-ratio all contribute to the highest spatial resolutions achievable today. Using SRmicro-CT at a voxel size of 5 μm in an experimental goat mandible model, the peri-implant bone volume fraction was found to quickly increase...... to 50% as the radial distance from the implant surface increased, and levelled out to approximately 80% at a distance of 400 μm. This method has been successful in depicting the bone and cavities in three dimensions thereby enabling us to give a more precise answer to the fraction of the bone-to-implant...

  15. Quantitative observation of tracer transport with high-resolution PET

    Science.gov (United States)

    Kulenkampff, Johannes; Gruendig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-04-01

    Transport processes in natural porous media are typically heterogeneous over various scales. This heterogeneity is caused by the complexity of pore geometry and molecular processes. Heterogeneous processes, like diffusive transport, conservative advective transport, mixing and reactive transport, can be observed and quantified with quantitative tomography of tracer transport patterns. Positron Emission Tomography (PET) is by far the most sensitive method and perfectly selective for positron-emitting radiotracers, therefore it is suited as reference method for spatiotemporal tracer transport observations. The number of such PET-applications is steadily increasing. However, many applications are afflicted by the low spatial resolution (3 - 5 mm) of the clinical scanners from cooperating nuclear medical departments. This resolution is low in relation to typical sample dimensions of 10 cm, which are restricted by the mass attenuation of the material. In contrast, our GeoPET-method applies a high-resolution scanner with a resolution of 1 mm, which is the physical limit of the method and which is more appropriate for samples of the size of soil columns or drill cores. This higher resolution is achieved at the cost of a more elaborate image reconstruction procedure, especially considering the effects of Compton scatter. The result of the quantitative image reconstruction procedure is a suite of frames of the quantitative tracer distribution with adjustable frame rates from minutes to months. The voxel size has to be considered as reference volume of the tracer concentration. This continuous variable includes contributions from structures far below the spatial resolution, as far as a detection threshold, in the pico-molar range, is exceeded. Examples from a period of almost 10 years (Kulenkampff et al. 2008a, Kulenkampff et al. 2008b) of development and application of quantitative GeoPET-process tomography are shown. These examples include different transport processes

  16. Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-08-01

    To assess two compressed sensing cine magnetic resonance imaging (MRI) sequences with high spatial or high temporal resolution in comparison to a reference steady-state free precession cine (SSFP) sequence for reliable quantification of left ventricular (LV) volumes. LV short axis stacks of two compressed sensing breath-hold cine sequences with high spatial resolution (SPARSE-SENSE HS: temporal resolution: 40 msec, in-plane resolution: 1.0 × 1.0 mm(2) ) and high temporal resolution (SPARSE-SENSE HT: temporal resolution: 11 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) and of a reference cine SSFP sequence (standard SSFP: temporal resolution: 40 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) were acquired in 16 healthy volunteers on a 1.5T MR system. LV parameters were analyzed semiautomatically twice by one reader and once by a second reader. The volumetric agreement between sequences was analyzed using paired t-test, Bland-Altman plots, and Passing-Bablock regression. Small differences were observed between standard SSFP and SPARSE-SENSE HS for stroke volume (SV; -7 ± 11 ml; P = 0.024), ejection fraction (EF; -2 ± 3%; P = 0.019), and myocardial mass (9 ± 9 g; P = 0.001), but not for end-diastolic volume (EDV; P = 0.079) and end-systolic volume (ESV; P = 0.266). No significant differences were observed between standard SSFP and SPARSE-SENSE HT regarding EDV (P = 0.956), SV (P = 0.088), and EF (P = 0.103), but for ESV (3 ± 5 ml; P = 0.039) and myocardial mass (8 ± 10 ml; P = 0.007). Bland-Altman analysis showed good agreement between the sequences (maximum bias ≤ -8%). Two compressed sensing cine sequences, one with high spatial resolution and one with high temporal resolution, showed good agreement with standard SSFP for LV volume assessment. J. Magn. Reson. Imaging 2016;44:366-374. © 2016 Wiley Periodicals, Inc.

  17. 中国汉族成人额叶体积的高分辨率MRI测量%Measuring the volume of frontal lobe in healthy Chinese adults of the Han nationality on the high-resolution MRI

    Institute of Scientific and Technical Information of China (English)

    尹璐; 陈楠; 王星; 刘佩芳; 卓彦; 陈霖; 叶兆祥; 李坤成

    2010-01-01

    目的 测量中国汉族正常成人大脑额叶体积,为建立中国成人数字标准脑提供基础数据.方法 采用全国多中心临床研究形式,选取18~70岁健康志愿者200名,按照年龄18~30、31~40、41~50、51~60、61~70岁进行分组,每组男、女各20名.所有受试者均行3D磁化强度预备梯度回波序列T1WI采集额叶体积,通过人工勾画ROI法分别测量志愿者左、右侧额叶体积,并对测量数据进行统计学分析.男、女性别间比较采用独立样本t检验;左、右侧别间比较采用配对样本t检验;年龄与额叶体积进行相关与回归分析.结果 200名志愿者大脑额叶总体积为(563±73)cm3.100名男性左、右侧额叶体积值分别为(288±42)、(292±41)cm3;100名女性左、右侧额叶体积值分别为(273±30)、(274±30)cm3.大脑额叶总体积男、女性别间差异有统计学意义(t=3.334,P0.05).男性及女性大脑额叶总体积均与年龄呈负相关(r值分别为-0.586、-0.498,P值均 0. 05 ). There were negative correlations between the frontal lobe volumes and age in men and women ( r = - 0. 586, - 0. 498, P <0. 01 ). Conclusions The total frontal lobe volume of men was larger than that of women. The volume of the right frontal lobe was larger than the left frontal lobe in men, and the asymmetries didn't exist in women.The total frontal lobe volumes were both shrinking with age in men and women, which was more rapid in men than in women.

  18. High-resolution absorption measurements of NH3 at high temperatures: 2100-5500 cm-1

    Science.gov (United States)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan; Clausen, Sønnik; Fateev, Alexander

    2017-03-01

    High-resolution absorption spectra of NH3 in the region 2100-5500 cm-1 at 1027 °C and approximately atmospheric pressure (1045±3 mbar) are measured. An NH3 concentration of 10% in volume fraction is used in the measurements. Spectra are recorded in a high-temperature gas-flow cell using a Fourier Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm-1. The spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. 2308 lines have been assigned to 45 different bands, of which 1755 and 15 have been assigned or observed for the first time in this work.

  19. High Resolution Surface Science at Mars

    Science.gov (United States)

    Bailey, Zachary J.; Tamppari, Leslie K.; Lock, Robert E.; Sturm, Erick J.

    2013-01-01

    The proposed mission would place a 2.4 m telescope in orbit around Mars with two focal plane instruments to obtain the highest resolution images and spectral maps of the surface to date (3-10x better than current). This investigation would make major contributions to all of the Mars Program Goals: life, climate, geology and preparation for human presence.

  20. High spatial resolution LWIR hyperspectral sensor

    Science.gov (United States)

    Roberts, Carson B.; Bodkin, Andrew; Daly, James T.; Meola, Joseph

    2015-06-01

    Presented is a new hyperspectral imager design based on multiple slit scanning. This represents an innovation in the classic trade-off between speed and resolution. This LWIR design has been able to produce data-cubes at 3 times the rate of conventional single slit scan devices. The instrument has a built-in radiometric and spectral calibrator.

  1. Determination of PCDD/Fs in food samples using programmable temperature vaporizer-based large volume injection by high resolution gas chromatography-high resolution mass spectrometry%程序升温大体积进样在HRGC-HRMS法测定食品中PCDD/F的应用

    Institute of Scientific and Technical Information of China (English)

    张磊; 李敬光; 赵云峰; 吴永宁

    2014-01-01

    Objective By optimizing critical parameters of programmable temperature vaporizer (PTV), a method of PTV-based large volume injection was established for the determination of PCDD/Fs in various food samples using HRGC-HRMS. Methods The preparation of food, including extraction, clean-up, separation and concentration, was carried out depending on GB/T5009.205-2007 “Determination of Toxic Equivalencies of Dioxin and Dioxin-like Compounds in Foods”. The injection volume of extracts was 15μL, and the analyte was subsequently determined by using HRGC-HRMS with isotopic dilution. Results The optimized parame-ter of the initial temperature of PTV injector, the temperature of evaporation phase, and the flow rate of evapo-ration phase was set at 115℃, 140℃, and 5 mL/min, respectively. Peak area and the ratio of signal to noise (S/N) of PCDD/F congeners significantly increased using PTV-based large volume injection (P<0.05). Conclu-sion The method of PTV-based large volume injection can notably raise the competence of determining PCDD/Fs in food, which may help to assess the food safety risk more accurately and reliably.%目的:通过优化程序升温蒸发进样口的相关参数,噁建立测定食品中多氯代二苯并二英和多氯代二苯并呋喃(PCDD/Fs)的程序升温大体积进样高分辨气相色谱-高分辨质谱(HRGC-HRMS)方法。方法食品样品提取、净化分离和浓缩按《GB/T 5009.205-2007噁食品中二英及其类似物毒性当量的测定》规定进行,待测试样进样15μL,应用HRGC-HRMS结合同位素稀释技术测定其中PCDD/Fs。结果最佳条件为进样口初始温度115℃,蒸发相温度140℃,蒸发相吹扫流速为5 mL。大体积进样所获得的待测物峰面积及S/N存在显著增加(P<0.05)。结论程序升温大体积进样方式能显著提高食品基质中PCDD/Fs的检测能力,有助于保证食品安全风险评估结果的准确可靠。

  2. High resolution spectrograph for the 4MOST facility

    Science.gov (United States)

    Mignot, Shan; Amans, Jean-Philippe; Cohen, Mathieu; Horville, David; Jagourel, Pascal

    2012-09-01

    4MOST (4-metre Multi-Object Spectrograph Telescope) is a wide field and high multiplex fibre-fed spectroscopic facility continuously running a public survey on one of ESO's 4-metre telescopes (NTT or VISTA). It is currently undergoing a concept study and comprises a multi-object (300) high resolution (20 000) spectrograph whose purpose is to provide detailed chemical information in two wavelength ranges (395-456.5 nm and 587-673 nm). It will complement the data produced by ESA's space mission Gaia to form an unprecedented galactic-archaeology picture of the Milky Way as the result of the public survey. Building on the developments carried out for the GYES1 instrument on the Canada- France-Hawaii Telescope in 2010, the spectrograph is intended as being athermal and not featuring any motorised parts for high reliability and minimum maintenance, thereby allowing it to operate every night for five years. In addition to the fixed configuration which allows fine-tuning the spectrograph to a precise need, it features a dual-arm architecture with volume-phase holographic gratings to achieve the required dispersion at a maximum efficiency in each channel. By combining high yield time-wise and photon-wise, the spectrograph is expected to deliver more than a million spectra and make the most out of the selected 4-metre telescope.

  3. High-speed photography of high-resolution moire patterns

    Science.gov (United States)

    Whitworth, Martin B.; Huntley, Jonathan M.; Field, John E.

    1991-04-01

    The techniques of high resolution moire photography and high speed photography have been combined to allow measurement of the in-plane components of a transient displacement field with microsecond time resolution. Specimen gratings are prepared as casts in a thin layer of epoxy resin on the surface of a specimen. These are illuminated with a flash tube and imaged onto a reference grating with a specially modified camera lens, which incorporates a slotted mask in the aperture plane. For specimen gratings of 75 lines mm1, this selects the +1 and -1 order diffracted beams, thus doubling the effective grating frequency to 150 lines mm1. The resulting real-time moire fringes are recorded with a Hadland 792 image converter camera (Imacon) at an inter-frame time of 2-5ts. The images are digitised and an automatic fringe analysis technique based on the 2-D Fourier transform method is used to extract the displacement information. The technique is illustrated by the results of an investigation into the transient deformation of composite disc specimens, impacted with rectangular metal sliders fired from a gas gun.

  4. High-resolution ab initio Three-dimensional X-ray Diffraction Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, H N; Barty, A; Marchesini, S; Noy, A; Cui, C; Howells, M R; Rosen, R; He, H; Spence, J H; Weierstall, U; Beetz, T; Jacobsen, C; Shapiro, D

    2005-08-19

    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.

  5. High-resolution transmission measurements of CO2 at high temperatures for industrial applications

    DEFF Research Database (Denmark)

    Evseev, Vadim; Fateev, Alexander; Clausen, Sønnik

    2012-01-01

    . The spectra have been recorded in a high-temperature flow gas cell and using a Fourier transform infrared (FTIR) spectrometer at a nominal resolution of 0.125 cm-1. The volume fractions of CO2 in the measurements were 1,10 and 100%. The measurements have been validated by comparison with medium...

  6. Quantum interpolation for high-resolution sensing.

    Science.gov (United States)

    Ajoy, Ashok; Liu, Yi-Xiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Bissbort, Ulf; Cappellaro, Paola

    2017-02-28

    Recent advances in engineering and control of nanoscale quantum sensors have opened new paradigms in precision metrology. Unfortunately, hardware restrictions often limit the sensor performance. In nanoscale magnetic resonance probes, for instance, finite sampling times greatly limit the achievable sensitivity and spectral resolution. Here we introduce a technique for coherent quantum interpolation that can overcome these problems. Using a quantum sensor associated with the nitrogen vacancy center in diamond, we experimentally demonstrate that quantum interpolation can achieve spectroscopy of classical magnetic fields and individual quantum spins with orders of magnitude finer frequency resolution than conventionally possible. Not only is quantum interpolation an enabling technique to extract structural and chemical information from single biomolecules, but it can be directly applied to other quantum systems for superresolution quantum spectroscopy.

  7. High Resolution RPCs for Large TOF Systems

    CERN Document Server

    Ferreira-Marques, R; CERN. Geneva; Carolino, N; Policarpo, Armando; Fonte, P

    1999-01-01

    Here we report on a particular type of RPC that presents above 95% efficiency for minimum ionizing particles and a very sharp time resolution, below 80 ps sigma. Our 9cm2 cells, made with glass and metal electrodes that form accurately spaced gaps of a few hundred micrometers, are operated at atmospheric pressure in non-flammable gases and can be economically produced in large quantities, opening perspectives for the construction of large area timeof flight systems.

  8. Ultra-high resolution electron microscopy

    Science.gov (United States)

    Oxley, Mark P.; Lupini, Andrew R.; Pennycook, Stephen J.

    2017-02-01

    The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. We briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.

  9. High resolution RPC's for large TOF systems

    CERN Document Server

    Fonte, Paulo J R; Pinhão, J; Carolino, N; Policarpo, Armando

    2000-01-01

    Here we report on a particular type of RPC that presents up to 99% efficiency for minimum ionizing particles and a very good time resolution, below 50 ps s for the most optimized construction. Our 9 cm2 cells, made with glass and metal electrodes that form accurately spaced gaps of a few hundred micrometers, are operated at atmospheric pressure in non-flammable gases and can be economically produced in large quantities, opening perspectives for the construction of large area time of flight systems.

  10. High resolution IVEM tomography of biological specimens

    Energy Technology Data Exchange (ETDEWEB)

    Sedat, J.W.; Agard, D.A. [Univ. of California, San Francisco, CA (United States)

    1997-02-01

    Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. The introduction of intermediate voltage electron microscopes further extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety of cellular organelles and assemblies such as centrosomes, kinetochores, and chromatin have clearly demonstrated the power of this technique for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significant new insights into biological function.

  11. DSCOVR High Time Resolution Solar Wind Measurements

    Science.gov (United States)

    Szabo, Adam

    2012-01-01

    The Deep Space Climate Observatory (DSCOVR), previously known as Triana, spacecraft is expected to be launched in late 2014. It will carry a fluxgate magnetometer, Faraday Cup solar wind detector and a top-hat electron electrostatic analyzer. The Faraday Cup will provide an unprecedented 10 vectors/sec time resolution measurement of the solar wind proton and alpha reduced distribution functions. Coupled with the 40 vector/sec vector magnetometer measurements, the identification of specific wave modes in the solar wind will be possible for the first time. The science objectives and data products of the mission will be discussed.

  12. Nanosecond microscopy with a high spectroscopic resolution

    CERN Document Server

    Heinrich, C; Ritsch-Marte, M; Bernet, Stefan; Heinrich, Christoph; Ritsch-Marte, Monika

    2005-01-01

    We demonstrate coherent anti-Stokes Raman scattering (CARS) microscopy in a wide-field setup with nanosecond laser pulse excitation. In contrast to confocal setups, the image of a sample can be recorded with a single pair of excitation pulses. For this purpose the excitation geometry is specially designed in order to satisfy the phase matching condition over the whole sample area. The spectral, temporal and spatial sensitivity of the method is demonstrated by imaging test samples, i.e. oil vesicles in sunflower seeds, on a nanosecond timescale. The method provides snapshot imaging in 3 nanoseconds with a spectral resolution of 25 wavenumbers (cm$^{-1}$).

  13. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  14. Towards high resolution data assimilation and ensemble forecasting

    NARCIS (Netherlands)

    Stappers, R.J.J.

    2013-01-01

    Due the increase in computational power of supercomputers the grid resolution of high resolution numerical weather prediction models is now reaching the 1 km scale. As a result, mesoscale processes related to high impact weather (such as deep convection) can now explicitly be resolved by the models.

  15. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  16. High-Speed Smart Camera with High Resolution

    Directory of Open Access Journals (Sweden)

    J. Dubois

    2007-02-01

    Full Text Available High-speed video cameras are powerful tools for investigating for instance the biomechanics analysis or the movements of mechanical parts in manufacturing processes. In the past years, the use of CMOS sensors instead of CCDs has enabled the development of high-speed video cameras offering digital outputs, readout flexibility, and lower manufacturing costs. In this paper, we propose a high-speed smart camera based on a CMOS sensor with embedded processing. Two types of algorithms have been implemented. A compression algorithm, specific to high-speed imaging constraints, has been implemented. This implementation allows to reduce the large data flow (6.55 Gbps and to propose a transfer on a serial output link (USB 2.0. The second type of algorithm is dedicated to feature extraction such as edge detection, markers extraction, or image analysis, wavelet analysis, and object tracking. These image processing algorithms have been implemented into an FPGA embedded inside the camera. These implementations are low-cost in terms of hardware resources. This FPGA technology allows us to process in real time 500 images per second with a 1280×1024 resolution. This camera system is a reconfigurable platform, other image processing algorithms can be implemented.

  17. High-Speed Smart Camera with High Resolution

    Directory of Open Access Journals (Sweden)

    Mosqueron R

    2007-01-01

    Full Text Available High-speed video cameras are powerful tools for investigating for instance the biomechanics analysis or the movements of mechanical parts in manufacturing processes. In the past years, the use of CMOS sensors instead of CCDs has enabled the development of high-speed video cameras offering digital outputs, readout flexibility, and lower manufacturing costs. In this paper, we propose a high-speed smart camera based on a CMOS sensor with embedded processing. Two types of algorithms have been implemented. A compression algorithm, specific to high-speed imaging constraints, has been implemented. This implementation allows to reduce the large data flow (6.55 Gbps and to propose a transfer on a serial output link (USB 2.0. The second type of algorithm is dedicated to feature extraction such as edge detection, markers extraction, or image analysis, wavelet analysis, and object tracking. These image processing algorithms have been implemented into an FPGA embedded inside the camera. These implementations are low-cost in terms of hardware resources. This FPGA technology allows us to process in real time 500 images per second with a 1280×1024 resolution. This camera system is a reconfigurable platform, other image processing algorithms can be implemented.

  18. Mauna Kea Spectrographic Explorer (MSE): a conceptual design for multi-object high resolution spectrograph

    Science.gov (United States)

    Zhang, Kai; Zhu, Yongtian; Hu, Zhongwen

    2016-08-01

    The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multi-object spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 40,000. MSE will develop two spectrographic facilities to meet the science requirements. These are respectively, the Low/Medium Resolution spectrographs (LMRS) and High Resolution spectrographs (HRS). Multi-object high resolution spectrographs with total of 1,156 fibers is a big challenge, one that has never been attempted for a 10m class telescope. To date, most spectral survey facilities work in single order low/medium resolution mode, and only a few Wide Field Spectrographs (WFS) provide a cross-dispersion high resolution mode with a limited number of orders. Nanjing Institute of Astronomical Optics and Technology (NIAOT) propose a conceptual design with the use of novel image slicer arrays and single order immersed Volume Phase Holographic (VPH) grating for the MSE multi-object high resolution spectrographs. The conceptual scheme contains six identical fiber-link spectrographs, each of which simultaneously covers three restricted bands (λ/30, λ/30, λ/15) in the optical regime, with spectral resolution of 40,000 in Blue/Visible bands (400nm / 490nm) and 20,000 in Red band (650nm). The details of the design is presented in this paper.

  19. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  20. The high spectral resolution (scanning) lidar (HSRL)

    Energy Technology Data Exchange (ETDEWEB)

    Eloranta, E. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    Lidars enable the spatial resolution of optical depth variation in clouds. The optical depth must be inverted from the backscatter signal, a process which is complicated by the fact that both molecular and aerosol backscatter signals are present. The HSRL has the advantage of allowing these two signals to be separated. It has a huge dynamic range, allowing optical depth retrieval for t = 0.01 to 3. Depolarization is used to determine the nature of hydrometeors present. Experiments show that water clouds must almost always be taken into account during cirrus observations. An exciting new development is the possibility of measuring effective radius via diffraction peak width and variable field-of-view measurements. 2 figs.

  1. Studying stellar populations at high spectral resolution

    CERN Document Server

    Bruzual, Gustavo A

    2007-01-01

    I describe very briefly the new libraries of empirical spectra of stars covering wide ranges of values of the atmospheric parameters Teff, log g, [Fe/H], as well as spectral type, that have become available in the recent past, among them the HNGSL, MILES, UVES-POP, ELODIE, and the IndoUS libraries. I show the results of using the IndoUS and the HNGSL libraries, as well as an atlas of theoretical model atmospheres, to build population synthesis models. These libraries are complementary in spectral resolution and wavelength coverage, and will prove extremely useful to describe spectral features expected in galaxy spectra from the NUV to the NIR. The fits to observed galaxy spectra using simple and composite stellar population models are discussed.

  2. A high-resolution vehicle emission inventory for China

    Science.gov (United States)

    Zheng, B.; Zhang, Q.; He, K.; Huo, H.; Yao, Z.; Wang, X.

    2012-12-01

    Developing high resolution emission inventory is an essential task for air quality modeling and management. However, current vehicle emission inventories in China are usually developed at provincial level and then allocated to grids based on various spatial surrogates, which is difficult to get high spatial resolution. In this work, we developed a new approach to construct a high-resolution vehicle emission inventory for China. First, vehicle population at county level were estimated by using the relationship between per-capita GDP and vehicle ownership. Then the Weather Research and Forecasting (WRF) model were used to drive the International Vehicle Emission (IVE) model to get monthly emission factors for each county. Finally, vehicle emissions by county were allocated to grids with 5-km horizon resolution by using high-resolution road network data. This work provides a better understanding of spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  3. Towards optical intensity interferometry for high angular resolution stellar astrophysics

    CERN Document Server

    Nunez, Paul D

    2012-01-01

    Most neighboring stars are still detected as point sources and are beyond the angular resolution reach of current observatories. Methods to improve our understanding of stars at high angular resolution are investigated. Air Cherenkov telescopes (ACTs), primarily used for Gamma-ray astronomy, enable us to increase our understanding of the circumstellar environment of a particular system. When used as optical intensity interferometers, future ACT arrays will allow us to detect stars as extended objects and image their surfaces at high angular resolution. Optical stellar intensity interferometry (SII) with ACT arrays, composed of nearly 100 telescopes, will provide means to measure fundamental stellar parameters and also open the possibility of model-independent imaging. A data analysis algorithm is developed and permits the reconstruction of high angular resolution images from simulated SII data. The capabilities and limitations of future ACT arrays used for high angular resolution imaging are investigated via ...

  4. Research Relative to High Spatial Resolution Passive Microwave Sounding Systems

    Science.gov (United States)

    Staelin, D. H.; Rosenkranz, P. W.

    1984-01-01

    Methods to obtain high resolution passive microwave weather observations, and understanding of their probable impact on numerical weather prediction accuracy were investigated. The development of synthetic aperture concepts for geosynchronous passive microwave sounders were studied. The effects of clouds, precipitation, surface phenomena, and atmospheric thermal fine structure on a scale of several kilometers were examined. High resolution passive microwave sounders (e.g., AMSU) with an increased number of channels will produce initialization data for numerical weather prediction (NWP) models with both increased spatial resolution and coverage. The development of statistical models for error growth in high resolution primitive equation NWP models which permit the consequences of various observing system alternatives, including sensors and assimilation times and procedures is discussed. A high resolution three dimensional primitive equation NWP model to determine parameters in an error growth model similar to that formulated by Lorenz, but with more degrees of freedom is utilized.

  5. Whole-animal imaging with high spatio-temporal resolution

    Science.gov (United States)

    Chhetri, Raghav; Amat, Fernando; Wan, Yinan; Höckendorf, Burkhard; Lemon, William C.; Keller, Philipp J.

    2016-03-01

    We developed isotropic multiview (IsoView) light-sheet microscopy in order to image fast cellular dynamics, such as cell movements in an entire developing embryo or neuronal activity throughput an entire brain or nervous system, with high resolution in all dimensions, high imaging speeds, good physical coverage and low photo-damage. To achieve high temporal resolution and high spatial resolution at the same time, IsoView microscopy rapidly images large specimens via simultaneous light-sheet illumination and fluorescence detection along four orthogonal directions. In a post-processing step, these four views are then combined by means of high-throughput multiview deconvolution to yield images with a system resolution of ≤ 450 nm in all three dimensions. Using IsoView microscopy, we performed whole-animal functional imaging of Drosophila embryos and larvae at a spatial resolution of 1.1-2.5 μm and at a temporal resolution of 2 Hz for up to 9 hours. We also performed whole-brain functional imaging in larval zebrafish and multicolor imaging of fast cellular dynamics across entire, gastrulating Drosophila embryos with isotropic, sub-cellular resolution. Compared with conventional (spatially anisotropic) light-sheet microscopy, IsoView microscopy improves spatial resolution at least sevenfold and decreases resolution anisotropy at least threefold. Compared with existing high-resolution light-sheet techniques, such as lattice lightsheet microscopy or diSPIM, IsoView microscopy effectively doubles the penetration depth and provides subsecond temporal resolution for specimens 400-fold larger than could previously be imaged.

  6. Device overlay method for high volume manufacturing

    Science.gov (United States)

    Lee, Honggoo; Han, Sangjun; Kim, Youngsik; Kim, Myoungsoo; Heo, Hoyoung; Jeon, Sanghuck; Choi, DongSub; Nabeth, Jeremy; Brinster, Irina; Pierson, Bill; Robinson, John C.

    2016-03-01

    Advancing technology nodes with smaller process margins require improved photolithography overlay control. Overlay control at develop inspection (DI) based on optical metrology targets is well established in semiconductor manufacturing. Advances in target design and metrology technology have enabled significant improvements in overlay precision and accuracy. One approach to represent in-die on-device as-etched overlay is to measure at final inspection (FI) with a scanning electron microscope (SEM). Disadvantages to this approach include inability to rework, limited layer coverage due to lack of transparency, and higher cost of ownership (CoO). A hybrid approach is investigated in this report whereby infrequent DI/FI bias is characterized and the results are used to compensate the frequent DI overlay results. The bias characterization is done on an infrequent basis, either based on time or triggered from change points. On a per-device and per-layer basis, the optical target overlay at DI is compared with SEM on-device overlay at FI. The bias characterization results are validated and tracked for use in compensating the DI APC controller. Results of the DI/FI bias characterization and sources of variation are presented, as well as the impact on the DI correctables feeding the APC system. Implementation details in a high volume manufacturing (HVM) wafer fab will be reviewed. Finally future directions of the investigation will be discussed.

  7. High resolution resonant recombination measurements using evaporative cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Beilmann, C; Lopez-Urrutia, J R Crespo; Mokler, P H; Ullrich, J, E-mail: christian.beilmann@mpi-hd.mpg.d [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2010-09-15

    We report on a method significantly improving the energy resolution of dielectronic recombination (DR) measurements in electron beam ion traps (EBITs). The line width of DR resonances can be reduced to values distinctly smaller than the corresponding space charge width of the uncompensated electron beam. The experimental technique based on forced evaporative cooling is presented together with test measurements demonstrating its high efficiency. The principle for resolution improvement is elucidated and the limiting factors are discussed. This method opens access to high resolution DR measurements at high ion-electron collision energies required for innermost shell DR in highly charged ions (HCI).

  8. SMILE Microscopy : fast and single-plane based super-resolution volume imaging

    CERN Document Server

    Mondal, Partha Pratim

    2016-01-01

    Fast 3D super-resolution imaging is essential for decoding rapidly occurring biological processes. Encoding single molecules to their respective planes enable simultaneous multi-plane super-resolution volume imaging. This saves the data-acquisition time and as a consequence reduce radiation-dose that lead to photobleaching and other undesirable photochemical reactions. Detection and subsequent identification of the locus of individual molecule (both on the focal plane and off-focal planes) holds the key. Experimentally, this is achieved by accurate calibration of system PSF size and its natural spread in off-focal planes using sub-diffraction fluorescent beads. Subsequently the identification and sorting of single molecules that belong to different axial planes is carried out (by setting multiple cut-offs to respective PSFs). Simultaneous Multiplane Imaging based Localization Encoded (SMILE) microscopy technique eliminates the need for multiple z-plane scanning and thereby provides a truly simultaneous multip...

  9. Cheetah: A high frame rate, high resolution SWIR image camera

    Science.gov (United States)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  10. A high-resolution time-to-digital converter using a three-level resolution

    Science.gov (United States)

    Dehghani, Asma; Saneei, Mohsen; Mahani, Ali

    2016-08-01

    In this article, a three-level resolution Vernier delay line time-to-digital converter (TDC) was proposed. The proposed TDC core was based on the pseudo-differential digital architecture that made it insensitive to nMOS and pMOS transistor mismatches. It also employed a Vernier delay line (VDL) in conjunction with an asynchronous read-out circuitry. The time interval resolution was equal to the difference of delay between buffers of upper and lower chains. Then, via the extra chain included in the lower delay line, resolution was controlled and power consumption was reduced. This method led to high resolution and low power consumption. The measurement results of TDC showed a resolution of 4.5 ps, 12-bit output dynamic range, and integral nonlinearity of 1.5 least significant bits. This TDC achieved the consumption of 68.43 µW from 1.1-V supply.

  11. Updating Maps Using High Resolution Satellite Imagery

    Science.gov (United States)

    Alrajhi, Muhamad; Shahzad Janjua, Khurram; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Kingdom of Saudi Arabia is one of the most dynamic countries of the world. We have witnessed a very rapid urban development's which are altering Kingdom's landscape on daily basis. In recent years a substantial increase in urban populations is observed which results in the formation of large cities. Considering this fast paced growth, it has become necessary to monitor these changes, in consideration with challenges faced by aerial photography projects. It has been observed that data obtained through aerial photography has a lifecycle of 5-years because of delay caused by extreme weather conditions and dust storms which acts as hindrances or barriers during aerial imagery acquisition, which has increased the costs of aerial survey projects. All of these circumstances require that we must consider some alternatives that can provide us easy and better ways of image acquisition in short span of time for achieving reliable accuracy and cost effectiveness. The approach of this study is to conduct an extensive comparison between different resolutions of data sets which include: Orthophoto of (10 cm) GSD, Stereo images of (50 cm) GSD and Stereo images of (1 m) GSD, for map updating. Different approaches have been applied for digitizing buildings, roads, tracks, airport, roof level changes, filling stations, buildings under construction, property boundaries, mosques buildings and parking places.

  12. Sunspot Group Development in High Resolution

    CERN Document Server

    Muraközy, J; Ludmány, A

    2014-01-01

    The Solar and Heliospheric Obseratory/Michelson Doppler Imager--Debrecen Data (SDD) sunspot catalogue provides an opportunity to study the details and development of sunspot groups on a large statistical sample. The SDD data allow, in particular, the differential study of the leading and following parts with a temporal resolution of 1.5 hours. In this study, we analyse the equilibrium distance of sunspot groups as well as the evolution of this distance over the lifetime of the groups and the shifts in longitude associated with these groups. We also study the asymmetry between the compactness of the leading and following parts, as well as the time-profiles for the development of the area of sunspot groups. A logarithmic relationship has been found between the total area and the distance of leading-following parts of active regions (ARs) at the time of their maximum area. In the developing phase the leading part moves forward; this is more noticeable in larger ARs. The leading part has a higher growth rate than...

  13. Wide-field, high-resolution Fourier ptychographic microscopy

    CERN Document Server

    Zheng, Guoan; Yang, Changhuei

    2014-01-01

    In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope's depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 um, a field-of-view of ~120 mm2, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify FPM's successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system's optics to one that is solvable through computation.

  14. Intravitreal bevacizumab combined with plaque brachytherapy reduces melanoma tumor volume and enhances resolution of exudative detachment

    Directory of Open Access Journals (Sweden)

    Houston SK

    2013-01-01

    Full Text Available Samuel K Houston,1 Nisha V Shah,1 Christina Decatur,1 Marcela Lonngi,1 William Feuer,1 Arnold M Markoe,2 Timothy G Murray1–31Department of Ophthalmology, 2Department of Radiation Oncology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 3Murray Ocular Oncology and Retina, Miami, FL, USABackground: The purpose of this study was to evaluate intravitreal bevacizumab as an adjuvant treatment to plaque brachytherapy in the treatment of choroidal melanoma.Methods: This was a retrospective, consecutive study of 124 patients treated from 2007 to 2009 for choroidal melanoma with plaque brachytherapy. Patients were treated with I-125 plaque brachytherapy with 2 mm margins and 85 Gy to the tumor apex. Consecutive patients were injected intravitreally with 2.5 mg/0.1 mL bevacizumab at a site away from the primary tumor and immediately following plaque removal. Choroidal melanomas were observed using indirect ophthalmoscopy, wide-angle photography, and ultrasound. The main outcome measures were tumor volume, resolution of exudative retinal detachment, and visual acuity.Results: One hundred and twenty-four patients met our inclusion criteria and were included in the analysis. The mean patient age was 65.7 years, and the mean apical tumor height was 4.0 ± 2.7 mm and basal diameter was 12.7 ± 3.0 mm. Mean follow-up was 24 months. Prior to treatment, 100% of tumors had exudative retinal detachment, and pretreatment visual acuity was 20/55 (median 20/40. Tumor control was 100%, metastasis was 0% at last follow-up, and 89.8% had complete resolution of exudative retinal detachment, with a mean time to resolution of 3.36 months. At one month, 43% had complete resolution of exudative retinal detachment, which increased to 73% at 4 months. Visual acuity was 20/62 (median 20/40 at 4 months, with stabilization to 20/57 (median 20/40 at 8 months, 20/56 (median 20/30 at 12 months, and 20/68 (median 20/50 at 24 months. Tumor

  15. A High Resolution Low Dissipation Hybrid Scheme for Compressible Flows

    Institute of Scientific and Technical Information of China (English)

    YU Jian; YAN Chao; JIANG Zhenhua

    2011-01-01

    In this paper,an efficient hybrid shock capturing scheme is proposed to obtain accurate results both in the smooth region and around discontinuities for compressible flows.The hybrid algorithm is based on a fifth-order weighted essentially non-oscillatory (WENO) scheme in the finite volume form to solve the smooth part of the flow field,which is coupled with a characteristic-based monotone upstream-centered scheme for conservation laws(MUSCL) to capture discontinuities.The hybrid scheme is intended to combine high resolution of MUSCL scheme and low dissipation of WENO scheme.The two ingredients in this hybrid scheme are switched with an indicator.Three typical indicators are chosen and compared.MUSCL and WENO are both shock capturing schemes making the choice of the indicator parameter less crucial.Several test cases are carried out to investigate hybrid scheme with different indicators in terms of accuracy and efficiency.Numerical results demonstrate that the hybrid scheme in the present work performs well in a broad range of problems.

  16. Implementation of high-resolution reticle inspection in wafer fabs

    Science.gov (United States)

    Dayal, Aditya; Bergmann, Nathan M.; Sanchez, Peter

    2003-05-01

    Many advanced wafer fabs are currently fabricating devices with 130nm or smaller design rules. To meet the challenges at these sub-wavelength technology nodes, fabs are using a variety of resolution enhancement techniques (RETs) in lithography and exploring new methods of processing, inspecting and requalifying photomasks. The acceleration of the lithography roadmap imposes more stringent requirements on mask qualification and requalification to ensure that device yields are not compromised: mask inspection tools of today need to find smaller defects on reticles against considerably more complicated patterns or tighter critical dimensions (CDs). In this paper we describe the early stages of implementation and proliferation of advanced reticle inspection tools at high volume manufacturing wafer fabs. The fabs run incoming multi-surface contamination inspections on masks sent from the mask shop (Intel Mask Operations, IMO), and follow them up with periodic inspections/review to make sure any new contaminant or damage does not go undetected. When necessary, images of defects are electronically presented to engineers at IMO for review. Reticle requalification with these inspection tools reduces or eliminates the need for print test verification. We describe the tools and procedure used to streamline reticle requalification at the fabs and improve the feedback loop between the fabs and the mask shop.

  17. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    We present high resolution upconversion of incoherent infrared radiation by means of sum-frequency mixing with a laser followed by simple CCD Si-camera detection. Noise associated with upconversion is, in strong contrast to room temperature direct mid-IR detection, extremely small, thus very faint...... signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...

  18. Achieving High Resolution Timer Events in Virtualized Environment.

    Science.gov (United States)

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  19. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... to, for example, atmospheric research, combustion and gasification. Some high-temperature, high-resolution IR/UV absorption/transmission measurements gases (e.g. CO2, SO2, SO3 and phenol) are presented....

  20. Ultra-high resolution and high-brightness AMOLED

    Science.gov (United States)

    Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave

    2012-06-01

    As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.

  1. Spatially adaptive regularized iterative high-resolution image reconstruction algorithm

    Science.gov (United States)

    Lim, Won Bae; Park, Min K.; Kang, Moon Gi

    2000-12-01

    High resolution images are often required in applications such as remote sensing, frame freeze in video, military and medical imaging. Digital image sensor arrays, which are used for image acquisition in many imaging systems, are not dense enough to prevent aliasing, so the acquired images will be degraded by aliasing effects. To prevent aliasing without loss of resolution, a dense detector array is required. But it may be very costly or unavailable, thus, many imaging systems are designed to allow some level of aliasing during image acquisition. The purpose of our work is to reconstruct an unaliased high resolution image from the acquired aliased image sequence. In this paper, we propose a spatially adaptive regularized iterative high resolution image reconstruction algorithm for blurred, noisy and down-sampled image sequences. The proposed approach is based on a Constrained Least Squares (CLS) high resolution reconstruction algorithm, with spatially adaptive regularization operators and parameters. These regularization terms are shown to improve the reconstructed image quality by forcing smoothness, while preserving edges in the reconstructed high resolution image. Accurate sub-pixel motion registration is the key of the success of the high resolution image reconstruction algorithm. However, sub-pixel motion registration may have some level of registration error. Therefore, a reconstruction algorithm which is robust against the registration error is required. The registration algorithm uses a gradient based sub-pixel motion estimator which provides shift information for each of the recorded frames. The proposed algorithm is based on a technique of high resolution image reconstruction, and it solves spatially adaptive regularized constrained least square minimization functionals. In this paper, we show that the reconstruction algorithm gives dramatic improvements in the resolution of the reconstructed image and is effective in handling the aliased information. The

  2. Sensitivity study of reliable, high-throughput resolution metricsfor photoresists

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Christopher N.; Naulleau, Patrick P.

    2007-07-30

    The resolution of chemically amplified resists is becoming an increasing concern, especially for lithography in the extreme ultraviolet (EUV) regime. Large-scale screening and performance-based down-selection is currently underway to identify resist platforms that can support shrinking feature sizes. Resist screening efforts, however, are hampered by the absence of reliable resolution metrics that can objectively quantify resist resolution in a high-throughput fashion. Here we examine two high-throughput metrics for resist resolution determination. After summarizing their details and justifying their utility, we characterize the sensitivity of both metrics to two of the main experimental uncertainties associated with lithographic exposure tools, namely: limited focus control and limited knowledge of optical aberrations. For an implementation at EUV wavelengths, we report aberration and focus limited error bars in extracted resolution of {approx} 1.25 nm RMS for both metrics making them attractive candidates for future screening and down-selection efforts.

  3. fMRI at High Spatial Resolution: Implications for BOLD-Models.

    Science.gov (United States)

    Goense, Jozien; Bohraus, Yvette; Logothetis, Nikos K

    2016-01-01

    As high-resolution functional magnetic resonance imaging (fMRI) and fMRI of cortical layers become more widely used, the question how well high-resolution fMRI signals reflect the underlying neural processing, and how to interpret laminar fMRI data becomes more and more relevant. High-resolution fMRI has shown laminar differences in cerebral blood flow (CBF), volume (CBV), and neurovascular coupling. Features and processes that were previously lumped into a single voxel become spatially distinct at high resolution. These features can be vascular compartments such as veins, arteries, and capillaries, or cortical layers and columns, which can have differences in metabolism. Mesoscopic models of the blood oxygenation level dependent (BOLD) response therefore need to be expanded, for instance, to incorporate laminar differences in the coupling between neural activity, metabolism and the hemodynamic response. Here we discuss biological and methodological factors that affect the modeling and interpretation of high-resolution fMRI data. We also illustrate with examples from neuropharmacology and the negative BOLD response how combining BOLD with CBF- and CBV-based fMRI methods can provide additional information about neurovascular coupling, and can aid modeling and interpretation of high-resolution fMRI.

  4. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes.

    Science.gov (United States)

    Yang, Yongfeng; Dokhale, Purushottam A; Silverman, Robert W; Shah, Kanai S; McClish, Mickel A; Farrell, Richard; Entine, Gerald; Cherry, Simon R

    2006-05-07

    We explore dual-ended read out of LSO arrays with two position sensitive avalanche photodiodes (PSAPDs) as a high resolution, high efficiency depth-encoding detector for PET applications. Flood histograms, energy resolution and depth of interaction (DOI) resolution were measured for unpolished LSO arrays with individual crystal sizes of 1.0, 1.3 and 1.5 mm, and for a polished LSO array with 1.3 mm pixels. The thickness of the crystal arrays was 20 mm. Good flood histograms were obtained for all four arrays, and crystals in all four arrays can be clearly resolved. Although the amplitude of each PSAPD signal decreases as the interaction depth moves further from the PSAPD, the sum of the two PSAPD signals is essentially constant with irradiation depth for all four arrays. The energy resolutions were similar for all four arrays, ranging from 14.7% to 15.4%. A DOI resolution of 3-4 mm (including the width of the irradiation band which is approximately 2 mm) was obtained for all the unpolished arrays. The best DOI resolution was achieved with the unpolished 1 mm array (average 3.5 mm). The DOI resolution for the 1.3 mm and 1.5 mm unpolished arrays was 3.7 and 4.0 mm respectively. For the polished array, the DOI resolution was only 16.5 mm. Summing the DOI profiles across all crystals for the 1 mm array only degraded the DOI resolution from 3.5 mm to 3.9 mm, indicating that it may not be necessary to calibrate the DOI response separately for each crystal within an array. The DOI response of individual crystals in the array confirms this finding. These results provide a detailed characterization of the DOI response of these PSAPD-based PET detectors which will be important in the design and calibration of a PET scanner making use of this detector approach.

  5. High Resolution CryoFESEM of Microbial Surfaces

    Science.gov (United States)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  6. High Resolution Orthoimagery = Orthorectified Metro Areas: 2000 - Present

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a...

  7. High-resolution SPECT for small-animal imaging

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency.

  8. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  9. High Resolution Screening of biologically active compounds and metabolites

    NARCIS (Netherlands)

    Kool, J.

    2007-01-01

    High Resolution Screening of biologically active compounds and metabolites Jeroen Kool Biotransformation enzymes play a crucial role in the metabolism of both endogenous compounds and xenobiotics. Usually, the detoxication of these compounds by biotransformation enzymes results in harmless metab

  10. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  11. High Resolution, Range/Range-Rate Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Visidyne proposes to develop a design for a small, lightweight, high resolution, in x, y, and z Doppler imager to assist in the guidance, navigation and control...

  12. Using High Spatial Resolution Digital Imagery

    Science.gov (United States)

    2005-02-01

    frame and a bright area (hot spot) at the center. The same brightness shifts are present within most aerial photography , particularly the pronounced hot...the deciduous trees and shrubs were without leaves. In addition, the reed and grass species were fully senesced . The lack of photosynthetically...For example, high quality, large-scale aerial photography will provide adequate clarity and detail to accurately identify surface features that are

  13. Characterization of segmented large volume, high purity germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [Koeln Univ. (Germany). Inst. fuer Kernphysik

    2006-07-01

    {gamma}-ray tracking in future HPGe arrays like AGATA will rely on pulse shape analysis (PSA) of multiple {gamma}-interactions. For this purpose, a simple and fast procedure was developed which enabled the first full characterization of a segmented large volume HPGe detector. An analytical model for the hole mobility in a Ge crystal lattice was developed to describe the hole drift anisotropy with experimental velocity values along the crystal axis as parameters. The new model is based on the drifted Maxwellian hole distribution in Ge. It is verified by reproducing successfully experimental longitudinal hole anisotropy data. A comparison between electron and hole mobility shows large differences for the longitudinal and tangential velocity anisotropy as a function of the electrical field orientation. Measurements on a 12 fold segmented, n-type, large volume, irregular shaped HPGe detector were performed in order to determine the parameters of anisotropic mobility for electrons and holes as charge carriers created by {gamma}-ray interactions. To characterize the electron mobility the complete outer detector surface was scanned in small steps employing photopeak interactions at 60 keV. A precise measurement of the hole drift anisotropy was performed with 356 keV rays. The drift velocity anisotropy and crystal geometry cause considerable rise time differences in pulse shapes depending on the position of the spatial charge carrier creation. Pulse shapes of direct and transient signals are reproduced by weighting potential calculations with high precision. The measured angular dependence of rise times is caused by the anisotropic mobility, crystal geometry, changing field strength and space charge effects. Preamplified signals were processed employing digital spectroscopy electronics. Response functions, crosstalk contributions and averaging procedures were taken into account implying novel methods due to the segmentation of the Ge-crystal and the digital electronics

  14. High resolution survey for topographic surveying

    Science.gov (United States)

    Luh, L. C.; Setan, H.; Majid, Z.; Chong, A. K.; Tan, Z.

    2014-02-01

    In this decade, terrestrial laser scanner (TLS) is getting popular in many fields such as reconstruction, monitoring, surveying, as-built of facilities, archaeology, and topographic surveying. This is due the high speed in data collection which is about 50,000 to 1,000,000 three-dimensional (3D) points per second at high accuracy. The main advantage of 3D representation for the data is that it is more approximate to the real world. Therefore, the aim of this paper is to show the use of High-Definition Surveying (HDS), also known as 3D laser scanning for topographic survey. This research investigates the effectiveness of using terrestrial laser scanning system for topographic survey by carrying out field test in Universiti Teknologi Malaysia (UTM), Skudai, Johor. The 3D laser scanner used in this study is a Leica ScanStation C10. Data acquisition was carried out by applying the traversing method. In this study, the result for the topographic survey is under 1st class survey. At the completion of this study, a standard of procedure was proposed for topographic data acquisition using laser scanning systems. This proposed procedure serves as a guideline for users who wish to utilize laser scanning system in topographic survey fully.

  15. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors...

  16. High resolution computed tomography for peripheral facial nerve paralysis

    Energy Technology Data Exchange (ETDEWEB)

    Koester, O.; Straehler-Pohl, H.J.

    1987-01-01

    High resolution computer tomographic examinations of the petrous bones were performed on 19 patients with confirmed peripheral facial nerve paralysis. High resolution CT provides accurate information regarding the extent, and usually regarding the type, of pathological process; this can be accurately localised with a view to possible surgical treatments. The examination also differentiates this from idiopathic paresis, which showed no radiological changes. Destruction of the petrous bone, without facial nerve symptoms, makes early suitable treatment mandatory.

  17. Geometric calibration of high-resolution remote sensing sensors

    Institute of Scientific and Technical Information of China (English)

    LIANG Hong-you; GU Xing-fa; TAO Yu; QIAO Chao-fei

    2007-01-01

    This paper introduces the applications of high-resolution remote sensing imagery and the necessity of geometric calibration for remote sensing sensors considering assurance of the geometric accuracy of remote sensing imagery. Then the paper analyzes the general methodology of geometric calibration. Taking the DMC sensor geometric calibration as an example, the paper discusses the whole calibration procedure. Finally, it gave some concluding remarks on geometric calibration of high-resolution remote sensing sensors.

  18. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, some...... of the computations we present have never before been carried out by standard desktop computers on data sets of comparable size....

  19. Pulse volume discharges in high pressure gases

    Science.gov (United States)

    Yamshchikov, V. A.

    2015-11-01

    New approach for suppression of plasma inhomogeneities and instabilities in the volume self-sustained discharge is offered. The physical model is offered and conditions of obtaining extremely homogeneous self-sustained discharge are defined (with full suppression of plasma inhomogeneity and instability). Results of calculations agree with experiments.

  20. Dynamics of High-Resolution Networks

    DEFF Research Database (Denmark)

    Sekara, Vedran

    NETWORKS are everywhere. From the smallest confines of the cells within our bodies to the webs of social relations across the globe. Networks are not static, they constantly change, adapt, and evolve to suit new conditions. In order to understand the fundamental laws that govern networks we need...... the unprecedented amounts of information collected by mobile phones to gain detailed insight into the dynamics of social systems. This dissertation presents an unparalleled data collection campaign, collecting highly detailed traces for approximately 1000 people over the course of multiple years. The availability...

  1. High-resolution noise radar using slow ADC

    Science.gov (United States)

    Lukin, Konstantin; Vyplavin, Pavlo; Zemlyanyi, Oleg; Lukin, Sergiy; Palamarchuk, Volodymyr

    2011-06-01

    Conventional digital signal processing scheme in noise radars has some limitations related to combination of high resolution and high dynamic range. Those limitations are caused by a tradeoff in performance of currently available ADCs: the faster is ADC the smaller is its depth (number of bits) available. Depth of the ADC determines relation between the smallest and highest observable signals and thus limits its dynamic range. In noise radar with conventional processing the sounding and reference signals are to be digitized at intermediate frequency band and to be processed digitally. The power spectrum bandwidth of noise signal which can be digitized with ADC depends on its sampling rate. The bandwidth of radar signal defines range resolution of any radar: the wider the spectrum the better the resolution. Actually this is the main bottleneck of high resolution Noise Radars: conventional processing doesn't enable to get both high range resolution and high dynamic range. In the paper we present a way to go around this drawback by changing signal processing ideology in noise radar. We present results of our consideration and design of high resolution Noise Radar which uses slow ADCs. The design is based upon generation of both probing and reference signals digitally and realization of their cross-correlation in an analog correlator. The output of the correlator is a narrowband signal that requires rather slow ADC to be sampled which nowadays may give up to 130 dB dynamic range.

  2. High resolution 3-D wavelength diversity imaging

    Science.gov (United States)

    Farhat, N. H.

    1981-09-01

    A physical optics, vector formulation of microwave imaging of perfectly conducting objects by wavelength and polarization diversity is presented. The results provide the theoretical basis for optimal data acquisition and three-dimensional tomographic image retrieval procedures. These include: (a) the selection of highly thinned (sparse) receiving array arrangements capable of collecting large amounts of information about remote scattering objects in a cost effective manner and (b) techniques for 3-D tomographic image reconstruction and display in which polarization diversity data is fully accounted for. Data acquisition employing a highly attractive AMTDR (Amplitude Modulated Target Derived Reference) technique is discussed and demonstrated by computer simulation. Equipment configuration for the implementation of the AMTDR technique is also given together with a measurement configuration for the implementation of wavelength diversity imaging in a roof experiment aimed at imaging a passing aircraft. Extension of the theory presented to 3-D tomographic imaging of passive noise emitting objects by spectrally selective far field cross-correlation measurements is also given. Finally several refinements made in our anechoic-chamber measurement system are shown to yield drastic improvement in performance and retrieved image quality.

  3. Nanoimprint Lithography -A Next Generation High Volume Lithography Technique

    Institute of Scientific and Technical Information of China (English)

    R.Pelzer; P.Lindner; T.Glinsner; B.Vratzov; C.Gourgon; S.Landis; P.Kettner; C.Schaefer

    2004-01-01

    Nanoimprint Lithography has been demonstrated to be one of the most promising next generation techniques for large-area structure replication in the nanometer scale.This fast and low cost method becomes an increasingly important instrument for fabrication of biochemistry,μ-fluidic,μ-TAS and telecommunication devices,as well as for a wide variety of fields in the nm range,like biomedical,nano-fluidics,nano-optical applications,data storage,etc.Due to the restrictions on wavelength and the enormous development works,linked to high process and equipment costs on standard lithography systems,nanoimprint lithography might become a real competitive method in mainstream IC industry.There are no physical limitations encountered with imprinting techniques for much smaller replicated structures,down to the sub-10nm range [1].Among several Nanoimprint lithography techniques results of two promising methods,hot embossing lithography(HEL)and UV-nanoimprinting(UV-NIL)will be presented.Both techniques allow rapid prototyping as well as high volume production of fully patterned substrates for a wide range of materials.This paper will present results on HE and UVNIL,among them full wafer imprints up to 200mm with high-resolution patterns down to nm range.

  4. High-resolution gravity model of Venus

    Science.gov (United States)

    Reasenberg, R. D.; Goldberg, Z. M.

    1992-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  5. A Very High Spatial Resolution Detector for Small Animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Kanai Shah, M.S.

    2007-03-06

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated.

  6. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  7. High-resolution spectroscopy of gamma-ray transients

    Energy Technology Data Exchange (ETDEWEB)

    Cline, T.L.

    1988-09-25

    The first high-resolution spectrometer flown to observe gamma-ray bursts was launched on the ISEE-3 spacecraft over nine years ago. It recorded two events before instrument failure, giving results that were suggestive but marginal. Other studies, with coarser energy resolution, also show evidence for spectral features as well as for spectral evolution on short time scales. Absolute source strength calibration will be possible only with source identification, but understanding of the burst emission processes will surely come only from the measurements having the best spectral and temporal precision. The only high- resolution gamma-ray spectrometer now planned, here or abroad, for space flight is an instrument sequel to the ISEE-3 spectrometer, to be flown on the interplanetary 'GGS Wind' mission. Much larger and higher-sensitivity, high-resolution instruments may have their optimum opportunities in conjunction with studies of solar flares in the time frame of the solar maximum of 2002.

  8. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  9. Climatologies at high resolution for the Earth land surface areas

    CERN Document Server

    Karger, Dirk Nikolaus; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus; Linder, H Peter; Kessler, Michael

    2016-01-01

    High resolution information of climatic conditions is essential to many application in environmental sciences. Here we present the CHELSA algorithm to downscale temperature and precipitation estimates from the European Centre for Medium-Range Weather Forecast (ECMWF) climatic reanalysis interim (ERA-Interim) to a high resolution of 30 arc sec. The algorithm for temperature is based on a statistical downscaling of atmospheric temperature from the ERA-Interim climatic reanalysis. The precipitation algorithm incorporates orographic predictors such as wind fields, valley exposition, and boundary layer height, and a bias correction using Global Precipitation Climatology Center (GPCC) gridded and Global Historical Climate Network (GHCN) station data. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979-2013. We present a comparison of data derived from the CHELSA algorithm with two other high resolution gridded products with overlapping temporal resolution (Tropical R...

  10. High resolution single particle refinement in EMAN2.1.

    Science.gov (United States)

    Bell, James M; Chen, Muyuan; Baldwin, Philip R; Ludtke, Steven J

    2016-05-01

    EMAN2.1 is a complete image processing suite for quantitative analysis of grayscale images, with a primary focus on transmission electron microscopy, with complete workflows for performing high resolution single particle reconstruction, 2-D and 3-D heterogeneity analysis, random conical tilt reconstruction and subtomogram averaging, among other tasks. In this manuscript we provide the first detailed description of the high resolution single particle analysis pipeline and the philosophy behind its approach to the reconstruction problem. High resolution refinement is a fully automated process, and involves an advanced set of heuristics to select optimal algorithms for each specific refinement task. A gold standard FSC is produced automatically as part of refinement, providing a robust resolution estimate for the final map, and this is used to optimally filter the final CTF phase and amplitude corrected structure. Additional methods are in-place to reduce model bias during refinement, and to permit cross-validation using other computational methods.

  11. High resolution temperature measurement technique for measuring marine heat flow

    Institute of Scientific and Technical Information of China (English)

    QIN; YangYang; YANG; XiaoQiu; WU; BaoZhen; SUN; ZhaoHua; SHI; XiaoBin

    2013-01-01

    High resolution temperature measurement technique is one of the key techniques for measuring marine heat flow. Basing on Pt1000 platinum resistance which has the characteristics of high accuracy and good stability, we designed a bridge reversal excitation circuit for high resolution temperature measurement. And the deep ocean floor in-situ test results show that: (1) temperature deviation and peak-to-peak resolution of the first version circuit board (V1) are 1.960-1.990 mK and 0.980-0.995 m Kat 1.2-2.7°C, respectively; and temperature deviation and peak-to-peak resolution of the second circuit board (V2) are 2.260mK and 1.130 mK at 1.2-1.3°C, respectively; (2) During the 2012NSFC-IndOcean cruise, seafloor geothermal gradient at Ind2012HF03,-07 and-12 stations (water depth ranges from 3841 to 4541 m) were successfully measured, the values are 59.1,75.1 and 71.6°C/km, respectively. And the measurement errors of geothermal gradient at these three stations are less than 3.0% in terms of the peak-to-peak resolution. These indicate that the high resolution temperature measurement technique based on Pt1000 platinum resistance in this paper can be applied to marine heat flow measurement to obtain high precision geothermal parameters.

  12. High resolution surface plasmon microscopy for cell imaging

    Science.gov (United States)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  13. Liquid Scintillation High Resolution Spectral Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grau Carles, A.; Grau Malonda, A.

    2010-08-06

    The CIEMAT/NIST and the TDCR methods in liquid scintillation counting are based on the determination of the efficiency for total counting. This paper tries to expand these methods analysing the pulse-height spectrum of radionuclides. To reach this objective we have to generalize the equations used in the model and to analyse the influence of ionization and chemical quench in both spectra and counting efficiency. We present equations to study the influence of different photomultipliers response in systems with one, two or three photomultipliers. We study the effect of the electronic noise discriminator level in both spectra and counting efficiency. The described method permits one to study problems that up to now was not possible to approach, such as the high uncertainty in the standardization of pure beta-ray emitter with low energy when we apply the TDCR method, or the discrepancies in the standardization of some electron capture radionuclides, when the CIEMAT/NIST method is applied. (Author) 107 refs.

  14. Sequential change of high-resolution CT findings of interstitial lung disease in polymyositis and dermatomyositis

    Energy Technology Data Exchange (ETDEWEB)

    Tsukada, Hiroshi; Furuizumi, Naoya; Akita, Shinichi; Oda, Junichi; Sakai, Kunio; Suzuki, Eiichi; Emura, Iwao (Niigata Univ. (Japan). School of Medicine)

    1994-01-01

    Sequential changes of interstitial lung disease in fourteen patients of polymyositis/dermatomyositis (PM/DM) were followed up by high-resolution CT (HRCT). Most frequent CT findings were intense lung attenuation (ILA) with volume loss and slightly increased lung attenuation (SILA). Open lung biopsy was performed in a case with ILA shadow which revealed so-called usual interstitial pneumonia (UIP). Most intense ILA and SILA shadows resolved after steroid therapy. Some of ILA, however, reappeared and accompanied more prominent volume loss findings than before treatment. We think HRCT findings of interstitial lung disease in PM/DM may indicate prognosis of these diagnoses to some degree. (author).

  15. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y; Levin, C S [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M, E-mail: cslevin@stanford.edu [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92093 (United States)

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm x 40 mm x 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 {+-} 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 {+-} 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 {+-} 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  16. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET

    Science.gov (United States)

    Gu, Y.; Matteson, J. L.; Skelton, R. T.; Deal, A. C.; Stephan, E. A.; Duttweiler, F.; Gasaway, T. M.; Levin, C. S.

    2011-03-01

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes—as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  17. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    Science.gov (United States)

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  18. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  19. High-resolution neutron microtomography with noiseless neutron counting detector

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Feller, W.B. [Nova Scientific Inc., 10 Picker Road, Sturbridge, MA 01566 (United States); Lehmann, E. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Butler, L.G. [Louisiana State University, Baton Rouge, LA 70803 (United States); Dawson, M. [Helmholtz Centre Berlin for Materials and Energy (Germany)

    2011-10-01

    The improved collimation and intensity of thermal and cold neutron beamlines combined with recent advances in neutron imaging devices enable high-resolution neutron radiography and microtomography, which can provide information on the internal structure of objects not achievable with conventional X-ray imaging techniques. Neutron detection efficiency, spatial and temporal resolution (important for the studies of dynamic processes) and low background count rate are among the crucial parameters defining the quality of radiographic images and tomographic reconstructions. The unique capabilities of neutron counting detectors with neutron-sensitive microchannel plates (MCPs) and with Timepix CMOS readouts providing high neutron detection efficiency ({approx}70% for cold neutrons), spatial resolutions ranging from 15 to 55 {mu}m and a temporal resolution of {approx}1 {mu}s-combined with the virtual absence of readout noise-make these devices very attractive for high-resolution microtomography. In this paper we demonstrate the capabilities of an MCP-Timepix detection system applied to microtomographic imaging, performed at the ICON cold neutron facility of the Paul Scherrer Institute. The high resolution and the absence of readout noise enable accurate reconstruction of texture in a relatively opaque wood sample, differentiation of internal tissues of a fly and imaging of individual {approx}400 {mu}m grains in an organic powder encapsulated in a {approx}700 {mu}m thick metal casing.

  20. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ying-Xu [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); Mjøs, Svein Are, E-mail: svein.mjos@kj.uib.no [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); David, Fabrice P.A. [Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne (Switzerland); Schmid, Adrien W. [Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  1. High-resolution, preparative purification of PEGylated protein using a laterally-fed membrane chromatography device.

    Science.gov (United States)

    Madadkar, Pedram; Nino, Sergio Luna; Ghosh, Raja

    2016-11-01

    We discuss the use of a laterally-fed membrane chromatography (or LFMC) device for single-step purification of mono-PEGylated lysozyme. Recent studies have shown such LFMC devices to be suitable for high-resolution, multi-component separation of proteins in the bind-and-elute mode. The device used in this study contained a stack of rectangular cation-exchange membranes having 9.25mL bed volume. PEGylation of lysozyme was carried out in batch mode using 5kDa methoxy-polyethyleneglycol propionaldehyde (or m-PEG propionaldehyde) in the presence of sodium cyanoborohydride as reducing agent. Membrane chromatographic separation was carried out at 1.62 membrane bed volumes per minute flow rate, in the bind-and-elute mode. When a salt gradient was applied, the higher PEGylated forms of lysozyme (i.e. the byproducts) eluted earlier than mono-PEGylated lysozyme (the target product), while lysozyme eluted last. Under elution conditions optimized for resolution and speed, the separation could be carried out in less than 15 membrane bed volumes. High purity and recovery of mono-PEGylated lysozyme was obtained. The resolution of separation of mono-PEGylated lysozyme obtained under the above condition was comparable to that reported in the literature for equivalent cation-exchange resin columns while the flow rate expressed in bed volumes/min was 21.7 times higher. Also, the number of theoretical plates per meter was significantly higher with the LFMC device. Therefore the LFMC based purification process discussed in this paper combined high-productivity with high-resolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Characterizing Arctic sea ice topography using high-resolution IceBridge data

    OpenAIRE

    Petty, Alek A.; Tsamados, Michel C.; Kurtz, Nathan T.; Farrell, Sinead L.; Newman, Thomas; Harbeck, Jeremy P.; FELTHAM, DANIEL L.; Richter-Menge, Jackie A.

    2015-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009–2014 within the Beaufort/Chukchi and Central Arcti...

  3. HCN Polymers: Toward Structure Comprehension Using High Resolution Mass Spectrometry

    Science.gov (United States)

    Bonnet, Jean-Yves; Thissen, Roland; Frisari, Ma; Vuitton, Veronique; Quirico, Eric; Le Roy, Léna; Fray, Nicolas; Cottin, Hervé; Horst, Sarah; Yelle, Roger

    A lot of solar system materials, including cometary ices and Titan aerosols, contain dark matter that can be interpreted as complex nitrogen bearing organic matter [1]. In laboratory experi-ments, HCN polymers are thus analogs of great interest. In fact they may be present in Titan atmosphere and in comet nuclei and then reprocessed as a CN distributed source [2], when ices began to sublimate and ejects from the nucleus organic matter grains [3]. The presence of HCN polymers is suggested because HCN molecule has been directly observed in 1P/Halley comet [4] and others. HCN polymers are also of prebiotic interest [5] as it can form amino acid under hydrolysis conditions. Even if they have been studied during the last decades, their chemical composition and structure are still poorly understood, and a great analytical effort has to be continued. In this way we present a high resolution mass spectrometry (HRMS) and a high resolution tandem mass spectrometry (MS/HRMS) analysis of HCN polymers. It was shown [6] that this is a suitable technique to elucidate composition and structure of the soluble part of tholins analogs of Titan's atmosphere aerosols. HCN polymers have never been studied by HRMS, thus we used a LTQ-Orbitrap XL high resolution mass spectrometer to analyse the HCN polymers. These are produced at LISA by direct polymerisation of pure liquid HCN, catalyzed by ammonia. HCN polymers have been completely dissolved in methanol and then injected in the mass spectrometer by ElectroSpray Ionization (ESI). This atmospheric pressure ionization process produces protonated or deprotonated ions, but it does not fragment molecules. Thus HRMS, allows a direct access to the stoechiometry of all the ionizable molecules present in the samples. Fragmentation analyses (MS/MS) of selected ions have also been performed. Thess analysis provide information about the different chemical fonctionnalities present in HCN poly-mers and also about their structure. Thus we are able to

  4. Accelerated High-Resolution Photoacoustic Tomography via Compressed Sensing

    CERN Document Server

    Arridge, Simon; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-01-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue. A particular example is the planar Fabry-Perot (FP) scanner, which yields high-resolution images but takes several minutes to sequentially map the photoacoustic field on the sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: First, we describe and model two general spatial sub-sampling schemes. Then...

  5. High Resolution Muon Computed Tomography at Neutrino Beam Facilities

    CERN Document Server

    Suerfu, Burkhant

    2015-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pio...

  6. Performance of a high resolution cavity beam position monitor system

    Science.gov (United States)

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Pete; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; Thomson, Mark; Urakawa, Junji; Vogel, Vladimir; Ward, David; White, Glen

    2007-07-01

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than 1 nm. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 μrad over a dynamic range of approximately ±20 μm.

  7. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively.

  8. A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging.

    Science.gov (United States)

    Ning, Lipeng; Setsompop, Kawin; Michailovich, Oleg; Makris, Nikos; Shenton, Martha E; Westin, Carl-Fredrik; Rathi, Yogesh

    2016-01-15

    Diffusion MRI (dMRI) can provide invaluable information about the structure of different tissue types in the brain. Standard dMRI acquisitions facilitate a proper analysis (e.g. tracing) of medium-to-large white matter bundles. However, smaller fiber bundles connecting very small cortical or sub-cortical regions cannot be traced accurately in images with large voxel sizes. Yet, the ability to trace such fiber bundles is critical for several applications such as deep brain stimulation and neurosurgery. In this work, we propose a novel acquisition and reconstruction scheme for obtaining high spatial resolution dMRI images using multiple low resolution (LR) images, which is effective in reducing acquisition time while improving the signal-to-noise ratio (SNR). The proposed method called compressed-sensing super resolution reconstruction (CS-SRR), uses multiple overlapping thick-slice dMRI volumes that are under-sampled in q-space to reconstruct diffusion signal with complex orientations. The proposed method combines the twin concepts of compressed sensing and super-resolution to model the diffusion signal (at a given b-value) in a basis of spherical ridgelets with total-variation (TV) regularization to account for signal correlation in neighboring voxels. A computationally efficient algorithm based on the alternating direction method of multipliers (ADMM) is introduced for solving the CS-SRR problem. The performance of the proposed method is quantitatively evaluated on several in-vivo human data sets including a true SRR scenario. Our experimental results demonstrate that the proposed method can be used for reconstructing sub-millimeter super resolution dMRI data with very good data fidelity in clinically feasible acquisition time.

  9. High-Resolution Imaging of Asteroids/Satellites with AO

    Science.gov (United States)

    Merline, William

    2012-02-01

    We propose to make high-resolution observations of asteroids using AO, to measure size, shape, and pole position (spin vectors), and/or to search for satellites. We have demonstrated that AO imaging allows determination of the pole/dimensions in 1 or 2 nights on a single target, rather than the years of observations with lightcurve inversion techniques that only yield poles and axial ratios, not true dimensions. Our new technique (KOALA) combines AO imaging with lightcurve and occultation data for optimum size/shape determinations. We request that LGS be available for faint targets, but using NGS AO, we will measure several large and intermediate asteroids that are favorably placed in spring/summer of 2012 for size/shape/pole. Accurately determining the volume from the often-irregular shape allows us to derive densities to much greater precision in cases where the mass is known, e.g., from the presence of a satellite. We will search several d! ozen asteroids for the presence of satellites, particularly in under-studied populations, particularly NEOs (we have recently achieved the first-ever optical image of an NEO binary [Merline et al. 2008b, IAUC 8977]). Satellites provide a real-life lab for testing collisional models. We will search for satellites around special objects at the request of lightcurve observers, and we will make a search for debris in the vicinity of Pluto, in support of the New Horizons mission. Our shape/size work requires observations over most of a full rotation period (typically several hours).

  10. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  11. Mapeamento do biovolume de plantas aquáticas submersas a partir de dados hidroacústicos e imagem multiespectral de alta resolução Mapping the bio-volume of submerged aquatic vegetation through hydro-acoustic data and high-resolution multi-spectral imaging

    Directory of Open Access Journals (Sweden)

    L. Sabo Boschi

    2012-09-01

    submerged aquatic plants is a complex task due to the difficulty in volumetrically mapping and quantifying the colonized areas. In these cases, the use of hydro-acoustic data allows mapping and measuring these areas, helping formulate proposals for sustainable management of this type of aquatic vegetation. This study used the kriging technique and acoustic data to perform the spatial inference of the biovolume of submerged aquatic plants. The data was obtained from three echobathimetric surveys conducted in a Paraná River study area, characterized by the proliferation of submerged aquatic vegetation, hindering navigation. High spatial resolution multi-spectral imagery World View-2 was used to delimit the areas with submerged aquatic plants. The mapping of the bio-volume of submerged aquatic plants was conducted through the bio-volume inference using the Kriging technique and slicing of the inferred values at 15% intervals. The map generated allowed identifying the areas of highest concentration of submerged macrophytes, which predominantly presented bio-volume values between 15-30% and 30-45%. This confirms the feasibility of using the kriging technique for biovolume spatial inference through geo-referenced ecobathimetric measurements and the support of high spatial resolution imagery.

  12. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data.

    Science.gov (United States)

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P A; Schmid, Adrien W

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis.

  13. Study of Saturn electrostatic discharges with high time resolution

    Science.gov (United States)

    Zakharenko, V.; Mylostna, K.; Konovalenko, A.; Kolyadin, V.; Zarka, P.; Griessmeier, J.-M.; Litvinenko, G.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Shevchenko, V.; Nikolaenko, V.

    2013-09-01

    Ground-based observations of SED (Saturn Electrostatic Discharges) with high time resolution are the next stage of extraterrestrial atmospheric processes study. Due to extremely high intensity of Saturn's storm J (2010) [1] we have obtained the records with high signal-to-noise (S/N) ratio with the time resolution of 15 ns. It permitted us to investigate the microsecond structure of lightning and clearly distinguish SED in the presence of local interference in virtue of a dispersive delay of extraterrestrial planetary signals.

  14. Evacuee Compliance Behavior Analysis using High Resolution Demographic Information

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei [ORNL; Han, Lee [University of Tennessee, Knoxville (UTK); Liu, Cheng [ORNL; Tuttle, Mark A [ORNL; Bhaduri, Budhendra L [ORNL

    2014-01-01

    The purpose of this study is to examine whether evacuee compliance behavior with route assignments from different resolutions of demographic data would impact the evacuation performance. Most existing evacuation strategies assume that travelers will follow evacuation instructions, while in reality a certain percent of evacuees do not comply with prescribed instructions. In this paper, a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) were conducted for the detailed road network representing Alexandria, Virginia. A revised platform for evacuation modeling built on high resolution demographic data and activity-based microscopic traffic simulation is proposed. The results indicate that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it does not significantly compromise the efficiency with high resolution LPC assignment. The TAZ assignment also underestimates the real travel time during evacuation, especially for high compliance simulations. This suggests that conventional evacuation studies based on TAZ assignment might not be effective at providing efficient guidance to evacuees. From the high resolution data perspective, traveler compliance behavior is an important factor but it does not impact the system performance significantly. The highlight of evacuee compliance behavior analysis should be emphasized on individual evacuee level route/shelter assignments, rather than the whole system performance.

  15. Design and implementation of spaceborne high resolution infrared touch screen

    Science.gov (United States)

    Li, Tai-guo; Li, Wen-xin; Dong, Yi-peng; Ma, Wen; Xia, Jia-gao

    2015-10-01

    For the consideration of the special application environment of the electronic products used in aerospace and to further more improve the human-computer interaction of the manned aerospace area. The research is based on the design and implementation way of the high resolution spaceborne infrared touch screen on the basis of FPGA and DSP frame structure. Beside the introduction of the whole structure for the high resolution spaceborne infrared touch screen system, this essay also gives the detail information about design of hardware for the high resolution spaceborne infrared touch screen system, FPGA design, GUI design and DSP algorithm design based on Lagrange interpolation. What is more, the easy makes a comprehensive research of the reliability design for the high resolution spaceborne infrared touch screen for the special purpose of it. Besides, the system test is done after installation of spaceborne infrared touch screen. The test result shows that the system is simple and reliable enough, which has a stable running environment and high resolution, which certainly can meet the special requirement of the manned aerospace instrument products.

  16. High resolution 17 keV to 75 keV backlighters for High Energy Density experiments

    Energy Technology Data Exchange (ETDEWEB)

    Park, H; Maddox, B R; Giraldez, E; Hatchett, S P; Hudson, L; Izumi, N; Key, M H; Pape, S L; MacKinnon, A J; MacPhee, A G; Patel, P K; Phillips, T W; Remington, B A; Seely, J F; Tommasini, R; Town, R; Workman, J

    2008-02-25

    We have developed 17 keV to 75 keV 1-dimensional and 2-dimensional high-resolution (< 10 {micro}m) radiography using high-intensity short pulse lasers. High energy K-{alpha} sources are created by fluorescence from hot electrons interacting in the target material after irradiation by lasers with intensity I{sub L} > 10{sup 17} W/cm{sup 2}. We have achieved high resolution point projection 1-dimensional and 2-dimensional radiography using micro-foil and micro-wire targets attached to low-Z substrate materials. The micro-wire size was 10 {micro}m x 10 {micro}m x 300 {micro}m on a 300 {micro}m x 300 {micro}m x 5 {micro}m CH substrate. The radiography performance was demonstrated using the Titan laser at LLNL. We observed that the resolution is dominated by the micro-wire target size and there is very little degradation from the plasma plume, implying that the high energy x-ray photons are generated mostly within the micro-wire volume. We also observe that there are enough K{alpha} photons created with a 300 J, 1-{omega}, 40 ps pulse laser from these small volume targets, and that the signal-to-noise ratio is sufficiently high, for single shot radiography experiments. This unique technique will be used on future high energy density (HED) experiments at the new Omega-EP, ZR and NIF facilities.

  17. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony;

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...

  18. Stars and planets at high spatial and spectral resolution

    NARCIS (Netherlands)

    Albrecht, Simon

    2008-01-01

    The work presented in this thesis involves the development of new instrumental techniques and analysing tools, combining high spectral resolution with high spatial information, with the aim to increase our understanding of the formation and evolution of stars and planets. First, a novel instrumental

  19. Achieving High Resolution Timer Events in Virtualized Environment.

    Directory of Open Access Journals (Sweden)

    Blazej Adamczyk

    Full Text Available Virtual Machine Monitors (VMM have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs-Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service. Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events.

  20. High-resolution structure of viruses from random diffraction snapshots

    CERN Document Server

    Hosseinizadeh, A; Dashti, A; Fung, R; D'Souza, R M; Ourmazd, A

    2014-01-01

    The advent of the X-ray Free Electron Laser (XFEL) has made it possible to record diffraction snapshots of biological entities injected into the X-ray beam before the onset of radiation damage. Algorithmic means must then be used to determine the snapshot orientations and thence the three-dimensional structure of the object. Existing Bayesian approaches are limited in reconstruction resolution typically to 1/10 of the object diameter, with the computational expense increasing as the eighth power of the ratio of diameter to resolution. We present an approach capable of exploiting object symmetries to recover three-dimensional structure to high resolution, and thus reconstruct the structure of the satellite tobacco necrosis virus to atomic level. Our approach offers the highest reconstruction resolution for XFEL snapshots to date, and provides a potentially powerful alternative route for analysis of data from crystalline and nanocrystalline objects.

  1. New high resolution synthetic stellar libraries for the Gaia Mission

    CERN Document Server

    Sordo, R; Bouret, J C; Brott, I; Edvardsson, B; Frémat, Y; Heber, U; Josselin, E; Kochukhov, O; Korn, A; Lanzafame, A; Martins, F; Schweitzer, A; Thévenin, F; Zorec, J

    2008-01-01

    High resolution synthetic stellar libraries are of fundamental importance for the preparation of the Gaia Mission. We present new sets of spectral stellar libraries covering two spectral ranges: 300 --1100 nm at 0.1 nm resolution, and 840 -- 890 nm at 0.001 nm resolution. These libraries span a large range in atmospheric parameters, from super-metal-rich to very metal-poor (-5.0 $<$[Fe/H]$<$+1.0), from cool to hot (\\teff=3000--50000 K) stars, including peculiar abundance variations. The spectral resolution, spectral type coverage and number of models represent a substantial improvement over previous libraries used in population synthesis models and in atmospheric analysis.

  2. Subcutaneous Cysticercosis: Role of High Resolution Ultrasound in Diagnosis

    Directory of Open Access Journals (Sweden)

    Sachin Lohra

    2014-02-01

    Full Text Available BACKGROUND: Though the commonest site of extraintestinal infestation with Taenia solium is brain, Subcutaneous cysticercosis is fairly common in asia. The advent of high resolution ultrasound, FNAC, and a heightened clinician awareness of the existence of isolated soft tissue cysticerci has probably supplanted the need for surgical intervention and excision biopsy in asymptomatic subcutaneous cysts, as cysts have high rate of spontaneous resolution. OBJECTIVES: - To observe role of high resolution ultrasound in diagnosis and need of surgical intervention in treatment of subcutaneous cysticercosis. MATERIALS and METHODS: retrospective study of seven cases of extraneural cysticercosis, all involving the subcutaneous tissues or muscles over the arms and torso. Either high resolution ultrasound, FNAC, or excision biopsy, or a combination of these were used to arrive at a diagnosis. All patients were followed up with serial ultrasounds. All patients received oral nitazoxanide for autoinfection. Surgical excision was resorted to in two patients, in whom it was possible to obtain a histopathologic diagnosis. RESULTS: of the seven cases of subcutaneous cysticercosis all have rural background, most of the patients (6 were vegetarian and one was non vegetarian. Age and gender of patient, size and duration of lesion were insignificant in establishing the diagnosis. High resolution ultrasound was highly significant in establishing the diagnosis over FNAC and histopathology. Five of the cases resolved spontaneously and surgical intervention was required only in two cases. INTERPRETATION and CONCLUSIONS: With heightened clinician awareness of the existence of isolated subcutaneous cysticercosis in patients with close animal contact, and the widespread availability of high resolution ultrasound and FNAC, subcutaneous cysticercosis can be diagnosed readily. Surgery can be avoided in the great majority of these patients, as the cysts mostly resolve on their own

  3. Vehicle Detection and Classification from High Resolution Satellite Images

    Science.gov (United States)

    Abraham, L.; Sasikumar, M.

    2014-11-01

    In the past decades satellite imagery has been used successfully for weather forecasting, geographical and geological applications. Low resolution satellite images are sufficient for these sorts of applications. But the technological developments in the field of satellite imaging provide high resolution sensors which expands its field of application. Thus the High Resolution Satellite Imagery (HRSI) proved to be a suitable alternative to aerial photogrammetric data to provide a new data source for object detection. Since the traffic rates in developing countries are enormously increasing, vehicle detection from satellite data will be a better choice for automating such systems. In this work, a novel technique for vehicle detection from the images obtained from high resolution sensors is proposed. Though we are using high resolution images, vehicles are seen only as tiny spots, difficult to distinguish from the background. But we are able to obtain a detection rate not less than 0.9. Thereafter we classify the detected vehicles into cars and trucks and find the count of them.

  4. High resolution SPM imaging of organic molecules with functionalized tips

    Science.gov (United States)

    Jelínek, Pavel

    2017-08-01

    One of the most remarkable and exciting achievements in the field of scanning probe microscopy (SPM) in the last years is the unprecedented sub-molecular resolution of both atomic and electronic structures of single molecules deposited on solid state surfaces. Despite its youth, the technique has already brought many new possibilities to perform different kinds of measurements, which cannot be accomplished by other techniques. This opens new perspectives in advanced characterization of physical and chemical processes and properties of molecular structures on surfaces. Here, we discuss the history and recent progress of the high resolution imaging with a functionalized probe by means of atomic force microscopy (AFM), scanning tunnelling microscopy (STM) and inelastic electron tunneling spectroscopy (IETS). We describe the mechanisms responsible for the high-resolution AFM, STM and IETS-STM contrast. The complexity of this technique requires new theoretical approaches, where a relaxation of the functionalized probe is considered. We emphasise the similarities of the mechanism driving high-resolution SPM with other imaging methods. We also summarise briefly significant achievements and progress in different branches. Finally we provide brief perspectives and remaining challenges of the further refinement of these high-resolution methods.

  5. Low head, high volume pump apparatus

    Science.gov (United States)

    Avery, Don E.; Young, Bryan F.

    1989-01-01

    An inner cylinder and a substantially larger outer cylinder are joined as two verticle concentric cylinders. Verticle partitions between the cylinders divide the space between the cylinders into an inlet chamber and an outlet chamber which is substantially larger in volume than the inner chamber. The inner cylinder has a central pumping section positioned between upper and lower valve sections. In the valve section ports extend through the inner cylinder wall to the inlet and outlet chambers. Spring loaded valves close the ports. Tension springs extend across the inlet chamber and compression springs extend across the inner cylinder to close the inlet valves. Tension springs extend across the inner cylinder the close the outlet valves. The elastomeric valve flaps have rigid curved backing members. A piston rod extends through one end cover to move a piston in the central section. An inlet is connected to the inlet chamber and an outlet is connected to the outlet chamber.

  6. High resolution magnetic imaging: MicroSQUID Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hasselbach, K; Ladam, C; Dolocan, V O; Hykel, D; Crozes, T [Institut Neel, CNRS et Universite Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Schuster, K [Institut de RadioAstronomie Millimetrique 300 rue de la Piscine, Domaine Universitaire F-38406 Saint Martin d' Heres (France); Mailly, D [Laboratoire de Photonique et de Nanostructures, CNRS, Site Alcatel de Marcoussis Route de Nozay F-91460 Marcoussis (France)], E-mail: klaus.hasselbach@grenoble.cnrs.fr

    2008-02-01

    Magnetic imaging at the micrometer scale with high sensitivity is a challenge difficult to be met. Magnetic force microscopy has a very high spatial resolution but is limited in magnetic resolution. Hall probe microscopy is very powerful but sensor fabrication at the one micron scale is difficult and effects due to discreteness of charge appear in the form of significant 1/f noise. SQUID microscopy is very powerful, having high magnetic resolution, but spatial resolution is usually of the order of 10 {mu}m. The difficulties lay mostly in an efficient way to couple flux to the sensor. The only way to improve spatial resolution is to place the probe close to the very edge of the support, thus maximising coupling and spatial resolution. If there has been found a way to bring close the tip, there must be also found a reliable a way to maintain distance during scanning. We want to present recent improvements on scanning microsquid microscopy: Namely the improved fabrication of microSQUID tips using silicon micro machining and the precise positioning of the micrometer diameter microSQUID loop by electron beam lithography. The microSQUID is a microbridge DC SQUID, with two opposite microbridges. The constrictions are patterned by high-resolution e-beam lithography and have a width of 20 nm and a length of about 100 nm. The distance control during scanning is obtained by integrating the microSQUID sensor with a piezoelectric tuning fork acting as a force sensor allowing to control height and even topographic imaging. The detector is placed in a custom built near field microscope and the sample temperature can be varied between 0.1 Kelvin and 10 K. The microscope is used to study magnetic flux structures in unconventional superconductors and will be used to observe thermal domains in superconducting detectors in the voltage state.

  7. High spatial resolution diffusion tensor imaging and its applications

    CERN Document Server

    Wang, J J

    2002-01-01

    Introduction Magnetic Resonance Imaging is at present the only imaging technique available to measure diffusion of water and metabolites in humans. It provides vital insights to brain connectivity and has proved to be an important tool in diagnosis and therapy planning in many neurological diseases such as brain tumour, ischaemia and multiple sclerosis. This project focuses on the development of a high resolution diffusion tensor imaging technique. In this thesis, the basic theory of diffusion tensor MR Imaging is presented. The technical challenges encountered during development of these techniques will be discussed, with proposed solutions. New sequences with high spatial resolution have been developed and the results are compared with the standard technique more commonly used. Overview The project aims at the development of diffusion tensor imaging techniques with a high spatial resolution. Chapter 2 will describe the basic physics of MRI, the phenomenon of diffusion and the measurement of diffusion by MRI...

  8. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony;

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit hi...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors......In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...

  9. A high resolution powder diffractometer using focusing optics

    Indian Academy of Sciences (India)

    V Siruguri; P D Babu; M Gupta; A V Pimpale; P S Goyal

    2008-11-01

    In this paper, we describe the design, construction and performance of a new high resolution neutron powder diffractometer that has been installed at the Dhruva reactor, Trombay, India. The instrument employs novel design concepts like the use of bent, perfect crystal monochromator and open beam geometry, enabling the use of smaller samples. The resolution curve of the instrument was found to have little variation over a wide angular region and a / ∼ 0.3% has been achieved. The instrument provides sample environment of very low temperatures and high magnetic fields using a 7 Tesla cryogen-free superconducting magnet with a VTI having a temperature range of 1.5–320 K. The special sample environment and high resolution make this neutron powder diffractometer a very powerful facility for studying magnetic properties of materials.

  10. High-resolution low-dose scanning transmission electron microscopy.

    Science.gov (United States)

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  11. Novel techniques in VUV high-resolution spectroscopy

    CERN Document Server

    Ubachs, W; Eikema, K S E; de Oliveira, N; Nahon, L

    2013-01-01

    Novel VUV sources and techniques for VUV spectroscopy are reviewed. Laser-based VUV sources have been developed via non-linear upconversion of laser pulses in the nanosecond (ns), the picosecond (ps), and femtosecond (fs) domain, and are applied in high-resolution gas phase spectroscopic studies. While the ns and ps pulsed laser sources, at Fourier-transform limited bandwidths, are used in wavelength scanning spectroscopy, the fs laser source is used in a two-pulse time delayed mode. In addition a Fourier-transform spectrometer for high resolution gas-phase spectroscopic studies in the VUV is described, exhibiting the multiplex advantage to measure many resonances simultaneously.

  12. High-resolution second harmonic optical coherence tomography

    Science.gov (United States)

    Jiang, Yi; Tomov, Ivan V.; Wang, Yimin; Chen, Zhongping

    2005-04-01

    A high-resolution Second Harmonic Optical Coherence Tomography (SH-OCT) system is demonstrated using a spectrum broadened femtosecond Ti:sapphire laser. An axial resolution of 4.2 μm at the second harmonic wave center wavelength of 400 nm has been achieved. Because the SH-OCT system uses the second harmonic generation signals that strongly depend on the orientation, polarization and local symmetry properties of chiral molecules, this technique provides unique contrast enhancement to conventional optical coherence tomography. The system is applied to image biological tissues like the rat-tail tendon. Images of highly organized collagen fibrils in the rat-tail tendon have been demonstrated.

  13. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  14. High-resolution EEG (HR-EEG) and magnetoencephalography (MEG).

    Science.gov (United States)

    Gavaret, M; Maillard, L; Jung, J

    2015-03-01

    High-resolution EEG (HR-EEG) and magnetoencephalography (MEG) allow the recording of spontaneous or evoked electromagnetic brain activity with excellent temporal resolution. Data must be recorded with high temporal resolution (sampling rate) and high spatial resolution (number of channels). Data analyses are based on several steps with selection of electromagnetic signals, elaboration of a head model and use of algorithms in order to solve the inverse problem. Due to considerable technical advances in spatial resolution, these tools now represent real methods of ElectroMagnetic Source Imaging. HR-EEG and MEG constitute non-invasive and complementary examinations, characterized by distinct sensitivities according to the location and orientation of intracerebral generators. In the presurgical assessment of drug-resistant partial epilepsies, HR-EEG and MEG can characterize and localize interictal activities and thus the irritative zone. HR-EEG and MEG often yield significant additional data that are complementary to other presurgical investigations and particularly relevant in MRI-negative cases. Currently, the determination of the epileptogenic zone and functional brain mapping remain rather less well-validated indications. In France, in 2014, HR-EEG is now part of standard clinical investigation of epilepsy, while MEG remains a research technique.

  15. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry

    Science.gov (United States)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-09-01

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  16. High Resolution Simulations of Future Climate in West Africa Using a Variable-Resolution Atmospheric Model

    Science.gov (United States)

    Adegoke, J. O.; Engelbrecht, F.; Vezhapparambu, S.

    2013-12-01

    In previous work demonstrated the application of a var¬iable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM), across a wide range of spatial and time scales to investigate the ability of the model to provide realistic simulations of present-day climate and plausible projections of future climate change over sub-Saharan Africa. By applying the model in stretched-grid mode the versatility of the model dynamics, numerical formulation and physical parameterizations to function across a range of length scales over the region of interest, was also explored. We primarily used CCAM to illustrate the capability of the model to function as a flexible downscaling tool at the climate-change time scale. Here we report on additional long term climate projection studies performed by downscaling at much higher resolutions (8 Km) over an area that stretches from just south of Sahara desert to the southern coast of the Niger Delta and into the Gulf of Guinea. To perform these simulations, CCAM was provided with synoptic-scale forcing of atmospheric circulation from 2.5 deg resolution NCEP reanalysis at 6-hourly interval and SSTs from NCEP reanalysis data uses as lower boundary forcing. CCAM 60 Km resolution downscaled to 8 Km (Schmidt factor 24.75) then 8 Km resolution simulation downscaled to 1 Km (Schmidt factor 200) over an area approximately 50 Km x 50 Km in the southern Lake Chad Basin (LCB). Our intent in conducting these high resolution model runs was to obtain a deeper understanding of linkages between the projected future climate and the hydrological processes that control the surface water regime in this part of sub-Saharan Africa.

  17. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    CERN Document Server

    Troyer, G L

    2000-01-01

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% (at) 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse r...

  18. High resolution spectroscopy in the microwave and far infrared

    Science.gov (United States)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  19. High resolution map of light pollution over Poland

    Science.gov (United States)

    Netzel, Henryka; Netzel, Paweł

    2016-09-01

    In 1976 Berry introduced a simple mathematical equation to calculate artificial night sky brightness at zenith. In the original model cities, considered as points with given population, are only sources of light emission. In contrary to Berry's model, we assumed that all terrain surface can be a source of light. Emission of light depends on percent of built up area in a given cell. We based on Berry's model. Using field measurements and high-resolution data we obtained the map of night sky brightness over Poland in 100-m resolution. High resolution input data, combined with a very simple model, makes it possible to obtain detailed structures of the night sky brightness without complicating the calculations.

  20. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    Science.gov (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  1. High-resolution TFT-LCD for spatial light modulator

    Science.gov (United States)

    Lee, JaeWon; Kim, Yong-Hae; Byun, Chun-Won; Pi, Jae-Eun; Oh, Himchan; Kim, GiHeon; Lee, Myung-Lae; Chu, Hye-Yong; Hwang, Chi-Sun

    2014-06-01

    SLM with very fine pixel pitch is needed for the holographic display system. Among various kinds of SLMs, commercially available high resolution LCoS has been widely used as a spatial light modulator. But the size of commercially available LCoS SLM is limited because the manufacturing technology of LCoS is based on the semiconductor process developed on small size Si wafer. Recently very high resolution flat panel display panel (~500ppi) was developed as a "retina display". Until now, the pixel pitch of flat panel display is several times larger than the pixel pitch of LCoS. But considering the possibility of shrink down the pixel pitch with advanced lithographic tools, the application of flat panel display will make it possible to build a SLM with high spatial bandwidth product. We simulated High resolution TFT-LCD panel on glass substrate using oxide semiconductor TFT with pixel pitch of 20um. And we considered phase modulation behavior of LC(ECB) mode. The TFT-LCD panel is reflective type with 4-metal structure with organic planarization layers. The technical challenge for high resolution large area SLM will be discussed with very fine pixel.

  2. High-resolution ion pulse ionization chamber with air filling for the Rn-222 decays detection

    CERN Document Server

    Gavrilyuk, Yu M; Gezhaev, A M; Etezov, R A; Kazalov, V V; Kuzminov, V V; Panasenko, S I; Ratkevich, S S; Tekueva, D A; Yakimenko, S P

    2015-01-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register alpha-particles from the $^{222}$Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV alpha-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  3. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection

    Science.gov (United States)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Etezov, R. A.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-11-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the 222Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  4. High Volume Colour Image Processing with Massively Parallel Embedded Processors

    NARCIS (Netherlands)

    Jacobs, Jan W.M.; Bond, W.; Pouls, R.; Smit, Gerard J.M.; Joubert, G.R.; Peters, F.J.; Tirado, P.; Nagel, W.E.; Plata, O.; Zapata, E.

    2006-01-01

    Currently Oce uses FPGA technology for implementing colour image processing for their high volume colour printers. Although FPGA technology provides enough performance it, however, has a rather tedious development process. This paper describes the research conducted on an alternative implementation

  5. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  6. High Voltage Design Guide. Volume V. Spacecraft

    Science.gov (United States)

    1983-01-01

    connector are soldered, with the possible exception of very high voltage points. Even then rudimentary connectors such as that shown In figura 13 ar used...addition, large stresses will be imposed on the struc- tural (high resistance) member. This conductor movement will flex and stretch the conductors, placing...materials used for airplane systems provided they meet the electrical, chemical, and mechanical characteristic requirements imposed by the design

  7. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  8. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    Science.gov (United States)

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  9. High-resolution kinetic energy distributions via doppler shift measurements

    Science.gov (United States)

    Xu, Z.; Koplitz, B.; Buelow, S.; Baugh, D.; Wittig, C.

    1986-07-01

    In photolysis/probe experiments using pulsed sources, time delay produces both spatial and directional bias in the fragment distributions, thus enabling well-resolved kinetic energy distributions to be obtained from Doppler shift measurements. Data are presented for H-atoms detected using two-photon ionization, and high S/N and laser-limited kinetic energy resolution are demonstrated.

  10. High resolution ultraviolet imaging spectrometer for latent image analysis.

    Science.gov (United States)

    Lyu, Hang; Liao, Ningfang; Li, Hongsong; Wu, Wenmin

    2016-03-21

    In this work, we present a close-range ultraviolet imaging spectrometer with high spatial resolution, and reasonably high spectral resolution. As the transmissive optical components cause chromatic aberration in the ultraviolet (UV) spectral range, an all-reflective imaging scheme is introduced to promote the image quality. The proposed instrument consists of an oscillating mirror, a Cassegrain objective, a Michelson structure, an Offner relay, and a UV enhanced CCD. The finished spectrometer has a spatial resolution of 29.30μm on the target plane; the spectral scope covers both near and middle UV band; and can obtain approximately 100 wavelength samples over the range of 240~370nm. The control computer coordinates all the components of the instrument and enables capturing a series of images, which can be reconstructed into an interferogram datacube. The datacube can be converted into a spectrum datacube, which contains spectral information of each pixel with many wavelength samples. A spectral calibration is carried out by using a high pressure mercury discharge lamp. A test run demonstrated that this interferometric configuration can obtain high resolution spectrum datacube. The pattern recognition algorithm is introduced to analyze the datacube and distinguish the latent traces from the base materials. This design is particularly good at identifying the latent traces in the application field of forensic imaging.

  11. A Large Scale, High Resolution Agent-Based Insurgency Model

    Science.gov (United States)

    2013-09-30

    2007). HSCB Models can be employed for simulating mission scenarios, determining optimal strategies for disrupting terrorist networks, or training and...High Resolution Agent-Based Insurgency Model ∑ = ⎜ ⎜ ⎝ ⎛ − −− = desired 1 move,desired, desired,,desired, desired,, N j ij jmoveij moveiD rp prp

  12. Workshop on high-resolution, large-acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  13. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel

    2014-11-01

    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  14. High resolution STEM of quantum dots and quantum wires

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima

    2013-01-01

    This article reviews the application of high resolution scanning transmission electron microscopy (STEM) to semiconductor quantum dots (QDs) and quantum wires (QWRs). Different imaging and analytical techniques in STEM are introduced and key examples of their application to QDs and QWRs...

  15. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  16. Signal Processing for High Resolution FMCW SAR and Moving Target

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.

    2005-01-01

    The combination of Frequency Modulated ContinuousWave (FMCW) technology and Synthetic Aperture Radar (SAR) leads to lightweight, cost-effective imaging sensors of high resolution. In FMCW SAR applications the conventional stop-and-go approximation used in pulse radar algorithms cannot be considered

  17. High Resolution Digital Imaging of Paintings: The Vasari Project.

    Science.gov (United States)

    Martinez, Kirk

    1991-01-01

    Describes VASARI (the Visual Art System for Archiving and Retrieval of Images), a project funded by the European Community to show the feasibility of high resolution colormetric imaging directly from paintings. The hardware and software used in the system are explained, storage on optical disks is described, and initial results are reported. (five…

  18. Ultra-high-resolution small-animal SPECT imaging

    NARCIS (Netherlands)

    Have, F. van der

    2007-01-01

    The main subject of this thesis is the development of the first two in a series of dedicated ultra-high resolution Single Photon Emission Computed Tomography (SPECT) systems (U-SPECT-I and II) for the imaging of distributions of radio-isotope labeled tracers in small laboratory animals such as mice

  19. HIGH RESOLUTION RESISTIVITY LEAK DETECTION DATA PROCESSING & EVALUATION MEHTODS & REQUIREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    SCHOFIELD JS

    2007-10-04

    This document has two purposes: {sm_bullet} Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. {sm_bullet} Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals.

  20. High resolution ultrasonography in isolated soft tissue and intramuscular cysticercosis

    Directory of Open Access Journals (Sweden)

    Gaurav Sharma

    2016-01-01

    Conclusions: With the advent of high resolution ultrasonography and increased clinical awareness of the isolated soft tissue-intramuscular cysticercosis especially in endemic zone, a more conservative non-invasive approach can be applied both in diagnosis and treatment of these isolated cases of cysticercosis. [Int J Res Med Sci 2016; 4(1.000: 42-46

  1. Development of high accuracy and resolution geoid and gravity maps

    Science.gov (United States)

    Gaposchkin, E. M.

    1986-01-01

    Precision satellite to satellite tracking can be used to obtain high precision and resolution maps of the geoid. A method is demonstrated to use data in a limited region to map the geopotential at the satellite altitude. An inverse method is used to downward continue the potential to the Earth surface. The method is designed for both satellites in the same low orbit.

  2. Systematic high-resolution assessment of global hydropower potential

    NARCIS (Netherlands)

    Hoes, Olivier A C; Meijer, Lourens J J; Van Der Ent, Ruud J.; Van De Giesen, Nick C.

    2017-01-01

    Population growth, increasing energy demand and the depletion of fossil fuel reserves necessitate a search for sustainable alternatives for electricity generation. Hydropower could replace a large part of the contribution of gas and oil to the present energy mix. However, previous high-resolution

  3. High-resolution radio imaging of young supernovae

    CERN Document Server

    Pérez-Torres, M A; Alberdi, A; Ros, E; Guirado, J C; Lara, L; Mantovani, F; Stockdale, C J; Weiler, K W; Diamond, P J; Van Dyk, S D; Lundqvist, P; Panagia, N; Shapiro, I I; Sramek, R

    2004-01-01

    The high resolution obtained through the use of VLBI gives an unique opportunity to directly observe the interaction of an expanding radio supernova with its surrounding medium. We present here results from our VLBI observations of the young supernovae SN 1979C, SN 1986J, and SN 2001gd.

  4. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  5. High-resolution palaeoclimatology of the last millennium

    DEFF Research Database (Denmark)

    Vinther, Bo Møllesøe; Jones, P.D.; Briffa, K.R.

    2009-01-01

    Palaeoclimatology • high-resolution • last millennium • tree rings • dendroclimatology • chronology • uncertainty • corals • ice-cores • speleothems • documentary evidence • instrumental records • varves • borehole temperature • marine sediments • composite plus scaling • CPS • climate field...

  6. Resolution of RNA using high-performance liquid chromatography

    NARCIS (Netherlands)

    Mclaughlin, L.W.; Bischoff, Rainer

    1987-01-01

    High-performance liquid chromatographic techniques can be very effective for the resolution and isolation of nucleic acids. The characteristic ionic (phosphodiesters) and hydrophobic (nucleobases) properties of RNAs can be exploited for their separation. In this respect anion-exchange and reversed-p

  7. Five Micron High Resolution MALDI Mass Spectrometry Imaging with Simple, Interchangeable, Multi-Resolution Optical System

    Science.gov (United States)

    Feenstra, Adam D.; Dueñas, Maria Emilia; Lee, Young Jin

    2017-01-01

    High-spatial resolution mass spectrometry imaging (MSI) is crucial for the mapping of chemical distributions at the cellular and subcellular level. In this work, we improved our previous laser optical system for matrix-assisted laser desorption ionization (MALDI)-MSI, from 9 μm practical laser spot size to a practical laser spot size of 4 μm, thereby allowing for 5 μm resolution imaging without oversampling. This is accomplished through a combination of spatial filtering, beam expansion, and reduction of the final focal length. Most importantly, the new laser optics system allows for simple modification of the spot size solely through the interchanging of the beam expander component. Using 10×, 5×, and no beam expander, we could routinely change between 4, 7, and 45 μm laser spot size, in less than 5 min. We applied this multi-resolution MALDI-MSI system to a single maize root tissue section with three different spatial resolutions of 5, 10, and 50 μm and compared the differences in imaging quality and signal sensitivity. We also demonstrated the difference in depth of focus between the optical systems with 10× and 5× beam expanders.

  8. Topography improvements in MEMS DMs for high-contrast, high-resolution imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop and demonstrate an innovative microfabrication process to substantially improve the surface quality achievable in high-resolution...

  9. High resolution cross strip anodes for photon counting detectors

    Science.gov (United States)

    Siegmund, O. H. W.; Tremsin, A. S.; Vallerga, J. V.; Abiad, R.; Hull, J.

    2003-05-01

    A new photon counting, imaging readout for microchannel plate sensors, the cross strip (XS) anode, has been investigated. Charge centroiding of signals detected on two orthogonal layers of sense strip sets are used to derive photon locations. The XS anode spatial resolution (<3 μm FWHM) exceeds the spatial resolution of most direct charge sensing anodes, and does so at low gain (<2×10 6). The image linearity and fidelity are high enough to resolve and map 7 μm MCP pores, offering new possibilities for astronomical and other applications.

  10. High resolution atomic force microscopy of double-stranded RNA

    Science.gov (United States)

    Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M.; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando

    2016-06-01

    Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex.Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to

  11. Design for a focusing high-resolution neutron crystal diffractometer

    CERN Document Server

    Ionita, I; Popovici, M; Popa, N C

    1999-01-01

    A new concept of high-resolution focusing configuration begins to be accepted as an alternative solution to the existing conventional configurations. Among the earliest work performed in this direction is that performed at the Institute for Nuclear Research, Pitesti. These results are presented below. The experimentally determined resolution properties for two focusing configurations obtained at TRIGA reactor Pitesti and at VVRS reactor Bucharest are given in order to be compared with those obtained for the conventional ones. The principles to get focusing in crystal neutron diffractometry are presented. The main characteristics for a focusing instrument are given. (author)

  12. High resolution full-spectrum water Raman lidar

    Institute of Scientific and Technical Information of China (English)

    LIU FuChao; YI Fan; JIA JingYu; ZHANG YunPeng; ZHANG ShaoDong; YU ChangMing; TAN Ying

    2012-01-01

    Knowledge of the temporal-spatial distribution of water content in atmosphere and water phase change in cloud is important for atmospheric study.For this purpose,we have developed a high resolution full-spectrum water Raman lidar that can collect Raman signals from ice,water droplets and water vapor simultaneously.A double-grating polychromator and a 32-channel photomultiplier-tube detector are used to obtain a spectral resolution of ~0.19 nm in the full Raman spectrum range of water.Preliminary observations present the water Raman spectrum characteristics of both the mixed-phase cloud and humid air under cloudless condition.

  13. High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics.

    Science.gov (United States)

    Cormier, M; Ferré, J; Mougin, A; Cromières, J-P; Klein, V

    2008-03-01

    A new high resolution polar magneto-optical (MO) Kerr magnetometer, devoted to the study of nanometer sized elements with perpendicular magnetic anisotropy, is described. The unique performances of this setup in terms of sensitivity (1.2x10(-15) emu), stability (lateral drift +/-35 nm over 3 h), and resolution (laser spot full width at half maximum down to 470 nm) are demonstrated, and illustrated by Kerr hysteresis loop measurements on a unique ultrathin magnetic nanodot, and over small segments of ultranarrow magnetic tracks. Large scanning MO Kerr microscopy images were also obtained with the same performances.

  14. High-resolution axial MR imaging of tibial stress injuries

    Directory of Open Access Journals (Sweden)

    Mammoto Takeo

    2012-05-01

    Full Text Available Abstract Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries.

  15. Spatial resolution effects on the assessment of evapotranspiration in olive orchards using high resolution thermal imagery

    Science.gov (United States)

    Santos, Cristina; Zarco-Tejada, Pablo J.; Lorite, Ignacio J.; Allen, Richard G.

    2013-04-01

    The use of remote sensing techniques for estimating surface energy balance and water consumption has significantly improved the characterization of the agricultural systems by determining accurate information about crop evapotranspiration and stress, mainly for extensive crops. However the use of these methodologies for woody crops has been low due to the difficulty in the accurate characterization of these crops, mainly caused by a coarse resolution of the imagery provided by the most widely used satellites (such as Landsat 5 and 7). The coarse spatial resolution provided by these satellite sensors aggregates into a single pixel the tree crown, sunlit and shaded soil components. These surfaces can each exhibit huge differences in temperature, albedo and vegetation indexes calculated in the visible, near infrared and short-wave infrared regions. Recent studies have found that the use of energy balance approaches can provide useful results for non-homogeneous crops (Santos et al., 2012) but detailed analysis is required to determine the effect of the spatial resolution and the aggregation of the scene components in these heterogeneous canopies. In this study a comparison between different spatial resolutions has been conducted using images from Landsat 7 (with thermal resolution of 60m) and from an airborne thermal (with resolution of 80 cm) flown over olive orchards at different dates coincident with the Landsat overpass. The high resolution thermal imagery was resampled at different scales to generate images with spatial resolution ranging from 0.8 m up to 120m (thermal resolution for Landsat 5 images). The selection of the study area was made to avoid those areas with missing Landsat 7 data caused by SLC-off gaps. The selected area has a total area of around 2500 ha and is located in Southern Spain, in the province of Malaga. The selected area is mainly cultivated with olive orchards with different crop practices (rainfed, irrigated, high density, young and adult

  16. Climatic changes on millennial time scales--Evidence from a high-resolution loess record

    Institute of Scientific and Technical Information of China (English)

    任剑璋; 丁仲礼; 刘东生; 孙继敏; 周晓权

    1996-01-01

    Studies on a high resolution loess section in Huining County reveal that the behavior of climate shows high instability during the last glaciation. Results reflect that climate in Loess Plateau oscillates on millennial time scales during the last glacial period. These can be teleconnected with the records of Dansgaard-Oeschger cycles and Heinrich events in high latitudes. Results also demonstrate that variations in the intensity of wind regime on the Loess Plateau have a close correlation with the changes of global ice sheets volume. All these suggest that two-level fordngs may drive climate changes in central Asia. The first level is the volume changes of ice sheets and the second level with short time scales is superimposed upon the first level on a nearly global scale.

  17. SAGA GIS based processing of spatial high resolution temperature data

    Energy Technology Data Exchange (ETDEWEB)

    Gerlitz, Lars; Bechtel, Benjamin; Kawohl, Tobias; Boehner, Juergen [Hamburg Univ. (Germany). Inst. of Geography; Zaksek, Klemen [Hamburg Univ. (Germany). Inst. of Geophysics

    2013-07-01

    Many climate change impact studies require surface and near surface temperature data with high spatial and temporal resolution. The resolution of state of the art climate models and remote sensing data is often by far to coarse to represent the meso- and microscale distinctions of temperatures. This is particularly the case for regions with a huge variability of topoclimates, such as mountainous or urban areas. Statistical downscaling techniques are promising methods to refine gridded temperature data with limited spatial resolution, particularly due to their low demand for computer capacity. This paper presents two downscaling approaches - one for climate model output and one for remote sensing data. Both are methodically based on the FOSS-GIS platform SAGA. (orig.)

  18. Overview on high-resolution ocean modeling in JAMSTEC

    Institute of Scientific and Technical Information of China (English)

    Michio Kawamiya

    2014-01-01

    In view of the importance of ocean component for representing climate change,efforts are underway to implement a high-resolution nesting model system in Model for Interdisciplinary Research on Climate (MI-ROC) for the North Pacific using the same ocean model as used in the coupled model MIROC5. By comparing double (10 km for the northwestern Pacific,50 km for the rest of the Pacific) and triple (double nesting plus 2 km resolution near Japan) nesting,it turns out that relative vorticity is drastically enhanced near Japan with 2 km resolution. It is hoped that such an elaborated nesting system will reveal detailed processes for the ocean heat uptake by,e.g.,intermediate water and mode water formation for which the“perturbed region”near Japan is the key region.

  19. Bendable X-ray Optics for High Resolution Imaging

    Science.gov (United States)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  20. Advances toward high spectral resolution quantum X-ray calorimetry

    Science.gov (United States)

    Moseley, S. H.; Kelley, R. L.; Schoelkopf, R. J.; Szymkowiak, A. E.; Mccammon, D.

    1988-01-01

    Thermal detectors for X-ray spectroscopy combining high spectral resolution and quantum efficiency have been developed. These microcalorimeters measure the energy released in the absorption of a single photon by sensing the rise in temperature of a small absorbing structure. The ultimate energy resolution of such a device is limited by the thermodynamic power fluctuations in the thermal link between the calorimeter and isothermal bath and can in principle be made as low as 1 eV. The performance of a real device is degraded due to noise contributions such as excess 1/f noise in the thermistor and incomplete conversion of energy into phonons. The authors report some recent advances in thermometry, X-ray absorption and thermalization, fabrication techniques, and detector optimization in the presence of noise. These improvements have resulted in a device with a spectral resolution of 17 eV FWHM, measured at 6 keV.

  1. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  2. On temporal correlations in high-resolution frequency counting

    CERN Document Server

    Dunker, Tim; Rønningen, Ole Petter

    2016-01-01

    We analyze noise properties of time series of frequency data from different counting modes of a Keysight 53230A frequency counter. We use a 10 MHz reference signal from a passive hydrogen maser connected via phase-stable Huber+Suhner Sucoflex 104 cables to the reference and input connectors of the counter. We find that the high resolution gap-free (CONT) frequency counting process imposes long-term correlations in the output data, resulting in a modified Allan deviation that is characteristic of random walk phase noise. Equally important, the CONT mode results in a frequency bias. In contrast, the counter's undocumented raw continuous mode (RCON) yields unbiased frequency stability estimates with white phase noise characteristics, and of a magnitude consistent with the counter's 20 ps single-shot resolution. Furthermore, we demonstrate that a 100-point running average filter in conjunction with the RCON mode yields resolution enhanced frequency estimates with flicker phase noise characteristics. For instance,...

  3. High Resolution Software Defined Radar System for Target Detection

    Directory of Open Access Journals (Sweden)

    S. Costanzo

    2013-01-01

    Full Text Available The Universal Software Radio Peripheral USRP NI2920, a software defined transceiver so far mainly used in Software Defined Radio applications, is adopted in this work to design a high resolution L-Band Software Defined Radar system. The enhanced available bandwidth, due to the Gigabit Ethernet interface, is exploited to obtain a higher slant-range resolution with respect to the existing Software Defined Radar implementations. A specific LabVIEW application, performing radar operations, is discussed, and successful validations are presented to demonstrate the accurate target detection capability of the proposed software radar architecture. In particular, outdoor and indoor test are performed by adopting a metal plate as reference structure located at different distances from the designed radar system, and results obtained from the measured echo are successfully processed to accurately reveal the correct target position, with the predicted slant-range resolution equal to 6 m.

  4. Photoacoustic lymphatic imaging with high spatial-temporal resolution

    Science.gov (United States)

    Martel, Catherine; Yao, Junjie; Huang, Chih-Hsien; Zou, Jun; Randolph, Gwendalyn J.; Wang, Lihong V.

    2014-11-01

    Despite its critical function in coordinating the egress of inflammatory and immune cells out of tissues and maintaining fluid balance, the causative role of lymphatic network dysfunction in pathological settings is still understudied. Engineered-animal models and better noninvasive high spatial-temporal resolution imaging techniques in both preclinical and clinical studies will help to improve our understanding of different lymphatic-related pathologic disorders. Our aim was to take advantage of our newly optimized noninvasive wide-field fast-scanning photoacoustic (PA) microcopy system to coordinately image the lymphatic vasculature and its flow dynamics, while maintaining high resolution and detection sensitivity. Here, by combining the optical-resolution PA microscopy with a fast-scanning water-immersible microelectromechanical system scanning mirror, we have imaged the lymph dynamics over a large field-of-view, with high spatial resolution and advanced detection sensitivity. Depending on the application, lymphatic vessels (LV) were spectrally or temporally differentiated from blood vessels. Validation experiments were performed on phantoms and in vivo to identify the LV. Lymphatic flow dynamics in nonpathological and pathological conditions were also visualized. These results indicate that our newly developed PA microscopy is a promising tool for lymphatic-related biological research.

  5. High resolution imaging with impulse based thermoacoustic tomography

    Science.gov (United States)

    Kellnberger, Stephan; Hajiaboli, Amir; Sergiadis, George; Razansky, Daniel; Ntziachristos, Vasilis

    2011-07-01

    Existing imaging modalities like microwave- or radiofrequency (RF) induced thermoacoustic tomography systems show the potential for resolving structures deep inside tissue due to the high penetration properties of RF. However, one of the major drawbacks of existing thermoacoustic tomography systems with pulse modulated carrier frequency excitation is the compromise between efficient signal generation and attainable spatial resolution. In order to overcome limitations of conventional thermoacoustic imaging methods, we herein present and experimentally validate our novel approach towards high resolution thermoacoustic tomography. Instead of carrier-frequency amplification, we utilize ultrahigh-energy electromagnetic impulses at nanosecond duration with near-field energy coupling, thus maintaining thermoacoustic signal strength without compromising spatial resolution. Preliminary experiments on highly absorbing objects, consisting of copper wires with characteristic sizes of ~100 μm, reveal the resolution performance which yields 160 μm. Furthermore, benefits like its cost effectiveness, simplicity and compactness with the potential application in small animal imaging as well as human body imaging show that thermoacoustic tomography with impulse excitation is a promising imaging modality which has a broad range of applications.

  6. High-resolution Imaging Techniques for the Assessment of Osteoporosis

    Science.gov (United States)

    Krug, Roland; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.

    2010-01-01

    Synopsis The importance of assessing the bone’s microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in a number of publications. The high spatial resolution required to resolve the bone’s microstructure in a clinically feasible scan time is challenging. Currently, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition Multidetector-CT has been used for high-resolution imaging of trabecular bone structure, however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements and recent developments in this emerging field. Details regarding imaging protocols as well as image post-processing methods for bone structure quantification are discussed. PMID:20609895

  7. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Pei-Hsin; Chung, Hsiao-Wen [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Tsai, Ping-Huei [Imaging Research Center, Taipei Medical University, Taipei 11031, Taiwan and Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan (China); Wu, Ming-Long, E-mail: minglong.wu@csie.ncku.edu.tw [Institute of Medical Informatics, National Cheng-Kung University, Tainan 70101, Taiwan and Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China); Chuang, Tzu-Chao [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Shih, Yi-Yu [Siemens Limited Healthcare Sector, Taipei 11503, Taiwan (China); Huang, Teng-Yi [Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2013-12-15

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

  8. Automatic Traffic Advisory and Resolution Service (ATARS) Algorithms Including Resolution-Advisory-Register Logic. Volume 1. Sections 1 through 11,

    Science.gov (United States)

    1981-06-01

    ACWWOWIEDGMENT (RPR) LIST > S".UCTUP RPALST GROUP acl TV- 0!?. < delivery status of maneuvers INT TD < ID of hCl > H: RE. < resolution advisory for ACI...smoothed 7 position estimate > SOUP times FLT AL!C" < time last ALIC entry generated > ?LT OWT < time last OWN message generated > ILT TD ( time ATARS...maintained for domino resolution > BIT DRSUP < AC track dropped by ATABS > BIT !?XLG < X/El-list indicator > BI I BWG < AC in antenna hub zone > BTT TNB’L

  9. The high resolution gamma imager (HRGI): a CCD based camera for medical imaging

    Science.gov (United States)

    Lees, John. E.; Fraser, George. W.; Keay, Adam; Bassford, David; Ott, Robert; Ryder, William

    2003-11-01

    We describe the High Resolution Gamma Imager (HRGI): a Charge Coupled Device (CCD) based camera for imaging small volumes of radionuclide uptake in tissues. The HRGI is a collimated, scintillator-coated, low cost, high performance imager using low noise CCDs that will complement whole-body imaging Gamma Cameras in nuclear medicine. Using 59.5 keV radiation from a 241Am source we have measured the spatial resolution and relative efficiency of test CCDs from E2V Technologies (formerly EEV Ltd.) coated with Gadox (Gd 2O 2S(Tb)) layers of varying thicknesses. The spatial resolution degrades from 0.44 to 0.6 mm and the detection efficiency increases (×3) as the scintillator thickness increases from 100 to 500 μm. We also describe our first image using the clinically important isotope 99mTc. The final HRGI will have intrinsic sub-mm spatial resolution (˜0.7 mm) and good energy resolution over the energy range 30-160 keV.

  10. Validation of AIRS high-resolution stratospheric temperature retrievals

    Science.gov (United States)

    Meyer, Catrin I.; Hoffmann, Lars

    2014-10-01

    This paper focuses on stratospheric temperature observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite. We validate a nine-year record (2003 - 2011) of data retrieved with a scientific retrieval processor independent from the operational processor operated by NASA. The retrieval discussed here provides stratospheric temperature profiles for each individual AIRS footprint and has nine times better horizontal sampling than the operational data provided by NASA. The high-resolution temperature data are considered optimal for for gravity wave studies. For validation the high-resolution retrieval data are compared with results from the AIRS operational Level-2 data and the ERA-Interim meteorological reanalysis. Due to the large amount of data we performed statistical comparisons of monthly zonal mean cross-sections and time series. The comparisons show that the high-resolution temperature data are in good agreement with the validation data sets. The bias in the zonal averages is mostly within ±2K. The bias reaches a maximum of 7K to ERA-Interim and 4K to the AIRS operational data at the stratopause, it is related to the different resolutions of the data sets. Variability is nearly the same in all three data sets, having maximum standard deviations around the polar vortex in the mid and upper stratosphere. The validation presented here indicates that the high-resolution temperature retrievals are well-suited for scientific studies. In particular, we expect that they will become a valuable asset for future studies of stratospheric gravity waves.

  11. High-resolution Functional Magnetic Resonance Imaging Methods for Human Midbrain

    Science.gov (United States)

    Katyal, Sucharit; Greene, Clint A.; Ress, David

    2012-01-01

    Functional MRI (fMRI) is a widely used tool for non-invasively measuring correlates of human brain activity. However, its use has mostly been focused upon measuring activity on the surface of cerebral cortex rather than in subcortical regions such as midbrain and brainstem. Subcortical fMRI must overcome two challenges: spatial resolution and physiological noise. Here we describe an optimized set of techniques developed to perform high-resolution fMRI in human SC, a structure on the dorsal surface of the midbrain; the methods can also be used to image other brainstem and subcortical structures. High-resolution (1.2 mm voxels) fMRI of the SC requires a non-conventional approach. The desired spatial sampling is obtained using a multi-shot (interleaved) spiral acquisition1. Since, T2* of SC tissue is longer than in cortex, a correspondingly longer echo time (TE ~ 40 msec) is used to maximize functional contrast. To cover the full extent of the SC, 8-10 slices are obtained. For each session a structural anatomy with the same slice prescription as the fMRI is also obtained, which is used to align the functional data to a high-resolution reference volume. In a separate session, for each subject, we create a high-resolution (0.7 mm sampling) reference volume using a T1-weighted sequence that gives good tissue contrast. In the reference volume, the midbrain region is segmented using the ITK-SNAP software application2. This segmentation is used to create a 3D surface representation of the midbrain that is both smooth and accurate3. The surface vertices and normals are used to create a map of depth from the midbrain surface within the tissue4. Functional data is transformed into the coordinate system of the segmented reference volume. Depth associations of the voxels enable the averaging of fMRI time series data within specified depth ranges to improve signal quality. Data is rendered on the 3D surface for visualization. In our lab we use this technique for measuring

  12. Acute plasma volume change with high-intensity sprint exercise.

    Science.gov (United States)

    Bloomer, Richard J; Farney, Tyler M

    2013-10-01

    When exercise is of long duration or of moderate to high intensity, a decrease in plasma volume can be observed. This has been noted for both aerobic and resistance exercise, but few data are available with regard to high-intensity sprint exercise. We measured plasma volume before and after 3 different bouts of acute exercise, of varying intensity, and/or duration. On different days, men (n = 12; 21-35 years) performed aerobic cycle exercise (60 minutes at 70% heart rate reserve) and 2 different bouts of cycle sprints (five 60-second sprints at 100% maximum wattage obtained during graded exercise testing (GXT) and ten 15-second sprints at 200% maximum wattage obtained during GXT). Blood was collected before and 0, 30, and 60 minutes postexercise and analyzed for hematocrit and hemoglobin and plasma volume was calculated. Plasma volume decreased significantly for all exercise bouts (p sprint bouts (∼19%) compared with aerobic exercise bouts (∼11%). By 30 minutes postexercise, plasma volume approached pre-exercise values. We conclude that acute bouts of exercise, in particular high-intensity sprint exercise, significantly decrease plasma volume during the immediate postexercise period. It is unknown what, if any negative implications these transient changes may have on exercise performance. Strength and conditioning professionals may aim to rehydrate athletes appropriately after high-intensity exercise bouts.

  13. The Gaia FGK Benchmark Stars - High resolution spectral library

    CERN Document Server

    Blanco-Cuaresma, S; Jofré, P; Heiter, U

    2014-01-01

    Context. An increasing number of high resolution stellar spectra is available today thanks to many past and ongoing spectroscopic surveys. Consequently, numerous methods have been developed in order to perform an automatic spectral analysis on a massive amount of data. When reviewing published results, biases arise and they need to be addressed and minimized. Aims. We are providing a homogeneous library with a common set of calibration stars (known as the Gaia FGK Benchmark Stars) that will allow to assess stellar analysis methods and calibrate spectroscopic surveys. Methods. High resolution and signal-to-noise spectra were compiled from different instruments. We developed an automatic process in order to homogenize the observed data and assess the quality of the resulting library. Results. We built a high quality library that will facilitate the assessment of spectral analyses and the calibration of present and future spectroscopic surveys. The automation of the process minimizes the human subjectivity and e...

  14. Design of UAV high resolution image transmission system

    Science.gov (United States)

    Gao, Qiang; Ji, Ming; Pang, Lan; Jiang, Wen-tao; Fan, Pengcheng; Zhang, Xingcheng

    2017-02-01

    In order to solve the problem of the bandwidth limitation of the image transmission system on UAV, a scheme with image compression technology for mini UAV is proposed, based on the requirements of High-definition image transmission system of UAV. The video codec standard H.264 coding module and key technology was analyzed and studied for UAV area video communication. Based on the research of high-resolution image encoding and decoding technique and wireless transmit method, The high-resolution image transmission system was designed on architecture of Android and video codec chip; the constructed system was confirmed by experimentation in laboratory, the bit-rate could be controlled easily, QoS is stable, the low latency could meets most applied requirement not only for military use but also for industrial applications.

  15. Automated data processing of high-resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    There has been an almost explosive growth in performance and applications of Electrospray Ionization (ESI) Time of Flight (TOF) mass spectrometry, which today is one of the most efficient tools for screening of metabolites in complex bio-samples. Most efficiently ESI-MS can be used by directly...... infusion of crude extracts into the source taking advantage of the high sensitivity, high mass resolution and accuracy and the limited fragmentation. Unfortunately, there has not been a comparable development in the data processing techniques to fully exploit gain in high resolution and accuracy...... and mass axis on to a fixed one-dimensional array, we obtain a vector that can be used directly as input in multivariate statistics or library search methods. We demonstrate that both cluster- and discriminant analysis as well as PCA (and related methods) can be applied directly on mass spectra from direct...

  16. High Resolution Optical Spectra of HBC 722 after Outburst

    CERN Document Server

    Lee, Jeong-Eun; Lee, Sang-Gak; Sung, Hyun-Il; Lee, Byeong-Cheol; Sung, Hwankyung; Green, Joel D; Jeon, Young-Beom

    2011-01-01

    We report the results of our high resolution optical spectroscopic monitoring campaign ($\\lambda$ = 3800 -- 8800 A, R = 30000 -- 45000) of the new FU Orionis-type object HBC 722. We observed HBC 722 with the BOES 1.8-m telescope between 2010 November 26 and 2010 December 29 and FU Orionis itself on 2011 January 26. We detect a number of previously unreported high-resolution K I and Ca II lines beyond 7500 A. We resolve the H$\\alpha$ and Ca II line profiles into three velocity components, which we attribute to both disk and outflow. The increased accretion during outburst can heat the disk to produce the relatively narrow absorption feature and launch outflows appearing as high velocity blue and redshifted broad features.

  17. Application Research on High Resolution Radar Target Aggregation

    Directory of Open Access Journals (Sweden)

    Zhongzhi Li

    2010-11-01

    Full Text Available In high resolution radar system, the same target always has original data; so we need to merge multiple data from the same target as one target. Because of the system’s real-time requirement, we usually have to carry out target aggregation as quickly as possible. In this paper, we propose a quick target aggregation method based on clustering algorithm. The proposed method divides original data into subsets by single dimensional distance, and then merges subsets according to single dimensional distance and setdensity. At last we apply the proposed method to carry out target aggregation for airport scene surveillance radar system. Experimental result shows the proposed method has high execution efficiency and is not sensitive to noise data; it is useful for high resolution radar target aggregation.

  18. High Resolution X-ray-Induced Acoustic Tomography

    Science.gov (United States)

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-05-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray.

  19. High-resolution CT with histopathological correlates of the classic metaphyseal lesion of infant abuse

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Andy; Kleinman, Paul K. [Boston Children' s Hospital, Department of Radiology, Boston, MA (United States); McDonald, Anna G. [Office of the Chief Medical Examiner, Boston, MA (United States); Rosenberg, Andrew E. [University of Miami Hospital, Department of Pathology, Miami, FL (United States); Gupta, Rajiv [Massachusetts General Hospital, Department of Radiology, Boston, MA (United States)

    2014-02-15

    The classic metaphyseal lesion (CML) is a common high specificity indicator of infant abuse and its imaging features have been correlated histopathologically in infant fatalities. High-resolution CT imaging and histologic correlates were employed to (1) characterize the normal infant anatomy surrounding the chondro-osseous junction, and (2) confirm the 3-D model of the CML previously inferred from planar radiography and histopathology. Long bone specimens from 5 fatally abused infants, whose skeletal survey showed definite or suspected CMLs, were studied postmortem. After skeletal survey, selected specimens were resected and imaged with high-resolution digital radiography. They were then scanned with micro-CT (isotropic resolution of 45 μm{sup 3}) or with high-resolution flat-panel CT (isotropic resolutions of 200 μm{sup 3}). Visualization of the bony structures was carried out using image enhancement, segmentation and isosurface extraction, together with volume rendering and multiplanar reformatting. These findings were then correlated with histopathology. Study of normal infant bone clarifies the 3-D morphology of the subperiosteal bone collar (SPBC) and the radiographic zone of provisional calcification (ZPC). Studies on specimens with CML confirm that this lesion is a fracture extending in a planar fashion through the metaphysis, separating a mineralized fragment. This disk-like mineralized fragment has two components: (1) a thick peripheral component encompassing the SPBC; and (2) a thin central component comprised predominantly of the radiologic ZPC. By manipulating the 3-D model, the varying appearances of the CML are displayed. High-resolution CT coupled with histopathology provides elucidation of the morphology of the CML, a strong indicator of infant abuse. This new information may prove useful in assessing the biomechanical factors that produce this strong indicator of abusive assaults in infants. (orig.)

  20. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    TROYER, G.L.

    2000-08-25

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% {at} 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency.

  1. Electrical Capacitance Volume Tomography with High-Contrast Dielectrics

    Science.gov (United States)

    Nurge, Mark

    2010-01-01

    The Electrical Capacitance Volume Tomography (ECVT) system has been designed to complement the tools created to sense the presence of water in nonconductive spacecraft materials, by helping to not only find the approximate location of moisture but also its quantity and depth. The ECVT system has been created for use with a new image reconstruction algorithm capable of imaging high-contrast dielectric distributions. Rather than relying solely on mutual capacitance readings as is done in traditional electrical capacitance tomography applications, this method reconstructs high-resolution images using only the self-capacitance measurements. The image reconstruction method assumes that the material under inspection consists of a binary dielectric distribution, with either a high relative dielectric value representing the water or a low dielectric value for the background material. By constraining the unknown dielectric material to one of two values, the inverse math problem that must be solved to generate the image is no longer ill-determined. The image resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. The cuboid geometry of the system has two parallel planes of 16 conductors arranged in a 4 4 pattern. The electrode geometry consists of parallel planes of copper conductors, connected through custom-built switch electronics, to a commercially available capacitance to digital converter. The figure shows two 4 4 arrays of electrodes milled from square sections of copper-clad circuit-board material and mounted on two pieces of glass-filled plastic backing, which were cut to approximately square shapes, 10 cm on a side. Each electrode is placed on 2.0-cm centers. The parallel arrays were mounted with the electrode arrays approximately 3 cm apart. The open ends

  2. High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4T

    NARCIS (Netherlands)

    Kemper, Valentin G; De Martino, Federico; Emmerling, Thomas C; Yacoub, Essa; Goebel, R.

    2017-01-01

    The advent of ultra-high field functional magnetic resonance imaging (fMRI) has greatly facilitated submillimeter resolution acquisitions (voxel volume below (1mm³)), allowing the investigation of cortical columns and cortical depth dependent (i.e. laminar) structures in the human brain. Advanced

  3. Comparison of LiDAR-derived data and high resolution true color imagery for extracting urban forest cover

    Science.gov (United States)

    Aaron E. Maxwell; Adam C. Riley; Paul. Kinder

    2013-01-01

    Remote sensing has many applications in forestry. Light detection and ranging (LiDAR) and high resolution aerial photography have been investigated as means to extract forest data, such as biomass, timber volume, stand dynamics, and gap characteristics. LiDAR return intensity data are often overlooked as a source of input raster data for thematic map creation. We...

  4. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution.

    Science.gov (United States)

    Stamov, Dimitar R; Stock, Erik; Franz, Clemens M; Jähnke, Torsten; Haschke, Heiko

    2015-02-01

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. High-resolution ionization detector and array of such detectors

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas S. (Ypsilanti, MI); Rojeski, Ronald A. (Pleasanton, CA)

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  6. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  7. High-resolution three-dimensional imaging with compress sensing

    Science.gov (United States)

    Wang, Jingyi; Ke, Jun

    2016-10-01

    LIDAR three-dimensional imaging technology have been used in many fields, such as military detection. However, LIDAR require extremely fast data acquisition speed. This makes the manufacture of detector array for LIDAR system is very difficult. To solve this problem, we consider using compress sensing which can greatly decrease the data acquisition and relax the requirement of a detection device. To use the compressive sensing idea, a spatial light modulator will be used to modulate the pulsed light source. Then a photodetector is used to receive the reflected light. A convex optimization problem is solved to reconstruct the 2D depth map of the object. To improve the resolution in transversal direction, we use multiframe image restoration technology. For each 2D piecewise-planar scene, we move the SLM half-pixel each time. Then the position where the modulated light illuminates will changed accordingly. We repeat moving the SLM to four different directions. Then we can get four low-resolution depth maps with different details of the same plane scene. If we use all of the measurements obtained by the subpixel movements, we can reconstruct a high-resolution depth map of the sense. A linear minimum-mean-square error algorithm is used for the reconstruction. By combining compress sensing and multiframe image restoration technology, we reduce the burden on data analyze and improve the efficiency of detection. More importantly, we obtain high-resolution depth maps of a 3D scene.

  8. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  9. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, Dimitar R, E-mail: stamov@jpk.com [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)

    2015-02-15

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  10. Adaptive optics with pupil tracking for high resolution retinal imaging.

    Science.gov (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  11. High-resolution SIT TV tube for subnanosecond image shuttering

    Science.gov (United States)

    Yates, G. J.; Vine, B. H.; Aeby, I.; Dunbar, D. L.; King, N. S. P.; Jaramillo, S. A.; Thayer, N. N.; Noel, B. W.

    1984-09-01

    A new ultrafast high-resolution image shutter tube with reasonable gain and shuttering efficiency has been designed and tested. The design uses a grid-gated silicon-intensified-target (SIT) image section and a high-speed focus projection and scan (FPS) vidicon read-out section in one envelope to eliminate resolution losses from external coupling. The design features low-gate-interface capacity, a high-conductivity shutter grid, and a segmented low-resistivity photocathode for optimum gating speed. Optical gate widths as short as 400 ps + or - 100 ps for full shuttering of the 25-mm-diam input window with spatial resolution as high as 15 1p/mm have been measured. Some design criteria, most of the electrical and optical performance data for several variations in the basic design, and a comparison (of several key response functions) with similarly tested 18- and 25-mm-diam proximity-focused microchannel-plate (MCP) image intensifier tubes (MCPTs) are included.

  12. High resolution rainfall – runoff measurement setup for green roof experiments in a tropical environment

    Directory of Open Access Journals (Sweden)

    T. Vergroesen

    2010-12-01

    Full Text Available This article describes the measurement setup that is used for green roof experiments in a tropical environment, the required data treatment to obtain reliable values of rainfall, runoff and evapotranspiration, and how to deal with external disturbances that can influence the experiment results. High resolution rainfall runoff measurements to identify, understand and properly model the relevant runoff processes in a green roof require both tailored equipment and data treatment. A tipping bucket rain gauge is calibrated for and installed to measure minute based rain intensities. A runoff measuring setup is developed that can accurately quantify the runoff up to 6 l/min, and has a high resolution in both time and volume. Two different measuring setups are used to verify the evapotranspiration that is derived from the rainfall and runoff measurements.

  13. Stars at high resolution: a library of synthetic spectra from 850 to 7000 Å

    Science.gov (United States)

    Bertone, E.; Buzzoni, A.; Rodríguez-Merino, L. H.; Chávez, M.

    We present a new theoretical library of about 2500 high-resolution spectra of stars covering a wide wavelength range from 850 to 7000 Å. The set consists of an ultraviolet grid (1690 spectra), at an inverse resolution R=50 000, and an optical grid (832 spectra), at R=500 000, and spans a large volume in the fundamental parameters space (i.e. Teff, log {g}, [M/H]). The synthetic spectra, based on the ATLAS 9 model atmospheres, have been computed with the SYNTHE code developed by R.L. Kurucz. These properties make the library an updated tool, especially suitable to match high-quality observing data from the new-generation telescopes.

  14. Hantavirus cardiopulmonary syndrome successfully treated with high-volume hemofiltration

    Science.gov (United States)

    Bugedo, Guillermo; Florez, Jorge; Ferres, Marcela; Roessler, Eric; Bruhn, Alejandro

    2016-01-01

    Hantavirus cardiopulmonary syndrome has a high mortality rate, and early connection to extracorporeal membrane oxygenation has been suggested to improve outcomes. We report the case of a patient with demonstrated Hantavirus cardiopulmonary syndrome and refractory shock who fulfilled the criteria for extracorporeal membrane oxygenation and responded successfully to high volume continuous hemofiltration. The implementation of high volume continuous hemofiltration along with protective ventilation reversed the shock within a few hours and may have prompted recovery. In patients with Hantavirus cardiopulmonary syndrome, a short course of high volume continuous hemofiltration may help differentiate patients who can be treated with conventional intensive care unit management from those who will require more complex therapies, such as extracorporeal membrane oxygenation. PMID:27410413

  15. Multiresolution iterative reconstruction in high-resolution extremity cone-beam CT

    Science.gov (United States)

    Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2016-10-01

    Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size  <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution penalized-weighted least squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10×  can be used without introducing artifacts, yielding a ~50×  speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of

  16. High resolution MAS-NMR in combinatorial chemistry.

    Science.gov (United States)

    Shapiro, M J; Gounarides, J S

    High-resolution magic angle spinning (hr-MAS) NMR is a powerful tool for characterizing organic reactions on solid support. Because magic angle spinning reduces the line-broadening due to dipolar coupling and variations in bulk magnetic susceptibility, line widths approaching those obtained in solution-phase NMR can be obtained. The magic angle spinning method is amenable for use in conjunction with a variety of NMR-pulse sequences, making it possible to perform full-structure determinations and conformational analysis on compounds attached to a polymer support. Diffusion-weighted MAS-NMR methods such as SPEEDY (Spin-Echo-Enhanced Diffusion-Filtered Spectroscopy) can be used to remove unwanted signals from the solvent, residual reactants, and the polymer support from the MAS-NMR spectrum, leaving only those signals arising from the resin-bound product. This review will present the applications of high-resolution magic angle spinning NMR for use in combinatorial chemistry research.

  17. High resolution reservoir geological modelling using outcrop information

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  18. Precision cosmology with time delay lenses: high resolution imaging requirements

    CERN Document Server

    Meng, Xiao-Lei; Agnello, Adriano; Auger, Matthew W; Liao, Kai; Marshall, Philip J

    2015-01-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as "Einstein Rings" in high resolution images. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope $\\gamma'$ of the...

  19. HIGH AND LOW RESOLUTION TEXTURED MODELS OF COMPLEX ARCHITECTURAL SURFACES

    Directory of Open Access Journals (Sweden)

    E. K. Stathopoulou

    2012-09-01

    Full Text Available During the recent years it has become obvious that 3D technology, applied mainly with the use of terrestrial laser scanners (TLS is the most suitable technique for the complete geometric documentation of complex objects, whether they are monuments or architectural constructions in general. However, it is rather a challenging task to convert an acquired point cloud into a realistic 3D polygonal model that can simultaneously satisfy high resolution modeling and visualization demands. The aim of the visualization of a simple or complex object is to create a 3D model that best describes the reality within the computer environment. This paper is dedicated especially in the visualization of a complex object's 3D model, through high, as well as low resolution textured models. The object of interest for this study was the Almoina (Romanesque Door of the Cathedral of Valencia in Spain.

  20. Fabricating High-Resolution X-Ray Collimators

    Science.gov (United States)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  1. High-resolution ultrasonographic findings in thyroid nodules

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Seob; Lee, Kwan Seh; Kim, Kun Sang; Park, Soo Soung [College of Medicine, Chung-Ang University, Seoul (Korea, Republic of)

    1985-08-15

    Ultrasonography, it's excellent ability of differentiating cystic from solid lesion and depicting detailed architecture, proved itself useful in the diagnosis of thyroid pathologies. Advanced high resolution equipment made hidden small lesion detected and finer structure clearly seen. They seemed to throw light on the histological diagnosis of thyroid diseases, especially differentiation of benignancy and malignancy. Author reviewed pictures of high-resolution ultrasonography of thyroid disease (24 cases) and correlated them with proven pathological findings. The results were as follows: 1. Multiplicity of lesion favors benignancy (4 cases). 2. Well defined margin favors benignancy (14/17), while ill defined margin favors malignancy (3/4), and lesion of no margin favors thyroiditis (3/3). 3. Surrounding halo favors benignancy (7 cases). 4. Hypoechogenicity were found in most of malignancy and thyroiditis. Cystic components in solid nodule were common findings in benign and malignant lesions. Calcification was not found in malignancy.

  2. Temperature-dependent high resolution absorption cross sections of propane

    Science.gov (United States)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.

    2016-10-01

    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  3. High and Low Resolution Textured Models of Complex Architectural Surfaces

    Science.gov (United States)

    Stathopoulou, E. K.; Valanis, A.; Lerma, J. L.; Georgopoulos, A.

    2011-09-01

    During the recent years it has become obvious that 3D technology, applied mainly with the use of terrestrial laser scanners (TLS) is the most suitable technique for the complete geometric documentation of complex objects, whether they are monuments or architectural constructions in general. However, it is rather a challenging task to convert an acquired point cloud into a realistic 3D polygonal model that can simultaneously satisfy high resolution modeling and visualization demands. The aim of the visualization of a simple or complex object is to create a 3D model that best describes the reality within the computer environment. This paper is dedicated especially in the visualization of a complex object's 3D model, through high, as well as low resolution textured models. The object of interest for this study was the Almoina (Romanesque) Door of the Cathedral of Valencia in Spain.

  4. A multi-purpose modular system for high-resolution microscopy at high hydrostatic pressure

    CERN Document Server

    Vass, Hugh; Herzig, Eva M; Ward, F Bruce; Clegg, Paul S; Allen, Rosalind J

    2009-01-01

    We have developed a modular system for high-resolution microscopy at high hydrostatic pressure. The system consists of a pressurised cell of volume ~100 microlitres, a temperature controlled holder, a ram and a piston. We have made each of these components in several versions which can be interchanged to allow a wide range of applications. Here, we report two pressure cells with pressure ranges 0.1-700MPa and 0.1-100MPa, which can be combined with hollow or solid rams and pistons. Our system is designed to work with fluorescent samples (using a confocal or epifluorescence microscope), but also allows for transmitted light microscopy via the hollow ram and piston. The system allows precise control of pressure and temperature [-20-70C], as well as rapid pressure quenching. We demonstrate its performance and versatility with two applications: time-resolved imaging of colloidal phase transitions caused by pressure changes between 0.1MPa and 101MPa, and imaging the growth of Escherichia coli bacteria at 50MPa. We ...

  5. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    Science.gov (United States)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums

  6. High Resolution Aircraft Scanner Mapping of Geothermal and Volcanic Areas

    Energy Technology Data Exchange (ETDEWEB)

    Mongillo, M.A.; Cochrane, G.R.; Wood, C.P.; Shibata, Y.

    1995-01-01

    High spectral resolution GEOSCAN Mkll multispectral aircraft scanner imagery has been acquired, at 3-6 m spatial resolutions, over much of the Taupo Volcanic Zone as part of continuing investigations aimed at developing remote sensing techniques for exploring and mapping geothermal and volcanic areas. This study examined the 24-band: visible, near-IR (NIR), mid-IR (MIR) and thermal-IR (TIR) imagery acquired over Waiotapu geothermal area (3 m spatial resolution) and White Island volcano (6 m resolution). Results show that color composite images composed of visible and NIR wavelengths that correspond to color infrared (CIR) photographic wavelengths can be useful for distinguishing among bare ground, water and vegetation features and, in certain cases, for mapping various vegetation types. However, combinations which include an MIR band ({approx} 2.2 {micro}m) with either visible and NIR bands, or two NIR bands, are the most powerful for mapping vegetation types, water bodies, and bare and hydrothermally altered ground. Combinations incorporating a daytime TIR band with NIR and MIR bands are also valuable for locating anomalously hot features and distinguishing among different types of surface hydrothermal alteration.

  7. A high resolution cavity BPM for the CLIC Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chritin, N.; Schmickler, H.; Soby, L.; /CERN; Lunin, A.; Solyak, N.; Wendt, M.; Yakovlev, V.; /Fermilab

    2010-08-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  8. High-Resolution Wind Measurements for Offshore Wind Energy Development

    Science.gov (United States)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  9. High resolution solar soft X-ray spectrometer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fei; WANG Huan-Yu; PENG Wen-Xi; LIANG Xiao-Hua; ZHANG Chun-Lei; CAO Xue-Lei; JIANG Wei-Chun; ZHANG Jia-Yu; CUI Xing-Zhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed.A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer.The spectrometer consists of the detectors and their readout electronics,a data acquisition unit and a payload data handling unit.A ground test system is also developed to test SOX.The test results show that the design goals of the spectrometer system have been achieved.

  10. High resolution bathymetry of China seas and their surroundings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the oceanic lithospheric flexure and the worldwide bathymetric data ETOPO5, the high resolu tion bathymetry of the China seas and their surroundings is computed from altimeter derived gravity anomalies. The new bathymetry obtained by this study is higher resolution and accuracy than the widely used ETOPO5 data, mean while it shows clearly the seafioor, the tectonic characteristics and the geodynamical processes in the China seas.

  11. High-resolution x-ray photoemission spectra of silver

    DEFF Research Database (Denmark)

    Barrie, A.; Christensen, N. E.

    1976-01-01

    An electron spectrometer fitted with an x-ray monochromator for Al Kα1,2 radiation (1486.6 eV) has been used to record high-resolution x-ray photoelectron spectra for the 4d valence band as well as the 3d spin doublet in silver. The core-level spectrum has a line shape that can be described...

  12. High resolution inelastic electron scattering and nuclear structure

    Science.gov (United States)

    Blok, H. B.; Heisenberg, J. H.

    Thanks to the improved characteristics of the experimental set-up electron scattering has become an excellent tool to study the structure of the nucleus. After describing globally how the nuclear structure enters in the formalism of (e,e') reactions and how the high experimental resolution is obtained, several examples of the use of electron scattering for the study of specific nuclear structure questions are discussed.

  13. Tuberculous otitis media: findings on high-resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Lungenschmid, D. [Dept. of Radiodiagnostics, University Hospital Innsbruck (Austria)]|[Dept. of Magnetic Resonance and Spectroscopy, University Hospital of Innsbruck (Austria); Buchberger, W. [Dept. of Radiodiagnostics, University Hospital Innsbruck (Austria)]|[Dept. of Magnetic Resonance and Spectroscopy, University Hospital of Innsbruck (Austria); Schoen, G. [Dept. of Radiodiagnostics, University Hospital Innsbruck (Austria); Schoepf, R. [Radiologic Inst., Landeck (Austria); Mihatsch, T. [Dept. of Oto-Rhino-Laryngology, University Hospital of Innsbruck (Austria); Birbamer, G. [Dept. of Magnetic Resonance and Spectroscopy, University Hospital of Innsbruck (Austria); Wicke, K. [Inst. of Computed Tomography, University Hospital of Innsbruck (Austria)

    1993-12-01

    We describe two cases of tuberculous otitis media studied with high-resolution computed tomography (CT). Findings included extensive soft tissue densities with fluid levels in the tympanic cavity, the antrum, the mastoid and petrous air cells. Multifocal bony erosions and reactive bone sclerosis were seen as well. CT proved valuable for planning therapy by accurately displaying the involvement of the various structures of the middle and inner ear. However, the specific nature of the disease could only be presumed. (orig.)

  14. Fusion Experiments of HSI and High Resolution Panchromatic Imagery

    Science.gov (United States)

    2007-11-02

    map derived from the unsharpened HSI. The classification is performed with an unsupervised feature extraction using principal component analysis (PCA... Classification of Hyperspectral Data in Urban Area", P. 169-172, SPIE Vol.3502 8. R. C. Gonzalez, P. Wintz, Digital Image Processing, Addison-Wesley...MA 02420-9185 Abstract In this paper, the fusion of hyperspectral imaging (HSI) sensor data and high-resolution panchromatic imagery (HPI) is

  15. Optical alignment of high resolution Fourier transform spectrometers

    Science.gov (United States)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  16. A high resolution cavity BPM for the CLIC Test Facility

    CERN Document Server

    Chritin, N; Soby, L; Lunin, A; Solyak, N; Wendt, M; Yakovlev, V

    2012-01-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  17. Chronic pneumonitis of infancy: high-resolution CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Oeystein E.; Owens, Catherine M. [Radiology Department, Great Ormond Street Hospital for Children NHS Trust, Great Ormond Street, WC1N 3JH, London (United Kingdom); Sebire, Neil J. [Histopathology Department, Great Ormond Street Hospital for Children NHS Trust, London (United Kingdom); Jaffe, Adam [Portex Respiratory Medicine Unit, The Institute of Child Health, University College London, London (United Kingdom)

    2004-01-01

    Chronic pneumonitis of infancy (CPI) is a very rare entity. We report the chest radiography and high-resolution CT (HRCT) findings in an infant with histopathologically confirmed CPI. The child was admitted for intensive care 18 h after birth and died at 39 days of age. On HRCT there was diffuse ground-glass change, interlobular septal thickening and discrete centrilobular nodules. An accurate diagnosis is crucial for correct management; however, several entities with the same HRCT findings are recognized. (orig.)

  18. High-resolution CT of lesions of the optic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Peyster, R.G.; Hoover, E.D.; Hershey, B.L.; Haskin, M.E.

    1983-05-01

    The optic nerves are well demonstrated by high-resolution computed tomography. Involvement of the optic nerve by optic gliomas and optic nerve sheath meningiomas is well known. However, nonneoplastic processes such as increased intracranial pressure, optic neuritis, Grave ophthalmopathy, and orbital pseudotumor may also alter the appearance of the optic nerve/sheath on computed tomography. Certain clinical and computed tomographic features permit distinction of these nonneoplastic tumefactions from tumors.

  19. Yeast expression proteomics by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Walther, Tobias C; Olsen, Jesper Velgaard; Mann, Matthias

    2010-01-01

    -translational controls contribute majorly to regulation of protein abundance, for example in heat shock stress response. The development of new sample preparation methods, high-resolution mass spectrometry and novel bioinfomatic tools close this gap and allow the global quantitation of the yeast proteome under different...... conditions. Here, we provide background information on proteomics by mass-spectrometry and describe the practice of a comprehensive yeast proteome analysis....

  20. Progress Toward A Very High Angular Resolution Imaging Spectrometer (VERIS)

    Science.gov (United States)

    Korendyke, Clarence M.; Vourlidas, A.; Landi, E.; Seely, J.; Klimchuck, J.

    2007-07-01

    Recent imaging at arcsecond (TRACE) and sub-arcsecond (VAULT) spatial resolution clearly show that structures with fine spatial scales play a key role in the physics of the upper solar atmosphere. Both theoretical and observational considerations point to the importance of small spatial scales, impulsive energy release, strong dynamics, and extreme plasma nonuniformity. Fundamental questions regarding the nature, structure, properties and dynamics of loops and filamentary structures in the upper atmosphere have been raised. To address these questions, we are developing a next generation, VEry high angular Resolution Imaging Spectrometer (VERIS) as a sounding rocket instrument. VERIS will obtain the necessary high spatial resolution, high fidelity measurements of plasma temperatures, densities and velocities. With broad simultaneous temperature coverage, the VERIS observations will directly address unresolved issues relating to interconnections of various temperature solar plasmas. VERIS will provide the first ever subarcsecond spectra of transition region and coronal structures. It will do so with a sufficient spectral resolution of to allow centroided Doppler velocity determinations to better than 3 km/s. VERIS uses a novel two element, normal incidence optical design with highly reflective EUV coatings to access a spectral range with broad temperature coverage (0.03-15 MK) and density-sensitive line ratios. Finally, in addition to the spectra, VERIS will simultaneously obtain spectrally pure slot images (10x150 arcsec) in the +/-1 grating orders, which can be combined to make instantaneous line-of-sight velocity maps with 8km/s accuracy over an unprecedented field of view. The VERIS program is beginning the second year of its three year development cycle. All design activities and reviews are complete. Fabrication of all major components has begun. Brassboard electronics cards have been fabricated, assembled and tested. The paper presents the essential scientific

  1. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  2. Spatial resolution and measurement uncertainty of strains in bone and bone-cement interface using digital volume correlation.

    Science.gov (United States)

    Zhu, Ming-Liang; Zhang, Qing-Hang; Lupton, Colin; Tong, Jie

    2016-04-01

    The measurement uncertainty of strains has been assessed in a bone analogue (sawbone), bovine trabecular bone and bone-cement interface specimens under zero load using the Digital Volume Correlation (DVC) method. The effects of sub-volume size, sample constraint and preload on the measured strain uncertainty have been examined. There is generally a trade-off between the measurement uncertainty and the spatial resolution. Suitable sub-volume sizes have been be selected based on a compromise between the measurement uncertainty and the spatial resolution of the cases considered. A ratio of sub-volume size to a microstructure characteristic (Tb.Sp) was introduced to reflect a suitable spatial resolution, and the measurement uncertainty associated was assessed. Specifically, ratios between 1.6 and 4 appear to give rise to standard deviations in the measured strains between 166 and 620 με in all the cases considered, which would seem to suffice for strain analysis in pre as well as post yield loading regimes. A microscale finite element (μFE) model was built from the CT images of the sawbone, and the results from the μFE model and a continuum FE model were compared with those from the DVC. The strain results were found to differ significantly between the two methods at tissue level, consistent in trend with the results found in human bones, indicating mainly a limitation of the current DVC method in mapping strains at this level.

  3. A high-resolution record of Greenland mass balance

    Science.gov (United States)

    McMillan, Malcolm; Leeson, Amber; Shepherd, Andrew; Briggs, Kate; Armitage, Thomas W. K.; Hogg, Anna; Kuipers Munneke, Peter; Broeke, Michiel; Noël, Brice; Berg, Willem Jan; Ligtenberg, Stefan; Horwath, Martin; Groh, Andreas; Muir, Alan; Gilbert, Lin

    2016-07-01

    We map recent Greenland Ice Sheet elevation change at high spatial (5 km) and temporal (monthly) resolution using CryoSat-2 altimetry. After correcting for the impact of changing snowpack properties associated with unprecedented surface melting in 2012, we find good agreement (3 cm/yr bias) with airborne measurements. With the aid of regional climate and firn modeling, we compute high spatial and temporal resolution records of Greenland mass evolution, which correlate (R = 0.96) with monthly satellite gravimetry and reveal glacier dynamic imbalance. During 2011-2014, Greenland mass loss averaged 269 ± 51 Gt/yr. Atmospherically driven losses were widespread, with surface melt variability driving large fluctuations in the annual mass deficit. Terminus regions of five dynamically thinning glaciers, which constitute less than 1% of Greenland's area, contributed more than 12% of the net ice loss. This high-resolution record demonstrates that mass deficits extending over small spatial and temporal scales have made a relatively large contribution to recent ice sheet imbalance.

  4. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    Science.gov (United States)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  5. Multimodal microscopy with high resolution spectral focusing CARS

    Science.gov (United States)

    Baldacchini, Tommaso; Zadoyan, Ruben

    2014-02-01

    In this work we describe a device that extends capabilities of multiphoton microscopes based on dual wavelength output femtosecond laser sources. CARS with 17cm-1 spectral resolution is experimentally demonstrated. Our approach is based on spectral focusing CARS. For pulse shaping of the pump and Stokes beams we utilize transmission gratings based stretcher. It allows the dispersion of the stretcher to be continuously adjusted in wide range. The best spectral resolution is achieved when the chirp rates in both pump and Stokes beam are matched. The device is automated. Any change in the beam path lengths due to the stretcher adjustment or wavelength tuning is compensated by the delay line. We incorporated into the device a computer controlled beam pointing stabilization system that compensates the beam pointing deviation due to dispersion in the system. High level of automation and computer control makes the operation of the device easy. We present CARS images of several samples that demonstrate high spectral resolution, high contrast and chemical selectivity.

  6. Development of a high resolution module for PET scanners

    Science.gov (United States)

    Stringhini, G.; Pizzichemi, M.; Ghezzi, A.; Stojkovic, A.; Tavernier, S.; Niknejad, T.; Varela, J.; Paganoni, M.; Auffray, E.

    2017-02-01

    Positron Emission Tomography (PET) scanners require high performances in term of spatial resolution and sensitivity to allow early detection of cancer masses. In small animal and organ dedicated PET scanners the Depth of Interaction (DOI) information has to be obtained to avoid parallax errors and to reconstruct high resolution images. In the whole body PET, the DOI information can be useful to correct for the time jitter of the optical photons along the main axis of the scintillator, improving the time performances. In this work we present the development of PET module designed to reach high performance as compared to the current scanners while keeping the complexity of the system reasonably low. The module presented is based on a 64 LYSO (Lutetium-yttrium oxyorthosilicate) crystals matrix and on a 4×4 MPPC (Multi Pixels Photon Counter) array as detector in a 4 to 1 coupling between the crystals and the detector and a single side readout. The lateral surfaces of the crystals are optically treated to be unpolished. The DOI and the energy resolution of the PET module are presented and a fast method to obtain the DOI calibration is discussed.

  7. High resolution, large dynamic range field map estimation

    Science.gov (United States)

    Dagher, Joseph; Reese, Timothy; Bilgin, Ali

    2013-01-01

    Purpose We present a theory and a corresponding method to compute high resolution field maps over a large dynamic range. Theory and Methods We derive a closed-form expression for the error in the field map value when computed from two echoes. We formulate an optimization problem to choose three echo times which result in a pair of maximally distinct error distributions. We use standard field mapping sequences at the prescribed echo times. We then design a corresponding estimation algorithm which takes advantage of the optimized echo times to disambiguate the field offset value. Results We validate our method using high resolution images of a phantom at 7T. The resulting field maps demonstrate robust mapping over both a large dynamic range, and in low SNR regions. We also present high resolution offset maps in vivo using both, GRE and MEGE sequences. Even though the proposed echo time spacings are larger than the well known phase aliasing cutoff, the resulting field maps exhibit a large dynamic range without the use of phase unwrapping or spatial regularization techniques. Conclusion We demonstrate a novel 3-echo field map estimation method which overcomes the traditional noise-dynamic range trade-off. PMID:23401245

  8. High Resolution CO Observations of Massive Star Forming Regions

    CERN Document Server

    Klaassen, P D; Keto, E R; Zhang, Q; Galván-Madrid, R; Liu, H-Y B

    2011-01-01

    Context. To further understand the processes involved in the formation of massive stars, we have undertaken a study of the gas dynamics surrounding three massive star forming regions. By observing the large scale structures at high resolution, we are able to determine properties such as driving source, and spatially resolve the bulk dynamical properties of the gas such as infall and outflow. Aims. With high resolution observations, we are able to determine which of the cores in a cluster forming massive stars is responsible for the large scale structures. Methods. We present CO observations of three massive star forming regions with known HII regions and show how the CO traces both infall and outflow. By combining data taken in two SMA configurations with JCMT observations, we are able to see large scale structures at high resolution. Results. We find large (0.26-0.40 pc), massive (2-3 M_sun) and energetic (13-17 \\times 10^44 erg) outflows emanating from the edges of two HII regions suggesting they are being ...

  9. High-Resolution CH Observations of Two Translucent Molecular Clouds

    Science.gov (United States)

    Chastain, Raymond J.; Cotten, David; Magnani, Loris

    2010-01-01

    We present high-resolution (1farcm3 × 1farcm6) observations of the CH 2Π1/2 (F = 1-1) emission line at 3335 MHz in two high-latitude translucent clouds, MBM 3 and 40. At the assumed cloud distances, the angular resolution corresponds to ~0.05 pc, nearly an order of magnitude better than previous studies. Comparisons of the CH emission with previously obtained CO(1-0) data are difficult to interpret: the CO and CH line emission correlates in MBM 40 but not in MBM 3. In both clouds, there is a spatial offset in the peak emission, and perhaps in velocity for MBM 40. The difference in emission characteristics for the two tracers are noticeable in these two nearby clouds because of the high spatial resolution. Since both CH and CO are deemed to be reliable tracers of H2, our results indicate that more care should be taken when using one of these tracers to determine the mass of a nearby molecular cloud.

  10. High Resolution Real Time Sonography of the Thyroid Gland

    Directory of Open Access Journals (Sweden)

    A. Honarbakhsh

    2008-01-01

    Full Text Available Background/Objective: High-resolution sonography equipment permits for visualization of normal and abnormal thyroid gland with or without gel pad or water bath. This study prospectively presents surgically and pathologically proved patients with thyroid disease by direct ultrasound with or without Doppler (pulse, color, power Doppler."nPatients and Methods: This study was performed by 7.5-10 MHz frequency linear probe transducer with axial resolution of 0.7mm and lateral resolution of 1-2 mm (Aloka 650 and super SG 140 Toshiba unit assembly with color, power Doppler. Patient's neck was extended as a supine position."nResults: Pathologic proof was obtained in 45 patients with benign and five patients with malignant thyroid disease. Benign lesions were follicular adenoma in 30 patients, goiter in 10 patients, as hashimoto thyroiditis in two patients, hemorrhagic cyst in two patients and simple cyst in one patient. Malignant lesions were follicular, papillary, and medulary carcinoma which seen in two, two, and one patients respectively. Echopatterns were as follow: Most of them showed decreades echo when we compare to normal thyroid tissue, some malignant lesions showed increased echo and some isoecho, in the last group we need other work up for example Doppler (pulse, color, power for evaluation vascularity. We did not have metastasis to thyroid gland."nConclusion: With advace in technology in crystal and design overall probe as a result creat broadband width probe and also full digital sonography unit inclding (beam forming - CPU in images resolution is with high grade than semi digital unit that before used for thytoid gland. When With any reason resolution is increased we sould be able to diagnosed very small and smallest lesion (for example mest to thyroid or reccurency after total Lobectomy: there is three primay uses of sonography, 1 detection of mutionodular gland when only one nodule is suspected clinically and by isotop scan.2 High

  11. High resolution modeling of a small urban catchment

    Science.gov (United States)

    Skouri-Plakali, Ilektra; Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    Flooding is one of the most complex issues that urban environments have to deal with. In France, flooding remains the first natural risk with 72% of decrees state of natural disaster issued between October 1982 and mid-November 2014. Flooding is a result of meteorological extremes that are usually aggravated by the hydrological behavior of urban catchments and human factors. The continuing urbanization process is indeed changing the whole urban water cycle by limiting the infiltration and promoting runoff. Urban environments are very complex systems due to their extreme variability, the interference between human activities and natural processes but also the effect of the ongoing urbanization process that changes the landscape and hardly influences their hydrologic behavior. Moreover, many recent works highlight the need to simulate all urban water processes at their specific temporal and spatial scales. However, considering urban catchments heterogeneity still challenging for urban hydrology, even after advances noticed in term of high-resolution data collection and computational resources. This issue is more to be related to the architecture of urban models being used and how far these models are ready to take into account the extreme variability of urban catchments. In this work, high spatio-temporal resolution modeling is performed for a small and well-equipped urban catchment. The aim of this work is to identify urban modeling needs in terms of spatial and temporal resolution especially for a very small urban area (3.7 ha urban catchment located in the Perreux-sur-Marne city at the southeast of Paris) MultiHydro model was selected to carry out this work, it is a physical based and fully distributed model that interacts four existing modules each of them representing a portion of the water cycle in urban environments. MultiHydro was implemented at 10m, 5m and 2m resolution. Simulations were performed at different spatio-temporal resolutions and analyzed with

  12. Distributed Modeling with Parflow using High Resolution LIDAR Data

    Science.gov (United States)

    Barnes, M.; Welty, C.; Miller, A. J.

    2012-12-01

    Urban landscapes provide a challenging domain for the application of distributed surface-subsurface hydrologic models. Engineered water infrastructure and altered topography influence surface and subsurface flow paths, yet these effects are difficult to quantify. In this work, a parallel, distributed watershed model (ParFlow) is used to simulate urban watersheds using spatial data at the meter and sub-meter scale. An approach using GRASS GIS (Geographic Resources Analysis Support System) is presented that incorporates these data to construct inputs for the ParFlow simulation. LIDAR topography provides the basis for the fully coupled overland flow simulation. Methods to address real discontinuities in the urban land-surface for use with the grid-based kinematic wave approximation used in ParFlow are presented. The spatial distribution of impervious surface is delineated accurately from high-resolution land cover data; hydrogeological properties are specified from literature values. An application is presented for part of the Dead Run subwatershed of the Gwynns Falls in Baltimore County, MD. The domain is approximately 3 square kilometers, and includes a highly impacted urban stream, a major freeway, and heterogeneous urban development represented at a 10-m horizontal resolution and 1-m vertical resolution. This resolution captures urban features such as building footprints and highways at an appropriate scale. The Dead Run domain provides an effective test case for ParFlow application at the fine scale in an urban environment. Preliminary model runs employ a homogeneous subsurface domain with no-flow boundaries. Initial results reflect the highly articulated topography of the road network and the combined influence of surface runoff from impervious surfaces and subsurface flux toward the channel network. Subsequent model runs will include comparisons of the coupled surface-subsurface response of alternative versions of the Dead Run domain with and without impervious

  13. High resolution OCT image generation using super resolution via sparse representation

    Science.gov (United States)

    Asif, Muhammad; Akram, Muhammad Usman; Hassan, Taimur; Shaukat, Arslan; Waqar, Razi

    2017-02-01

    In this paper we propose a technique for obtaining a high resolution (HR) image from a single low resolution (LR) image -using joint learning dictionary - on the basis of image statistic research. It suggests that with an appropriate choice of an over-complete dictionary, image patches can be well represented as a sparse linear combination. Medical imaging for clinical analysis and medical intervention is being used for creating visual representations of the interior of a body, as well as visual representation of the function of some organs or tissues (physiology). A number of medical imaging techniques are in use like MRI, CT scan, X-rays and Optical Coherence Tomography (OCT). OCT is one of the new technologies in medical imaging and one of its uses is in ophthalmology where it is being used for analysis of the choroidal thickness in the eyes in healthy and disease states such as age-related macular degeneration, central serous chorioretinopathy, diabetic retinopathy and inherited retinal dystrophies. We have proposed a technique for enhancing the OCT images which can be used for clearly identifying and analyzing the particular diseases. Our method uses dictionary learning technique for generating a high resolution image from a single input LR image. We train two joint dictionaries, one with OCT images and the second with multiple different natural images, and compare the results with previous SR technique. Proposed method for both dictionaries produces HR images which are comparatively superior in quality with the other proposed method of SR. Proposed technique is very effective for noisy OCT images and produces up-sampled and enhanced OCT images.

  14. [INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology

    Science.gov (United States)

    Delaporte, Philippe; Alloncle, Anne-Patricia

    2016-04-01

    Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.

  15. High-Resolution Numerical Model for Shallow Water Flows and Pollutant Diffusions

    Institute of Scientific and Technical Information of China (English)

    王嘉松; 何友声

    2002-01-01

    A finite-volume high-resolution numerical model for coupling the shallow water flows and pollutant diffusions was presented based on using a hybrid TVD scheme in space discretization and a Runge-Kutta method in time discretization. Numerical simulations for modelling dam- break, enlarging open channel flow and pollutant dispersion were implemented and compared with experimental data or other published computations. The validation of this method shows that it can not only deal with the problem involving discontinuities and unsteady flows, but also solve the general shallow water flows and pollutant diffusions.

  16. Precision glass molding of high-resolution diffractive optical elements

    Science.gov (United States)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans P.; Plöger, Sven; Hermerschmidt, Andreas

    2016-04-01

    The demand of high resolution diffractive optical elements (DOE) is growing. Smaller critical dimensions allow higher deflection angles and can fulfill more demanding requirements, which can only be met by using electron-beam lithography. Replication techniques are more economical, since the high cost of the master can be distributed among a larger number of replicas. The lack of a suitable mold material for precision glass molding has so far prevented an industrial use. Glassy Carbon (GC) offers a high mechanical strength and high thermal strength. No anti-adhesion coatings are required in molding processes. This is clearly an advantage for high resolution, high aspect ratio microstructures, where a coating with a thickness between 10 nm and 200 nm would cause a noticeable rounding of the features. Electron-beam lithography was used to fabricate GC molds with highest precision and feature sizes from 250 nm to 2 μm. The master stamps were used for precision glass molding of a low Tg glass L-BAL42 from OHARA. The profile of the replicated glass is compared to the mold with the help of SEM images. This allows discussion of the max. aspect-ratio and min. feature size. To characterize optical performances, beamsplitting elements are fabricated and their characteristics were investigated, which are in excellent agreement to theory.

  17. Quantitative comparison of myocardial blood flow in normal and infarcted hearts by high resolution scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.Y.; Burow, R.D.; Scherlag, B.J.; Basmadjian, G.P.; Lazzara, R.

    1984-01-01

    The standard method for measuring myocardial blood flow (MBF) with radioactive microspheres requires processing of selected tissue samples and consequent loss of exact relation to myocardial morphology. Also, in myocardial infarction (MI) there are inaccuracies due to overlap of tissues from borders of normal and MI. A new method uses Tc-99m labeled microspheres (20..mu..) which were injected into the left atrium in 18 normal dogs and 12 dogs with MI (5 had 1 day and 7 had 4 day old MI). The excised hearts were rinsed and frozen before ''bread-loaf'' sections, 3 mm thick, were cut. Images were acquired on a gamma camera with a volume resolution of 12 mm/sup 3/. A computer program for determining MBF was checked against the conventional microsphere method. The volume resolution of the latter method was 100 mm/sup 3/. The correlation coefficient between the two methods was r=0.96. Average MBF for a given section of normal RV and LV was 95 +- 13 and 119 +- 15 ml/min/100 g of tissue, respectively. Average MBF was compared in normal LV and from ischemic epicardium (IsZ) of the central MI and endocardial infarcted zone (IZ). The authors' new method, accurately and with high resolution, delineates zones of differing MBF and confirms the increase of MBF in surviving myocardium with healing.

  18. Calibration of a High Resolution Airborne 3-D SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Grinder-Pedersen, Jan; Madsen, S.N.

    1997-01-01

    (EMI). In order to achieve a high geodetic fidelity when using such systems operationally, calibration procedures must be applied. Inaccurate navigation data and system parameters as well as system imperfections must be accounted for. This paper presents theoretical models describing the impact of key......The potential of across-track interferometric (XTI) synthetic aperture radar (SAR) for producing high resolution 3D imagery has been demonstrated by several airborne systems including EMISAR, the dual frequency, polarimetric, and interferometric SAR developed at the Dept. of Electromagnetic Systems...

  19. Coverage Options for a Low cost, High Resolution Optical Constellation

    OpenAIRE

    Price, M E; Levett, W.; Graham, K.

    2003-01-01

    This paper presents the range of coverage options available to TopSat like small satellites, both singly and in a small constellation. TopSat is a low-cost, high resolution and image quality, optical small satellite, due for launch in October 2004. In particular, the paper considers the use of tuned, repeat ground track orbits to improve coverage for selected ground targets, at the expense of global coverage. TopSat is designed to demonstrate the capabilities of small satellites for high valu...

  20. High resolution study of magnetic ordering at absolute zero.

    Science.gov (United States)

    Lee, M; Husmann, A; Rosenbaum, T F; Aeppli, G

    2004-05-07

    High resolution pressure measurements in the zero-temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the precision that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.

  1. High-resolution protein structure determination by serial femtosecond crystallography.

    Science.gov (United States)

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J; Barends, Thomas R M; Aquila, Andrew; Doak, R Bruce; Weierstall, Uwe; DePonte, Daniel P; Steinbrener, Jan; Shoeman, Robert L; Messerschmidt, Marc; Barty, Anton; White, Thomas A; Kassemeyer, Stephan; Kirian, Richard A; Seibert, M Marvin; Montanez, Paul A; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M; Philipp, Hugh T; Tate, Mark W; Hromalik, Marianne; Koerner, Lucas J; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y; Hunter, Mark S; Johansson, Linda C; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C H; Chapman, Henry N; Schlichting, Ilme

    2012-07-20

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.

  2. High resolution upgrade of the ATF damping ring BPM system

    Energy Technology Data Exchange (ETDEWEB)

    Terunuma, N.; Urakawa, J.; /KEK, Tsukuba; Frisch, J.; May, J.; McCormick, D.; Nelson, J.; Seryi, A.; Smith, T.; Woodley, M.; /SLAC; Briegel, C.; Dysert, R.; /Fermilab

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  3. Localized corrosion information using high resolution measurement devices

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2005-01-01

    to control the solution flow at the tip. Through addition of reference and counter electrodes, the pipette system becomes a microscopic electrochemical cell, which can then be used with high precision to determine the electrochemical characteristics of the microstructural region of interest. The capability...... of the technique could be further enhanced by adding new features such as high resolution video visualization systems, fretting/tribo-corroson attachments, and also by integrating it with stress corrosion testing, corrosion investigation of concrete for a few to name with. The corrosion group in MPT, Technical...

  4. High-resolution multimodal clinical multiphoton tomography of skin

    Science.gov (United States)

    König, Karsten

    2011-03-01

    This review focuses on multimodal multiphoton tomography based on near infrared femtosecond lasers. Clinical multiphoton tomographs for 3D high-resolution in vivo imaging have been placed into the market several years ago. The second generation of this Prism-Award winning High-Tech skin imaging tool (MPTflex) was introduced in 2010. The same year, the world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph. In particular, non-fluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen has been imaged with submicron resolution in patients suffering from psoriasis. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution wide-field systems such as ultrasound, optoacoustical, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer, optimization of treatment strategies, and cosmetic research including long-term testing of sunscreen nanoparticles as well as anti-aging products.

  5. Radiation length imaging with high-resolution telescopes

    Science.gov (United States)

    Stolzenberg, U.; Frey, A.; Schwenker, B.; Wieduwilt, P.; Marinas, C.; Lütticke, F.

    2017-02-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length X/X0 profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D images of the radiation length of thin planar objects. At the heart of the X/X0 imaging is a spatially resolved measurement of the scattering angles of particles traversing the object under study. The main challenges are the alignment of the reference telescope and the calibration of its angular resolution. In order to demonstrate the capabilities of X/X0 imaging, a test beam experiment has been conducted. The devices under test were two mechanical prototype modules of the Belle II vertex detector. A data sample of 100 million tracks at 4 GeV has been collected, which is sufficient to resolve complex material profiles on the 30 μm scale.

  6. Spatial-temperature high resolution map for early cancer diagnosis

    Science.gov (United States)

    Gavriloaia, Gheorghe V.; Hurduc, Anca; Ghimigean, Ana-Maria; Fumarel, Radu

    2009-02-01

    Heat is one of the most important parameters of living beings. Skin temperature is not the same on the entire body and so, a thermal signature can be got. Infrared map on serial imaging can constitute an early sign of an abnormality. Thermography detects changes in tissue that appear before and accompany many diseases including cancer. As this map has a better resolution an early cancer diagnosis can be done. The temperature of neoplasic tissue is different up to 1.5 °C than that of the healthy tissue as a result of the specific metabolic rate. The infrared camera images show very quickly the heat transferred by radiation. A lot of factors disturb the temperature conversion to pixel intensity. A sensitive temperature sensor with a 10 Mpixels video camera, showing its spatial position, and a computer fusion program were used for the map with high spatial-temperature resolution. A couple of minutes are necessary to get a high resolution map. The asymmetry and borders were the main parameters analyzed. The right cancer diagnosis was for about 78.4% of patients with thyroid cancer, and more than 89.6% from patients with breast cancer. In the near future, the medical prognosis will be improved by fractal analysis.

  7. Numerical tsunami hazard assessment of the submarine volcano Kick 'em Jenny in high resolution are

    Science.gov (United States)

    Dondin, Frédéric; Dorville, Jean-Francois Marc; Robertson, Richard E. A.

    2016-04-01

    Landslide-generated tsunami are infrequent phenomena that can be potentially highly hazardous for population located in the near-field domain of the source. The Lesser Antilles volcanic arc is a curved 800 km chain of volcanic islands. At least 53 flank collapse episodes have been recognized along the arc. Several of these collapses have been associated with underwater voluminous deposits (volume > 1 km3). Due to their momentum these events were likely capable of generating regional tsunami. However no clear field evidence of tsunami associated with these voluminous events have been reported but the occurrence of such an episode nowadays would certainly have catastrophic consequences. Kick 'em Jenny (KeJ) is the only active submarine volcano of the Lesser Antilles Arc (LAA), with a current edifice volume estimated to 1.5 km3. It is the southernmost edifice of the LAA with recognized associated volcanic landslide deposits. The volcano appears to have undergone three episodes of flank failure. Numerical simulations of one of these episodes associated with a collapse volume of ca. 4.4 km3 and considering a single pulse collapse revealed that this episode would have produced a regional tsunami with amplitude of 30 m. In the present study we applied a detailed hazard assessment on KeJ submarine volcano (KeJ) form its collapse to its waves impact on high resolution coastal area of selected island of the LAA in order to highlight needs to improve alert system and risk mitigation. We present the assessment process of tsunami hazard related to shoreline surface elevation (i.e. run-up) and flood dynamic (i.e. duration, height, speed...) at the coast of LAA island in the case of a potential flank collapse scenario at KeJ. After quantification of potential initial volumes of collapse material using relative slope instability analysis (RSIA, VolcanoFit 2.0 & SSAP 4.5) based on seven geomechanical models, the tsunami source have been simulate by St-Venant equations-based code

  8. High resolution microprofiling, fractionation and speciation at sediment water interfaces

    Science.gov (United States)

    Fabricius, Anne-Lena; Duester, Lars; Ecker, Dennis; Ternes, Thomas A.

    2016-04-01

    Within aquatic environments, the exchange between the sediment and the overlaying water is often driven by steep gradients of, e.g., the oxygen concentration, the redox potential or the pH value at the sediment water interface (SWI). Important transport processes at the SWI are sedimentation and resuspension of particulate matter and diffusional fluxes of dissolved substances. To gain a better understanding of the key factors and processes determining the fate of substances at the SWI, methods with a spatial high resolution are required that enable the investigation of several sediment parameters in parallel to different analytes of interest in the sediment pore water. Moreover, beside the total content, questions concerning the speciation and fractionation are of concern in studying the different (transport) processes. Due to the availability of numerous micro-sensors and -electrodes (e.g., O2, redox potential, pH value, H2S, N2O) and the development of methods for pore water sampling [1], the toolbox to study the heterogeneous and often dynamic conditions at the SWI at a sub-millimetre scale were considerably improved. Nevertheless, the methods available for pore water sampling often require the installation of the sampling devices at the sampling site and/or intensive preparation procedures that may influence the conditions at the area studied and/or the characteristics of the samples taken. By combination of a micro profiling system with a new micro filtration probe head connected to a pump and a fraction collector, a micro profiling and micro sampling system ("missy") was developed that enables for the first time a direct, automate and low invasive sampling of small volumes (preparation procedures followed by inductively plasma-mass spectrometry analyses, it was possible to address not only the total content of metal(loid)s, but also their fractionation (size dependent and micelle mediated) or speciation related distributions along sediment depth profiles in

  9. High lung volume increases stress failure in pulmonary capillaries

    Science.gov (United States)

    Fu, Z.; Costello, M. L.; Tsukimoto, K.; Prediletto, R.; Elliott, A. R.; Mathieu-Costello, O.; West, J. B.

    1992-01-01

    We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological

  10. Polystyrene negative resist for high-resolution electron beam lithography

    Directory of Open Access Journals (Sweden)

    Ma Siqi

    2011-01-01

    Full Text Available Abstract We studied the exposure behavior of low molecular weight polystyrene as a negative tone electron beam lithography (EBL resist, with the goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 20-nm period line array and a 15-nm period dot array, which are the densest patterns ever achieved using organic EBL resists. Such dense patterns can be achieved both at 20 and 5 keV beam energies using different developers. In addition to its ultra-high resolution capability, polystyrene is a simple and low-cost resist with easy process control and practically unlimited shelf life. It is also considerably more resistant to dry etching than PMMA. With a low sensitivity, it would find applications where negative resist is desired and throughput is not a major concern.

  11. A new matching algorithm for high resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Edberg; Smedsgaard, Jørn

    2004-01-01

    We present a new matching algorithm designed to compare high-resolution spectra. Whereas existing methods are bound to compare fixed intervals of ion masses, the accurate mass spectrum (AMS) distance method presented here is independent of any alignment. Based on the Jeffreys-Matusitas (JM......) distance, a difference between observed peaks across pairs of spectra can be calculated, and used to find a unique correspondence between the peaks. The method takes into account that there may be differences in resolution of the spectra. The algorithm is used for indexing in a database containing 80...... accurate mass spectra from an analysis of extracts of 80 isolates representing the nine closely related species in the Penicillium series Viridicata. Using this algorithm we can obtain a retrieval performance of approximate to97-98% that is comparable with the best of the existing methods (e.g., the dot...

  12. Observations of solar scattering polarization at high spatial resolution

    CERN Document Server

    Snik, F; Ichimoto, K; Fischer, C E; Keller, C U; Lites, B W

    2010-01-01

    The weak, turbulent magnetic fields that supposedly permeate most of the solar photosphere are difficult to observe, because the Zeeman effect is virtually blind to them. The Hanle effect, acting on the scattering polarization in suitable lines, can in principle be used as a diagnostic for these fields. However, the prediction that the majority of the weak, turbulent field resides in intergranular lanes also poses significant challenges to scattering polarization observations because high spatial resolution is usually difficult to attain. We aim to measure the difference in scattering polarization between granules and intergranules. We present the respective center-to-limb variations, which may serve as input for future models. We perform full Stokes filter polarimetry at different solar limb positions with the CN band filter of the Hinode-SOT Broadband Filter Imager, which represents the first scattering polarization observations with sufficient spatial resolution to discern the granulation. Hinode-SOT offer...

  13. High resolution capacitance detection circuit for rotor micro-gyroscope

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Ren

    2014-03-01

    Full Text Available Conventional methods for rotor position detection of micro-gyroscopes include common exciting electrodes (single frequency and common sensing electrodes (frequency multiplex, but they have encountered some problems. So we present a high resolution and low noise pick-off circuit for micro-gyroscopes which utilizes the time multiplex method. The detecting circuit adopts a continuous-time current sensing circuit for capacitance measurement, and its noise analysis of the charge amplifier is introduced. The equivalent output noise power spectral density of phase-sensitive demodulation is 120 nV/Hz1/2. Tests revealed that the whole circuitry has a relative capacitance resolution of 1 × 10−8.

  14. High resolution ultrasound and photoacoustic imaging of single cells.

    Science.gov (United States)

    Strohm, Eric M; Moore, Michael J; Kolios, Michael C

    2016-03-01

    High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  15. High-resolution infrared observations of active galactic nuclei

    Science.gov (United States)

    Pott, Jörg-Uwe

    2012-07-01

    Interferometric resolution at IR wavelengths offers for the first time the possibility to zoom into the nuclei of galaxies beyond the circumnuclear stellar structures and spatially resolve gas and dust in the innermost regions (0.05-5pc), dominated by the central black hole. Ultimate goal is to reveal new aspects of AGN feeding, and interaction with its host galaxy. After first successes of resolving AGN with infrared interferometry (VLTI, Keck-IF), the second generation of high-resolution interferometric imagers behind 8m class telescopes is currently being built. I will summarize current aspects and successes of the field, and present our activities to provide extended capabilities for VLTI-Midi and -Matisse, LBT-Linc-Nirvana and Keck-Astra to study a larger sample of AGN in greater detail.

  16. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  17. High-resolution proper motions in a sunspot penumbra

    CERN Document Server

    Márquez, I; Bonet, J A

    2006-01-01

    Local correlation tracking techniques are used to measure proper motions in a series of high angular resolution (~0.1 arcsec) penumbra images. If these motions trace true plasma motions, then we have detected converging flows that arrange the plasma in long narrow filaments co-spatial with dark penumbral filaments. Assuming that these flows are stationary, the vertical stratification of the atmosphere and the conservation of mass suggest downflows in the filaments of the order of 200 m/s. The association between downflows and dark features may be a sign of convection, as it happens with the non-magnetic granulation. Insufficient spatial resolution may explain why the estimated vertical velocities are not fast enough to supply the radiative losses of penumbrae.

  18. Microcalorimetry for High-Resolution X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-03

    Magnetic Microcalorimeters (MMCs) are gamma-ray detectors with an energy resolution 10x higher than high-purity germanium detectors. They can increase the accuracy of non-destructive analysis of nuclear materials, enable the detection of new isotopes (e.g. Pu-242 of U-236), and improve nuclear data in cases where Ge detectors are limited by line overlap. MMCs consist of a magnetic sensor operated at temperatures below 50 mK, and they infer gamma-ray energies from the change in magnetization due to the temperature increase after gamma-ray absorption. The goal of this project is to further increase the energy resolution and sensitivity of MMC gamma detectors.

  19. High-resolution NMR imaging of the hand

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, H.; Lucas, D.

    1986-12-01

    With high spatial resolution guaranteed, NMR imaging allows to simultaneously make visible the complex osseous, chondral, and ligamentous structures of the hand. The examinations reported on were made with a 1.0 Tesla Magnetom using a special surface coil so as to achieve cut heights of 3-4 mm and an in-plane resolution of 0.5 mm. In addition to normal test persons, 29 patients were examined who had pseudoarthrosis of the os naviculare, lunatomalacia, rheumatic arthritis, or bone and soft-tissue tumors. Comparison with X-ray radiography or bone scintiscans showed that NMR imaging is capable of demonstrating localisation and extension of bone marrow or bone joint abnormalities at an earlier stage.

  20. High-resolution friction force microscopy under electrochemical control

    Science.gov (United States)

    Labuda, Aleksander; Paul, William; Pietrobon, Brendan; Lennox, R. Bruce; Grütter, Peter H.; Bennewitz, Roland

    2010-08-01

    We report the design and development of a friction force microscope for high-resolution studies in electrochemical environments. The design choices are motivated by the experimental requirements of atomic-scale friction measurements in liquids. The noise of the system is analyzed based on a methodology for the quantification of all the noise sources. The quantitative contribution of each noise source is analyzed in a series of lateral force measurements. Normal force detection is demonstrated in a study of the solvation potential in a confined liquid, octamethylcyclotetrasiloxane. The limitations of the timing resolution of the instrument are discussed in the context of an atomic stick-slip measurement. The instrument is capable of studying the atomic friction contrast between a bare Au(111) surface and a copper monolayer deposited at underpotential conditions in perchloric acid.

  1. High-resolution multiphoton imaging of tumors in vivo.

    Science.gov (United States)

    Wyckoff, Jeffrey; Gligorijevic, Bojana; Entenberg, David; Segall, Jeffrey; Condeelis, John

    2011-10-01

    Analysis of the individual steps in metastasis is crucial if insights at the molecular level are to be linked to the cell biology of cancer. A technical hurdle to achieving the analysis of the individual steps of metastasis is the fact that, at the gross level, tumors are heterogeneous in both animal models and patients. Human primary tumors show extensive variation in all properties ranging from growth and morphology of the tumor through tumor-cell density in the blood and formation and growth of metastases. Methods capable of the direct visualization and analysis of tumor-cell behavior at single-cell resolution in vivo have become crucial in advancing the understanding of mechanisms of metastasis, the definition of microenvironment, and the markers related to both. This article discusses the use of high-resolution multiphoton imaging of tumors (specifically breast tumors in mice) in vivo.

  2. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  3. Range ambiguity resolution for high PRF pulse-Doppler radar

    Science.gov (United States)

    Postema, G. B.

    The range ambiguity resolution for high 'PRF pulse-Doppler radars can be resolved using a simple algorithm based on residue arithmetic. The unambiguous range is found from R = T + R(a), where T is the output of a look-up table and R(a) is one of the measured ambiguous ranges. This formula is easily extended to multiple PRF ranging systems, where three or more measurements are required for the ambiguity resolution. Target obscuration in clutter reduces the visibility and leads, especially in dense target environments, to ghost ranges. It is shown that long range coverage requires a small resolved pulse length and PRFs as low as practical in the intended clutter and target environment. Special attention is given to the generation of sparsely populated look-up tables that reduce the ghosting problem. A practical example for an S-band surveillance radar is presented.

  4. High-Resolution Characterization of UMo Alloy Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kovarik, Libor [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jana, Saumyadeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Manandhar, Sandeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arey, Bruce W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-11-30

    This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools that can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.

  5. High-Resolution, Wide-Field-of-View Scanning Telescope

    Science.gov (United States)

    Sepulveda, Cesar; Wilson, Robert; Seshadri, Suresh

    2007-01-01

    A proposed telescope would afford high resolution over a narrow field of view (<0.10 ) while scanning over a total field of view nominally 16 wide without need to slew the entire massive telescope structure. The telescope design enables resolution of a 1-m-wide object in a 50- km-wide area of the surface of the Earth as part of a 200-km-wide area field of view monitored from an orbit at an altitude of 700 km. The conceptual design of this telescope could also be adapted to other applications both terrestrial and extraterrestrial in which there are requirements for telescopes that afford both wide- and narrow-field capabilities. In the proposed telescope, the scanning would be effected according to a principle similar to that of the Arecibo radio telescope, in which the primary mirror is stationary with respect to the ground and a receiver is moved across the focal surface of the primary mirror. The proposed telescope would comprise (1) a large spherical primary mirror that would afford high resolution over a narrow field of view and (2) a small displaceable optical relay segment that would be pivoted about the center of an aperture stop to effect the required scanning (see figure). Taken together, both comprise a scanning narrow-angle telescope that does not require slewing the telescope structure. In normal operation, the massive telescope structure would stare at a fixed location on the ground. The inner moveable relay optic would be pivoted to scan the narrower field of view over the wider one, making it possible to retain a fixed telescope orientation, while obtaining high-resolution images over multiple target areas during an interval of 3 to 4 minutes in the intended orbit. The pivoting relay segment of the narrow-angle telescope would include refractive and reflective optical elements, including two aspherical mirrors, to counteract the spherical aberration of the primary mirror. Overall, the combination of the primary mirror and the smaller relay optic

  6. High Resolution Infrared Spectroscopy of Allene -D4.

    Science.gov (United States)

    Rousan, Khetam Ibrahim Khasawinah

    Two parallel bands of allene-d(,4), (nu)(,6) (occurring at 1920.2289 cm('-1)) and (nu)(,5) (occurring at 2228.4133 cm('-1)), and the perpendicular band, (nu)(,8) (occurring at 2321.2484 cm('-1)), were recorded by using two spectrometers under high resolution. The combination band, (nu)(,2) + (nu)(,7), was measured also; the band origin is located at 2276.0053 cm('-1), rather distant from the previously reported one at 2267.0 cm('-1). Initially, by using the 4.5 m grating spectrometer, deconvolution of the spectra achieved a resolution of (TURN)0.007 cm('-1). Although the resolution was high, a detailed analysis of the K structure could not be obtained. Other measurements were carried out by using a BOMEM Fourier transform spectrometer. Deconvolution of the spectra achieved a resolution of (TURN)0.002 cm(' -1). This made it possible to resolve and analyze these bands in detail. Successful ground state and upper state analyses were completed from this data. Combining all the three bands together, a ground state analysis has resulted in better values of. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). than the previously published works on the same molecule by others. A set of accurate spectroscopic constants was obtained for each band. The spectrum of the (nu)(,8) band was analyzed in detail, including the perturbations. The perturbed states for (nu)(,8) were assigned as 2(nu)(,9) + (nu)(,10), (nu)(,2) + (nu)(,9) + (nu)(,11) and 2(nu)(,3) + (nu)(,4), and the spectroscopic constants for those perturbed states were calculated.

  7. Structure of Plastic Crystalline Succinonitrile: High-Resolution in situ Powder Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hore, S.; Dinnebier, R; Wen, W; Hanson, J; Maier, J

    2009-01-01

    The temperature dependent (150-290 K) crystal structure of the low-temperature -phase, and high temperature -phase, of succinonitrile has been determined by high resolution in situ powder diffraction. The -phase has a monoclinic unit cell that contains four gauche molecules and belongs to the P21/a space group. The crystal undergoes a reversible first-order phase transition at 233 K into the high temperature -phase. The lattice parameters increase with temperature and the phase transition leads to an abrupt 6.7 % increase in volume. The -phase crystallizes into a bcc-structure that belongs to the space group. The high temperature phase; however, is a highly disordered plastic crystal at room temperature that contains both gauche and trans molecules. The non-linearity in the overall isotropic temperature-factor indicates other possible phase transitions in the temperature range of 233-250 K

  8. A High Resolution Monolithic Crystal, DOI, MR Compatible, PET Detector

    Energy Technology Data Exchange (ETDEWEB)

    Robert S Miyaoka

    2012-03-06

    The principle objective of this proposal is to develop a positron emission tomography (PET) detector with depth-of-interaction (DOI) positioning capability that will achieve state of the art spatial resolution and sensitivity performance for small animal PET imaging. When arranged in a ring or box detector geometry, the proposed detector module will support <1 mm3 image resolution and >15% absolute detection efficiency. The detector will also be compatible with operation in a MR scanner to support simultaneous multi-modality imaging. The detector design will utilize a thick, monolithic crystal scintillator readout by a two-dimensional array of silicon photomultiplier (SiPM) devices using a novel sensor on the entrance surface (SES) design. Our hypothesis is that our single-ended readout SES design will provide an effective DOI positioning performance equivalent to more expensive dual-ended readout techniques and at a significantly lower cost. Our monolithic crystal design will also lead to a significantly lower cost system. It is our goal to design a detector with state of the art performance but at a price point that is affordable so the technology can be disseminated to many laboratories. A second hypothesis is that using SiPM arrays, the detector will be able to operate in a MR scanner without any degradation in performance to support simultaneous PET/MR imaging. Having a co-registered MR image will assist in radiotracer localization and may also be used for partial volume corrections to improve radiotracer uptake quantitation. The far reaching goal of this research is to develop technology for medical research that will lead to improvements in human health care.

  9. High Volume Manufacturing and Field Stability of MEMS Products

    Science.gov (United States)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are

  10. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S. [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Domowicz, Miriam [Department of Pediatrics, University of Chicago, Chicago, Illinois 60637 (United States); Schwartz, Nancy [Department of Pediatrics, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  11. On high-resolution manoeuvres control via trajectory optimization

    Indian Academy of Sciences (India)

    A H MAZINAN; M SHAHI

    2017-02-01

    This research is on a realization of control approach in line with the trajectory optimization for the purpose of dealing with overactuated spacecraft in the process of the high-resolution manoeuvres. The idea behind the research is to realize closed control loops to cope with the rotational angles and the corresponding angular rates,synchronously, to handle the spacecraft manoeuvres. It is to be noted that the traditional techniques may not have sufficient merit to deal with such a complicated process, suitably. The proposed trajectory optimization is designed to provide the three-axis referenced commands, in finite burn, for transferring the aforementioned overactuated spacecraft from the initial orbit to its final outcomes in the orbital transfer process. The outcomes are realized through the variations of the orbital parameters, including the inclination, the eccentricity, the angular momentum, the semi-major axis and so on, in the high-resolution manoeuvres. It aims to get the system under control to guarantee the performance of the three-dimensional rotational angles tracking to be desirable, instantly. The contribution of the research is to make the high-thrust optimization trajectory,which is organized in association with the new configuration of the three-axis attitude control approach, to be applicable to manage the present overactuated spacecraft in the procedure of high-resolution orbital transfer process. The investigated outcomes of the research are efficient and competitive along with the potential materials through a series of experiments, as long as the desirable tracking performance in the three-dimensional space manoeuvres is apparently guaranteed.

  12. Simple high-accuracy resolution program for convective modelling of discontinuities

    Science.gov (United States)

    Leonard, B. P.

    1988-01-01

    For steady multidimensional convection, the Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme has several attractive properties. However, for highly convective simulation of step profiles, QUICK produces unphysical overshoots and a few oscillations, and this may cause serious problems in nonlinear flows. Fortunately, it is possible to modify the convective flux by writing the normalized convected control-volume face value as a function of the normalized adjacent upstream node value, developing criteria for monotonic resolution without sacrificing formal accuracy. This results in a nonlinear functional relationship between the normalized variables, whereas standard methods are all linear in this sense. The resulting Simple High Accuracy Resolution Program (SHARP) can be applied to steady multidimensional flows containing thin shear or mixing layers, shock waves, and other frontal phenomena. This represents a significant advance in modeling highly convective flows of engineering and geophysical importance. SHARP is based on an explicit, conservative, control-volume flux formation, equally applicable to one, two, or three dimensional elliptic, parabolic, hyperbolic, or mixed-flow regimes. Results are given for the bench-mark purely convective first-order results and the nonmonotonic predictions of second- and third-order upwinding.

  13. High resolution 3D confocal microscope imaging of volcanic ash particles.

    Science.gov (United States)

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM10s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Lasershot(sm) marking system: high-volume labeling for safety-critical parts

    Energy Technology Data Exchange (ETDEWEB)

    Dane, C B; Hackel, L; Honig, J; Halpin, J; Chen, H-L; Mendieta, F; Harris, F; Lane, L; Daly, J; Harrison, J

    2001-02-16

    The Lasershot Marking System uses laser pulses to safely and permanently impress identification markings on metal components. This process does not remove material or change surface chemistry and actually increases the marked area's resistance to fatigue and corrosion failure. Lasershot marking is ideally suited for marking parts used in situations where safety is critical--from hip-joint replacements to commercial airliner components. The minimum size of the mark is limited only by the resolution of the reading system, allowing manufacturers to mark parts which, up to now, have been too small to label with mechanical peening techniques. The high resolution of the Lasershot marks makes them difficult to reproduce, providing a solution to the ongoing problem of inferior, counterfeited parts. The high marking rate of up to six marks per second makes this system practical and cost-effective for marking high-volume components.

  15. Full-sky, High-resolution Maps of Interstellar Dust

    Science.gov (United States)

    Meisner, Aaron Michael

    We present full-sky, high-resolution maps of interstellar dust based on data from the Wide-field Infrared Survey Explorer (WISE) and Planck missions. We describe our custom processing of the entire WISE 12 micron All-Sky imaging data set, and present the resulting 15 arcsecond resolution, full-sky map of diffuse Galactic dust emission, free of compact sources and other contaminating artifacts. Our derived 12 micron dust map offers angular resolution far superior to that of all other existing full-sky, infrared dust emission maps, revealing a wealth of small-scale filamentary structure. We also apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. We derive full-sky 6.1 arcminute resolution maps of dust optical depth and temperature by fitting this two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. In doing so, we obtain the first ever full-sky 100-3000 GHz Planck-based thermal dust emission model, as well as a dust temperature correction with ~10 times enhanced angular resolution relative to DIRBE-based temperature maps. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales. Future work will focus on combining

  16. Performance evaluation of a high resolution dedicated breast PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    García Hernández, Trinitat, E-mail: mtrinitat@eresa.com; Vicedo González, Aurora; Brualla González, Luis; Granero Cabañero, Domingo [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Ferrer Rebolleda, Jose; Sánchez Jurado, Raúl; Puig Cozar Santiago, Maria del [Department of Nuclear Medicine, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Roselló Ferrando, Joan [Department of Medical Physics, ERESA, Hospital General Universitario, Valencia 46014 (Spain); Department of Physiology, University of Valencia, Valencia 46010 (Spain)

    2016-05-15

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ({sup 18}F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) were simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good

  17. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  18. High-Resolution Mammography Detector Employing Optical Switching Readout

    Science.gov (United States)

    Irisawa, Kaku; Kaneko, Yasuhisa; Yamane, Katsutoshi; Sendai, Tomonari; Hosoi, Yuichi

    Conceiving a new detector structure, FUJIFILM Corporation has successfully put its invention of an X-ray detector employing "Optical Switching" into practical use. Since Optical Switching Technology allows an electrode structure to be easily designed, both high resolution of pixel pitch and low electrical noise readout have been achieved, which have consequently realized the world's smallest pixel size of 50×50 μm2 from a Direct-conversion FPD system as well as high DQE. The digital mammography system equipped with this detector enables to acquire high definition images while maintaining granularity. Its outstanding feature is to be able to acquire high-precision images of microcalcifications which is an important index in breast examination.

  19. SPIDER Progress Towards High Resolution Correlated Fission Product Data

    Science.gov (United States)

    Shields, Dan; Meierbachtol, Krista; Tovesson, Fredrik; Arnold, Charles; Blackeley, Rick; Bredeweg, Todd; Devlin, Matt; Hecht, Adam; Jandel, Marian; Jorgenson, Justin; Nelson, Ron; White, Morgan; Spider Team

    2014-09-01

    The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. This work is in part supported by LANL Laboratory Directed Research and Development Projects 20110037DR and 20120077DR.

  20. Multifractal analysis of high resolution solar wind proton density measurements

    Science.gov (United States)

    Sorriso-Valvo, Luca; Carbone, Francesco; Leonardis, Ersilia; Chen, Christopher H. K.; Šafránková, Jana; Němeček, Zdenek

    2017-03-01

    The solar wind is a highly turbulent medium, with a high level of field fluctuations throughout a broad range of scales. These include an inertial range where a turbulent cascade is assumed to be active. The solar wind cascade shows intermittency, which however may depend on the wind conditions. Recent observations have shown that ion-scale magnetic turbulence is almost self-similar, rather than intermittent. A similar result was observed for the high resolution measurements of proton density provided by the spacecraft Spektr-R. Intermittency may be interpreted as the result of the multifractal properties of the turbulent cascade. In this perspective, this paper is devoted to the description of the multifractal properties of the high resolution density measurements. In particular, we have used the standard coarse-graining technique to evaluate the generalized dimensions Dq , and from these the multifractal spectrum f (α) , in two ranges of scale. A fit with the p-model for intermittency provided a quantitative measure of multifractality. Such indicator was then compared with alternative measures: the width of the multifractal spectrum, the peak of the kurtosis, and its scaling exponent. The results indicate that the small-scale fluctuations are multifractal, and suggest that different measures of intermittency are required to fully understand the small scale cascade.