WorldWideScience

Sample records for volume general circulation

  1. Anomaly General Circulation Models.

    Science.gov (United States)

    Navarra, Antonio

    The feasibility of the anomaly model is assessed using barotropic and baroclinic models. In the barotropic case, both a stationary and a time-dependent model has been formulated and constructed, whereas only the stationary, linear case is considered in the baroclinic case. Results from the barotropic model indicate that a relation between the stationary solution and the time-averaged non-linear solution exists. The stationary linear baroclinic solution can therefore be considered with some confidence. The linear baroclinic anomaly model poses a formidable mathematical problem because it is necessary to solve a gigantic linear system to obtain the solution. A new method to find solution of large linear system, based on a projection on the Krylov subspace is shown to be successful when applied to the linearized baroclinic anomaly model. The scheme consists of projecting the original linear system on the Krylov subspace, thereby reducing the dimensionality of the matrix to be inverted to obtain the solution. With an appropriate setting of the damping parameters, the iterative Krylov method reaches a solution even using a Krylov subspace ten times smaller than the original space of the problem. This generality allows the treatment of the important problem of linear waves in the atmosphere. A larger class (nonzonally symmetric) of basic states can now be treated for the baroclinic primitive equations. These problem leads to large unsymmetrical linear systems of order 10000 and more which can now be successfully tackled by the Krylov method. The (R7) linear anomaly model is used to investigate extensively the linear response to equatorial and mid-latitude prescribed heating. The results indicate that the solution is deeply affected by the presence of the stationary waves in the basic state. The instability of the asymmetric flows, first pointed out by Simmons et al. (1983), is active also in the baroclinic case. However, the presence of baroclinic processes modifies the

  2. EOP MIT General Circulation Model (MITgcm)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains a regional implementation of the Massachusetts Institute of Technology general circulation model (MITgcm) at a 1-km spatial resolution for the...

  3. Generalized Partial Volume

    DEFF Research Database (Denmark)

    Darkner, Sune; Sporring, Jon

    2011-01-01

    Mutual Information (MI) and normalized mutual information (NMI) are popular choices as similarity measure for multimodal image registration. Presently, one of two approaches is often used for estimating these measures: The Parzen Window (PW) and the Generalized Partial Volume (GPV). Their theoret...... of view as well as w.r.t. computational complexity. Finally, we present algorithms for both approaches for NMI which is comparable in speed to Sum of Squared Differences (SSD), and we illustrate the differences between PW and GPV on a number of registration examples....

  4. Maintenance of Minute Circulation Volume during Orthotopic Liver Transplantation

    Directory of Open Access Journals (Sweden)

    D. A. Levit

    2011-01-01

    Full Text Available Objective: to optimize procedures to maintain minute circulation volume at different stages of orthotopic liver transplantation. Subjects and methods. In the period 2005—2010, Sverdlovsk Regional Clinical Hospital One performed 32 orthotopic liver transplantations, including one retransplantation. The patients’ ASA class was (4—5. The operations were carried out under general anesthesia. The mean duration of surgery was 8.1 (range 5.8—10.5 hours. The investigators applied anesthesia based on iso-fluorane 0.6—0.9 MAC (by monitoring the anesthesia depth index with cerebral state index (CSI-40-60, as well as extended central hemodynamic monitoring (prepulmonary hemodilution. All the operations were made via portofemoroaxillary bypass, by using a centrifugal Biopump. Eight surgical stages were identified: 1 run-in (after tracheal intubation; 2 liver mobilization; 3 partial bypass; 4 complete bypass (hepatectomy, a liver-free period; 5 reperfusion; 6 a postreperfusion period (bypass end; 7 biliary repair; 8 the end of an operation. The concentrations of blood parameters, electrolytes, acid-base balance, and the levels of lactate and glucose were examined. The data were processed statistically. Central hemodynamics was monitored by prepulmonary thermodilution, by calculating cardiac index (CI, stroke index, and total peripheral vascular resistance index (TPVRI at the stages: liver mobilization, postreperfusion period (bypass end, and the end of surgery. Results. Even during partial bypass, there was a significant drop in mean blood pressure (MBP as compared to the baseline levels (p<0.05. Reperfusion was also accompanied by a significant decrease in MBP and an increase in heart rate. At the end of reperfusion and in the postreperfusion period, TPVRI was halved (689.2±68.0 as compared to the baseline levels. In the postreperfusion period, central venous and pulmonary artery pressures were significantly increased by 32 and 21%, respectively

  5. The epistemological status of general circulation models

    Science.gov (United States)

    Loehle, Craig

    2018-03-01

    Forecasts of both likely anthropogenic effects on climate and consequent effects on nature and society are based on large, complex software tools called general circulation models (GCMs). Forecasts generated by GCMs have been used extensively in policy decisions related to climate change. However, the relation between underlying physical theories and results produced by GCMs is unclear. In the case of GCMs, many discretizations and approximations are made, and simulating Earth system processes is far from simple and currently leads to some results with unknown energy balance implications. Statistical testing of GCM forecasts for degree of agreement with data would facilitate assessment of fitness for use. If model results need to be put on an anomaly basis due to model bias, then both visual and quantitative measures of model fit depend strongly on the reference period used for normalization, making testing problematic. Epistemology is here applied to problems of statistical inference during testing, the relationship between the underlying physics and the models, the epistemic meaning of ensemble statistics, problems of spatial and temporal scale, the existence or not of an unforced null for climate fluctuations, the meaning of existing uncertainty estimates, and other issues. Rigorous reasoning entails carefully quantifying levels of uncertainty.

  6. Climatology of the HOPE-G global ocean general circulation model - Sea ice general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Legutke, S. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-12-01

    The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8 grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed general circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmosphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. The model underestimates the meridional transport of heat in the Atlantic Ocean. The simulated heat transport in the other basins, though, is in good agreement with observations. (orig.)

  7. A Thermodynamically General Theory for Convective Circulations and Vortices

    Science.gov (United States)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  8. Response of an ocean general circulation model to wind and ...

    Indian Academy of Sciences (India)

    The stretched-coordinate ocean general circulation model has been designed to study the observed variability due to wind and thermodynamic forcings. The model domain extends from 60°N to 60°S and cyclically continuous in the longitudinal direction. The horizontal resolution is 5° × 5° and 9 discrete vertical levels.

  9. A general circulation model (GCM) parameterization of Pinatubo aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lacis, A.A.; Carlson, B.E.; Mishchenko, M.I. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    The June 1991 volcanic eruption of Mt. Pinatubo is the largest and best documented global climate forcing experiment in recorded history. The time development and geographical dispersion of the aerosol has been closely monitored and sampled. Based on preliminary estimates of the Pinatubo aerosol loading, general circulation model predictions of the impact on global climate have been made.

  10. Adequacy of power-to-volume scaling philosophy to simulate natural circulation in Integral Test Facilities

    International Nuclear Information System (INIS)

    Nayak, A.K.; Vijayan, P.K.; Saha, D.; Venkat Raj, V.; Aritomi, Masanori

    1998-01-01

    Theoretical and experimental investigations were carried out to study the adequacy of power-to-volume scaling philosophy for the simulation of natural circulation and to establish the scaling philosophy applicable for the design of the Integral Test Facility (ITF-AHWR) for the Indian Advanced Heavy Water Reactor (AHWR). The results indicate that a reduction in the flow channel diameter of the scaled facility as required by the power-to-volume scaling philosophy may affect the simulation of natural circulation behaviour of the prototype plants. This is caused by the distortions due to the inability to simulate the frictional resistance of the scaled facility. Hence, it is recommended that the flow channel diameter of the scaled facility should be as close as possible to the prototype. This was verified by comparing the natural circulation behaviour of a prototype 220 MWe Indian PHWR and its scaled facility (FISBE-1) designed based on power-to-volume scaling philosophy. It is suggested from examinations using a mathematical model and a computer code that the FISBE-1 simulates the steady state and the general trend of transient natural circulation behaviour of the prototype reactor adequately. Finally the proposed scaling method was applied for the design of the ITF-AHWR. (author)

  11. The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Mikolajewicz, U. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-02-01

    The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and slowly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the Atlantic intertropical convergence zone is displaced southward and the westerlies in the northern hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface waters in high northern latitudes, which allows them to accumulate more precipitation and runoff from the continents, which results in an increased stability in the North Atlantic.

  12. Treatment of cloud radiative effects in general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.C.; Dudek, M.P.; Liang, X.Z.; Ding, M. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: (1) to improve the general circulation model (GCM) cloud/radiation treatment with a focus on cloud verticle overlapping and layer cloud optical properties, and (2) to study the effects of cloud/radiation-climate interaction on GCM climate simulations. This report summarizes the project progress since the Fourth ARM Science Team meeting February 28-March 4, 1994, in Charleston, South Carolina.

  13. Optimisation of a parallel ocean general circulation model

    OpenAIRE

    M. I. Beare; D. P. Stevens

    1997-01-01

    International audience; This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by...

  14. Adaptation of a general circulation model to ocean dynamics

    Science.gov (United States)

    Turner, R. E.; Rees, T. H.; Woodbury, G. E.

    1976-01-01

    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.

  15. Seasonal predictability of Kiremt rainfall in coupled general circulation models

    Science.gov (United States)

    Gleixner, Stephanie; Keenlyside, Noel S.; Demissie, Teferi D.; Counillon, François; Wang, Yiguo; Viste, Ellen

    2017-11-01

    The Ethiopian economy and population is strongly dependent on rainfall. Operational seasonal predictions for the main rainy season (Kiremt, June-September) are based on statistical approaches with Pacific sea surface temperatures (SST) as the main predictor. Here we analyse dynamical predictions from 11 coupled general circulation models for the Kiremt seasons from 1985-2005 with the forecasts starting from the beginning of May. We find skillful predictions from three of the 11 models, but no model beats a simple linear prediction model based on the predicted Niño3.4 indices. The skill of the individual models for dynamically predicting Kiremt rainfall depends on the strength of the teleconnection between Kiremt rainfall and concurrent Pacific SST in the models. Models that do not simulate this teleconnection fail to capture the observed relationship between Kiremt rainfall and the large-scale Walker circulation.

  16. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

    Science.gov (United States)

    Liu, Zedong; Wan, Xiuquan

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

  17. Optimisation of a parallel ocean general circulation model

    Science.gov (United States)

    Beare, M. I.; Stevens, D. P.

    1997-10-01

    This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.

  18. General circulation and tracers: studies in the Western Indian Ocean

    International Nuclear Information System (INIS)

    Jamous, Daniel

    1991-01-01

    The main question addressed in this thesis is how to best use the information obtained from hydro-biogeochemical tracer data, to study the oceanic general circulation in the Western Indian Ocean. First, a principal component analysis is performed on a historical data set. The tracers considered are temperature, salinity, density, oxygen, phosphate and silica. The method reduces the amount of data to be considered by a factor of 5. It reproduces correctly and efficiently the large-scale distributions of these oceanic properties. The analysed data are then used in a finite-difference nonlinear inverse model. The grid has a resolution of 4 deg. by 4 deg.. Dynamical as well as tracer conservation constraints are used. These constraints are well satisfied by the obtained solutions but the associated errors remain large. Additional constraints would be required in order to discuss the different solutions in more detail. Finally, a qualitative study is done on the deep distribution of helium-3. The data show several important features linked to hydrothermal input in the Gulf of Aden and on the Central Indian Ridge, and to the origin of water masses and deep circulation characteristics. However additional data are required in order to clarify the distribution of this tracer in other key areas. (author) [fr

  19. Optimisation of a parallel ocean general circulation model

    Directory of Open Access Journals (Sweden)

    M. I. Beare

    1997-10-01

    Full Text Available This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.

  20. Optimisation of a parallel ocean general circulation model

    Directory of Open Access Journals (Sweden)

    M. I. Beare

    Full Text Available This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.

  1. The Michigan Titan Thermospheric General Circulation Model (TTGCM)

    Science.gov (United States)

    Bell, J. M.; Bougher, S. W.; de Lahaye, V.; Waite, J. H.

    2005-12-01

    The Cassini flybys of Titan since late October, 2004 have provided data critical to better understanding its chemical and thermal structures. With this in mind, a 3-D TGCM of Titan's atmosphere from 600km to the exobase (~1450km) has been developed. This paper presents the first results from the partially operational code. Currently, the TTGCM includes static background chemistry (Lebonnois et al 2001, Vervack et al 2004) coupled with thermal conduction routines. The thermosphere remains dominated by solar EUV forcing and HCN rotational cooling, which is calculated by a full line-by-line radiative transfer routine along the lines of Yelle (1991) and Mueller-Wodarg (2000, 2002). In addition, an approximate treatment of magnetospheric heating is explored. This paper illustrates the model's capabilities as well as some initial results from the Titan Thermospheric General Circulation model that will be compared with both the Cassini INMS data and the model of Mueller-Wodarg (2000,2002).

  2. [Treatment of cloud radiative effects in general circulation models

    International Nuclear Information System (INIS)

    Wang, W.C.

    1993-01-01

    This is a renewal proposal for an on-going project of the Department of Energy (DOE)/Atmospheric Radiation Measurement (ARM) Program. The objective of the ARM Program is to improve the treatment of radiation-cloud in GCMs so that reliable predictions of the timing and magnitude of greenhouse gas-induced global warming and regional responses can be made. The ARM Program supports two research areas: (I) The modeling and analysis of data related to the parameterization of clouds and radiation in general circulation models (GCMs); and (II) the development of advanced instrumentation for both mapping the three-dimensional structure of the atmosphere and high accuracy/precision radiometric observations. The present project conducts research in area (I) and focuses on GCM treatment of cloud life cycle, optical properties, and vertical overlapping. The project has two tasks: (1) Development and Refinement of GCM Radiation-Cloud Treatment Using ARM Data; and (2) Validation of GCM Radiation-Cloud Treatment

  3. A stratiform cloud parameterization for General Circulation Models

    International Nuclear Information System (INIS)

    Ghan, S.J.; Leung, L.R.; Chuang, C.C.; Penner, J.E.; McCaa, J.

    1994-01-01

    The crude treatment of clouds in General Circulation Models (GCMs) is widely recognized as a major limitation in the application of these models to predictions of global climate change. The purpose of this project is to develop a paxameterization for stratiform clouds in GCMs that expresses stratiform clouds in terms of bulk microphysical properties and their subgrid variability. In this parameterization, precipitating cloud species are distinguished from non-precipitating species, and the liquid phase is distinguished from the ice phase. The size of the non-precipitating cloud particles (which influences both the cloud radiative properties and the conversion of non-precipitating cloud species to precipitating species) is determined by predicting both the mass and number concentrations of each species

  4. A stratiform cloud parameterization for general circulation models

    International Nuclear Information System (INIS)

    Ghan, S.J.; Leung, L.R.; Chuang, C.C.; Penner, J.E.; McCaa, J.

    1994-01-01

    The crude treatment of clouds in general circulation models (GCMs) is widely recognized as a major limitation in applying these models to predictions of global climate change. The purpose of this project is to develop in GCMs a stratiform cloud parameterization that expresses clouds in terms of bulk microphysical properties and their subgrid variability. Various clouds variables and their interactions are summarized. Precipitating cloud species are distinguished from non-precipitating species, and the liquid phase is distinguished from the ice phase. The size of the non-precipitating cloud particles (which influences both the cloud radiative properties and the conversion of non-precipitating cloud species to precipitating species) is determined by predicting both the mass and number concentrations of each species

  5. The relationship between sea surface temperature anomalies and atmospheric circulation in general circulation model experiments

    International Nuclear Information System (INIS)

    Kharin, V.V.

    1994-01-01

    Several multi-year integrations of the Hamburg version of the ECMWF/T21 general circulation model driven by the sea surface temperature (SST) observed in the period 1970-1988 were examined to study the extratropical response of the atmospheric circulation to SST anomalies in the Northern Hemisphere in winter. In the first 19-years run SST anomalies were prescribed globally (GAGO run), and in two others SST variability was limited to extratropical regions (MOGA run) and to tropics (TOGA run), respectively. A canonical correlation analysis was applied to the monthly means to find the best correlated patterns of SST anomalies in the Atlantic and Pacific Oceans and the Northern Hemisphere atmospheric flow. Contrary to expectation, the extratropical response in the GAGO run is not equal to the linear combination of the responses in the MOGA and TOGA runs. In the GAGO integration with globally prescribed SST the best correlated atmospheric pattern is global and is characterized by dipole structures of the same polarity in the North Atlantic and the North Pacific sectors. In the MOGA and TOGA experiments the atmospheric response is more local with main centers in the North Atlantic and North Pacific, respectively. The atmospheric modes found by the CCA were compared with the normal modes of the barotropic vorticity equation linearized about the 500 mb winter climate of the control integration driven by the climatological SST. The normal modes with smallest eigenvalues are similar to the canonical patterns of 500 mb geopotential height. The corresponding eigenvectors of the adjoint operator, which represent an external forcing optimal for exciting normal modes, have a longitudinal structure with maxima in regions characterized by enhanced high frequency baroclinic activity over both oceans. It was suggested that variability of storm tracks could play an important role in variability of the barotropic normal modes. (orig.)

  6. Water tracers in the general circulation model ECHAM

    International Nuclear Information System (INIS)

    Hoffmann, G.; Heimann, M.

    1993-01-01

    We have installed a water tracer model into the ECHAM General Circulation Model (GCM) parameterizing all fractionation processes of the stable water isotopes ( 1 H 2 18 O and 1 H 2 H 16 O). A five year simulation was performed under present day conditions. We focus on the applicability of such a water tracer model to obtain information about the quality of the hydrological cycle of the GCM. The analysis of the simulated 1 H 2 18 O composition of the precipitation indicates too weak fractionated precipitation over the Antarctic and Greenland ice sheets and too strong fractionated precipitation over large areas of the tropical and subtropical land masses. We can show that these deficiencies are connected with problems of model quantities such as the precipitation and the resolution of the orography. The linear relationship between temperature and the δ 18 O value, i.e. the Dansgaard slope, is reproduced quite well in the model. The slope is slightly too flat and the strong correlation between temperature and δ 18 O vanishes at very low temperatures compared to the observations. (orig.)

  7. Prognostic cloud water in the Los Alamos general circulation model

    International Nuclear Information System (INIS)

    Kristjansson, J.E.; Kao, C.Y.J.

    1993-01-01

    Most of today's general circulation models (GCMS) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, there has arisen an urgent need for improvements in the treatment of clouds in GCMS, especially as the clouds relate to radiation. In the present paper, we investigate the effects of introducing pregnostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the long wave emissivity calculations. Results from several sensitivity simulations show that realistic cloud water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds become stronger, due to more realistic tropical convection

  8. General circulation model study of atmospheric carbon monoxide

    International Nuclear Information System (INIS)

    Pinto, J.P.; Yung, Y.L.; Rind, D.; Russell, G.L.; Lerner, J.A.; Hansen, J.E.; Hameed, S.

    1983-01-01

    The carbon monoxide cycle is studied by incorporating the known and hypothetical sources and sinks in a tracer model that uses the winds generated by a general circulation model. Photochemical production and loss terms, which depend on OH radical concentrations, are calculated in an interactive fashion. The computed global distribution and seasonal variations of CO are compared with observations to obtain constraints on the distribution and magnitude of the sources and sinks of CO, and on the tropospheric abundance of OH. The simplest model that accounts for available observations requires a low latitude plant source of about 1.3 x 10 15 g yr -1 , in addition to sources from incomplete combustion of fossil fuels and oxidation of methane. The globally averaged OH concentration calculated in the model is 7 x 10 5 cm -3 . Models that calculate globally averaged OH concentrations much lower than our nominal value are not consistent with the observed variability of CO. Such models are also inconsistent with measurements of CO isotopic abundances, which imply the existence of plant sources

  9. Prognostic cloud water in the Los Alamos general circulation model

    International Nuclear Information System (INIS)

    Kristjansson, J.E.; Kao, C.Y.J.

    1994-01-01

    Most of today's general circulation models (GCMs) have a greatly simplified treatment of condensation and clouds. Recent observational studies of the earth's radiation budget have suggested cloud-related feedback mechanisms to be of tremendous importance for the issue of global change. Thus, an urgent need for improvements in the treatment of clouds in GCMs has arisen, especially as the clouds relate to radiation. In this paper, we investigate the effects of introducing prognostic cloud water into the Los Alamos GCM. The cloud water field, produced by both stratiform and convective condensation, is subject to 3-dimensional advection and vertical diffusion. The cloud water enters the radiation calculations through the longwave emissivity calculations. Results from several sensitivity simulations show that realistic water and precipitation fields can be obtained with the applied method. Comparisons with observations show that the most realistic results are obtained when more sophisticated schemes for moist convection are introduced at the same time. The model's cold bias is reduced and the zonal winds becomes stronger because of more realistic tropical convection

  10. The Oxford History of English Lexicography. Volume I: General ...

    African Journals Online (AJOL)

    A.P. Cowie (Editor). The Oxford History of English Lexicography. Volume I: General-purpose Dictionaries. Volume II: Specialized Dictionaries. 2009. Volume I: xviii + 467 pp., Volume II: xix + 551 pp. ISBN Volume I–II: 978-0-19-928562-4. Volume I: 978-0-19-928560-0. Volume II: 978-0-19-928561-7. Oxford: Oxford University ...

  11. Do downscaled general circulation models reliably simulate historical climatic conditions?

    Science.gov (United States)

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2018-01-01

    The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.

  12. Weather regimes in past climate atmospheric general circulation model simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kageyama, M.; Ramstein, G. [CEA Saclay, Gif-sur-Yvette (France). Lab. des Sci. du Climat et de l' Environnement; D' Andrea, F.; Vautard, R. [Laboratoire de Meteorologie Dynamique, Ecole Normale Superieure, Paris (France); Valdes, P.J. [Department of Meteorology, University of Reading (United Kingdom)

    1999-10-01

    We investigate the climates of the present-day, inception of the last glaciation (115000 y ago) and last glacial maximum (21000 y ago) in the extratropical north Atlantic and Europe, as simulated by the laboratoire de Meteorologie dynamique atmospheric general circulation model. We use these simulations to investigate the low-frequency variability of the model in different climates. The aim is to evaluate whether changes in the intraseasonal variability, which we characterize using weather regimes, can help describe the impact of different boundary conditions on climate and give a better understanding of climate change processes. Weather regimes are defined as the most recurrent patterns in the 500 hPa geopotential height, using a clustering algorithm method. The regimes found in the climate simulations of the present-day and inception of the last glaciation are similar in their number and their structure. It is the regimes' populations which are found to be different for these climates, with an increase of the model's blocked regime and a decrease in the zonal regime at the inception of the last glaciation. This description reinforces the conclusions from a study of the differences between the climatological averages of the different runs and confirms the northeastward shift to the tail of the Atlantic storm-track, which would favour more precipitation over the site of growth of the Fennoscandian ice-sheet. On the other hand, the last glacial maximum results over this sector are not found to be classifiable, showing that the change in boundary conditions can be responsible for severe changes in the weather regime and low-frequency dynamics. The LGM Atlantic low-frequency variability appears to be dominated by a large-scale retrogressing wave with a period 40 to 50 days. (orig.)

  13. Application of Improved Radiation Modeling to General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Michael J Iacono

    2011-04-07

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  14. Sensors, Volume 1, Fundamentals and General Aspects

    Science.gov (United States)

    Grandke, Thomas; Ko, Wen H.

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume deals with the fundamentals and common principles of sensors and covers the wide areas of principles, technologies, signal processing, and applications. Contents include: Sensor Fundamentals, e.g. Sensor Parameters, Modeling, Design and Packaging; Basic Sensor Technologies, e.g. Thin and Thick Films, Integrated Magnetic Sensors, Optical Fibres and Intergrated Optics, Ceramics and Oxides; Sensor Interfaces, e.g. Signal Processing, Multisensor Signal Processing, Smart Sensors, Interface Systems; Sensor Applications, e.g. Automotive: On-board Sensors, Traffic Surveillance and Control, Home Appliances, Environmental Monitoring, etc. This volume is an indispensable reference work and text book for both specialits and newcomers, researchers and developers.

  15. Mid-latitude afforestation shifts general circulation and tropical precipitation.

    Science.gov (United States)

    Swann, Abigail L S; Fung, Inez Y; Chiang, John C H

    2012-01-17

    We show in climate model experiments that large-scale afforestation in northern mid-latitudes warms the Northern Hemisphere and alters global circulation patterns. An expansion of dark forests increases the absorption of solar energy and increases surface temperature, particularly in regions where the land surface is unable to compensate with latent heat flux due to water limitation. Atmospheric circulation redistributes the anomalous energy absorbed in the northern hemisphere, in particular toward the south, through altering the Hadley circulation, resulting in the northward displacement of the tropical rain bands. Precipitation decreases over parts of the Amazon basin affecting productivity and increases over the Sahel and Sahara regions in Africa. We find that the response of climate to afforestation in mid-latitudes is determined by the amount of soil moisture available to plants with the greatest warming found in water-limited regions. Mid-latitude afforestation is found to have a small impact on modeled global temperatures and on global CO(2), but regional heating from the increase in forest cover is capable of driving unintended changes in circulation and precipitation. The ability of vegetation to affect remote circulation has implications for strategies for climate mitigation.

  16. Distribution of cocaine on banknotes in general circulation in England and Wales.

    Science.gov (United States)

    Aitken, C G G; Wilson, A; Sleeman, R; Morgan, B E M; Huish, J

    2017-01-01

    A study of the quantities of cocaine on banknotes in general circulation was conducted to investigate regional variations across England and Wales. No meaningful support was found for the proposition that there is regional variation in the quantities of cocaine in banknotes in general circulation in England and Wales. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Explicit prediction of ice clouds in general circulation models

    Science.gov (United States)

    Kohler, Martin

    1999-11-01

    Although clouds play extremely important roles in the radiation budget and hydrological cycle of the Earth, there are large quantitative uncertainties in our understanding of their generation, maintenance and decay mechanisms, representing major obstacles in the development of reliable prognostic cloud water schemes for General Circulation Models (GCMs). Recognizing their relative neglect in the past, both observationally and theoretically, this work places special focus on ice clouds. A recent version of the UCLA - University of Utah Cloud Resolving Model (CRM) that includes interactive radiation is used to perform idealized experiments to study ice cloud maintenance and decay mechanisms under various conditions in term of: (1) background static stability, (2) background relative humidity, (3) rate of cloud ice addition over a fixed initial time-period and (4) radiation: daytime, nighttime and no-radiation. Radiation is found to have major effects on the life-time of layer-clouds. Optically thick ice clouds decay significantly slower than expected from pure microphysical crystal fall-out (taucld = 0.9--1.4 h as opposed to no-motion taumicro = 0.5--0.7 h). This is explained by the upward turbulent fluxes of water induced by IR destabilization, which partially balance the downward transport of water by snowfall. Solar radiation further slows the ice-water decay by destruction of the inversion above cloud-top and the resulting upward transport of water. Optically thin ice clouds, on the other hand, may exhibit even longer life-times (>1 day) in the presence of radiational cooling. The resulting saturation mixing ratio reduction provides for a constant cloud ice source. These CRM results are used to develop a prognostic cloud water scheme for the UCLA-GCM. The framework is based on the bulk water phase model of Ose (1993). The model predicts cloud liquid water and cloud ice separately, and which is extended to split the ice phase into suspended cloud ice (predicted

  18. Multi-year predictability in a coupled general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Power, Scott; Colman, Rob [Bureau of Meteorology Research Centre, Melbourne, VIC (Australia)

    2006-02-01

    Multi-year to decadal variability in a 100-year integration of a BMRC coupled atmosphere-ocean general circulation model (CGCM) is examined. The fractional contribution made by the decadal component generally increases with depth and latitude away from surface waters in the equatorial Indo-Pacific Ocean. The relative importance of decadal variability is enhanced in off-equatorial ''wings'' in the subtropical eastern Pacific. The model and observations exhibit ''ENSO-like'' decadal patterns. Analytic results are derived, which show that the patterns can, in theory, occur in the absence of any predictability beyond ENSO time-scales. In practice, however, modification to this stochastic view is needed to account for robust differences between ENSO-like decadal patterns and their interannual counterparts. An analysis of variability in the CGCM, a wind-forced shallow water model, and a simple mixed layer model together with existing and new theoretical results are used to improve upon this stochastic paradigm and to provide a new theory for the origin of decadal ENSO-like patterns like the Interdecadal Pacific Oscillation and Pacific Decadal Oscillation. In this theory, ENSO-driven wind-stress variability forces internal equatorially-trapped Kelvin waves that propagate towards the eastern boundary. Kelvin waves can excite reflected internal westward propagating equatorially-trapped Rossby waves (RWs) and coastally-trapped waves (CTWs). CTWs have no impact on the off-equatorial sub-surface ocean outside the coastal wave guide, whereas the RWs do. If the frequency of the incident wave is too high, then only CTWs are excited. At lower frequencies, both CTWs and RWs can be excited. The lower the frequency, the greater the fraction of energy transmitted to RWs. This lowers the characteristic frequency of variability off the equator relative to its equatorial counterpart. Both the eastern boundary interactions and the accumulation of

  19. Radionuclide analyses taken during primary coolant decontamination at Three Mile Island indicate general circulation

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Baston, V.F.; Hitz, C.G.; Malinauskas, A.P.

    1983-01-01

    Radionuclide concentration data taken during decontamination of the primary reactor coolant system at Three Mile Island by a feed-and-bleed process have provided information on future defueling operations. Analysis of the radiocesium concentrations in samples taken at the letdown point indicates general circulation within the primary system, including the reactor vessel and both steam generators. A standard dilution model with parameters consistent with engineering estimates (volume, flow rate, etc.) accurately predicts the radiocesium decontamination rates. Unlike cesium, the behavior of other principal soluble radionuclides ( 90 Sr and 3 H) cannot be readily described by dilution theory. A significant appearance rate is observed for 90 Sr suggesting a chemical solubility mechanism. The use of processed water containing high 3 H for makeup causes uncertainty in the interpretation of the 3 H analysis

  20. Changes in circulating blood volume after infusion of hydroxyethyl starch 6% in critically ill patients

    DEFF Research Database (Denmark)

    Christensen, P; Andersson, J; Rasmussen, S E

    2001-01-01

    The cardiovascular response to a volume challenge with hydroxyethyl starch (HES) (200/0.5) 6% depends on the relation between the volume of HES 6% infused and the expansion of the blood volume in critically ill patients. However, only relatively limited data exist on the plasma expanding effect...... of infusion of HES 6% in critically ill patients. The purpose of the study was to evaluate the variation in the expansion of the circulating blood volume (CBV) in critically ill patients after infusion of 500 ml of colloid (HES (200/0.5) 6%) using the carbon monoxide method....

  1. Weak circulation theorems as a way of distinguishing between generalized gravitation theories

    International Nuclear Information System (INIS)

    Enosh, M.

    1980-01-01

    It was proved in a previous paper that a generalized circulation theorem characterizes Einstein's theory of gravitation as a special case of a more general theory of gravitation, which is also based on the principle of equivalence. Here the question of whether it is possible to weaken this circulation theorem in such ways that it would imply more general theories than Einstein's is posed. This problem is solved. Principally, there are two possibilities. One of them is essentially Weyl's theory. (author)

  2. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea

    Science.gov (United States)

    Sofianos, Sarantis S.; Johns, William E.

    2003-03-01

    The three-dimensional circulation of the Red Sea is studied using a set of Miami Isopycnic Coordinate Ocean Model (MICOM) simulations. The model performance is tested against the few available observations in the basin and shows generally good agreement with the main observed features of the circulation. The main findings of this analysis include an intensification of the along-axis flow toward the coasts, with a transition from western intensified boundary flow in the south to eastern intensified flow in the north, and a series of strong seasonal or permanent eddy-like features. Model experiments conducted with different forcing fields (wind-stress forcing only, surface buoyancy forcing only, or both forcings combined) showed that the circulation produced by the buoyancy forcing is stronger overall and dominates the wind-driven part of the circulation. The main circulation pattern is related to the seasonal buoyancy flux (mostly due to the evaporation), which causes the density to increase northward in the basin and produces a northward surface pressure gradient associated with the downward sloping of the sea surface. The response of the eastern boundary to the associated mean cross-basin geostrophic current depends on the stratification and β-effect. In the northern part of the basin this results in an eastward intensification of the northward surface flow associated with the presence of Kelvin waves while in the south the traditional westward intensification due to Rossby waves takes place. The most prominent gyre circulation pattern occurs in the north where a permanent cyclonic gyre is present that is involved in the formation of Red Sea Outflow Water (RSOW). Beneath the surface boundary currents are similarly intensified southward undercurrents that carry the RSOW to the sill to flow out of the basin into the Indian Ocean.

  3. Dynamics and transport in the stratosphere : Simulations with a general circulation mode

    NARCIS (Netherlands)

    Aalst, M.K. (Maarten Krispijn) van

    2005-01-01

    The middle atmosphere is strongly affected by two of the world's most important environmental problems: global climate change and stratospheric ozone depletion, caused by anthropogenic emissions of greenhouse gases and chlorofluorocarbons (CFCs), respectively. General circulation models with

  4. A Statistical Evaluation of Atmosphere-Ocean General Circulation Models: Complexity vs. Simplicity

    OpenAIRE

    Robert K. Kaufmann; David I. Stern

    2004-01-01

    The principal tools used to model future climate change are General Circulation Models which are deterministic high resolution bottom-up models of the global atmosphere-ocean system that require large amounts of supercomputer time to generate results. But are these models a cost-effective way of predicting future climate change at the global level? In this paper we use modern econometric techniques to evaluate the statistical adequacy of three general circulation models (GCMs) by testing thre...

  5. Precision of a new bedside method for estimation of the circulating blood volume

    DEFF Research Database (Denmark)

    Christensen, P; Eriksen, B; Henneberg, S W

    1993-01-01

    The present study is a theoretical and experimental evaluation of a modification of the carbon monoxide method for estimation of the circulating blood volume (CBV) with respect to the precision of the method. The CBV was determined from measurements of the CO-saturation of hemoglobin before and a......, determination of CBV can be performed with an amount of CO that gives rise to a harmless increase in the carboxyhemoglobin concentration.(ABSTRACT TRUNCATED AT 250 WORDS)...

  6. Circulating atrial natriuretic peptide (ANP) and central blood volume (CBV) in cirrhosis

    DEFF Research Database (Denmark)

    Schütten, H J; Henriksen, Jens Henrik Sahl; Bendtsen, F

    1986-01-01

    Endogenous alpha-atrial natriuretic peptide (ANP) in plasma is elevated in various hypervolaemic conditions. Possible relationships between circulating immunoreactive ANP and cardiovascular and splanchnic haemodynamics were therefore studied in patients with cirrhosis (n = 16) and controls (n = 12...... or diuretic treatment. Central blood volume (CBV, i.e. the blood volume in the heart cavities, lungs, and aorta), determined from the mean transit time of 125I-labelled of 125I-labelled albumin and cardiac output, was significantly reduced in cirrhotics compared to controls (1.45 +/- 0.12 vs. 1.83 +/- 0.10 l...

  7. Passive tracers in a general circulation model of the Southern Ocean

    Directory of Open Access Journals (Sweden)

    I. G. Stevens

    Full Text Available Passive tracers are used in an off-line version of the United Kingdom Fine Resolution Antarctic Model (FRAM to highlight features of the circulation and provide information on the inter-ocean exchange of water masses. The use of passive tracers allows a picture to be built up of the deep circulation which is not readily apparent from examination of the velocity or density fields. Comparison of observations with FRAM results gives good agreement for many features of the Southern Ocean circulation. Tracer distributions are consistent with the concept of a global "conveyor belt" with a return path via the Agulhas retroflection region for the replenishment of North Atlantic Deep Water.

    Key words. Oceanography: general (numerical modeling; water masses · Oceanography: physical (general circulation

  8. A Wind Tunnel Model to Explore Unsteady Circulation Control for General Aviation Applications

    Science.gov (United States)

    Cagle, Christopher M.; Jones, Gregory S.

    2002-01-01

    Circulation Control airfoils have been demonstrated to provide substantial improvements in lift over conventional airfoils. The General Aviation Circular Control model is an attempt to address some of the concerns of this technique. The primary focus is to substantially reduce the amount of air mass flow by implementing unsteady flow. This paper describes a wind tunnel model that implements unsteady circulation control by pulsing internal pneumatic valves and details some preliminary results from the first test entry.

  9. On the norms of r-circulant matrices with generalized Fibonacci numbers

    Directory of Open Access Journals (Sweden)

    Amara Chandoul

    2017-01-01

    Full Text Available In this paper, we obtain a generalization of [6, 8]. Firstly, we consider the so-called r-circulant matrices with generalized Fibonacci numbers and then found lower and upper bounds for the Euclidean and spectral norms of these matrices. Afterwards, we present some bounds for the spectral norms of Hadamard and Kronecker product of these matrices.

  10. Ocean bio-geophysical modeling using mixed layer-isopycnal general circulation model coupled with photosynthesis process

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; Saito, H.; Muneyama, K.; Sato, T.; PrasannaKumar, S.; Kumar, A.; Frouin, R.

    -chemical system that supports steady carbon circulation in geological time scale in the world ocean using Mixed Layer-Isopycnal ocean General Circulation model with remotely sensed Coastal Zone Color Scanner (CZCS) chlorophyll pigment concentration....

  11. Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model

    Science.gov (United States)

    Brix, H.; Menemenlis, D.; Hill, C.; Dutkiewicz, S.; Jahn, O.; Wang, D.; Bowman, K.; Zhang, H.

    2015-11-01

    The NASA Carbon Monitoring System (CMS) Flux Project aims to attribute changes in the atmospheric accumulation of carbon dioxide to spatially resolved fluxes by utilizing the full suite of NASA data, models, and assimilation capabilities. For the oceanic part of this project, we introduce ECCO2-Darwin, a new ocean biogeochemistry general circulation model based on combining the following pre-existing components: (i) a full-depth, eddying, global-ocean configuration of the Massachusetts Institute of Technology general circulation model (MITgcm), (ii) an adjoint-method-based estimate of ocean circulation from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, (iii) the MIT ecosystem model "Darwin", and (iv) a marine carbon chemistry model. Air-sea gas exchange coefficients and initial conditions of dissolved inorganic carbon, alkalinity, and oxygen are adjusted using a Green's Functions approach in order to optimize modeled air-sea CO2 fluxes. Data constraints include observations of carbon dioxide partial pressure (pCO2) for 2009-2010, global air-sea CO2 flux estimates, and the seasonal cycle of the Takahashi et al. (2009) Atlas. The model sensitivity experiments (or Green's Functions) include simulations that start from different initial conditions as well as experiments that perturb air-sea gas exchange parameters and the ratio of particulate inorganic to organic carbon. The Green's Functions approach yields a linear combination of these sensitivity experiments that minimizes model-data differences. The resulting initial conditions and gas exchange coefficients are then used to integrate the ECCO2-Darwin model forward. Despite the small number (six) of control parameters, the adjusted simulation is significantly closer to the data constraints (37% cost function reduction, i.e., reduction in the model-data difference, relative to the baseline simulation) and to independent observations (e.g., alkalinity). The adjusted air-sea gas

  12. Precision of a new bedside method for estimation of the circulating blood volume

    DEFF Research Database (Denmark)

    Christensen, P; Eriksen, B; Henneberg, S W

    1993-01-01

    The present study is a theoretical and experimental evaluation of a modification of the carbon monoxide method for estimation of the circulating blood volume (CBV) with respect to the precision of the method. The CBV was determined from measurements of the CO-saturation of hemoglobin before...... ventilation with the CO gas mixture. The amount of CO administered during each determination of CBV resulted in an increase in the CO saturation of hemoglobin of 2.1%-3.9%. A theoretical noise propagation analysis was performed by means of the Monte Carlo method. The analysis showed that a CO dose...... patients. The coefficients of variation were 6.2% and 4.7% in healthy and diseased subjects, respectively. Furthermore, the day-to-day variation of the method with respect to the total amount of circulating hemoglobin (nHb) and CBV was determined from duplicate estimates separated by 24-48 h. In conclusion...

  13. Atmospheric Diabatic Heating in Different Weather States and the General Circulation

    Science.gov (United States)

    Rossow, William B.; Zhang, Yuanchong; Tselioudis, George

    2016-01-01

    Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.

  14. PSI annual report 1995. General volume

    Energy Technology Data Exchange (ETDEWEB)

    Salzmann, M [ed.

    1996-04-01

    The report gives an overview of the PSI`s activities in 1995 in the fields of research: nuclear and particle physics, life sciences, solid state research at large facilities, applied solid state physics, nuclear energy, safety, and general energy research. The theme 1995 of the report deals with the proton therapy at PSI. figs., tabs.

  15. PSI annual report 1995. General volume

    International Nuclear Information System (INIS)

    Salzmann, M.

    1996-04-01

    The report gives an overview of the PSI's activities in 1995 in the fields of research: nuclear and particle physics, life sciences, solid state research at large facilities, applied solid state physics, nuclear energy, safety, and general energy research. The theme 1995 of the report deals with the proton therapy at PSI. figs., tabs

  16. Impact of variations of gravitational acceleration on the general circulation of the planetary atmosphere

    Science.gov (United States)

    Kilic, Cevahir; Raible, Christoph C.; Stocker, Thomas F.; Kirk, Edilbert

    2017-01-01

    Fundamental to the redistribution of energy in a planetary atmosphere is the general circulation and its meridional structure. We use a general circulation model of the atmosphere in an aquaplanet configuration with prescribed sea surface temperature and investigate the influence of the gravitational acceleration g on the structure of the circulation. For g =g0 = 9.81 ms-2 , three meridional cells exist in each hemisphere. Up to about g /g0 = 1.4 all cells increase in strength. Further increasing this ratio results in a weakening of the thermally indirect cell, such that a two- and finally a one-cell structure of the meridional circulation develops in each hemisphere. This transition is explained by the primary driver of the thermally direct Hadley cell: the diabatic heating at the equator which is proportional to g. The analysis of the energetics of the atmospheric circulation based on the Lorenz energy cycle supports this finding. For Earth-like gravitational accelerations transient eddies are primarily responsible for the meridional heat flux. For large gravitational accelerations, the direct zonal mean conversion of energy dominates the meridional heat flux.

  17. Selected translated abstracts of Russian-language climate-change publications. 4: General circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Burtis, M.D. [comp.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Razuvaev, V.N.; Sivachok, S.G. [All-Russian Research Inst. of Hydrometeorological Information--World Data Center, Obninsk (Russian Federation)

    1996-10-01

    This report presents English-translated abstracts of important Russian-language literature concerning general circulation models as they relate to climate change. Into addition to the bibliographic citations and abstracts translated into English, this report presents the original citations and abstracts in Russian. Author and title indexes are included to assist the reader in locating abstracts of particular interest.

  18. Midlatitude Forcing Mechanisms for Glacier Mass Balance Investigated Using General Circulation Models

    NARCIS (Netherlands)

    Reichert, B.K.; Bengtsson, L.; Oerlemans, J.

    2001-01-01

    A process-oriented modeling approach is applied in order to simulate glacier mass balance for individual glaciers using statistically downscaled general circulation models (GCMs). Glacier-specific seasonal sensitivity characteristics based on a mass balance model of intermediate complexity are used

  19. Simulation of the Low-Level-Jet by general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    To what degree is the low-level jet climatology and it`s impact on clouds and precipitation being captured by current general circulation models? It is hypothesised that a need for a pramaterization exists. This paper describes this parameterization need.

  20. Aluminium in an ocean general circulation model compared with the West Atlantic Geotraces cruises

    CSIR Research Space (South Africa)

    Van Hulten, M

    2013-10-01

    Full Text Available A model of aluminium has been developed and implemented in an Ocean General Circulation Model (NEMO-PISCES). In the model, aluminium enters the ocean by means of dust deposition. The internal oceanic processes are described by advection, mixing...

  1. Seasonal changes in the atmospheric heat balance simulated by the GISS general circulation model

    Science.gov (United States)

    Stone, P. H.; Chow, S.; Helfand, H. M.; Quirk, W. J.; Somerville, R. C. J.

    1975-01-01

    Tests of the ability of numerical general circulation models to simulate the atmosphere have focussed so far on simulations of the January climatology. These models generally present boundary conditions such as sea surface temperature, but this does not prevent testing their ability to simulate seasonal changes in atmospheric processes that accompany presented seasonal changes in boundary conditions. Experiments to simulate changes in the zonally averaged heat balance are discussed since many simplified models of climatic processes are based solely on this balance.

  2. A January angular momentum balance in the OSU two-level atmospheric general circulation model

    Science.gov (United States)

    Kim, J.-W.; Grady, W.

    1982-01-01

    The present investigation is concerned with an analysis of the atmospheric angular momentum balance, based on the simulation data of the Oregon State University two-level atmospheric general circulation model (AGCM). An attempt is also made to gain an understanding of the involved processes. Preliminary results on the angular momentum and mass balance in the AGCM are shown. The basic equations are examined, and questions of turbulent momentum transfer are investigated. The methods of analysis are discussed, taking into account time-averaged balance equations, time and longitude-averaged balance equations, mean meridional circulation, the mean meridional balance of relative angular momentum, and standing and transient components of motion.

  3. Pulmonary Circulation Transvascular Fluid Fluxes Do Not Change during General Anesthesia in Dogs

    Directory of Open Access Journals (Sweden)

    Olga Frlic

    2018-02-01

    Full Text Available General anesthesia (GA can cause abnormal lung fluid redistribution. Pulmonary circulation transvascular fluid fluxes (JVA are attributed to changes in hydrostatic forces and erythrocyte volume (EV regulation. Despite the very low hydraulic conductance of pulmonary microvasculature it is possible that GA may affect hydrostatic forces through changes in pulmonary vascular resistance (PVR, and EV through alteration of erythrocyte transmembrane ion fluxes (ionJVA. Furosemide (Fur was also used because of its potential to affect pulmonary hydrostatic forces and ionJVA. A hypothesis was tested that JVA, with or without furosemide treatment, will not change with time during GA. Twenty dogs that underwent castration/ovariectomy were randomly assigned to Fur (n = 10 (4 mg/kg IV or placebo treated group (Con, n = 10. Baseline arterial (BL and mixed venous blood were sampled during GA just before treatment with Fur or placebo and then at 15, 30 and 45 min post-treatment. Cardiac output (Q and pulmonary artery pressure (PAP were measured. JVA and ionJVA were calculated from changes in plasma protein, hemoglobin, hematocrit, plasma and whole blood ions, and Q. Variables were analyzed using random intercept mixed model (P < 0.05. Data are expressed as means ± SE. Furosemide caused a significant volume depletion as evident from changes in plasma protein and hematocrit (P < 0.001. However; Q, PAP, and JVA were not affected by time or Fur, whereas erythrocyte fluid flux was affected by Fur (P = 0.03. Furosemide also affected erythrocyte transmembrane K+ and Cl−, and transvascular Cl− metabolism (P ≤ 0.05. No other erythrocyte transmembrane or transvascular ion fluxes were affected by time of GA or Fur. Our hypothesis was verified as JVA was not affected by GA or ion metabolism changes due to Fur treatment. Furosemide and 45 min of GA did not cause significant hydrostatic changes based on Q and PAP. Inhibition of Na+/K+/2Cl− cotransport caused by Fur

  4. A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting

    Directory of Open Access Journals (Sweden)

    P. Oddo

    2009-10-01

    Full Text Available A new numerical general circulation ocean model for the Mediterranean Sea has been implemented nested within an Atlantic general circulation model within the framework of the Marine Environment and Security for the European Area project (MERSEA, Desaubies, 2006. A 4-year twin experiment was carried out from January 2004 to December 2007 with two different models to evaluate the impact on the Mediterranean Sea circulation of open lateral boundary conditions in the Atlantic Ocean. One model considers a closed lateral boundary in a large Atlantic box and the other is nested in the same box in a global ocean circulation model. Impact was observed comparing the two simulations with independent observations: ARGO for temperature and salinity profiles and tide gauges and along-track satellite observations for the sea surface height. The improvement in the nested Atlantic-Mediterranean model with respect to the closed one is particularly evident in the salinity characteristics of the Modified Atlantic Water and in the Mediterranean sea level seasonal variability.

  5. Impact of an improved shortwave radiation scheme in the MAECHAM5 General Circulation Model

    Directory of Open Access Journals (Sweden)

    J. J. Morcrette

    2007-05-01

    Full Text Available In order to improve the representation of ozone absorption in the stratosphere of the MAECHAM5 general circulation model, the spectral resolution of the shortwave radiation parameterization used in the model has been increased from 4 to 6 bands. Two 20-years simulations with the general circulation model have been performed, one with the standard and the other with the newly introduced parameterization respectively, to evaluate the temperature and dynamical changes arising from the two different representations of the shortwave radiative transfer. In the simulation with the increased spectral resolution in the radiation parameterization, a significant warming of almost the entire model domain is reported. At the summer stratopause the temperature increase is about 6 K and alleviates the cold bias present in the model when the standard radiation scheme is used. These general circulation model results are consistent both with previous validation of the radiation scheme and with the offline clear-sky comparison performed in the current work with a discrete ordinate 4 stream scattering line by line radiative transfer model. The offline validation shows a substantial reduction of the daily averaged shortwave heating rate bias (1–2 K/day cooling that occurs for the standard radiation parameterization in the upper stratosphere, present under a range of atmospheric conditions. Therefore, the 6 band shortwave radiation parameterization is considered to be better suited for the representation of the ozone absorption in the stratosphere than the 4 band parameterization. Concerning the dynamical response in the general circulation model, it is found that the reported warming at the summer stratopause induces stronger zonal mean zonal winds in the middle atmosphere. These stronger zonal mean zonal winds thereafter appear to produce a dynamical feedback that results in a dynamical warming (cooling of the polar winter (summer mesosphere, caused by an

  6. A report on workshops: General circulation model study of climate- chemistry interaction

    International Nuclear Information System (INIS)

    Wei-Chyung, Wang; Isaksen, I.S.A.

    1993-01-01

    This report summarizes the discussion on General Circulation Model Study of Climate-Chemistry Interaction from two workshops, the first held 19--21 August 1992 at Oslo, Norway and the second 26--27 May 1993 at Albany, New York, USA. The workshops are the IAMAP activities under the Trace Constituent Working Group. The main objective of the two workshops was to recommend specific general circulation model (GCM) studies of the ozone distribution and the climatic effect of its changes. The workshops also discussed the climatic implications of increasing sulfate aerosols because of its importance to regional climate. The workshops were organized into four working groups: observation of atmospheric O 3 ; modeling of atmospheric chemical composition; modeling of sulfate aerosols; and aspects of climate modeling

  7. Use of Ocean Remote Sensing Data to Enhance Predictions with a Coupled General Circulation Model

    Science.gov (United States)

    Rienecker, Michele M.

    1999-01-01

    Surface height, sea surface temperature and surface wind observations from satellites have given a detailed time sequence of the initiation and evolution of the 1997/98 El Nino. The data have beet complementary to the subsurface TAO moored data in their spatial resolution and extent. The impact of satellite observations on seasonal prediction in the tropical Pacific using a coupled ocean-atmosphere general circulation model will be presented.

  8. Dynamics and transport in the stratosphere : Simulations with a general circulation mode

    OpenAIRE

    Aalst, M.K. (Maarten Krispijn) van

    2005-01-01

    The middle atmosphere is strongly affected by two of the world's most important environmental problems: global climate change and stratospheric ozone depletion, caused by anthropogenic emissions of greenhouse gases and chlorofluorocarbons (CFCs), respectively. General circulation models with coupled chemistry are a key tool to advance our understanding of the complex interplay between dynamics, chemistry and radiation in the middle atmosphere. A key problem of such models is that they generat...

  9. Preformed and regenerated phosphate in ocean general circulation models: can right total concentrations be wrong?

    Directory of Open Access Journals (Sweden)

    O. Duteil

    2012-05-01

    Full Text Available Phosphate distributions simulated by seven state-of-the-art biogeochemical ocean circulation models are evaluated against observations of global ocean nutrient distributions. The biogeochemical models exhibit different structural complexities, ranging from simple nutrient-restoring to multi-nutrient NPZD type models. We evaluate the simulations using the observed volume distribution of phosphate. The errors in these simulated volume class distributions are significantly larger when preformed phosphate (or regenerated phosphate rather than total phosphate is considered. Our analysis reveals that models can achieve similarly good fits to observed total phosphate distributions for a~very different partitioning into preformed and regenerated nutrient components. This has implications for the strength and potential climate sensitivity of the simulated biological carbon pump. We suggest complementing the use of total nutrient distributions for assessing model skill by an evaluation of the respective preformed and regenerated nutrient components.

  10. Generalized effective mode volume for leaky optical cavities

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Van Vlack, C.; Hughes, S.

    2012-01-01

    We show explicitly how the commonly adopted prescription for calculating effective mode volumes is wrong and leads to uncontrolled errors. Instead, we introduce a generalized mode volume that can be easily evaluated based on the mode calculation methods typically applied in the literature, and wh......, and which allows one to compute the Purcell effect and other interesting optical phenomena in a rigorous and unambiguous way....

  11. Ability of the CCSR-NIES atmospheric general circulation model in the stratosphere. Chapter 3

    International Nuclear Information System (INIS)

    Sugata, S.

    1997-01-01

    A quantitative evaluation of climate change such as global warming is impossible without a high-quality numerical model which describes the dynamics of the climate system and the circulation of energy and materials. The Center for Climate Research - National Institute for Environmental Studies (CCSR-NIES) atmospheric general circulation model (hereafter, GCM for a general circulation model) has been developed to obtain such a high-quality model. The emphasis of the development has been laid on the troposphere and the lower stratosphere below about 30 km altitude. This is natural because human beings live on the Earth's surface and the condition of the lower atmosphere directly affects human life. However, the stratosphere and the upper atmosphere beyond it have recently been the focus even in investigations of climate change, because they are relevant to many issues which relate closely to tropospheric climate change, such as the ozone hole, material exchange between the stratosphere and the troposphere, and physical interaction between the stratosphere and troposphere. This study extended the region of the CCSR-NIES GCM to the lower mesosphere (about 70 km from the surface). This is our first attempt to investigate this GCM's climatology in the upper atmosphere, although some studies for QBO in the middle and lower stratosphere had been done with the GCM

  12. 3D General Circulation Model of the Middle Atmosphere of Jupiter

    Science.gov (United States)

    Zube, Nicholas Gerard; Zhang, Xi; Li, Cheng; Le, Tianhao

    2017-10-01

    The characteristics of Jupiter’s large-scale stratospheric circulation remain largely unknown. Detailed distributions of temperature and photochemical species have been provided by recent observations [1], but have not yet been accurately reproduced by middle atmosphere general circulation models (GCM). Jupiter’s stratosphere and upper troposphere are influenced by radiative forcing from solar insolation and infrared cooling from hydrogen and hydrocarbons, as well as waves propagating from the underlying troposphere [2]. The relative significance of radiative and mechanical forcing on stratospheric circulation is still being debated [3]. Here we present a 3D GCM of Jupiter’s atmosphere with a correlated-k radiative transfer scheme. The simulation results are compared with observations. We analyze the impact of model parameters on the stratospheric temperature distribution and dynamical features. Finally, we discuss future tracer transport and gravity wave parameterization schemes that may be able to accurately simulate the middle atmosphere dynamics of Jupiter and other giant planets.[1] Kunde et al. 2004, Science 305, 1582.[2] Zhang et al. 2013a, EGU General Assembly, EGU2013-5797-2.[3] Conrath 1990, Icarus, 83, 255-281.

  13. Stratospheric Ozone Distribution and Tropospheric General Circulation: Interconnections in the UTLS Region

    Science.gov (United States)

    Barodka, S.; Krasovsky, A.; Shalamyansky, A.

    2014-12-01

    The height of the tropopause, which divided the stratosphere and the troposphere, is a result of two rival categories of processes: the tropospheric vertical convection and the radiative heating of the stratosphere resulting from the ozone cycle. Hence, it is natural that tropospheric and stratospheric phenomena can have effect each other in manifold processes of stratosphere-troposphere interactions. In the present study we focus our attention to the "top-down" side of the interaction: the impact of stratospheric ozone distribution on the features of tropospheric circulation and the associated weather patterns and regional climate conditions. We proceed from analyzes of the observational data performed at the A.I. Voeikov Main Geophysical Observatory, which suggest a distinct correlation between stratospheric ozone distribution, synoptic formations and air-masses boundaries in the upper troposphere and the temperature field of the lower stratosphere [1]. Furthermore, we analyze local features of atmospheric general circulation and stratospheric ozone distribution from the atmospheric reanalyses and general circulation model data, focusing our attention to instantaneous positions of subtropical and polar stationary atmospheric fronts, which define regional characteristics of the general circulation cells in the troposphere and separate global tropospheric air-masses, correspond to distinct meteorological regimes in the TOC field [2, 3]. We assume that by altering the tropopause height, stratospheric ozone-related processes can have an impact on the location of the stationary atmospheric fronts, thereby exerting influence on circulation processes in troposphere and lower stratosphere. For midlatitudes, the tropopause height controls the position of the polar stationary front, which has a direct impact on the trajectory of motion of active vortices on synoptic tropospheric levels, thereby controlling weather patterns in that region and the regional climate. This

  14. Eddy Effects in the General Circulation, Spanning Mean Currents, Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests

    Science.gov (United States)

    2014-09-30

    alongshore winds favoring upwelling circulation. As for the other EBUS (e.g., Humboldt, Benguela, and Canary Currents ), equatorward winds drive...Eddy Effects in the General Circulation, Spanning Mean Currents , Mesoscale Eddies, and Topographic Generation, Including Submesoscale Nests...environments OBJECTIVES The central scientific questions are how the eddies control the persistent currents by their eddy-induced momentum and buoyancy fluxes

  15. Radwaste volume reduction and solidification by General Electric

    International Nuclear Information System (INIS)

    Green, T.A.; Weech, M.E.; Miller, G.P.; Eberle, J.W.

    1982-01-01

    Since 1978 General Electric has been actively engaged in developing a volume reduction and solidifcation system or treatment of radwaste generated in commercial nuclear power plants. The studies have been aimed at defining an integrated system that would be directly responsive to the rapid evolving needs of the industry for the volume reduction and solidification of low-level radwaste. The resulting General Electric Volume Reduction System (GEVRS) is an integrated system based on two processes: the first uses azeotropic distillation technology and is called AZTECH, and the second is controlled-air incineration...called INCA. The AZTECH process serves to remove water from concentrated salt solutions, ion exchange resins and filter sludge slurries and then encapsulates the dried solids into a dense plastic product. The INCA unit serves to reduce combustible wastes to ashes suitable for encapsulation into the same plastic product produced by AZTECH

  16. Rapid multi-wavelength optical assessment of circulating blood volume without a priori data

    Science.gov (United States)

    Loginova, Ekaterina V.; Zhidkova, Tatyana V.; Proskurnin, Mikhail A.; Zharov, Vladimir P.

    2016-03-01

    The measurement of circulating blood volume (CBV) is crucial in various medical conditions including surgery, iatrogenic problems, rapid fluid administration, transfusion of red blood cells, or trauma with extensive blood loss including battlefield injuries and other emergencies. Currently, available commercial techniques are invasive and time-consuming for trauma situations. Recently, we have proposed high-speed multi-wavelength photoacoustic/photothermal (PA/PT) flow cytometry for in vivo CBV assessment with multiple dyes as PA contrast agents (labels). As the first step, we have characterized the capability of this technique to monitor the clearance of three dyes (indocyanine green, methylene blue, and trypan blue) in an animal model. However, there are strong demands on improvements in PA/PT flow cytometry. As additional verification of our proof-of-concept of this technique, we performed optical photometric CBV measurements in vitro. Three label dyes—methylene blue, crystal violet and, partially, brilliant green—were selected for simultaneous photometric determination of the components of their two-dye mixtures in the circulating blood in vitro without any extra data (like hemoglobin absorption) known a priori. The tests of single dyes and their mixtures in a flow system simulating a blood transfusion system showed a negligible difference between the sensitivities of the determination of these dyes under batch and flow conditions. For individual dyes, the limits of detection of 3×10-6 M‒3×10-6 M in blood were achieved, which provided their continuous determination at a level of 10-5 M for the CBV assessment without a priori data on the matrix. The CBV assessment with errors no higher than 4% were obtained, and the possibility to apply the developed procedure for optical photometric (flow cytometry) with laser sources was shown.

  17. Acute responses of circulating microRNAs to low-volume sprint interval cycling

    Directory of Open Access Journals (Sweden)

    Shu Fang eCui

    2015-10-01

    Full Text Available Low-volume high-intensity interval training is an efficient and practical method of inducing physiological responses in various tissues to develop physical fitness and may also change the expression of circulating microRNAs (miRNAs. The purpose of the present study was to examine whether miRNAs for muscle, heart, somatic tissue and metabolism were affected by 30-s intervals of intensive sprint cycling. We also examined the relationship of these miRNAs to conventional biochemical and performance indices. Eighteen healthy young males performed sprint interval cycling. Circulating miRNAs in plasma were detected using TaqMan-based quantitative PCR and normalized to Let-7d/g/i. In addition, we determined the levels of insulin-like growth factor-I, testosterone and cortisol, and anaerobic capacity. Compared to plasma levels before exercise muscle-specific miR-1 (0.12 ± 0.02 vs. 0.09 ± 0.02, miR-133a (0.46 ± 0.10 vs. 0.31 ± 0.06 and miR-133b (0.19 ± 0.02 vs. 0.10 ± 0.01 decreased (all P < 0.05, while miR-206 and miR-499 remained unchanged. The levels of metabolism related miR-122 (0.62 ± 0.07 vs. 0.34 ± 0.03 and somatic tissues related miR-16 (1.74 ± 0.27 vs. 0.94 ± 0.12 also decreased (both P < 0.05. The post-exercise IGF-1 and cortisol concentrations were significantly increased, while testosterone concentrations did not. Plasma levels of miR-133b correlated to peak power (r = 0.712, P = 0.001 and miR-122 correlated to peak power ratio (r = 0.665, P = 0.003. In conclusion sprint exercise provokes genetic changes for RNA related to specific muscle or metabolism related miRNAs suggesting that miR-133b and miR-122 may be potential useful biomarkers for actual physiological strain or anaerobic capacity. Together, our findings on the circulating miRNAs may provide new insight into the physiological responses that are being performed during exercise and delineate mechanisms by which exercise confers distinct phenotypes and improves performance.

  18. Comparison of three-dimensional ocean general circulation models on a benchmark problem

    International Nuclear Information System (INIS)

    Chartier, M.

    1990-12-01

    A french and an american Ocean General Circulation Models for deep-sea disposal of radioactive wastes are compared on a benchmark test problem. Both models are three-dimensional. They solve the hydrostatic primitive equations of the ocean with two different finite difference techniques. Results show that the dynamics simulated by both models are consistent. Several methods for the running of a model from a known state are tested in the French model: the diagnostic method, the prognostic method, the acceleration of convergence and the robust-diagnostic method

  19. Improved stratospheric atmosphere forecasts in the general circulation model through a methane oxidation parametrization

    Science.gov (United States)

    Wang, S.; Jun, Z.

    2017-12-01

    Climatic characteristics of tropical stratospheric methane have been well researched using various satellite data, and numerical simulations have furtherly conducted using chemical climatic models, while the impact of stratospheric methane oxidation on distribution of water vapor is not paid enough attention in general circulation models. Simulated values of water vapour in the tropical upper stratosphere, and throughout much of the extratropical stratosphere, were too low. Something must be done to remedy this deficiency in order to producing realistic stratospheric water vapor using a general circulation model including the whole stratosphere. Introduction of a simple parametrization of the upper-stratospheric moisture source due to methane oxidation and a sink due to photolysis in the mesosphere was conducted. Numerical simulations and analysis of the influence of stratospheric methane on the prediction of tropical stratospheric moisture and temperature fields were carried out. This study presents the advantages of methane oxidation parametrization in producing a realistic distribution of water vapour in the tropical stratosphere and analyzes the impact of methane chemical process on the general circulation model using two storm cases including a heavy rain in South China and a typhoon caused tropical storm.It is obvious that general circulation model with methane oxidation parametrization succeeds in simulating the water vapor and temperature in stratosphere. The simulating rain center value of contrast experiment is increased up to 10% than that of the control experiment. Introduction of methane oxidation parametrization has modified the distribution of water vapour and then producing a broadly realistic distribution of temperature. Objective weather forecast verifications have been performed using simulating results of one month, which demonstrate somewhat positive effects on the model skill. There is a certain extent impact of methane oxidation

  20. CT angiography and CT perfusion improve prediction of infarct volume in patients with anterior circulation stroke

    Energy Technology Data Exchange (ETDEWEB)

    Seeters, Tom van; Schaaf, Irene C. van der; Dankbaar, Jan Willem; Horsch, Alexander D.; Niesten, Joris M.; Luitse, Merel J.A.; Mali, Willem P.T.M.; Velthuis, Birgitta K. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Biessels, Geert Jan; Kappelle, L.J. [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Majoie, Charles B.L.M. [Academic Medical Center, Department of Radiology, Amsterdam (Netherlands); Vos, Jan Albert [St. Antonius Hospital, Department of Radiology, Nieuwegein (Netherlands); Schonewille, Wouter J. [St. Antonius Hospital, Department of Neurology, Nieuwegein (Netherlands); Walderveen, Marianne A.A. van [Leiden University Medical Center, Department of Radiology, Leiden (Netherlands); Wermer, Marieke J.H. [Leiden University Medical Center, Department of Neurology, Leiden (Netherlands); Duijm, Lucien E.M. [Catharina Hospital, Department of Radiology, Eindhoven (Netherlands); Keizer, Koos [Catharina Hospital, Department of Neurology, Eindhoven (Netherlands); Bot, Joseph C.J. [VU University Medical Center, Department of Radiology, Amsterdam (Netherlands); Visser, Marieke C. [VU University Medical Center, Department of Neurology, Amsterdam (Netherlands); Lugt, Aad van der [Erasmus MC University Medical Center, Department of Radiology, Rotterdam (Netherlands); Dippel, Diederik W.J. [Erasmus MC University Medical Center, Department of Neurology, Rotterdam (Netherlands); Kesselring, F.O.H.W. [Rijnstate Hospital, Department of Radiology, Arnhem (Netherlands); Hofmeijer, Jeannette [Rijnstate Hospital, Department of Neurology, Arnhem (Netherlands); Lycklama a Nijeholt, Geert J. [Medical Center Haaglanden, Department of Radiology, The Hague (Netherlands); Boiten, Jelis [Medical Center Haaglanden, Department of Neurology, The Hague (Netherlands); Rooij, Willem Jan van [St. Elisabeth Hospital, Department of Radiology, Tilburg (Netherlands); Kort, Paul L.M. de [St. Elisabeth Hospital, Department of Neurology, Tilburg (Netherlands); Roos, Yvo B.W.E.M. [Academic Medical Center, Department of Neurology, Amsterdam (Netherlands); Meijer, Frederick J.A. [Radboud University Medical Center, Department of Radiology, Nijmegen (Netherlands); Pleiter, C.C. [St. Franciscus Hospital, Department of Radiology, Rotterdam (Netherlands); Graaf, Yolanda van der [University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands); Collaboration: Dutch acute stroke study (DUST) investigators

    2016-04-15

    We investigated whether baseline CT angiography (CTA) and CT perfusion (CTP) in acute ischemic stroke could improve prediction of infarct presence and infarct volume on follow-up imaging. We analyzed 906 patients with suspected anterior circulation stroke from the prospective multicenter Dutch acute stroke study (DUST). All patients underwent baseline non-contrast CT, CTA, and CTP and follow-up non-contrast CT/MRI after 3 days. Multivariable regression models were developed including patient characteristics and non-contrast CT, and subsequently, CTA and CTP measures were added. The increase in area under the curve (AUC) and R{sup 2} was assessed to determine the additional value of CTA and CTP. At follow-up, 612 patients (67.5 %) had a detectable infarct on CT/MRI; median infarct volume was 14.8 mL (interquartile range (IQR) 2.8-69.6). Regarding infarct presence, the AUC of 0.82 (95 % confidence interval (CI) 0.79-0.85) for patient characteristics and non-contrast CT was improved with addition of CTA measures (AUC 0.85 (95 % CI 0.82-0.87); p < 0.001) and was even higher after addition of CTP measures (AUC 0.89 (95 % CI 0.87-0.91); p < 0.001) and combined CTA/CTP measures (AUC 0.89 (95 % CI 0.87-0.91); p < 0.001). For infarct volume, adding combined CTA/CTP measures (R{sup 2} = 0.58) was superior to patient characteristics and non-contrast CT alone (R{sup 2} = 0.44) and to addition of CTA alone (R{sup 2} = 0.55) or CTP alone (R{sup 2} = 0.54; all p < 0.001). In the acute stage, CTA and CTP have additional value over patient characteristics and non-contrast CT for predicting infarct presence and infarct volume on follow-up imaging. These findings could be applied for patient selection in future trials on ischemic stroke treatment. (orig.)

  1. Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Muneyama, K.; Frouin, R.

    , embedded in the ocean isopycnal general circulation model (OPYC). A higher abundance of chlorophyll in October than in April in the Arabian Sea increases absorption of solar irradiance and heating rate in the upper ocean, resulting in decreasing the mixed...

  2. Polynomial Chaos–Based Bayesian Inference of K-Profile Parameterization in a General Circulation Model of the Tropical Pacific

    KAUST Repository

    Sraj, Ihab; Zedler, Sarah E.; Knio, Omar; Jackson, Charles S.; Hoteit, Ibrahim

    2016-01-01

    The authors present a polynomial chaos (PC)-based Bayesian inference method for quantifying the uncertainties of the K-profile parameterization (KPP) within the MIT general circulation model (MITgcm) of the tropical Pacific. The inference

  3. Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Ishizaka, J.; Muneyama, K.; Frouin, R.

    The influence of phytoplankton on the upper ocean dynamics and thermodynamics in the equatorial Pacific is investigated using an isopycnal ocean general circulation model (OPYC) coupled with a mixed layer model and remotely sensed chlorophyll...

  4. Simulation of Venus polar vortices with the non-hydrostatic general circulation model

    Science.gov (United States)

    Rodin, Alexander V.; Mingalev, Oleg; Orlov, Konstantin

    2012-07-01

    The dynamics of Venus atmosphere in the polar regions presents a challenge for general circulation models. Numerous images and hyperspectral data from Venus Express mission shows that above 60 degrees latitude atmospheric motion is substantially different from that of the tropical and extratropical atmosphere. In particular, extended polar hoods composed presumably of fine haze particles, as well as polar vortices revealing mesoscale wave perturbations with variable zonal wavenumbers, imply the significance of vertical motion in these circulation elements. On these scales, however, hydrostatic balance commonly used in the general circulation models is no longer valid, and vertical forces have to be taken into account to obtain correct wind field. We present the first non-hydrostatic general circulation model of the Venus atmosphere based on the full set of gas dynamics equations. The model uses uniform grid with the resolution of 1.2 degrees in horizontal and 200 m in the vertical direction. Thermal forcing is simulated by means of relaxation approximation with specified thermal profile and time scale. The model takes advantage of hybrid calculations on graphical processors using CUDA technology in order to increase performance. Simulations show that vorticity is concentrated at high latitudes within planetary scale, off-axis vortices, precessing with a period of 30 to 40 days. The scale and position of these vortices coincides with polar hoods observed in the UV images. The regions characterized with high vorticity are surrounded by series of small vortices which may be caused by shear instability of the zonal flow. Vertical velocity component implies that in the central part of high vorticity areas atmospheric flow is downwelling and perturbed by mesoscale waves with zonal wavenumbers 1-4, resembling observed wave structures in the polar vortices. Simulations also show the existence of areas with strong vertical flow, concentrated in spiral branches extending

  5. Orographic effects on tropical climate in a coupled ocean-atmosphere general circulation model

    Science.gov (United States)

    Okajima, Hideki

    Large-scale mountain modifies the atmospheric circulation directly through dynamic and thermodynamic process, and also indirectly through the interaction with the ocean. To investigate orographic impacts on tropical climate, a fully coupled general circulation model (CGCM) is developed by coupling a state-of-the-art atmospheric general circulation model and an ocean general circulation model. With realistic boundary conditions, the CGCM produces a reasonable climatology of sea surface temperature (SST), surface winds, and precipitation. When global mountains are removed, the model climatology displays substantial changes in both the mean-state and the seasonal cycle. The equatorial eastern Pacific SST acquires a semi-annual component as inter-tropical convergence zone (ITCZ) flips and flops across the equator following the seasonal migration of the sun. Without the Andes, wet air flows into the southeastern tropical Pacific from the humid Amazon, which weakens the meridional asymmetry during the Peruvian warm season (February-April). In addition, the northeasterly trade winds are enhanced north of the equator without the orographic blocking of Central American mountains and cools SST. Triggered by the SST cooling north and moistening south of the equator, the wind-evaporation-SST (WES) feedback further weakens the meridional asymmetry and prolongs the southern ITCZ. In the Atlantic Ocean, the equatorial cold tongue is substantially strengthened and develops a pronounced annual cycle in the absence of mountains. The easterly winds are overall enhanced over the equatorial Atlantic without orographic heating over the African highlands, developing a zonal asymmetry strengthened by the Bjerknes feedback. In the Indian Ocean, the thermocline shoals eastward and an equatorial cold tongue appears twice a year. During boreal summer, the Findlater jet is greatly weakened off Somalia and SST warms in the western Indian Ocean, forcing the equatorial easterly winds amplified

  6. Results of an interactively coupled atmospheric chemistry – general circulation model: Comparison with observations

    Directory of Open Access Journals (Sweden)

    R. Hein

    Full Text Available The coupled climate-chemistry model ECHAM4.L39(DLR/CHEM is presented which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks. This is the first model which interactively combines a general circulation model with a chemical model, employing most of the important reactions and species necessary to describe the stratospheric and upper tropospheric ozone chemistry, and which is computationally fast enough to allow long-term integrations with currently available computer resources. This is possible as the model time-step used for the chemistry can be chosen as large as the integration time-step for the dynamics. Vertically the atmosphere is discretized by 39 levels from the surface up to the top layer which is centred at 10 hPa, with a relatively high vertical resolution of approximately 700 m near the extra-tropical tropopause. We present the results of a control simulation representing recent conditions (1990 and compare it to available observations. The focus is on investigations of stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. ECHAM4.L39(DLR/CHEM reproduces main features of stratospheric dynamics in the arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to earlier model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their inter-hemispheric differences are reproduced. Considering methane oxidation as part of the dynamic-chemistry feedback results in an improved representation of the spatial distribution of stratospheric water vapour concentrations. The current model constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic

  7. Evaluation of water vapor distribution in general circulation models using satellite observations

    Science.gov (United States)

    Soden, Brian J.; Bretherton, Francis P.

    1994-01-01

    This paper presents a comparison of the water vapor distribution obtained from two general circulation models, the European Centre for Medium-Range Weather Forecasts (ECMWF) model and the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM), with satellite observations of total precipitable water (TPW) from Special Sensor Microwave/Imager (SSM/I) and upper tropospheric relative humidity (UTH) from GOES. Overall, both models are successful in capturing the primary features of the observed water vapor distribution and its seasonal variation. For the ECMWF model, however, a systematic moist bias in TPW is noted over well-known stratocumulus regions in the eastern subtropical oceans. Comparison with radiosonde profiles suggests that this problem is attributable to difficulties in modeling the shallowness of the boundary layer and large vertical water vapor gradients which characterize these regions. In comparison, the CCM is more successful in capturing the low values of TPW in the stratocumulus regions, although it tends to exhibit a dry bias over the eastern half of the subtropical oceans and a corresponding moist bias in the western half. The CCM also significantly overestimates the daily variability of the moisture fields in convective regions, suggesting a problem in simulating the temporal nature of moisture transport by deep convection. Comparison of the monthly mean UTH distribution indicates generally larger discrepancies than were noted for TPW owing to the greater influence of large-scale dynamical processes in determining the distribution of UTH. In particular, the ECMWF model exhibits a distinct dry bias along the Intertropical Convergence Zone (ITCZ) and a moist bias over the subtropical descending branches of the Hadley cell, suggesting an underprediction in the strength of the Hadley circulation. The CCM, on the other hand, demonstrates greater discrepancies in UTH than are observed for the ECMWF model, but none that are as

  8. Integrated cumulus ensemble and turbulence (ICET): An integrated parameterization system for general circulation models (GCMs)

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.L.; Frank, W.M.; Young, G.S. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    Successful simulations of the global circulation and climate require accurate representation of the properties of shallow and deep convective clouds, stable-layer clouds, and the interactions between various cloud types, the boundary layer, and the radiative fluxes. Each of these phenomena play an important role in the global energy balance, and each must be parameterized in a global climate model. These processes are highly interactive. One major problem limiting the accuracy of parameterizations of clouds and other processes in general circulation models (GCMs) is that most of the parameterization packages are not linked with a common physical basis. Further, these schemes have not, in general, been rigorously verified against observations adequate to the task of resolving subgrid-scale effects. To address these problems, we are designing a new Integrated Cumulus Ensemble and Turbulence (ICET) parameterization scheme, installing it in a climate model (CCM2), and evaluating the performance of the new scheme using data from Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART) sites.

  9. Results from a 2 x CO2 simulation with the Canadian Climate Centre general circulation model

    International Nuclear Information System (INIS)

    Boer, G.J.

    1990-01-01

    The Canadian Climate Centre's general circulation model (GCM), GCMII, was used to simulate a doubling of atmospheric carbon dioxide concentration. The experiment was a standard greenhouse gas climate change study, using a three-dimensional atmospheric circulation model coupled to a simple 'slab' ocean and a thermodynamic ice model. This standard experiment retains the sophistication and generality of an atmospheric GCM, is straightforward in its use of simplified ocean and ice models, is comparatively economical of computer time, and permits comparison of results from different models. Features of the second generation GCMII include: higher resolution at T32L10 with a transform grid of 3.75 x 3.75 degree; full diurnal and annual cycles; ocean and sea ice treatment involving specification of ocean transports; modified treatment of land surface processes and hydrology; a parameterization of cloud optical feedback; and a retention of the special application data sets of surface parameters for North America and Europe. Results of the simulation were a globally averaged surface temperature increase of 3.5 degree C; a precipitation and evaporation increase of 3%; an average decrease in soil moisture of 6.6%; a decrease in cloud cover of 2.2%; a 66% decrease in mass of sea ice; and marked changes in other quantities in the polar region. 2 refs., 2 figs., 2 tabs

  10. Updated Results from the Michigan Titan Thermospheric General Circulation Model (TTGCM)

    Science.gov (United States)

    Bell, J. M.; Bougher, S. W.; de Lahaye, V.; Waite, J. H.; Ridley, A.

    2006-05-01

    This paper presents updated results from the Michigan Titan Thermospheric General Circulation Model (TTGCM) that was recently unveiled in operational form (Bell et al 2005 Spring AGU). Since then, we have incorporated a suite of chemical reactions for the major neutral constituents in Titan's upper atmosphere (N2, CH4). Additionally, some selected minor neutral constituents and major ionic species are also supported in the framework. At this time, HCN, which remains one of the critical thermally active species in the upper atmosphere, remains specified at all altitudes, utilizing profiles derived from recent Cassini-Huygen's measurements. In addition to these improvements, a parallel effort is underway to develop a non-hydrostatic Titan Thermospheric General Circulation Model for further comparisons. In this work, we emphasize the impacts of self-consistent chemistry on the results of the updated TTGCM relative to its frozen chemistry predecessor. Meanwhile, the thermosphere's thermodynamics remains determined by the interplay of solar EUV forcing and HCN rotational cooling, which is calculated by a full line- by-line radiative transfer routine along the lines of Yelle (1991) and Mueller-Wodarg (2000, 2002). In addition to these primary drivers, a treatment of magnetospheric heating is further tested. The model's results will be compared with both the Cassini INMS data and the model of Mueller-Wodarg (2000,2002).

  11. Simulations of physics and chemistry of polar stratospheric clouds with a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, J.

    2005-04-20

    A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H{sub 2}O and HNO{sub 3} redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been

  12. Circulating metabolites and general cognitive ability and dementia: Evidence from 11 cohort studies.

    Science.gov (United States)

    van der Lee, Sven J; Teunissen, Charlotte E; Pool, René; Shipley, Martin J; Teumer, Alexander; Chouraki, Vincent; Melo van Lent, Debora; Tynkkynen, Juho; Fischer, Krista; Hernesniemi, Jussi; Haller, Toomas; Singh-Manoux, Archana; Verhoeven, Aswin; Willemsen, Gonneke; de Leeuw, Francisca A; Wagner, Holger; van Dongen, Jenny; Hertel, Johannes; Budde, Kathrin; Willems van Dijk, Ko; Weinhold, Leonie; Ikram, M Arfan; Pietzner, Maik; Perola, Markus; Wagner, Michael; Friedrich, Nele; Slagboom, P Eline; Scheltens, Philip; Yang, Qiong; Gertzen, Robert E; Egert, Sarah; Li, Shuo; Hankemeier, Thomas; van Beijsterveldt, Catharina E M; Vasan, Ramachandran S; Maier, Wolfgang; Peeters, Carel F W; Jörgen Grabe, Hans; Ramirez, Alfredo; Seshadri, Sudha; Metspalu, Andres; Kivimäki, Mika; Salomaa, Veikko; Demirkan, Ayşe; Boomsma, Dorret I; van der Flier, Wiesje M; Amin, Najaf; van Duijn, Cornelia M

    2018-01-06

    Identifying circulating metabolites that are associated with cognition and dementia may improve our understanding of the pathogenesis of dementia and provide crucial readouts for preventive and therapeutic interventions. We studied 299 metabolites in relation to cognition (general cognitive ability) in two discovery cohorts (N total = 5658). Metabolites significantly associated with cognition after adjusting for multiple testing were replicated in four independent cohorts (N total = 6652), and the associations with dementia and Alzheimer's disease (N = 25,872) and lifestyle factors (N = 5168) were examined. We discovered and replicated 15 metabolites associated with cognition including subfractions of high-density lipoprotein, docosahexaenoic acid, ornithine, glutamine, and glycoprotein acetyls. These associations were independent of classical risk factors including high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, glucose, and apolipoprotein E (APOE) genotypes. Six of the cognition-associated metabolites were related to the risk of dementia and lifestyle factors. Circulating metabolites were consistently associated with cognition, dementia, and lifestyle factors, opening new avenues for prevention of cognitive decline and dementia. Copyright © 2018 the Alzheimer's Association. All rights reserved.

  13. Circulating alpha1-antitrypsin in the general population: Determinants and association with lung function

    Directory of Open Access Journals (Sweden)

    Berger Wolfgang

    2008-04-01

    Full Text Available Abstract Background Severe alpha1-antitrypsin (AAT deficiency associated with low AAT blood concentrations is an established genetic COPD risk factor. Less is known about the respiratory health impact of variation in AAT serum concentrations in the general population. We cross-sectionally investigated correlates of circulating AAT concentrations and its association with FEV1. Methods In 5187 adults (2669 females with high-sensitive c-reactive protein (CRP levels ≤ 10 mg/l from the population-based Swiss SAPALDIA cohort, blood was collected at the time of follow-up examination for measuring serum AAT and CRP. Results Female gender, hormone intake, systolic blood pressure, age in men and in postmenopausal women, as well as active and passive smoking were positively, whereas alcohol intake and BMI inversely correlated with serum AAT levels, independent of CRP adjustment. We observed an inverse association of AAT with FEV1 in the total study population (p Conclusion The results of this population-based study reflect a complex interrelationship between tobacco exposure, gender related factors, circulating AAT, systemic inflammatory status and lung function.

  14. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-03-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  15. General circulation and climate changes in the Mid-European area

    International Nuclear Information System (INIS)

    Schubert, S.; Hupfer, P.

    1992-01-01

    The long-term changes in the frequency distribution of weather patterns ('Grosswetterlage') are closely related to recent climate variations in the investigation area. However, this simple recording of weather pattern frequency changes is not enough for the complete explanation of the climatic changes which took place in our century in central Europe. One of the causes is the large variability of the weather for identical flow directions. In the case of weather situations which are linked to a low cloudiness degree, especially the temperature is strongly dependent on the duration of the 'Grosswetterlage'. Also when viewed from a long-term view, the climatic characteristics of the GWL air masses are by no means constant. If one considers the course of climate elements under identical circulation conditions, it is found that the average weather sometimes varied considerably in the course of the century although the general flow direction was the same. (orig./KW) [de

  16. A numerical three-dimensional ocean general circulation and radionuclides dispersion model

    International Nuclear Information System (INIS)

    Chartier, M.; Marti, O.

    1988-01-01

    The dispersion of radioactive waste disposed of in the deep-sea or transferred from the atmosphere is a complex hydrodynamic problem concerned by space scales as large as the world ocean. The recent development in the high-speed computers has led to significant progress in ocean modelling and now allows a thorough improvement in the accuracy of the simulations of the nuclides dispersion in the sea. A three-dimensional ocean general circulation model has been recently developed in France for research and engineering purposes. The model solves the primitive equation of the ocean hydrodynamics and the advection-diffusion equation for any dissolved tracer. The code has been fully vectorized and multitasked on 1 to 4 processors of the CRAY-2

  17. Simulations of the general circulation of the Martian atmosphere. I - Polar processes

    Science.gov (United States)

    Pollack, James B.; Haberle, Robert M.; Schaeffer, James; Lee, Hilda

    1990-01-01

    Numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation. A large number of numerical experiments were conducted for alternative choices of seasonal date and dust optical depth. It was found that, as the dust content of the winter polar region increased, the rate of atmospheric CO2 condensation increased sharply. It is shown that the strong seasonal variation in the atmospheric dust content observed might cause a number of hemispheric asymmetries. These asymmetries include the greater prevalence of polar hoods in the northern polar region during winter, the lower albedo of the northern polar cap during spring, and the total dissipation of the northern CO2 ice cap during the warmer seasons.

  18. Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models

    Science.gov (United States)

    Xu, L.

    1994-01-01

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.

  19. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-01-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  20. GASSAR-6 (General Atomic Standard Safety Analysis Report). Volume 1

    International Nuclear Information System (INIS)

    1975-01-01

    A standard nuclear steam system for a 3000 MW(t), 1160 MW(e) high temperature gas-cooled reactor (HTGR) nuclear power station is described. The HTGR operates on a uranium-235/thorium-232 cycle. Spherical fuel pellets are coated with multiple layers of pyrolytic carbon, bonded into rods, and encased in hexagonal graphite fuel elements. The core is nuclear-purity-grade, near isotropic graphite machined in hexagonal blocks, which serves as moderator and the heat transfer medium between the fuel and the coolant. Forced helium is the primary coolant and water is the secondary coolant. A prestressed concrete reactor vessel (PCRV) houses the reactor core, primary coolant system and portions of the secondary coolant system, steam generators and circulators. A continuous internal steel liner in the PCRV acts as the primary coolant boundary and sealing membrane. The control rods contain boron carbide in a graphite matrix sheathed in Incoloy 800 cans. Boron constitutes about 40 percent of the absorber material by volume. The control rod drives provide insertion and withdrawal rates consistent with the required reactivity changes for operational load fluctuations and reactor shutdown. Control rods have shim and trip capability. (U.S.)

  1. Circulating Irisin Concentrations Are Associated with a Favourable Lipid Profile in the General Population.

    Directory of Open Access Journals (Sweden)

    Simon Oelmann

    Full Text Available Irisin is a myokine, which is mainly inversely associated with the risk for non-communicable diseases. Irisin improves cellular energy metabolism by uncoupling the mitochondrial respiratory chain resulting in increased energy expenditure using lipids. To date potential associations between irisin concentration and lipid profile are poorly understood. Therefore, this investigation aimed to evaluate potential associations between irisin and lipid levels in the general population.Data of 430 men and 537 women from the population-based Study of Health in Pomerania (SHIP-TREND with available irisin and lipid concentrations were used. Analyses of variance, linear and logistic regression models adjusted for age, HBA1c, waist circumference, physical activity, smoking, alcohol consumption, systolic blood pressure, ALAT were calculated.We detected significantly inverse associations between irisin and circulating levels of total [beta coefficient 0.21 (standard error 0.08, p = 0.01], low-density cholesterol [-0.16 (0.07, p = 0.03] and triglycerides [-0.17 (0.08, p = 0.02] for men. Females without lipid lowering medication had an inverse association between irisin and total cholesterol [-0.12 (0.06, p = 0.05]. Further, male subjects with irisin concentrations in the third tertile had an increased odds for elevated low-density cholesterol [odds ratio 1.96 (95% confidence interval 1.07-3.48, p = 0.03 and triglyceride [1.95 (1.09-3.47, p = 0.02] levels, even after exclusion of subjects with lipid lowering medication. In addition, our data revealed an annual rhythm of serum irisin levels with peak levels arise in winter and summer months.This is the first investigation to report a significant association between circulating irisin and a favourable lipid profile in the general population. This may infer that higher irisin concentrations are associated with a reduced risk for non-communicable diseases.

  2. Impact of cloud microphysics on cloud-radiation interactions in the CSU general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, L.D.; Randall, D.A.

    1995-04-01

    Our ability to study and quantify the impact of cloud-radiation interactions in studying global scale climate variations strongly relies upon the ability of general circulation models (GCMs) to simulate the coupling between the spatial and temporal variations of the model-generated cloudiness and atmospheric moisture budget components. In particular, the ability of GCMs to reproduce the geographical distribution of the sources and sinks of the planetary radiation balance depends upon their representation of the formation and dissipation of cloudiness in conjunction with cloud microphysics processes, and the fractional amount and optical characteristics of cloudiness in conjunction with the mass of condensate stored in the atmosphere. A cloud microphysics package which encompasses five prognostic variables for the mass of water vapor, cloud water, cloud ice, rain, and snow has been implemented in the Colorado State University General Circulation Model (CSU GCM) to simulate large-scale condensation processes. Convection interacts with the large-scale environment through the detrainment of cloud water and cloud ice at the top of cumulus towers. The cloud infrared emissivity and cloud optical depth of the model-generated cloudiness are interactive and depend upon the mass of cloud water and cloud ice suspended in the atmosphere. The global atmospheric moisture budget and planetary radiation budget of the CSU GCM obtained from a perpetual January simulation are discussed. Geographical distributions of the atmospheric moisture species are presented. Global maps of the top-of-atmosphere outgoing longwave radiation and planetary albedo are compared against Earth Radiation Budget Experiment (ERBE) satellite data.

  3. Thermospheric tides simulated by the national center for atmospheric research thermosphere-ionosphere general circulation model at equinox

    International Nuclear Information System (INIS)

    Fesen, C.G.; Roble, R.G.; Ridley, E.C.

    1993-01-01

    The authors use the National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM) to model tides and dynamics in the thermosphere. This model incorporates the latest advances in the thermosphere general circulation model. Model results emphasized the 70 degree W longitude region to overlap a series of incoherent radar scatter installations. Data and the model are available on data bases. The results of this theoretical modeling are compared with available data, and with prediction of more empirical models. In general there is broad agreement within the comparisons

  4. General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski Problem I

    OpenAIRE

    Gardner, Richard J.; Hug, Daniel; Weil, Wolfgang; Xing, Sudan; Ye, Deping

    2018-01-01

    The general volume of a star body, a notion that includes the usual volume, the $q$th dual volumes, and many previous types of dual mixed volumes, is introduced. A corresponding new general dual Orlicz curvature measure is defined that specializes to the $(p,q)$-dual curvature measures introduced recently by Lutwak, Yang, and Zhang. General variational formulas are established for the general volume of two types of Orlicz linear combinations. One of these is applied to the Minkowski problem f...

  5. The Mars thermosphere. 2. General circulation with coupled dynamics and composition

    International Nuclear Information System (INIS)

    Bougher, S.W.; Roble, R.G.; Ridley, E.C.; Dickinson, R.E.

    1990-01-01

    The National Center for Atmospheric Research thermospheric general circulation model (TGCM) for the Earth's thermosphere has been modified to examine the three-dimensional structure and circulation of the upper mesosphere and thermosphere of Mars (MTGCM). The computational framework and major processes unique to a CO 2 thermosphere are similar to those utilized in a recent Venus TGCM. Solar EUV, UV, and IR heating alone combine to drive the Martian winds above ∼100 km. An equinox version of the code is used to examine the Mars global dynamics and structure for two specific observational periods spanning a range of solar activity: Viking 1 (July 1976) and Mariner 6-7 (August-September 1969). The MTGCM is then modified to predict the state of the Mars thermosphere for various combinations of solar and orbital conditions. Calculations show that no nightside cryosphere of the type observed on Venus is obtained on the Mars nightside. Instead, planetary rotation significantly modifies the winds and the day-to-night contrast in densities and temperatures, giving a diurnal behavior similar to the Earth under quiet solar conditions. Maximum exospheric temperatures are calculated near 1,500 LT (≤ 305 K), with minimum values at 0500 LT (≤ 175 K). The global temperature distribution is strongly modified by nightside adiabatic heating (subsidence) and dayside cooling (upwelling). The global winds also affect vertical density distributions; vertical eddy diffusion much weaker than used in previous one-dimensional models is required to maintain observed Viking profiles. A solar cycle variation in dayside exospheric temperatures of ∼195-305 K is simulated by the Viking and Mariner runs

  6. A 1260-year control integration with the coupled ECHAM1/LSG general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Storch, J.S. von [Hamburg Univ. (Germany). Meteorologisches Inst.; Kharin, V [Canadian Climate Centre, Victoria, BC (Canada); Cubasch, U [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Hegerl, G C [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Schriever, D [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Storch, H von [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik; Zorita, E [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    1996-05-01

    A 1260-year integration generated by the ECHAM1/LSG coupled atmosphere-ocean general circulation model is analyzed in this paper. The analysis focuses on the time evolution of the model atmosphere and the model ocean, and on the variations of the final quasi-stationary atmosphere-ocean system. The evolution of the coupled system is affected by the globally integrated fluxes of heat and fresh water, the coupling shock induced by different types of fluxes prior to and after the coupling, and the insufficient spin-up of the deep ocean prior to the coupling. It is suggested that the flux correction with its unsatisfactory formulation over sea ice areas does not play the crucial role in causing the initial drift of the system. The main question concerning the atmospheric variations is whether the spatial structures of variations on short time scales are similar to those on long time scales. The answer to this question is yes. The questions concerning the oceanic variations are what are their dominant modes and to what extent are variations of different parts of the oceanic circulation related to each other. It is shown that the dominant oceanic variations are located in the North Pacific and at the southern flank of the mean position of the Antarctic Circumpolar Current and in the areas where deep water from three oceans meets the Antarctic Circumpolar Current. A correlation analysis indicates further that an anomalous outflow from (inflow into) the deep Atlantic is related to an anomalous outflow from (inflow into) the deep Indian Ocean and an anomalous eastward (westward) flow along the Antarctic coast. (orig.)

  7. Jupiter Thermospheric General Circulation Model (JTGCM): Global Structure and Dynamics Driven by Auroral and Joule Heating

    Science.gov (United States)

    Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.

    2005-01-01

    A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.

  8. Results of an interactively coupled atmospheric chemistry - general circulation model. Comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Hein, R.; Dameris, M.; Schnadt, C. [and others

    2000-01-01

    An interactively coupled climate-chemistry model which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks is presented. This is the first model, which interactively combines a general circulation model based on primitive equations with a rather complex model of stratospheric and tropospheric chemistry, and which is computational efficient enough to allow long-term integrations with currently available computer resources. The applied model version extends from the Earth's surface up to 10 hPa with a relatively high number (39) of vertical levels. We present the results of a present-day (1990) simulation and compare it to available observations. We focus on stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. The current model version ECHAM4.L39(DLR)/CHEM can realistically reproduce stratospheric dynamics in the Arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to formerly applied model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their interhemispheric differences are reproduced. The consideration of the chemistry feedback on dynamics results in an improved representation of the spatial distribution of stratospheric water vapor concentrations, i.e., the simulated meriodional water vapor gradient in the stratosphere is realistic. The present model version constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic trace gas emissions, and the future evolution of the ozone layer. (orig.)

  9. Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model

    Science.gov (United States)

    Gnanaseelan, C.; Deshpande, Aditi

    2018-03-01

    The variability of subsurface currents in the equatorial Indian Ocean is studied using high resolution Ocean General Circulation Model (OGCM) simulations during 1958-2009. February-March eastward equatorial subsurface current (ESC) shows weak variability whereas strong variability is observed in northern summer and fall ESC. An eastward subsurface current with maximum amplitude in the pycnocline is prominent right from summer to winter during strong Indian Ocean Dipole (IOD) years when air-sea coupling is significant. On the other hand during weak IOD years, both the air-sea coupling and the ESC are weak. This strongly suggests the role of ESC on the strength of IOD. The extension of the ESC to the summer months during the strong IOD years strengthens the oceanic response and supports intensification and maintenance of IODs through modulation of air sea coupling. Although the ESC is triggered by equatorial winds, the coupled air-sea interaction associated with IODs strengthens the ESC to persist for several seasons thereby establishing a positive feedback cycle with the surface. This suggests that the ESC plays a significant role in the coupled processes associated with the evolution and intensification of IOD events by cooling the eastern basin and strengthening thermocline-SST (sea surface temperature) interaction. As the impact of IOD events on Indian summer monsoon is significant only during strong IOD years, understanding and monitoring the evolution of ESC during these years is important for summer monsoon forecasting purposes. There is a westward phase propagation of anomalous subsurface currents which persists for a year during strong IOD years, whereas such persistence or phase propagation is not seen during weak IOD years, supporting the close association between ESC and strength of air sea coupling during strong IOD years. In this study we report the processes which strengthen the IOD events and the air sea coupling associated with IOD. It also unravels

  10. Proceedings of the Third World Petroleum Congress. General Volume

    Energy Technology Data Exchange (ETDEWEB)

    1951-01-01

    The following four papers which were presented at the Third World Petroleum Congress are included in this proceedings: (1) Some Recent Progress in Petroleum Chemistry; (2) Oilfields of the Middle East; (3) Heat and Power from Petroleum; (4) Benefits from Research to the Petroleum Industry. The first paper is in French. Besides these four papers, this proceedings includes the following: composition of councils and committees; national committees and their delegates; general report on preparation and results of the Third World Petroleum Congress; text of resolutions approved by the Congress at the final plenary session; table of sectional meetings; plenary opening session; reception by the Municipal Council of the Hague; official banquet; final plenary session; history of petroleum congress; list of members of the Congress; contents of the Volumes I-X of the Third World Petroleum Congress; index of names occurring in Volumes I-XI of the Proceedings of the Third World Petroleum Congress; list of errata and addenda for Volumes I-XI.

  11. Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations

    DEFF Research Database (Denmark)

    Steen-Larsen, Hans Christian; Risi, C.; Werner, M.

    2017-01-01

    The skills of isotope-enabled general circulation models are evaluated against atmospheric water vapor isotopes. We have combined in situ observations of surface water vapor isotopes spanning multiple field seasons (2010, 2011, and 2012) from the top of the Greenland Ice Sheet (NEEM site: 77.45°N......: 2014). This allows us to benchmark the ability to simulate the daily water vapor isotope variations from five different simulations using isotope-enabled general circulation models. Our model-data comparison documents clear isotope biases both on top of the Greenland Ice Sheet (1-11% for δ18O and 4...... boundary layer water vapor isotopes of the Baffin Bay region show strong influence on the water vapor isotopes at the NEEM deep ice core-drilling site in northwest Greenland. Our evaluation of the simulations using isotope-enabled general circulation models also documents wide intermodel spatial...

  12. The annual cycle of stratospheric water vapor in a general circulation model

    Science.gov (United States)

    Mote, Philip W.

    1995-01-01

    The application of general circulation models (GCM's) to stratospheric chemistry and transport both permits and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the Community Climate Model (CCM2), to enable studies of the chemistry and transport of tracers including water vapor; the importance of water vapor to the climate and chemistry of the stratosphere requires that it be better understood in the atmosphere and well represented in the model. In this study, methane is carried as a tracer and converted to water; this simple chemistry provides an adequate representation of the upper stratospheric water vapor source. The cold temperature bias in the winter polar stratosphere, which the CCM2 shares with other GCM's, produces excessive dehydration in the southern hemisphere, but this dry bias can be ameliorated by setting a minimum vapor pressure. The CCM2's water vapor distribution and seasonality compare favorably with observations in many respects, though seasonal variations including the upper stratospheric semiannual oscillation are generally too small. Southern polar dehydration affects midlatitude water vapor mixing ratios by a few tenths of a part per million, mostly after the demise of the vortex. The annual cycle of water vapor in the tropical and northern midlatitude lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a longer adjustment time than methane and had not reached equilibrium at the end of the 9 years simulated here.

  13. Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models

    Science.gov (United States)

    Nagura, Motoki; Sasaki, Wataru; Tozuka, Tomoki; Luo, Jing-Jia; Behera, Swadhin K.; Yamagata, Toshio

    2013-02-01

    Seychelles Dome refers to the shallow climatological thermocline in the southwestern Indian Ocean, where ocean wave dynamics efficiently affect sea surface temperature, allowing sea surface temperature anomalies to be predicted up to 1-2 years in advance. Accurate reproduction of the dome by ocean-atmosphere coupled general circulation models (CGCMs) is essential for successful seasonal predictions in the Indian Ocean. This study examines the Seychelles Dome as simulated by 35 CGCMs, including models used in phase five of the Coupled Model Intercomparison Project (CMIP5). Among the 35 CGCMs, 14 models erroneously produce an upwelling dome in the eastern half of the basin whereas the observed Seychelles Dome is located in the southwestern tropical Indian Ocean. The annual mean Ekman pumping velocity in these models is found to be almost zero in the southern off-equatorial region. This result is inconsistent with observations, in which Ekman upwelling acts as the main cause of the Seychelles Dome. In the models reproducing an eastward-displaced dome, easterly biases are prominent along the equator in boreal summer and fall, which result in shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and a spurious upwelling dome in the region. Compared to the CMIP3 models, the CMIP5 models are even worse in simulating the dome longitudes.

  14. Impact of Dust on Mars Surface Albedo and Energy Flux with LMD General Circulation Model

    Science.gov (United States)

    Singh, D.; Flanner, M.; Millour, E.; Martinez, G.

    2015-12-01

    Mars, just like Earth experience different seasons because of its axial tilt (about 25°). This causes growth and retreat of snow cover (primarily CO2) in Martian Polar regions. The perennial caps are the only place on the planet where condensed H2O is available at surface. On Mars, as much as 30% atmospheric CO2 deposits in each hemisphere depending upon the season. This leads to a significant variation on planet's surface albedo and hence effecting the amount of solar flux absorbed or reflected at the surface. General Circulation Model (GCM) of Laboratoire de Météorologie Dynamique (LMD) currently uses observationally derived surface albedo from Thermal Emission Spectrometer (TES) instrument for the polar caps. These TES albedo values do not have any inter-annual variability, and are independent of presence of any dust/impurity on surface. Presence of dust or other surface impurities can significantly reduce the surface albedo especially during and right after a dust storm. This change will also be evident in the surface energy flux interactions. Our work focuses on combining earth based Snow, Ice, and Aerosol Radiation (SNICAR) model with current state of GCM to incorporate the impact of dust on Martian surface albedo, and hence the energy flux. Inter-annual variability of surface albedo and planet's top of atmosphere (TOA) energy budget along with their correlation with currently available mission data will be presented.

  15. Bivariate spatial analysis of temperature and precipitation from general circulation models and observation proxies

    KAUST Repository

    Philbin, R.

    2015-05-22

    This study validates the near-surface temperature and precipitation output from decadal runs of eight atmospheric ocean general circulation models (AOGCMs) against observational proxy data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis temperatures and Global Precipitation Climatology Project (GPCP) precipitation data. We model the joint distribution of these two fields with a parsimonious bivariate Matérn spatial covariance model, accounting for the two fields\\' spatial cross-correlation as well as their own smoothnesses. We fit output from each AOGCM (30-year seasonal averages from 1981 to 2010) to a statistical model on each of 21 land regions. Both variance and smoothness values agree for both fields over all latitude bands except southern mid-latitudes. Our results imply that temperature fields have smaller smoothness coefficients than precipitation fields, while both have decreasing smoothness coefficients with increasing latitude. Models predict fields with smaller smoothness coefficients than observational proxy data for the tropics. The estimated spatial cross-correlations of these two fields, however, are quite different for most GCMs in mid-latitudes. Model correlation estimates agree well with those for observational proxy data for Australia, at high northern latitudes across North America, Europe and Asia, as well as across the Sahara, India, and Southeast Asia, but elsewhere, little consistent agreement exists.

  16. A statistical intercomparison of temperature and precipitation predicted by four general circulation models with historical data

    International Nuclear Information System (INIS)

    Grotch, S.L.

    1991-01-01

    This study is a detailed intercomparison of the results produced by four general circulation models (GCMs) that have been used to estimate the climatic consequences of a doubling of the CO 2 concentration. Two variables, surface air temperature and precipitation, annually and seasonally averaged, are compared for both the current climate and for the predicted equilibrium changes after a doubling of the atmospheric CO 2 concentration. The major question considered here is: how well do the predictions from different GCMs agree with each other and with historical climatology over different areal extents, from the global scale down to the range of only several gridpoints? Although the models often agree well when estimating averages over large areas, substantial disagreements become apparent as the spatial scale is reduced. At scales below continental, the correlations observed between different model predictions are often very poor. The implications of this work for investigation of climatic impacts on a regional scale are profound. For these two important variables, at least, the poor agreement between model simulations of the current climate on the regional scale calls into question the ability of these models to quantitatively estimate future climatic change on anything approaching the scale of a few (< 10) gridpoints, which is essential if these results are to be used in meaningful resource-assessment studies. A stronger cooperative effort among the different modeling groups will be necessary to assure that we are getting better agreement for the right reasons, a prerequisite for improving confidence in model projections. 11 refs.; 10 figs

  17. Secular trends and climate drift in coupled ocean-atmosphere general circulation models

    Science.gov (United States)

    Covey, Curt; Gleckler, Peter J.; Phillips, Thomas J.; Bader, David C.

    2006-02-01

    Coupled ocean-atmosphere general circulation models (coupled GCMs) with interactive sea ice are the primary tool for investigating possible future global warming and numerous other issues in climate science. A long-standing problem with such models is that when different components of the physical climate system are linked together, the simulated climate can drift away from observation unless constrained by ad hoc adjustments to interface fluxes. However, 11 modern coupled GCMs, including three that do not employ flux adjustments, behave much better in this respect than the older generation of models. Surface temperature trends in control run simulations (with external climate forcing such as solar brightness and atmospheric carbon dioxide held constant) are small compared with observed trends, which include 20th century climate change due to both anthropogenic and natural factors. Sea ice changes in the models are dominated by interannual variations. Deep ocean temperature and salinity trends are small enough for model control runs to extend over 1000 simulated years or more, but trends in some regions, most notably the Arctic, differ substantially among the models and may be problematic. Methods used to initialize coupled GCMs can mitigate climate drift but cannot eliminate it. Lengthy "spin-ups" of models, made possible by increasing computer power, are one reason for the improvements this paper documents.

  18. Simulations of future climate with a coupled atmosphere-ocean general circulation model

    International Nuclear Information System (INIS)

    Stendel, M.; Schmith, T.; Hesselbjerg Christensen, J.

    2001-01-01

    A coupled atmosphere/ocean general circulation model to study the time-dependent climate response to changing concentrations of greenhouse gases, chlorofluorocarbons and aerosols according to the new IPCC SRES scenarios A2 and B2 has been used. The results of these experiments are compared to an unforced 300-year control experiment. The changes in the last three decades of the scenario simulations (2071-2100) are furthermore compared to the simulation of present-day climate (1961-1990). In accordance with previous experiments we find that greenhouse warming is reduced when aerosol effects are considered. Sulfur emissions, however, are lower than in the IS92a scenario. Consequently, the greenhouse warming effect, which leads to a bigger temperature increase than in the GSDIO experiment can outweigh the aerosol cooling effect. The result shows that there still are serious difficulties and uncertainties in this type of model simulation. Those are partially due to oversimplifications in the model, concerning the radiative properties of aerosols in particular, and therefore the indirect aerosol effect. Another inherent problem, however, is the uncertainty in the scenarios themselves. This is the case for short-lived substances with an inhomogeneous spatial and temporal distribution, such as aerosols. Therefore, on a decadal horizon, changes in the emissions of those substance can exert a significant effect on anthropogenic climate change. (LN)

  19. Performance of the general circulation models in simulating temperature and precipitation over Iran

    Science.gov (United States)

    Abbasian, Mohammadsadegh; Moghim, Sanaz; Abrishamchi, Ahmad

    2018-03-01

    General Circulation Models (GCMs) are advanced tools for impact assessment and climate change studies. Previous studies show that the performance of the GCMs in simulating climate variables varies significantly over different regions. This study intends to evaluate the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs in simulating temperature and precipitation over Iran. Simulations from 37 GCMs and observations from the Climatic Research Unit (CRU) were obtained for the period of 1901-2005. Six measures of performance including mean bias, root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), linear correlation coefficient (r), Kolmogorov-Smirnov statistic (KS), Sen's slope estimator, and the Taylor diagram are used for the evaluation. GCMs are ranked based on each statistic at seasonal and annual time scales. Results show that most GCMs perform reasonably well in simulating the annual and seasonal temperature over Iran. The majority of the GCMs have a poor skill to simulate precipitation, particularly at seasonal scale. Based on the results, the best GCMs to represent temperature and precipitation simulations over Iran are the CMCC-CMS (Euro-Mediterranean Center on Climate Change) and the MRI-CGCM3 (Meteorological Research Institute), respectively. The results are valuable for climate and hydrometeorological studies and can help water resources planners and managers to choose the proper GCM based on their criteria.

  20. Daily Reservoir Inflow Forecasting using Deep Learning with Downscaled Multi-General Circulation Models (GCMs) Platform

    Science.gov (United States)

    Li, D.; Fang, N. Z.

    2017-12-01

    Dallas-Fort Worth Metroplex (DFW) has a population of over 7 million depending on many water supply reservoirs. The reservoir inflow plays a vital role in water supply decision making process and long-term strategic planning for the region. This paper demonstrates a method of utilizing deep learning algorithms and multi-general circulation model (GCM) platform to forecast reservoir inflow for three reservoirs within the DFW: Eagle Mountain Lake, Lake Benbrook and Lake Arlington. Ensemble empirical mode decomposition was firstly employed to extract the features, which were then represented by the deep belief networks (DBNs). The first 75 years of the historical data (1940 -2015) were used to train the model, while the last 2 years of the data (2016-2017) were used for the model validation. The weights of each DBN gained from the training process were then applied to establish a neural network (NN) that was able to forecast reservoir inflow. Feature predictors used for the forecasting model were generated from weather forecast results of the downscaled multi-GCM platform for the North Texas region. By comparing root mean square error (RMSE) and mean bias error (MBE) with the observed data, the authors found that the deep learning with downscaled multi-GCM platform is an effective approach in the reservoir inflow forecasting.

  1. Intercomparison of the seasonal cycle of tropical surface stress in 17 AMIP atmospheric general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Saji, N.H.; Goswami, B.N. [Indian Inst. of Sci., Bangalore (India). Centre for Atmos. and Oceanic Sci.

    1997-08-01

    The mean state of the tropical atmosphere is important as the nature of the coupling between the ocean and the atmosphere depends nonlinearly on the basic state of the coupled system. The simulation of the annual cycle of the tropical surface wind stress by 17 atmospheric general circulation models (AGCMs) is examined and intercompared. The models considered were part of the atmospheric model intercomparison project (AMIP) and were integrated with observed sea surface temperature (SST) for the decade 1979-1988. Several measures have been devised to intercompare the performance of the 17 models on global tropical as well as regional scales. Within the limits of observational uncertainties, the models under examination simulate realistic tropical area-averaged zonal and meridional annual mean stresses. This is a noteworthy improvement over older generation low resolution models which were noted for their simulation of surface stresses considerably weaker than the observations. The models also simulate realistic magnitudes of the spatial distribution of the annual mean surface stress field and are seen to reproduce realistically its observed spatial pattern. Similar features are observed in the simulations of the annual variance field. The models perform well over almost all the tropical regions apart from a few. Of these, the simulations over Somali are interesting. Over this region, the models are seen to underestimate the annual mean zonal and meridional stresses. There is also wide variance between the different models in simulating these quantities. 44 refs.

  2. A statistical intercomparison of temperature and precipitation predicted by four general circulation models with historical data

    International Nuclear Information System (INIS)

    Grotch, S.L.

    1990-01-01

    This study is a detailed intercomparison of the results produced by four general circulation models (GCMs) that have been used to estimate the climatic consequences of a doubling of the CO 2 concentration. Two variables, surface air temperature and precipitation, annually and seasonally averaged, are compared for both the current climate and for the predicted equilibrium changes after a doubling of the atmospheric CO 2 concentration. The major question considered here is: how well do the predictions from different GCMs agree with each other and with historical climatology over different areal extents, from the global scale down to the range of only several gridpoints? Although the models often agree well when estimating averages over large areas, substantial disagreements become apparent as the spatial scale is reduced. At scales below continental, the correlations observed between different model predictions are often very poor. The implications of this work for investigation of climatic impacts on a regional scale are profound. For these two important variables, at least, the poor agreement between model simulations of the current climate on the regional scale calls into question the ability of these models to quantitatively estimate future climatic change on anything approaching the scale of a few (< 10) gridpoints, which is essential if these results are to be used in meaningful resource-assessment studies. A stronger cooperative effort among the different modeling groups will be necessary to assure that we are getting better agreement for the right reasons, a prerequisite for improving confidence in model projections

  3. Atmospheric effects of nuclar war aerosols in general circulation model simulations: Influence of smoke optical properties

    International Nuclear Information System (INIS)

    Thompson, S.L.; Ramaswamy, V.; Covey, C.

    1987-01-01

    A global atmospheric general circulation model (GCM) is modified to include radiative transfer parameterizations for the absorption and scattering of solar radiation and the absorption of thermal infrared (IR) radiation by smoke aerosols. The solar scattering modifications include a parameterization for diagnosing smoke optical properties as a function of the time- and space-dependent smoke particle radii. The aerosol IR modifications allow for both the ''grey'' absorber approximation and a broadband approximation that resolves the aerosol absorption in four spectral intervals. We examine the sensitivity of some GCM-simulated atmospheric and climatic effects to the optical properties and radiative transfer parameterizations used in studies of massive injections of smoke. Specifically, we test the model response to solar scattering versus nonscattering smoke, variations in prescribed smoke single scattering albedo and IR specific absorption, and interactive versus fixed smoke optical properties. Hypothetical nuclear war created smoke scenarios assume the July injection of 60 or 180 Tg of smoke over portions of the mid-latitude land areas of the northern hemisphere. Atmospheric transport and scavenging of the smoke are included. Nonscattering smoke cases produce roughly 40 Wm/sup -2/ more Earth-atmosphere solar irradiance absorption over the northern hemisphere, when compared to scattering smoke cases having equivalent specific absorption efficiencies. Varying the elemental carbon content of smoke over a plausible range produces a 4 0 --6 0 C change in average mid-latitude land surface temperature, and a variation of about 0.1 in zonally averaged planetary albedo in the northern hemisphere

  4. Hurricane-type vortices in a general circulation model. Pt. 1

    International Nuclear Information System (INIS)

    Bengtsson, L.; Botzet, M.; Esch, M.

    1994-01-01

    A very high resolution atmospheric general circulation model, T106-L19, has been used for the simulation of hurricanes in a multi-year numerical experiment. Individual storms as well as their geographical and seasonal distribution agree remarkably well with observations. In spite of the fact that only the thermal and dynamical structure of the storms have been used as criteria of their identification, practically all of them occur in areas where the sea surface temperature is higher or equal to 26 C. There are some variations from year to year in the number of storms in spite of the fact that there are no interannual variations in the SST pattern. It is found that the number of storms in particular areas depend on the intensity of the Hadley-Walker cell. The result is clearly resolution dependant. At lower horizonal resolution, T42, for example, the intensity of the storms is significantly reduced and their overall structure is less realistic, including their vertical form and extention. (orig.)

  5. Bivariate spatial analysis of temperature and precipitation from general circulation models and observation proxies

    KAUST Repository

    Philbin, R.; Jun, M.

    2015-01-01

    This study validates the near-surface temperature and precipitation output from decadal runs of eight atmospheric ocean general circulation models (AOGCMs) against observational proxy data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis temperatures and Global Precipitation Climatology Project (GPCP) precipitation data. We model the joint distribution of these two fields with a parsimonious bivariate Matérn spatial covariance model, accounting for the two fields' spatial cross-correlation as well as their own smoothnesses. We fit output from each AOGCM (30-year seasonal averages from 1981 to 2010) to a statistical model on each of 21 land regions. Both variance and smoothness values agree for both fields over all latitude bands except southern mid-latitudes. Our results imply that temperature fields have smaller smoothness coefficients than precipitation fields, while both have decreasing smoothness coefficients with increasing latitude. Models predict fields with smaller smoothness coefficients than observational proxy data for the tropics. The estimated spatial cross-correlations of these two fields, however, are quite different for most GCMs in mid-latitudes. Model correlation estimates agree well with those for observational proxy data for Australia, at high northern latitudes across North America, Europe and Asia, as well as across the Sahara, India, and Southeast Asia, but elsewhere, little consistent agreement exists.

  6. The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna

    Science.gov (United States)

    Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio; Song, In-Sun; Eichmann, Andrew

    2012-01-01

    This report is a documentation of the Fortuna version of the GEOS-5 Atmospheric General Circulation Model (AGCM). The GEOS-5 AGCM is currently in use in the NASA Goddard Modeling and Assimilation Office (GMAO) for simulations at a wide range of resolutions, in atmosphere only, coupled ocean-atmosphere, and data assimilation modes. The focus here is on the development subsequent to the version that was used as part of NASA s Modern-Era Retrospective Analysis for Research and Applications (MERRA). We present here the results of a series of 30-year atmosphere-only simulations at different resolutions, with focus on the behavior of the 1-degree resolution simulation. The details of the changes in parameterizations subsequent to the MERRA model version are outlined, and results of a series of 30-year, atmosphere-only climate simulations at 2-degree resolution are shown to demonstrate changes in simulated climate associated with specific changes in parameterizations. The GEOS-5 AGCM presented here is the model used for the GMAO s atmosphere-only and coupled CMIP-5 simulations.

  7. Cloud-turbulence interactions: Sensitivity of a general circulation model to closure assumptions

    International Nuclear Information System (INIS)

    Brinkop, S.; Roeckner, E.

    1993-01-01

    Several approaches to parameterize the turbulent transport of momentum, heat, water vapour and cloud water for use in a general circulation model (GCM) have been tested in one-dimensional and three-dimensional model simulations. The schemes differ with respect to their closure assumptions (conventional eddy diffusivity model versus turbulent kinetic energy closure) and also regarding their treatment of cloud-turbulence interactions. The basis properties of these parameterizations are discussed first in column simulations of a stratocumulus-topped atmospheric boundary layer (ABL) under a strong subsidence inversion during the KONTROL experiment in the North Sea. It is found that the K-models tend to decouple the cloud layer from the adjacent layers because the turbulent activity is calculated from local variables. The higher-order scheme performs better in this respect because internally generated turbulence can be transported up and down through the action of turbulent diffusion. Thus, the TKE-scheme provides not only a better link between the cloud and the sub-cloud layer but also between the cloud and the inversion as a result of cloud-top entrainment. In the stratocumulus case study, where the cloud is confined by a pronounced subsidence inversion, increased entrainment favours cloud dilution through enhanced evaporation of cloud droplets. In the GCM study, however, additional cloud-top entrainment supports cloud formation because indirect cloud generating processes are promoted through efficient ventilation of the ABL, such as the enhanced moisture supply by surface evaporation and the increased depth of the ABL. As a result, tropical convection is more vigorous, the hydrological cycle is intensified, the whole troposphere becomes warmer and moister in general and the cloudiness in the upper part of the ABL is increased. (orig.)

  8. Dynamics and transport in the stratosphere : Simulations with a general circulation mode

    Science.gov (United States)

    van Aalst, Maarten Krispijn

    2005-01-01

    The middle atmosphere is strongly affected by two of the world's most important environmental problems: global climate change and stratospheric ozone depletion, caused by anthropogenic emissions of greenhouse gases and chlorofluorocarbons (CFCs), respectively. General circulation models with coupled chemistry are a key tool to advance our understanding of the complex interplay between dynamics, chemistry and radiation in the middle atmosphere. A key problem of such models is that they generate their own meteorology, and thus cannot be used for comparisons with instantaneous measurements. This thesis presents the first application of a simple data assimilation method, Newtonian relaxation, to reproduce realistic synoptical conditions in a state-of-the-art middle atmosphere general circulation model, MA-ECHAM. By nudging the model's meteorology slightly towards analyzed observations from a weather forecasting system (ECMWF), we have simulated specific atmospheric processes during particular meteorological episodes, such as the 1999/2000 Arctic winter. The nudging technique is intended to interfere as little as possible with the model's own dynamics. In fact, we found that we could even limit the nudging to the troposphere, leaving the middle atmosphere entirely free. In that setup, the model realistically reproduced many aspects of the instantaneous meteorology of the middle atmosphere, such as the unusually early major warming and breakup of the 2002 Antarctic vortex. However, we found that this required careful interpolation of the nudging data, and a correct choice of nudging parameters. We obtained the best results when we first projected the nudging data onto the model's normal modes so that we could filter out the (spurious) fast components. In a four-year simulation, for which we also introduced an additional nudging of the stratospheric quasi-biennial oscillation, we found that the model reproduced much of the interannual variability throughout the

  9. Longitudinal Biases in the Seychelles Dome Simulated by 34 Ocean-Atmosphere Coupled General Circulation Models

    Science.gov (United States)

    Nagura, M.; Sasaki, W.; Tozuka, T.; Luo, J.; Behera, S. K.; Yamagata, T.

    2012-12-01

    The upwelling dome of the southern tropical Indian Ocean is examined by using simulated results from 34 ocean-atmosphere coupled general circulation models (CGCMs) including those from the phase five of the Coupled Model Intercomparison Project (CMIP5). Among the current set of the 34 CGCMs, 12 models erroneously produce the upwelling dome in the eastern half of the basin while the observed Seychelles Dome is located in the southwestern tropical Indian Ocean (Figure 1). The annual mean Ekman pumping velocity is almost zero in the southern off-equatorial region in these models. This is in contrast with the observations that show Ekman upwelling as the cause of the Seychelles Dome. In the models that produce the dome in the eastern basin, the easterly biases are prominent along the equator in boreal summer and fall that cause shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and result in a spurious upwelling dome there. In addition, these models tend to overestimate (underestimate) the magnitude of annual (semiannual) cycle of thermocline depth variability in the dome region, which is another consequence of the easterly wind biases in boreal summer-fall. Compared to the CMIP3 models (Yokoi et al. 2009), the CMIP5 models are even worse in simulating the dome longitudes and magnitudes of annual and semiannual cycles of thermocline depth variability in the dome region. Considering the increasing need to understand regional impacts of climate modes, these results may give serious caveats to interpretation of model results and help in further model developments.; Figure 1: The longitudes of the shallowest annual-mean D20 in 5°S-12°S. The open and filled circles are for the observations and the CGCMs, respectively.

  10. Tracer simulation using a global general circulation model: Results from a midlatitude instantaneous source experiment

    International Nuclear Information System (INIS)

    Mahlman, J.D.; Moxim, W.J.

    1978-01-01

    An 11-level general circulation model with seasonal variation is used to perform an experiment on the dispersion of passive tracers. Specially constructed time-dependent winds from this model are used as input to a separate tracer model. The methodologies employed to construct the tracer model are described.The experiment presented is the evolution of a hypothetical instantaneous source of tracer on 1 Janaury with maximum initial concentration at 65 mb, 36 0 N, 180 0 E. The tracer is assumed to have no sources or sinks in the stratosphere, but is subject to removal processes in the lower troposphere.The experimental results reveal a number of similarities to observed tracer behavior, including the average poleward-downward slope of mixing ratio isopleths, strong tracer gradients across the tropopause, intrusion of tracer into the Southern Hemisphere lower stratosphere, and the long-term interhemispheric exchange rate. The model residence times show behavior intermediate to those exhibited for particulate radioactive debris and gaseous C 14 O 2 . This suggests that caution should be employed when either radioactive debris or C 14 O 2 data are used to develop empirical models for prediction of gaseous tracers which are efficiently removed in the troposphere.In this experiment, the tracer mixing ratio and potential vorticity evolve to very high correlations. Mechanisms for this correlation are discussed. The zonal mean tracer balances exhibit complex behavior among the various transport terms. At early stages, the tracer evolution is dominated by eddy effects. Later, a very large degree of self-cancellation between mean cell and eddy effects is observed. During seasonal transitions, however, this self-cancellation diminishes markedly, leading to significant changes in the zonal mean tracer distribution. A possible theoretical explanation is presented

  11. Short ensembles: An Efficient Method for Discerning Climate-relevant Sensitivities in Atmospheric General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Hui; Rasch, Philip J.; Zhang, Kai; Qian, Yun; Yan, Huiping; Zhao, Chun

    2014-09-08

    This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models. The basic idea is to replace the traditional serial-in-time long-term climate integrations by representative ensembles of shorter simulations. The key advantage of the proposed method lies in its efficiency: since fewer days of simulation are needed, the computational cost is less, and because individual realizations are independent and can be integrated simultaneously, the new dimension of parallelism can dramatically reduce the turnaround time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy is not appropriate for exploring sensitivity of all model features, but it is very effective in many situations. Two examples are presented using the Community Atmosphere Model version 5. The first example demonstrates that the method is capable of characterizing the model cloud and precipitation sensitivity to time step length. A nudging technique is also applied to an additional set of simulations to help understand the contribution of physics-dynamics interaction to the detected time step sensitivity. In the second example, multiple empirical parameters related to cloud microphysics and aerosol lifecycle are perturbed simultaneously in order to explore which parameters have the largest impact on the simulated global mean top-of-atmosphere radiation balance. Results show that in both examples, short ensembles are able to correctly reproduce the main signals of model sensitivities revealed by traditional long-term climate simulations for fast processes in the climate system. The efficiency of the ensemble method makes it particularly useful for the development of high-resolution, costly and complex climate models.

  12. Atmospheric circulation associated with extreme generalized frosts persistence in central-southern South America

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Gabriela V. [Centro de Investigaciones Cientificas y Transferencia de Tecnologia a la Produccion, Diamante (CICYTTTP-CONICET), Diamante, Entre Rios (Argentina); Berri, Guillermo J. [Servicio Meteorologico Nacional - CONICET, Buenos Aires (Argentina)

    2012-03-15

    Generalized frosts (GF) in central-southern South America have a strong impact due to their spatial extension, and they are especially important when they become persistent. This paper aims at identifying the atmospheric circulation features that determine the extreme GF persistence, i.e. very persistent and without persistence, and the differences between them, during the 1961-1990 winters. Since the GF without persistence group outnumbers the other one, two subgroups are composed with events selected from winters with maximum and minimum frequency of GF occurrence, respectively. Additionally, the individual event of July 1988 within the very persistent GF group is analyzed due to its exceptional persistence. GF persistence is mainly conditioned by two large-scale dynamic factors. One is the Rossby wave train propagation across the Pacific Ocean, and the other one is the location with respect to the continent and the magnitude of the confluence in the jet entrance region in subtropical latitudes. A predominantly meridional Rossby wave train propagation with a confluence region to the west of the continent prior to the event favors GF with intermediate (null) persistence depending on the greater (lesser) jet acceleration. This is conditioned by the magnitude of the confluence, which, in turn, depends on the disposition of the wave train propagation pattern. Instead, an essentially zonal propagation with a confluence region to the east of the continent favors the GF persistence for several days, yet if there is no confluence the event does not persist. The greatest persistence of an event combines the confluence/diffluence of the jet entrance/exit region, which depends on the disposition with respect to the continent of the zonally propagating Rossby wave trains. (orig.)

  13. Short ensembles: an efficient method for discerning climate-relevant sensitivities in atmospheric general circulation models

    Directory of Open Access Journals (Sweden)

    H. Wan

    2014-09-01

    Full Text Available This paper explores the feasibility of an experimentation strategy for investigating sensitivities in fast components of atmospheric general circulation models. The basic idea is to replace the traditional serial-in-time long-term climate integrations by representative ensembles of shorter simulations. The key advantage of the proposed method lies in its efficiency: since fewer days of simulation are needed, the computational cost is less, and because individual realizations are independent and can be integrated simultaneously, the new dimension of parallelism can dramatically reduce the turnaround time in benchmark tests, sensitivities studies, and model tuning exercises. The strategy is not appropriate for exploring sensitivity of all model features, but it is very effective in many situations. Two examples are presented using the Community Atmosphere Model, version 5. In the first example, the method is used to characterize sensitivities of the simulated clouds to time-step length. Results show that 3-day ensembles of 20 to 50 members are sufficient to reproduce the main signals revealed by traditional 5-year simulations. A nudging technique is applied to an additional set of simulations to help understand the contribution of physics–dynamics interaction to the detected time-step sensitivity. In the second example, multiple empirical parameters related to cloud microphysics and aerosol life cycle are perturbed simultaneously in order to find out which parameters have the largest impact on the simulated global mean top-of-atmosphere radiation balance. It turns out that 12-member ensembles of 10-day simulations are able to reveal the same sensitivities as seen in 4-year simulations performed in a previous study. In both cases, the ensemble method reduces the total computational time by a factor of about 15, and the turnaround time by a factor of several hundred. The efficiency of the method makes it particularly useful for the development of

  14. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  15. Key Elements of the User-Friendly, GFDL SKYHI General Circulation Model

    Directory of Open Access Journals (Sweden)

    Richard S. Hemler

    2000-01-01

    Full Text Available Over the past seven years, the portability of the GFDL SKYHI general circulation model has greatly increased. Modifications to the source code have allowed SKYHI to be run on the GFDL Cray Research PVP machines, the TMC CM-5 machine at Los Alamos National Laboratory, and more recently on the GFDL 40-processor Cray Research T3E system. At the same time, changes have been made to the model to make it more usable and flexible. Because of the reduction of the human resources available to manage and analyze scientific experiments, it is no longer acceptable to consider only the optimization of computer resources when producing a research code; one must also consider the availability and cost of the people necessary to maintain, modify and use the model as an investigative tool, and include these factors in defining the form of the model code. The new SKYHI model attempts to strike a balance between the optimization of the use of machine resources (CPU time, memory, disc and the optimal use of human resources (ability to understand code, ability to modify code, ability to perturb code to do experiments, ability to run code on different platforms. Two of the key features that make the new SKYHI code more usable and flexible are the archiving package and the user variable block. The archiving package is used to manage the writing of all archive files, which contain data for later analysis. The model-supplied user variable block allows the easy inclusion of any new variables needed for particular experiments.

  16. Black carbon ageing in the Canadian Centre for Climate modelling and analysis atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    B. Croft

    2005-01-01

    Full Text Available Black carbon (BC particles in the atmosphere have important impacts on climate. The amount of BC in the atmosphere must be carefully quantified to allow evaluation of the climate effects of this type of aerosol. In this study, we present the treatment of BC aerosol in the developmental version of the 4th generation Canadian Centre for Climate modelling and analysis (CCCma atmospheric general circulation model (AGCM. The focus of this work is on the conversion of insoluble BC to soluble/mixed BC by physical and chemical ageing. Physical processes include the condensation of sulphuric and nitric acid onto the BC aerosol, and coagulation with more soluble aerosols such as sulphates and nitrates. Chemical processes that may age the BC aerosol include the oxidation of organic coatings by ozone. Four separate parameterizations of the ageing process are compared to a control simulation that assumes no ageing occurs. These simulations use 1 an exponential decay with a fixed 24h half-life, 2 a condensation and coagulation scheme, 3 an oxidative scheme, and 4 a linear combination of the latter two ageing treatments. Global BC burdens are 2.15, 0.15, 0.11, 0.21, and 0.11TgC for the control run, and four ageing schemes, respectively. The BC lifetimes are 98.1, 6.6, 5.0, 9.5, and 4.9 days, respectively. The sensitivity of modelled BC burdens, and concentrations to the factor of two uncertainty in the emissions inventory is shown to be greater than the sensitivity to the parameterization used to represent the BC ageing, except for the oxidation based parameterization. A computationally efficient parameterization that represents the processes of condensation, coagulation, and oxidation is shown to simulate BC ageing well in the CCCma AGCM. As opposed to the globally fixed ageing time scale, this treatment of BC ageing is responsive to varying atmospheric composition.

  17. Nineteenth International Cosmic Ray Conference papers. General index, volume 10

    International Nuclear Information System (INIS)

    Jones, F.C.

    1986-07-01

    These volumes contain papers submitted for presentation at the 19th International Cosmic Ray Conference held on the campus of the University of California, San Diego, in La Jolla, CA, Aug. 11-23, 1985. The present volume contains a complete author index for volumes 1 through 9 and a list of the names and addresses of all those who attended the conference

  18. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean

    Science.gov (United States)

    Sofianos, Sarantis S.; Johns, William E.

    2002-11-01

    The mechanisms involved in the seasonal exchange between the Red Sea and the Indian Ocean are studied using an Oceanic General Circulation Model (OGCM), namely the Miami Isopycnic Coordinate Ocean Model (MICOM). The model reproduces the basic characteristics of the seasonal circulation observed in the area of the strait of Bab el Mandeb. There is good agreement between model results and available observations on the strength of the exchange and the characteristics of the water masses involved, as well as the seasonal flow pattern. During winter, this flow consists of a typical inverse estuarine circulation, while during summer, the surface flow reverses, there is an intermediate inflow of relatively cold and fresh water, and the hypersaline outflow at the bottom of the strait is significantly reduced. Additional experiments with different atmospheric forcing (seasonal winds, seasonal thermohaline air-sea fluxes, or combinations) were performed in order to assess the role of the atmospheric forcing fields in the exchange flow at Bab el Mandeb. The results of both the wind- and thermohaline-driven experiments exhibit a strong seasonality at the area of the strait, which is in phase with the observations. However, it is the combination of both the seasonal pattern of the wind stress and the seasonal thermohaline forcing that can reproduce the observed seasonal variability at the strait. The importance of the seasonal cycle of the thermohaline forcing on the exchange flow pattern is also emphasized by these results. In the experiment where the thermohaline forcing is represented by its annual mean, the strength of the exchange is reduced almost by half.

  19. Effects of water immersion to the neck on pulmonary circulation and tissue volume in man

    Science.gov (United States)

    Begin, R.; Epstein, M.; Sackner, M. A.; Levinson, R.; Dougherty, R.; Duncan, D.

    1976-01-01

    A rapid noninvasive breathing method is used to obtain serial measurements of the pulmonary capillary blood flow, diffusing capacity per unit of alveolar volume, combined pulmonary tissue plus capillary volume, functional residual capacity, and oxygen consumption in five normal subjects undergoing 6 h of sitting, 4 h of sitting while immersed to the neck in thermoneutral water, and 4 h of lying in thermoneutral water to the neck. The rebreathing method employed a test gas mixture containing 0.5% C2H2, 0.3% C(18)O, 10% He, 21% O2, and balance N2. It is shown that immersion to the neck in the seated posture results in significant increases in sodium excretion cardiac output, and diffusing capacity per unit of alveolar volume. The pulmonary tissue plus capillary volume did not change, demonstrating that the central vascular engorgement induced by water immersion is not accompanied by significant extravasation of fluid into the pulmonary interstitial space.

  20. The GEM-Mars general circulation model for Mars: Description and evaluation

    Science.gov (United States)

    Neary, L.; Daerden, F.

    2018-01-01

    GEM-Mars is a gridpoint-based three-dimensional general circulation model (GCM) of the Mars atmosphere extending from the surface to approximately 150 km based on the GEM (Global Environmental Multiscale) model, part of the operational weather forecasting and data assimilation system for Canada. After the initial modification for Mars, the model has undergone considerable changes. GEM-Mars is now based on GEM 4.2.0 and many physical parameterizations have been added for Mars-specific atmospheric processes and surface-atmosphere exchange. The model simulates interactive carbon dioxide-, dust-, water- and atmospheric chemistry cycles. Dust and water ice clouds are radiatively active. Size distributed dust is lifted by saltation and dust devils. The model includes 16 chemical species (CO2, Argon, N2, O2, CO, H2O, CH4, O3, O(1D), O, H, H2, OH, HO2, H2O2 and O2(a1Δg)) and has fully interactive photochemistry (15 reactions) and gas-phase chemistry (31 reactions). GEM-Mars provides a good simulation of the water and ozone cycles. A variety of other passive tracers can be included for dedicated studies, such as the emission of methane. The model has both a hydrostatic and non-hydrostatic formulation, and together with a flexible grid definition provides a single platform for simulations on a variety of horizontal scales. The model code is fully parallelized using OMP and MPI. Model results are evaluated by comparison to a selection of observations from instruments on the surface and in orbit, relating to atmosphere and surface temperature and pressure, dust and ice content, polar ice mass, polar argon, and global water and ozone vertical columns. GEM-Mars will play an integral part in the analysis and interpretation of data that is received by the NOMAD spectrometer on the ESA-Roskosmos ExoMars Trace Gas Orbiter. The present paper provides an overview of the current status and capabilities of the GEM-Mars model and lays the foundations for more in-depth studies in support

  1. Application of blocking diagnosis methods to general circulation models. Part I: a novel detection scheme

    Energy Technology Data Exchange (ETDEWEB)

    Barriopedro, D. [Universidade de Lisboa, CGUL-IDL, Faculdade de Ciencias, Ed. C-8, Lisbon (Portugal); Universidad de Extremadura, Departamento de Fisica, Facultad de Ciencias, Badajoz (Spain); Garcia-Herrera, R. [Universidad Complutense de Madrid, Departamento de Fisica de la Tierra II, Facultad de C.C. Fisicas, Madrid (Spain); Trigo, R.M. [Universidade de Lisboa, CGUL-IDL, Faculdade de Ciencias, Ed. C-8, Lisbon (Portugal)

    2010-12-15

    to General Circulation Models where observational thresholds may be unsuitable due to the presence of model bias. Part II of this study deals with a specific implementation of this novel method to simulations of the ECHO-G global climate model. (orig.)

  2. The Madden-Julian oscillation in ECHAM4 coupled and uncoupled general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, Kenneth R. [Lawrence Livermore National Laboratory, Program for Climate Model Diagnosis and Intercomparison, Livermore, CA (United States); Gualdi, Silvio [National Institute of Geophysics and Volcanology, Bologna (Italy); Legutke, Stephanie; Gayler, Veronika [Max Planck Institute of Meteorology, Models and Data Group, Hamburg (Germany)

    2005-08-01

    The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30-70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space-time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which 100 years of daily data is available, Monte Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of 0.5 C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air-sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat flux anomalies

  3. The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability

    Energy Technology Data Exchange (ETDEWEB)

    Deque, M.; Somot, S. [Meteo-France, Centre National de Recherches Meteorologiques, CNRS/GAME, Toulouse Cedex 01 (France); Sanchez-Gomez, E. [Cerfacs/CNRS, SUC URA1875, Toulouse Cedex 01 (France); Goodess, C.M. [University of East Anglia, Climatic Research Unit, Norwich (United Kingdom); Jacob, D. [Max Planck Institute for Meteorology, Hamburg (Germany); Lenderink, G. [KNMI, Postbus 201, De Bilt (Netherlands); Christensen, O.B. [Danish Meteorological Institute, Copenhagen Oe (Denmark)

    2012-03-15

    Various combinations of thirteen regional climate models (RCM) and six general circulation models (GCM) were used in FP6-ENSEMBLES. The response to the SRES-A1B greenhouse gas concentration scenario over Europe, calculated as the difference between the 2021-2050 and the 1961-1990 means can be viewed as an expected value about which various uncertainties exist. Uncertainties are measured here by variance explained for temperature and precipitation changes over eight European sub-areas. Three sources of uncertainty can be evaluated from the ENSEMBLES database. Sampling uncertainty is due to the fact that the model climate is estimated as an average over a finite number of years (30) despite a non-negligible interannual variability. Regional model uncertainty is due to the fact that the RCMs use different techniques to discretize the equations and to represent sub-grid effects. Global model uncertainty is due to the fact that the RCMs have been driven by different GCMs. Two methods are presented to fill the many empty cells of the ENSEMBLES RCM x GCM matrix. The first one is based on the same approach as in FP5-PRUDENCE. The second one uses the concept of weather regimes to attempt to separate the contribution of the GCM and the RCM. The variance of the climate response is analyzed with respect to the contribution of the GCM and the RCM. The two filling methods agree that the main contributor to the spread is the choice of the GCM, except for summer precipitation where the choice of the RCM dominates the uncertainty. Of course the implication of the GCM to the spread varies with the region, being maximum in the South-western part of Europe, whereas the continental parts are more sensitive to the choice of the RCM. The third cause of spread is systematically the interannual variability. The total uncertainty about temperature is not large enough to mask the 2021-2050 response which shows a similar pattern to the one obtained for 2071-2100 in PRUDENCE. The uncertainty

  4. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd

  5. Circulating Total Bilirubin and Risk of Incident Cardiovascular Disease in the General Population

    NARCIS (Netherlands)

    Kunutsor, Setor K.; Bakker, Stephan J. L.; Gansevoort, Ronald T.; Chowdhury, Rajiv; Dullaart, Robin P. F.

    OBJECTIVE: To assess the association of circulating total bilirubin and cardiovascular disease (CVD) risk in a new prospective study and to determine whether adding information on total bilirubin values to established cardiovascular risk factors is associated with improvement in prediction of CVD

  6. Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model

    Science.gov (United States)

    2012-05-31

    paper aooo not violate: any Oisclosur~,;·of trade• secrets or suggestions of outside individuals on::oncams whiCh have· beE !n communicated 1.o...fully three- dimensional global ocean circulation model, we will provide an internal tide capability everywhere, and allow nested models to include

  7. Blood Volume, Plasma Volume and Circulation Time in a High-Energy-Demand Teleost, the Yellowfin Tuna (Thunnus Albacares)

    DEFF Research Database (Denmark)

    Brill, R.W.; Cousins, K.L.; Jones, D.R.

    1998-01-01

    We measured red cell space with 51Cr-labeled red blood cells, and dextran space with 500 kDa fluorescein-isothiocyanate-labeled dextran (FITC-dextran), in two groups of yellowfin tuna (Thunnus albacares). Red cell space was 13.8+/-0.7 ml kg-1 (mean +/- s.e.m.) Assuming a whole- body hematocrit...... for albacore (Thunnus alalunga, 82-197 ml kg-1). Plasma volume within the primary circulatory system (calculated from the 51Cr-labeled red blood cell data) was 32.9+/-2.3 ml kg-1. Dextran space was 37.0+/-3.7 ml kg-1. Because 500 kDa FITC-dextran appeared to remain within the vascular space, these data imply...

  8. Enrichment of circulating tumor cells from a large blood volume using leukapheresis and elutriation: proof of concept.

    Science.gov (United States)

    Eifler, Robert L; Lind, Judith; Falkenhagen, Dieter; Weber, Viktoria; Fischer, Michael B; Zeillinger, Robert

    2011-03-01

    The aim of this study was to determine the applicability of a sequential process using leukapheresis, elutriation, and fluorescence-activated cell sorting (FACS) to enrich and isolate circulating tumor cells from a large blood volume to allow further molecular analysis. Mononuclear cells were collected from 10 L of blood by leukapheresis, to which carboxyfluorescein succinimidyl ester prelabeled CaOV-3 tumor cells were spiked at a ratio of 26 to 10⁶ leukocytes. Elutriation separated the spiked leukapheresates primarily by cell size into distinct fractions, and leukocytes and tumor cells, characterized as carboxyfluorescein succinimidyl ester positive, EpCAM positive and CD45 negative events, were quantified by flow cytometry. Tumor cells were isolated from the last fraction using FACS or anti-EpCAM coupled immunomagnetic beads, and their recovery and purity determined by fluorescent microscopy and real-time PCR. Leukapheresis collected 13.5 x 10⁹ mononuclear cells with 87% efficiency. In total, 53 to 78% of spiked tumor cells were pre-enriched in the last elutriation fraction among 1.6 x 10⁹ monocytes. Flow cytometry predicted a circulating tumor cell purity of ~90% giving an enrichment of 100,000-fold following leukapheresis, elutriation, and FACS, where CaOV-3 cells were identified as EpCAM positive and CD45 negative events. FACS confirmed this purity. Alternatively, immunomagnetic bead adsorption recovered 10% of tumor cells with a median purity of 3.5%. This proof of concept study demonstrated that elutriation and FACS following leukapheresis are able to enrich and isolate tumor cells from a large blood volume for molecular characterization. Copyright © 2010 International Clinical Cytometry Society.

  9. The Hamburg large scale geostrophic ocean general circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Mikolajewicz, U.

    1992-02-01

    The rationale for the Large Scale Geostrophic ocean circulation model (LSG-OGCM) is based on the observations that for a large scale ocean circulation model designed for climate studies, the relevant characteristic spatial scales are large compared with the internal Rossby radius throughout most of the ocean, while the characteristic time scales are large compared with the periods of gravity modes and barotropic Rossby wave modes. In the present version of the model, the fast modes have been filtered out by a conventional technique of integrating the full primitive equations, including all terms except the nonlinear advection of momentum, by an implicit time integration method. The free surface is also treated prognostically, without invoking a rigid lid approximation. The numerical scheme is unconditionally stable and has the additional advantage that it can be applied uniformly to the entire globe, including the equatorial and coastal current regions. (orig.)

  10. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is

  11. Stable isotopes of fossil teeth corroborate key general circulation model predictions for the Last Glacial Maximum in North America

    Science.gov (United States)

    Kohn, Matthew J.; McKay, Moriah

    2010-11-01

    Oxygen isotope data provide a key test of general circulation models (GCMs) for the Last Glacial Maximum (LGM) in North America, which have otherwise proved difficult to validate. High δ18O pedogenic carbonates in central Wyoming have been interpreted to indicate increased summer precipitation sourced from the Gulf of Mexico. Here we show that tooth enamel δ18O of large mammals, which is strongly correlated with local water and precipitation δ18O, is lower during the LGM in Wyoming, not higher. Similar data from Texas, California, Florida and Arizona indicate higher δ18O values than in the Holocene, which is also predicted by GCMs. Tooth enamel data closely validate some recent models of atmospheric circulation and precipitation δ18O, including an increase in the proportion of winter precipitation for central North America, and summer precipitation in the southern US, but suggest aridity can bias pedogenic carbonate δ18O values significantly.

  12. Channeling and Volume Reflection Based Crystal Collimation of Tevatron Circulating Beam Halo

    CERN Document Server

    Shiltsev, V.; Drozhdin, A.; Johnson, T.; Legan, A.; Mokhov, N.; Reilly, R.; Still, D.; Tesarek, R.; Zagel, J.; Peggs, S.; Assmann, R.; Previtali, V.; Scandale, W.; Chesnokov, Y.; Yazynin, I.; Guidi, V.; Ivanov, Y.

    2010-01-01

    The T980 crystal collimation experiment is underway at the Tevatron to determine if this technique could increase 980 GeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. T980 also studies various crystal types and parameters. The setup has been substantially enhanced during the Summer 2009 shutdown by installing a new O-shaped crystal in the horizontal goniometer, as well as adding a vertical goniometer with two alternating crystals (O-shaped and multi-strip) and additional beam diagnostics. First measurements with the new system are quite encouraging, with channeled and volume-reflected beams observed on the secondary collimators as predicted. Investigation of crystal collimation efficiencies with crystals in volume reflection and channeling modes are described in comparison with an amorphous primary collimator. Results on the system performance are presented for the end-of-store studies and for entire collider stores. The first investigation of colliding be...

  13. Correction of Excessive Precipitation over Steep Mountains in a General Circulation Model (GCM)

    Science.gov (United States)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and regional climate models even at a resolution as high as 19km. The affected regions include the Andes, the Himalayas, Sierra Madre, New Guinea and others. This problem also shows up in some data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime subgrid-scale upslope winds, which in turn is forced by heated boundary layer on the slopes. These upslope winds are associated with large subgrid-scale topographic variance, which is found over steep mountains. Without such subgrid-scale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvable-scale upslope flow in the boundary layer combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to excessive precipitation over the affected regions. We have parameterized the effects of subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in the layers higher up when topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-5 GCM have shown that the EPSM problem is largely solved.

  14. Optical Quantification of Cellular Mass, Volume, and Density of Circulating Tumor Cells Identified in an Ovarian Cancer Patient

    International Nuclear Information System (INIS)

    Phillips, Kevin G.; Velasco, Carmen Ruiz; Li, Julia; Kolatkar, Anand; Luttgen, Madelyn; Bethel, Kelly; Duggan, Bridgette; Kuhn, Peter; McCarty, Owen J. T.

    2012-01-01

    Clinical studies have demonstrated that circulating tumor cells (CTCs) are present in the blood of cancer patients with known metastatic disease across the major types of epithelial malignancies. Recent studies have shown that the concentration of CTCs in the blood is prognostic of overall survival in breast, prostate, colorectal, and non-small cell lung cancer. This study characterizes CTCs identified using the high-definition (HD)-CTC assay in an ovarian cancer patient with stage IIIC disease. We characterized the physical properties of 31 HD-CTCs and 50 normal leukocytes from a single blood draw taken just prior to the initial debulking surgery. We utilized a non-interferometric quantitative phase microscopy technique using brightfield imagery to measure cellular dry mass. Next we used a quantitative differential interference contrast microscopy technique to measure cellular volume. These techniques were combined to determine cellular dry mass density. We found that HD-CTCs were more massive than leukocytes: 33.6 ± 3.2 pg (HD-CTC) compared to 18.7 ± 0.6 pg (leukocytes), p < 0.001; had greater volumes: 518.3 ± 24.5 fL (HD-CTC) compared to 230.9 ± 78.5 fL (leukocyte), p < 0.001; and possessed a decreased dry mass density with respect to leukocytes: 0.065 ± 0.006 pg/fL (HD-CTC) compared to 0.085 ± 0.004 pg/fL (leukocyte), p < 0.006. Quantification of HD-CTC dry mass content and volume provide key insights into the fluid dynamics of cancer, and may provide the rationale for strategies to isolate, monitor or target CTCs based on their physical properties. The parameters reported here can also be incorporated into blood cell flow models to better understand metastasis.

  15. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection

    Energy Technology Data Exchange (ETDEWEB)

    Hourdin, Frederic; Musat, Ionela; Bony, Sandrine; Codron, Francis; Dufresne, Jean-Louis; Fairhead, Laurent; Grandpeix, Jean-Yves; LeVan, Phu; Li, Zhao-Xin; Lott, Francois [CNRS/UPMC, Laboratoire de Meteorologie Dynamique (LMD/IPSL), Paris Cedex 05 (France); Braconnot, Pascale; Friedlingstein, Pierre [Laboratoire des Sciences du Climat et de l' Environnement (LSCE/IPSL), Saclay (France); Filiberti, Marie-Angele [Institut Pierre Simon Laplace (IPSL), Paris (France); Krinner, Gerhard [Laboratoire de Glaciologie et Geophysique de l' Environnement, Grenoble (France)

    2006-12-15

    The LMDZ4 general circulation model is the atmospheric component of the IPSL-CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley-Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke's convection scheme, used in previous versions, the Emanuel's scheme improves the representation of the Hadley-Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke's parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model. (orig.)

  16. Seasonal Water Transport in the Atmosphere of Mars: Applications of a Mars General Circulation Model Using Mars Global Surveyor Data

    Science.gov (United States)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1999-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. We present below a summary of progress made during the duration of this JRI. The focus of this JRI has been to investigate seasonal water vapor transport in the atmosphere of Mars and its effects on the planet's present climate. To this end, the primary task has been to adapt a new dynamical processor for the adiabatic tendencies of the atmospheric circulation into the NASA Ames Mars general circulation model (MGCM). Using identical boundary and initial conditions, several comparative tests between the new and old MGCMs have been performed and the nature of the simulated circulations have been diagnosed. With confidence that the updated version of the Ames MGCM produces quite similar mean and eddy circulation statistics, the new climate model is well poised as a tool to pursue fundamental questions related to the spatial and seasonal variations of atmospheric water vapor on Mars, and to explore exchanges of water with non-atmospheric reservoirs and transport within its atmosphere. In particular, the role of surface sources and sinks can be explored, the range of water-vapor saturation altitudes can be investigated, and plausible precipitation mechanisms can be studied, for a range of atmospheric dust loadings. Such future investigations can contribute to a comprehensive study of surface inventories, exchange mechanisms, and the relative importance of atmospheric transport Mars' water cycle. A listing of presentations made and manuscripts submitted during the course of this project is provided.

  17. Influence of various forcings on global climate in historical times using a coupled atmosphere-ocean general circulation model

    DEFF Research Database (Denmark)

    Stendel, Martin; Mogensen, Irene A.; Christensen, Jens H.

    2006-01-01

    The results of a simulation of the climate of the last five centuries with a state-of-the-art coupled atmosphere-ocean general circulation model are presented. The model has been driven with most relevant forcings, both natural (solar variability, volcanic aerosol) and anthropogenic (greenhouse...... gases, sulphate aerosol, land-use changes). In contrast to previous GCM studies, we have taken into account the latitudinal dependence of volcanic aerosol and the changing land cover for a period covering several centuries. We find a clear signature of large volcanic eruptions in the simulated...

  18. Correction of Excessive Precipitation Over Steep and High Mountains in a General Circulation Model

    Science.gov (United States)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and meso-scale models. This problem impairs simulation and data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime upslope winds, which are forced by the heated boundary layer on subgrid-scale slopes. These upslope winds are associated with large subgrid-scale topographic variation, which is found over steep and high mountains. Without such subgridscale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvablescale upslope flow combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to EPSM. Other possible causes of EPSM that we have investigated include 1) a poorly-designed horizontal moisture flux in the terrain-following coordinates, 2) the condition for cumulus convection being too easily satisfied at mountaintops, 3) the presence of conditional instability of the computational kind, and 4) the absence of blocked flow drag. These are all minor or inconsequential. We have parameterized the ventilation effects of the subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in layers higher up when the topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-S GCM have shown that this largely solved the EPSM problem.

  19. Effect of general anaesthesia on functional outcome in patients with anterior circulation ischaemic stroke having endovascular thrombectomy versus standard care: a meta-analysis of individual patient data

    NARCIS (Netherlands)

    Campbell, Bruce C. V.; van Zwam, Wim H.; Goyal, Mayank; Menon, Bijoy K.; Dippel, Diederik W. J.; Demchuk, Andrew M.; Bracard, Serge; White, Philip; Dávalos, Antoni; Majoie, Charles B. L. M.; van der Lugt, Aad; Ford, Gary A.; de la Ossa, Natalia Pérez; Kelly, Michael; Bourcier, Romain; Donnan, Geoffrey A.; Roos, Yvo B. W. E. M.; Bang, Oh Young; Nogueira, Raul G.; Devlin, Thomas G.; van den Berg, Lucie A.; Clarençon, Frédéric; Burns, Paul; Carpenter, Jeffrey; Berkhemer, Olvert A.; Yavagal, Dileep R.; Pereira, Vitor Mendes; Ducrocq, Xavier; Dixit, Anand; Quesada, Helena; Epstein, Jonathan; Davis, Stephen M.; Jansen, Olav; Rubiera, Marta; Urra, Xabier; Nederkoorn, Paul J.; Emmer, Bart J.; Bot, Joseph C. J.; Marquering, Henk A.; Sprengers, Marieke E. S.; Beenen, Ludo F. M.; van den Berg, René; Fleitour, Nadine; Santos, Emilie; Borst, Jordi; Jansen, Ivo; Kappelhof, Manon; Lucas, Marit; Barros, Renan Sales; Koch, S.

    2018-01-01

    Background General anaesthesia (GA) during endovascular thrombectomy has been associated with worse patient outcomes in observational studies compared with patients treated without GA. We assessed functional outcome in ischaemic stroke patients with large vessel anterior circulation occlusion

  20. A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model

    International Nuclear Information System (INIS)

    Sekiguchi, Miho; Nakajima, Teruyuki

    2008-01-01

    The gas absorption process scheme in the broadband radiative transfer code 'mstrn8', which is used to calculate atmospheric radiative transfer efficiently in a general circulation model, is improved. Three major improvements are made. The first is an update of the database of line absorption parameters and the continuum absorption model. The second is a change to the definition of the selection rule for gas absorption used to choose which absorption bands to include. The last is an upgrade of the optimization method used to decrease the number of quadrature points used for numerical integration in the correlated k-distribution approach, thereby realizing higher computational efficiency without losing accuracy. The new radiation package termed 'mstrnX' computes radiation fluxes and heating rates with errors less than 0.6 W/m 2 and 0.3 K/day, respectively, through the troposphere and the lower stratosphere for any standard AFGL atmospheres. A serious cold bias problem of an atmospheric general circulation model using the ancestor code 'mstrn8' is almost solved by the upgrade to 'mstrnX'

  1. Effect of AMOC collapse on ENSO in a high resolution general circulation model

    Science.gov (United States)

    Williamson, Mark S.; Collins, Mat; Drijfhout, Sybren S.; Kahana, Ron; Mecking, Jennifer V.; Lenton, Timothy M.

    2018-04-01

    We look at changes in the El Niño Southern Oscillation (ENSO) in a high-resolution eddy-permitting climate model experiment in which the Atlantic Meridional Circulation (AMOC) is switched off using freshwater hosing. The ENSO mode is shifted eastward and its period becomes longer and more regular when the AMOC is off. The eastward shift can be attributed to an anomalous eastern Ekman transport in the mean equatorial Pacific ocean state. Convergence of this transport deepens the thermocline in the eastern tropical Pacific and increases the temperature anomaly relaxation time, causing increased ENSO period. The anomalous Ekman transport is caused by a surface northerly wind anomaly in response to the meridional sea surface temperature dipole that results from switching the AMOC off. In contrast to a previous study with an earlier version of the model, which showed an increase in ENSO amplitude in an AMOC off experiment, here the amplitude remains the same as in the AMOC on control state. We attribute this difference to variations in the response of decreased stochastic forcing in the different models, which competes with the reduced damping of temperature anomalies. In the new high-resolution model, these effects approximately cancel resulting in no change in amplitude.

  2. Dark Radiation predictions from general Large Volume Scenarios

    Science.gov (United States)

    Hebecker, Arthur; Mangat, Patrick; Rompineve, Fabrizio; Witkowski, Lukas T.

    2014-09-01

    Recent observations constrain the amount of Dark Radiation (Δ N eff ) and may even hint towards a non-zero value of Δ N eff . It is by now well-known that this puts stringent constraints on the sequestered Large Volume Scenario (LVS), i.e. on LVS realisations with the Standard Model at a singularity. We go beyond this setting by considering LVS models where SM fields are realised on 7-branes in the geometric regime. As we argue, this naturally goes together with high-scale supersymmetry. The abundance of Dark Radiation is determined by the competition between the decay of the lightest modulus to axions, to the SM Higgs and to gauge fields, and leads to strict constraints on these models. Nevertheless, these constructions can in principle meet current DR bounds due to decays into gauge bosons alone. Further, a rather robust prediction for a substantial amount of Dark Radiation can be made. This applies both to cases where the SM 4-cycles are stabilised by D-terms and are small `by accident', i.e. tuning, as well as to fibred models with the small cycles stabilised by loops. In these constructions the DR axion and the QCD axion are the same field and we require a tuning of the initial misalignment to avoid Dark Matter overproduction. Furthermore, we analyse a closely related setting where the SM lives at a singularity but couples to the volume modulus through flavour branes. We conclude that some of the most natural LVS settings with natural values of model parameters lead to Dark Radiation predictions just below the present observational limits. Barring a discovery, rather modest improvements of present Dark Radiation bounds can rule out many of these most simple and generic variants of the LVS.

  3. General Public Space Travel and Tourism. Volume 2; Workshop Proceedings

    Science.gov (United States)

    ONeil, D. (Compiler); Mankins, J. (Editor); Bekey, I. (Editor); Rogers, T. (Editor); Stallmer, E. (Editor); Piland, W. (Editor)

    1999-01-01

    The Space Transportation Association and NASA conducted a General Public Space Travel study between 1996 and 1998. During the study, a workshop was held at Georgetown University. Participants included representatives from the travel, aerospace, and construction industries. This report is the proceedings from that workshop. Sections include infrastructure needs, travel packages, policy related issues, and potential near-term activities.

  4. Powder metallurgical high performance materials. Proceedings. Volume 3: general topics

    International Nuclear Information System (INIS)

    Kneringer, G.; Roedhammer, P.; Wildner, H.

    2001-01-01

    The proceedings of these seminars form an impressive chronicle of the continued progress in the understanding of refractory metals and cemented carbides and in their manufacture and application. The 15 th Plansee Seminar was convened under the general theme 'Powder Metallurgy High Performance Materials'. Under this broadened perspective the seminar will strive to look beyond the refractory metals and cemented carbides, which remain at its focus, to novel classes of materials, such as intermetallic compounds, with potential for high temperature applications. (boteke)

  5. Paul Scherrer Institute Scientific Report 1998. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, C; Leuenberger, J [eds.

    1999-08-01

    In view of its mission to contribute towards the development of a globally more sustainable energy supply system, the General Energy Department is focusing on four topical areas: advancing technologies for the use of renewable energies; investigating options for chemical and electrochemical energy storage on various time scales; developing highly efficient converters for the low emission use of fossil and renewable fuels, including both combustion devices and fuel cells; analyzing the consequences of energy use, and advancing scenarios for the development of the energy supply system. Progress in 1998 in these topical areas is described in this report. A list of scientific publications in 1998 is also provided. (author) figs., tabs., refs.

  6. Paul Scherrer Institute Scientific Report 1999. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Christina; Leuenberger, Jakob [eds.

    2000-07-01

    Strengthening of international collaborations represented a strategic goal of the General Energy Research Department for 1999. For the Fifth Framework Program of the European Union, we participated in consortia and in the successful preparation of several proposals. National networks with partners from academia and Industry have been formed in two topical areas of central interest in the context of sustainability, i.e. 'Ecoefficient energy use and material cycles' and 'Sustainable transportation' on the other hand. Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy

  7. Paul Scherrer Institute Scientific Report 1999. Volume V: General Energy

    International Nuclear Information System (INIS)

    Daum, Christina; Leuenberger, Jakob

    2000-01-01

    Strengthening of international collaborations represented a strategic goal of the General Energy Research Department for 1999. For the Fifth Framework Program of the European Union, we participated in consortia and in the successful preparation of several proposals. National networks with partners from academia and Industry have been formed in two topical areas of central interest in the context of sustainability, i.e. 'Ecoefficient energy use and material cycles' and 'Sustainable transportation' on the other hand. Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy

  8. Paul Scherrer Institute Scientific Report 1999. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Christina; Leuenberger, Jakob [eds.

    2000-07-01

    Strengthening of international collaborations represented a strategic goal of the General Energy Research Department for 1999. For the Fifth Framework Program of the European Union, we participated in consortia and in the successful preparation of several proposals. National networks with partners from academia and Industry have been formed in two topical areas of central interest in the context of sustainability, i.e. 'Ecoefficient energy use and material cycles' and 'Sustainable transportation' on the other hand. Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to

  9. Analysis of a general circulation model product. I - Frontal systems in the Brazil/Malvinas and Kuroshio/Oyashio regions

    Science.gov (United States)

    Garzoli, Silvia L.; Garraffo, Zulema; Podesta, Guillermo; Brown, Otis

    1992-01-01

    The general circulation model (GCM) of Semtner and Chervin (1992) is tested by comparing the fields produced by this model with available observations in two western boundary current regions, the Brazil/Malvinas and the Kuroshio/Oyashio confluences. The two sets of data used are the sea surface temperature from satellite observations and the temperature field product from the GCM at levels 1 (12.5 m), 2 (37.5 m), and 6 (160 m). It is shown that the model reproduces intense thermal fronts at the sea surface and in the upper layers (where they are induced by the internal dynamics of the model). The location of the fronts are reproduced in the model within 4 to 5 deg, compared with observations. However, the variability of these fronts was found to be less pronounced in the model than in the observations.

  10. On the intra-seasonal variability within the extratropics in a general circulation model and observational data

    International Nuclear Information System (INIS)

    May, W.; Bengtsson, L.

    1994-01-01

    There are various phenomena on different spatial and temporal scales contributing to the intra-seasonal variability within the extratropics. One may notice higher-frequency baroclinic disturbances affecting the day-to-day variability of the atmosphere. But one finds also low-frequency fluctuations on a typical time scale of a few weeks. Blocking anticyclones are probably the most prominent example of such features. These fluctuations on different scales, however, are influencing each other, in particular the temporal evolution and spatial distribution. There has been observational work on various phenomena contributing to the intra-seasonal variability for a long time. In the last decade or so, however, with the increasing importance of General Circulation Models there have been some studies dealing with the intra-seasonal variability as simulated by these models

  11. Surface energy balances of three general circulation models: Current climate and response to increasing atmospheric CO2

    International Nuclear Information System (INIS)

    Gutowski, W.J.; Gutzler, D.S.; Portman, D.; Wang, W.C.

    1988-04-01

    The surface energy balance simulated by state-of-the-art general circulation models at GFDL, GISS and NCAR for climates with current levels of atmospheric CO 2 concentration (control climate) and with twice the current levels. The work is part of an effort sponsored by the US Department of Energy to assess climate simulations produced by these models. The surface energy balance enables us to diagnose differences between models in surface temperature climatology and sensitivity to doubling CO 2 in terms of the processes that control surface temperature. Our analysis compares the simulated balances by averaging the fields of interest over a hierarchy of spatial domains ranging from the entire globe down to regions a few hundred kilometers across

  12. Paul Scherrer Institut Scientific Report 2003. Volume V: General Energy

    International Nuclear Information System (INIS)

    Wokaun, A.; Daum, C.

    2004-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided

  13. Paul Scherrer Institut Scientific Report 2004. Volume V: General Energy

    International Nuclear Information System (INIS)

    Wokaun, A.; Daum, C.

    2005-01-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided

  14. Paul Scherrer Institute Scientific Report 2000. Volume V: General Energy

    International Nuclear Information System (INIS)

    Daum, Christina; Leuenberger, Jakob

    2001-01-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2000 is also provided

  15. Paul Scherrer Institut Scientific Report 2001. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina [eds.

    2002-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2001 is also provided.

  16. Paul Scherrer Institute Scientific Report 2000. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Christina; Leuenberger, Jakob [eds.

    2001-07-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2000 is also provided.

  17. Paul Scherrer Institute Scientific Report 2000. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Daum, Christina; Leuenberger, Jakob [eds.

    2001-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around (1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; (2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; (3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; (4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; (5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2000 is also provided.

  18. Paul Scherrer Institut Scientific Report 2002. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina [eds.

    2003-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided.

  19. Paul Scherrer Institut Scientific Report 2004. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina (eds.)

    2005-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided.

  20. Paul Scherrer Institut Scientific Report 2002. Volume V: General Energy

    International Nuclear Information System (INIS)

    Wokaun, A.; Daum, C.

    2003-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided

  1. Paul Scherrer Institut Scientific Report 2003. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, Alexander; Daum, Christina (eds.)

    2004-03-01

    Research at PSI comprises all aspects of human energy use, with the ultimate goal of promoting development towards a sustainable energy supply system. In the General Energy Research Department, technologies are being advanced for the utilization of renewable energy sources, low-loss energy storage, efficient conversion, and low emission energy use. Experimental and model-based assessment of these emissions forms the basis of a comprehensive assessment of economic, ecological and environmental consequences, for both present and future energy supply systems. The research program of the department is centered around 1) development, use, and characterisation of catalysts for energy technologies in many different fields, like e.g. the partial oxidation of methanol for hydrogen production, the processing of methane by catalytic combustion and reforming; 2) use of concentrated solar radiation to induce chemical conversions, thereby producing energy carriers; 3) development of efficient, less polluting combustion engines and burners by advancing the detailed understanding of reaction mechanisms and combustion pathways; 4) research and development of low temperature polymer electrolyte fuel cells, novel batteries and capacitors, with applications envisaged for electric vehicles, photovoltaics and on-site load leveling; 5) experimental and model based research concerning transportation and chemistry of atmospheric trace gases related to anthropogenic energy transformations. Progress in 2000 in these topical areas is described in this report. A list of scientific publications in 2002 is also provided.

  2. Paul Scherrer Institut Scientific Report 2001. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, A; Daum, C [eds.

    2002-03-01

    providing power during acceleration, thereby supplementing the fuel cells. By the time of printing of this volume, the power train has been implemented into a vehicle, and was successfully tested on the road over the Simplon mountain pass. During a Year of Gas phase and Aerosol Measurements, the 'Atmospheric Chemistry' Lab's mobile emission laboratory has been regularly sampling a route comprising downtown and rural areas in the canton of Zurich. Interesting trends on the generation and transport of ultrafine aerosol particles, as well as ozone generation, are emerging from the data. Towards the end of the year, the aerosol group succeeded in finalizing a smog chamber, which will represent a powerful laboratory tool for investigating the generation and surface chemistry of aerosol particles. These studies supplement the field work carried out both on roadside and at the high-alpine station at the Jungfraujoch. (abstract truncated)

  3. Paul Scherrer Institut Scientific Report 2001. Volume V: General Energy

    Energy Technology Data Exchange (ETDEWEB)

    Wokaun, A.; Daum, C. (eds.)

    2002-03-01

    of the vehicle and providing power during acceleration, thereby supplementing the fuel cells. By the time of printing of this volume, the power train has been implemented into a vehicle, and was successfully tested on the road over the Simplon mountain pass. During a Year of Gas phase and Aerosol Measurements, the 'Atmospheric Chemistry' Lab's mobile emission laboratory has been regularly sampling a route comprising downtown and rural areas in the canton of Zurich. Interesting trends on the generation and transport of ultrafine aerosol particles, as well as ozone generation, are emerging from the data. Towards the end of the year, the aerosol group succeeded in finalizing a smog chamber, which will represent a powerful laboratory tool for investigating the generation and surface chemistry of aerosol particles. These studies supplement the field work carried out both on roadside and at the high-alpine station at the Jungfraujoch. (abstract truncated)

  4. Paul Scherrer Institut Scientific Report 2001. Volume V: General Energy

    International Nuclear Information System (INIS)

    Wokaun, A.; Daum, C.

    2002-03-01

    acceleration, thereby supplementing the fuel cells. By the time of printing of this volume, the power train has been implemented into a vehicle, and was successfully tested on the road over the Simplon mountain pass. During a Year of Gas phase and Aerosol Measurements, the 'Atmospheric Chemistry' Lab's mobile emission laboratory has been regularly sampling a route comprising downtown and rural areas in the canton of Zurich. Interesting trends on the generation and transport of ultrafine aerosol particles, as well as ozone generation, are emerging from the data. Towards the end of the year, the aerosol group succeeded in finalizing a smog chamber, which will represent a powerful laboratory tool for investigating the generation and surface chemistry of aerosol particles. These studies supplement the field work carried out both on roadside and at the high-alpine station at the Jungfraujoch. Pollutant flows into ecosystems are studied using stable isotopes of carbon, nitrogen, and oxygen as tracers. Particular attention was paid to the carbon uptake by plants and canopies under conditions of elevated CO 2 concentrations, as established in field experiments or existing close to natural CO 2 springs. Besides a strong signature of the meteorological conditions, clear evidence for the down-regulation of photosynthesis was found under conditions where plentiful CO 2 is available - a fact that might be highly relevant for assessing the CO 2 binding capacity of forest sinks. Technological learning must be quantitatively assessed, and included in bottom-up engineering models of the energy system, to obtain a faithful prediction of the optimum energy mix under a set of CO 2 emission constraints. The systems analysis group has applied this concept to study expected changes in the stock of motorized individual vehicles, and the interaction of learning with market-based instruments as emission trading. A list of scientific publications in 2000 is also provided

  5. On the intra-seasonal variability within the extratropics in the ECHAM3 general circulation model

    International Nuclear Information System (INIS)

    May, W.

    1994-01-01

    First we consider the GCM's capability to reproduce the midlatitude variability on intra-seasonal time scales by a comparison with observational data (ECMWF analyses). Secondly we assess the possible influence of Sea Surface Temperatures on the intra-seasonal variability by comparing estimates obtained from different simulations performed with ECHAM3 with varying and fixed SST as boundary forcing. The intra-seasonal variability as simulated by ECHAM3 is underestimated over most of the Northern Hemisphere. While the contributions of the high-frequency transient fluctuations are reasonably well captured by the model, ECHAM3 fails to reproduce the observed level of low-frequency intra-seasonal variability. This is mainly due to the underestimation of the variability caused by the ultra-long planetary waves in the Northern Hemisphere midlatitudes by the model. In the Southern Hemisphere midlatitudes, on the other hand, the intra-seasonal variability as simulated by ECHAM3 is generally underestimated in the area north of about 50 southern latitude, but overestimated at higher latitudes. This is the case for the contributions of the high-frequency and the low-frequency transient fluctuations as well. Further, the model indicates a strong tendency for zonal symmetry, in particular with respect to the high-frequency transient fluctuations. While the two sets of simulations with varying and fixed Sea Surface Temepratures as boundary forcing reveal only small regional differences in the Southern Hemisphere, there is a strong response to be found in the Northern Hemisphere. The contributions of the high-frequency transient fluctuations to the intra-seasonal variability are generally stronger in the simulations with fixed SST. Further, the Pacific storm track is shifted slightly poleward in this set of simulations. For the low-frequency intra-seasonal variability the model gives a strong, but regional response to the interannual variations of the SST. (orig.)

  6. On the Use of Generalized Volume Scattering Models for the Improvement of General Polarimetric Model-Based Decomposition

    Directory of Open Access Journals (Sweden)

    Qinghua Xie

    2017-01-01

    Full Text Available Recently, a general polarimetric model-based decomposition framework was proposed by Chen et al., which addresses several well-known limitations in previous decomposition methods and implements a simultaneous full-parameter inversion by using complete polarimetric information. However, it only employs four typical models to characterize the volume scattering component, which limits the parameter inversion performance. To overcome this issue, this paper presents two general polarimetric model-based decomposition methods by incorporating the generalized volume scattering model (GVSM or simplified adaptive volume scattering model, (SAVSM proposed by Antropov et al. and Huang et al., respectively, into the general decomposition framework proposed by Chen et al. By doing so, the final volume coherency matrix structure is selected from a wide range of volume scattering models within a continuous interval according to the data itself without adding unknowns. Moreover, the new approaches rely on one nonlinear optimization stage instead of four as in the previous method proposed by Chen et al. In addition, the parameter inversion procedure adopts the modified algorithm proposed by Xie et al. which leads to higher accuracy and more physically reliable output parameters. A number of Monte Carlo simulations of polarimetric synthetic aperture radar (PolSAR data are carried out and show that the proposed method with GVSM yields an overall improvement in the final accuracy of estimated parameters and outperforms both the version using SAVSM and the original approach. In addition, C-band Radarsat-2 and L-band AIRSAR fully polarimetric images over the San Francisco region are also used for testing purposes. A detailed comparison and analysis of decomposition results over different land-cover types are conducted. According to this study, the use of general decomposition models leads to a more accurate quantitative retrieval of target parameters. However, there

  7. General Public Space Travel and Tourism. Volume 1; Executive Summary

    Science.gov (United States)

    ONeil, Daniel (Compiler); Bekey, Ivan; Mankins, John; Rogers, Thomas F.; Stallmer, Eric W.

    1998-01-01

    Travel and tourism is one of the world's largest businesses. Its gross revenues exceed $400 billion per year in the U.S. alone, and it is our second largest employer. U.S. private sector business revenues in the space information area now approximate $10 billion per year, and are increasing rapidly. Not so in the human spaceflight area. After spending $100s of billions (1998 dollars) in public funds thereon, and continuing to spend over $5 billion per year, the government is still the only customer for human spaceflight goods and services. Serious and detailed consideration was first given to the possibility of space being opened up to trips by the general public three decades ago, and some initial attempts to do so were made a dozen years ago. But the difficulties were great and the Challenger disaster put an end to them. In recent years professional space tourism studies have been conducted in the United Kingdom, Germany and, especially, Japan. In the U.S., technological progress has been pronounced; we have had nearly a decade's experience in seeing our astronauts travel to-from low Earth orbit (LEO) safely, and we expect to commence assembly of a LEO space station housing a half-dozen people this year. Too, NASA and our space industry now have new and promising space transportation development programs underway, especially the X-33 and X-34 programs, and some related, further generation, basic technology development programs. And five private companies are also working on the design of new surface - LEO vehicles. The first professional space tourism market studies have been conducted in several countries in the past few years, especially in Japan and here. The U.S. study makes it clear that, conceptually, tens of millions of us would like to take a trip to space if we could do so with reasonable safety, comfort and reliability, and at an acceptable price. Initial businesses will address the desires of those willing to pay a greater price and accept a greater

  8. IL-33 circulating serum levels are increased in patients with non-segmental generalized vitiligo.

    Science.gov (United States)

    Vaccaro, Mario; Cicero, Francesca; Mannucci, Carmen; Calapai, Gioacchino; Spatari, Giovanna; Barbuzza, Olga; Cannavò, Serafinella P; Gangemi, Sebastiano

    2016-09-01

    IL-33 is a recently identified cytokine, encoded by the IL-33 gene, which is a member of the IL-1 family that drives the production of T-helper-2 (Th-2)-associated cytokines. Serum levels of IL-33 have been reported to be up-regulated in various T-helper (Th)-1/Th-17-mediated diseases, such as psoriasis, rheumatoid arthritis, and inflammatory bowel. To investigate whether cytokine imbalance plays a role in the pathogenesis of vitiligo, we performed a case-control association study by enzyme-linked immunosorbent assay of IL-33 in our patients. IL-33 serum levels were measured by a quantitative enzyme immunoassay technique in patients with non-segmental generalized vitiligo and compared with those of healthy controls. IL-33 serum levels in patients with vitiligo were significantly increased than those in healthy controls. There was a positive correlation of IL-33 serum levels with extension of vitiligo and disease activity. This study suggests a possible systemic role of IL-33 in the pathogenesis of vitiligo. Inhibiting IL-33 activity might be a novel therapeutic strategy in the treatment of autoimmune inflammatory disease, like vitiligo.

  9. Connection of the stratospheric QBO with global atmospheric general circulation and tropical SST. Part II: interdecadal variations

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zeng-Zhen [Climate Prediction Center (Room 605), NCEP/NWS/NOAA, Camp Springs, MD (United States); Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Huang, Bohua; Kinter, James L. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Wu, Zhaohua [Florida State University, Department of Earth, Ocean, and Atmospheric Science, and Center for Ocean-Atmospheric Prediction Studies, Tallahassee, FL (United States); Kumar, Arun [Climate Prediction Center (Room 605), NCEP/NWS/NOAA, Camp Springs, MD (United States)

    2012-01-15

    The interdecadal variation of the association of the stratospheric quasi-biennial oscillation (QBO) with tropical sea surface temperature (SST) anomalies (SSTA) and with the general circulation in the troposphere and lower stratosphere is examined using the ERA40 and NCEP/NCAR reanalyses, as well as other observation-based analyses. It is found that the relationship between the QBO and tropical SSTA changed once around 1978-1980, and again in 1993-1995. During 1966-1974, negative correlation between the QBO and NINO3.4 indices reached its maximum when the NINO3.4 index lagged the QBO by less than 6 months. Correspondingly, the positive correlations were observed when the NINO3.4 index led the QBO by about 11-13 months or lagged by about 12-18 months. However, maximum negative correlations were shifted from the NINO3.4 index lagging the QBO by about 0-6 months during 1966-1974 to about 3-12 months during 1985-1992. During 1975-1979, both the negative and positive correlations were relatively small and the QBO and ENSO were practically unrelated to each other. The phase-based QBO life cycle composites also confirm that, on average, there are two phase (6-7 months) delay in the evolution of the QBO-associated anomalous Walker circulation, tropical SST, atmospheric stability, and troposphere and lower stratosphere temperature anomalies during 1980-1994 in comparison with those in 1957-1978. The interdecadal variation of the association between the QBO and the troposphere variability may be largely due to the characteristic change of El Nino-Southern Oscillation. The irregularity of the QBO may play a secondary role in the interdecadal variation of the association. (orig.)

  10. Tsengwen Reservoir Watershed Hydrological Flood Simulation Under Global Climate Change Using the 20 km Mesh Meteorological Research Institute Atmospheric General Circulation Model (MRI-AGCM

    Directory of Open Access Journals (Sweden)

    Nobuaki Kimura

    2014-01-01

    Full Text Available Severe rainstorms have occurred more frequently in Taiwan over the last decade. To understand the flood characteristics of a local region under climate change, a hydrological model simulation was conducted for the Tsengwen Reservoir watershed. The model employed was the Integrated Flood Analysis System (IFAS, which has a conceptual, distributed rainfall-runoff analysis module and a GIS data-input function. The high-resolution rainfall data for flood simulation was categorized into three terms: 1979 - 2003 (Present, 2015 - 2039 (Near-future, and 2075 - 2099 (Future, provided by the Meteorological Research Institute atmospheric general circulation model (MRI-AGCM. Ten extreme rainfall (top ten events were selected for each term in descending order of total precipitation volume. Due to the small watershed area the MRI-AGCM3.2S data was downsized into higher resolution data using the Weather Research and Forecasting Model. The simulated discharges revealed that most of the Near-future and Future peaks caused by extreme rainfall increased compared to the Present peak. These ratios were 0.8 - 1.6 (Near-future/Present and 0.9 - 2.2 (Future/Present, respectively. Additionally, we evaluated how these future discharges would affect the reservoir¡¦s flood control capacity, specifically the excess water volume required to be stored while maintaining dam releases up to the dam¡¦s spillway capacity or the discharge peak design for flood prevention. The results for the top ten events show that the excess water for the Future term exceeded the reservoir¡¦s flood control capacity and was approximately 79.6 - 87.5% of the total reservoir maximum capacity for the discharge peak design scenario.

  11. Bioimpedance spectroscopy for assessment of volume status in patients before and after general anaesthesia.

    Directory of Open Access Journals (Sweden)

    Matthäus Ernstbrunner

    Full Text Available BACKGROUND: Technically assisted assessment of volume status before surgery may be useful to direct intraoperative fluid administration. We therefore tested a recently developed whole-body bioimpedance spectroscopy device to determine pre- to postoperative fluid distribution. METHODS: Using a three-compartment physiologic tissue model, the body composition monitor (BCM, Fresenius Medical Care, Germany measures total body fluid volume, extracellular volume, intracellular volume and fluid overload as surplus or deficit of 'normal' extracellular volume. BCM-measurements were performed before and after standardized general anaesthesia for gynaecological procedures (laparotomies, laparoscopies and vaginal surgeries. BCM results were blinded to the attending anaesthesiologist and data analysed using the 2-sided, paired Student's t-test and multiple linear regression. RESULTS: In 71 females aged 45 ± 15 years with body weight 67 ± 13 kg and Duration of anesthesia 154 ± 69 minutes [corrected] duration of anaesthesia 154 ± 68 min, pre- to postoperative fluid overload increased from -0.7 ± 1.1 L to 0.1 ± 1.0 L, corresponding to -5.1 ± 7.5% and 0.8 ± 6.7% of normal extracellular volume, respectively (both p<0.001, after patients had received 1.9 ± 0.9 L intravenous crystalloid fluid. Perioperative urinary excretion was 0.3 ± 0.2 L [corrected]. The increase in extracellular volume was paralleled by an increase in total body fluid volume, while intracellular volume increased only slightly and without reaching statistical significance (p = 0.15. Net perioperative fluid balance (administered fluid volume minus urinary excretion was significantly associated with change in extracellular volume (r(2 = 0.65, but was not associated with change in intracellular volume (r(2 = 0.01. CONCLUSIONS: Routine intraoperative fluid administration results in a significant, and clinically meaningful increase in the extracellular compartment. BCM-measurements yielded

  12. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Lawrence J.; Bower, Amy S.; Kö hl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-01-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented

  13. Blood cell labeling with technetium-99m. II. Measurement of circulating blood volume by sup(99m)Tc-labeled red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T; Yoshida, H; Matsuda, S; Kimura, H; Miura, N [Fukushima Medical Coll. (Japan)

    1978-02-01

    Using a labeling method with sup(99m)Tc-pertechnetate to red blood cells (RBC), circulating blood volume was measured in comparison with that from /sup 51/Cr-labeled RBC method. The technique is easier than already published methods, because CIS kit for sup(99m)Tc-RBC labeling (TCK-11) became to be available recently. Two mls of ACD-anticoagulated blood were withdrawn and 0.5 ml of reducing reagent prepared just before use was added to blood, waiting 5 minutes and discarding the serum after centrifugation, then adding 100 ..mu..Ci of sup(99m)Tc. After washing the labeled cells by isotonic saline, cells were re-suspended in 10 ml of saline and injected to the subject. Blood specimen was obtained 10, 30, 60 and 120 minutes after infusion and blood volume was calculated by the usual way. Circulating blood volume by sup(99m)Tc was well correlated with that by /sup 51/Cr (=0.98, p 0.01), however, the value calculated from sup(99m)Tc were 4.8 percent higher than those by /sup 51/Cr, which suggested the elution of sup(99m)Tc from labeled RBC. sup(99m)Tc method has the advantages that higher radioactivity can be obtained in small amount of blood, which is useful in the determination of blood volume in children or in small animals in the laboratory. The measurement of blood volume of the mouse was done by using sup(99m)Tc method. The results were 1.70 +- 0.06 ml (6.35 +- 0.18%/gm), which coincided with the values reported previously. Because of it's short half life and low radiation dosage to the patients, sup(99m)Tc method will be recommended in the field of pediatrics or in patients with polycythemia or congestive heart failure, who are requested the repeated measurement of blood volume.

  14. A study of longwave radiation codes for climate studies: Validation with ARM observations and tests in general circulation models

    International Nuclear Information System (INIS)

    Ellingson, R.G.; Baer, F.

    1993-01-01

    This report summarizes the activities of our group to meet our stated objectives. The report is divided into sections entitled: Radiation Model Testing Activities, General Circulation Model Testing Activities, Science Team Activities, and Publications, Presentations and Meetings. The section on Science Team Activities summarizes our participation with the science team to further advance the observation and modeling programs. Appendix A lists graduate students supported, and post-doctoral appointments during the project. Reports on the activities during each of the first two years are included as Appendix B. Significant progress has been made in: determining the ability of line-by-line radiation models to calculate the downward longwave flux at the surface; determining the uncertainties in calculated the downwelling radiance and flux at the surface associated with the use of different proposed profiling techniques; intercomparing clear-sky radiance and flux observations with calculations from radiation codes from different climate models; determining the uncertainties associated with estimating N* from surface longwave flux observations; and determining the sensitivity of model calculations to different formulations of the effects of finite sized clouds

  15. Analysis of a general circulation model. II - Distribution of kinetic energy in the South Atlantic and Kuroshio/Oyashio systems

    Science.gov (United States)

    Garraffo, Zulema; Garzoli, Silvia L.; Haxby, William; Olson, Donald

    1992-01-01

    It was found (Garzoli et al., 1992) that the general circulation model of Semtner and Chervin (1992) provides accurate descriptions of the Brazil-Malvinas and the Kuroshio/Oyashio confluence systems, except for the fact that the model prediction shows less variability than that present in observations. This paper investigates the problem of model variability by analyzing the mean and the eddy kinetic energy from the model and comparing the values with the Geosat altimeter observations for the South Atlantic Ocean and for the Kuroshio system. It is found that, while the model shows transient eddy activity in the areas that overlap the Geosat observations, the energy level of the model transient motions is considerably smaller following an arch along the bottom topography. The same was found from the comparisons made with values obtained from FGGE and surface drifters. It is suggested that the model is poorly resolving instabilities in the confluence front, and is not resolving other transients appearing in regions of marked topography.

  16. Polynomial Chaos–Based Bayesian Inference of K-Profile Parameterization in a General Circulation Model of the Tropical Pacific

    KAUST Repository

    Sraj, Ihab

    2016-08-26

    The authors present a polynomial chaos (PC)-based Bayesian inference method for quantifying the uncertainties of the K-profile parameterization (KPP) within the MIT general circulation model (MITgcm) of the tropical Pacific. The inference of the uncertain parameters is based on a Markov chain Monte Carlo (MCMC) scheme that utilizes a newly formulated test statistic taking into account the different components representing the structures of turbulent mixing on both daily and seasonal time scales in addition to the data quality, and filters for the effects of parameter perturbations over those as a result of changes in the wind. To avoid the prohibitive computational cost of integrating the MITgcm model at each MCMC iteration, a surrogate model for the test statistic using the PC method is built. Because of the noise in the model predictions, a basis-pursuit-denoising (BPDN) compressed sensing approach is employed to determine the PC coefficients of a representative surrogate model. The PC surrogate is then used to evaluate the test statistic in the MCMC step for sampling the posterior of the uncertain parameters. Results of the posteriors indicate good agreement with the default values for two parameters of the KPP model, namely the critical bulk and gradient Richardson numbers; while the posteriors of the remaining parameters were barely informative. © 2016 American Meteorological Society.

  17. Assessing the Tangent Linear Behaviour of Common Tracer Transport Schemes and Their Use in a Linearised Atmospheric General Circulation Model

    Science.gov (United States)

    Holdaway, Daniel; Kent, James

    2015-01-01

    The linearity of a selection of common advection schemes is tested and examined with a view to their use in the tangent linear and adjoint versions of an atmospheric general circulation model. The schemes are tested within a simple offline one-dimensional periodic domain as well as using a simplified and complete configuration of the linearised version of NASA's Goddard Earth Observing System version 5 (GEOS-5). All schemes which prevent the development of negative values and preserve the shape of the solution are confirmed to have nonlinear behaviour. The piecewise parabolic method (PPM) with certain flux limiters, including that used by default in GEOS-5, is found to support linear growth near the shocks. This property can cause the rapid development of unrealistically large perturbations within the tangent linear and adjoint models. It is shown that these schemes with flux limiters should not be used within the linearised version of a transport scheme. The results from tests using GEOS-5 show that the current default scheme (a version of PPM) is not suitable for the tangent linear and adjoint model, and that using a linear third-order scheme for the linearised model produces better behaviour. Using the third-order scheme for the linearised model improves the correlations between the linear and non-linear perturbation trajectories for cloud liquid water and cloud liquid ice in GEOS-5.

  18. The influence of cirrus cloud-radiative forcing on climate and climate sensitivity in a general circulation model

    International Nuclear Information System (INIS)

    Lohmann, U.; Roeckner, E.

    1994-01-01

    Six numerical experiments have been performed with a general circulation model (GCM) to study the influence of high-level cirrus clouds and global sea surface temperature (SST) perturbations on climate and climate sensitivity. The GCM used in this investigation is the third-generation ECHAM3 model developed jointly by the Max-Planck-Institute for Meteorology and the University of Hamburg. It is shown that the model is able to reproduce many features of the observed cloud-radiative forcing with considerable skill, such as the annual mean distribution, the response to seasonal forcing and the response to observed SST variations in the equatorial Pacific. In addition to a reference experiment where the cirrus emissivity is computed as a function of the cloud water content, two sensitivity experiments have been performed in which the cirrus emissivity is either set to zero everywhere above 400 hPa ('transparent cirrus') or set to one ('black cirrus'). These three experiments are repeated identically, except for prescribing a globally uniform SST warming of 4 K. (orig.)

  19. Simulation of stationary and transient geopotential-height eddies in January and July with a spectral general circulation model

    International Nuclear Information System (INIS)

    Malone, R.C.; Pitcher, E.J.; Blackmon, M.L.; Puri, K.; Bourke, W.

    1984-01-01

    We examine the characteristics of stationary and transient eddies in the geopotential-height field as simulated by a spectral general circulation model. The model possessess a realistic, but smootheed, topography. Two simulations with perpetual January and July forcing by climatological sea surface temperatures, sea ice, and insolation were extended to 1200 days, of which the final 600 days were used for the results in this study. We find that the stationary waves are well simulated in both seasons in the Northern Hemisphere, where strong forcing by orography and land-sea thermal contrast exists. However, in the Southern Hemisphere, where no continents are present in midlatitudes, the stationary waves have smaller amplitude than that observed in both seasons. In both hemispheres, the transient eddies are well simulated in the winter season but are too weak in the summer season. The model fails to generate a sufficiently intense summertime midlatitude jet in either hemisphere, and this results in a low level of transient activity. The variance in the tropical troposphere is very well simulated. We examine the geographical distribution and vertical structure of the transient eddies. Fourier analysis in zonal wavenumber and temporal filtering are used to display the wavelength and frequency characteristics of the eddies

  20. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    Directory of Open Access Journals (Sweden)

    P. Jöckel

    2006-01-01

    Full Text Available The new Modular Earth Submodel System (MESSy describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy

  1. Some lessons and thoughts from development of an old-fashioned high-resolution atmospheric general circulation model

    Science.gov (United States)

    Ohfuchi, Wataru; Enomoto, Takeshi; Yoshioka, Mayumi K.; Takaya, Koutarou

    2014-05-01

    Some high-resolution simulations with a conventional atmospheric general circulation model (AGCM) were conducted right after the first Earth Simulator started operating in the spring of 2002. More simulations with various resolutions followed. The AGCM in this study, AFES (Agcm For the Earth Simulator), is a primitive equation spectral transform method model with a cumulus convection parameterization. In this presentation, some findings from comparisons between high and low-resolution simulations, and some future perspectives of old-fashioned AGCMs will be discussed. One obvious advantage of increasing resolution is capability of resolving the fine structures of topography and atmospheric flow. By increasing resolution from T39 (about 320 km horizontal grid interval) to T79 (160 km), to T159 (80 km) to T319 (40 km), topographic precipitation over Japan becomes increasingly realistic. This feature is necessary for climate and weather studies involving both global and local aspects. In order to resolve submesoscale (about 100 km horizontal scale) atmospheric circulation, about 10-km grid interval is necessary. Comparing T1279 (10 km) simulations with T319 ones, it is found that, for example, the intensity of heavy rain associated with Baiu front and the central pressure of typhoon become more realistic. These realistic submesoscale phenomena should have impact on larger-sale flow through dynamics and thermodynamics. An interesting finding by increasing horizontal resolution of a conventional AGCM is that some cumulus convection parameterizations, such as Arakawa-Schubert type scheme, gradually stop producing precipitation, while some others, such as Emanuel type, do not. With the former, the grid condensation increases with the model resolution to compensate. Which characteristics are more desirable is arguable but it is an important feature one has to consider when developing a high-resolution conventional AGCM. Many may think that conventional primitive equation

  2. Modes of North Atlantic Decadal Variability in the ECHAM1/LSG Coupled Ocean-Atmosphere General Circulation Model.

    Science.gov (United States)

    Zorita, Eduardo; Frankignoul, Claude

    1997-02-01

    The climate variability in the North Atlantic sector is investigated in a 325-yr integration of the ECHAM1/ LSG coupled ocean-atmosphere general circulation model. At the interannual timescale, the coupled model behaves realistically and sea surface temperature (SST) anomalies arise as a response of the oceanic surface layer to the stochastic forcing by the atmosphere, with the heat exchanges both generating and damping the SST anomalies. In the ocean interior, the temperature spectra are red up to a period of about 20 years, and substantial decadal fluctuations are found in the upper kilometer or so of the water column. Using extended empirical orthogonal function analysis, two distinct quasi-oscillatory modes of ocean-atmosphere variability are identified, with dominant periods of about 20 and 10 years, respectively. The oceanic changes in both modes reflect the direct forcing by the atmosphere through anomalous air-sea fluxes and Ekman pumping, which after some delay affects the intensity of the subtropical and subpolar gyres. The SST is also strongly modulated by the gyre currents. In the thermocline, the temperature and salinity fluctuations are in phase, as if caused by thermocline displacements, and they have no apparent connection with the thermohaline circulation. The 20-yr mode is the most energetic one; it is easily seen in the thermocline and can be found in SST data, but it is not detected in the atmosphere alone. As there is no evidence of positive ocean-atmosphere feedback, the 20-yr mode primarily reflects the passive response of the ocean to atmospheric fluctuations, which may be in part associated with climate anomalies appearing a few years earlier in the North Pacific. The 10-yr mode is more surface trapped in the ocean. Although the mode is most easily seen in the temperature variations of the upper few hundred meters of the ocean, it is also detected in the atmosphere alone and thus appears to be a coupled ocean-atmosphere mode. In both modes

  3. Evaluation of North Eurasian snow-off dates in the ECHAM5.4 atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    P. Räisänen

    2014-12-01

    Full Text Available The timing of springtime end of snowmelt (snow-off date in northern Eurasia in version 5.4 of the ECHAM5 atmospheric general circulation model (GCM is evaluated through comparison with a snow-off date data set based on space-borne microwave radiometer measurements and with Russian snow course data. ECHAM5 reproduces well the observed gross geographical pattern of snow-off dates, with earliest snow-off (in March in the Baltic region and latest snow-off (in June in the Taymyr Peninsula and in northeastern parts of the Russian Far East. The primary biases are (1 a delayed snow-off in southeastern Siberia (associated with too low springtime temperature and too high surface albedo, in part due to insufficient shielding by canopy; and (2 an early bias in the western and northern parts of northern Eurasia. Several sensitivity experiments were conducted, where biases in simulated atmospheric circulation were corrected through nudging and/or the treatment of surface albedo was modified. While this alleviated some of the model biases in snow-off dates, 2 m temperature and surface albedo, especially the early bias in snow-off in the western parts of northern Eurasia proved very robust and was actually larger in the nudged runs. A key issue underlying the snow-off biases in ECHAM5 is that snowmelt occurs at too low temperatures. Very likely, this is related to the treatment of the surface energy budget. On one hand, the surface temperature Ts is not computed separately for the snow-covered and snow-free parts of the grid cells, which prevents Ts from rising above 0 °C before all snow has vanished. Consequently, too much of the surface net radiation is consumed in melting snow and too little in heating the air. On the other hand, ECHAM5 does not include a canopy layer. Thus, while the albedo reduction due to canopy is accounted for, the shielding of snow on ground by the overlying canopy is not considered, which leaves too much solar radiation available for

  4. Spectrum Analysis of Inertial and Subinertial Motions Based on Analyzed Winds and Wind-Driven Currents from a Primitive Equation General Ocean Circulation Model.

    Science.gov (United States)

    1982-12-01

    1Muter.Te Motions Based on Ana lyzed Winds and wind-driven December 1982 Currents from. a Primitive Squat ion General a.OW -love"*..* Oean Circulation...mew se"$ (comeS.... do oISN..u am ae~ 00do OWaor NUN Fourier and Rotary Spc , Analysis Modeled Inertial and Subinrtial Motion 4 Primitive Equation

  5. General least-squares fitting procedures to minimize the volume of a hyperellipsoid

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1979-01-01

    Several methods for determining the shape parameters, which in two dimensions are the Courant-Snyder parameters, and the volume of an ellipse or hyperellipse that represent a set of phase-space points in a two or more dimensional hyperspace are presented. The ellipse parameters are useful for matching a beam to an accelerating or transport system and in studies of emittance growth. The fitting procedure minimizes the total volume of a hyperellipse by adjusting the ellipse shape parameters. The total volume is the sum of the individual particle volumes defined by the hyperellipse that passes through the phase-space point of a particle. A two-dimensional space is considered first; the results are then generalized to higher dimensions. Computer programs using these techniques were written. 1 figure

  6. A study into the effect of the diurnal tide on the structure of the background mesosphere and thermosphere using the new coupled middle atmosphere and thermosphere (CMAT general circulation model

    Directory of Open Access Journals (Sweden)

    M. J. Harris

    Full Text Available A new coupled middle atmosphere and thermosphere general circulation model has been developed, and some first results are presented. An investigation into the effects of the diurnal tide upon the mean composition, dynamics and energetics was carried out for equinox conditions. Previous studies have shown that tides deplete mean atomic oxygen in the upper mesosphere-lower thermosphere due to an increased recombination in the tidal displaced air parcels. The model runs presented suggest that the mean residual circulation associated with the tidal dissipation also plays an important role. Stronger lower boundary tidal forcing was seen to increase the equatorial local diurnal maximum of atomic oxygen and the associated 0(1S 557.7 nm green line volume emission rates. The changes in the mean background temperature structure were found to correspond to changes in the mean circulation and exothermic chemical heating.

    Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry Meterology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  7. A study into the effect of the diurnal tide on the structure of the background mesosphere and thermosphere using the new coupled middle atmosphere and thermosphere (CMAT general circulation model

    Directory of Open Access Journals (Sweden)

    M. J. Harris

    2002-02-01

    Full Text Available A new coupled middle atmosphere and thermosphere general circulation model has been developed, and some first results are presented. An investigation into the effects of the diurnal tide upon the mean composition, dynamics and energetics was carried out for equinox conditions. Previous studies have shown that tides deplete mean atomic oxygen in the upper mesosphere-lower thermosphere due to an increased recombination in the tidal displaced air parcels. The model runs presented suggest that the mean residual circulation associated with the tidal dissipation also plays an important role. Stronger lower boundary tidal forcing was seen to increase the equatorial local diurnal maximum of atomic oxygen and the associated 0(1S 557.7 nm green line volume emission rates. The changes in the mean background temperature structure were found to correspond to changes in the mean circulation and exothermic chemical heating.Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry Meterology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  8. Sex Differences in Brain Volume Are Related to Specific Skills, Not to General Intelligence

    Science.gov (United States)

    Burgaleta, Miguel; Head, Kevin; Alvarez-Linera, Juan; Martinez, Kenia; Escorial, Sergio; Haier, Richard; Colom, Roberto

    2012-01-01

    It has been proposed that males would show higher mean scores than females in general intelligence ("g") because (1) men have, on average, larger brains than women, and (2) brain volume correlates with "g." Here we report a failure to support the conclusion derived from these premises. High resolution MRIs were acquired in a sample of one hundred…

  9. Future discharge drought across climate regions around the world modelled with a synthetic hydrological modelling approach forced by three general circulation models

    Science.gov (United States)

    Wanders, N.; Van Lanen, H. A. J.

    2015-03-01

    Hydrological drought characteristics (drought in groundwater and streamflow) likely will change in the 21st century as a result of climate change. The magnitude and directionality of these changes and their dependency on climatology and catchment characteristics, however, is uncertain. In this study a conceptual hydrological model was forced by downscaled and bias-corrected outcome from three general circulation models for the SRES A2 emission scenario (GCM forced models), and the WATCH Forcing Data set (reference model). The threshold level method was applied to investigate drought occurrence, duration and severity. Results for the control period (1971-2000) show that the drought characteristics of each GCM forced model reasonably agree with the reference model for most of the climate types, suggesting that the climate models' results after post-processing produce realistic outcomes for global drought analyses. For the near future (2021-2050) and far future (2071-2100) the GCM forced models show a decrease in drought occurrence for all major climates around the world and increase of both average drought duration and deficit volume of the remaining drought events. The largest decrease in hydrological drought occurrence is expected in cold (D) climates where global warming results in a decreased length of the snow season and an increased precipitation. In the dry (B) climates the smallest decrease in drought occurrence is expected to occur, which probably will lead to even more severe water scarcity. However, in the extreme climate regions (desert and polar), the drought analysis for the control period showed that projections of hydrological drought characteristics are most uncertain. On a global scale the increase in hydrological drought duration and severity in multiple regions will lead to a higher impact of drought events, which should motivate water resource managers to timely anticipate the increased risk of more severe drought in groundwater and streamflow

  10. The ability of general circulation models to simulate tropical cyclones and their precursors over the North Atlantic main development region

    Energy Technology Data Exchange (ETDEWEB)

    Daloz, Anne Sophie; Chauvin, Fabrice [Groupe de Modelisation Grande Echelle et Climat, CNRM-GAME, Meteo-France, Toulouse Cedex 1 (France); Walsh, Kevin [University of Melbourne, School of Earth Sciences, Melbourne, VIC (Australia); Lavender, Sally; Abbs, Deborah [CSIRO Atmospheric and Marine Research, Aspendale, VIC (Australia); Roux, Frank [Universite de Toulouse and Centre National de la Recherche Scientifique, Laboratoire d' Aerologie, Toulouse (France)

    2012-10-15

    The ability of General Circulation Models (GCMs) to generate Tropical Cyclones (TCs) over the North Atlantic Main Development Region (MDR; 10-20 N, 20-80 W; Goldenberg and Shapiro in J Clim 9:1169-1187, 1996) is examined through a subset of ocean-atmosphere coupled simulations from the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel data set and a high-resolution (0.5 ) Sea Surface Temperature (SST)-forced simulation from the Australian Conformal-Cubic Atmospheric Model GCM. The results are compared with National Center for Environmental Prediction (NCEP-2) and European Center for Medium Range Weather Forecasts Re-Analysis (ERA-40) reanalyses over a common period from 1980 to 1998. Important biases in the representation of the TC activity are encountered over the MDR. This study emphasizes the strong link in the GCMs between African Easterly Waves (AEWs) and TC activity in this region. However, the generation of AEWs is not a sufficient condition alone for the models to produce TCs. Precipitation over the Sahel, especially rainfall over the Fouta Djallon highlands (cf. Fig. 1), is playing a role in the generation of TCs over the MDR. The influence of large-scale fields such as SST, vertical wind shear and tropospheric humidity on TC genesis is also examined. The ability of TC genesis indices, such as the Genesis Potential Index and the Convective Yearly Genesis Potential, to represent TC activity over the MDR in simulations at low to high spatial resolutions is analysed. These indices are found to be a reasonable method for comparing cyclogenesis in different models, even though other factors such as AEW activity should also be considered. (orig.)

  11. Assessment of two physical parameterization schemes for desert dust emissions in an atmospheric chemistry general circulation model

    Science.gov (United States)

    Astitha, M.; Abdel Kader, M.; Pozzer, A.; Lelieveld, J.

    2012-04-01

    Atmospheric particulate matter and more specific desert dust has been the topic of numerous research studies in the past due to the wide range of impacts in the environment and climate and the uncertainty of characterizing and quantifying these impacts in a global scale. In this work we present two physical parameterizations of the desert dust production that have been incorporated in the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). The scope of this work is to assess the impact of the two physical parameterizations in the global distribution of desert dust and highlight the advantages and disadvantages of using either technique. The dust concentration and deposition has been evaluated using the AEROCOM dust dataset for the year 2000 and data from the MODIS and MISR satellites as well as sun-photometer data from the AERONET network was used to compare the modelled aerosol optical depth with observations. The implementation of the two parameterizations and the simulations using relatively high spatial resolution (T106~1.1deg) has highlighted the large spatial heterogeneity of the dust emission sources as well as the importance of the input parameters (soil size and texture, vegetation, surface wind speed). Also, sensitivity simulations with the nudging option using reanalysis data from ECMWF and without nudging have showed remarkable differences for some areas. Both parameterizations have revealed the difficulty of simulating all arid regions with the same assumptions and mechanisms. Depending on the arid region, each emission scheme performs more or less satisfactorily which leads to the necessity of treating each desert differently. Even though this is a quite different task to accomplish in a global model, some recommendations are given and ideas for future improvements.

  12. Impact of absorbing aerosols on the simulation of climate over the Indian region in an atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    A. Chakraborty

    2004-04-01

    Full Text Available The impact of anthropogenic absorbing aerosols (such as soot on the climate over the Indian region has been studied using the NCMRWF general circulation model. The absorbing aerosols increase shortwave radiative heating of the lower troposphere and reduce the heating at the surface. These effects have been incorporated as heating of the lower troposphere (up to 700hPa and cooling over the continental surface based on INDOEX measurements. The heating effect is constant in the pre-monsoon season and reduces to zero during the monsoon season. It is shown that even in the monsoon season when the aerosol forcing is zero, there is an overall increase in rainfall and a reduction in surface temperature over the Indian region. The rainfall averaged over the Tropics shows a small reduction in most of the months during the January to September period. The impact of aerosol forcing, the model's sensitivity to this forcing and its interaction with model-physics has been studied by changing the cumulus parameterization from the Simplified Arakawa-Schubert (SAS scheme to the Kuo scheme. During the pre-monsoon season the major changes in precipitation occur in the oceanic Inter Tropical Convergence Zone (ITCZ, where both the schemes show an increase in precipitation. This result is similar to that reported in Chung2002. On the other hand, during the monsoon season the changes in precipitation in the continental region are different in the SAS and Kuo schemes. It is shown that the heating due to absorbing aerosols changes the vertical moist-static stability of the atmosphere. The difference in the precipitation changes in the two cumulus schemes is on account of the different responses in the two parameterization schemes to changes in vertical stability. Key words. Atmospheric composition and structure (aerosols and particles – Meteorology and atmospheric dynamics (tropical meteorology; precipitation

  13. Development and implementation of a Variable Infiltration Capacity model of surface hydrology into the General Circulation Model

    International Nuclear Information System (INIS)

    Lettenmaier, D.P.; Stamm, J.F.; Wood, E.F.

    1993-04-01

    A Variable Infiltration Capacity (VIC) model is described for the representation of land surface hydrology in General Circulation Models (GCMs). The VIC model computes runoff as a function of the distribution of soil moisture capacity within a GCM grid cell. The major distinguishing feature of the VIC model relative to the bucket model currently used to represent the land surface in many GCMs is that it parameterizes the nonlinearity of the fraction of precipitation that infiltrates over a large area (hence the production of direct runoff) as a function of spatial average soil moisture storage, and that it models subsurface runoff between storms via a simple recession mechanism. The VIC model was incorporated into the Geophysical Fluid Dynamics Laboratory (GFDL) GCM at R15 resolution (roughly 4.5 degrees latitude by 7.5 degrees longitude). Ten-year simulations of global climate were produced using the GFDL GCM with both VIC land surface hydrology, and, for comparison purposes, the standard bucket representation. Comparison of the ten year runs using the VIC model with those using bucket hydrology showed that for the VIC run, global average runoff increased, soil moisture decreased, evaporation decreased, land surface temperature increased, and precipitation decreased. As expected, changes in precipitation occurred primarily over the continents, especially in the northern hemisphere. Changes in the surface water balance for Africa, Australia, and South America were much less than for North American and Eurasia. Both VIC and bucket simulations of surface air temperature and precipitation were compared with gridded monthly average observation fields. These comparisons indicated that the VIC hydrology reproduced winter temperatures better, and summer temperatures worse, than the bucket model. The VIC hydrology better represented global precipitation, primarily as a result of partially reducing the upward bias in precipitation associated with the GFDL R15 bucket runs

  14. Influence of Last Glacial Maximum boundary conditions on the global water isotope distribution in an atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    T. Tharammal

    2013-03-01

    Full Text Available To understand the validity of δ18O proxy records as indicators of past temperature change, a series of experiments was conducted using an atmospheric general circulation model fitted with water isotope tracers (Community Atmosphere Model version 3.0, IsoCAM. A pre-industrial simulation was performed as the control experiment, as well as a simulation with all the boundary conditions set to Last Glacial Maximum (LGM values. Results from the pre-industrial and LGM simulations were compared to experiments in which the influence of individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea surface temperature (SST, and orbital parameters were changed each at a time to assess their individual impact. The experiments were designed in order to analyze the spatial variations of the oxygen isotopic composition of precipitation (δ18Oprecip in response to individual climate factors. The change in topography (due to the change in land ice cover played a significant role in reducing the surface temperature and δ18Oprecip over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and δ18Oprecip further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3. Large reductions in δ18Oprecip over the LGM ice sheets were strongly linked to the temperature decrease over them. The SST and ice sheet topography changes were responsible for most of the changes in the climate and hence the δ18Oprecip distribution among the simulations.

  15. Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model

    Directory of Open Access Journals (Sweden)

    A. Voigt

    2011-03-01

    Full Text Available We study the initiation of a Marinoan Snowball Earth (~635 million years before present with the state-of-the-art atmosphere-ocean general circulation model ECHAM5/MPI-OM. This is the most sophisticated model ever applied to Snowball initiation. A comparison with a pre-industrial control climate shows that the change of surface boundary conditions from present-day to Marinoan, including a shift of continents to low latitudes, induces a global-mean cooling of 4.6 K. Two thirds of this cooling can be attributed to increased planetary albedo, the remaining one third to a weaker greenhouse effect. The Marinoan Snowball Earth bifurcation point for pre-industrial atmospheric carbon dioxide is between 95.5 and 96% of the present-day total solar irradiance (TSI, whereas a previous study with the same model found that it was between 91 and 94% for present-day surface boundary conditions. A Snowball Earth for TSI set to its Marinoan value (94% of the present-day TSI is prevented by doubling carbon dioxide with respect to its pre-industrial level. A zero-dimensional energy balance model is used to predict the Snowball Earth bifurcation point from only the equilibrium global-mean ocean potential temperature for present-day TSI. We do not find stable states with sea-ice cover above 55%, and land conditions are such that glaciers could not grow with sea-ice cover of 55%. Therefore, none of our simulations qualifies as a "slushball" solution. While uncertainties in important processes and parameters such as clouds and sea-ice albedo suggest that the Snowball Earth bifurcation point differs between climate models, our results contradict previous findings that Snowball Earth initiation would require much stronger forcings.

  16. Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: methodology and composite life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bohua; Kinter, James L. [George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Hu, Zeng-Zhen [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Climate Prediction Center (suite 605), NCEP/NWS/NOAA, Camp Springs, MD (United States); Wu, Zhaohua [Florida State University, Department of Earth, Ocean, and Atmospheric Science, and Center for Ocean-Atmospheric Prediction Studies, Tallahassee, FL (United States); Kumar, Arun [Climate Prediction Center (suite 605), NCEP/NWS/NOAA, Camp Springs, MD (United States)

    2012-01-15

    The stratospheric quasi-biennial oscillation (QBO) and its association with the interannual variability in the stratosphere and troposphere, as well as in tropical sea surface temperature anomalies (SSTA), are examined in the context of a QBO life cycle. The analysis is based on the ERA40 and NCEP/NCAR reanalyses, radiosonde observations at Singapore, and other observation-based datasets. Both reanalyses reproduce the QBO life cycle and its associated variability in the stratosphere reasonably well, except that some long-term changes are detected only in the NCEP/NCAR reanalysis. In order to separate QBO from variability on other time scales and to eliminate the long-term changes, a scale separation technique [Ensemble Empirical Mode Decomposition (EEMD)] is applied to the raw data. The QBO component of zonal wind anomalies at 30 hPa, extracted using the EEMD method, is defined as a QBO index. Using this index, the QBO life cycle composites of stratosphere and troposphere variables, as well as SSTA, are constructed and examined. The composite features in the stratosphere are generally consistent with previous investigations. The correlations between the QBO and tropical Pacific SSTA depend on the phase in a QBO life cycle. On average, cold (warm) SSTA peaks about half a year after the maximum westerlies (easterlies) at 30 hPa. The connection of the QBO with the troposphere seems to be associated with the differences of temperature anomalies between the stratosphere and troposphere. While the anomalies in the stratosphere propagate downward systematically, some anomalies in the troposphere develop and expand vertically. Therefore, it is possible that the temperature difference between the troposphere and stratosphere may alter the atmospheric stability and tropical deep convection, which modulates the Walker circulation and SSTA in the equatorial Pacific Ocean. (orig.)

  17. Skills of General Circulation and Earth System Models in reproducing streamflow to the ocean: the case of Congo river

    Science.gov (United States)

    Santini, M.; Caporaso, L.

    2017-12-01

    Although the importance of water resources in the context of climate change, it is still difficult to correctly simulate the freshwater cycle over the land via General Circulation and Earth System Models (GCMs and ESMs). Existing efforts from the Climate Model Intercomparison Project 5 (CMIP5) were mainly devoted to the validation of atmospheric variables like temperature and precipitation, with low attention to discharge.Here we investigate the present-day performances of GCMs and ESMs participating to CMIP5 in simulating the discharge of the river Congo to the sea thanks to: i) the long-term availability of discharge data for the Kinshasa hydrological station representative of more than 95% of the water flowing in the whole catchment; and ii) the River's still low influence by human intervention, which enables comparison with the (mostly) natural streamflow simulated within CMIP5.Our findings suggest how most of models appear overestimating the streamflow in terms of seasonal cycle, especially in the late winter and spring, while overestimation and variability across models are lower in late summer. Weighted ensemble means are also calculated, based on simulations' performances given by several metrics, showing some improvements of results.Although simulated inter-monthly and inter-annual percent anomalies do not appear significantly different from those in observed data, when translated into well consolidated indicators of drought attributes (frequency, magnitude, timing, duration), usually adopted for more immediate communication to stakeholders and decision makers, such anomalies can be misleading.These inconsistencies produce incorrect assessments towards water management planning and infrastructures (e.g. dams or irrigated areas), especially if models are used instead of measurements, as in case of ungauged basins or for basins with insufficient data, as well as when relying on models for future estimates without a preliminary quantification of model biases.

  18. Modeling the Dynamics of the Atmospheric Boundary Layer Over the Antarctic Plateau With a General Circulation Model

    Science.gov (United States)

    Vignon, Etienne; Hourdin, Frédéric; Genthon, Christophe; Van de Wiel, Bas J. H.; Gallée, Hubert; Madeleine, Jean-Baptiste; Beaumet, Julien

    2018-01-01

    Observations evidence extremely stable boundary layers (SBL) over the Antarctic Plateau and sharp regime transitions between weakly and very stable conditions. Representing such features is a challenge for climate models. This study assesses the modeling of the dynamics of the boundary layer over the Antarctic Plateau in the LMDZ general circulation model. It uses 1 year simulations with a stretched-grid over Dome C. The model is nudged with reanalyses outside of the Dome C region such as simulations can be directly compared to in situ observations. We underline the critical role of the downward longwave radiation for modeling the surface temperature. LMDZ reasonably represents the near-surface seasonal profiles of wind and temperature but strong temperature inversions are degraded by enhanced turbulent mixing formulations. Unlike ERA-Interim reanalyses, LMDZ reproduces two SBL regimes and the regime transition, with a sudden increase in the near-surface inversion with decreasing wind speed. The sharpness of the transition depends on the stability function used for calculating the surface drag coefficient. Moreover, using a refined vertical grid leads to a better reversed "S-shaped" relationship between the inversion and the wind. Sudden warming events associated to synoptic advections of warm and moist air are also well reproduced. Near-surface supersaturation with respect to ice is not allowed in LMDZ but the impact on the SBL structure is moderate. Finally, climate simulations with the free model show that the recommended configuration leads to stronger inversions and winds over the ice-sheet. However, the near-surface wind remains underestimated over the slopes of East-Antarctica.

  19. A Comparison of the Lower Stratospheric Age-Spectra Derived from a General Circulation Model and Two Data Assimilation Systems

    Science.gov (United States)

    Schoeberl, Mark R.; Douglass, Anne R.; Zhu, Zhengxin; Pawson, Steven

    2002-01-01

    We use kinematic and diabatic back trajectory calculations, driven by winds from a general circulation model (GCM) and two different data assimilation systems (DAS), to compute the age spectrum at three latitudes in the lower stratosphere. The age-spectra are compared to chemical transport model (CTM) calculations, and the mean ages from all of these studies are compared to observations. The age spectra computed using the GCM winds show a reasonably isolated tropics in good agreement with observations; however, the age spectra determined from the DAS differ from the GCM spectra. For the DAS diabatic trajectory calculations there is too much exchange between the tropics and mid-latitudes. The age spectrum is thus too broad and the tropical mean age is too old as a result of mixing older mid latitude air with tropical air. Likewise the mid latitude mean age is too young due to the in mixing of tropical air. The DAS kinematic trajectory calculations show excessive vertical dispersion of parcels in addition to excessive exchange between the tropics and mid latitudes. Because air is moved rapidly to the troposphere from the vertical dispersion, the age spectrum is shifted toward the young side. The excessive vertical and meridional dispersion compensate in the kinematic case giving a reasonable tropical mean age. The CTM calculation of the age spectrum using the DAS winds shows the same vertical and meridional dispersive characteristics of the kinematic trajectory calculation. These results suggest that the current DAS products will not give realistic trace gas distributions for long integrations; they also help explain why the extra tropical mean ages determined in a number of previous DAS driven CTM s are too young compared with observations. Finally, we note trajectory-generated age spectra . show significant age anomalies correlated with the seasonal cycles. These anomalies can be linked to year-to-year variations in the tropical heating rate. The anomalies are

  20. Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: methodology and composite life cycle

    Science.gov (United States)

    Huang, Bohua; Hu, Zeng-Zhen; Kinter, James L.; Wu, Zhaohua; Kumar, Arun

    2012-01-01

    The stratospheric quasi-biennial oscillation (QBO) and its association with the interannual variability in the stratosphere and troposphere, as well as in tropical sea surface temperature anomalies (SSTA), are examined in the context of a QBO life cycle. The analysis is based on the ERA40 and NCEP/NCAR reanalyses, radiosonde observations at Singapore, and other observation-based datasets. Both reanalyses reproduce the QBO life cycle and its associated variability in the stratosphere reasonably well, except that some long-term changes are detected only in the NCEP/NCAR reanalysis. In order to separate QBO from variability on other time scales and to eliminate the long-term changes, a scale separation technique [Ensemble Empirical Mode Decomposition (EEMD)] is applied to the raw data. The QBO component of zonal wind anomalies at 30 hPa, extracted using the EEMD method, is defined as a QBO index. Using this index, the QBO life cycle composites of stratosphere and troposphere variables, as well as SSTA, are constructed and examined. The composite features in the stratosphere are generally consistent with previous investigations. The correlations between the QBO and tropical Pacific SSTA depend on the phase in a QBO life cycle. On average, cold (warm) SSTA peaks about half a year after the maximum westerlies (easterlies) at 30 hPa. The connection of the QBO with the troposphere seems to be associated with the differences of temperature anomalies between the stratosphere and troposphere. While the anomalies in the stratosphere propagate downward systematically, some anomalies in the troposphere develop and expand vertically. Therefore, it is possible that the temperature difference between the troposphere and stratosphere may alter the atmospheric stability and tropical deep convection, which modulates the Walker circulation and SSTA in the equatorial Pacific Ocean.

  1. Statistical analysis of simulated global soil moisture and its memory in an ensemble of CMIP5 general circulation models

    Science.gov (United States)

    Wiß, Felix; Stacke, Tobias; Hagemann, Stefan

    2014-05-01

    Soil moisture and its memory can have a strong impact on near surface temperature and precipitation and have the potential to promote severe heat waves, dry spells and floods. To analyze how soil moisture is simulated in recent general circulation models (GCMs), soil moisture data from a 23 model ensemble of Atmospheric Model Intercomparison Project (AMIP) type simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are examined for the period 1979 to 2008 with regard to parameterization and statistical characteristics. With respect to soil moisture processes, the models vary in their maximum soil and root depth, the number of soil layers, the water-holding capacity, and the ability to simulate freezing which all together leads to very different soil moisture characteristics. Differences in the water-holding capacity are resulting in deviations in the global median soil moisture of more than one order of magnitude between the models. In contrast, the variance shows similar absolute values when comparing the models to each other. Thus, the input and output rates by precipitation and evapotranspiration, which are computed by the atmospheric component of the models, have to be in the same range. Most models simulate great variances in the monsoon areas of the tropics and north western U.S., intermediate variances in Europe and eastern U.S., and low variances in the Sahara, continental Asia, and central and western Australia. In general, the variance decreases with latitude over the high northern latitudes. As soil moisture trends in the models were found to be negligible, the soil moisture anomalies were calculated by subtracting the 30 year monthly climatology from the data. The length of the memory is determined from the soil moisture anomalies by calculating the first insignificant autocorrelation for ascending monthly lags (insignificant autocorrelation folding time). The models show a great spread of autocorrelation length from a few months in

  2. Bioimpedance Spectroscopy for Assessment of Volume Status in Patients before and after General Anaesthesia

    Science.gov (United States)

    Ernstbrunner, Matthäus; Kostner, Lisa; Kimberger, Oliver; Wabel, Peter; Säemann, Marcus; Markstaller, Klaus; Fleischmann, Edith; Kabon, Barbara; Hecking, Manfred

    2014-01-01

    Background Technically assisted assessment of volume status before surgery may be useful to direct intraoperative fluid administration. We therefore tested a recently developed whole-body bioimpedance spectroscopy device to determine pre- to postoperative fluid distribution. Methods Using a three-compartment physiologic tissue model, the body composition monitor (BCM, Fresenius Medical Care, Germany) measures total body fluid volume, extracellular volume, intracellular volume and fluid overload as surplus or deficit of ‘normal’ extracellular volume. BCM-measurements were performed before and after standardized general anaesthesia for gynaecological procedures (laparotomies, laparoscopies and vaginal surgeries). BCM results were blinded to the attending anaesthesiologist and data analysed using the 2-sided, paired Student’s t-test and multiple linear regression. Results In 71 females aged 45±15 years with body weight 67±13 kg and duration of anaesthesia 154±68 min, pre- to postoperative fluid overload increased from −0.7±1.1 L to 0.1±1.0 L, corresponding to −5.1±7.5% and 0.8±6.7% of normal extracellular volume, respectively (both p<0.001), after patients had received 1.9±0.9 L intravenous crystalloid fluid. Perioperative urinary excretion was 0.4±0.3 L. The increase in extracellular volume was paralleled by an increase in total body fluid volume, while intracellular volume increased only slightly and without reaching statistical significance (p = 0.15). Net perioperative fluid balance (administered fluid volume minus urinary excretion) was significantly associated with change in extracellular volume (r2 = 0.65), but was not associated with change in intracellular volume (r2 = 0.01). Conclusions Routine intraoperative fluid administration results in a significant, and clinically meaningful increase in the extracellular compartment. BCM-measurements yielded plausible results and may become useful to guide intraoperative fluid therapy in

  3. Climate Simulations from Super-parameterized and Conventional General Circulation Models with a Third-order Turbulence Closure

    Science.gov (United States)

    Xu, Kuan-Man; Cheng, Anning

    2014-05-01

    A high-resolution cloud-resolving model (CRM) embedded in a general circulation model (GCM) is an attractive alternative for climate modeling because it replaces all traditional cloud parameterizations and explicitly simulates cloud physical processes in each grid column of the GCM. Such an approach is called "Multiscale Modeling Framework." MMF still needs to parameterize the subgrid-scale (SGS) processes associated with clouds and large turbulent eddies because circulations associated with planetary boundary layer (PBL) and in-cloud turbulence are unresolved by CRMs with horizontal grid sizes on the order of a few kilometers. A third-order turbulence closure (IPHOC) has been implemented in the CRM component of the super-parameterized Community Atmosphere Model (SPCAM). IPHOC is used to predict (or diagnose) fractional cloudiness and the variability of temperature and water vapor at scales that are not resolved on the CRM's grid. This model has produced promised results, especially for low-level cloud climatology, seasonal variations and diurnal variations (Cheng and Xu 2011, 2013a, b; Xu and Cheng 2013a, b). Because of the enormous computational cost of SPCAM-IPHOC, which is 400 times of a conventional CAM, we decided to bypass the CRM and implement the IPHOC directly to CAM version 5 (CAM5). IPHOC replaces the PBL/stratocumulus, shallow convection, and cloud macrophysics parameterizations in CAM5. Since there are large discrepancies in the spatial and temporal scales between CRM and CAM5, IPHOC used in CAM5 has to be modified from that used in SPCAM. In particular, we diagnose all second- and third-order moments except for the fluxes. These prognostic and diagnostic moments are used to select a double-Gaussian probability density function to describe the SGS variability. We also incorporate a diagnostic PBL height parameterization to represent the strong inversion above PBL. The goal of this study is to compare the simulation of the climatology from these three

  4. On the dynamics of droughts in northeast Brazil - Observations, theory and numerical experiments with a general circulation model

    Science.gov (United States)

    Moura, A. D.; Shukla, J.

    1981-01-01

    The establishment of a thermally direct local circulation which has its ascending branch at about 10 deg N and its descending branch over northeast Brazil and the adjoining oceanic region is proposed as a possible mechanism for the occurrence of severe droughts over this Brazilian region. The driving for this anomalous circulation is provided by enhanced moist convection due to the effect of warmer sea surface anomalies over the northern tropical Atlantic and cooling associated with colder sea surface temperature anomalies in the southern tropical Atlantic. A simple primitive equation model is used to calculate the frictionally-controlled and thermally-driven circulation due to a prescribed heating function in a resting atmosphere, and a series of numerical experiments are carried out to test the sensitivity of the Goddard Laboratory's model to prescribed sea surface temperature anomalies over the tropical Atlantic.

  5. The Surface Energy Balance at Local and Regional Scales-A Comparison of General Circulation Model Results with Observations.

    Science.gov (United States)

    Garratt, J. R.; Krummel, P. B.; Kowalczyk, E. A.

    1993-06-01

    Aspects of the mean monthly energy balance at continental surfaces are examined by appeal to the results of general circulation model (GCM) simulations, climatological maps of surface fluxes, and direct observations. Emphasis is placed on net radiation and evaporation for (i) five continental regions (each approximately 20°×150°) within Africa, Australia, Eurasia, South America, and the United States; (ii) a number of continental sites in both hemispheres. Both the mean monthly values of the local and regional fluxes and the mean monthly diurnal cycles of the local fluxes are described. Mostly, GCMs tend to overestimate the mean monthly levels of net radiation by about 15% -20% on an annual basis, for observed annual values in the range 50 to 100 Wm2. This is probably the result of several deficiencies, including (i) continental surface albedos being undervalued in a number of the models, resulting in overestimates of the net shortwave flux at the surface (though this deficiency is steadily being addressed by modelers); (ii) incoming shortwave fluxes being overestimated due to uncertainties in cloud schemes and clear-sky absorption; (iii) land-surface temperatures being under-estimated resulting in an underestimate of the outgoing longwave flux. In contrast, and even allowing for the poor observational base for evaporation, there is no obvious overall bias in mean monthly levels of evaporation determined in GCMS, with one or two exceptions. Rather, and far more so than with net radiation, there is a wide range in values of evaporation for all regions investigated. For continental regions and at times of the year of low to moderate rainfall, there is a tendency for the simulated evaporation to be closely related to the precipitation-this is not surprising. In contrast, for regions where there is sufficient or excessive rainfall, the evaporation tends to follow the behavior of the net radiation. Again, this is not surprising given the close relation between

  6. Lack of gender effects on gray matter volumes in adolescent generalized anxiety disorder.

    Science.gov (United States)

    Liao, Mei; Yang, Fan; Zhang, Yan; He, Zhong; Su, Linyan; Li, Lingjiang

    2014-02-01

    Previous epidemiological and clinical studies have reported gender differences in prevalence and clinical features of generalized anxiety disorder (GAD). Such gender differences in clinical phenomenology suggest that the underlying neural circuitry of GAD could also be different in males and females. This study aimed to explore the possible gender effect on gray matter volumes in adolescents with GAD. Twenty-six adolescent GAD patients and 25 healthy controls participated and underwent high-resolution structural magnetic resonance scans. Voxel-based morphometry (VBM) was used to investigate gray matter alterations. Our study revealed a significant diagnosis main effect in the right putamen, with larger gray matter volumes in GAD patients compared to healthy controls, and a significant gender main effect in the left precuneus/posterior cingulate cortex, with larger gray matter volumes in males compared to females. No gender-by-diagnosis interaction effect was found in this study. The relatively small sample size in this study might result in a lack of power to demonstrate gender effects on brain structure in GAD. The results suggested that there are differences in gray matter volumes between males and females, but gray matter volumes in GAD are not influenced by gender. © 2013 Published by Elsevier B.V.

  7. Application of General Circulation Models to Assess the Potential Impact of Climate Change on Potential Distribution and Relative Abundance of Melanoplus sanguinipes (Fabricius (Orthoptera: Acrididae in North America

    Directory of Open Access Journals (Sweden)

    O. Olfert

    2011-01-01

    Full Text Available Climate is the dominant factor determining the distribution and abundance of most insect species. In recent years, the issue of climatic changes caused by human activities and the effects on agriculture has raised concern. General circulation model scenarios were applied to a bioclimatic model of Melanoplus sanguinipes to assess the potential impact of global warming on its distribution and relative abundance. Native to North America and widely distributed, M. sanguinipes is one of the grasshopper species of the continent most responsible for economic damage to grain, oilseed, pulse, and forage crops. Compared to predicted range and distribution under current climate conditions, model results indicated that M. sanguinipes would have increased range and relative abundance under the three general circulation model scenarios in more northern regions of North America. Conversely, model output predicted that the range of this crop pest could contract in regions where climate conditions became limiting.

  8. Catalog of physical protection equipment. Book 3: Volume VII. General purpose display components

    International Nuclear Information System (INIS)

    1977-06-01

    A catalog of commercially available physical protection equipment has been prepared under MITRE contract AT(49-24)-0376 for use by the U. S. Nuclear Regulatory Commission (NRC). Included is information on barrier structures and equipment, interior and exterior intrusion detection sensors, entry (access) control devices, surveillance and alarm assessment equipment, contraband detection sensors, automated response equipment, general purpose displays and general purpose communications, with one volume devoted to each of these eight areas. For each item of equipment the information included consists of performance, physical, cost and supply/logistics data. The entire catalog is contained in three notebooks for ease in its use by licensing and inspection staff at NRC

  9. Standard technical specifications General Electric plants, BWR/6. Volume 1, Revision 1

    International Nuclear Information System (INIS)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/6 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  10. Standard technical specifications: General Electric plants, BWR/4. Volume 1, Revision 1: Specifications

    International Nuclear Information System (INIS)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/4 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  11. Effect of different saline chaser volumes and flow rates on intravascular contrast enhancement in CT using a circulation phantom

    International Nuclear Information System (INIS)

    Behrendt, Florian F.; Bruners, Philipp; Keil, Sebastian; Plumhans, Cedric; Mahnken, Andreas H.; Das, Marco; Ackermann, Diana; Guenther, Rolf W.; Muehlenbruch, Georg

    2010-01-01

    Purpose: To evaluate the influence of different saline chaser volumes and different saline chaser flow rates on the intravascular contrast enhancement in MDCT. Materials and methods: In a physiological flow phantom contrast medium (120 ml, 300 mgI/ml, Ultravist 300) was administered at a flow rate of 6 ml/s followed by different saline chaser volumes (0, 30, 60 and 90 ml) at the same injection rate or followed by a 30-ml saline chaser at different injection rates (2, 4, 6 and 8 ml/s). Serial CT-scans at a level covering the pulmonary artery, the ascending and the descending aorta replica were obtained. Time-enhancement curves were computed and both pulmonary and aortic peak enhancement and peak time were determined. Results: Compared to contrast medium injection without a saline chaser the pushing with a saline chaser (30, 60, and 90 ml) resulted in a statistically significant increased pulmonary peak enhancement (all p = 0.008) and prolonged peak time (p = 0.032, p = 0.024 and p = 0.008, respectively). Highest aortic peak enhancement values were detected for a saline chaser volume of 30 ml. A saline chaser flow rate of 8 ml/s resulted in the highest pulmonary peak enhancement values compared to flow rates of 2, 4 and 6 ml/s (all p = 0.008). Aortic peak enhancement showed the highest values for a flow rate of 6 ml/s. Conclusion: A saline chaser volume of 30 ml and an injection rate of 6 ml/s are sufficient to best improve vascular contrast enhancement in the pulmonary artery and the aorta in MDCT.

  12. Acute response of circulating vascular regulating microRNAs during and after high-intensity and high-volume cycling in children

    Directory of Open Access Journals (Sweden)

    Yvonne eKilian

    2016-03-01

    Full Text Available Aim: The aim of the present study was to analyze the response of vascular circulating microRNAs (miRNAs; miR-16, miR-21, miR-126 and the VEGF mRNA following an acute bout of HIIT and HVT in children. Methods: Twelve healthy competitive young male cyclists (14.4 ± 0.8 yrs; 57.9 ± 9.4 ml·min-1·kg-1 peak oxygen uptake performed one session of high intensity 4x4 min intervals (HIIT at 90-95% peak power output, each interval separated by 3 min of active recovery, and one high volume session (HVT consisting of a constant load exercise for 90 min at 60% peak power output. Capillary blood from the earlobe was collected under resting conditions, during exercise (d1 = 20 min, d2 = 30 min, d3 = 60 min, and 0, 30, 60, 180 min after the exercise to determine miR-16, -21, -126 and VEGF mRNA.Results: HVT significantly increased miR-16 and miR-126 during and after the exercise compared to pre values, whereas HIIT showed no significant influence on the miRNAs compared to pre values. VEGF mRNA significantly increased during and after HIIT (d1, 30`, 60`, 180` and HVT (d3, 0`, 60`. Conclusion: Results of the present investigation suggest a volume dependent exercise regulation of vascular regulating miRNAs (miR-16, miR-21, miR-126 in children. In line with previous data, our data show that acute exercise can alter circulating miRNAs profiles that might be used as novel biomarkers to monitor acute and chronic changes due to exercise in various tissues.

  13. Assessment of a general methodology for the analysis of natural circulation stability with water at supercritical pressure

    International Nuclear Information System (INIS)

    Debrah, K. S.

    2014-07-01

    To advance nuclear energy to meet future energy needs, the concept of Super Critical Water-Cooled Reactor (SCWR) as part or Generation IV (Gen IV) reactors was introduced with plans to deploy by 2030. Supercritical water-cooled reactors pose new challenges in stability and natural circulation phenomena at supercritical pressures because of the strong variability of thermodynamic and thermo-physical properties. ln this research, included in the frame work of the International Atomic Energy Agency (lAEA) fellowship and Coordinated Research Project (CRP) on H eat transfer Behavior and Thermo hydraulics Codes Testing for SCWRs , the natural circulation H 2 O experimental data at supercritical pressures of 25 MPa obtained at the China Institute of Atomic Energy (CIAE) of China, was used to evaluate the predictions of different system codes: RELAP5/MOD3.3, STAR-CCM+ as well as three (3) different and independent developed in-house codes (Ishii-sup loop, NCLoop T ran and NCLoop L ine). Stability analyses of an idealized loop (loop equivalent to CIAE natural circulation loop) of uniform diameter equivalent to the CIAE natural circulation loop at 25 MPa was performed using RELAP5 and an in-house code (Ishii-sup Loop). It was found for both RELAP and Ishii-sup Loop that, when heat structures are accounted for in models equipped with heat transfer and friction correlations for 'normal' fluids, the comparison with experimental data is not completely satisfactory because the observed experimental oscillations were delayed in simulation. It has also been found that the stability margin was slightly earlier than the peak of the flow rate-power curve at a given inlet enthalpy. Results from STAR-CCM+ was also compared with results obtained with RELAP5 and the in-house code of NCLoop. Even though STAR-CCM+ predicted a lower flow rate than the in-house codes, all codes exhibited the ability to predict the instability and results from all codes compared favorably. Stability

  14. Associations among circulating branched-chain amino acids and tyrosine with muscle volume and glucose metabolism in individuals without diabetes.

    Science.gov (United States)

    Honda, Tatsuro; Kobayashi, Yoshinao; Togashi, Kenji; Hasegawa, Hiroshi; Iwasa, Motoh; Taguchi, Osamu; Takei, Yoshiyuki; Sumida, Yasuhiro

    2016-05-01

    Amino acid metabolites, including branched-chain amino acids (BCAA) and tyrosine (Tyr), affect glucose metabolism. The effects of BCAA on insulin resistance in patients with diabetes seem to conflict with mechanisms determined in animal models and cultured cells. The aim of this study was to clarify the controversy surrounding the effects of BCAA by investigating the physiological effects of BCAA and Tyr on glucose metabolism in healthy community dwellers. We investigated associations among BCAA and Tyr and metabolic parameters in 78 residents (median age, 52 y) of Mie, Japan, who did not have prediabetes, diabetes, or a body mass index >30 kg/m(2). Muscle volume, serum BCAA, and Tyr levels were higher in men than in women (n = 32 and 46, respectively; all P BCAA positively with muscle volume (regression coefficient/t/p/95% confidence interval, 281.8/3.7/0.0004/129.7-433.8), fasting blood glucose (FBG; 12699.4/3.22/0.0020/4830.9-20567.8), fasting immunoreactive insulin (IRI; 8505.1/2.75/0.0078/2322.5-14687.6), and homeostasis model assessment of β-cell function (HOMA-β; 893.6/2.58/0.0122/201.8-1585.5), and negatively with the HOMA-insulin resistance (HOMA-IR; -9294.1/-2.89/0.0052/-15711.0 to -2877.1). Tyr positively correlated with fasting IRI (26/2.77/0.0072/7.3-44.7). Insulin sensitivity and muscle volume are positively associated with BCAA in individuals without diabetes. In turn, BCAA correlate with increased FBG and fasting IRI levels. Tyr correlated with fasting IRI, but not with insulin sensitivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Definition of the key target volume in radiosurgical management of arteriovenous malformations: a new dynamic concept based on angiographic circulation time.

    Science.gov (United States)

    Valle, Ramiro Del; Zenteno, Marco; Jaramillo, José; Lee, Angel; De Anda, Salvador

    2008-12-01

    The cumulative experience worldwide indicates complete radiosurgical obliteration rates of brain arteriovenous malformations (AVMs) ranging from 35 to 90%. The purpose of this study was to propose a strategy to increase the obliteration rate for AVMs through the dynamic definition of the key target volume (KTV). A prospective series of patients harboring an AVM was assessed using digital subtraction angiography in which a digital counter was used to measure the several stages of the frame-by-frame circulation time. All the patients were analyzed using dynamic measurement planning to define the KTV, corresponding to the volume of the shunt with the least vascular resistance and the earliest venous drainage. All patients underwent catheter-based angiography, a subgroup was additionally assessed by means of a superselective catheterization, and among these a further subgroup received embolization. The shunts were also categorized according to their angioarchitectural type: fistulous, plexiform, or mixed. The authors applied the radiosurgery-based grading system (RBGS) as well to find a correlation with the obliteration rate. This series includes 44 patients treated by radiosurgery; global angiography was performed for all patients, including dynamic measurement planning. Eighty-four percent of them underwent superselective catheterization, and 50% of the total population underwent embolization. In the embolized arm of the study, the pretreatment volume was up to 120 ml. In patients with a single treatment, the mean volume was 8.5 ml, and the median volume was 6.95 +/- 4.56 ml (mean +/- standard deviation), with a KTV of up to 15 ml. For prospectively staged radiosurgery, the mean KTV was 28 ml. The marginal radiation dose was 18-22 Gy, with a mean of dose 20 Gy. The mean RBGS score was 1.70. The overall obliteration rate was 91%, including the repeated radiosurgery group (4 patients), in which 100% showed complete obliteration. The overall permanent deficit was 2 of

  16. Determination of the volume of circulating blood by means of in vivo labelled red blood cells with 99mTc pertechnetate and use of a Bulgarian kit

    International Nuclear Information System (INIS)

    Kostadinova, I.; Shejretova, E.; Pencheva, V.; Udvareva, N.

    1988-01-01

    A method was proposed for determination of the circulating blood volume (CBV) by means of in vivo labelled red blood cells, which was compared to the routine method with 51 Cr-sodium chromate. To the patients concecutively was given 1 g of potassium perchlorate (for blocking of the organs, which actively absorbed the perchnetate ion) and 500 mkg of tin pyrophosphate (Bulgarian kit) with subsequent labelling of the red blood cells with 99m Tc-pertechnate (1,8 - 3,7 MBq). The volume of the red blood cells, and hence also CBV, was measured with the use of a modified by the authors formula, in which correction for the individual effectiveness of the cell labelling was done. In comparison with the standard method for in vitro labelling of the red blood cells with 51 Cr sodium chromate, the method proposed gave an insignificant difference of 4,16%, but when compared to the commercial tin pyrophosphate (of the firm Mallinckrot - Holland), the Bulgarian kit displayed equivalent qualities. It was concluded that the method has a high accuracy and was easy for execution, cause a low radiation burden of the patient and is suitable for application in nuclear cardiology and radionuclide angiography

  17. Role of the Atmospheric General Circulation on the Temporal Variability of the Aerosol Distribution over Dakar (Senegal)

    Science.gov (United States)

    Senghor, Habib; Machu, Eric; Hourdin, Frederic; Thierno Gaye, Amadou; Gueye, Moussa; Simina Drame, Mamadou

    2016-04-01

    The natural or anthropogenic aerosols play an important role on the climate system and the human health through their optical and physical properties. To evaluate the potential impacts of these aerosols, it is necessary to better understand their temporal variability in relation with the atmospheric ciculation. Some previous case studies have pointed out the influence of the sea-breeze circulation on the vertical distribution of the aerosols along the Western African coast. In the present work, Lidar (Ceilometer CL31; located at Dakar) data are used for the period 2012-2014 together with Level-3 data from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) between 2007 and 2014 for studying the seasonal cycle of the vertical distribution of aerosols over Dakar (17.5°W, 14.74°N). Both instruments show strong seasonal variability with a maximum of aerosol occurrence in May over Dakar. The CL31 shows a crucial impact of sea-breeze circulation on the diurnal cycle of the Mixed Atmospheric Boundary Layer and a strong dust signal in spring in the nocturnal low-level jet (LLJ) located between 500 and 1000 m altitudes over Dakar.

  18. Predicting oropharyngeal tumor volume throughout the course of radiation therapy from pretreatment computed tomography data using general linear models.

    Science.gov (United States)

    Yock, Adam D; Rao, Arvind; Dong, Lei; Beadle, Beth M; Garden, Adam S; Kudchadker, Rajat J; Court, Laurence E

    2014-05-01

    The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: -11.6%-23.8%) and 14.6% (range: -7.3%-27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: -6.8%-40.3%) and 13.1% (range: -1.5%-52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: -11.1%-20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography images and facilitate improved treatment management.

  19. Study on magnetic field mapping within cylindrical center volume of general magnet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of)

    2016-06-15

    For the magnetic field analysis or design, it is important to know the behavior of the magnetic field in an interesting space. Magnetic field mapping becomes a useful tool for the study of magnetic field. In this paper, a numerical way for mapping the magnetic field within the cylindrical center volume of magnet is presented, based on the solution of the Laplace's equation in the cylindrical coordinate system. The expression of the magnetic field can be obtained by the magnetic flux density, which measured in the mapped volume. According to the form of the expression, the measurement points are arranged with the parallel cylindrical line (PCL) method. As example, the magnetic flux density generated by an electron cyclotron resonance ion source (ECRIS) magnet and a quadrupole magnet were mapped using the PCL method, respectively. The mapping results show the PCL arrangement method is feasible and convenience to map the magnetic field within a cylindrical center volume generated by the general magnet.

  20. Best-practices guidelines for L2PSA development and applications. Volume 1 - General

    International Nuclear Information System (INIS)

    Raimond, E.; Pichereau, F.; Durin, T.; Rahni, N.; Loeffler, H.; Roesch, O.; Lajtha, G.; Santamaria, C.S.; Dienstbier, J.; Rydl, A.; Holmberg, J.E.; Lindholm, I.; Maennistoe, I.; Pauli, E.M.; Dirksen, G.; Grindon, L.; Peers, K.; Bassi, C.; Hulqvist, G.; Parozzi, F.; Polidoro, F.; Cazzoli, E.; Vitazkova, J.; Burgazzi, L.; Brinkman, H.; Seidel, A.; Schubert, B.; Wohlstein, R.; Guentay, S.; Oury, L.; Ngatchou, C.; Siltanen, S.; Niemela, I.; Routamo, T.; Vincon, L.; Helstroem, P.

    2010-01-01

    The objective of this coordinated action was to develop best practice guidelines for the performance and application of Level 2 PSA with a view to achieve harmonisation at EU level and to allow a meaningful and practical uncertainty evaluation in a Level 2 PSA. Specific relationships with communities in charge of nuclear reactor safety (utilities, safety authorities, vendors, and research or services companies) have been established in order to define the current needs in terms of guidelines for Level 2 PSA development and application. An international workshop was organised in Hamburg, with the support of VATTENFALL, in November 2008. The Level 2 PSA experts from ASAMPSA2 project partners have proposed some guidelines for the development and application of L2PSA based on their experience, open literature, and on information available from international cooperation (EC Severe Accident network of Excellence - SARNET, IAEA standards, OECD-NEA publications and workshop). There are a large number of technical issues addressed in the guideline which are not all covered with the same level of detail in the first version of the guideline. This version was submitted for external review in November 2010 by severe accident and PSA experts (especially from SARNET and OECD-NEA members). The feedback of the external review will be dis cussed during an international open works hop planned for March 2011 and all outcomes will be taken into consideration in the final version of this guideline (June 2011). The guideline includes 3 volumes: - Volume 1 - General considerations on L2PSA. - Volume 2 - Technical recommendations for Gen II and III reactors. - Volume 3 - Specific considerations for future reactors (Gen IV). The recommendations formulated in the guideline should not be considered as 'mandatory' but should help Level 2 PSA developers to achieve high quality studies with limited time and resources. It may also help Level 2 PSA reviewers by positioning one specific study in

  1. A general multiblock Euler code for propulsion integration. Volume 1: Theory document

    Science.gov (United States)

    Chen, H. C.; Su, T. Y.; Kao, T. J.

    1991-01-01

    A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.

  2. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    Science.gov (United States)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  3. Mixed finite element - discontinuous finite volume element discretization of a general class of multicontinuum models

    Science.gov (United States)

    Ruiz-Baier, Ricardo; Lunati, Ivan

    2016-10-01

    We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation

  4. ENSO dynamics and seasonal cycle in the tropical Pacific as simulated by the ECHAM4/OPYC3 coupled general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Oberhuber, J.M. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Roeckner, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1996-07-01

    The new version of the atmospheric general circulation model, ECHAM4, at the Max Planck Institute for Meteorology, Hamburg, has been coupled to the OPYC3 isopycnic global ocean general circulation and sea ice model (Oberhuber 1993) in a multi-century present-day climate simulation. Nonseasonal constant flux adjustment for heat and freshwater was employed to ensure a long-term annual mean state close to present day climatology. This paper examines the simulated upper ocean seasonal cycle and interannual variability in the tropical Pacific for the first 100 years. The coupled model`s seasonal cycle of tropical Pacific SSTs is in good agreement with the observations with respect to both the warm pool variation and the Central and Eastern Pacific, with significant errors (up to -2 K) only in the cold tongue around April. The cold phase cold tongue extent and strength is as observed, and for this the heat flux adjustment does not play the decisive role; corrections beyond {+-}40 Wm{sup -2} are rare and only occupy small areas, such as near coasts. A well established south Pacific convergence zone is characteristic for the new AGCM version. Apart from extending the south-east trades seasonal maximum to midbasin, windstress pattern and strength are well captured. The subsurface structure is overall consistent with the observed, with a realistically sharp thermocline at about 150 m depth in the west and rising to the surface from 160 W to 100 W.

  5. Reconstruction of the 3D representative volume element from the generalized two-point correlation function

    International Nuclear Information System (INIS)

    Staraselski, Y; Brahme, A; Inal, K; Mishra, R K

    2015-01-01

    This paper presents the first application of three-dimensional (3D) cross-correlation microstructure reconstruction implemented for a representative volume element (RVE) to facilitate the microstructure engineering of materials. This has been accomplished by developing a new methodology for reconstructing 3D microstructure using experimental two-dimensional electron backscatter diffraction data. The proposed methodology is based on the analytical representation of the generalized form of the two-point correlation function—the distance-disorientation function (DDF). Microstructure reconstruction is accomplished by extending the simulated annealing techniques to perform three term reconstruction with a minimization of the DDF. The new 3D microstructure reconstruction algorithm is employed to determine the 3D RVE containing all of the relevant microstructure information for accurately computing the mechanical response of solids, especially when local microstructural variations influence the global response of the material as in the case of fracture initiation. (paper)

  6. Implementation of Finite Volume based Navier Stokes Algorithm Within General Purpose Flow Network Code

    Science.gov (United States)

    Schallhorn, Paul; Majumdar, Alok

    2012-01-01

    This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.

  7. Differences in the volume of pharmaceutical advertisements between print general medical journals.

    Science.gov (United States)

    Gettings, Jennifer; O'Neill, Braden; Chokshi, Dave A; Colbert, James A; Gill, Peter; Lebovic, Gerald; Lexchin, Joel; Persaud, Navindra

    2014-01-01

    Pharmaceutical advertisements have been argued to provide revenue that medical journals require but they are intended to alter prescribing behaviour and they are known to include low quality information. We determined whether a difference exists in the current level of pharmaceutical advertising in print general medical journals, and we estimated the revenue generated from print pharmaceutical advertising. Six print general medical journals in Canada, the United States, and the United Kingdom were sampled between 2007 and 2012. The number of advertisements and other journal content in selected issues of the Canadian Medical Association Journal (CMAJ), Canadian Family Physician (CFP), Journal of the American Medical Association (JAMA), New England Journal of Medicine (NEJM), British Medical Journal (BMJ), and Lancet were determined. Revenue gained from pharmaceutical advertising was estimated using each journal's 2013 advertising price list. The two Canadian journals sampled (CMAJ, CFP) contained five times more advertisements than the two American journals (JAMA, NEJM), and two British journals (BMJ, Lancet) (padvertisements ranged from £0.025 million (for Lancet) to £3.8 million (for JAMA). The cost savings due to revenue from pharmaceutical advertising to each individual subscriber ranged from £0.02 (for Lancet) to £3.56 (for CFP) per issue. The volume of pharmaceutical advertisements differs between general medical journals, with the two Canadian journals sampled containing the most advertisements. International and temporal variations suggest that there is an opportunity for all general medical journals to reduce the number of pharmaceutical advertisements, explore other sources of revenue, and increase transparency regarding sources of revenue.

  8. Differences in the volume of pharmaceutical advertisements between print general medical journals.

    Directory of Open Access Journals (Sweden)

    Jennifer Gettings

    Full Text Available BACKGROUND: Pharmaceutical advertisements have been argued to provide revenue that medical journals require but they are intended to alter prescribing behaviour and they are known to include low quality information. We determined whether a difference exists in the current level of pharmaceutical advertising in print general medical journals, and we estimated the revenue generated from print pharmaceutical advertising. METHODS: Six print general medical journals in Canada, the United States, and the United Kingdom were sampled between 2007 and 2012. The number of advertisements and other journal content in selected issues of the Canadian Medical Association Journal (CMAJ, Canadian Family Physician (CFP, Journal of the American Medical Association (JAMA, New England Journal of Medicine (NEJM, British Medical Journal (BMJ, and Lancet were determined. Revenue gained from pharmaceutical advertising was estimated using each journal's 2013 advertising price list. FINDINGS: The two Canadian journals sampled (CMAJ, CFP contained five times more advertisements than the two American journals (JAMA, NEJM, and two British journals (BMJ, Lancet (p<0.0001. The estimated annual revenue from pharmaceutical advertisements ranged from £0.025 million (for Lancet to £3.8 million (for JAMA. The cost savings due to revenue from pharmaceutical advertising to each individual subscriber ranged from £0.02 (for Lancet to £3.56 (for CFP per issue. CONCLUSION: The volume of pharmaceutical advertisements differs between general medical journals, with the two Canadian journals sampled containing the most advertisements. International and temporal variations suggest that there is an opportunity for all general medical journals to reduce the number of pharmaceutical advertisements, explore other sources of revenue, and increase transparency regarding sources of revenue.

  9. Differences in the Volume of Pharmaceutical Advertisements between Print General Medical Journals

    Science.gov (United States)

    Gettings, Jennifer; O'Neill, Braden; Chokshi, Dave A.; Colbert, James A.; Gill, Peter; Lebovic, Gerald; Lexchin, Joel; Persaud, Navindra

    2014-01-01

    Background Pharmaceutical advertisements have been argued to provide revenue that medical journals require but they are intended to alter prescribing behaviour and they are known to include low quality information. We determined whether a difference exists in the current level of pharmaceutical advertising in print general medical journals, and we estimated the revenue generated from print pharmaceutical advertising. Methods Six print general medical journals in Canada, the United States, and the United Kingdom were sampled between 2007 and 2012. The number of advertisements and other journal content in selected issues of the Canadian Medical Association Journal (CMAJ), Canadian Family Physician (CFP), Journal of the American Medical Association (JAMA), New England Journal of Medicine (NEJM), British Medical Journal (BMJ), and Lancet were determined. Revenue gained from pharmaceutical advertising was estimated using each journal's 2013 advertising price list. Findings The two Canadian journals sampled (CMAJ, CFP) contained five times more advertisements than the two American journals (JAMA, NEJM), and two British journals (BMJ, Lancet) (padvertisements ranged from £0.025 million (for Lancet) to £3.8 million (for JAMA). The cost savings due to revenue from pharmaceutical advertising to each individual subscriber ranged from £0.02 (for Lancet) to £3.56 (for CFP) per issue. Conclusion The volume of pharmaceutical advertisements differs between general medical journals, with the two Canadian journals sampled containing the most advertisements. International and temporal variations suggest that there is an opportunity for all general medical journals to reduce the number of pharmaceutical advertisements, explore other sources of revenue, and increase transparency regarding sources of revenue. PMID:24416286

  10. Some considerations concerning volume-modulated arc therapy: a stepping stone towards a general theory

    International Nuclear Information System (INIS)

    Webb, S; McQuaid, D

    2009-01-01

    In this paper it is formally shown that the dynamic multileaf collimator (MLC) IMRT delivery technique remains valid if the MLC is supported on a 1D moving platform. It is also shown that, in such circumstances, it is always time preferable to deliver overlapping modulating fields as a single swept field rather than as separate fields. The most general formulism is presented and then related to simpler equations in limiting cases. The paper explains in detail how a 'small-arc approximation' can be invoked to relate the 1D linear theory to the MLC-on-moving-platform-(gantry) delivery technique involving rotation therapy and known as volume-modulated arc therapy (VMAT). It is explained how volume-modulated arc therapy delivered with open unmodulated fields and which can deliver conformal dose distributions can be interpreted as an IMRT delivery. The (Elekta adopted) term VMAT will be used in a generic sense to include a similar (Varian) method known as RapidArc. Approximate expressions are derived for the 'amount of modulation' possible in a VMAT delivery. This paper does not discuss the actual VMAT planning but gives an insight at a deep level into VMAT delivery. No universal theory of VMAT is known in the sense that there is no theory that can predict precisely the performance of a VMAT delivery in terms of the free parameters available (variable gantry speed, variable fluence-delivery rate, set of MLC shapes, MLC orientation, number of arcs, coplanarity versus non-coplanarity, etc). This is in stark contrast to the situation with several other IMRT delivery techniques where such theoretical analyses are known. In this paper we do not provide such a theory; the material presented is a stepping stone on the path towards this.

  11. Predicting oropharyngeal tumor volume throughout the course of radiation therapy from pretreatment computed tomography data using general linear models

    International Nuclear Information System (INIS)

    Yock, Adam D.; Kudchadker, Rajat J.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Court, Laurence E.

    2014-01-01

    Purpose: The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Methods: Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. Results: In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: −11.6%–23.8%) and 14.6% (range: −7.3%–27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: −6.8%–40.3%) and 13.1% (range: −1.5%–52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: −11.1%–20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. Conclusions: A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography

  12. The balance of kinetic and total energy simulated by the OSU two-level atmospheric general circulation model for January and July

    Science.gov (United States)

    Wang, J.-T.; Gates, W. L.; Kim, J.-W.

    1984-01-01

    A three-year simulation which prescribes seasonally varying solar radiation and sea surface temperature is the basis of the present study of the horizontal structure of the balances of kinetic and total energy simulated by Oregon State University's two-level atmospheric general circulation model. Mechanisms responsible for the local energy changes are identified, and the energy balance requirement's fulfilment is examined. In January, the vertical integral of the total energy shows large amounts of external heating over the North Pacific and Atlantic, together with cooling over most of the land area of the Northern Hemisphere. In July, an overall seasonal reversal is found. Both seasons are also characterized by strong energy flux divergence in the tropics, in association with the poleward transport of heat and momentum.

  13. An idealized radiative transfer scheme for use in a mechanistic general circulation model from the surface up to the mesopause region

    International Nuclear Information System (INIS)

    Knoepfel, Rahel; Becker, Erich

    2011-01-01

    A new and numerically efficient method to compute radiative flux densities and heating rates in a general atmospheric circulation model is presented. Our method accommodates the fundamental differences between the troposphere and middle atmosphere in the long-wave regime within a single parameterization that extends continuously from the surface up to the mesopause region and takes the deviations from the gray limit and from the local thermodynamic equilibrium into account. For this purpose, frequency-averaged Eddington-type transfer equations are derived for four broad absorber bands. The frequency variation inside each band is parameterized by application of the Elsasser band model extended by a slowly varying envelope function. This yields additional transfer equations for the perturbation amplitudes that are solved numerically along with the mean transfer equations. Deviations from local thermodynamic equilibrium are included in terms of isotropic scattering, calculating the single scattering albedo from the two-level model for each band. Solar radiative flux densities are computed for four energetically defined bands using the simple Beer-Bougert-Lambert relation for absorption within the atmosphere. The new scheme is implemented in a mechanistic general circulation model from the surface up to the mesopause region. A test simulation with prescribed concentrations of the radiatively active constituents shows quite reasonable results. In particular, since we take the full surface energy budget into account by means of a swamp ocean, and since the internal dynamics and turbulent diffusion of the model are formulated in accordance with the conservation laws, an equilibrated climatological radiation budget is obtained both at the top of the atmosphere and at the surface.

  14. [Effect of dexmedetomidine and midazolam on respiration and circulation functions in patients undergoing open heart surgery under acupuncture-assisted general anesthesia].

    Science.gov (United States)

    Tang, Wei; Wang, Jian; Fu, Guo-Qiang; Yuan, Lan

    2014-06-01

    To evaluate the effect of Dexmedetomidine and Midazolam on respiratory and circulation in patients experiencing open heart surgery under acupuncture-assisted general anesthesia. Sixty patients undergoing open heart surgery (cardiac valve replacement surgery and aortic valve replacement surgery) were randomly and equally divided into Dexmedetomidine (D) and Midazolam (M) groups. Electroacupuncture (EA) was applied to bilateral Yunmen (LU 2), Zhongfu (LU1), Lieque (LU7) and Neiguan (PC6). For patients of group D, Dexmedetomidine (i.v., loading dose: 1 microg/kg, and succedent dose: 0.2-1 microg x kg(-1) x h(-1)) was given. For patients of group M, Midazolam (i.v., loading dose: 0.05 mg/kg, succedent dose: 0.01-0.03 mg x kg(-1) x h(-1)) was given. Arterial oxygen pressure (PaO2), arterial carbondioxide tension (PaCO2), O2 saturation (SPO2), mean arterial pressure (MAP), heart rate (HR), anesthetic effect, time of spontaneous breathing recovery, and time of resuscitation were recorded before operation (T0), immediately after skin incision (T1), immediately after sternotomy (T2), before suspension of cardiopulmonary bypass (CPB, T3), immediately after cardiac re-beating (T4), immediately after CPB cessation (T5), and at the end of surgery (T6). Before operation, no significant differences were found between the group D and M in the levels of PaO2, PaCO2 and SPO2 (P > 0.05). The PaO2 and SPO2 levels after skin incision, sternotomy, before suspension of CPB and at the end of surgery were significantly lower in group M than in group D (P heart re-beating,after CPB cessation and at the end of surgery in group M were considerably higher than those in group D (P 0.05). It suggested that the respiration and circulation states in group D were more smoothly than those in group M. There was no significant difference between the two groups in the time of resuscitation (P > 0.05). Dexmedetomidine is superior to Midazolam in analgesia, and improving respiration and circulation

  15. The Evaluation of a Noninvasive Respiratory Volume Monitor in Pediatric Patients Undergoing General Anesthesia.

    Science.gov (United States)

    Gomez-Morad, Andrea D; Cravero, Joseph P; Harvey, Brian C; Bernier, Rachel; Halpin, Erin; Walsh, Brian; Nasr, Viviane G

    2017-12-01

    Pediatric patients following surgery are at risk for respiratory compromise such as hypoventilation and hypoxemia depending on their age, comorbidities, and type of surgery. Quantitative measurement of ventilation in nonintubated infants/children is a difficult and inexact undertaking. Current respiratory assessment in nonintubated patients relies on oximetry data, respiratory rate (RR) monitors, and subjective clinical assessment, but there is no objective measure of respiratory parameters that could be utilized to predict early respiratory compromise. New advances in technology and digital signal processing have led to the development of an impedance-based respiratory volume monitor (RVM, ExSpiron, Respiratory Motion, Inc, Waltham, MA). The RVM has been shown to provide accurate real-time, continuous, noninvasive measurements of tidal volume (TV), minute ventilation (MV), and RR in adult patients.In this prospective observational study, our primary aim was to determine whether the RVM accurately measures TV, RR, and MV in pediatric patients. A total of 72 pediatric patients (27 females, 45 males), ASA I to III, undergoing general anesthesia with endotracheal intubation were enrolled. After endotracheal intubation, continuous data of MV, TV, and RR were recorded from the RVM and an in-line monitoring spirometer (NM3 monitor, Phillips Healthcare). RVM and NM3 measurements of MV, TV, and RR were compared during a 10-minute period prior to the incision ("Presurgery") and a 10-minute period after the end of surgery ("Postsurgery"). Relative errors were calculated over 1-minute segment within each 10-minute period. Bias, precision, and accuracy were calculated using Bland-Altman analyses and paired-difference equivalence tests were performed. Combined across the Presurgery and Postsurgery periods, the RVM's mean measurement bias (RVM - NM3 measurement) for MV was -3.8% (95% limits of agreement) (±1.96 SD): (-19.9% to 12.2%), for TV it was -4.9 (-21.0% to 11.3%), and

  16. Chemistry-Climate Interactions in the Goddard Institute for Space Studies General Circulation Model. 2; New Insights into Modeling the Pre-Industrial Atmosphere

    Science.gov (United States)

    Grenfell, J. Lee; Shindell, D. T.; Koch, D.; Rind, D.; Hansen, James E. (Technical Monitor)

    2002-01-01

    We investigate the chemical (hydroxyl and ozone) and dynamical response to changing from present day to pre-industrial conditions in the Goddard Institute for Space Studies General Circulation Model (GISS GMC). We identify three main improvements not included by many other works. Firstly, our model includes interactive cloud calculations. Secondly we reduce sulfate aerosol which impacts NOx partitioning hence Ox distributions. Thirdly we reduce sea surface temperatures and increase ocean ice coverage which impact water vapor and ground albedo respectively. Changing the ocean data (hence water vapor and ozone) produces a potentially important feedback between the Hadley circulation and convective cloud cover. Our present day run (run 1, control run) global mean OH value was 9.8 x 10(exp 5) molecules/cc. For our best estimate of pre-industrial conditions run (run 2) which featured modified chemical emissions, sulfate aerosol and sea surface temperatures/ocean ice, this value changed to 10.2 x 10(exp 5) molecules/cc. Reducing only the chemical emissions to pre-industrial levels in run 1 (run 3) resulted in this value increasing to 10.6 x 10(exp 5) molecules/cc. Reducing the sulfate in run 3 to pre-industrial levels (run 4) resulted in a small increase in global mean OH (10.7 x 10(exp 5) molecules/cc). Changing the ocean data in run 4 to pre-industrial levels (run 5) led to a reduction in this value to 10.3 x 10(exp 5) molecules/cc. Mean tropospheric ozone burdens were 262, 181, 180, 180, and 182 Tg for runs 1-5 respectively.

  17. Can we determine what controls the spatio-temporal distribution of d-excess and 17O-excess in precipitation using the LMDZ general circulation model?

    Directory of Open Access Journals (Sweden)

    C. Risi

    2013-09-01

    Full Text Available Combined measurements of the H218O and HDO isotopic ratios in precipitation, leading to second-order parameter D-excess, have provided additional constraints on past climates compared to the H218O isotopic ratio alone. More recently, measurements of H217O have led to another second-order parameter: 17O-excess. Recent studies suggest that 17O-excess in polar ice may provide information on evaporative conditions at the moisture source. However, the processes controlling the spatio-temporal distribution of 17O-excess are still far from being fully understood. We use the isotopic general circulation model (GCM LMDZ to better understand what controls d-excess and 17O-excess in precipitation at present-day (PD and during the last glacial maximum (LGM. The simulation of D-excess and 17O-excess is evaluated against measurements in meteoric water, water vapor and polar ice cores. A set of sensitivity tests and diagnostics are used to quantify the relative effects of evaporative conditions (sea surface temperature and relative humidity, Rayleigh distillation, mixing between vapors from different origins, precipitation re-evaporation and supersaturation during condensation at low temperature. In LMDZ, simulations suggest that in the tropics convective processes and rain re-evaporation are important controls on precipitation D-excess and 17O-excess. In higher latitudes, the effect of distillation, mixing between vapors from different origins and supersaturation are the most important controls. For example, the lower d-excess and 17O-excess at LGM simulated at LGM are mainly due to the supersaturation effect. The effect of supersaturation is however very sensitive to a parameter whose tuning would require more measurements and laboratory experiments. Evaporative conditions had previously been suggested to be key controlling factors of d-excess and 17O-excess, but LMDZ underestimates their role. More generally, some shortcomings in the simulation of 17O

  18. Alterations in white matter volume and its correlation with clinical characteristics in patients with generalized anxiety disorder

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chung-Man [Chonnam National University Hospital, Research Institute for Medical Imaging, Gwangju (Korea, Republic of); Jeong, Gwang-Woo [Chonnam National University Hospital, Research Institute for Medical Imaging, Gwangju (Korea, Republic of); Chonnam National University Medical School, Department of Radiology, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2015-11-15

    Only a few morphological studies have focused on changes in white matter (WM) volume in patients with generalized anxiety disorder (GAD). We evaluated alterations in WM volume and its correlation with symptom severity and duration of illness in adults with GAD. The 44 subjects were comprised of 22 patients with GAD (13 males and nine females) diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) and 22 age-matched healthy controls (13 males and nine females). High-resolution magnetic resonance imaging (MRI) data were processed by voxel-based morphometry (VBM) analysis based on diffeomorphic anatomical registration using the exponentiated Lie algebra (DARTEL) algorithm in SPM8. Patients with GAD showed significantly reduced WM volume, particularly in the dorsolateral prefrontal cortex (DLPFC), anterior limb of the internal capsule (ALIC), and midbrain. In addition, DLPFC volume was negatively correlated with GAD-7 score and illness duration. ALIC volume was negatively correlated with GAD-7 score. Female patients had significantly less orbitofrontal cortex volume compared to that in male patients. The findings demonstrate localized changes in WM volume associated with cognitive and emotional dysfunction in patients with GAD. The finding will be helpful for understanding the neuropathology in patients with GAD. (orig.)

  19. Alterations in white matter volume and its correlation with clinical characteristics in patients with generalized anxiety disorder

    International Nuclear Information System (INIS)

    Moon, Chung-Man; Jeong, Gwang-Woo

    2015-01-01

    Only a few morphological studies have focused on changes in white matter (WM) volume in patients with generalized anxiety disorder (GAD). We evaluated alterations in WM volume and its correlation with symptom severity and duration of illness in adults with GAD. The 44 subjects were comprised of 22 patients with GAD (13 males and nine females) diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) and 22 age-matched healthy controls (13 males and nine females). High-resolution magnetic resonance imaging (MRI) data were processed by voxel-based morphometry (VBM) analysis based on diffeomorphic anatomical registration using the exponentiated Lie algebra (DARTEL) algorithm in SPM8. Patients with GAD showed significantly reduced WM volume, particularly in the dorsolateral prefrontal cortex (DLPFC), anterior limb of the internal capsule (ALIC), and midbrain. In addition, DLPFC volume was negatively correlated with GAD-7 score and illness duration. ALIC volume was negatively correlated with GAD-7 score. Female patients had significantly less orbitofrontal cortex volume compared to that in male patients. The findings demonstrate localized changes in WM volume associated with cognitive and emotional dysfunction in patients with GAD. The finding will be helpful for understanding the neuropathology in patients with GAD. (orig.)

  20. On testing the significance of atmospheric response to smoke from the Kuwaiti oil fires using the Los Alamos general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Kao, C.J.; Glatzmaier, G.A.; Malone, R.C. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    1994-07-01

    The response of the Los Alamos atmospheric general circulation model to the smoke from the Kuwaiti oil fires set in 1991 is examined. The model has an interactive soot transport module that uses a Lagrangian tracer particle scheme. The statistical significance of the results is evaluated using a methodology based on the classic Student`s t test. Among various estimated smoke emission rates and associated visible absorption coefficients, the worst- and best-case scenarios are selected. In each of the scenarios, an ensemble of 10 30-day June simulations are conducted with the smoke and are compared to the same 10 June simulations without the smoke. The results of the worst-case scneario show that a statistically significant wave train pattern propagates eastward-poleward downstream from the source. The signals favorably compare with the observed climate anomalies in summer 1991, albeit some possible El Nino-Southern Oscillation effects were involved in the actual climate. The results of the best-case (i.e., least-impact) scenario show that the significance is rather small but that its general pattern is quite similar to that in the worst-case scenario.

  1. On testing the significance of atmospheric response to smoke from the Kuwaiti oil fires using the Los Alamos general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Chih-Yue Jim Kao; Glatzmaier, G.A.; Malone, R.C. [Los Alamos National Lab., NM (United States)

    1994-07-20

    The response of the Los Alamos atmospheric general circulation model to the smoke from the Kuwaiti oil fires set in 1991 is examined. The model has an interactive soot transport module that uses a Lagrangian tracer particle scheme. The statistical significance of the results is evaluated using a methodology based on the classic Student`s t test. Among various estimated smoke emission rates and associated visible absorption coefficients, the worst- and best-case scenarios are selected. In each of the scenarios, an ensemble of 10, 30-day June simulations are conducted with the smoke, and are compared to the same 10 June simulations without the smoke. The results of the worst-case scenario show that a statistically significant wave train pattern propagates eastward-poleward downstream from the source. The signals favorably compare with the observed climate anomalies in summer 1991, albeit some possible El Nino-Southern Oscillation effects were involved in the actual climate. The results of the best-case (i.e., least-impact) scenario show that the significance is rather small but that its general pattern is quite similar to that in the worst-case scenario. 24 refs., 5 figs.

  2. A general methodology for three-dimensional analysis of variation in target volume delineation

    NARCIS (Netherlands)

    Remeijer, P.; Rasch, C.; Lebesque, J. V.; van Herk, M.

    1999-01-01

    A generic method for three-dimensional (3-D) evaluation of target volume delineation in multiple imaging modalities is presented. The evaluation includes geometrical and statistical methods to estimate observer differences and variability in defining the Gross Tumor Volume (GTV) in relation to the

  3. Field Operations and Enforcement Manual for Air Pollution Control. Volume II: Control Technology and General Source Inspection.

    Science.gov (United States)

    Weisburd, Melvin I.

    The Field Operations and Enforcement Manual for Air Pollution Control, Volume II, explains in detail the following: technology of source control, modification of operations, particulate control equipment, sulfur dioxide removal systems for power plants, and control equipment for gases and vapors; inspection procedures for general sources, fuel…

  4. CORRELATION OF VOLUME BLOOD CIRCULATION IN THE HEPATIC ARTERY AND THE STATE OF MICROCIRCULATORY BLOODSTREAM OF THE TRANSPLANTED LIVER AFTER ITS REVASCULIZATION

    Directory of Open Access Journals (Sweden)

    D. A. Granov

    2014-01-01

    Full Text Available Aim: optimization of the surgical treatment policy with orthotopic liver transplantation (OLT depending on the results of intraoperative fl owmetry and the state of intrahepatic microcirculatory bloodstream according to immunohistochemical (IHC study of microspecimens of the donor’s liver.Materials and methods. 60 patients are included in the study. Group I (n = 30 comprised of patients for whom it was not necessary to perform any additional interventions on the bloodstream in the hepatopancreatobiliary area during OLT. Group II (n = 30 had patients with insuffi cient arterial blood supply for the graft in the intraoperative stage where it was needed to perform additional and/or repeated interventions in the arteries of the hepatopancreatobilliary area. Intraoperative fl owmetry with assessment of the volume blood circulation (VBC in the hepatic artery (HA was carried out in the both studied groups. Reference value of VBC was 100 ml/min and higher. Before and after reperfusion in the liver biopsy material we performed immunohistochemical study with the use of endothelial marker CD 31 with subsequent morphometric estimation of the specifi c square of the microvascular bloodstream.Results. In both groups there was no change in the specifi c square in the areas of portal tract and central vein before and after restoring blood fl ow. In the second group, an 8 times increase of the specifi c square of sinusoids was observed after restoring blood fl ow (р < 0,01.Conclusion. Intraoperative fl owmetric control of the blood fl ow allows in due time to perform surgical correction of the graft arterial blood supply during OLT, and it reduces the risk of thrombosis up to 0%. The value of VBC in the hepatic artery (HA has reliable dependence upon the state of microcirculatory bloodstream of cadaveric donor’s liver after reperfusion.

  5. Simulations of the September 1987 lower thermospheric tides with the National Center for Atmospheric Research thermosphere-ionosphere general circulation model

    International Nuclear Information System (INIS)

    Fesen, C.G.; Roble, R.G.

    1991-01-01

    The National Center for Atmospheric Research thermosphere-ionosphere general circulation model (TIGCM) was used to simulate incoherent scatter radar observations of the lower thermosphere tides during the first Lower Thermosphere Coupling Study (LTCS) campaign, September 21-26, 1987. The TIGCM utilized time-varying histories of the model input fields obtained from the World Data Center for the LTCS period. These model inputs included solar flux, total hemispheric power, solar wind data from which the cross-polar-cap potential was derived, and geomagnetic K p index. Calculations were made for the semidiurnal ion temperatures and horizontal neutral winds at locations representative of Arecibo, Millstone Hill, and Sondrestrom. The diurnal tides at Sondrestrom were also simulated. Tidal inputs to the TIGCM lower boundary were obtained from the middle atmosphere model of Forbes and Vial (1989). The TIGCM tidal structures are in fair general agreement with the observations. The amplitudes tended to be better simulated than the phases, and the mid- and high-latitude locations are simulated better than the low-latitude thermosphere. This may indicate a need to incorporate coupling of the neutral atmosphere and ionosphere with the E region dynamo in the equatorial region to obtain a better representation of low-latitude thermospheric tides. The model simulations were used to investigate the daily variability of the tides due to the geomagnetic activity occurring during this period. In general, the ion temperatures were predicted to be affected more than the winds, and the diurnal components more than the semidiurnal. The effects are typically largest at high latitudes and higher altitudes, but discernible differences were produced at low latitudes

  6. Characterization of Greater-Than-Class C sealed sources. Volume 3, Sealed sources held by general licensees

    International Nuclear Information System (INIS)

    Harris, G.

    1994-09-01

    This is the third volume in a series of three volumes characterizing the population of sealed sources that may become greater-than-Class C low-level radioactive waste (GTCC LLW). In this volume, those sources possessed by general licensees are discussed. General-licensed devices may contain sealed sources with significant amounts of radioactive material. However, the devices are designed to be safe to use without special knowledge of radiological safety practices. Devices containing Am-241 or Cm-244 sources are most likely to become GTCC LLW after concentration averaging. This study estimates that there are about 16,000 GTCC devices held by general licensees; 15,000 of these contain Am-241 sources and 1,000 contain Cm-244 sources. Additionally, this study estimates that there are 1,600 GTCC devices sold to general licensees each year. However, due to a lack of available information on general licensees in Agreement States, these estimates are uncertain. This uncertainty is quantified in the low and high case estimates given in this report, which span approximately an order of magnitude

  7. Prognostic value of circulating microRNAs on heart failure-related morbidity and mortality in two large diverse cohorts of general heart failure patients

    NARCIS (Netherlands)

    Bayés-Genis, Antoni; Lanfear, David E.; de Ronde, Maurice W. J.; Lupón, Josep; Leenders, Joost J.; Liu, Zhen; Zuithoff, Nicolaas P. A.; Eijkemans, Marinus J. C.; Zamora, Elisabet; de Antonio, Marta; Zwinderman, Aeilko H.; Pinto-Sietsma, Sara-Joan; Pinto, Yigal M.

    2018-01-01

    Aims Small studies suggested circulating microRNAs (miRNAs) as biomarkers for heart failure (HF). However, standardized approaches and quality assessment for measuring circulating miRNAs are not uniformly established, and most studies have been small, so that results are inconsistent. We used a

  8. A strategy for testing the impact of clouds on the shortwave radiation budge of general circulation models: A prototype for the Atmospheric Radiation Measurement Program

    International Nuclear Information System (INIS)

    Cess, R.D.

    1994-01-01

    Cloud-climate interactions are one of the greatest uncertainties in contemporary general circulation models (GCMs), and this study has focused on one aspect of this. Specifically, combined satellite and near-surface shortwave (SW) flux measurements have been used to test the impact of clouds on the SW radiation budgets of two GCMs. Concentration is initially on SW rather than longwave (LW) radiation because, in one of the GCMs used in this study an SW radiation inconsistency causes a LW inconsistency. The surface data consist of near-surface insolation measured by the upward facing pyranometer at the Boulder Atmospheric Observatory tower. The satellite data consist of top of the atmosphere (TOA) albedo data, collocated with the tower location, as determined from the GOES SW spin-scan radiometer. Measurements are made every half hour, with hourly means taken by averaging successive measurements. The combined data are for a 21-day period encompassing 28 June through 18 July 1987 and consist of 202 combined albedo/insolation measurements

  9. Study on the estimation of probabilistic effective dose. Committed effective dose from intake of marine products using Oceanic General Circulation Model

    International Nuclear Information System (INIS)

    Nakano, Masanao

    2007-01-01

    The worldwide environmental protection is required by the public. A long-term environmental assessment from nuclear fuel cycle facilities to the aquatic environment also becomes more important to utilize nuclear energy more efficiently. Evaluation of long-term risk including not only in Japan but also in neighboring countries is considered to be necessary in order to develop nuclear power industry. The author successfully simulated the distribution of radionuclides in seawater and seabed sediment produced by atmospheric nuclear tests using LAMER (Long-term Assessment ModEl for Radioactivity in the oceans). A part of the LAMER calculated the advection- diffusion-scavenging processes for radionuclides in the oceans and the Japan Sea in cooperate with Oceanic General Circulation Model (OGCM) and was validated. The author is challenging to calculate probabilistic effective dose suggested by ICRP from intake of marine products due to atmospheric nuclear tests using the Monte Carlo method in the other part of LAMER. Depending on the deviation of each parameter, the 95th percentile of the probabilistic effective dose was calculated about half of the 95th percentile of the deterministic effective dose in proforma calculation. The probabilistic assessment gives realistic value for the dose assessment of a nuclear fuel cycle facility. (author)

  10. Fractionation and current time trends of PCB congeners: evolvement of distributions 1950–2010 studied using a global atmosphere-ocean general circulation model

    Directory of Open Access Journals (Sweden)

    G. Lammel

    2012-08-01

    Full Text Available PCBs are ubiquitous environmental pollutants expected to decline in abiotic environmental media in response to decreasing primary emissions since the 1970s. A coupled atmosphere-ocean general circulation model with embedded dynamic sub-models for atmospheric aerosols and the marine biogeochemistry and air-surface exchange processes with soils, vegetation and the cryosphere is used to study the transport and fate of four PCB congeners covering a range of 3–7 chlorine atoms.

    The change of the geographic distribution of the PCB mixture reflects the sources and sinks' evolvement over time. Globally, secondary emissions (re-volatilisation from surfaces are on the long term increasingly gaining importance over primary emissions. Secondary emissions are most important for the congeners with 5–6 chlorine atoms. Correspondingly, the levels of these congeners are predicted to decrease slowest. Changes in congener mixture composition (fractionation are characterized both geographically and temporally. In high latitudes enrichment of the lighter, less persistent congeners and more delayed decreasing levels in response to decreasing emissions are found. The delivery of the contaminants to high latitudes is predicted to be more efficient than previously suggested. The results suggest furthermore that the effectiveness of emission control measures may significantly vary among substances. The trends of decline of organic contaminant levels in the abiotic environmental media do not only vary with latitude (slow in high latitudes, but do also show longitudinal gradients.

  11. An Atmospheric General Circulation Model with Chemistry for the CRAY T3E: Design, Performance Optimization and Coupling to an Ocean Model

    Science.gov (United States)

    Farrara, John D.; Drummond, Leroy A.; Mechoso, Carlos R.; Spahr, Joseph A.

    1998-01-01

    The design, implementation and performance optimization on the CRAY T3E of an atmospheric general circulation model (AGCM) which includes the transport of, and chemical reactions among, an arbitrary number of constituents is reviewed. The parallel implementation is based on a two-dimensional (longitude and latitude) data domain decomposition. Initial optimization efforts centered on minimizing the impact of substantial static and weakly-dynamic load imbalances among processors through load redistribution schemes. Recent optimization efforts have centered on single-node optimization. Strategies employed include loop unrolling, both manually and through the compiler, the use of an optimized assembler-code library for special function calls, and restructuring of parts of the code to improve data locality. Data exchanges and synchronizations involved in coupling different data-distributed models can account for a significant fraction of the running time. Therefore, the required scattering and gathering of data must be optimized. In systems such as the T3E, there is much more aggregate bandwidth in the total system than in any particular processor. This suggests a distributed design. The design and implementation of a such distributed 'Data Broker' as a means to efficiently couple the components of our climate system model is described.

  12. Massively Parallel Assimilation of TOGA/TAO and Topex/Poseidon Measurements into a Quasi Isopycnal Ocean General Circulation Model Using an Ensemble Kalman Filter

    Science.gov (United States)

    Keppenne, Christian L.; Rienecker, Michele; Borovikov, Anna Y.; Suarez, Max

    1999-01-01

    A massively parallel ensemble Kalman filter (EnKF)is used to assimilate temperature data from the TOGA/TAO array and altimetry from TOPEX/POSEIDON into a Pacific basin version of the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. The EnKF is an approximate Kalman filter in which the error-covariance propagation step is modeled by the integration of multiple instances of a numerical model. An estimate of the true error covariances is then inferred from the distribution of the ensemble of model state vectors. This inplementation of the filter takes advantage of the inherent parallelism in the EnKF algorithm by running all the model instances concurrently. The Kalman filter update step also occurs in parallel by having each processor process the observations that occur in the region of physical space for which it is responsible. The massively parallel data assimilation system is validated by withholding some of the data and then quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The distributions of the forecast and analysis error covariances predicted by the ENKF are also examined.

  13. Functional changes in CSF volume estimated using measurement of water T2 relaxation

    NARCIS (Netherlands)

    Piechnik, S.K.; Evans, J.; Bary, L.H.; Wise, R.G.; Jezzard, P.

    2009-01-01

    Cerebrospinal fluid (CSF) provides hydraulic suspension for the brain. The general concept of bulk CSF production, circulation, and reabsorption is well established, but the mechanisms of momentary CSF volume variation corresponding to vasoreactive changes are far less understood. Nine individuals

  14. Optimal grasp planning for a dexterous robotic hand using the volume of a generalized force ellipsoid during accepted flattening

    Directory of Open Access Journals (Sweden)

    Peng Jia

    2017-01-01

    Full Text Available A grasp planning method based on the volume and flattening of a generalized force ellipsoid is proposed to improve the grasping ability of a dexterous robotic hand. First, according to the general solution of joint torques for a dexterous robotic hand, a grasping indicator for the dexterous hand—the maximum volume of a generalized external force ellipsoid and the minimum volume of a generalized contact internal force ellipsoid during accepted flattening—is proposed. Second, an optimal grasp planning method based on a task is established using the grasping indicator as an objective function. Finally, a simulation analysis and grasping experiment are performed. Results show that when the grasping experiment is conducted with the grasping configuration and positions of contact points optimized using the proposed grasping indicator, the root-mean-square values of the joint torques and contact internal forces of the dexterous hand are at a minimum. The effectiveness of the proposed grasping planning method is thus demonstrated.

  15. Study of pressure-volume relationships and higher derivatives of bulk modulus based on generalized equations of state

    International Nuclear Information System (INIS)

    Kushwah, S.S.; Shrivastava, H.C.; Singh, K.S.

    2007-01-01

    We have generalized the pressure-volume (P-V) relationships using simple polynomial and logarithmic expansions so as to make them consistent with the infinite pressure extrapolation according to the model of Stacey. The formulations are used to evaluate P-V relationships and pressure derivatives of bulk modulus upto third order (K', K'' and K''') for the earth core material taking input parameters based on the seismological data. The results based on the equations of state (EOS) generalized in the present study are found to yield good agreement with the Stacey EOS. The generalized logarithmic EOS due to Poirier and Tarantola deviates substantially from the seismic values for P, K and K'. The generalized Rydberg EOS gives almost identical results with the Birch-Murnaghan third-order EOS. Both of them yield deviations from the seismic data, which are in opposite direction as compared to those found from the generalized Poirier-Tarantola logarithmic EOS

  16. Simulating Mars' Dust Cycle with a Mars General Circulation Model: Effects of Water Ice Cloud Formation on Dust Lifting Strength and Seasonality

    Science.gov (United States)

    Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.

    2012-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.

  17. Numerical simulation and analysis of impact of non-orographic gravity waves drag of middle atmosphere in framework of a general circulation model

    Science.gov (United States)

    Zhao, J.; Wang, S.

    2017-12-01

    Gravity wave drag (GWD) is among the drivers of meridional overturning in the middle atmosphere, also known as the Brewer-Dobson Circulation, and of the quasi-biennial oscillation (QBO). The small spatial scales and complications due to wave breaking require their effects to be parameterised. GWD parameterizations are usually divided into two parts, orographic and non-orographic. The basic dynamical and physical processes of the middle atmosphere and the mechanism of the interactions between the troposphere and the middle atmosphere were studied in the frame of a general circulation model. The model for the troposphere was expanded to a global model considering middle atmosphere with the capability of describing the basic processes in the middle atmosphere and the troposphere-middle atmosphere interactions. Currently, it is too costly to include full non-hydrostatic and rotational wave dynamics in an operational parameterization. The hydrostatic non-rotational wave dynamics which allow an efficient implementation that is suitably fast for operation. The simplified parameterization of non-orographic GWD follows from the WM96 scheme in which a framework is developed using conservative propagation of gravity waves, critical level filtering, and non-linear dissipation. In order to simulate and analysis the influence of non-orographic GWD on the stratospheric wind and temperature fields, experiments using Stratospheric Sudden Warming (SSW) event case occurred in January 2013 were carried out, and results of objective weather forecast verifications of the two months period were compared in detail. The verification of monthly mean of forecast anomaly correlation (ACC) and root mean square (RMS) errors shows consistently positive impact of non-orographic GWD on skill score of forecasting for the three to eight days, both in the stratosphere and troposphere, and visible positive impact on prediction of the stratospheric wind and temperature fields. Numerical simulation

  18. 1969 MLA International Bibliography of Books and Articles on the Modern Languages and Literatures. Volume I: General, English, American, Medieval and Neo-Latin, and Celtic Literatures.

    Science.gov (United States)

    Meserole, Harrison T., Comp.

    Volume 1 of the 4-volume, international bibliography contains some 9,000 entries referring to books and articles which focus on general, English, American, medieval and neo-Latin, and Celtic literatures. The master list of the nearly 1,500 periodicals from which entries are derived is furnished at the beginning of the volume with a table of…

  19. The Genetic Association Between Neocortical Volume and General Cognitive Ability Is Driven by Global Surface Area Rather Than Thickness.

    Science.gov (United States)

    Vuoksimaa, Eero; Panizzon, Matthew S; Chen, Chi-Hua; Fiecas, Mark; Eyler, Lisa T; Fennema-Notestine, Christine; Hagler, Donald J; Fischl, Bruce; Franz, Carol E; Jak, Amy; Lyons, Michael J; Neale, Michael C; Rinker, Daniel A; Thompson, Wesley K; Tsuang, Ming T; Dale, Anders M; Kremen, William S

    2015-08-01

    Total gray matter volume is associated with general cognitive ability (GCA), an association mediated by genetic factors. It is expectable that total neocortical volume should be similarly associated with GCA. Neocortical volume is the product of thickness and surface area, but global thickness and surface area are unrelated phenotypically and genetically in humans. The nature of the genetic association between GCA and either of these 2 cortical dimensions has not been examined. Humans possess greater cognitive capacity than other species, and surface area increases appear to be the primary driver of the increased size of the human cortex. Thus, we expected neocortical surface area to be more strongly associated with cognition than thickness. Using multivariate genetic analysis in 515 middle-aged twins, we demonstrated that both the phenotypic and genetic associations between neocortical volume and GCA are driven primarily by surface area rather than thickness. Results were generally similar for each of 4 specific cognitive abilities that comprised the GCA measure. Our results suggest that emphasis on neocortical surface area, rather than thickness, could be more fruitful for elucidating neocortical-GCA associations and identifying specific genes underlying those associations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Abnormalities in gray and white matter volumes associated with explicit memory dysfunction in patients with generalized anxiety disorder.

    Science.gov (United States)

    Moon, Chung-Man; Jeong, Gwang-Woo

    2017-03-01

    Background The neuroanatomical abnormalities associated with behavioral dysfunction on explicit memory in patients generalized anxiety disorder (GAD) have not yet been clearly identified. Purpose To investigate the regional gray matter (GM) and white matter (WM) volume alterations over the whole brain in patients with GAD, as well as the correlation between the brain structural abnormality and explicit memory dysfunction. Material and Methods Twenty patients with GAD and 20 healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted magnetic resonance imaging (MRI). The participants performed the explicit memory tasks with the neutral and anxiety-inducing words. Results Patients with GAD showed significantly reduced GM volumes in the midbrain (MB), thalamus, hippocampus (Hip), insula, and superior temporal gyrus (STG); and reduced WM volumes in the MB, anterior limb of the internal capsule (ALIC), dorsolateral prefrontal cortex (DLPFC), and precentral gyrus (PrG). It is important to note that the GM volume of the Hip and the WM volume of the DLPFC were positively correlated with the recognition accuracy (%) in the explicit memory tasks with neutral and anxiety-inducing words, respectively. On the other hand, the WM volume of the PrG was negatively correlated with the reaction time in the same memory tasks. Conclusion This study demonstrated the regional volume changes on whole-brain GM and WM and the correlation between the brain structural alteration and explicit memory dysfunction in GAD patients. These findings would be helpful to understand the association between the brain structure abnormality and the functional deficit in the explicit memory in GAD.

  1. Intraoperative ventilation: incidence and risk factors for receiving large tidal volumes during general anesthesia

    Directory of Open Access Journals (Sweden)

    Fernandez-Bustamante Ana

    2011-11-01

    Full Text Available Abstract Background There is a growing concern of the potential injurious role of ventilatory over-distention in patients without lung injury. No formal guidelines exist for intraoperative ventilation settings, but the use of tidal volumes (VT under 10 mL/kg predicted body weight (PBW has been recommended in healthy patients. We explored the incidence and risk factors for receiving large tidal volumes (VT > 10 mL/kg PBW. Methods We performed a cross-sectional analysis of our prospectively collected perioperative electronic database for current intraoperative ventilation practices and risk factors for receiving large tidal volumes (VT > 10 mL/kg PBW. We included all adults undergoing prolonged (≥ 4 h elective abdominal surgery and collected demographic, preoperative (comorbidities, intraoperative (i.e. ventilatory settings, fluid administration and postoperative (outcomes information. We compared patients receiving exhaled tidal volumes > 10 mL/kg PBW with those that received 8-10 or Results Ventilatory settings were non-uniform in the 429 adults included in the analysis. 17.5% of all patients received VT > 10 mL/kg PBW. 34.0% of all obese patients (body mass index, BMI, ≥ 30, 51% of all patients with a height T > 10 mL/kg PBW. Conclusions Ventilation with VT > 10 mL/kg PBW is still common, although poor correlation with PBW suggests it may be unintentional. BMI ≥ 30, female gender and height

  2. The effects of future nationwide forest transition to discharge in the 21st century with regard to general circulation model climate change scenarios.

    Science.gov (United States)

    Mouri, Goro; Nakano, Katsuhiro; Tsuyama, Ikutaro; Tanaka, Nobuyuki

    2016-08-01

    Forest disturbance (or land-cover change) and climatic variability are commonly recognised as two major drivers interactively influencing hydrology in forested watersheds. Future climate changes and corresponding changes in forest type and distribution are expected to generate changes in rainfall runoff that pose a threat to river catchments. It is therefore important to understand how future climate changes will effect average rainfall distribution and temperature and what effect this will have upon forest types across Japan. Recent deforestation of the present-day coniferous forest and expected increases in evergreen forest are shown to influence runoff processes and, therefore, to influence future runoff conditions. We strongly recommend that variations in forest type be considered in future plans to ameliorate projected climate changes. This will help to improve water retention and storage capacities, enhance the flood protection function of forests, and improve human health. We qualitatively assessed future changes in runoff including the effects of variation in forest type across Japan. Four general circulation models (GCMs) were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM), and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble including multiple physics configurations and different reference concentration pathways (RCP2.6, 4.5, and 8.5), the results of which have produced monthly data sets for the whole of Japan. The impacts of future climate changes on forest type in Japan are based on the balance amongst changes in rainfall distribution, temperature and hydrological factors. Methods for assessing the impact of such changes include the

  3. 1970 MLA International Bibliography of Books and Articles on the Modern Languages and Literatures, Volume I: General, English, American, Medieval and Neo-Latin, Celtic Literatures; and Folklore.

    Science.gov (United States)

    Meserole, Harrison T., Comp.

    Volume 1 of the four-volume, international bibliography contains over 11,140 entries referring to books, Festschriften, analyzed collections, and articles which focus on General, English, American, medieval and neo-Latin, and Celtic literatures. A section of folklore is also included. The section on general literature includes: (1) aesthetics, (2)…

  4. Origin of surface and columnar Indian Ocean Experiment (INDOEX) aerosols using source- and region-tagged emissions transport in a general circulation model

    Science.gov (United States)

    Verma, S.; Venkataraman, C.; Boucher, O.

    2008-12-01

    We study the relative influence of aerosols emitted from different sectors and geographical regions on aerosol loading in south Asia. Sectors contributing aerosol emissions include biofuel and fossil fuel combustion, open biomass burning, and natural sources. Geographical regions include India (the Indo-Gangetic plain, central India, south India, and northwest India), southeast Asia, east Asia, Africa-west Asia, and the rest of the world. Simulations of the Indian Ocean Experiment (INDOEX), from January to March 1999, are made in the general circulation model of Laboratoire de Météorologie Dynamique (LMD-ZT GCM) with emissions tagged by sector and geographical region. Anthropogenic emissions dominate (54-88%) the predicted aerosol optical depth (AOD) over all the receptor regions. Among the anthropogenic sectors, fossil fuel combustion has the largest overall influence on aerosol loading, primarily sulfate, with emissions from India (50-80%) and rest of the world significantly influencing surface concentrations and AOD. Biofuel combustion has a significant influence on both the surface and columnar black carbon (BC) in particular over the Indian subcontinent and Bay of Bengal with emissions largely from the Indian region (60-80%). Open biomass burning emissions influence organic matter (OM) significantly, and arise largely from Africa-west Asia. The emissions from Africa-west Asia affect the carbonaceous aerosols AOD in all receptor regions, with their largest influence (AOD-BC: 60%; and AOD-OM: 70%) over the Arabian Sea. Among Indian regions, the Indo-Gangetic Plain is the largest contributor to anthropogenic surface mass concentrations and AOD over the Bay of Bengal and India. Dust aerosols are contributed mainly through the long-range transport from Africa-west Asia over the receptor regions. Overall, the model estimates significant intercontinental incursion of aerosol, for example, BC, OM, and dust from Africa-west Asia and sulfate from distant regions (rest

  5. ALE finite volume method for free-surface Bingham plastic fluids with general curvilinear coordinates

    International Nuclear Information System (INIS)

    Nagai, Katsuaki; Ushijima, Satoru

    2010-01-01

    A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.

  6. ALE finite volume method for free-surface Bingham plastic fluids with general curvilinear coordinates

    Science.gov (United States)

    Nagai, Katsuaki; Ushijima, Satoru

    2010-06-01

    A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.

  7. A posteriori error estimates for finite volume approximations of elliptic equations on general surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Lili; Tian, Li; Wang, Desheng

    2008-10-31

    In this paper, we present a residual-based a posteriori error estimate for the finite volume discretization of steady convection– diffusion–reaction equations defined on surfaces in R3, which are often implicitly represented as level sets of smooth functions. Reliability and efficiency of the proposed a posteriori error estimator are rigorously proved. Numerical experiments are also conducted to verify the theoretical results and demonstrate the robustness of the error estimator.

  8. ABAQUS-EPGEN: a general-purpose finite element code. Volume 3. Example problems manual

    International Nuclear Information System (INIS)

    Hibbitt, H.D.; Karlsson, B.I.; Sorensen, E.P.

    1983-03-01

    This volume is the Example and Verification Problems Manual for ABAQUS/EPGEN. Companion volumes are the User's, Theory and Systems Manuals. This volume contains two major parts. The bulk of the manual (Sections 1-8) contains worked examples that are discussed in detail, while Appendix A documents a large set of basic verification cases that provide the fundamental check of the elements in the code. The examples in Sections 1-8 illustrate and verify significant aspects of the program's capability. Most of these problems provide verification, but they have also been chosen to allow discussion of modeling and analysis techniques. Appendix A contains basic verification cases. Each of these cases verifies one element in the program's library. The verification consists of applying all possible load or flux types (including thermal loading of stress elements), and all possible foundation or film/radiation conditions, and checking the resulting force and stress solutions or flux and temperature results. This manual provides program verification. All of the problems described in the manual are run and the results checked, for each release of the program, and these verification results are made available

  9. FIA's volume-to-biomass conversion method (CRM) generally underestimates biomass in comparison to published equations

    Science.gov (United States)

    David. C. Chojnacky

    2012-01-01

    An update of the Jenkins et al. (2003) biomass estimation equations for North American tree species resulted in 35 generalized equations developed from published equations. These 35 equations, which predict aboveground biomass of individual species grouped according to a taxa classification (based on genus or family and sometimes specific gravity), generally predicted...

  10. Standard Technical Specifications General Electric plants, BWR/4:Bases (Sections 3.4-3.10). Volume 3, Revision 1

    International Nuclear Information System (INIS)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/4 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the specifications for all chapters and sections of the improved STS. Volume 2 contains he Bases for Chapters 2.0 and 3.0, and Sections 3.1-3.3 of the improved STS. This document, Volume 3, contains the Bases for Sections 3.4-3.10 of the improved STS

  11. Standard Technical Specifications General Electric plants, BWR/4: Bases (Sections 2.0-3.3). Volume 2, Revision 1

    International Nuclear Information System (INIS)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/4 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved ST or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume I contains the Specifications for all chapters and sections of the improved STS. This document, Volume 2, contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1-3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4-3.10 of the improved STS

  12. Effect of general anaesthesia on functional outcome in patients with anterior circulation ischaemic stroke having endovascular thrombectomy versus standard care: a meta-analysis of individual patient data.

    Science.gov (United States)

    Campbell, Bruce C V; van Zwam, Wim H; Goyal, Mayank; Menon, Bijoy K; Dippel, Diederik W J; Demchuk, Andrew M; Bracard, Serge; White, Philip; Dávalos, Antoni; Majoie, Charles B L M; van der Lugt, Aad; Ford, Gary A; de la Ossa, Natalia Pérez; Kelly, Michael; Bourcier, Romain; Donnan, Geoffrey A; Roos, Yvo B W E M; Bang, Oh Young; Nogueira, Raul G; Devlin, Thomas G; van den Berg, Lucie A; Clarençon, Frédéric; Burns, Paul; Carpenter, Jeffrey; Berkhemer, Olvert A; Yavagal, Dileep R; Pereira, Vitor Mendes; Ducrocq, Xavier; Dixit, Anand; Quesada, Helena; Epstein, Jonathan; Davis, Stephen M; Jansen, Olav; Rubiera, Marta; Urra, Xabier; Micard, Emilien; Lingsma, Hester F; Naggara, Olivier; Brown, Scott; Guillemin, Francis; Muir, Keith W; van Oostenbrugge, Robert J; Saver, Jeffrey L; Jovin, Tudor G; Hill, Michael D; Mitchell, Peter J

    2018-01-01

    General anaesthesia (GA) during endovascular thrombectomy has been associated with worse patient outcomes in observational studies compared with patients treated without GA. We assessed functional outcome in ischaemic stroke patients with large vessel anterior circulation occlusion undergoing endovascular thrombectomy under GA, versus thrombectomy not under GA (with or without sedation) versus standard care (ie, no thrombectomy), stratified by the use of GA versus standard care. For this meta-analysis, patient-level data were pooled from all patients included in randomised trials in PuMed published between Jan 1, 2010, and May 31, 2017, that compared endovascular thrombectomy predominantly done with stent retrievers with standard care in anterior circulation ischaemic stroke patients (HERMES Collaboration). The primary outcome was functional outcome assessed by ordinal analysis of the modified Rankin scale (mRS) at 90 days in the GA and non-GA subgroups of patients treated with endovascular therapy versus those patients treated with standard care, adjusted for baseline prognostic variables. To account for between-trial variance we used mixed-effects modelling with a random effect for trials incorporated in all models. Bias was assessed using the Cochrane method. The meta-analysis was prospectively designed, but not registered. Seven trials were identified by our search; of 1764 patients included in these trials, 871 were allocated to endovascular thrombectomy and 893 were assigned standard care. After exclusion of 74 patients (72 did not undergo the procedure and two had missing data on anaesthetic strategy), 236 (30%) of 797 patients who had endovascular procedures were treated under GA. At baseline, patients receiving GA were younger and had a shorter delay between stroke onset and randomisation but they had similar pre-treatment clinical severity compared with patients who did not have GA. Endovascular thrombectomy improved functional outcome at 3 months both in

  13. Mimetic Theory for Cell-Centered Lagrangian Finite Volume Formulation on General Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Sambasivan, Shiv Kumar [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory; Burton, Donald E. [Los Alamos National Laboratory; Christon, Mark A. [Los Alamos National Laboratory

    2012-07-19

    A finite volume cell-centered Lagrangian scheme for solving large deformation problems is constructed based on the hypo-elastic model and using the mimetic theory. Rigorous analysis in the context of gas and solid dynamics, and arbitrary polygonal meshes, is presented to demonstrate the ability of cell-centered schemes in mimicking the continuum properties and principles at the discrete level. A new mimetic formulation based gradient evaluation technique and physics-based, frame independent and symmetry preserving slope limiters are proposed. Furthermore, a physically consistent dissipation model is employed which is both robust and inexpensive to implement. The cell-centered scheme along with these additional new features are applied to solve solids undergoing elasto-plastic deformation.

  14. Manual on radiation protection in hospital and general practice. Volume 4. Radiation protection in dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Koren, K; Wuehrmann, A H

    1977-01-01

    The nine chapters of this manual on radiation protection in dentistry discuss the following topics: the need for radiation protection; delegation of responsibility; radiographic equipment; radiographic film; radiographic techniques; film processing and handling; patient doses; general radiation protection and monitoring; and educational standards. (HLW)

  15. The unbiasedness of a generalized mirage boundary correction method for Monte Carlo integration estimators of volume

    Science.gov (United States)

    Thomas B. Lynch; Jeffrey H. Gove

    2014-01-01

    The typical "double counting" application of the mirage method of boundary correction cannot be applied to sampling systems such as critical height sampling (CHS) that are based on a Monte Carlo sample of a tree (or debris) attribute because the critical height (or other random attribute) sampled from a mirage point is generally not equal to the critical...

  16. ISP 33. OECD/NEA/CSNI International Standard Problem n. 33. Pactel natural circulation stepwise coolant inventory reduction experiment. Comparison report. Volume 1 + 2

    International Nuclear Information System (INIS)

    Purhonen, H.; Kouhia, J.; Holmstrom, H.

    1994-12-01

    This is the comparison report of the CSNI ISP n.33, which is based on a natural circulation experiment with various coolant inventories conducted in Pactel facility (Finland), a 1/305 volumetrically scaled, full-height simulator of a Russian type VVER-440 pressurized water reactor. It presents all submitted blind calculational results from different countries, using various codes (Athlet, Cathare2, etc.) and compares them with the experimental data. The Pactel facility and the ISP 33 experiment are described, and the summaries of the participants, the computer codes and the nodalizations used for the blind calculations are presented

  17. ABAQUS-EPGEN: a general-purpose finite-element code. Volume 1. User's manual

    International Nuclear Information System (INIS)

    Hibbitt, H.D.; Karlsson, B.I.; Sorensen, E.P.

    1982-10-01

    This document is the User's Manual for ABAQUS/EPGEN, a general purpose finite element computer program, designed specifically to serve advanced structural analysis needs. The program contains very general libraries of elements, materials and analysis procedures, and is highly modular, so that complex combinations of features can be put together to model physical problems. The program is aimed at production analysis needs, and for this purpose aspects such as ease-of-use, reliability, flexibility and efficiency have received maximum attention. The input language is designed to make it straightforward to describe complicated models; the analysis procedures are highly automated with the program choosing time or load increments based on user supplied tolerances and controls; and the program offers a wide range of post-processing options for display of the analysis results

  18. Circulating free soluble fms-like tyrosine kinase-1 during late first trimester in relation with placental volume as a surrogate for trophoblastic production: a physiology study in low-risk cohort.

    Science.gov (United States)

    Manthati, Sudtawin; Pratumvinit, Busadee; Hanyongyuth, Ratchaneekorn; Udompunthurak, Suthipol; Phaophan, Amprapha; Wataganara, Tuangsit

    2017-08-01

    Data on first-trimester circulating soluble fms-like tyrosine kinase-1 (sFlt-1) and ischemic placental disease is limited and conflicting. This study aimed to study its physiology in relation to trophoblastic mass as the source of production. Low-risk (representing normal placentation) women from 11 0/7 to 13 6/7 weeks' gestation were prospectively enrolled. Selective measurement of serum free sFlt-1 using a new automated assay from 100 eligible subjects was analyzed with gestational age, maternal weight, fetal crown-rump length (CRL), and mean uterine artery Doppler pulsatility index (PI). Placental volume (surrogate for trophoblastic mass) was estimated using 3-dimensional ultrasound and was assessed for its association with serum free sFlt-1. There was no significant association between serum free sFlt-1 and placental volume in either arithmetic (r = 0.053, p = 0.600), logarithmic (r = 0.005, p = 0.963), or quartile (p = 0.703) scale. There was a significant negative correlation between free sFlt-1 level and maternal weight (r=-0.213, p = 0.033). No significant correlation was found between free sFlt-1 level and gestational age (r = 0.007, p = 0.947), CRL (r = 0.027, p = 0.788), and uterine artery Doppler mean PI (r = 0.020, p = 0.828). Lack of correlation between circulating free sFlt-1 level and placental volume suggests that trophoblasts are not its major source during first trimester with presumably physiologic placentation.

  19. Biodynamics circulation

    CERN Document Server

    Fung, Y C

    1984-01-01

    This book is a continuation of my Biomechanics.The first volume deals with the mechanical properties of living tissues. The present volume deals with the mechanics ofcirculation. A third volume willdeal with respiration, fluid balance, locomotion, growth, and strength. This volume is called Bio­ dynamics in order to distinguish it from the first volume. The same style is followed. My objective is to present the mechanical aspects ofphysiology in precise terms ofmechanics so that the subject can become as lucid as physics. The motivation of writing this series of books is, as I have said in the preface to the first volume, to bring biomechanics to students ofbioengineer­ ing, physiology, medicine, and mechanics. I have long felt a need for a set of books that willinform the students ofthe physiological and medical applica­ tions ofbiomechanics,and at the same time develop their training in mechan­ ics. In writing these books I have assumed that the reader already has some basic training in mechanics, to a ...

  20. Correlation of Objective Assessment Data With General Surgery Resident In-Training Evaluation Reports and Operative Volumes.

    Science.gov (United States)

    Abdelsattar, Jad M; AlJamal, Yazan N; Ruparel, Raaj K; Rowse, Phillip G; Heller, Stephanie F; Farley, David R

    2018-05-14

    Faculty evaluations, ABSITE scores, and operative case volumes often tell little about true resident performance. We developed an objective structured clinical examination called the Surgical X-Games (5 rooms, 15 minutes each, 12-15 tests total, different for each postgraduate [PGY] level). We hypothesized that performance in X-Games will prove more useful in identifying areas of strength or weakness among general surgery (GS) residents than faculty evaluations, ABSITE scores, or operative cases volumes. PGY 2 to 5 GS residents (n = 35) were tested in a semiannual X-Games assessment using multiple simulation tasks: laparoscopic skills, bowel anastomosis, CT/CXR analysis, chest tube placement, etc. over 1 academic year. Resident scores were compared to their ABSITE, in-training evaluation reports, and operating room case numbers. Academic medical center. PGY-2, 3, 4, and 5 GS residents at Mayo Clinic in Rochester, MN. Results varied greatly within each class except for staff evaluations: in-training evaluation reports medians for PGY-2s were 5.3 (range: 5.0-6.0), PGY-3s 5.9 (5.5-6.3), PGY-4s 5.6 (5.0-6.0), and PGY-5s were 6.1 (5.6-6.9). Although ABSITE and operating room case volumes fluctated greatly with each PGY class, only X-Games scores (median: PGY-2 = 82, PGY-3 = 61, PGY-4 = 76, and PGY-5 = 60) correlated positively (p < 0.05) with operative case volume and negatively (p < 0.05) with staff evaluations. X-Games assessment generated wide differentiation of resident performance quickly, inexpensively, and objectively. Although "Minnesota-nice" surgical staff may feel all GS trainees are "above average," objective assessment tells us otherwise. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  1. Identifying practice-related factors for high-volume prescribers of antibiotics in Danish general practice

    DEFF Research Database (Denmark)

    Aabenhus, Rune; Siersma, Volkert Dirk; Sandholdt, Håkon

    2017-01-01

    practice-related factors driving high antibiotic prescribing rates. Results: We included 98% of general practices in Denmark (n = 1962) and identified a 10% group of high prescribers who accounted for 15% of total antibiotic prescriptions and 18% of critically important antibiotic prescriptions. Once case...... prescriptions issued over the phone compared with all antibiotic prescriptions; and a high number of consultations per 1000 patients. We also found that a low number of consultations per 1000 patients was associated with a reduced likelihood of being a high prescriber of antibiotics. Conclusions: An apparent...

  2. Instructional materials for SARA/OSHA training. Volume 1, General site working training

    Energy Technology Data Exchange (ETDEWEB)

    Copenhaver, E.D.; White, D.A.; Wells, S.M. [Oak Ridge National Lab., TN (United States)

    1988-04-01

    This proposed 24 hour ORNL SARA/OSHA training curriculum emphasizes health and safety concerns in hazardous waste operations as well as methods of worker protection. Consistent with guidelines for hazardous waste site activities developed jointly by National Institute for Occupational Safety and Health, Occupational Safety and Health Administration, US Coast Guard, and the Envirorunental Protection Agency, the program material will address Basic Training for General Site Workers to include: ORNL Site Safety Documentation, Safe Work Practices, Nature of Anticipated Hazards, Handling Emergencies and Self-Rescue, Employee Rights and Responsibilities, Demonstration of Use, Care, and Limitations of Personal Protective, Clothing and Equipment, and Demonstration of Monitoring Equipment and Sampling Techniques. The basic training courses includes major fundamentals of industrial hygiene presented to the workers in a format that encourages them to assume responsibility for their own safety and health protection. Basic course development has focused on the special needs of ORNL facilities. Because ORNL generates chemical wastes, radioactive wastes, and mixed wastes, we have added significant modules on radiation protection in general, as well as modules on radiation toxicology and on radiation protective clothing and equipment.

  3. Examination of aerosol distributions and radiative effects over the Bay of Bengal and the Arabian Sea region during ICARB using satellite data and a general circulation model

    Directory of Open Access Journals (Sweden)

    R. Cherian

    2012-02-01

    Full Text Available In this paper we analyse aerosol loading and its direct radiative effects over the Bay of Bengal (BoB and Arabian Sea (AS regions for the Integrated Campaign on Aerosols, gases and Radiation Budget (ICARB undertaken during 2006, using satellite data from the MODerate Resolution Imaging Spectroradiometer (MODIS on board the Terra and Aqua satellites, the Aerosol Index from the Ozone Monitoring Instrument (OMI on board the Aura satellite, and the European-Community Hamburg (ECHAM5.5 general circulation model extended by Hamburg Aerosol Module (HAM. By statistically comparing with large-scale satellite data sets, we firstly show that the aerosol properties measured during the ship-based ICARB campaign and simulated by the model are representative for the BoB and AS regions and the pre-monsoon season. In a second step, the modelled aerosol distributions were evaluated by a comparison with the measurements from the ship-based sunphotometer, and the satellite retrievals during ICARB. It is found that the model broadly reproduces the observed spatial and temporal variability in aerosol optical depth (AOD over BoB and AS regions. However, AOD was systematically underestimated during high-pollution episodes, especially in the BoB leg. We show that this underprediction of AOD is mostly because of the deficiencies in the coarse mode, where the model shows that dust is the dominant component. The analysis of dust AOD along with the OMI Aerosol Index indicate that missing dust transport that results from too low dust emission fluxes over the Thar Desert region in the model caused this deficiency. Thirdly, we analysed the spatio-temporal variability of AOD comparing the ship-based observations to the large-scale satellite observations and simulations. It was found that most of the variability along the track was from geographical patterns, with a minor influence by single events. Aerosol fields were homogeneous enough to yield a good statistical agreement

  4. Report for General Research January 8, to April 30, 1951 (Alpha - Neutron Volume)

    Energy Technology Data Exchange (ETDEWEB)

    Haring, M.M.

    1951-01-04

    of high backgrounds of lower energy gammas (p. 8). Maximum efficiency is obtained for polonium-beryllium neutron sources when the beryllium powder contains a minimum of oxide, when the polonium is 'shot' into the source container and when the curie-to gram-of-beryllium ratio is in the range of 5 to 11 (p. 11). Four mock-fission neutron sources have been prepared in an attempt to improve the efficiency which can be obtained by the evaporation technique (p. 13). A polonium-boron neutron source of unusually high efficiency has been made by the evaporative procedure. Two further attempts to prepare polonium-boron neutron sources by volatilization gave low efficiency (p. 14). Polonium, satisfactory for making neutron sources, has been reclaimed from large volumes of hydrochloric acid containing high concentrations of contaminating ions (p. 15). Work has continued on the problem of determining the total energy emitted from a covered alpha source. The effective thickness of a tantalum hold-down apparently, increases with time. If a source does not contaminate acetone after 24 hours immersion, it can be considered as being satisfactorily sealed. It is believed that a satisfactory seal of a tantalum hold-down to a gold plated source can be obtained by using a gold foil ring between the hold-down and the source, clamping to give pressure, and heating in a vacuum (P. 16).

  5. General expressions for the volume of organs in the MIRD-phantom and their use to arrive at an Indian ''reference'' man

    International Nuclear Information System (INIS)

    Shiv Datta

    1982-01-01

    The general expressions for the volume of body organs have been developed, when their equations are assumed to be of the same form as in the MIRD phantom. Scaling down is then carried out by introducing factors based on the average weight and height of a group of Indian adult males (workers in various units of Department of Atomic Energy, India). The general expressions for the volume of the body organs will be found handy to use when the actual data of the organs (ratios of the lengths of their axes and the volumes) become available. (author)

  6. Generalization techniques to reduce the number of volume elements for terrain effect calculations in fully analytical gravitational modelling

    Science.gov (United States)

    Benedek, Judit; Papp, Gábor; Kalmár, János

    2018-04-01

    Beyond rectangular prism polyhedron, as a discrete volume element, can also be used to model the density distribution inside 3D geological structures. The calculation of the closed formulae given for the gravitational potential and its higher-order derivatives, however, needs twice more runtime than that of the rectangular prism computations. Although the more detailed the better principle is generally accepted it is basically true only for errorless data. As soon as errors are present any forward gravitational calculation from the model is only a possible realization of the true force field on the significance level determined by the errors. So if one really considers the reliability of input data used in the calculations then sometimes the "less" can be equivalent to the "more" in statistical sense. As a consequence the processing time of the related complex formulae can be significantly reduced by the optimization of the number of volume elements based on the accuracy estimates of the input data. New algorithms are proposed to minimize the number of model elements defined both in local and in global coordinate systems. Common gravity field modelling programs generate optimized models for every computation points ( dynamic approach), whereas the static approach provides only one optimized model for all. Based on the static approach two different algorithms were developed. The grid-based algorithm starts with the maximum resolution polyhedral model defined by 3-3 points of each grid cell and generates a new polyhedral surface defined by points selected from the grid. The other algorithm is more general; it works also for irregularly distributed data (scattered points) connected by triangulation. Beyond the description of the optimization schemes some applications of these algorithms in regional and local gravity field modelling are presented too. The efficiency of the static approaches may provide even more than 90% reduction in computation time in favourable

  7. A blood circulation model for reference man

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, R.W.; Eckerman, K.F. [Oak Ridge National Lab., TN (United States); Williams, L.R. [Indiana Univ., South Bend, IN (United States). Div. of Liberal Arts and Sciences

    1996-12-31

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86.

  8. A blood circulation model for reference man

    International Nuclear Information System (INIS)

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    1996-01-01

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86

  9. The Scrap Collection per Industry Sector and the Circulation Times of Steel in the U.S. between 1900 and 2016, Calculated Based on the Volume Correlation Model

    Directory of Open Access Journals (Sweden)

    Alicia Gauffin

    2018-05-01

    Full Text Available On the basis of the Volume Correlation Model (VCM as well as data on steel consumption and scrap collection per industry sector (construction, automotive, industrial goods, and consumer goods, it was possible to estimate service lifetimes of steel in the United States between 1900 and 2016. Input data on scrap collection per industry sector was based on a scrap survey conducted by the World Steel Association for a static year in 2014 in the United States. The lifetimes of steel calculated with the VCM method were within the range of previously reported measured lifetimes of products and applications for all industry sectors. Scrapped (and apparent lifetimes of steel compared with measured lifetimes were calculated to be as follows: a scrapped lifetime of 29 years for the construction sector (apparent lifetime: 52 years compared with 44 years measured in 2014. Industrial goods: 16 (27 years compared with 19 years measured in 2010. Consumer goods: 12 (14 years compared with 13 years measured in 2014. Automotive sector: 14 (19 years compared with 17 years measured in 2011. Results show that the VCM can estimate reasonable values of scrap collection and availability per industry sector over time.

  10. Technical report series on global modeling and data assimilation. Volume 3: An efficient thermal infrared radiation parameterization for use in general circulation models

    Science.gov (United States)

    Suarex, Max J. (Editor); Chou, Ming-Dah

    1994-01-01

    A detailed description of a parameterization for thermal infrared radiative transfer designed specifically for use in global climate models is presented. The parameterization includes the effects of the main absorbers of terrestrial radiation: water vapor, carbon dioxide, and ozone. While being computationally efficient, the schemes compute very accurately the clear-sky fluxes and cooling rates from the Earth's surface to 0.01 mb. This combination of accuracy and speed makes the parameterization suitable for both tropospheric and middle atmospheric modeling applications. Since no transmittances are precomputed the atmospheric layers and the vertical distribution of the absorbers may be freely specified. The scheme can also account for any vertical distribution of fractional cloudiness with arbitrary optical thickness. These features make the parameterization very flexible and extremely well suited for use in climate modeling studies. In addition, the numerics and the FORTRAN implementation have been carefully designed to conserve both memory and computer time. This code should be particularly attractive to those contemplating long-term climate simulations, wishing to model the middle atmosphere, or planning to use a large number of levels in the vertical.

  11. General-purpose computer networks and resource sharing in ERDA. Volume 3. Remote resource-sharing experience and findings

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-15

    The investigation focused on heterogeneous networks in which a variety of dissimilar computers and operating systems were interconnected nationwide. Homogeneous networks, such as MFE net and SACNET, were not considered since they could not be used for general purpose resource sharing. Issues of privacy and security are of concern in any network activity. However, consideration of privacy and security of sensitive data arise to a much lesser degree in unclassified scientific research than in areas involving personal or proprietary information. Therefore, the existing mechanisms at individual sites for protecting sensitive data were relied on, and no new protection mechanisms to prevent infringement of privacy and security were attempted. Further development of ERDA networking will need to incorporate additional mechanisms to prevent infringement of privacy. The investigation itself furnishes an excellent example of computational resource sharing through a heterogeneous network. More than twenty persons, representing seven ERDA computing sites, made extensive use of both ERDA and non-ERDA computers in coordinating, compiling, and formatting the data which constitute the bulk of this report. Volume 3 analyzes the benefits and barriers encountered in actual resource sharing experience, and provides case histories of typical applications.

  12. Development of a mathematical model for a single alkaline membrane fuel cell (AMFC) with fixed volume and general square section

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Elise Meister; Vargas, Jose Viriato Coelho [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico. Setor de Tecnologia], Email: jvargas@demec.ufpr.br; Martins, Lauber de Souza; Ordonez, Juan Carlos [Florida State University, Tallahasse, FL (United States). Dept. of Mechanical Engineering and Center for Advanced Power Systems], Emails: martins@caps.fsu.edu, ordonez@eng.fsu.edu

    2010-07-01

    The Alkaline Membrane Fuel Cell (AMFC) is a recently developed fuel cell type, which has shown good experimental results in the laboratory. This paper introduces a mathematical model for the single AMFC with fixed volume and general square section. The main objective is to produce a reliable model (and computationally fast) to predict the response of the single AMFC according to variations of the physical properties of manufacturing materials and operating and design parameters. The model is based on mass, momentum, energy and species conservation, and electrochemical principles, and takes into account pressure drops in the gas channels and temperature gradients with respect to space in the flow direction. The simulation results comprise the AMFC temperature distribution, net power and polarization curves. It is shown that temperature spatial gradients and gas channels pressure drops significantly affect fuel cell performance. Such effects are not usually investigated in the models available in the literature, with most of them assuming uniform pressure and temperature operation. Therefore, the model is expected to be a useful tool for AMFC design and optimization. (author)

  13. Radiology of liver circulation

    International Nuclear Information System (INIS)

    Hermine, C.L.

    1985-01-01

    This book proposes that careful evaluation of the arterioportogram is the cornerstone in assessing portal flow obstruction, being the most consistent of all observations including liver histology, portal venous pressure, size and number of portosystemic collaterals, and wedged hepatic venous pressure. Very brief chapters cover normal hepatic circulation and angiographic methods. Contrast volumes and flow rates for celiac, hepatic, and superior mesenteric injection are given, with the timing for venous phase radiographs. In the main body of the text, portal obstruction is divided very simply into presinusoidal (all proximal causes) and postsinusoidal (all distal causes, including Budd-Chiari). Changes are discussed regarding the splenic artery and spleen; hepatic artery and its branches; portal flow rate and direction; and arterioportal shunting and portosystemic collateral circulation in minimal, moderate, severe, and very severe portal obstruction and in recognizable entities such as prehepatic portal and hepatic venous obstructions. The major emphasis in this section is the recognition and understanding of flow changes by which level and severity of obstruction are assessed (not simply the anatomy of portosystemic collateral venous flow). Excellent final chapters discuss the question of portal hypertension without obstruction, and the contribution of arterioportography to the treatment of portal hypertension, again with an emphasis on hemodynamics before and after shunt surgery. There is a fascinating final chapter on segmental intrahepatic obstruction without portal hypertension that explains much of the unusual contrast enhancement sometimes seen in CT scanning of hepatic mass lesions

  14. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    Science.gov (United States)

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Köhl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.

  15. 1970 MLA Abstracts of Articles in Scholarly Journals, Volume I: General, English, American, Medieval and Neo-Latin, Celtic Literatures; and Folklore.

    Science.gov (United States)

    Fisher, John H., Comp.; Achtert, Walter S., Comp.

    The first volume of an annual series following the arrangement of the "MLA International Bibliography" includes sections on General, English, American, Medieval and Neo-Latin, Celtic literatures, and Folklore. A classified collection of 1,744 brief abstracts of journalarticles on the modern languages and literatures to be used in conjunction with…

  16. Modelling the Seasonal Overturning Circulation in the Red Sea

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry; Bower, Amy; Koehl, Armin; Gopalakrishnan, Ganesh

    2015-01-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using 50-year, high-resolution MIT general circulation model simulations. The seasonal water exchange in the Strait of Bab el Mandeb

  17. CONARC Training Workshop, Fort Gordon, Georgia, 5-7 October 1971. Volume I. General: Opening, Closing, and Dinner Sessions.

    Science.gov (United States)

    1971-10-01

    Jack and Bobby Kennedy, Jim Plunkett, George Jackson, the Beatles , Janice Joplin, and the growing number of men who have walked on the moon. It...Executive Summary as an Interim Re- port on the CONARC Training Workshop, which was held 5-7 October 1971 at Fort Gordon, Georgia. 3. The report will be...volume will be sent to each addressee to form two complete sets of the report. Requests for additional copies of the separate volumes will be filled

  18. Manufacturing cost analysis of a parabolic dish concentrator (General Electric design) for solar thermal electric power systems in selected production volumes

    Science.gov (United States)

    1981-01-01

    The manufacturing cost of a General Electric 12 meter diameter concentrator was estimated. This parabolic dish concentrator for solar thermal system was costed in annual production volumes of 100 - 1,000 - 5,000 - 10,000 - 50,000 100,000 - 400,000 and 1,000,000 units. Presented for each volume are the costs of direct labor, material, burden, tooling, capital equipment and buildings. Also presented is the direct labor personnel and factory space requirements. All costs are based on early 1981 economics.

  19. An adaptive maneuvering logic computer program for the simulation of one-on-one air-to-air combat. Volume 1: General description

    Science.gov (United States)

    Burgin, G. H.; Fogel, L. J.; Phelps, J. P.

    1975-01-01

    A technique for computer simulation of air combat is described. Volume 1 decribes the computer program and its development in general terms. Two versions of the program exist. Both incorporate a logic for selecting and executing air combat maneuvers with performance models of specific fighter aircraft. In the batch processing version the flight paths of two aircraft engaged in interactive aerial combat and controlled by the same logic are computed. The realtime version permits human pilots to fly air-to-air combat against the adaptive maneuvering logic (AML) in Langley Differential Maneuvering Simulator (DMS). Volume 2 consists of a detailed description of the computer programs.

  20. Impact of a simple parameterization of convective gravity-wave drag in a stratosphere-troposphere general circulation model and its sensitivity to vertical resolution

    Directory of Open Access Journals (Sweden)

    C. Bossuet

    Full Text Available Systematic westerly biases in the southern hemisphere wintertime flow and easterly equatorial biases are experienced in the Météo-France climate model. These biases are found to be much reduced when a simple parameterization is introduced to take into account the vertical momentum transfer through the gravity waves excited by deep convection. These waves are quasi-stationary in the frame of reference moving with convection and they propagate vertically to higher levels in the atmosphere, where they may exert a significant deceleration of the mean flow at levels where dissipation occurs. Sixty-day experiments have been performed from a multiyear simulation with the standard 31 levels for a summer and a winter month, and with a T42 horizontal resolution. The impact of this parameterization on the integration of the model is found to be generally positive, with a significant deceleration in the westerly stratospheric jet and with a reduction of the easterly equatorial bias. The sensitivity of the Météo-France climate model to vertical resolution is also investigated by increasing the number of vertical levels, without moving the top of the model. The vertical resolution is increased up to 41 levels, using two kinds of level distribution. For the first, the increase in vertical resolution concerns especially the troposphere (with 22 levels in the troposphere, and the second treats the whole atmosphere in a homogeneous way (with 15 levels in the troposphere; the standard version of 31 levels has 10 levels in the troposphere. A comparison is made between the dynamical aspects of the simulations. The zonal wind and precipitation are presented and compared for each resolution. A positive impact is found with the finer tropospheric resolution on the precipitation in the mid-latitudes and on the westerly stratospheric jet, but the general impact on the model climate is weak, the physical parameterizations used appear to be mostly independent to the

  1. Improvement of Classification of Enterprise Circulating Funds

    Directory of Open Access Journals (Sweden)

    Rohanova Hanna O.

    2014-02-01

    Full Text Available The goal of the article lies in revelation of possibilities of increase of efficiency of managing enterprise circulating funds by means of improvement of their classification features. Having analysed approaches of many economists to classification of enterprise circulating funds, systemised and supplementing them, the article offers grouping classification features of enterprise circulating funds. In the result of the study the article offers an expanded classification of circulating funds, which clearly shows the role of circulating funds in managing enterprise finance and economy in general. The article supplements and groups classification features of enterprise circulating funds by: the organisation level, functioning character, sources of formation and their cost, and level of management efficiency. The article shows that the provided grouping of classification features of circulating funds allows exerting all-sided and purposeful influence upon indicators of efficiency of circulating funds functioning and facilitates their rational management in general. The prospect of further studies in this direction is identification of the level of attraction of loan resources by production enterprises for financing circulating funds.

  2. The Impact of the Hospital Volume on the Performance of Residents on the General Medicine In-Training Examination: A Multicenter Study in Japan.

    Science.gov (United States)

    Mizuno, Atsushi; Tsugawa, Yusuke; Shimizu, Taro; Nishizaki, Yuji; Okubo, Tomoya; Tanoue, Yusuke; Konishi, Ryota; Shiojiri, Toshiaki; Tokuda, Yasuharu

    2016-01-01

    Objective Although several studies have been conducted worldwide on factors that might improve residents' knowledge, the relationship between the hospital volume and the internal medicine residents' knowledge has not been fully understood. We conducted a cross-sectional study to compare the relationships of the hospital volume and hospital resources with the residents' knowledge assessed by the In-training Examination. Methods We conducted a retrospective survey and a clinical knowledge evaluation of postgraduate year 1 and 2 (PGY-1 and -2) resident physicians in Japan by using the General Medicine In-training Examination (GM-ITE) in 2014. We compared the ITE score and the hospital volume. Results A total of 2,015 participants (70.6% men; age, 27.3±2.9 years old) from 208 hospitals were retrospectively analyzed. Generalized estimating equations were used, and the results revealed that an increasing number of hospitalizations, decreasing staff number, decreasing age and PGY-2 were significantly associated with higher GM-ITE scores. Conclusion The hospital volume, such as the number of hospitalizations, is thus considered to have a positive impact on the GM-ITE scores.

  3. General Editorial

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. General Editorial. Articles in Resonance – Journal of Science Education. Volume 19 Issue 1 January 2014 pp 1-2 General Editorial. General Editorial on Publication Ethics · R Ramaswamy · More Details Fulltext PDF. Volume 19 Issue 1 January 2014 pp 3-3 ...

  4. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow. Key Points Sinking occurs in a narrow boundary layer along the eastern boundary Surface western boundary current switches into an eastern boundary current Water exchange in the Strait of Bab el Mandeb is not hydraulically controlled © 2014. American Geophysical Union. All Rights Reserved.

  5. Effects of gestational age on brain volume and cognitive functions in generally healthy very preterm born children during school-age: A voxel-based morphometry study.

    Directory of Open Access Journals (Sweden)

    Sakari Lemola

    Full Text Available To determine whether the relationship of gestational age (GA with brain volumes and cognitive functions is linear or whether it follows a threshold model in preterm and term born children during school-age.We studied 106 children (M = 10 years 1 month, SD = 16 months; 40 females enrolled in primary school: 57 were healthy very preterm children (10 children born 24-27 completed weeks' gestation (extremely preterm, 14 children born 28-29 completed weeks' gestation, 19 children born 30-31 completed weeks' gestation (very preterm, and 14 born 32 completed weeks' gestation (moderately preterm all born appropriate for GA (AGA and 49 term-born children. Neuroimaging involved voxel-based morphometry with the statistical parametric mapping software. Cognitive functions were assessed with the WISC-IV. General Linear Models and multiple regressions were conducted controlling age, sex, and maternal education.Compared to groups of children born 30 completed weeks' gestation and later, children born <28 completed weeks' gestation had less gray matter volume (GMV and white matter volume (WMV and poorer cognitive functions including decreased full scale IQ, and processing speed. Differences in GMV partially mediated the relationship between GA and full scale IQ in preterm born children.In preterm children who are born AGA and without major complications GA is associated with brain volume and cognitive functions. In particular, decreased brain volume becomes evident in the extremely preterm group (born <28 completed weeks' gestation. In preterm children born 30 completed weeks' gestation and later the relationship of GA with brain volume and cognitive functions may be less strong as previously thought.

  6. Comparison of the effect of a single dose of erythromycin with pantoprazole on gastric content volume and acidity in elective general surgery patients

    Science.gov (United States)

    Bhatia, Nidhi; Palta, Sanjeev; Arora, Kanika

    2011-01-01

    Introduction: Pulmonary aspiration of gastric contents remains one of the most feared complications of anesthesia. A gastric pH of 2.5 or less and a volume of 25 ml (0.4 ml/kg body weight) or more in average adult patients are considered critical factors for the development of pulmonary damage in adults. Materials and Methods: This study compared the efficacy of a single oral dose of erythromycin (a macrolide antibiotic) with oral pantoprazole (a proton pump inhibitor) on pre-operative gastric fluid volume and pH in a prospective, randomized, double-blind controlled fashion in 80 adult patients (of ASA physical status I and II) planned for elective surgery under general anesthesia. Patients were divided into two groups of 40 patients each. The pantoprazole group (Group I) received oral pantoprazole 40 mg and the erythromycin group (Group II) received oral erythromycin 250 mg at least 1 h prior to the induction of anesthesia. After tracheal intubation, gastric fluid was aspirated via a Salem Sump tube and its volume and pH were measured. Results: Although both erythromycin and pantoprazole decreased the gastric fluid volume to a similar extent, the decrease in gastric fluid acidity by pantoprazole was significantly greater than that by erythromycin. The proportion of patients at risk of pulmonary aspiration according to traditional criteria, i.e. pH ≤2.5 and volume ≥25ml, was lower in the pantoprazole group. Conclusion: Administration of pantoprazole was found to be more useful than a sub-therapeutic dose of erythromycin in decreasing both volume and acidity of gastric content. PMID:21772679

  7. Comparison of the effect of a single dose of erythromycin with pantoprazole on gastric content volume and acidity in elective general surgery patients

    Directory of Open Access Journals (Sweden)

    Nidhi Bhatia

    2011-01-01

    Full Text Available Introduction: Pulmonary aspiration of gastric contents remains one of the most feared complications of anesthesia. A gastric pH of 2.5 or less and a volume of 25 ml (0.4 ml/kg body weight or more in average adult patients are considered critical factors for the development of pulmonary damage in adults. Materials and Methods: This study compared the efficacy of a single oral dose of erythromycin (a macrolide antibiotic with oral pantoprazole (a proton pump inhibitor on pre-operative gastric fluid volume and pH in a prospective, randomized, double-blind controlled fashion in 80 adult patients (of ASA physical status I and II planned for elective surgery under general anesthesia. Patients were divided into two groups of 40 patients each. The pantoprazole group (Group I received oral pantoprazole 40 mg and the erythromycin group (Group II received oral erythromycin 250 mg at least 1 h prior to the induction of anesthesia. After tracheal intubation, gastric fluid was aspirated via a Salem Sump tube and its volume and pH were measured. Results: Although both erythromycin and pantoprazole decreased the gastric fluid volume to a similar extent, the decrease in gastric fluid acidity by pantoprazole was significantly greater than that by erythromycin. The proportion of patients at risk of pulmonary aspiration according to traditional criteria, i.e. pH ≤2.5 and volume ≥25ml, was lower in the pantoprazole group. Conclusion: Administration of pantoprazole was found to be more useful than a sub-therapeutic dose of erythromycin in decreasing both volume and acidity of gastric content.

  8. Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed

    Science.gov (United States)

    Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.

    2018-02-01

    Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.

  9. The ECHAM3 atmospheric general circulation model

    International Nuclear Information System (INIS)

    1993-09-01

    The ECHAM model has been developed from the ECMWF model (cycle 31, November 1988). It contains several changes, mostly in the parameterization, in order to adjust the model for climate simulations. The technical details of the ECHAM operational model are described. (orig./KW)

  10. Stratospheric General Circulation with Chemistry Model (SGCCM)

    Science.gov (United States)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  11. Diarrhea caused by circulating agents.

    Science.gov (United States)

    Fabian, Elisabeth; Kump, Patrizia; Krejs, Guenter J

    2012-09-01

    Circulating agents cause intestinal secretion or changes in motility with decreased intestinal transit time, resulting in secretory-type diarrhea. Secretory diarrhea as opposed to osmotic diarrhea is characterized by large-volume, watery stools, often more than 1 L per day; by persistence of diarrhea when patients fast; and by the fact that on analysis of stool-water, measured osmolarity is identical to that calculated from the electrolytes present. Although sodium plays the main role in water and electrolyte absorption, chloride is the major ion involved in secretion. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Gas Cooled Fast Breeder Reactor cost estimate for a circulator test facility (modified HTGR circulator test facility)

    International Nuclear Information System (INIS)

    1979-10-01

    This is a conceptual design cost estimate for a Helium Circulator Test Facility to be located at the General Atomic Company, San Diego, California. The circulator, drive motors, controllers, thermal barrier, and circulator service module installation costs are part of the construction cost included

  13. Design and Construction Rules for Mechanical components of FBR nuclear islands: RCC-MR. Tome 1, Volume A: generalities

    International Nuclear Information System (INIS)

    1985-06-01

    The French Rules of Mechanical equipments of Fast Neutron nuclear Reactors (RCC-MR) aims at equipments included in a safety classification. The equipments concerned are those of the nuclear boiler and its auxiliaries: tanks, vessels, internal equipments of the reactor, exchangers, pumps, fittings, pipes, and supports. The present edition of the RCC-MR comprises 12 books presented in the present one in the volume A. The chapter RA 3000 defines the documents to be established in application of the RCC-MR rules. The chapter RA 5000 defines the requirements to take into account to establish and carry out quality Assurance programs according to the RCC-MR rules [fr

  14. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    International Nuclear Information System (INIS)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Genio, A. D. Del; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; Tsigaridis, K.; Clune, T. L.

    2017-01-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  15. Global Distributions of {sup 137}Cs, {sup 239,240}Pu and the Ratio of {sup 239,240}Pu/{sup 137}Cs in an Ocean General Circulation Model

    Energy Technology Data Exchange (ETDEWEB)

    Tsumune, D.; Tsubono, T.; Misumi, K.; Yoshida, Y. [Environmental Research Laboratory, Central Research Institute of Electric Power Industry, Abiko (Japan); Aoyama, M. [Geochemical Research Department, Meteorological Research Institute, Tsukuba (Japan); Hirose, K. [Sophia University, Tokyo (Japan)

    2013-07-15

    The spatial distributions and the temporal variations of {sup 137}Cs and {sup 239,240}Pu concentrations were simulated by using an ocean general circulation model (OGCM). These radionuclides are introduced into the ocean by global fallout originating from atmospheric nuclear weapons tests. {sup 137}Cs derived from global fallout is transported into the ocean interior by advection and diffusion, and the {sup 137}Cs concentration is reduced by radioactive decay. In contrast to {sup 137}Cs, {sup 239,240}Pu, which is a particle reactive radionuclide, is a biogeochemical tracer. The global distribution of the {sup 239,240}Pu{sup /137}Cs ratio was investigated in an OGCM with a biogeochemical process model. A half regeneration depth (HRD) of {sup 239,240}Pu was estimated from curve fitting of the vertical profile of the {sup 239,240}Pu/{sup 137}Cs ratio. Simulated distribution of the HRD is in good agreement with observation, except in the subarctic gyre. The HRD is a good tool to improve the parameters in the biogeochemical process. (author)

  16. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    Science.gov (United States)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; hide

    2017-01-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth's, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  17. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    Energy Technology Data Exchange (ETDEWEB)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Genio, A. D. Del; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; Tsigaridis, K. [NASA Goddard Institute for Space Studies, New York, NY 10025 (United States); Clune, T. L. [Global Modeling and Assimilation Office, NASA Goddard Space Flight Center (United States)

    2017-07-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  18. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  19. Sources and effects of ionizing radiation. UNSCEAR 2000 report to the General Assembly, with scientific annexes. Volume II: Effects

    International Nuclear Information System (INIS)

    2000-01-01

    Over the past few years the United Nations Scientific Committee on the effects of Atomic Radiation has undertaken a broad review of the sources and effects of ionizing radiation. In the present report, the Committee, drawing on the main conclusions of its scientific assessment summarizes the developments in radiation science in the years leading up to the next millennium. It covers the following: the effects of radiation exposure; levels of radiation exposure; radiological consequences of the Chernobyl accident; sources of radiation exposure including natural exposures, man-made environmental exposures, medical and occupational exposures; radiation associated cancer. This volume includes five Annexes covering: DNA repair and mutagenesis; biological effects at low radiation doses; combined effects of radiation and other agents; epidemiological evaluation of radiation-induced cancer and exposure effects of the Chernobyl accident

  20. Sources and effects of ionizing radiation. UNSCEAR 2000 report to the General Assembly, with scientific annexes. Volume I: Sources

    International Nuclear Information System (INIS)

    2000-01-01

    Over the past few years the United Nations Scientific Committee on the effects of Atomic Radiation has undertaken a broad review of the sources and effects of ionizing radiation. In the present report, the Committee, drawing on the main conclusions of its scientific assessment summarizes the developments in radiation science in the years leading up to the next millennium. It covers the following: the effects of radiation exposure; levels of radiation exposure; radiological consequences of the Chernobyl accident; sources of radiation exposure including natural exposures, man-made environmental exposures, medical and occupational exposures; radiation associated cancer. This volume includes five Annexes covering: dose assessment methodologies; exposure from natural sources; exposures to the public from man-made sources of radiation and occupational radiation exposures

  1. Circulation and geostrophic transport in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.P.; Murty, V.S.N.

    Utilising the hydrographic data collected during the early northeast monsoon of 1983 and southwest monsoon of 1984, the circulation of waters of the Bay of Bengal and the associated volume transport have been studied in the upper 1000 m...

  2. SpaceX Dragon Air Circulation System

    Science.gov (United States)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  3. Circulation pump mounting

    International Nuclear Information System (INIS)

    Skalicky, A.

    1976-01-01

    The suspension is described of nuclear reactor circulating pumps enabling their dilatation with a minimum reverse force consisting of spacing rods supported with one end in the anchor joints and provided with springs and screw joints engaging the circulating pump shoes. The spacing rods are equipped with side vibration dampers anchored in the shaft side wall and on the body of the circulating pump drive body. The negative reverse force F of the spacing rods is given by the relation F=Q/l.y, where Q is the weight of the circulating pump, l is the spatial distance between the shoe joints and anchor joints, and y is the deflection of the circulating pump vertical axis from the mean equilibrium position. The described suspension is advantageous in that that the reverse force for the deflection from the mean equilibrium position is minimal, dynamic behaviour is better, and construction costs are lower compared to suspension design used so far. (J.B.)

  4. Evolution of ocean-induced ice melt beneath Zachariæ Isstrøm, Northeast Greenland combining observations and an ocean general circulation model from 1978 to present

    Science.gov (United States)

    Cai, C.; Rignot, E. J.; Menemenlis, D.; Millan, R.; Bjørk, A. A.; Khan, S. A.; Charolais, A.

    2017-12-01

    Zachariæ Isstrøm, a major ice stream in northeast Greenland, lost a large fraction of its ice shelf during the last decade. We study the evolution of subaqueous melting of its floating section from 1978 to present. The ice shelf melt rate depends on thermal forcing from warm, salty, subsurface ocean waters of Atlantic origin (AW), the mixing of AW with fresh, buoyant subglacial discharge at the calving margin, and the shape of the sub-ice-shelf cavity. Subglacial discharge doubled as a result of enhanced ice sheet runoff caused by warmer air temperatures. Ocean thermal forcing has increased due to enhanced advection of AW. Using an Eulerian method, MEaSUREs ice velocity, Operation IceBridge (OIB) ice thickness, and RACMO2.3 surface balance data, we evaluate the ice shelf melt rate in 1978, 1999 and 2010. The melt rate doubled from 1999 to 2010. Using a Lagrangian method with World View imagery, we map the melt rate in detail from 2011 to 2016. We compare the results with 2D simulations from the Massachusetts Institute of Technology general circulation model (MITgcm), at a high spatial resolution (20-m horizontal and 40-m vertical grid spacing), using OIB ice thickness and sub-ice-shelf cavity for years 1978, 1996, 2010 and 2011, combined with in-situ ocean temperature/salinity data from Ocean Melting Greenland (OMG) 2017. We find that winter melt rates are 2 3 times smaller than summer rates and melt rates increase by one order magnitude during the transition from ice shelf termination to near-vertical calving wall termination. As the last remaining bits of floating ice shelf disappear, ice-ocean interaction will therefore play an increasing role in driving the glacier retreat into its marine-based basin. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.

  5. Local and national trends in general surgery residents' operative experience: do work hour limitations negatively affect case volume in small community-based programs?

    Science.gov (United States)

    Markelov, Alexey; Sakharpe, Aniket; Kohli, Harjeet; Livert, David

    2011-12-01

    The goals of this study were to analyze the impact of work hour restrictions on the operative case volume at a small community-based general surgery residency training program and compare changes with the national level. Annual national resident case log data from Accreditation Council for Graduate Medical Education (ACGME) website and case logs of graduating Easton Hospital residents (years 2002-2009) were used for analysis. Weighted average change in total number of cases in our institution was -1.20 (P = 0.52) vs 1.78 (P = 0.07) for the national program average with statistically significant difference on comparison (P = 0.027). We also found significant difference in case volume changes at the national level compared with our institution for the following ACGME defined subcategories: alimentary tract [8.19 (P < 0.01) vs -1.08 (P = 0.54)], abdomen [8.48 (P < 0.01) vs -6.29 (P < 0.01)], breast [1.91 (P = 0.89) vs -3.6 (P = 0.02)], and vascular [4.03 (P = 0.02) vs -3.98 (P = 0.01)]. Comparing the national trend to the community hospital we see that there is total increase in cases at the national level whereas there is a decrease in case volume at the community hospital. These trends can also be followed in ACGME defined subcategories which form the major case load for a general surgical training such as alimentary tract, abdominal, breast, and vascular procedures. We hypothesize that work hour restrictions have been favorable for the larger programs, as these programs were able to better integrate the night float system, restructure their call schedule, and implement institutional modifications which are too resource demanding for smaller training programs.

  6. Prediabetes is associated with lower brain gray matter volume in the general population. The Study of Health in Pomerania (SHIP).

    Science.gov (United States)

    Markus, M R P; Ittermann, T; Wittfeld, K; Schipf, S; Siewert-Markus, U; Bahls, M; Bülow, R; Werner, N; Janowitz, D; Baumeister, S E; Felix, S B; Dörr, M; Rathmann, W; Völzke, H; Grabe, H J

    2017-12-01

    We investigated the associations of fasting (FG) and 2-h postload (2HG) plasma glucose from oral glucose tolerance test (OGTT) with gray (GMV) and white (WMV) matter volume. We analyzed data from 1330 subjects without known diabetes mellitus, aged 21 to 81, from the second cohort (SHIP-Trend-0) of the population-based Study of Health in Pomerania (SHIP). Following the OGTT, individuals were classified in five groups (according to the American Diabetes Association criteria): normal glucose tolerance (NGT), isolated impaired fasting glucose (i-IFG), isolated impaired glucose tolerance (i-IGT), combined IFG and IGT (IFG + IGT) and unknown type 2 diabetes mellitus (UDM). GMV and WMV were determined by magnetic resonance imaging. FG, 2HG and OGTT groups were associated with GMV and WMV by linear regression models adjusted for confounders. FG and 2HG were inversely associated with GMV. The adjusted mean GMV, when compared with the NGT group (584 ml [95% CI: 581 to 587]), was significantly lower in the groups i-IFG (578 ml [95% CI: 573 to 582]; p = 0.035) and UDM (562 ml [95% CI: 551 to 573]; p < 0.001), but not different in the i-IGT (586 ml [95% CI: 576 to 596]; p = 0.688) and IFG + IGT (579 ml [95% CI: 571 to 586]; p = 0.209) groups. There were no associations of FG, 2HG and OGTT parameters with WMV. Our findings suggest that elevated FG levels, even within the prediabetic range, might already have some harmful effects on GMV. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  7. Savannah River Plant engineering and design history. Volume 4: 300/700 Areas & general services and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    The primary function of the 300 Area is the production and preparation of the fuel and target elements required for the 100 Area production reactors. Uranium slugs and lithium-aluminium alloy control and blanket rods are prepared in separate structures. Other facilities include a test pile, a physics assembly laboratory, an office and change house, an electrical substation, and various service facilities such as rail lines, roads, sewers, steam and water distribution lines, etc. The 700 Area contains housing and facilities for plant management, general plant services, and certain technical activities. The technical buildings include the Main Technical Laboratory, the Waste Concentration Building, the Health Physics Headquarters, and the Health Physics Calibration building. Sections of this report describe the following: development of the 300-M Area; selection and description of process; design of main facilities of the 300 Area; development of the 700-A Area; design of the main facilities of the 700 Area; and general services and facilities, including transportation, plant protection, waste disposal and drainage, site work, pilot plants, storage, and furniture and fixtures.

  8. The role of informal dimensions of safety in high-volume organisational routines: an ethnographic study of test results handling in UK general practice.

    Science.gov (United States)

    Grant, Suzanne; Checkland, Katherine; Bowie, Paul; Guthrie, Bruce

    2017-04-27

    The handling of laboratory, imaging and other test results in UK general practice is a high-volume organisational routine that is both complex and high risk. Previous research in this area has focused on errors and harm, but a complementary approach is to better understand how safety is achieved in everyday practice. This paper ethnographically examines the role of informal dimensions of test results handling routines in the achievement of safety in UK general practice and how these findings can best be developed for wider application by policymakers and practitioners. Non-participant observation was conducted of high-volume organisational routines across eight UK general practices with diverse organisational characteristics. Sixty-two semi-structured interviews were also conducted with the key practice staff alongside the analysis of relevant documents. While formal results handling routines were described similarly across the eight study practices, the everyday structure of how the routine should be enacted in practice was informally understood. Results handling safety took a range of local forms depending on how different aspects of safety were prioritised, with practices varying in terms of how they balanced thoroughness (i.e. ensuring the high-quality management of results by the most appropriate clinician) and efficiency (i.e. timely management of results) depending on a range of factors (e.g. practice history, team composition). Each approach adopted created its own potential risks, with demands for thoroughness reducing productivity and demands for efficiency reducing handling quality. Irrespective of the practice-level approach adopted, staff also regularly varied what they did for individual patients depending on the specific context (e.g. type of result, patient circumstances). General practices variably prioritised a legitimate range of results handling safety processes and outcomes, each with differing strengths and trade-offs. Future safety

  9. General conceptual design study for a high level radioactive waste repository in a granite formation. Volume 1

    International Nuclear Information System (INIS)

    1982-01-01

    The object of the general conceptual design study for a repository for disposal of radioactive waste in a granite formation is to ensure that the technology available in 1980 is suitable for the construction of such a repository. The recommended techniques and equipment are suitable for construction of a repository, located at a depth of 1000 metres in a granite batholith, with a capacity of 30,000 AVM canisters, cooled for 30 years on the surface, at a rate of 1,000 canisters per year. The structure consists of six access shafts of 4 and 5 metres diameter, drilled from the surface by the big-hole method, serving a network of 82 parallel galleries, 2,300 metres long, mined by conventional blasting. Shafts 100 metres deep are drilled in the floor of each gallery (74 shafts per gallery), each shaft accommodating five canisters. This represents an aggregate gallery length of 200 kilometres and an aggregate shaft length of 600 kilometres. The cost of the operation is 1.3% of the cost (ex-works) of the energy produced by the power stations generating the waste. Construction, operation and final abandonment will take 81 years. The sensitivity study of the design showed, by varying certain parameters, that location of the repository at a depth of 500 metres is not recommended and that the area covered by the repository of 4 km 2 is halved if the canisters are first cooled for 100 years

  10. Seasonal Overturning Circulation in the Red Sea

    Science.gov (United States)

    Yao, F.; Hoteit, I.; Koehl, A.

    2010-12-01

    The Red Sea exhibits a distinct seasonal overturning circulation. In winter, a typical two-layer exchange structure, with a fresher inflow from the Gulf of Aden on top of an outflow from the Red Sea, is established. In summer months (June to September) this circulation pattern is changed to a three-layer structure: a surface outflow from the Red Sea on top of a subsurface intrusion of the Gulf of Aden Intermediate Water and a weakened deep outflow. This seasonal variability is studied using a general circulation model, MITgcm, with 6 hourly NCEP atmospheric forcing. The model is able to reproduce the observed seasonal variability very well. The forcing mechanisms of the seasonal variability related to seasonal surface wind stress and buoyancy flux, and water mass transformation processes associated with the seasonal overturning circulation are analyzed and presented.

  11. Autonomic Regulation of Splanchnic Circulation

    Directory of Open Access Journals (Sweden)

    Kathleen A Fraser

    1991-01-01

    Full Text Available The role of the autonomic nervous system in circulatory regulation of the splanchnic organs (stomach, small intestine, colon, liver, pancreas and spleen is reviewed. In general, the sympathetic nervous system is primarily involved in vasoconstriction, while the parasympathetic contributes to vasodilation. Vasoconstriction in the splanchnic circulation appears to be mediated by alpha-2 receptors and vasodilation by activation of primary afferent nerves with subsequent release of vasodilatory peptides, or by stimulation of beta-adrenergic receptors. As well, an important function of the autonomic nervous system is to provide a mechanism by which splanchnic vascular reserve can be mobilized during stress to maintain overall cardiovascular homeostasis.

  12. The cross-sectional association between insulin resistance and circulating complement C3 is partly explained by plasma alanine aminotransferase, independent of central obesity and general inflammation (the CODAM study)

    NARCIS (Netherlands)

    Greevenbroek, van M.M.J.; Jacobs, M.; Kallen, van der C.J.H.; Vermeulen, V.M.M.J.; Jansen, E.H.J.M.; Schalkwijk, C.G.; Ferreira, I.; Feskens, E.J.M.; Stehouwer, C.D.A.

    2011-01-01

    P>Background Complement C3, a central component of the innate immune system is increased in subjects with obesity and type 2 diabetes and is a novel risk factor for cardiovascular disease. We hypothesized that the strong association between insulin resistance and circulating amounts of C3 may be

  13. GENERAL Iarticle

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 2. Supersymmetry. Akshay Kulkarni P Ramadevi. General Article Volume 8 Issue 2 February 2003 pp 28-41 ... Author Affiliations. Akshay Kulkarni1 P Ramadevi1. Physics Department, Indian Institute of Technology, Mumbai 400 076, India.

  14. Review article: volume expansion in patients with cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Kiszka-Kanowitz, Marianne; Bendtsen, Flemming

    2002-01-01

    Adequate size and distribution of the circulating medium are important for cardiovascular function, tissue oxygenation, and fluid homoeostasis. Patients with cirrhosis have cardiovascular dysfunction with a hyperkinetic systemic circulation, abnormal distribution of the blood volume, vasodilation...

  15. The effect of non-zero radial velocity on the impulse and circulation of starting jets

    Science.gov (United States)

    Krieg, Michael; Mohseni, Kamran

    2011-11-01

    Vortex ring formation dynamics are generally studied using two basic types of vortex generators. Piston cylinder vortex generators eject fluid through a long tube which ensures a purely axial jet; whereas, vortex ring generators which expel fluid through a flat plate with a circular orifice produce 2-D jets (non-zero radial velocity). At the nozzle exit plane of the orifice type vortex generator the radial component of velocity is linearly proportional to the radial distance from the axis of symmetry, reaching a maximum at the edge of the orifice with a magnitude around 10 % of the piston velocity (the ratio of the volume flux and the nozzle area). As the jet advances downstream the radial velocity quickly dissipates, and becomes purely axial less than a diameter away from the nozzle exit plane. The radial velocity gradient in the axial direction plays a key role in the rate at which circulation and impulse are ejected from the vortex generator. Though the radial component of velocity is small compared to the axial velocity, it has a significant effect on both the circulation and impulse of the starting jet because of this gradient. The extent of circulation and impulse enhancement is investigated through experimental DPIV data showing that the orifice device produces nearly double both circulation and energy (with identical piston velocity and stroke ratios).

  16. Arctic circulation regimes.

    Science.gov (United States)

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  17. Red Sea circulation during marine isotope stage 5e

    Science.gov (United States)

    Siccha, Michael; Biton, Eli; Gildor, Hezi

    2015-04-01

    We have employed a regional Massachusetts Institute of Technology oceanic general circulation model of the Red Sea to investigate its circulation during marine isotope stage (MIS) 5e, the peak of the last interglacial, approximately 125 ka before present. Compared to present-day conditions, MIS 5e was characterized by higher Northern Hemisphere summer insolation, accompanied by increases in air temperature of more than 2°C and global sea level approximately 8 m higher than today. As a consequence of the increased seasonality, intensified monsoonal conditions with increased winds, rainfall, and humidity in the Red Sea region are evident in speleothem records and supported by model simulations. To assess the dominant factors responsible for the observed changes, we conducted several sensitivity experiments in which the MIS 5 boundary conditions or forcing parameters were used individually. Overall, our model simulation for the last interglacial maximum reconstructs a Red Sea that is colder, less ventilated and probably more oligotrophic than at present day. The largest alteration in Red Sea circulation and properties was found for the simulation of the northward displacement and intensification of the African tropical rain belt during MIS 5e, leading to a notable increase in the fresh water flux into the Red Sea. Such an increase significantly reduced the Red Sea salinity and exchange volume of the Red Sea with the Gulf of Aden. The Red Sea reacted to the MIS 5e insolation forcing by the expected increase in seasonal sea surface temperature amplitude and overall cooling caused by lower temperatures during deep water formation in winter.

  18. Forcing mechanisms of the Bay of Bengal circulation

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; Shetye, S.R.; Sengupta, D.; Gadgil, S.

    A state-of-the-art ocean general circulation model, set up for the North Indian Ocean and driven by climatological wind stress simulates most of the observed features of the near-surface circulation of the Bay of Bengal. The prominent features...

  19. General Anesthesia Inhibits the Activity of the "Glymphatic System".

    Science.gov (United States)

    Gakuba, Clement; Gaberel, Thomas; Goursaud, Suzanne; Bourges, Jennifer; Di Palma, Camille; Quenault, Aurélien; de Lizarrondo, Sara Martinez; Vivien, Denis; Gauberti, Maxime

    2018-01-01

    INTRODUCTION: According to the "glymphatic system" hypothesis, brain waste clearance is mediated by a continuous replacement of the interstitial milieu by a bulk flow of cerebrospinal fluid (CSF). Previous reports suggested that this cerebral CSF circulation is only active during general anesthesia or sleep, an effect mediated by the dilatation of the extracellular space. Given the controversies regarding the plausibility of this phenomenon and the limitations of currently available methods to image the glymphatic system, we developed original whole-brain in vivo imaging methods to investigate the effects of general anesthesia on the brain CSF circulation. METHODS: We used magnetic resonance imaging (MRI) and near-infrared fluorescence imaging (NIRF) after injection of a paramagnetic contrast agent or a fluorescent dye in the cisterna magna, in order to investigate the impact of general anesthesia (isoflurane, ketamine or ketamine/xylazine) on the intracranial CSF circulation in mice. RESULTS: In vivo imaging allowed us to image CSF flow in awake and anesthetized mice and confirmed the existence of a brain-wide CSF circulation. Contrary to what was initially thought, we demonstrated that the parenchymal CSF circulation is mainly active during wakefulness and significantly impaired during general anesthesia. This effect was especially significant when high doses of anesthetic agent were used (3% isoflurane). These results were consistent across the different anesthesia regimens and imaging modalities. Moreover, we failed to detect a significant change in the brain extracellular water volume using diffusion weighted imaging in awake and anesthetized mice. CONCLUSION: The parenchymal diffusion of small molecular weight compounds from the CSF is active during wakefulness. General anesthesia has a negative impact on the intracranial CSF circulation, especially when using a high dose of anesthetic agent.

  20. Controlled humidity gas circulators

    International Nuclear Information System (INIS)

    Gruner, S.M.

    1981-01-01

    A programmable circulator capable of regulating the humidity of a gas stream over a wide range of humidity is described. An optical dew-point hygrometer is used as a feedback element to control the addition or removal of water vapor. Typical regulation of the gas is to a dew-point temperature of +- 0.2 0 C and to an accuracy limited by the dew-point hygrometer

  1. Fluid circulation control device

    International Nuclear Information System (INIS)

    Benard, Henri; Henocque, Jean.

    1982-01-01

    Horizontal fluid circulation control device, of the type having a pivoting flap. This device is intended for being fitted in the pipes of hydraulic installation, particularly in a bleed and venting system of a nuclear power station shifting radioactive or contaminated liquids. The characteristic of this device is the cut-out at the top of the flap to allow the air contained in the pipes to flow freely [fr

  2. Generalized functions

    CERN Document Server

    Gelfand, I M; Graev, M I; Vilenkin, N Y; Pyatetskii-Shapiro, I I

    Volume 1 is devoted to basics of the theory of generalized functions. The first chapter contains main definitions and most important properties of generalized functions as functional on the space of smooth functions with compact support. The second chapter talks about the Fourier transform of generalized functions. In Chapter 3, definitions and properties of some important classes of generalized functions are discussed; in particular, generalized functions supported on submanifolds of lower dimension, generalized functions associated with quadratic forms, and homogeneous generalized functions are studied in detail. Many simple basic examples make this book an excellent place for a novice to get acquainted with the theory of generalized functions. A long appendix presents basics of generalized functions of complex variables.

  3. Prediction of Packed Cell Volume after Whole Blood Transfusion in Small Ruminants and South American Camelids: 80 Cases (2006–2016)

    OpenAIRE

    Luethy, D.; Stefanovski, D.; Salber, R.; Sweeney, R.W.

    2017-01-01

    Background Calculation of desired whole blood transfusion volume relies on an estimate of an animal's circulating blood volume, generally accepted to be 0.08 L/kg or 8% of the animal's body weight in kilograms. Objective To use packed cell volume before and after whole blood transfusion to evaluate the accuracy of a commonly used equation to predict packed cell volume after transfusion in small ruminants and South American camelids; to determine the nature and frequency of adverse transfusion...

  4. Complex use of waste in wastewater and circulating water treatment from oil in heat power stations

    Science.gov (United States)

    Nikolaeva, L. A.; Iskhakova, R. Ya.

    2017-06-01

    Sewage and circulating water from oil of thermal power plants (TPP) generated in fuel-oil shops during washing of electrical equipment and its running into the storm drainage system from the industrial site has been considered in the paper. It has been suggested to use the carbonate sludge of water treatment modified with hydrophobing emulsion as a sorption material for waste and circulating water treatment in thermal power plants. The carbonate sludge is waste accumulated in clarifiers at the stage of natural water pretreatment. General technical characteristics of the sludge, such as moisture, bulk density, total pore volume, ash, etc., have been determined. It has been found that the sludge without additional treatment is a hydrophilic material that has low adsorption capacity and wettability with nonpolar compounds. Therefore, the sludge is treated with organosilicon compounds to reduce the moisture capacity and increase its floatation. Several types of sorption materials based on the carbonate sludge subjected to surface and volume hydrophobization have been developed. During the volume treatment, the hydrophobing compound has been introduced into the material along with the plastifier. In case of the surface treatment, heat-treated granules have been soaked into hydrophobing emulsion. It has been shown that surface hydrophobization is most economically advantageous, because it reduces the consumption of water-repelling agent, wherein the total pore volume and sorption capacity during surface hydrophobization increase by 45 and 25% compared to that during volume hydrophobization. Based on the obtained results, the most effective sorption material has been chosen. To produce this material, it is necessary to sequentially carry out mixing of carbonate sludge with the binder, granulation, calcination, impregnation with a waterrepellent emulsion, and drying of the finished material. The suggested technology to produce the material and use it as a sorbent allows

  5. Circulation of Stars

    Science.gov (United States)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  6. Circulation in the Mediterranean Sea: evidences, debates and unanswered questions

    Directory of Open Access Journals (Sweden)

    Claude Millot

    2005-06-01

    Full Text Available The overall counterclockwise alongslope circulation of Atlantic Water (AW in the western basin of the Mediterranean Sea is now generally accepted. As the eastern basin displays similar general features, why is it generally assumed to function in a different way, and why is AW now said to circulate across the interior of the eastern basin? Relatively huge mesoscale anticyclonic eddies induced by the instability of the AW circulation in the south of the western basin have lifetimes up to several years. It is possible that they extend down to the sea bottom and play a major role in the distribution of all water masses. Why have apparently similar eddies generated in the eastern basin never received specific attention? Once formed, Mediterranean Waters (MWs must spread and circulate before outflowing. Why have simple dynamical arguments for understanding the circulation of AW, such as the Coriolis effect, rarely been considered for the circulation of MWs? In this paper we address these major aspects of water circulation in the Mediterranean Sea. In order to be as objective and convincing as possible, and to write a paper that can be understood by as broad a readership as possible, we have chosen to present only raw data sets that can be easily interpreted by the reader without any help from the author. Based on the evidence provided by these data sets, we specify the current debates and list what we think are the main unanswered questions.

  7. Evaluation of Circulating Current Suppression Methods for Parallel Interleaved Inverters

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus

    2016-01-01

    Two-level Voltage Source Converters (VSCs) are often connected in parallel to achieve desired current rating in multi-megawatt Wind Energy Conversion System (WECS). A multi-level converter can be realized by interleaving the carrier signals of the parallel VSCs. As a result, the harmonic perfor......-mance of the WECS can be significantly improved. However, the interleaving of the carrier signals may lead to the flow of circulating current between parallel VSCs and it is highly desirable to avoid/suppress this unwanted circulating current. A comparative evaluation of the different methods to avoid....../suppress the circulating current between the parallel interleaved VSCs is presented in this paper. The losses and the volume of the inductive components and the semiconductor losses are evaluated for the WECS with different circulating current suppression methods. Multi-objective optimizations of the inductive components...

  8. Prediction of Packed Cell Volume after Whole Blood Transfusion in Small Ruminants and South American Camelids: 80 Cases (2006-2016).

    Science.gov (United States)

    Luethy, D; Stefanovski, D; Salber, R; Sweeney, R W

    2017-11-01

    Calculation of desired whole blood transfusion volume relies on an estimate of an animal's circulating blood volume, generally accepted to be 0.08 L/kg or 8% of the animal's body weight in kilograms. To use packed cell volume before and after whole blood transfusion to evaluate the accuracy of a commonly used equation to predict packed cell volume after transfusion in small ruminants and South American camelids; to determine the nature and frequency of adverse transfusion reactions in small ruminants and camelids after whole blood transfusion. Fifty-eight small ruminants and 22 alpacas that received whole blood transfusions for anemia. Retrospective case series; medical record review for small ruminants and camelids that received whole blood transfusions during hospitalization. Mean volume of distribution of blood as a fraction of body weight in sheep (0.075 L/kg, 7.5% BW) and goats (0.076 L/kg, 7.6% BW) differed significantly (P blood volume (volume of distribution of blood) is adequate for calculation of transfusion volumes; however, use of the species-specific circulating blood volume can improve calculation of transfusion volume to predict and achieve desired packed cell volume. The incidence of transfusion reactions in small ruminants and camelids is low. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  9. Circulation Systems Past and Present

    Directory of Open Access Journals (Sweden)

    Maurice J. Freedman

    1981-01-01

    Full Text Available A review of the development of circulation systems shows two areas of change. The librarian's perception of circulation control has shifted from a broad service orientation to a narrow record-keeping approach and recently back again. The technological development of circulation sys-tems has evolved from manual systems to the online systems of today. The trade-offs and deficiencies of earlier systems in relation to the comprehensive services made possible by the online computer are detailed.

  10. The ocean circulation inverse problem

    National Research Council Canada - National Science Library

    Wunsch, C

    1996-01-01

    .... This book addresses the problem of inferring the state of the ocean circulation, understanding it dynamically, and even forecasting it through a quantitative combination of theory and observation...

  11. Circulating AMH reflects ovarian morphology by magnetic resonance imaging and 3D ultrasound in 121 healthy girls

    DEFF Research Database (Denmark)

    Hagen, Casper P; Mouritsen, Annette; Mieritz, Mikkel G

    2015-01-01

    aimed to evaluate whether serum levels of AMH reflects ovarian morphology in healthy girls. DESIGN AND SETTING: This was a population-based cohort study involving the general community. PARTICIPANTS: Included in the study were 121 healthy girls 9.8-14.7 years of age. MAIN OUTCOME MEASURES: Clinical...... volume, follicles ≥1 mm. Circulating levels of AMH, inhibin B, estradiol, FSH, and LH were assessed by immunoassays; T and androstenedione were assessed by liquid chromatography-tandem mass spectrometry. RESULTS: AMH reflected the number of small (MRI 2-3 mm) and medium (4-6 mm) follicles (Pearson's Rho...

  12. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  13. Investigations On Water Circulation in Animal Sea-Water Basins – On the Example of Seals′ Breeding Pools

    Directory of Open Access Journals (Sweden)

    Zima Piotr

    2017-04-01

    Full Text Available This paper presents general comments concerning investigations on water circulation in animal breeding pools containing sea water. As an example are given results of computer simulation of water circulation in seals′ breeding pools situated in Marine Station at Hel, belonging to Oceanographic Institute , Gdansk University. A mathematical model of three main pools was prepared with taking into account their inflow and outflow water supply points. Next, the object indication ( tracer tests were done with the use of mathematical modelling as well as in-situ measurements. For description of flow field in steady conditions a simplified model of 2D flow in the form of Helmholtz biharmonic equation of stream function , recalculated then into velocity vector components, was used. The equation , supplemented with appropriate boundary conditions , was solved numerically by using the finite differences method. The spreading of a substance dissolved in water (tracer was analyzed by solving 2D equation of transient advecting - dispersing transport. To solve it the finite volumes method was applied. The applied model was verified by conducting the indication tests with the use of the rhodamine WT as a tracer. The obtained results made it possible to reconstruct water circulation within the seals′ pools and identify stagnation zones in which water circulation may be made difficult.

  14. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  15. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Zhai, Ping; Kö hl, Armin; Gopalakrishnan, Ganesh

    2014-01-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  16. Optimising the education of responsible shift personnel in nuclear power plants. Volume 2 for Chapter 4: General areas of staff education

    International Nuclear Information System (INIS)

    1985-01-01

    Themes are discussed which have not in fact become learning objectives, but which nevertheless influence the education of shift personnel. This volume contains articles on the following: the influence factors of human error; the demands on a simulator for the education of shift personnel; technical aids for supporting stuff and principles of leadership and motivation. (DG) [de

  17. Thermohaline circulation in the Central Indian Ocean Basin (CIB) during austral summer and winter periods of 1997

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Suryanarayana, A.; Murty, V.S.N.

    circulation. The dynamic topography field at 500 m relative to 2000 db surface in the central part of CIB, representing the abyssal circulation, was generally characterized by a southwestward weak flow around 10 degrees S flanked by cyclonic and anti...

  18. Decontamination of CAGR gas circulator components

    International Nuclear Information System (INIS)

    Rogers, L.N.; Hooper, A.J.

    1985-01-01

    This paper describes the development and full-scale trial of two methods for removal of radioactive contamination on the surfaces of CAGR gas circulator components. The two methods described are a particle impact cleaning (PIC) decontamination technique and an electrochemical technique, 'electro-swabbing', which is based on the principle of decontamination by electro-polishing. In developing these techniques it was necessary to take account of the physical and chemical nature of the surface deposits on the gas circulator components; these were shown to consist of magnetite-type oxide and carbonaceous material. In order to follow the progress of the decontamination it was also necessary to develop a surface sampling technique which was effective and precise under these conditions; an electrochemical technique, employing similar principles to the electro-swabbing process, was developed for this purpose. The full-scale trial of the PIC decontamination technique was carried out on an inlet guide vane (IGV) assembly, this having been identified as the component from the gas circulator which contributes most to the radiation dose accumulated during routine circulator maintenance. The technique was shown to be practically viable and some 99% of the radioactive contamination was readily removed from the treated surfaces with only negligible surface damage being caused. The full-scale trial of the electro-swabbing decontamination technique was carried out on a gas circulator impeller. High decontamination factors were again achieved with ≥ 99% of the radioactive contamination being removed from the treated surfaces. The technique has practical limitations in terms of handling and treatment of waste-arisings. However, the use of specially-designed swabbing electrodes may allow the treatment of constricted geometries inaccessible to techniques such as PIC. The technique is also highly suitable for the treatment of soft-finish materials and of components fabricated from a

  19. Sino-Danish Brain Circulation

    DEFF Research Database (Denmark)

    Bertelsen, Rasmus Gjedssø; Du, Xiangyun; Søndergaard, Morten Karnøe

    2014-01-01

    China is faced with urgent needs to develop an economically and environmentally sustainable economy based on innovation and knowledge. Brain circulation and research and business investments from the outside are central for this development. Sino-American brain circulation and research...... and investment by overseas researchers and entrepreneurs are well described. In that case, the US is the center of global R&D and S&T. However, the brain circulation and research and investments between a small open Scandinavian economy, such as Denmark, and the huge developing economy of China are not well...... understood. In this case, Denmark is very highly developed, but a satellite in the global R&D and S&T system. With time and the growth of China as a R&D and S&T power house, both Denmark and China will benefit from brain circulation between them. Such brain circulation is likely to play a key role in flows...

  20. Moderator circulation in CANDU reactors

    International Nuclear Information System (INIS)

    Fath, H.E.S.; Hussein, M.A.

    1989-01-01

    A two-dimensional computer code that is capable of predicting the moderator flow and temperature distribution inside CANDU calandria is presented. The code uses a new approach to simulate the calandria tube matrix by blocking the cells containing the tubes in the finite difference mesh. A jet momentum-dominant flow pattern is predicted in the nonisothermal case, and the effect of the buoyancy force, resulting from nuclear heating, is found to enhance the speed of circulation. Hot spots are located in low-velocity areas at the top of the calandria and below the inlet jet level between the fuel channels. A parametric study is carried out to investigate the effect of moderator inlet velocity,moderator inlet nozzle location, and geometric scaling. The results indicate that decreasing the moderator inlet velocity has no significant influence on the general features of the flow pattern (i.e., momentum dominant); however, too many high-temperature hot spots appear within the fuel channels

  1. Vertical mixing by Langmuir circulations

    International Nuclear Information System (INIS)

    McWilliams, James C.; Sullivan, Peter P.

    2001-01-01

    Wind and surface wave frequently induce Langmuir circulations (LC) in the upper ocean, and the LC contribute to mixing materials down from the surface. In this paper we analyze large-eddy simulation (LES) cases based on surface-wave-averaged, dynamical equations and show that the effect of the LC is a great increase in the vertical mixing efficiency for both material properties and momentum. We provide new confirmation that the previously proposed K-profile parameterization (KPP) model accurately characterizes the turbulent transport in a weakly convective, wind-driven boundary layer with stable interior stratification. We also propose a modest generalization of KPP for the regime of weakly convective Langmuir turbulence. This makes the KPP turbulent flux profiles match those in the LES case with LC present fairly well, especially so for material properties being transported downwards from the ocean surface. However, some open issues remain about how well the present LES and KPP formulations represent Langmuir turbulence, in part because wave-breaking effects are not yet included. (Author)

  2. Natural Circulation with Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Mathisen, R P

    1967-09-15

    A number of parameters with dominant influence on the power level at hydrodynamic instability in natural circulation, two-phase flow, have been studied experimentally. The geometrical dependent quantities were: the system driving head, the boiling channel and riser dimensions, the single-phase as well as the two phase flow restrictions. The parameters influencing the liquid properties were the system pressure and the test section inlet subcooling. The threshold of instability was determined by plotting the noise characteristics in the mass flow records against power. The flow responses to artificially obtained power disturbances at instability conditions were also measured in order to study the nature of hydrodynamic instability. The results presented give a review over relatively wide ranges of the main parameters, mainly concerning the coolant performance in both single and parallel boiling channel flow. With regard to the power limits the experimental results verified that the single boiling channel performance was intimately related to that of the parallel channels. In the latter case the additional inter-channel factors with attenuating effects were studied. Some optimum values of the parameters were observed.

  3. The volume of a soliton

    International Nuclear Information System (INIS)

    Adam, C.; Haberichter, M.; Wereszczynski, A.

    2016-01-01

    There exists, in general, no unique definition of the size (volume, area, etc., depending on dimension) of a soliton. Here we demonstrate that the geometric volume (area etc.) of a soliton is singled out in the sense that it exactly coincides with the thermodynamical or continuum-mechanical volume. In addition, this volume may be defined uniquely for rather arbitrary solitons in arbitrary dimensions.

  4. The volume of a soliton

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C., E-mail: adam@fpaxp1.usc.es [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Haberichter, M. [School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF (United Kingdom); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiewicza 11, Kraków (Poland)

    2016-03-10

    There exists, in general, no unique definition of the size (volume, area, etc., depending on dimension) of a soliton. Here we demonstrate that the geometric volume (area etc.) of a soliton is singled out in the sense that it exactly coincides with the thermodynamical or continuum-mechanical volume. In addition, this volume may be defined uniquely for rather arbitrary solitons in arbitrary dimensions.

  5. Circulation policies in health science libraries.

    Science.gov (United States)

    Watkins, C; Coker, N C

    1970-10-01

    There is general agreement that library policies have considerable influence on the use of libraries. Medical school (health science) libraries of this country were surveyed as to their policies in respect to whether faculty and student use were regulated by a single policy, circulation regulations, hours library was accessible to users, accessibility of reserve material, interlibrary loan, policy on overdue material, and exit control. THE LIBRARIES WERE THEN DIVIDED INTO THREE GROUPS, HIGH, MIDDLE, AND LOW ACCORDING TO THE FOLLOWING CHARACTERISTICS: size of student body, size of faculty, size of holdings, size of library staff, annual budget, and annual circulation. Our findings would indicate that schools falling in a high category based upon these criteria tend to be more restrictive in their policies and to have different regulations for faculty and students than do schools in the low category.These findings warrant further study.

  6. State of the Art Report for a Bearing for VHTR Helium Circulator

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Song, Kee Nam; Kim, Yong Wan; Lee, Won Jae

    2008-10-01

    A helium circulator in a VHTR(Very High Temperature gas-cooled Reactor) plays a core role which translates thermal energy at high temperature from a nuclear core to a steam generator. Helium as a operating coolant circulates a primary circuit in high temperature and high pressure state, and controls thermal output of a nuclear core by controlling flow rate. A helium circulator is the only rotating machinery in a VHTR, and its reliability should be guaranteed for reliable operation of a reactor and stable production of hydrogen. Generally a main helium circulator is installed on the top of a steam generator vessel, and helium is circulated only by a main helium circulator in a normal operation state. An auxiliary or shutdown circulator is installed at the bottom of a reactor vessel, and it is an auxiliary circulator for shutting down a reactor in case of refueling or accelerating cooling down in case of fast cooling. Since a rotating shaft of a helium circulator is supported by bearings, bearings are the important machine elements which determines reliability of a helium circulator and a nuclear reactor. Various types of support bearings have been developed and applied for circulator bearings since 1960s, and it is still developing for developing VHTRs. So it is necessary to review and analyze the current technical state of helium circulator support bearings to develop bearings for Koran developing VHTR helium circulator

  7. A morphometric study of antral G-cell density in a sample of adult general population: comparison of three different methods and correlation with patient demography, helicobacter pylori infection, histomorphology and circulating gastrin levels

    DEFF Research Database (Denmark)

    Petersson, Fredrik; Borch, Kurt; Rehfeld, Jens F

    2008-01-01

    whether these methods are intercorrelated and the relation of these methods to plasma gastrin concentrations, demography, the occurrence of H. pylori infection and chronic gastritis. Gastric antral mucosal biopsy sections from 273 adults (188 with and 85 without H pylori infection) from a general...... population sample were examined immunohistochemically for G-cells using cell counting, stereology (point counting) and computerized image analysis. Gastritis was scored according to the updated Sydney system. Basal plasma gastrin concentrations were measured by radioimmunoassay. The three methods for G...

  8. General Electric Company analytical model for loss-of-coolant analysis in accordance with 10CFR50 appendix K. Volume II

    International Nuclear Information System (INIS)

    1976-01-01

    Documentation for the General Electric Evaluation Model is presented. Computer codes and numerical methods common to the codes are described. It is shown how GE BWR's conform to the Acceptance Criteria of 10CFR50.46

  9. General Anesthesia Inhibits the Activity of the “Glymphatic System”

    Science.gov (United States)

    Gakuba, Clement; Gaberel, Thomas; Goursaud, Suzanne; Bourges, Jennifer; Di Palma, Camille; Quenault, Aurélien; Martinez de Lizarrondo, Sara; Vivien, Denis; Gauberti, Maxime

    2018-01-01

    INTRODUCTION: According to the “glymphatic system” hypothesis, brain waste clearance is mediated by a continuous replacement of the interstitial milieu by a bulk flow of cerebrospinal fluid (CSF). Previous reports suggested that this cerebral CSF circulation is only active during general anesthesia or sleep, an effect mediated by the dilatation of the extracellular space. Given the controversies regarding the plausibility of this phenomenon and the limitations of currently available methods to image the glymphatic system, we developed original whole-brain in vivo imaging methods to investigate the effects of general anesthesia on the brain CSF circulation. METHODS: We used magnetic resonance imaging (MRI) and near-infrared fluorescence imaging (NIRF) after injection of a paramagnetic contrast agent or a fluorescent dye in the cisterna magna, in order to investigate the impact of general anesthesia (isoflurane, ketamine or ketamine/xylazine) on the intracranial CSF circulation in mice. RESULTS: In vivo imaging allowed us to image CSF flow in awake and anesthetized mice and confirmed the existence of a brain-wide CSF circulation. Contrary to what was initially thought, we demonstrated that the parenchymal CSF circulation is mainly active during wakefulness and significantly impaired during general anesthesia. This effect was especially significant when high doses of anesthetic agent were used (3% isoflurane). These results were consistent across the different anesthesia regimens and imaging modalities. Moreover, we failed to detect a significant change in the brain extracellular water volume using diffusion weighted imaging in awake and anesthetized mice. CONCLUSION: The parenchymal diffusion of small molecular weight compounds from the CSF is active during wakefulness. General anesthesia has a negative impact on the intracranial CSF circulation, especially when using a high dose of anesthetic agent. PMID:29344300

  10. Circulation of a triaxial, charged ellipsoidal droplet

    International Nuclear Information System (INIS)

    Graber, J.L.; Rosensteel, G.

    2002-01-01

    The Kelvin circulation, which is the Casimir invariant of the general collective motion gcm(3) Lie algebra, is determined for a rapidly rotating triaxial nucleus in the classical domain. The potential energy is approximated by the sum of Coulomb repulsion and attractive surface energy terms, and the kinetic energy is adopted from the Riemann ellipsoidal model. An accurate approximation valid for both small and large deformations is reported for the potential energy. The Riemann ellipsoid theory allows for collective rotation in the continuum from rigid body motion to irrotational flow; the rigidity parametrizes this kinematical continuum. Analytic formulas are derived for the circulation, angular momentum, and energy as functions of the axis lengths, fissility, and rigidity. In particular, the bifurcation point to Jacobi triaxial shapes from noncollective oblate spheroids is given by a simple analytic formula. For a given fissility, the bifurcation point depends sensitive- ly on the rigidity. The Kelvin circulation remains approximately constant for triaxial ellipsoids as the angular momentum increases. This implies that gcm(3) is an approximate partial dynamical symmetry for rapidly rotating triaxial nuclei

  11. General topology

    CERN Document Server

    Willard, Stephen

    2004-01-01

    Among the best available reference introductions to general topology, this volume is appropriate for advanced undergraduate and beginning graduate students. Its treatment encompasses two broad areas of topology: ""continuous topology,"" represented by sections on convergence, compactness, metrization and complete metric spaces, uniform spaces, and function spaces; and ""geometric topology,"" covered by nine sections on connectivity properties, topological characterization theorems, and homotopy theory. Many standard spaces are introduced in the related problems that accompany each section (340

  12. Commercial low-Btu coal-gasification plant. Feasibility study: General Refractories Company, Florence, Kentucky. Volume I. Project summary. [Wellman-Galusha

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal from General Refractories was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The proposed feasibility study is defined. The intent is to provide General Refractories with the basis upon which to determine the feasibility of incorporating such a facility in Florence. To perform the work, a Grant for which was awarded by the DOE, General Refractories selected Dravo Engineers and Contractors based upon their qualifications in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. The LBG prices for the five-gasifier case are encouraging. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts, and if the present natural gas decontrol plan is not fully implemented some financial risks occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  13. Steam generator of the forced circulation type

    International Nuclear Information System (INIS)

    Forestier, Jean; Leblanc, Bernard; Monteil, Marcel; Monteil, Pierre

    1977-01-01

    The steam generator described is of the forced circulation single passage type comprising an outer casing including a vertical generally cylindrical side ring, an internal skirt coaxial with the outer casing, the bottom of this skirt having a free edge separated from a bottom end closing the outer casing, a central tube plate extending horizontally near a top end, in opposition to the bottom end, a peripheral tube plate, parallel to the central plate and located in the annular space under this central plate, a bundle of J shaped tubes [fr

  14. Bottom water circulation in Cascadia Basin

    Science.gov (United States)

    Hautala, Susan L.; Paul Johnson, H.; Hammond, Douglas E.

    2009-10-01

    A combination of beta spiral and minimum length inverse methods, along with a compilation of historical and recent high-resolution CTD data, are used to produce a quantitative estimate of the subthermocline circulation in Cascadia Basin. Flow in the North Pacific Deep Water, from 900-1900 m, is characterized by a basin-scale anticyclonic gyre. Below 2000 m, two water masses are present within the basin interior, distinguished by different potential temperature-salinity lines. These water masses, referred to as Cascadia Basin Bottom Water (CBBW) and Cascadia Basin Deep Water (CBDW), are separated by a transition zone at about 2400 m depth. Below the depth where it freely communicates with the broader North Pacific, Cascadia Basin is renewed by northward flow through deep gaps in the Blanco Fracture Zone that feeds the lower limb of a vertical circulation cell within the CBBW. Lower CBBW gradually warms and returns to the south at lighter density. Isopycnal layer renewal times, based on combined lateral and diapycnal advective fluxes, increase upwards from the bottom. The densest layer, existing in the southeast quadrant of the basin below ˜2850 m, has an advective flushing time of 0.6 years. The total volume flushing time for the entire CBBW is 2.4 years, corresponding to an average water parcel residence time of 4.7 years. Geothermal heating at the Cascadia Basin seafloor produces a characteristic bottom-intensified temperature anomaly and plays an important role in the conversion of cold bottom water to lighter density within the CBBW. Although covering only about 0.05% of the global seafloor, the combined effects of bottom heat flux and diapycnal mixing within Cascadia Basin provide about 2-3% of the total required global input to the upward branch of the global thermohaline circulation.

  15. Containment air circulation for optimal hydrogen recombination

    International Nuclear Information System (INIS)

    Spinks, N.; Krause, M.

    1997-01-01

    An accepted first-line defense for hydrogen mitigation is to design for the hydrogen to be rapidly mixed with the containment atmosphere and diluted to below flammability concentrations. Then, as hydrogen continues to be produced in the longer term, recombiners can be used to remove hydrogen: recombiners can be located in forced-air ducts or passive recombiners can be distributed within containment and the heat of recombination used to promote local air circulation. However, this principle does not eliminate the possibility of high hydrogen concentrations at locations removed from the recombiners. An improvement on this strategy is to arrange for a specific, buoyancy-driven, overall circulation of the containment atmosphere such that the recombiners can be located within the recirculation flow, immediately downstream of the hydrogen source. This would make the mixing process more predictable and solve the mass-transfer problem associated with distributed recombiners. Ideally, the recombiners would be located just above the hydrogen source so that the heat of recombination would assist the overall circulation. In this way, the hydrogen would be removed as close as possible to the source, thereby minimizing the amount of hydrogen immediately downstream of the source and reducing the hydrogen concentration to acceptable levels at other locations. Such a strategy requires the containment volume to be divided into an upflow path, past the hydrogen source and the recombiner, and a downflow path to complete the circuit. The flow could be generated actively using fans or passively using buoyancy forces arising from the difference in density of gases in the upfiow and downflow paths; the gases in the downflow path being cooled at an elevated heat sink. (author)

  16. Maternal psychological distress and placental circulation in pregnancies after a previous offspring with congenital malformation.

    Directory of Open Access Journals (Sweden)

    Anne Helbig

    Full Text Available INTRODUCTION: Antenatal maternal psychological distress may be associated with reduced placental circulation, which could lead to lower birthweight. Studies investigating this in humans show mixed results, which may be partially due to type, strength and timing of distress. In addition, the arterial vascular resistance measures often used as outcome measures do not detect smaller changes in placental volume blood flow. We aimed to investigate the effect of a specific stressor, with increased levels of stress early in pregnancy, on the fetoplacental volume blood flow in third trimester. METHODS: This was a prospective observational study of 74 pregnant women with a congenital malformation in a previous fetus or child. Psychological distress was assessed twice, around 16 and 30 weeks' gestation. Psychometric measures were the General Health Questionnaire-28 (subscales anxiety and depression, Edinburgh Postnatal Depression Scale, and Impact of Event Scale-22 (subscales intrusion, avoidance, and arousal. Placental circulation was examined at 30 weeks, using Doppler ultrasonography, primarily as fetoplacental volume blood flow in the umbilical vein, normalized for abdominal circumference; secondarily as vascular resistance measures, obtained from the umbilical and the uterine arteries. RESULTS: Maternal distress in second but not third trimester was associated with increased normalized fetoplacental blood flow (P-values 0.006 and 0.013 for score > mean for depression and intrusion, respectively. Post-hoc explorations suggested that a reduced birthweight/placental weight ratio may mediate this association. Psychological distress did not affect vascular resistance measures in the umbilical and uterine arteries, regardless of adjustment for confounders. CONCLUSIONS: In pregnant women with a previous fetus or child with a congenital malformation, higher distress levels in second trimester were associated with third trimester fetoplacental blood flow that

  17. Pipe Decontamination Involving String-Foam Circulation

    International Nuclear Information System (INIS)

    Turchet, J.P.; Estienne, G.; Fournel, B.

    2002-01-01

    Foam applications number for nuclear decontamination purposes has recently increased. The major advantage of foam decontamination is the reduction of secondary liquid wastes volumes. Among foam applications, we focus on foam circulation in contaminated equipment. Dynamic properties of the system ensures an homogeneous and rapid effect of the foam bed-drifted chemical reagents present in the liquid phase. This paper describes a new approach of foam decontamination for pipes. It is based on an alternated air and foam injections. We called it 'string-foam circulation'. A further reduction of liquid wastes is achieved compared to continuous foam. Secondly, total pressure loss along the pipe is controlled by the total foam length in the pipe. It is thus possible to clean longer pipes keeping the pressure under atmospheric pressure value. This ensures the non dispersion of contamination. This study describes experimental results obtained with a neutral foam as well with an acid foam on a 130 m long loop. Finally, the decontamination of a 44 meters pipe is presented. (authors)

  18. Invertibility and Explicit Inverses of Circulant-Type Matrices with k-Fibonacci and k-Lucas Numbers

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available Circulant matrices have important applications in solving ordinary differential equations. In this paper, we consider circulant-type matrices with the k-Fibonacci and k-Lucas numbers. We discuss the invertibility of these circulant matrices and present the explicit determinant and inverse matrix by constructing the transformation matrices, which generalizes the results in Shen et al. (2011.

  19. The Invertibility, Explicit Determinants, and Inverses of Circulant and Left Circulant and g-Circulant Matrices Involving Any Continuous Fibonacci and Lucas Numbers

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available Circulant matrices play an important role in solving delay differential equations. In this paper, circulant type matrices including the circulant and left circulant and g-circulant matrices with any continuous Fibonacci and Lucas numbers are considered. Firstly, the invertibility of the circulant matrix is discussed and the explicit determinant and the inverse matrices by constructing the transformation matrices are presented. Furthermore, the invertibility of the left circulant and g-circulant matrices is also studied. We obtain the explicit determinants and the inverse matrices of the left circulant and g-circulant matrices by utilizing the relationship between left circulant, g-circulant matrices and circulant matrix, respectively.

  20. Materials damaging and rupture - Volumes 1-2. General remarks, metallic materials. Non-metallic materials and biomaterials, assemblies and industrial problems

    International Nuclear Information System (INIS)

    Clavel, M.; Bompard, P.

    2009-01-01

    The rupture and damaging of materials and structures is almost always and unwanted events which may have catastrophic consequences. Even if the mechanical failure causes can often be analyzed using a thorough knowledge of materials behaviour, the forecasting and prevention of failures remain difficult. While the macroscopic mechanical behaviour is often the result of average effects at the structure or microstructure scale, the damage is very often the result of the combination of load peaks, of localization effects and of microstructure defects. This book, presented in two volumes, takes stock of the state-of-the-art of the knowledge gained in the understanding and modelling of rupture and damaging phenomena of materials and structure, mostly of metallic type. It gives an outline of the available knowledge for other classes of materials (ceramics, biomaterials, geo-materials..) and for different types of applications (aeronautics, nuclear industry). Finally, it examines the delicate problem, but very important in practice, of the behaviour of assemblies. Content: Vol.1 - physical mechanisms of materials damaging and rupture; rupture mechanics; cyclic plasticity and fatigue crack growth; fatigue crack propagation; environment-induced cracking; contacts and surfaces. Vol.2 - glasses and ceramics; natural environments: soils and rocks; mechanical behaviour of biological solid materials: the human bone; contribution of simulation to the understanding of rupture mechanisms; assemblies damaging and rupture; industrial cases (behaviour of PWR pressure vessel steels, and thermal and mechanical stresses in turbojet engines). (J.S.)

  1. Numerical simulation of the circulation of the atmosphere of Titan

    Science.gov (United States)

    Hourdin, F.; Levan, P.; Talagrand, O.; Courtin, Regis; Gautier, Daniel; Mckay, Christopher P.

    1992-01-01

    A three dimensional General Circulation Model (GCM) of Titan's atmosphere is described. Initial results obtained with an economical two dimensional (2D) axisymmetric version of the model presented a strong superrotation in the upper stratosphere. Because of this result, a more general numerical study of superrotation was started with a somewhat different version of the GCM. It appears that for a slowly rotating planet which strongly absorbs solar radiation, circulation is dominated by global equator to pole Hadley circulation and strong superrotation. The theoretical study of this superrotation is discussed. It is also shown that 2D simulations systemically lead to instabilities which make 2D models poorly adapted to numerical simulation of Titan's (or Venus) atmosphere.

  2. A simple and rational numerical method of two-phase flow with volume-junction model. 2. The numerical method for general condition of two-phase flow in non-equilibrium states

    International Nuclear Information System (INIS)

    Okazaki, Motoaki

    1997-11-01

    In the previous report, the usefulness of a new numerical method to achieve a rigorous numerical calculation using a simple explicit method with the volume-junction model was presented with the verification calculation for the depressurization of a saturated two-phase mixture. In this report, on the basis of solution method above, a numerical method for general condition of two-phase flow in non-equilibrium states is presented. In general condition of two-phase flow, the combinations of saturated and non-saturated conditions of each phase are considered in the each flow of volume and junction. Numerical evaluation programs are separately prepared for each combination of flow condition. Several numerical calculations of various kinds of non-equilibrium two-phase flow are made to examine the validity of the numerical method. Calculated results showed that the thermodynamic states obtained in different solution schemes were consistent with each other. In the first scheme, the states are determined by using the steam table as a function of pressure and specific enthalpy which are obtained as the solutions of simultaneous equations. In the second scheme, density and specific enthalpy of each phase are directly calculated by using conservation equations of mass and enthalpy of each phase, respectively. Further, no accumulation of error in mass and energy was found. As for the specific enthalpy, two cases of using energy equations for the volume are examined. The first case uses total energy conservation equation and the second case uses the type of the first law of thermodynamics. The results of both cases agreed well. (author)

  3. Cooling Performance of Natural Circulation for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suki; Chun, J. H.; Yum, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This paper deals with the core cooling performance by natural circulation during normal operation and a flow channel blockage event in an open tank-in-pool type research reactor. The cooling performance is predicted by using the RELAP5/ MOD3.3 code. The core decay heat is usually removed by natural circulation to the reactor pool water in open tank-in-pool type research reactors with the thermal power less than several megawatts. Therefore, these reactors have generally no active core cooling system against a loss of normal forced flow. In reactors with the thermal power less than around one megawatt, the reactor core can be cooled down by natural circulation even during normal full power operation. The cooling performance of natural circulation in an open tank-in-pool type research reactor has been investigated during the normal natural circulation and a flow channel blockage event. It is found that the maximum powers without void generation at the hot channel are around 1.16 MW and 820 kW, respectively, for the normal natural circulation and the flow channel blockage event.

  4. Modelling the Seasonal Overturning Circulation in the Red Sea

    KAUST Repository

    Yao, Fengchao

    2015-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using 50-year, high-resolution MIT general circulation model simulations. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. For the winter overturning circulation, the climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation.

  5. Proper Sizing of Circulation Pumps

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Nørgaard, Jørgen

    2007-01-01

    The paper describes the preliminary results from field tests of replacing various types of old pumps used for circulating water in heating systems in single- and double-family houses with new types of pumps. The tests were carried out in Denmark for the Danish Electricity Savings Trust, but the r......The paper describes the preliminary results from field tests of replacing various types of old pumps used for circulating water in heating systems in single- and double-family houses with new types of pumps. The tests were carried out in Denmark for the Danish Electricity Savings Trust...

  6. Minerals, lands, and geology for the common defence and general welfare, Volume 4, 1939-1961: A history of geology in relation to the development of public-land, federal science, and mapping policies and the development of mineral resources in the United States from the 60th to the 82d year of the U.S. Geological Survey

    Science.gov (United States)

    Rabbitt, Mary C.; Nelson, Clifford M.

    2015-01-01

    The fourth volume of the comprehensive history of the U.S. Geological Survey (USGS) is titled “Minerals, Lands, and Geology for the Common Defence and General Welfare—Volume 4, 1939‒1961.” The title is based on a passage in the preamble of the U.S. Constitution.

  7. Twentieth century Walker Circulation change: data analysis and model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingjia [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Chinese Research Academy of Environmental Sciences, River and Coastal Environment Research Center, Beijing (China); Chinese Academy of Sciences, Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Qingdao (China); Latif, Mojib; Park, Wonsun; Keenlyside, Noel S.; Martin, Thomas [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Semenov, Vladimir A. [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation)

    2012-05-15

    Recent studies indicate a weakening of the Walker Circulation during the twentieth century. Here, we present evidence from an atmospheric general circulation model (AGCM) forced by the history of observed sea surface temperature (SST) that the Walker Circulation may have intensified rather than weakened. Observed Equatorial Indo-Pacific Sector SST since 1870 exhibited a zonally asymmetric evolution: While the eastern part of the Equatorial Pacific showed only a weak warming, or even cooling in one SST dataset, the western part and the Equatorial Indian Ocean exhibited a rather strong warming. This has resulted in an increase of the SST gradient between the Maritime Continent and the eastern part of the Equatorial Pacific, one driving force of the Walker Circulation. The ensemble experiments with the AGCM, with and without time-varying external forcing, suggest that the enhancement of the SST gradient drove an anomalous atmospheric circulation, with an enhancement of both Walker and Hadley Circulation. Anomalously strong precipitation is simulated over the Indian Ocean and anomalously weak precipitation over the western Pacific, with corresponding changes in the surface wind pattern. Some sensitivity to the forcing SST, however, is noticed. The analysis of twentieth century integrations with global climate models driven with observed radiative forcing obtained from the Coupled Model Intercomparison Project (CMIP) database support the link between the SST gradient and Walker Circulation strength. Furthermore, control integrations with the CMIP models indicate the existence of strong internal variability on centennial timescales. The results suggest that a radiatively forced signal in the Walker Circulation during the twentieth century may have been too weak to be detectable. (orig.)

  8. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 2: Part 4, Transportation sector; Part 5, Forestry sector; Part 6, Agricultural sector

    International Nuclear Information System (INIS)

    1994-10-01

    This volume, the second of two such volumes, contains sector-specific guidance in support of the General Guidelines for the voluntary reporting of greenhouse gas emissions and carbon sequestration. This voluntary reporting program was authorized by Congress in Section 1605(b) of the Energy Policy Act of 1992. The General Guidelines, bound separately from this volume, provide the overall rationale for the program, discuss in general how to analyze emissions and emission reduction/carbon sequestration projects, and address programmatic issues such as minimum reporting requirements, time parameters, international projects, confidentiality, and certification. Together, the General Guidelines and the guidance in these supporting documents will provide concepts and approaches needed to prepare the reporting forms. This second volume of sector-specific guidance covers the transportation sector, the forestry sector, and the agricultural sector

  9. Prediction of cloud droplet number in a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J.; Leung, L.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    We have applied the Colorado State University Regional Atmospheric Modeling System (RAMS) bulk cloud microphysics parameterization to the treatment of stratiform clouds in the National Center for Atmospheric Research Community Climate Model (CCM2). The RAMS predicts mass concentrations of cloud water, cloud ice, rain and snow, and number concnetration of ice. We have introduced the droplet number conservation equation to predict droplet number and it`s dependence on aerosols.

  10. Evaluation of a stratiform cloud parameterization for general circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Ghan, S.J.; Leung, L.R. [Pacific Northwest National Lab., Richland, WA (United States); McCaa, J. [Univ. of Washington, Seattle, WA (United States)

    1996-04-01

    To evaluate the relative importance of horizontal advection of cloud versus cloud formation within the grid cell of a single column model (SCM), we have performed a series of simulations with our SCM driven by a fixed vertical velocity and various rates of horizontal advection.

  11. VanderLaan Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Hongyan Pan

    2015-01-01

    Full Text Available Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, and g-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaan g-circulant matrix.

  12. A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model

    DEFF Research Database (Denmark)

    Knudsen, Per; Bingham, R.; Andersen, Ole Baltazar

    2011-01-01

    The Gravity and steady-state Ocean Circulation Explorer (GOCE) satellite mission measures Earth’s gravity field with an unprecedented accuracy at short spatial scales. In doing so, it promises to significantly advance our ability to determine the ocean’s general circulation. In this study, an ini...

  13. Response in atmospheric circulation and sources of Greenland precipitation to glacial boundary conditions

    DEFF Research Database (Denmark)

    Langen, Peter Lang; Vinther, Bo Møllesøe

    2009-01-01

    The response in northern hemisphere atmospheric circulation and the resulting changes in moisture sources for Greenland precipitation to glacial boundary conditions are studied in NCAR's CCM3 atmospheric general circulation model fitted with a moisture tracking functionality. We employ both...... seasonality, condensation temperatures and source temperatures are assessed. Udgivelsesdato: June 2009...

  14. International Workshop on “Generalized Concavity, Fractional Programming and Economic Applications”

    CERN Document Server

    Castagnoli, Erio; Martein, Laura; Mazzoleni, Piera; Schaible, Siegfried

    1990-01-01

    Generalizations of convex functions have been used in a variety of fields such as economics. business administration. engineering. statistics and applied sciences.· In 1949 de Finetti introduced one of the fundamental of generalized convex functions characterized by convex level sets which are now known as quasiconvex functions. Since then numerous types of generalized convex functions have been defined in accordance with the need of particular applications.· In each case such functions preserve soine of the valuable properties of a convex function. In addition to generalized convex functions this volume deals with fractional programs. These are constrained optimization problems which in the objective function involve one or several ratios. Such functions are often generalized convex. Fractional programs arise in management science. economics and numerical mathematics for example. In order to promote the circulation and development of research in this field. an international workshop on "Generalized Concavi...

  15. Improved Diffuse Fluorescence Flow Cytometer Prototype for High Sensitivity Detection of Rare Circulating Cells In Vivo

    Science.gov (United States)

    Pestana, Noah Benjamin

    Accurate quantification of circulating cell populations is important in many areas of pre-clinical and clinical biomedical research, for example, in the study of cancer metastasis or the immune response following tissue and organ transplants. Normally this is done "ex-vivo" by drawing and purifying a small volume of blood and then analyzing it with flow cytometry, hemocytometry or microfludic devices, but the sensitivity of these techniques are poor and the process of handling samples has been shown to affect cell viability and behavior. More recently "in vivo flow cytometry" (IVFC) techniques have been developed where fluorescently-labeled cells flowing in a small blood vessel in the ear or retina are analyzed, but the sensitivity is generally poor due to the small sampling volume. To address this, our group recently developed a method known as "Diffuse Fluorescence Flow Cytometry" (DFFC) that allows detection and counting of rare circulating cells with diffuse photons, offering extremely high single cell counting sensitivity. In this thesis, an improved DFFC prototype was designed and validated. The chief improvements were three-fold, i) improved optical collection efficiency, ii) improved detection electronics, and iii) development of a method to mitigate motion artifacts during in vivo measurements. In combination, these improvements yielded an overall instrument detection sensitivity better than 1 cell/mL in vivo, which is the most sensitive IVFC system reported to date. Second, development and validation of a low-cost microfluidic device reader for analysis of ocular fluids is described. We demonstrate that this device has equivalent or better sensitivity and accuracy compared a fluorescence microscope, but at an order-of-magnitude reduced cost with simplified operation. Future improvements to both instruments are also discussed.

  16. Generality in Artificial Intelligence

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 3. Generality in Artificial Intelligence. John McCarthy. Classics Volume 19 Issue 3 March 2014 pp 283-296. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/019/03/0283-0296. Author Affiliations.

  17. Journalism as Cultures of Circulation

    DEFF Research Database (Denmark)

    Bødker, Henrik

    2013-01-01

    The universe of journalism has always consisted of interspersed texts, meanings and practices. Yet, much journalism research has often isolated either texts and/or contexts and as such assumed relations between professional practices, informed (rational) readers and (conceived) core texts...... of journalism. It is, however, more important than ever to shift attention away from texts to the processes through which they are circulated. This is partly because the many cultural forms of journalism (textual, institutional, technological, material, behavioural and imagined) are undergoing significant......, likes, comments, searches, journalist roles, writing and reading positions and identities etc. Such forms will be traced within the mediation of a specific event with the overall aim of beginning a theorization of the landscape of journalism as highly interrelated cultures of circulation....

  18. Radioisotopic evaluation of portal circulation

    International Nuclear Information System (INIS)

    Maliska, C.; Rosenthal, D.

    1986-01-01

    The use of a radio-tracer of portal circulation through the intestine, should prevent cruel punctures in the portal-vein or spleen as it is usually the case with traditional methods in the study of portal-system. The absorption of I-131 and Tc-99m, previously cheked in rabbits presented similar results in dogs. The time of circulation between terminal large-intestine and the liver (t-RF) was determined by external counting at hepatic level by recording radioactivity variation-time. In healthy animals the t-RF was from 20to 60 seconds, with average time of 42 seconds. In 2 animals with partial binding of portal-vein the t-RF went up to 110 and 120 seconds. (Author) [pt

  19. Ocean circulation generated magnetic signals

    DEFF Research Database (Denmark)

    Manoj, C.; Kuvshinov, A.; Maus, S.

    2006-01-01

    Conducting ocean water, as it flows through the Earth's magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification...... of ocean tidal signatures in the CHAMP magnetic field data we estimate the ocean magnetic signals of steady flow using a global 3-D EM numerical solution. The required velocity data are from the ECCO ocean circulation experiment and alternatively from the OCCAM model for higher resolution. We assume...... of the magnetic field, as compared to the ECCO simulation. Besides the expected signatures of the global circulation patterns, we find significant seasonal variability of ocean magnetic signals in the Indian and Western Pacific Oceans. Compared to seasonal variation, interannual variations produce weaker signals....

  20. Observations of Local Seychelles Circulation

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Observations of Local Seychelles Circulation Geno...goal for the proposed work is to develop predictive capabilities for physical oceanography for the Seychelles region in support of locally relevant...observations in the Seychelles region that will lead to long-term data collection efforts. In collaboration with local partnerships, we will carry out

  1. Circulating nucleic acids and evolution.

    Science.gov (United States)

    Anker, Philippe; Stroun, Maurice

    2012-06-01

    J.B. Lamarck in 1809 was the first to present a theory of evolution. He proposed it was due to the adaptation of species to environmental changes, this adaptation being acquired by the offspring. In 1868, Darwin suggested that cells excrete gemmules, which circulate through the body and reach the gonads where they are transmitted to the next generation. His main argument came from graft hybrids. In the fifties and sixties, Russian geneticists, rejecting neo-Darwinism, said that acquired characteristics were the basis of evolution. The main experiments on which they based their theory were the transmission of hereditary characteristics by a special technique of grafting between two varieties of plants. We repeated this kind of experiment and also succeeded in obtaining hereditary modifications of the pupil plants that acquired some characteristics of the mentor variety. Rather than adopting the views of the Russian scientists, we suggested that DNA was circulating between the mentor and pupil plants. Hirata's group have shown recently, by using molecular techniques such as cloning, RFLP PCR and sequencing some genes of their graft hybrids of pepper plants, that transfer of informative molecules from the mentor to the pupil plant does exist. Nucleic acids are actively released by cells; they circulate in the body. They can transform oncogenically or trigger antibody response but the only genetic transformation showing that DNA can go from the soma to the germen comes from graft hybrids. This suggests that circulating nucleic acids, in this case DNA, like Darwin's gemmules, play a role in the mechanism of evolution.

  2. Improvement of Classification of Enterprise Circulating Funds

    OpenAIRE

    Rohanova Hanna O.

    2014-01-01

    The goal of the article lies in revelation of possibilities of increase of efficiency of managing enterprise circulating funds by means of improvement of their classification features. Having analysed approaches of many economists to classification of enterprise circulating funds, systemised and supplementing them, the article offers grouping classification features of enterprise circulating funds. In the result of the study the article offers an expanded classification of circulating funds, ...

  3. Hall Effect Gyrators and Circulators

    Science.gov (United States)

    Viola, Giovanni; DiVincenzo, David P.

    2014-04-01

    The electronic circulator and its close relative the gyrator are invaluable tools for noise management and signal routing in the current generation of low-temperature microwave systems for the implementation of new quantum technologies. The current implementation of these devices using the Faraday effect is satisfactory but requires a bulky structure whose physical dimension is close to the microwave wavelength employed. The Hall effect is an alternative nonreciprocal effect that can also be used to produce desired device functionality. We review earlier efforts to use an Ohmically contacted four-terminal Hall bar, explaining why this approach leads to unacceptably high device loss. We find that capacitive coupling to such a Hall conductor has much greater promise for achieving good circulator and gyrator functionality. We formulate a classical Ohm-Hall analysis for calculating the properties of such a device, and show how this classical theory simplifies remarkably in the limiting case of the Hall angle approaching 90°. In this limit, we find that either a four-terminal or a three-terminal capacitive device can give excellent circulator behavior, with device dimensions far smaller than the ac wavelength. An experiment is proposed to achieve GHz-band gyration in millimeter (and smaller) scale structures employing either semiconductor heterostructure or graphene Hall conductors. An inductively coupled scheme for realizing a Hall gyrator is also analyzed.

  4. Multiple states in the late Eocene ocean circulation

    Science.gov (United States)

    Baatsen, M. L. J.; von der Heydt, A. S.; Kliphuis, M.; Viebahn, J.; Dijkstra, H. A.

    2018-04-01

    The Eocene-Oligocene Transition (EOT) marks a major step within the Cenozoic climate in going from a greenhouse into an icehouse state, with the formation of a continental-scale Antarctic ice sheet. The roles of steadily decreasing CO2 concentrations versus changes in ocean circulation at the EOT are still debated and the threshold for Antarctic glaciation is obscured by uncertainties in global geometry. Here, a detailed study of the late Eocene ocean circulation is carried out using an ocean general circulation model under two slightly different geography reconstructions of the middle-to-late Eocene (38 Ma). Using the same atmospheric forcing, both geographies give a profoundly different equilibrium ocean circulation state. The underlying reason for this sensitivity is the presence of multiple equilibria characterised by either North or South Pacific deep water formation. A possible shift from a southern towards a northern overturning circulation would result in significant changes in the global heat distribution and consequently make the Southern Hemisphere climate more susceptible for significant cooling and ice sheet formation on Antarctica.

  5. Encoders for block-circulant LDPC codes

    Science.gov (United States)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2009-01-01

    Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.

  6. A generalised correlation for the steady state flow in single-phase natural circulation loops

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Bade, M.H.; Saha, D.; Sinha, R.K.; Venkat Raj, V.

    2000-08-01

    To establish the heat transport capability of natural circulation loops, it is essential to know the flow rate. A generalized correlation for steady state flow valid for uniform and non-uniform diameter loops has been theoretically derived

  7. XVIII Mendeleev congress on general and applied chemistry. Summaries of reports in five volumes. Volume 5. IV Russian-French symposium Supramolecular systems in chemistry and biology. II Russian-Indian symposium on organic chemistry. International symposium on present-day radiochemistry Radiochemistry: progress and prospects. International symposium Green chemistry, stable evolution and social responsibility of chemists. Symposium Nucleophilic hydrogen substitution in aromatic systems and related reactions

    International Nuclear Information System (INIS)

    2007-01-01

    The 5 volume of the XVIII Mendeleev congress on general and applied chemistry includes summaries of reports on the subjects of sypramolecular systems in chemistry and biology, organic chemistry, modern radiochemistry, green chemistry - development and social responsibility of chemists, nucleophilic hydrogen substitution in aromatic systems and related chemical reactions [ru

  8. Experimental study of natural circulation flow instability in rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tao; Qi, Shi; Song, Mingqiang [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Passive Nuclear Safety Technology, Beijing (China). Beijing Key Lab.; Xiao, Zejun [Nuclear, Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.

    2017-05-15

    Experiments of natural circulation flow instability were conducted in rectangular channels with 5 mm and 10 mm wide gaps. Results for different heating powers were obtained. The results showed that the flow will tend to be instable with the growing of heating power. The oscillation period of pressure D-value and volume flow are the same, but their phase positions are opposite. They both can be described by trigonometric functions. The existence of edge position and secondary flow will strengthen the disturbance of fluid flow in rectangle channels, which contributes to heat transfer. The disturbance of bubble and fluid will be strengthened, especially in the saturated boiling section, which make it possible for the mixing flow. The results also showed that the resistance in 5 mm channel is bigger than that in 10 mm channel, it is less likely to form stable natural circulation in the subcooled region.

  9. Interactive volume visualization of general polyhedral grids

    KAUST Repository

    Muigg, Philipp; Hadwiger, Markus; Doleisch, Helmut; Grö ller, Eduard M.

    2011-01-01

    This paper presents a novel framework for visualizing volumetric data specified on complex polyhedral grids, without the need to perform any kind of a priori tetrahedralization. These grids are composed of polyhedra that often are non

  10. Interactive volume visualization of general polyhedral grids

    KAUST Repository

    Muigg, Philipp

    2011-12-01

    This paper presents a novel framework for visualizing volumetric data specified on complex polyhedral grids, without the need to perform any kind of a priori tetrahedralization. These grids are composed of polyhedra that often are non-convex and have an arbitrary number of faces, where the faces can be non-planar with an arbitrary number of vertices. The importance of such grids in state-of-the-art simulation packages is increasing rapidly. We propose a very compact, face-based data structure for representing such meshes for visualization, called two-sided face sequence lists (TSFSL), as well as an algorithm for direct GPU-based ray-casting using this representation. The TSFSL data structure is able to represent the entire mesh topology in a 1D TSFSL data array of face records, which facilitates the use of efficient 1D texture accesses for visualization. In order to scale to large data sizes, we employ a mesh decomposition into bricks that can be handled independently, where each brick is then composed of its own TSFSL array. This bricking enables memory savings and performance improvements for large meshes. We illustrate the feasibility of our approach with real-world application results, by visualizing highly complex polyhedral data from commercial state-of-the-art simulation packages. © 2011 IEEE.

  11. Waste management 86. Volume 1:General interest

    International Nuclear Information System (INIS)

    Post, R.G.

    1986-01-01

    This book presents the papers given at a symposium on radioactive waste management. Topics considered at the symposium included the status of radioactive waste disposal, the status of international nuclear waste management, waste management activities at the Idaho National Engineering Laboratory, legal and liability issues, risk perceptions and public involvement, waste transportation, waste processing, remedial action, decontamination, predisposal processing and treatment processes, low-level and mixed waste management, and mixed chemical and radioactive waste disposal

  12. Colorado Conference on iterative methods. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The conference provided a forum on many aspects of iterative methods. Volume I topics were:Session: domain decomposition, nonlinear problems, integral equations and inverse problems, eigenvalue problems, iterative software kernels. Volume II presents nonsymmetric solvers, parallel computation, theory of iterative methods, software and programming environment, ODE solvers, multigrid and multilevel methods, applications, robust iterative methods, preconditioners, Toeplitz and circulation solvers, and saddle point problems. Individual papers are indexed separately on the EDB.

  13. The Dynamics of Hadley Circulation Variability and Change

    Science.gov (United States)

    Davis, Nicholas Alexander

    The Hadley circulation exerts a dominant control on the surface climate of earth's tropical belt. Its converging surface winds fuel the tropical rains, while subsidence in the subtropics dries and stabilizes the atmosphere, creating deserts on land and stratocumulus decks over the oceans. Because of the strong meridional gradients in temperature and precipitation in the subtropics, any shift in the Hadley circulation edge could project as major changes in surface climate. While climate model simulations predict an expansion of the Hadley cells in response to greenhouse gas forcings, the mechanisms remain elusive. An analysis of the climatology, variability, and response of the Hadley circulation to radiative forcings in climate models and reanalyses illuminates the broader landscape in which Hadley cell expansion is realized. The expansion is a fundamental response of the atmosphere to increasing greenhouse gas concentrations as it scales with other key climate system changes, including polar amplification, increasing static stability, stratospheric cooling, and increasing global-mean surface temperatures. Multiple measures of the Hadley circulation edge latitudes co-vary with the latitudes of the eddy-driven jets on all timescales, and both exhibit a robust poleward shift in response to forcings. Further, across models there is a robust coupling between the eddy-driving on the Hadley cells and their width. On the other hand, the subtropical jet and tropopause break latitudes, two common observational proxies for the tropical belt edges, lack a strong statistical relationship with the Hadley cell edges and have no coherent response to forcings. This undermines theories for the Hadley cell width predicated on angular momentum conservation and calls for a new framework for understanding Hadley cell expansion. A numerical framework is developed within an idealized general circulation model to isolate the mean flow and eddy responses of the global atmosphere to

  14. Recrystallization Experiments of Pyrite From Circulating Hydrothermal Solution by Thermal Convection

    Science.gov (United States)

    Tanaka, K.; Isobe, H.

    2005-12-01

    Pyrite is one of the most common accessory minerals in many rocks and generally occurs in hydrothermal deposit. However, pyrite morphology and association with other sulfide minerals is not well known with respect to the solution condition, especially with the hydrothermal solution under circulation. In this study, recrystallization experiments of pyrite from circulating hydrothermal solution by thermal convection were carried out. A rectangular circuit (42.6 cm by 17.3 cm) of SUS316 pressure tubing with 5 mm in inner diameter was used as a reaction vessel. The volume of the circuit is approximately 24 ml. Long sides of the rectangular circuit were held to be 20 degrees inclination. One of the long sides was heated by an electric furnace. Solution in the circuit evaporates in the high temperature tubing and the vapor condenses in room temperature tubing. The solution backs to the bottom of the high temperature tubing. Thus, thermal convection of the solution produces circulation in the circuit. Starting material was filled in the high temperature tubing. The lower half was filled with mixture of 2 g of powdered natural pyrite and 4 g of quartz grains. The upper half was filled with quartz grains only. 9 ml of 5 mol/l NH4Cl solution was sealed in the circuit with the starting material. Temperature gradient of the sample was monitored by 6 thermocouples. Maximum temperature was controlled at 350°C. Experimental durations are 3, 5, 10 and 30 days. After the experiments, the run products are fixed with resin and cut every 2 cm. Thin sections of vertical cross-sections are made and observed by microscope and SEM. Tiny pyrite crystals occurred at the upper outside of the furnace, where temperature should be much lower than 200°C. In the lower half of the starting material, pyrite decomposed and pyrrhotite formed around pyrite grains. At higher temperature area, pyrite decomposition and pyrrhotite formation is remarkable. Circulating sulfur-bearing solution provided by

  15. Vasculitis of the mesenteric circulation.

    Science.gov (United States)

    Koster, Matthew J; Warrington, Kenneth J

    2017-02-01

    Vasculitis of the mesenteric circulation is an uncommon but life-threatening manifestation of systemic vasculitis. Initial symptoms are frequently non-specific and therefore patients often present to primary care physicians and gastroenterologists with abdominal pain or gastrointestinal bleeding. Given the severity of the conditions associated with mesenteric vasculitis, it is imperative to appropriately diagnose and initiate treatment of suspected cases. This review will focus on diseases commonly associated with vasculitis of the mesenteric vessels. Imaging characteristics and clinical features assisting in diagnosis as well as initial approaches to treatment are emphasized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Generalized Superconductivity. Generalized Levitation

    International Nuclear Information System (INIS)

    Ciobanu, B.; Agop, M.

    2004-01-01

    In the recent papers, the gravitational superconductivity is described. We introduce the concept of generalized superconductivity observing that any nongeodesic motion and, in particular, the motion in an electromagnetic field, can be transformed in a geodesic motion by a suitable choice of the connection. In the present paper, the gravitoelectromagnetic London equations have been obtained from the generalized Helmholtz vortex theorem using the generalized local equivalence principle. In this context, the gravitoelectromagnetic Meissner effect and, implicitly, the gravitoelectromagnetic levitation are given. (authors)

  17. Glucose feeds the TCA cycle via circulating lactate.

    Science.gov (United States)

    Hui, Sheng; Ghergurovich, Jonathan M; Morscher, Raphael J; Jang, Cholsoon; Teng, Xin; Lu, Wenyun; Esparza, Lourdes A; Reya, Tannishtha; Le Zhan; Yanxiang Guo, Jessie; White, Eileen; Rabinowitz, Joshua D

    2017-11-02

    Mammalian tissues are fuelled by circulating nutrients, including glucose, amino acids, and various intermediary metabolites. Under aerobic conditions, glucose is generally assumed to be burned fully by tissues via the tricarboxylic acid cycle (TCA cycle) to carbon dioxide. Alternatively, glucose can be catabolized anaerobically via glycolysis to lactate, which is itself also a potential nutrient for tissues and tumours. The quantitative relevance of circulating lactate or other metabolic intermediates as fuels remains unclear. Here we systematically examine the fluxes of circulating metabolites in mice, and find that lactate can be a primary source of carbon for the TCA cycle and thus of energy. Intravenous infusions of 13 C-labelled nutrients reveal that, on a molar basis, the circulatory turnover flux of lactate is the highest of all metabolites and exceeds that of glucose by 1.1-fold in fed mice and 2.5-fold in fasting mice; lactate is made primarily from glucose but also from other sources. In both fed and fasted mice, 13 C-lactate extensively labels TCA cycle intermediates in all tissues. Quantitative analysis reveals that during the fasted state, the contribution of glucose to tissue TCA metabolism is primarily indirect (via circulating lactate) in all tissues except the brain. In genetically engineered lung and pancreatic cancer tumours in fasted mice, the contribution of circulating lactate to TCA cycle intermediates exceeds that of glucose, with glutamine making a larger contribution than lactate in pancreatic cancer. Thus, glycolysis and the TCA cycle are uncoupled at the level of lactate, which is a primary circulating TCA substrate in most tissues and tumours.

  18. Intestinal circulation during inhalation anesthesia

    International Nuclear Information System (INIS)

    Tverskoy, M.; Gelman, S.; Fowler, K.C.; Bradley, E.L.

    1985-01-01

    This study was designed to evaluate the influence of inhalational agents on the intestinal circulation in an isolated loop preparation. Sixty dogs were studied, using three intestinal segments from each dog. Selected intestinal segments were pumped with aortic blood at a constant pressure of 100 mmHg. A mixture of 86 Rb and 9-microns spheres labeled with 141 Ce was injected into the arterial cannula supplying the intestinal loop, while mesenteric venous blood was collected for activity counting. A very strong and significant correlation was found between rubidium clearance and microsphere entrapment (r = 0.97, P less than 0.0001). Nitrous oxide anesthesia was accompanied by a higher vascular resistance (VR), lower flow (F), rubidium clearance (Cl-Rb), and microspheres entrapment (Cl-Sph) than pentobarbital anesthesia, indicating that the vascular bed in the intestinal segment was constricted and flow (total and nutritive) decreased. Halothane, enflurane, and isoflurane anesthesia were accompanied by a much lower arteriovenous oxygen content difference (AVDO 2 ) and oxygen uptake than pentobarbital or nitrous oxide. Compared with pentobarbital, enflurane anesthesia was not accompanied by marked differences in VR, F, Cl-Rb, and Cl-Sph; halothane at 2 MAC decreased VR and increased F and Cl-Rb while isoflurane increased VR and decreased F. alpha-Adrenoceptor blockade with phentolamine (1 mg . kg-1) abolished isoflurane-induced vasoconstriction, suggesting that the increase in VR was mediated via circulating catecholamines

  19. Roadmap for cardiovascular circulation model

    Science.gov (United States)

    Bradley, Christopher P.; Suresh, Vinod; Mithraratne, Kumar; Muller, Alexandre; Ho, Harvey; Ladd, David; Hellevik, Leif R.; Omholt, Stig W.; Chase, J. Geoffrey; Müller, Lucas O.; Watanabe, Sansuke M.; Blanco, Pablo J.; de Bono, Bernard; Hunter, Peter J.

    2016-01-01

    Abstract Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well‐established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo‐skeletal system. The computational infrastructure for the cardiovascular model should provide for near real‐time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model. PMID:27506597

  20. Absorbed dose modeled for a liquid circulating around a Co-60 irradiator

    International Nuclear Information System (INIS)

    Mangussi, J.

    2013-01-01

    A model for the distribution of the absorbed dose in a volume of liquid circulating into an active tank containing a Co-60 irradiator is presented. The absorbed dose, the stir process and the liquid recirculation into the active tank are modeled. The absorbed dose for different fractions of the volume is calculated. The necessary irradiation times for the achievement of the required absorbed dose are evaluated. (author)

  1. The effects of superimposed tilt and lower body negative pressure on anterior and posterior cerebral circulations

    OpenAIRE

    Tymko, Michael M.; Rickards, Caroline A.; Skow, Rachel J.; Ingram?Cotton, Nathan C.; Howatt, Michael K.; Day, Trevor A.

    2016-01-01

    Abstract Steady?state tilt has no effect on cerebrovascular reactivity to increases in the partial pressure of end?tidal carbon dioxide (PETCO 2). However, the anterior and posterior cerebral circulations may respond differently to a variety of stimuli that alter central blood volume, including lower body negative pressure (LBNP). Little is known about the superimposed effects of head?up tilt (HUT; decreased central blood volume and intracranial pressure) and head?down tilt (HDT; increased ce...

  2. Generalization of the ERIT Principle and Method

    International Nuclear Information System (INIS)

    Ruggiero, A.

    2008-01-01

    The paper describes the generalization of the method to produce secondary particles with a low-energy and low-intensity primary beam circulating in a Storage Ring with the Emittance-Recovery by Internal-Target (ERIT)

  3. Fritz Schott's Contributions to the Understanding of the Ocean Circulation

    Science.gov (United States)

    Visbeck, M.

    2009-04-01

    The ocean circulation and its central significance for global climate lay at the heart of Fritz's research. In the context of hard-won data from his more than 30 research cruises to key regions of the Atlantic and Indian oceans, he made fundamental contributions to our understanding of the wind-driven and thermohaline ocean circulation. His insights and explorations of circulation and dynamics of the tropical Indian and Atlantic Oceans have led the field and provided a large part of the basis for planning large, international experiments. Fritz's work is also distinguished by his making exceptional use of modeling results, increasingly as the models have improved. His research has provided a much clearer correspondence between the observed ocean-structure and dynamical theory-noting both theoretical successes and limitations. Besides his general interest in the physical oceanography of the World Oceans, most of his research was devoted to the dynamics of tropical oceans with its intense and highly variable current systems. Concerning the Indian Ocean, Fritz's investigated the response of the Somali Current system to the variable monsoon winds in the early 1980's, obtaining high-quality, hydrographic surveys and the first long term direct measurement of ocean currents from moored arrays. His analyses and interpretations provided a synthesis of the complex circulations there. In the tropical Atlantic Ocean Fritz research focused on the western boundary circulation with important contributions to the understanding of the North Brazil Current retroflection, and the variability of the shallow and deep western boundary currents. Trying to solve the fundamental question ‘what is the role of the tropical ocean for climate variability', Fritz initiated large multinational research programs under the umbrella of the World Climate Research Projects WOCE (World Ocean Circulation Experiment) and CLIVAR (Climate Variability and Predictability). Fritz was the initiator and

  4. Sums of Generalized Harmonic Series

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 9. Sums of Generalized Harmonic Series: For Kids from Five to Fifteen. Zurab Silagadze. General Article Volume 20 Issue 9 September 2015 pp 822-843. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. General Editorial on Publication Ethics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 1. General Editorial on Publication Ethics. R Ramaswamy. General Editorial Volume 19 Issue 1 January 2014 pp 1-2. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/019/01/0001-0002 ...

  6. Molecular diagnosis of toxoplasmosis: value of the buffy coat for the detection of circulating Toxoplasma gondii.

    Science.gov (United States)

    Brenier-Pinchart, Marie-Pierre; Capderou, Elodie; Bertini, Rose-Laurence; Bailly, Sébastien; Fricker-Hidalgo, Hélène; Varlet-Marie, Emmanuelle; Murat, Jean-Benjamin; Sterkers, Yvon; Touafek, Fériel; Bastien, Patrick; Pelloux, Hervé

    2015-08-01

    Early detection of Toxoplasma tachyzoites circulating in blood using PCR is recommended for immunosuppressed patients at high risk for disseminated toxoplasmosis. Using a toxoplasmosis mouse model, we show that the sensitivity of detection is higher using buffy coat isolated from a large blood volume than using whole blood for this molecular monitoring. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Model of the coronary circulation based on pressure dependence of coronary resistance and compliance

    NARCIS (Netherlands)

    Bruinsma, P.; Arts, T.; Dankelman, J.; Spaan, J. A.

    1988-01-01

    The effect of pressure-dependent changes in vascular volume, resistance and capacitance in the coronary micro-circulation, has been studied by a distributed mathematical model of the coronary micro-vasculature in the left ventricular wall. The model does not include regulation of coronary blood flow

  8. General general game AI

    OpenAIRE

    Togelius, Julian; Yannakakis, Georgios N.; 2016 IEEE Conference on Computational Intelligence and Games (CIG)

    2016-01-01

    Arguably the grand goal of artificial intelligence research is to produce machines with general intelligence: the capacity to solve multiple problems, not just one. Artificial intelligence (AI) has investigated the general intelligence capacity of machines within the domain of games more than any other domain given the ideal properties of games for that purpose: controlled yet interesting and computationally hard problems. This line of research, however, has so far focuse...

  9. Stressed lungs: unveiling the role of circulating stress ...

    Science.gov (United States)

    Ozone, a major component of smog generated through the interaction of light and anthropogenic emissions, induces adverse pulmonary, cardiovascular, and systemic health effects upon inhalation. It is generally accepted that ozone-induced lung injury is mediated by its interaction with lung lining components causing local oxidative changes, which then leads to cell damage and recruitment of inflammatory cells. It is postulated that the spillover of reactive intermediates and pro-inflammatory molecules from lung to systemic circulation mediates extra-pulmonary effects. However, recent work from our laboratory supports an alternative hypothesis that circulating stress hormones, such as epinephrine and corticosterone/cortisol, are involved in mediating ozone pulmonary effects. We have shown in rats and humans that ozone increases the levels of circulating stress hormones through activation of the hypothalamus- pituitary-adrenal (HPA) axis before any measurable effects are observed in the lung. The surgical removal of adrenals diminishes circulating stress hormones and at the same time, the pulmonary effects of ozone suggesting a significant contribution of these hormones in ozone-induced lung injury and inflammation. While ozone effects in the lung have been extensively studied, the contribution of central nervous system -mediated hormonal stress response has not been examined. In order to understand the signaling pathways that might be involved in ozone-induced lun

  10. Uranus atmospheric dynamics and circulation

    Science.gov (United States)

    Allison, Michael; Beebe, Reta F.; Conrath, Barney J.; Hinson, David P.; Ingersoll, Andrew P.

    1991-01-01

    The observations, models, and theories relevant to the atmospheric dynamics and meteorology of Uranus are discussed. The available models for the large-scale heat transport and atmospheric dynamics as well as diagnostic interpretations of the Voyager data are reviewed. Some pertinent ideas and questions regarding the global circulation balance are considered, partly in comparison with other planetary atmospheres. The available data indicate atmospheric rotation at midlatitudes nearly 200 m/s faster than that of the planetary magnetic field. Analysis of the dynamical deformation of the shape and size of isobaric surfaces measured by the Voyager radio-occultation experiment suggests a subrotating equator at comparable altitudes. Infrared temperature retrievals above the cloud deck indicate a smaller equator-to-pole contrast than expected for purely radiative-convective equilibrium, but show local variations implying a latitudinally correlated decrease with altitude in the cloud-tracked wind.

  11. NPP Krsko natural circulation performance evaluation

    International Nuclear Information System (INIS)

    Segon, Velimir; Bajs, Tomislav; Frogheri, Monica

    1999-01-01

    The present document deals with an evaluation of the natural circulation performance of the Krsko nuclear power plant. Two calculation have been performed using the NPP Krsko nodalization (both similar to the LOBI A2-77 natural circulation experiment) - the first with the present steam generators at NPP Krsko (Westinghouse, 18% plugged), the second with the future steam generators (Siemens, 0% plugged). The results were evaluated using the natural circulation flow map derived in /1/, and were compared to evaluate the influence of the new steam generators on the natural circulation performance. (author)

  12. Basic natural circulation characteristics of SBWR

    International Nuclear Information System (INIS)

    Kuran, S.; Soekmen, C. N.

    2001-01-01

    Natural circulation is an important passive heat removal mechanism for both existing and next generation light water reactors. Simplified Boiling Water Reactor (SBWR) is one of the advanced light water reactors that rely on natural circulation for normal as well as emergency core cooling. In this study, basic natural circulation characteristics of this reactor are examined on a flow loop that simulates the operation of SBWR. On this model, effect of system operating parameters on the steady state natural circulation characteristics inside the loop is studied via solving the transcendental equation for loop flow rate

  13. COBRA-SFS [Spent Fuel Storage]: A thermal-hydraulic analysis computer code: Volume 1, Mathematical models and solution method

    International Nuclear Information System (INIS)

    Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

    1986-11-01

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations: however, the transient capability has not yet been validated. This volume describes the finite-volume equations and the method used to solve these equations. It is directed toward the user who is interested in gaining a more complete understanding of these methods

  14. Contribuição ao estudo da circulação e do transporte de volume da corrente do Brasil entre o Cabo de São Tomé e a Baía de Guanabara Contribution to the studies of transport and circulation of the Brazil current in the are a between Cabo de São Tomé and Guanabara Bay

    Directory of Open Access Journals (Sweden)

    Sérgio R Signorini

    1976-01-01

    Full Text Available Tal estudo teve por finalidade avaliar a velocidade e o transporte de volume da Corrente do Brasil, no seu trecho entre Cabo de São Tomé e Cabo Frio, fazendo uso do calculo geostrofico aplicado às secções amostradas durante os cruzeiros de abril e julho de 1970 e de julho de 1973. Foram localizados dois vórtices anticiclônicos, um durante o período de abril de 1970 e o outro durante julho de 1973. O valor máximo de velocidade da corrente na superfície foi de aproximadamente 70 cm/s e o transporte de volume foi de 14 x 10(6 m³/s. Foi possível também confirmar a existência de um meandro da Corrente do Brasil através da utilização de uma secção de BT (batitermografo mecânico associada a um registro contínuo de salinidade e de temperatura obtido com um termosalinografo.During the periods of April, July, 1970 and July, 1973, océanographic cruises were conducted in order to investigate the variability of the Brazil Current in the region between Cabo de Sao Tomé and Guanabara Bay. The geostrophic model of ocean circulation was applied using the hydrographie data collected during the cruise. From this study, a maximum velocity of 70 cm/sec and a volume trans port of 14 x 10(6 m³/sec were reported. The dynamic topography with reference to the 500 db surface, showed the presence of anticyclonic eddies during the periods of April, 1970, and July, 1973. The thermohaline structure within a meander of the Brazil Current is also presented utilizing the data coming from a continuous salinity and temperature recorder in conection with the data coming from a simultaneous BT section.

  15. [Effects of combined action of radon baths and transcranial magnetotherapy on cerebral circulation in patients in an intermediate period of a mild craniocerebral trauma].

    Science.gov (United States)

    Moliavchikova, O V; Cherevashchenko, L A; Grinzaĭd, Iu M; Aĭvazov, V N; Zhuravlev, M E

    2007-01-01

    The authors propose combined therapy improving cerebral circulation in patients in an intermediate period of a mild craniocerebral trauma. The combination consists of radon baths and transcranial magnetotherapy which raise blood volume filling, relieve vascular resistance, improve venous outflow.

  16. Direct weakening of tropical circulations from masked CO2 radiative forcing.

    Science.gov (United States)

    Merlis, Timothy M

    2015-10-27

    Climate models robustly simulate weakened mean circulations of the tropical atmosphere in direct response to increased carbon dioxide (CO2). The direct response to CO2, defined by the response to radiative forcing in the absence of changes in sea surface temperature, affects tropical precipitation and tropical cyclone genesis, and these changes have been tied to the weakening of the mean tropical circulation. The mechanism underlying this direct CO2-forced circulation change has not been elucidated. Here, I demonstrate that this circulation weakening results from spatial structure in CO2's radiative forcing. In regions of ascending circulation, such as the intertropical convergence zone, the CO2 radiative forcing is reduced, or "masked," by deep-convective clouds and high humidity; in subsiding regions, such as the subtropics, the CO2 radiative forcing is larger because the atmosphere is drier and deep-convective clouds are infrequent. The spatial structure of the radiative forcing reduces the need for the atmosphere to transport energy. This, in turn, weakens the mass overturning of the tropical circulation. The previously unidentified mechanism is demonstrated in a hierarchy of atmospheric general circulation model simulations with altered radiative transfer to suppress the cloud masking of the radiative forcing. The mechanism depends on the climatological distribution of clouds and humidity, rather than uncertain changes in these quantities. Masked radiative forcing thereby offers an explanation for the robustness of the direct circulation weakening under increased CO2.

  17. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene.

    Science.gov (United States)

    Burls, Natalie J; Fedorov, Alexey V; Sigman, Daniel M; Jaccard, Samuel L; Tiedemann, Ralf; Haug, Gerald H

    2017-09-01

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world's largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400-ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.

  18. Influence of reactor design on the establishment of natural circulation in pool-type LMFBR

    International Nuclear Information System (INIS)

    Durham, M.E.

    1976-01-01

    The general principles involved in establishing natural circulation in a pool-type liquid metal cooled fast breeder reactor following loss of a.c. supplies are elucidated and the effects of design features by use of the computer code MELANI are quantified. It is shown that natural circulation can provide a feasible means of emergency core cooling in addition to that provided by pony motors. The choice of primary pump rundown time has a significant effect in controlling peak core outlet temperatures in the hypothetical case of natural circulation alone being the core heat removal process. (author)

  19. Natural circulation in reactor coolant system

    International Nuclear Information System (INIS)

    Han, J.T.

    1987-01-01

    Reactor coolant system (RCS) natural circulation in a PWR is the buoyancy-driven coolant circulation between the core and the upper-plenum region (in-vessel circulation) with or without a countercurrent flow in the hot leg piping between the vessel and steam generators (ex-vessel circulation). This kind of multidimensional bouyancy-driven flow circulation serves as a means of transferring the heat from the core to the structures in the upper plenum, hot legs, and possibly steam generators. As a result, the RCS piping and other pressure boundaries may be heated to high temperatures at which the structural integrity is challenged. RCS natural circulation is likely to occur during the core uncovery period of the TMLB' accident in a PWR when the vessel upper plenum and hot leg are already drained and filled with steam and possibly other gaseous species. RCS natural circulation is being studied for the Surry plant during the TMLB' accident in which station blackout coincides with the loss of auxiliary feedwater and no operator actions. The effects of the multidimensional RCS natural circulation during the TMLB' accident are discussed

  20. Circulating follistatin in relation to energy metabolism

    DEFF Research Database (Denmark)

    Hansen, Jakob Schiøler; Plomgaard, Peter

    2016-01-01

    a relation to energy metabolism. In this narrative review, we attempt to reconcile the existing findings on circulating follistatin with the novel concept that circulating follistatin is a liver-derived molecule regulated by the glucagon-to-insulin ratio. The picture emerging is that conditions associated...

  1. Arctic Ocean circulation during the anoxic Eocene Azolla event

    Science.gov (United States)

    Speelman, Eveline; Sinninghe Damsté, Jaap; März, Christian; Brumsack, Hans; Reichart, Gert-Jan

    2010-05-01

    The Azolla interval, as encountered in Eocene sediments from the Arctic Ocean, is characterized by organic rich sediments ( 4wt% Corg). In general, high levels of organic matter may be caused by increased productivity, i.e. extensive growth of Azolla, and/or enhanced preservation of organic matter, or a combination of both. Anoxic (bottom) water conditions, expanded oxygen minimum zones, or increased sedimentation rates all potentially increase organic matter preservation. According to plate tectonic, bathymetric, and paleogeographic reconstructions, the Arctic Ocean was a virtually isolated shallow basin, with one possible deeper connection to the Nordic Seas represented by a still shallow Fram Strait (Jakobsson et al., 2007), hampering ventilation of the Arctic Basin. During the Azolla interval surface waters freshened, while at the same time bottom waters appear to have remained saline, indicating that the Arctic was highly stratified. The restricted ventilation and stratification in concert with ongoing export of organic matter most likely resulted in the development of anoxic conditions in the lower part of the water column. Whereas the excess precipitation over evaporation maintained the freshwater lid, sustained input of Nordic Sea water is needed to keep the deeper waters saline. To which degree the Arctic Ocean exchanged with the Nordic Seas is, however, still largely unknown. Here we present a high-resolution trace metal record (ICP-MS and ICP-OES) for the expanded Early/Middle Eocene section capturing the Azolla interval from Integrated Ocean Drilling Program (IODP) Expedition 302 (ACEX) drilled on the Lomonosov Ridge, central Arctic Ocean. Euxinic conditions throughout the interval resulted in the efficient removal of redox sensitive trace metals from the water column. Using the sedimentary trace metal record we also constrained circulation in the Arctic Ocean by assessing the relative importance of trace metal input sources (i.e. fluvial, eolian, and

  2. Steam generators, turbines, and condensers. Volume six

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)

  3. Association of Habitual Patterns and Types of Physical Activity and Inactivity with MRI-Determined Total Volumes of Visceral and Subcutaneous Abdominal Adipose Tissue in a General White Population.

    Directory of Open Access Journals (Sweden)

    Karina Fischer

    Full Text Available Population-based evidence for the role of habitual physical activity (PA in the accumulation of visceral (VAT and subcutaneous (SAAT abdominal adipose tissue is limited. We investigated if usual patterns and types of self-reported PA and inactivity were associated with VAT and SAAT in a general white population. Total volumes of VAT and SAAT were quantified by magnetic resonance imaging in 583 men and women (61 ± 11.9 y; BMI 27.2 ± 4.4 kg/m2. Past-year PA and inactivity were self-reported by questionnaire. Exploratory activity patterns (APAT were derived by principal components analysis. Cross-sectional associations between individual activities, total PA in terms of metabolic equivalents (PA MET, or overall APAT and either VAT or SAAT were analyzed by multivariable-adjusted robust or generalized linear regression models. Whereas vigorous-intensity PA (VPA was negatively associated with both VAT and SAAT, associations between total PA MET, moderate-intensity PA (MPA, or inactivity and VAT and/or SAAT depended on sex. There was also evidence of a threshold effect in some of these relationships. Total PA MET was more strongly associated with VAT in men (B = -3.3 ± 1.4; P = 0.02 than women (B = -2.1 ± 1.1; P = 0.07, but was more strongly associated with SAAT in women (B = -5.7 ± 2.5; P = 0.05 than men (B = -1.7 ± 1.6; P = 0.3. Men (-1.52 dm3 or -1.89 dm3 and women (-1.15 dm3 or -2.61 dm3 in the highest (>6.8 h/wk VPA or second (4.0-6.8 h/wk VPA tertile of an APAT rich in VPA, had lower VAT and SAAT, respectively, than those in the lowest (<4.0 h/wk VPA tertile (P ≤ 0.016; P trend ≤ 0.0005. They also had lower VAT and SAAT than those with APAT rich in MPA and/or inactivity only. In conclusion, our results suggest that in white populations, habitual APAT rich in MPA might be insufficient to impact on accumulation of VAT or SAAT. APAT including ≥ 4.0-6.8 h/wk VPA, by contrast, are more strongly associated with lower VAT and SAAT.

  4. Relative blood volume changes underestimate total blood volume changes during hemodialysis

    NARCIS (Netherlands)

    Dasselaar, Judith J.; Lub-de Hooge, Marjolijn N.; Pruim, Jan; Nijnuis, Hugo; Wiersum, Anneke; de Jong, Paul E.; Huisman, Roel M.; Franssen, Casper F. M.

    Background: Measurements of relative blood volume changes (ARBV) during hemodialysis (HD) are based on hemoconcentration and assume uniform mixing of erythrocytes and plasma throughout the circulation. However, whole-body hematocrit (Ht) is lower than systemic Ht. During HD, a change in the ratio

  5. Isolation of Circulating Tumor Cells by Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Peter R. C. Gascoyne

    2014-03-01

    Full Text Available Dielectrophoresis (DEP is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a the principles of DEP; (b the biological basis for the dielectric differences between CTCs and blood cells; (c why such differences are expected to be present for all types of tumors; and (d instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.

  6. Isolation of Circulating Tumor Cells by Dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, Peter R. C., E-mail: pgascoyn@mdanderson.org [Department of Imaging Physics Research, The University of Texas M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Shim, Sangjo [Department of Imaging Physics Research, The University of Texas M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712 (United States); Present address: Micro & Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, 208 North Wright Street, Urbana, IL 61801 (United States)

    2014-03-12

    Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.

  7. Isolation of Circulating Tumor Cells by Dielectrophoresis

    International Nuclear Information System (INIS)

    Gascoyne, Peter R. C.; Shim, Sangjo

    2014-01-01

    Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies

  8. Methods of quantifying circulating IgE

    International Nuclear Information System (INIS)

    Merrett, T.G.; Merrett, J.

    1978-01-01

    Four radioimmunoassay techniques, two conventional and two sandwich, have been used to measure circulating IgE levels in 100 sera. The test sera had IgE levels ranging from 1.0 to 20,000 u/ml, and each was measured at five dilutions, ranging from three-fold to 400-fold. The same IgE standards were used throughout, and the optimal range for each assay was determined by assessing data for quality control sera and the WHO standard 69/204. To be of general use in the United Kingdom an IgE test must measure accurately levels as low as 20-30 u IgE/ml. The Phadebas RIST method failed to meet this criterion, and of the remaining tests the double antibody method had the most useful operating range and produced the most reliable results. However, the double antibody method is not available commercially and so, for the majority of laboratories, the Phadebas PRIST technique should be the method chosen. (author)

  9. Numerical Modeling of Ocean Circulation

    Science.gov (United States)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  10. Circulating microparticles: square the circle

    Science.gov (United States)

    2013-01-01

    Background The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes. PMID:23607880

  11. XIX Mendeleev Congress on general and applied chemistry. Abstract book in 4 volumes. Volume 4. Chemistry aspects of modern energy and alternative energy resources. Chemistry of fossil and renewable hydrocarbon raw materials. Analytical chemistry: novel methods and devices for chemical research and analysis. Chemical education

    International Nuclear Information System (INIS)

    2011-01-01

    The abstracts of the XIX Mendeleev Congress on general and applied chemistry held 25-30 September 2011 in Volgograd are presented. The program includes the Congress plenary and section reports, poster presentations, symposia and round tables on key areas of chemical science and technology, and chemical education. The work of the Congress was held the following sections: 1. Fundamental problems of chemical sciences; 2. Chemistry and technology of materials, including nanomaterials; 3. Physicochemical basis of metallurgical processes; 4. Current issues of chemical production, technical risk assessment; 5. Chemical aspects of modern power and alternative energy sources; 6. Chemistry of fossil and renewable hydrocarbons; 7. Analytical chemistry: new methods and instruments for chemical research and analysis; 8. Chemical education. Volume 4 includes abstracts of oral and poster presentations and presentations of correspondent participants of the sections: Chemistry aspects of modern energy and alternative energy resources; Chemistry of fossil and renewable hydrocarbon raw materials; Analytical chemistry: novel methods and devices for chemical research and analysis; Chemical education, and author index [ru

  12. Generation of tidal volume via gentle chest pressure in children over one year old.

    Science.gov (United States)

    Tsui, Ban C H; Horne, Sara; Tsui, Jenkin; Corry, Gareth N

    2015-07-01

    In the event of cardiac arrest, cardiopulmonary resuscitation (CPR) is a well-established technique to maintain oxygenation of tissues and organs until medical equipment and staff are available. During CPR, chest compressions help circulate blood and have been shown in animal models to be a means of short-term oxygenation. In this study, we tested whether gentle chest pressure can generate meaningful tidal volume in paediatric subjects. This prospective cohort pilot study recruited children under the age of 17 years and undergoing any surgery requiring general anaesthetic and endotracheal intubation. After induction of general anaesthesia, tidal volumes were obtained before and after intubation by applying a downward force on the chest which was not greater than the patient's weight. Mean tidal volumes were compared for unprotected versus protected airway and for type of surgery. Mean tidal volume generated with an unprotected and protected airway was 2.7 (1.7) and 2.9 (2.3) mL/kg, respectively. Mean tidal volume generated with mechanical ventilation was 13.6 (4.9) mL/kg. No statistical significance was found when comparing tidal volumes generated with an unprotected or protected airway (p = 0.20), type of surgery (tonsillectomy and/or adenoidectomy versus other surgery) (unprotected, p = 0.09; protected, p = 0.37), and when age difference between groups was taken into account (p = 0.34). Using gentle chest pressure, we were able to generate over 20% of the tidal volume achieved with mechanical ventilation. Our results suggest that gentle chest pressure may be a means to support temporary airflow in children. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Toroidal bubbles with circulation in ideal hydrodynamics: A variational approach

    DEFF Research Database (Denmark)

    Ruban, V.P.; Juul Rasmussen, J.

    2003-01-01

    Incompressible, inviscid, irrotational, unsteady flows with circulation Gamma around a distorted toroidal bubble are considered. A general variational principle that determines the evolution of the bubble shape is formulated. For a two-dimensional (2D) cavity with a constant area A, exact...... pseudodifferential equations of motion are derived, based on variables that determine a conformal mapping of the unit circle exterior into the region occupied by the fluid. A closed expression for the Hamiltonian of the 2D system in terms of canonical variables is obtained. Stability of a stationary drifting 2D...... hollow vortex is demonstrated, when the gravity is small, gA(3/2)/Gamma(2)circulation-dominated regime of three-dimensional flows a simplified Lagrangian is suggested, inasmuch as the bubble shape is well described by the center line R(xi,t) and by an approximately circular cross section...

  14. FFTF operating experience with sodium natural circulation: slides included

    Energy Technology Data Exchange (ETDEWEB)

    Burke, T.M.; Additon, S.L.; Beaver, T.R.; Midgett, J.C.

    1981-01-01

    The Fast Flux Test Facility (FFTF) has been designed for passive, back-up, safety grade decay heat removal utilizing natural circulation of the sodium coolant. This paper discusses the process by which operator preparation for this emergency operating mode has been assured, in paralled with the design verification during the FFTF startup and acceptance testing program. Over the course of the test program, additional insights were gained through the testing program, through on-going plant analyses and through general safety evaluations performed throughout the nuclear industry. These insights led to development of improved operator training material for control of decay heat removal during both forced and natural circulation as well as improvements in the related plant operating procedures.

  15. FFTF operating experience with sodium natural circulation: slides included

    International Nuclear Information System (INIS)

    Burke, T.M.; Additon, S.L.; Beaver, T.R.; Midgett, J.C.

    1981-01-01

    The Fast Flux Test Facility (FFTF) has been designed for passive, back-up, safety grade decay heat removal utilizing natural circulation of the sodium coolant. This paper discusses the process by which operator preparation for this emergency operating mode has been assured, in paralled with the design verification during the FFTF startup and acceptance testing program. Over the course of the test program, additional insights were gained through the testing program, through on-going plant analyses and through general safety evaluations performed throughout the nuclear industry. These insights led to development of improved operator training material for control of decay heat removal during both forced and natural circulation as well as improvements in the related plant operating procedures

  16. 46 CFR 56.50-45 - Circulating pumps.

    Science.gov (United States)

    2010-10-01

    ... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-45 Circulating pumps. (a) A main circulating pump and emergency means for circulating water through the main condenser shall be provided. The... circulating pump and the condenser. (b) Independent sea suctions shall be provided for the main circulating...

  17. On Stability of Natural-circulation-cooled Boiling Water Reactors during Start-up (Experimental Results)

    International Nuclear Information System (INIS)

    Manera, A.; Van der Hagen, T.H.J.J.

    2002-01-01

    The characteristics of flashing-induced instabilities, which are of importance during the start-up phase of natural-circulation Boiling Water Reactors (BWRs), are studied. Experiments at typical start-up conditions (low power and low pressure) are carried out on a steam/water natural circulation loop. The mechanism of flashing-induced instability is analyzed in detail and it is found that non-equilibrium between phases and enthalpy transport plays an important role in the instability process. Pressure and steam volume in the steam dome are found to have a stabilizing effect. The main characteristics of the instabilities have been analyzed. (authors)

  18. Development of CO2 circulators

    International Nuclear Information System (INIS)

    Donaldson, J.

    1988-01-01

    The development of the basic machine types we have supplied has not been without problems. The Windscale AGR (the prototype AGR) was a small 1.2 MW vertically up circulator with an inlet temperature of 237 deg. C (459 deg. F). Oil leakage problems occurred and were cured in the works test facility and the machine went into service with no other problems. The Horizontal 5 MW machines for Hinkley/Hunterston were not so fortunate with vibration problems, interface corrosion problems (effecting the whole reactor) and material dimensional stability problems. Oil ingress problems did not show up in test work but were later reported from site. These reports were initially exagerated due to the measuring techniques which took the operators some time to resolve. In the vertical 5 MW machines for Hartlepool and Heysham 1 there are two interesting factors, firstly a spar failure and secondly shaft axial stability. Many of the problems were due to modifications at site or our inability to model all aspects of site installation from which lessons for the future can be learned. The latest stations Torness and Heysham II incorporate these lessons. The machines have been designed with so much margin that during the resolution of the reactor control rod gag problems the machines were run continuously at 20% overload (6.3 MW). From an initial accident case of 350 deg. C inlet temperature, this increased to 458 deg. C and now stands at 585 deg. C. No modifications to the impeller were required. The site experience to date is good with no operational problems reported. (author). 4 figs

  19. Circulating microRNAs in breast cancer

    DEFF Research Database (Denmark)

    Hamam, Rimi; Hamam, Dana; Alsaleh, Khalid A.

    2017-01-01

    Effective management of breast cancer depends on early diagnosis and proper monitoring of patients' response to therapy. However, these goals are difficult to achieve because of the lack of sensitive and specific biomarkers for early detection and for disease monitoring. Accumulating evidence...... in the past several years has highlighted the potential use of peripheral blood circulating nucleic acids such as DNA, mRNA and micro (mi)RNA in breast cancer diagnosis, prognosis and for monitoring response to anticancer therapy. Among these, circulating miRNA is increasingly recognized as a promising...... circulating miRNAs as diagnostic, prognostic or predictive biomarkers in breast cancer management....

  20. Seawater circulating system in an aquaculture laboratory

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterji, A.; Ingole, B.S.; Parulekar, A.H.

    The note gives an account, for the first time in India, of an Aquaculture Laboratory with open type seawater circulating system developed at the National Institute of Oceanography, Goa, India. Besides describing the details of the system...

  1. Blocking device especially for circulating pumps

    International Nuclear Information System (INIS)

    Susil, J.; Vychodil, V.; Lorenc, P.

    1976-01-01

    The claim of the invention is a blocking device which blocks reverse flow occurring after the shutdown of circulating pumps, namely in the operation of nuclear power plants or in pumps with a high delivery head. (F.M.)

  2. Stability analysis on natural circulation boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au) 26 tabs., 88 ills.

  3. Stability analysis on natural circulation boiling water reactors

    International Nuclear Information System (INIS)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au)

  4. The influence of orography on modern ocean circulation

    Science.gov (United States)

    Maffre, Pierre; Ladant, Jean-Baptiste; Donnadieu, Yannick; Sepulchre, Pierre; Goddéris, Yves

    2018-02-01

    The effects of orography on climate are investigated with a coupled ocean-atmosphere general circulation model (IPSL-CM5). Results are compared with previous investigations in order to dig out robust consequences of the lack of orography on the global scale. Emphasis is made on the thermohaline circulation whose sensitivity to orography has only been subject to a very limited number of studies using coupled models. The removal of the entire orography switches the Meridional Overturning Circulation from the Atlantic to the Pacific, following freshwater transfers from the latter to the former that reverse the salinity gradient between these oceans. This is in part due to the increased freshwater export from the Pacific to the Atlantic through North America in the absence of the Rocky Mountains and the consecutive decreased evaporation in the North Atlantic once the Atlantic MOC weakens, which cools the northern high-latitudes. In addition and unlike previous model studies, we find that tropical freshwater transfers are a major driver of this switch. More precisely, the collapse of the Asian summer monsoon, associated with westward freshwater transfer across Africa, is critical to the freshening of the Atlantic and the increased salt content in the Pacific. Specifically, precipitations are increasing over the Congo catchment area and induce a strong increase in runoff discharging into the tropical Atlantic. In addition, the removal of the Andes shifts the area of strong precipitation toward the Amazonian catchment area and results in a larger runoff discharging into the Tropical Atlantic.

  5. Estuarine turbidity, flushing, salinity, and circulation

    Science.gov (United States)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  6. [Circulating tumor cells: cornerstone of personalized medicine].

    Science.gov (United States)

    Rafii, A; Vidal, F; Rathat, G; Alix-Panabières, C

    2014-11-01

    Cancer treatment has evolved toward personalized medicine. It is mandatory for clinicians to ascertain tumor biological features in order to optimize patients' treatment. Identification and characterization of circulating tumor cells demonstrated a prognostic value in many solid tumors. Here, we describe the main technologies for identification and characterization of circulating tumor cells and their clinical application in gynecologic and breast cancers. Copyright © 2014. Published by Elsevier Masson SAS.

  7. Themes on circulation in the third world.

    Science.gov (United States)

    Chapman, M; Prothero, R M

    1983-01-01

    "This article focuses upon circulation, or reciprocal flows of people, with specific reference to Third World societies." Aspects considered include attempts to standardize terminology and to formulate typologies of population movement; the development of explanatory models of circulation and modernization, social networks, family welfare, and capitalism; and "the transfer of methods and concepts to societies and populations different from those from which they initially evolved and in which they were first tested." excerpt

  8. Surgical myocardial revascularization without extracorporeal circulation

    Directory of Open Access Journals (Sweden)

    Salomón Soriano Ordinola Rojas

    2003-05-01

    Full Text Available OBJECTIVE: To assess the immediate postoperative period of patients undergoing myocardial revascularization without extracorporeal circulation with different types of grafts. METHODS: One hundred and twelve patients, 89 (79.5% of whom were males, were revascularized without extracorporeal circulation. Their ages ranged from 39 to 85 years. The criteria for indicating myocardial revascularization without extracorporeal circulation were as follows: revascularized coronary artery caliber > 1.5 mm, lack of intramyocardial trajectory on coronary angiography, noncalcified coronary arteries, and tolerance of the heart to the different rotation maneuvers. RESULTS: Myocardial revascularization without extracorporeal circulation was performed in 112 patients. Three were converted to extracorporeal circulation, which required a longer hospital stay but did not impact mortality. During the procedure, the following events were observed: atrial fibrillation in 10 patients, ventricular fibrillation in 4, total transient atrioventricular block in 2, ventricular extrasystoles in 58, use of a device to retrieve red blood cells in 53, blood transfusion in 8, and arterial hypotension in 89 patients. Coronary angiography was performed in 20 patients on the seventh postoperative day when the grafts were patent. CONCLUSION: Myocardial revascularization without extracorporeal circulation is a reproducible technique that is an alternative for treating ischemic heart disease.

  9. Dynamics of the water circulations in the southern South China Sea and its seasonal transports

    DEFF Research Database (Denmark)

    Daryabor, Farshid; Ooi, See Hai Ooi; Samah, Azizan Abu

    2016-01-01

    -analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations are mainly driven by the monsoonal wind stress and influenced by the water outflow/inflow and associated currents of the entire South China Sea. The intrusion of the strong current along the East Coast......A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re...... of Peninsular Malaysia and the eddies at different depths in all seasons are due to the conservation of the potential vorticity as the depth increases. Results show that the water circulation patterns in the northern part of the East Coast of Peninsular Malaysia are generally dominated by the geostrophic...

  10. General introduction

    NARCIS (Netherlands)

    Emmelkamp, P.; Ehring, T.; Emmelkamp, P.; Ehring, T.

    2014-01-01

    This introductory chapter of this two-volume handbook commences with an overview of the book, which is aimed to provide a comprehensive overview of the current knowledge on the phenomenology, classification, epidemiology, etiology, and clinical management of anxiety disorders. Whereas Volume 1

  11. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations

    Science.gov (United States)

    Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979

  12. Natural circulation and stratification in the various passive safety systems of the SWR 1000

    International Nuclear Information System (INIS)

    Meseth, J.

    2002-01-01

    In some of the passive safety systems of Siemens' SWR 1000 boiling water reactor (i.e. the emergency condensers and containment cooling condensers), natural circulation is the main effect on both the primary and secondary sides by which optimum system efficiency is achieved. Other passive safety systems of the SWR 1000 require natural circulation on the secondary side only (condensation of steam discharged by the safety and relief valves; cooling of the Reactor Pressure Vessel (RPV) by flooding from the outside in case of core melt), while still other systems require stratification to be effective (i.e. the passive pressure pulse transmitters and steam-driven scram tanks). Complex natural circulation and stratification can take place simultaneously if fluids with different densities are enclosed in a single volume (in a core melt accident, for example, the nitrogen, steam and hydrogen in the containment). Related problems and the solutions thereto planned for the SWR 1000 are reported from the designer's viewpoint. (author)

  13. Automated scoping methodology for liquid metal natural circulation small reactor

    International Nuclear Information System (INIS)

    Son, Hyung M.; Suh, Kune Y.

    2014-01-01

    Highlights: • Automated scoping methodology for natural circulation small modular reactor is developed. • In-house code is developed to carry out system analysis and core geometry generation during scoping. • Adjustment relations are obtained to correct the critical core geometry out of diffusion theory. • Optimized design specification is found using objective function value. • Convex hull volume is utilized to quantify the impact of different constraints on the scope range. - Abstract: A novel scoping method is proposed that can automatically generate design variable range of the natural circulation driven liquid metal cooled small reactor. From performance requirements based upon Generation IV system roadmap, appropriate structure materials are selected and engineering constraints are compiled based upon literature. Utilizing ASME codes and standards, appropriate geometric sizing criteria on constituting components are developed to ensure integrity of the system during its lifetime. In-house one dimensional thermo-hydraulic system analysis code is developed based upon momentum integral model and finite element methods to deal with non-uniform descritization of temperature nodes for convection and thermal diffusion equation of liquid metal coolant. In order to quickly generate critical core dimensions out of given unit cell information, an adjustment relation that relates the critical geometry estimated from one-group diffusion and that from MCNP code is constructed and utilized throughout the process. For the selected unit cell dimension ranges, burnup calculations are carried out to check the cores can generate energy over the reactor lifetime. Utilizing random method, sizing criteria, and in-house analysis codes, an automated scoping methodology is developed. The methodology is applied to nitride fueled integral type lead cooled natural circulation reactor concept to generate design scopes which satisfies given constraints. Three dimensional convex

  14. Study of pathophysiology of pulmonary circulation in polycythemia using scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tadashige; Tanaka, Masao; Takeda, Tadashi; Kawashima, Akira; Kubo, Keiji; Kobayashi, Toshio; Handa, Kenjiro; Yoshimura, Kazuhiko (Shinshu Univ., Matsumoto, Nagano (Japan). Faculty of Medicine)

    1993-09-01

    In order to evaluate the pathophysiology of pulmonary circulation in polycythemia, Tl-201 myocardial scintigraphy and perfusion lung scintigraphy with 99m-Tc-MAA were performed in 19 cases of polycythemia including polycythemia rubra vera and in 11 cases of secondary polycythemia due to pulmonary diseases. Tl-201 lung uptake, right ventricular visualization and pulmonary perfusion impairment were studied. In the 19 cases, Tl-201 lung uptake was observed in all cases and 54.5% of them showed moderate lung uptake. The grade of right ventricular visualization was moderate in one case and slight in 16 cases; right ventricular hypertrophy was shown in 89.5% of all cases by Tl-201 scintigraphy, only one of which showed right ventricular hypertrophy on electrocardiography. Abnormalities of lung perfusion consisted of scattered small areas of hypoperfusion in 36.8%, peripheral hypoperfusion in 78.9% and uneven distribution of pulmonary perfusion in 94.7%. The degree of hypoperfusion was slightly related to decrease in FEV 1.0%, V25 and PaO[sub 2] and increase in circulating blood volume and peripheral red blood cell counts. Abnormalities of pulmonary function consisted of increased RV/TLC in 50.0%, increased CV/VC in 35.7% and decreased V25 in 36.8%. Arterial blood gases showed hypoxemia in 57.1%, the degree of which was slightly related to increase in RV/TLC and CV/VC and decrease in V25. Cases of secondary polycythemia due to pulmonary diseases showed more marked right ventricular visualization, pulmonary perfusion impairment and abnormalities of various kinds of pulmonary function than polycythemia rubra vera cases. It seems to be important to evaluate the pathophysiology of pulmonary circulation in polycythemia rubra vera as well as secondary polycythemia due to cardio-pulmonary diseases, because pulmonary perfusion impairment and moderate right ventricular visualization are observed frequently in polycythemia rubra vera. (author).

  15. Study of pathophysiology of pulmonary circulation in polycythemia using scintigraphy

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Tanaka, Masao; Takeda, Tadashi; Kawashima, Akira; Kubo, Keiji; Kobayashi, Toshio; Handa, Kenjiro; Yoshimura, Kazuhiko

    1993-01-01

    In order to evaluate the pathophysiology of pulmonary circulation in polycythemia, Tl-201 myocardial scintigraphy and perfusion lung scintigraphy with 99m-Tc-MAA were performed in 19 cases of polycythemia including polycythemia rubra vera and in 11 cases of secondary polycythemia due to pulmonary diseases. Tl-201 lung uptake, right ventricular visualization and pulmonary perfusion impairment were studied. In the 19 cases, Tl-201 lung uptake was observed in all cases and 54.5% of them showed moderate lung uptake. The grade of right ventricular visualization was moderate in one case and slight in 16 cases; right ventricular hypertrophy was shown in 89.5% of all cases by Tl-201 scintigraphy, only one of which showed right ventricular hypertrophy on electrocardiography. Abnormalities of lung perfusion consisted of scattered small areas of hypoperfusion in 36.8%, peripheral hypoperfusion in 78.9% and uneven distribution of pulmonary perfusion in 94.7%. The degree of hypoperfusion was slightly related to decrease in FEV 1.0%, V25 and PaO 2 and increase in circulating blood volume and peripheral red blood cell counts. Abnormalities of pulmonary function consisted of increased RV/TLC in 50.0%, increased CV/VC in 35.7% and decreased V25 in 36.8%. Arterial blood gases showed hypoxemia in 57.1%, the degree of which was slightly related to increase in RV/TLC and CV/VC and decrease in V25. Cases of secondary polycythemia due to pulmonary diseases showed more marked right ventricular visualization, pulmonary perfusion impairment and abnormalities of various kinds of pulmonary function than polycythemia rubra vera cases. It seems to be important to evaluate the pathophysiology of pulmonary circulation in polycythemia rubra vera as well as secondary polycythemia due to cardio-pulmonary diseases, because pulmonary perfusion impairment and moderate right ventricular visualization are observed frequently in polycythemia rubra vera. (author)

  16. ISA/92 Canada general program

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This volume contains the proceedings of a portion of the Instrument Society of America's 1992 General Meeting. Topics covered include: diesel fuels, wastewater treatment, the environment, advancements in measurement and control, improved control systems and construction and design

  17. Natural circulation in single-phase and two-phase flow

    International Nuclear Information System (INIS)

    Cheung, F.B.; El-Genk, M.S.

    1989-01-01

    Natural circulation usually arises in a closed loop between a heat source and a heat sink were the fluid motion is driven by density difference. It may also occur in enclosures or cavities where the flow is induced primarily by temperature or concentration gradients within the fluid. The subject has recently received special attention by the heat transfer and nuclear reactor safety communities because of it importance to the areas of energy extraction, decay, heat removal in nuclear reactors, solar and geothermal heating, and cooling of electronic equipment. Although many new results and physical insights have been gained of the various natural circulation phenomena, a number of critical issues remain unresolved. These include, for example, transition from laminar to turbulent flow, buoyancy-induced turbulent flow modeling, change of flow regimes, flow field visualization, variable property effects, and flow instability. This symposium volume contains papers presented in the Natural Circulation in Single-Phase and Two-Phase Flow session at the 1989 Winter Annual Meeting of ASME, by authors from different countries including the United States, Japan, Canada, and Brazil. The papers deal with experimental and theoretical studies as well as state-of-the-art reviews, covering a broad spectrum of topics in natural circulation including: variable-conductance thermosyphons, microelectronic chip cooling, natural circulation in anisotropic porous media and in cavities, heat transfer in flat plat solar collectors, shutdown heat removal in fast reactors, cooling of light-water and heavy-water reactors. The breadth of papers contained in this volume clearly reflect the importance of the current interest in natural circulation as a means for passive cooling and heating

  18. Utility of cerebral circulation evaluation in acute traumatic brain injuries

    International Nuclear Information System (INIS)

    Honda, Mitsuru; Sakata, Yoshihito; Haga, Daisuke; Nomoto, Jun; Noguchi, Yoshitaka; Seiki, Yoshikatsu; Machida, Keiichi; Sase, Shigeru

    2007-01-01

    Severe traumatic brain injury (TBI) is well-known to cause dynamic changes in cerebral blood flow (CBF). Specifically, TBI has been reported to cause decreases in cerebral blood flow (CBF). In this study, we measured CBF, mean transit time (MTT) and cerebral blood volume (CBV) after TBI. Our purpose was investigate the possibility of assessing TBI outcome and severity with these physiological p