Wear, Keith A
2009-02-01
Frequency-dependent phase velocity was measured in eight cancellous-bone-mimicking phantoms consisting of suspensions of randomly oriented nylon filaments (simulating trabeculae) in a soft-tissue-mimicking medium (simulating marrow). Trabecular thicknesses ranged from 152 to 356 mum. Volume fractions of nylon filament material ranged from 0% to 10%. Phase velocity varied approximately linearly with frequency over the range from 300 to 700 kHz. The increase in phase velocity (compared with phase velocity in a phantom containing no filaments) at 500 kHz was approximately proportional to volume fraction occupied by nylon filaments. The derivative of phase velocity with respect to frequency was negative and exhibited nonlinear, monotonically decreasing dependence on volume fraction. The dependencies of phase velocity and its derivative on volume fraction in these phantoms were similar to those reported in previous studies on (1) human cancellous bone and (2) phantoms consisting of parallel nylon wires immersed in water.
Del Bello, E.; Taddeucci, J.; De'Michieli Vitturi, M.; Scarlato, P.; Andronico, D.; Scollo, S.; Kueppers, U.
2015-12-01
We present the first report of experimental measurements of the enhanced settling velocity of volcanic particles as function of particle volume fraction. In order to investigate the differences in the aerodynamic behavior of ash particles when settling individually or in mass, we performed systematic large-scale ash settling experiments using natural basaltic and phonolitic ash. By releasing ash particles at different, controlled volumetric flow rates, in an unconstrained open space and at minimal air movement, we measured their terminal velocity, size, and particle volume fraction with a high-speed camera at 2000 fps. Enhanced settling velocities of individual particles increase with increasing particle volume fraction. This suggests that particle clustering during fallout may be one reason explaining larger than theoretical depletion rates of fine particles from volcanic ash clouds. We provide a quantitative empirical model that allows to calculate, from a given particle size and density, the enhanced velocity resulting from a given particle volume fraction. The proposed model has the potential to serve as a simple tool for the prediction of the terminal velocity of ash of an hypothetical distribution of ash of known particle size and volume fraction. This is of particular importance for advection-diffusion transport model of ash where generally a one-way coupling is adopted, considering only the flow effects on particles. To better quantify the importance of the enhanced settling velocity in ash dispersal, we finally introduced the new formulation in a Lagrangian model calculating for realistic eruptive conditions the resulting ash concentration in the atmosphere and on the ground.
Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong
2010-05-01
A new method of modeling the in-pile mechanical behaviors of dispersion nuclear fuel elements is proposed. Considering the irradiation swelling together with the thermal effect, numerical simulations of the in-pile mechanical behaviors are performed with the developed finite element models for different fuel particle volume fractions of the fuel meat. The effects of the particle volume fractions on the mechanical performances of the fuel element are studied. The research results indicate that: (1) the maximum Mises stresses and equivalent plastic strains at the matrix increase with the particle volume fractions at each burnup; the locations of the maximum first principal stresses shift with increasing burnup; at low burnups, the maximum first principal stresses increase with the particle volume fractions; while at high burnups, the 20% volume fraction case holds the lowest value; (2) at the cladding, the maximum equivalent plastic strains and the tensile principal stresses increase with the particle volume fractions; while the maximum Mises stresses do not follow this order at high burnups; (3) the maximum Mises stresses at the fuel particles increase with the particle volume fractions, and the particles will engender plastic strains until the particle volume fraction reaches high enough.
Absorbed fractions for electrons in ellipsoidal volumes
Amato, E.; Lizio, D.; Baldari, S.
2011-01-01
We applied a Monte Carlo simulation in Geant4 in order to calculate the absorbed fractions for monoenergetic electrons in the energy interval between 10 keV and 2 MeV, uniformly distributed in ellipsoids made from soft tissue. For each volume, we simulated a spherical shape, four oblate and four prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a 'generalized radius' was found, and the dependence of the fit parameters from electron energy is discussed and fitted by proper parametric functions. With the proposed formulation, the absorbed fraction for electrons in the 10-2000 keV energy range can be calculated for all volumes and for every ellipsoidal shape of practical interest. This method can be directly applied to evaluation of the absorbed fraction from the radionuclide emission of monoenergetic electrons, such as Auger or conversion electrons. The average deposited energy per disintegration in the case of extended beta spectra can be evaluated through integration. Two examples of application to a pure beta emitter such as 90Y and to 131I, whose emission include monoenergetic and beta electrons plus gamma photons, are presented. This approach represent a generalization of our previous studies, allowing a comprehensive treatment of absorbed fractions from electron and photon sources uniformly distributed in ellipsoidal volumes of any ellipticity and volume, in the whole range of practical interest for internal dosimetry in nuclear medicine applications, as well as in radiological protection estimations of doses from an internal contamination.
A fractional calculus model of anomalous dispersion of acoustic waves.
Wharmby, Andrew W
2016-09-01
An empirical formula based on viscoelastic analysis techniques that employs concepts from the fractional calculus that was used to model the dielectric behavior of materials exposed to oscillating electromagnetic fields in the radiofrequency, terahertz, and infrared bands. This work adapts and applies the formula to model viscoelastic behavior of materials that show an apparent increase of phase velocity of vibration with an increase in frequency, otherwise known as anomalous dispersion. A fractional order wave equation is derived through the application of the classic elastic-viscoelastic correspondence principle whose analytical solution is used to describe absorption and dispersion of acoustic waves in the viscoelastic material displaying anomalous dispersion in a specific frequency range. A brief discussion and comparison of an alternative fractional order wave equation recently formulated is also included.
Belief dispersion among household investors and stock trading volume
2011-01-01
We study the effects of belief dispersion on stock trading volume. Unlike most of the existing work on the subject, our paper focuses on how household investors' disagreements on macroeconomic variables influence market-wide trading volume. We show that greater belief dispersion among household investors is associated with significantly higher trading volume, even after controlling for the disagreements among professional forecasters. Further, we find that the belief dispersion among househol...
Volume Fraction of Graphene Platelets in Copper-Graphene Composites
Jagannadham, K.
2013-01-01
Copper-graphene composite films were deposited on copper foil using electrochemical deposition. Four electrolyte solutions that each consist of 250 mL of graphene oxide suspension in distilled water and increasing volume of 0.2 M solution of CuSO4 in steps of 250 mL were used to deposit the composite films with and without a magnetic stirrer. Graphene oxide in the films was reduced to graphene by hydrogen treatment for 6 hours at 673 K (400 °C). The samples were characterized by X-ray diffraction for identification of phases, scanning electron microscopy for distribution of graphene, energy dispersive spectrometry for evaluation of elemental composition, electrical resistivity and temperature coefficient of electrical resistance and thermal conductivity. Effective mean field analysis (EMA) was used to determine the volume fraction and electrical conductivity of graphene and interfacial thermal conductance between graphene and copper. The electrical resistivity was reduced from 2.031 to 1.966 μΩ cm and the thermal conductivity was improved from 3.8 to 5.0 W/cm K upon addition of graphene platelets to electrolytic copper. The use of stirrer during deposition of the films increased the average size and the thickness of the graphene platelets and as a result the improvement in electrical conductivity was lower compared to the values obtained without the stirrer. Using the EMA, the volume fraction of graphene platelets that was responsible for the improvement in the electrical conductivity was found to be lower than that for the improvement in the thermal conductivity. The results of the analysis are used to determine the volume fraction of the thinner and the thicker graphene platelets in the composite films.
Directory of Open Access Journals (Sweden)
Birol İbiş
2014-01-01
Full Text Available This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE involving Jumarie’s modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM. FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs.
Gaikwad, Shashank G; Pandit, Aniruddha B
2008-04-01
Ultrasonic emulsification of oil and water was carried out and the effect of irradiation time, irradiation power and physicochemical properties of oil on the dispersed phase volume and dispersed phase droplet size has been studied. The increase in the irradiation time increases the dispersed phase volume while decreases the dispersed phase droplets size. With an increase in the ultrasonic irradiation power, there is an increase in the fraction of volume of the dispersed phase while the droplet size of the dispersed phase decreases. The fractional volume of the dispersed phase increases for the case of groundnut oil-water system while it is low for paraffin (heavy) oil-water system. The droplet size of soyabean oil dispersed in water is found to be small while that of paraffin (heavy) oil is found to be large. These variations could be explained on the basis of varying physicochemical properties of the system, i.e., viscosity of oil and the interfacial tension. During the ultrasonic emulsification, coalescence phenomenon which is only marginal, has been observed, which can be attributed to the collision of small droplets when the droplet concentration increases beyond a certain number and the acoustic streaming strength increases.
Finite volume schemes for dispersive wave propagation and runup
Dutykh, Denys; Katsaounis, Theodoros; Mitsotakis, Dimitrios
2011-04-01
Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions, dispersive shock wave formation and the runup of breaking and non-breaking long waves.
Finite volume schemes for dispersive wave propagation and runup
Dutykh, Denys; Mitsotakis, Dimitrios
2010-01-01
Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions, dispersive shock wave formation and the runup of breaking and non-breaking long waves.
Viscosity of water-in-oil emulsions. Variation with temperature and water volume fraction
Energy Technology Data Exchange (ETDEWEB)
Farah, Marco A.; Caldas, Jorge Navaes [Petroleo Brasileiro S.A., Rua General Canabarro, 500, Maracana, Rio, CEP 2057-900 (Brazil); Oliveira, Roberto C. [Petroleo Brasileiro S.A., Cenpes, Cidade Universitaria (Brazil); Rajagopal, Krishnaswamy [LATCA-Laboratorio de Termodinamica e Cinetica Aplicada-Escola de Quimica, Departamento de Engenharia Quimica, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitaria, C.P. 68452, CEP 21949-900, Rio de Janeiro (Brazil)
2005-09-15
Water-in-oil emulsions are important in the petroleum industry in production operations, where the water content of the emulsion can be as high as 60% in volume, also in petroleum refining operations where generally the water content is low. The effective viscosity of water-in-oil emulsions depends mainly on the volume fraction of dispersed phase and temperature, along with several minor effects, such as shear rate, average droplet size, droplet size distribution, viscosity and density of oil. Using six different crude oils, the effective viscosities of several synthetic water-in-oil emulsions are measured at atmospheric pressure using a dynamic viscosimeter for different shear rates, temperatures and volume fractions of the dispersed phase. The ASTM equation, method D-341, for describing viscosity as a function of temperature is extended to include the variation of dispersed phase volume fraction. The proposed equation gives good correlation between the measured viscosities of water-in-oil emulsions as a function of temperature and the volume fraction of water.
Lamb Wave Assessment of Fiber Volume Fraction in Composites
Seale, Michael D.; Smith, Barry T.; Prosser, W. H.; Zalameda, Joseph N.
1998-01-01
Among the various techniques available, ultrasonic Lamb waves offer a convenient method of examining composite materials. Since the Lamb wave velocity depends on the elastic properties of a material, an effective tool exists to evaluate composites by measuring the velocity of these waves. Lamb waves can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper discusses a study in which Lamb waves were used to examine fiber volume fraction variations of approximately 0.40-0.70 in composites. The Lamb wave measurements were compared to fiber volume fractions obtained from acid digestion tests. Additionally, a model to predict the fiber volume fraction from Lamb wave velocity values was evaluated.
Perfusion systems that minimize vascular volume fraction in engineered tissues.
Truslow, James G; Tien, Joe
2011-06-01
This study determines the optimal vascular designs for perfusing engineered tissues. Here, "optimal" describes a geometry that minimizes vascular volume fraction (the fractional volume of a tissue that is occupied by vessels) while maintaining oxygen concentration above a set threshold throughout the tissue. Computational modeling showed that optimal geometries depended on parameters that affected vascular fluid transport and oxygen consumption. Approximate analytical expressions predicted optima that agreed well with the results of modeling. Our results suggest one basis for comparing the effectiveness of designs for microvascular tissue engineering.
Boundary value problemfor multidimensional fractional advection-dispersion equation
Directory of Open Access Journals (Sweden)
Khasambiev Mokhammad Vakhaevich
2015-05-01
Full Text Available In recent time there is a very great interest in the study of differential equations of fractional order, in which the unknown function is under the symbol of fractional derivative. It is due to the development of the theory of fractional integro-differential theory and application of it in different fields.The fractional integrals and derivatives of fractional integro-differential equations are widely used in modern investigations of theoretical physics, mechanics, and applied mathematics. The fractional calculus is a very powerful tool for describing physical systems, which have a memory and are non-local. Many processes in complex systems have nonlocality and long-time memory. Fractional integral operators and fractional differential operators allow describing some of these properties. The use of the fractional calculus will be helpful for obtaining the dynamical models, in which integro-differential operators describe power long-time memory by time and coordinates, and three-dimensional nonlocality for complex medium and processes.Differential equations of fractional order appear when we use fractal conception in physics of the condensed medium. The transfer, described by the operator with fractional derivatives at a long distance from the sources, leads to other behavior of relatively small concentrations as compared with classic diffusion. This fact redefines the existing ideas about safety, based on the ideas on exponential velocity of damping. Fractional calculus in the fractal theory and the systems with memory have the same importance as the classic analysis in mechanics of continuous medium.In recent years, the application of fractional derivatives for describing and studying the physical processes of stochastic transfer is very popular too. Many problems of filtration of liquids in fractal (high porous medium lead to the need to study boundary value problems for partial differential equations in fractional order.In this paper the
Directory of Open Access Journals (Sweden)
Taohua Liu
2017-01-01
Full Text Available Fractional advection-dispersion equations, as generalizations of classical integer-order advection-dispersion equations, are used to model the transport of passive tracers carried by fluid flow in a porous medium. In this paper, we develop an implicit finite difference method for fractional advection-dispersion equations with fractional derivative boundary conditions. First-order consistency, solvability, unconditional stability, and first-order convergence of the method are proven. Then, we present a fast iterative method for the implicit finite difference scheme, which only requires storage of O(K and computational cost of O(KlogK. Traditionally, the Gaussian elimination method requires storage of O(K2 and computational cost of O(K3. Finally, the accuracy and efficiency of the method are checked with a numerical example.
Laser-induced incandescence: Towards quantitative soot volume fraction measurements
Energy Technology Data Exchange (ETDEWEB)
Tzannis, A.P.; Wienbeucker, F.; Beaud, P.; Frey, H.-M.; Gerber, T.; Mischler, B.; Radi, P.P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
Laser-Induced Incandescence has recently emerged as a versatile tool for measuring soot volume fraction in a wide range of combustion systems. In this work we investigate the essential features of the method. LII is based on the acquisition of the incandescence of soot when heated through a high power laser pulse. Initial experiments have been performed on a model laboratory flame. The behaviour of the LII signal is studied experimentally. By applying numerical calculations we investigate the possibility to obtain two-dimensional soot volume fraction distributions. For this purpose a combination of LII with other techniques is required. This part is discussed in some extent and the future work is outlined. (author) 4 figs., 3 refs.
Gamma ray densitometry techniques for measuring of volume fractions
Energy Technology Data Exchange (ETDEWEB)
Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques, E-mail: raoniwa@yahoo.com.br, E-mail: ademir@nuclear.ufrj.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2015-07-01
Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)
Fractional quantum Hall edge: Effect of nonlinear dispersion and edge roton
Jolad, Shivakumar; Sen, Diptiman; Jain, Jainendra K.
2010-01-01
According to Wen's theory, a universal behavior of the fractional quantum Hall edge is expected at sufficiently low energies, where the dispersion of the elementary edge excitation is linear. A microscopic calculation shows that the actual dispersion is indeed linear at low energies, but deviates from linearity beyond certain energy, and also exhibits an "edge roton minimum." We determine the edge exponent from a microscopic approach, and find that the nonlinearity of the dispersion makes a s...
Estimation of liquid volume fraction using ultrasound transit time spectroscopy
Al-Qahtani, Saeed M.; Langton, Christian M.
2016-12-01
It has recently been proposed that the propagation of an ultrasound wave through complex structures, consisting of two-materials of differing ultrasound velocity, may be considered as an array of parallel ‘sonic rays’, the transit time of each determined by their relative proportion; being a minimum (t min) in entire higher velocity material, and a maximum (t max) in entire lower velocity material. An ultrasound transit time spectrum (UTTS) describes the proportion of sonic rays at an individual transit time. It has previously been demonstrated that the solid volume fraction of a solid:liquid composite, specifically acrylic step-wedges immersed in water, may be reliably estimated from the UTTS. The aim of this research was to investigate the hypothesis that the volume fraction of a two-component liquid mixture, of unequal ultrasound velocity, may also be estimated by UTTS. A through-transmission technique incorporating two 1 MHz ultrasound transducers within a horizontally-aligned cylindrical tube-housing was utilised, the proportion of silicone oil to water being varied from 0% to 100%. The liquid volume fraction was estimated from the UTTS at each composition, the coefficient of determination (R 2%) being 98.9 ± 0.7%. The analysis incorporated a novel signal amplitude normalisation technique to compensate for absorption within the silicone oil. It is therefore envisaged that the parallel sonic ray concept and the derived UTTS may be further applied to the quantification of liquid mixture composition assessment.
Peng, Xiaoguang; McKenna, Gregory B.
2016-04-01
Three important kinetic phenomena have been cataloged by Kovacs in the investigation of molecular glasses during structural recovery or physical aging. These are responses to temperature-jump histories referred to as intrinsic isotherms, asymmetry of approach, and memory effect. Here we use a thermosensitive polystyrene-poly (N -isopropylacrylamide)-poly (acrylic acid) core-shell particle-based dispersion as a colloidal model and by working at a constant number concentration of particles we use temperature changes to create volume-fraction changes. This imposes conditions similar to those defined by Kovacs on the colloidal system. We use creep experiments to probe the physical aging and structural recovery behavior of colloidal glasses in the Kovacs-type histories and compare the results with those seen in molecular glasses. We find that there are similarities in aging dynamics between molecular glasses and colloidal glasses, but differences also persist. For the intrinsic isotherms, the times teq needed for relaxing or evolving into the equilibrium (or stationary) state are relatively insensitive to the volume fraction and the values of teq are longer than the α -relaxation time τα at the same volume fraction. On the other hand, both of these times grow at least exponentially with decreasing temperature in molecular glasses. For the asymmetry of approach, similar nonlinear behavior is observed for both colloidal and molecular glasses. However, the equilibration time teq is the same for both volume-fraction up-jump and down-jump experiments, different from the finding in molecular glasses that it takes longer for the structure to evolve into equilibrium for the temperature up-jump condition than for the temperature down-jump condition. For the two-step volume-fraction jumps, a memory response is observed that is different from observations of structural recovery in two-step temperature histories in molecular glasses. The concentration dependence of the dynamics
Effect of volume fraction on granular avalanche dynamics.
Gravish, Nick; Goldman, Daniel I
2014-09-01
We study the evolution and failure of a granular slope as a function of prepared volume fraction, ϕ(0). We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45° angle while we monitor the motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the tilt process depended sensitively on ϕ(0)∈[0.58-0.63] and differed above or below the granular critical state, ϕ(c), defined as the onset of dilation as a function of increasing volume fraction. For ϕ(0)-ϕ(c)avalanche. Precursor compaction events began at an initial angle θ(0)=7.7±1.4° and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θ(m)=28.5±1.0°. Granular material at ϕ(0)-ϕ(c)>0 did not experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ(0)=32.1±1.5° prior to the onset of an avalanche at θ(m)=35.9±0.7°. Both θ(0) and θ(m) increased with ϕ(0) and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest, θ(R)=22±2°, was independent of ϕ(0). From side-view high-speed video, we measured the velocity field of intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by ϕ(0), with ϕ(0)-ϕ(c)0. Our study elucidates how initial conditions-including volume fraction-are important determinants of granular slope stability and the onset of avalanches.
VOFI - A library to initialize the volume fraction scalar field
Bnà, S.; Manservisi, S.; Scardovelli, R.; Yecko, P.; Zaleski, S.
2016-03-01
The VOFI library has been developed to accurately calculate the volume fraction field demarcated by implicitly-defined fluid interfaces in Cartesian grids with cubic cells. The method enlists a number of algorithms to compute the integration limits and the local height function, that is the integrand of a double Gauss-Legendre integration with a variable number of nodes. Tests in two and three dimensions are presented to demonstrate the accuracy of the method and are provided in the software distribution with C/C++ and FORTRAN interfaces.
Analytical solutions of time–space fractional, advection–dispersion andWhitham–Broer–Kaup equations
Indian Academy of Sciences (India)
M D Khan; I Naeem; M Imran
2014-12-01
In this article, we study time–space fractional advection–dispersion (FADE) equation and time–space fractional Whitham–Broer–Kaup (FWBK) equation that have significant roles in hydrology. We introduce suitable transformations to convert fractional-order derivatives to integerorder derivatives and as a result these equations transform into partial differential equations (PDEs). Then the Lie symmetries and the corresponding optimal systems of the resulting PDEs are derived. The symmetry reductions and exact independent solutions based on optimal system are investigated which constitute the exact solutions of original fractional differential equations.
Solving Time-Fractional Advection-Dispersion Equation by Variable Weights Particle Tracking Method
Cao, Shaohua; Jiang, Jianguo; Wu, Jichun
2017-09-01
Particle tracking method is an efficient and reliable method to solve time-fractional advection-dispersion equation, which can describe anomalous transport in heterogeneous porous media. However, this method will lead to severe fluctuation or disappearance of solutions if the concentration value is small. A variable weights method is developed to conquer the shortcoming of particle tracking method. Then, one-dimensional and two-dimensional time-fractional advection-dispersion equations are solved by the variable weights particle tracking method. Compared to traditional particle tracking method, the variable weights version may eliminate the fluctuation and improve the accuracy by orders of magnitude without more computational cost.
Arqub, Omar Abu; El-Ajou, Ahmad; Momani, Shaher
2015-07-01
Building fractional mathematical models for specific phenomena and developing numerical or analytical solutions for these fractional mathematical models are crucial issues in mathematics, physics, and engineering. In this work, a new analytical technique for constructing and predicting solitary pattern solutions of time-fractional dispersive partial differential equations is proposed based on the generalized Taylor series formula and residual error function. The new approach provides solutions in the form of a rapidly convergent series with easily computable components using symbolic computation software. For method evaluation and validation, the proposed technique was applied to three different models and compared with some of the well-known methods. The resultant simulations clearly demonstrate the superiority and potentiality of the proposed technique in terms of the quality performance and accuracy of substructure preservation in the construct, as well as the prediction of solitary pattern solutions for time-fractional dispersive partial differential equations.
Surface area and volume fraction of random open-pore systems
Hermann, H.; Elsner, A.; Stoyan, D.
2013-12-01
For the first time, explicit approximate formulas are presented for the volume fraction and specific surface area of random open-pore systems with poly-disperse pore size distributions. It is shown that the formulas are valid for broad classes of models for porous media characterized by tunable pore size distributions and a variable degree of inter-penetrability of pores. The formulas for the poly-disperse case are based on expressions derived previously for mono-disperse penetrable-sphere models. The results are obtained by analysis of a series of open-pore models, which are prepared by computer simulation of systems of randomly packed partially penetrable spheres with various poly-disperse size distributions such as gamma, lognormal, and Gaussian. The formulas are applied in a study of atomic layer deposition processes on open-pore systems, and the effective Young's modulus and the effective thermal conductivity of Al2O3 coated porous polypropylene electrodes for lithium ion batteries are predicted.
Shen, S.; Liu, F.; Anh, V.; Turner, I.
2008-12-01
In this paper, we consider a Riesz fractional advection-dispersion equation (RFADE), which is derived from the kinetics of chaotic dynamics. The RFADE is obtained from the standard advection-dispersion equation by replacing the first-order and second-order space derivatives by the Riesz fractional derivatives of order{alpha} [isin] (0, 1) and {beta} [isin] (1, 2], respectively. We derive the fundamental solution for the Riesz fractional advection-dispersion equation with an initial condition (RFADE-IC). We investigate a discrete random walk model based on an explicit finite-difference approximation for the RFADE-IC and prove that the random walk model belongs to the domain of attraction of the corresponding stable distribution. We also present explicit and implicit difference approximations for the Riesz fractional advection-dispersion equation with initial and boundary conditions (RFADE-IBC) in a finite domain. Stability and convergence of these numerical methods for the RFADE-IBC are discussed. Some numerical examples are given to show that the numerical results are in good agreement with our theoretical analysis.
Modified algorithm for generating high volume fraction sphere packings
Valera, Roberto Roselló; Morales, Irvin Pérez; Vanmaercke, Simon; Morfa, Carlos Recarey; Cortés, Lucía Argüelles; Casañas, Harold Díaz-Guzmán
2015-06-01
Advancing front packing algorithms have proven to be very efficient in 2D for obtaining high density sets of particles, especially disks. However, the extension of these algorithms to 3D is not a trivial task. In the present paper, an advancing front algorithm for obtaining highly dense sphere packings is presented. It is simpler than other advancing front packing methods in 3D and can also be used with other types of particles. Comparison with respect to other packing methods have been carried out and a significant improvement in the volume fraction (VF) has been observed. Moreover, the quality of packings was evaluated with indicators other than VF. As additional advantage, the number of generated particles with the algorithm is linear with respect to time.
Determination of Acetonitrile Volume Fraction in Mobile Phase by HPLC
Institute of Scientific and Technical Information of China (English)
WU Yi; WANG Zhi-wu; GU Jing-kai; WANG Ying-wu
2008-01-01
This paper reports the development and validation of an assay for the determination of acetonitrile in the recycled mobile phase using high performance liquid chromatography(HPLC).The method is based on that the retention in reversed-phase liquid chromatography increases with decreasing concentration of organic phase in the mobile phase.The natural logarithm of the capacity ratio for a given solute is linearly related to the volume fraction of the organic modifier in the mobile phase.For dimethylphthalate and diethylphthalate,the linearity range is 30%--60%,and for biphenyl and terphenyl,the range is 60%-95%.Precision values(RSD) were both <1% and the accuracy(RE) was in the range of ±1%.The assay was successfully applied to the determination of acetonitrile concentration of recycled mobile phase after the distillation of the column eluent in our laboratory.
Research on Synthesizing Disperser with Fraction of Anthracene Oil for Coal Water Slurry
Institute of Scientific and Technical Information of China (English)
WU Guo-guang; GUO Zhao-bing; WU Jian-jun; XIE Qiang; WANG Xiao-chun
2003-01-01
Experiment of synthesizing a disperser for coal water slurry (CWS) by using fractions of anthracene oil from high-temperature coal tar was performed. The orthogonal test was used to investigate the influence of temperature, time, quantity of sulfonation agent and condensation agent and the interaction of these factors on properties of the disperser. The result shows that the influence of temperature, time, quantity of sulfonation agent and condensation agent, and the interaction of sulfonation time and sulfonation agent has a significant influence on the properties of disperser. The optimal condition of synthesis is that in 150g of the fractions of anthracene oil, 40 mL of sulfonation agent is added and sulfonated for 3 h at 130℃, then, 10 mL of condensing agent is added and condensated for 1.5 h at 115 ℃.
A hydrophobic peptide fraction that enhances the water dispersibility of curcumin
Directory of Open Access Journals (Sweden)
Risa Yamashita
2016-10-01
Full Text Available The present study describes the complexation between curcumin (Cur and a peptide mixture (Pep. Pep was prepared by enzymatic hydrolysis of casein and used as an excipient for poorly water-soluble Cur. An aqueous solution of Pep and an acetone solution of Cur were mixed and lyophilized to obtain a white-yellow powder of the peptide and Cur complex (Cur-Pep. The water dispersibility of Cur was enhanced by the complexation with Pep. Pep was fractionated using ammonium sulfate precipitation and ultrafiltration to identify which peptides preferentially interact with Cur. Relatively hydrophobic peptides with high molecular weights (>5 kDa were more effective in enhancing the water dispersibility of Cur than other fractions. Cur-Pep dispersed under acidic and neutral conditions, at which amphoteric Pep is positively or negatively charged. Cur-Pep exists as a hydrocolloid with particle size 160–330 nm in aqueous media.
Analytical Solutions of the Space-Time Fractional Derivative of Advection Dispersion Equation
Directory of Open Access Journals (Sweden)
Abdon Atangana
2013-01-01
Full Text Available Fractional advection-dispersion equations are used in groundwater hydrology to model the transport of passive tracers carried by fluid flow in porous medium. A space-time fractional advection-dispersion equation (FADE is a generalization of the classical ADE in which the first-order space derivative is replaced with Caputo or Riemann-Liouville derivative of order , and the second-order space derivative is replaced with the Caputo or the Riemann-Liouville fractional derivative of order . We derive the solution of the new equation in terms of Mittag-Leffler functions using Laplace transfrom. Some examples are given. The results from comparison let no doubt that the FADE is better in prediction than ADE.
Arsenic speciation in the dispersible colloidal fraction of soils from a mine-impacted creek
Energy Technology Data Exchange (ETDEWEB)
Serrano, Susana [Institute of Agrochemistry and Food Technology, CSIC, Agustín Escardino 7, 46980 Paterna, Valencia (Spain); Gomez-Gonzalez, Miguel Angel [National Museum of Natural Sciences, CSIC, José Gutiérrez Abascal 2, 28006 Madrid (Spain); O’Day, Peggy A. [School of Natural Sciences,University of California, Merced, CA 95343 (United States); Laborda, Francisco; Bolea, Eduardo [Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Garrido, Fernando, E-mail: fernando.garrido@mncn.csic.es [National Museum of Natural Sciences, CSIC, José Gutiérrez Abascal 2, 28006 Madrid (Spain)
2015-04-09
Highlights: • Nanoparticle scorodite may dissolve from mine wastes and release As down-gradient. • Large fractions of total As in soils may be associated with dispersible colloids. • Up to one third of total As in soils was associated with the colloid fraction. • AsFlFFF-ICP-MS and XAS provides information on the partitioning of contaminants in colloids. - Abstract: Arsenic and iron speciation in the dispersible colloid fraction (DCF; 10–1000 nm) from an As-rich mine waste pile, sediments of a streambed that collects runoff from waste pile, the streambed subsoil, and the sediments of a downstream pond were investigated by combining asymmetrical-flow field-flow fractionation (AsFlFFF)/inductively-coupled plasma–mass spectrometry (ICP–MS), transmission electron microscopy (TEM) and X-ray absorption (XAS) spectroscopy. Calcium, Fe and As (Fe/As molar ratio ∼ 1) were the main components of the DCF from waste pile. TEM/EDS and As and Fe XAS analysis revealed the presence of nanoparticle scorodite in this same DCF, as well as Fe nanoparticles in all samples downstream of the waste pile. Arsenic and Fe XAS showed As(V) adsorbed onto nanoparticulate ferrihydrite in the DCF of downstream samples. Micro-X-ray fluorescence indicated a strong correlation between Fe and As in phyllosilicate/Fe{sup 3+} (oxi) hydroxide aggregates from the sediment pond. Fractionation analysis showed the mean particle size of the DCF from the streambed sample to be smaller than that of the streambed subsoil and sediment ponds samples. These results show that an important and variable fraction of As may be bound to dispersible colloids that can be released from contaminated soils and transported downstream in natural systems.
Boundary value problem for one-dimensional fractional differential advection-dispersion equation
Directory of Open Access Journals (Sweden)
Khasambiev Mokhammad Vakhaevich
2014-07-01
Full Text Available An equation commonly used to describe solute transport in aquifers has attracted more attention in recent years. After a formal study of some aspects of the advection-diffusion equation, basically from the mathematical point of view with the solution of a differential equation with fractional derivative, the main interest to this problem shifted onto physical aspects of the dynamical system, such as the total energy and the dynamical response. In this regard it should be pointed out that the interaction with environment is expressed in terms of stochastic arrow of time. This allows one also to reach a progress in one more issue. Formerly the equation of advection-diffusion was not obtained from any physical principles. However, mainly the success concerns linear fractional systems. In fact, there are many cases in which linear treatments are not sufficient. The more general systems described by nonlinear fractional differential equations have not been studied enough. The ordinary calculus brings out clearly that essentially new phenomena occur in nonlinear systems, which generally cannot occur in linear systems. Due to vast range of application of the fractional advection-dispersion equation, a lot of work has been done to find numerical solution and fundamental solution of this equation. The research on the analytical solution of initial-boundary problem for space-fractional advection-dispersion equation is relatively new and is still at an early stage of development. In this paper, we will take use of the method of variable separation to solve space-fractional advection-dispersion equation with initial boundary data.
Volume fraction instability in an oscillating non-Brownian iso-dense suspension.
Roht, Y. L.; Gauthier, G.; Hulin, J. P.; Salin, D.; Chertcoff, R.; Auradou, H.; Ippolito, I.
2017-06-01
The instability of an iso-dense non-Brownian suspension of polystyrene beads of diameter 40 μm dispersed in a water-glycerol mixture submitted to a periodic square wave oscillating flow in a Hele-Shaw cell is studied experimentally. The instability gives rise to stationary bead concentration waves transverse to the flow. It has been observed for average particle volume fractions between 0.25 and 0.4, for periods of the square wave flow variation between 0.4 and 10 s and in finite intervals of the amplitude of the fluid displacement. The study shows that the wavelength λ increases roughly linearly with the amplitude of the oscillatory flow; on the other hand, λ is independent of the particle concentration and of the period of oscillation of the flow although the minimum threshold amplitude for observing the instability increases with the period.
A numerical scheme for space-time fractional advection-dispersion equation
Javadi, S; Jani, M
2015-01-01
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. After time discretization, we utilize collocation technique and implement a product integration method in order to simplify the evaluation of the terms involving spatial fractional order derivatives. Then utilizing Bernstein polynomials as basis, the problem is transformed into a linear system of algebraic equations. Error analysis and order of convergence for the proposed method are also discussed. Some numerical experiments are presented to demonstrate the effectiveness of the proposed method and to confirm the analytic results.
Coarsening in high volume fraction nickel-base alloys
Mackay, R. A.; Nathal, M. V.
1990-01-01
The coarsening behavior of the gamma-prime precipitate has been examined in high volume fraction nickel-base alloys aged at elevated temperatures for times of up to 5000 h. Although the cube rate law was observed during coarsening, none of the presently available coarsening theories showed complete agreement with the experimental particle size distributions (PSDs). These discrepancies were thought to be due to elastic coherency strains which were not considered by the available models. Increasing the Mo content significantly influenced the PSDs and decreased the coarsening rate of the gamma-prime cubes, as a result of increasing the magnitude of the lattice mismatch. After extended aging times, the gamma-prime cubes underwent massive coalescence into plates at a rate which was much faster than the cuboidal coarsening rate. Once the gamma-prime plates were formed, further coarsening was not observed, and this stabilization of the microstructure was attributed to the development of dislocation networks at the gamma-gamma-prime interfaces.
The Effects of Fibre Volume Fraction on a Glass-Epoxy Composite Material
Directory of Open Access Journals (Sweden)
Ciprian LARCO
2015-09-01
Full Text Available This paper focuses on the analysis of the longitudinal mechanical properties of Glass Fibre Reinforce Plastic (GFRP plates with different fibre volume fraction, Vf, by considering both analytical and experimental methods. The laminate is 0/90 E-glass/epoxy woven composite material made by hand lay-up technique. Fiber volume fraction, determined by ignition loss method, has a direct influence on the ultimate strength and modulus of elasticity of the composite plate. Tensile tests on specimens with different volume fractions allow the identification of the mathematical relationship between the fibre volume fraction and the longitudinal elastic modulus.
Direct and inverse source problems for a space fractional advection dispersion equation
Aldoghaither, Abeer
2016-05-15
In this paper, direct and inverse problems for a space fractional advection dispersion equation on a finite domain are studied. The inverse problem consists in determining the source term from final observations. We first derive the analytic solution to the direct problem which we use to prove the uniqueness and the unstability of the inverse source problem using final measurements. Finally, we illustrate the results with a numerical example.
Can a Time Fractional-Derivative Model Capture Scale-Dependent Dispersion in Saturated Soils?
Garrard, Rhiannon M; Zhang, Yong; Wei, Song; Sun, HongGuang; Qian, Jiazhong
2017-07-10
Time nonlocal transport models such as the time fractional advection-dispersion equation (t-fADE) were proposed to capture well-documented non-Fickian dynamics for conservative solutes transport in heterogeneous media, with the underlying assumption that the time nonlocality (which means that the current concentration change is affected by previous concentration load) embedded in the physical models can release the effective dispersion coefficient from scale dependency. This assumption, however, has never been systematically examined using real data. This study fills this historical knowledge gap by capturing non-Fickian transport (likely due to solute retention) documented in the literature (Huang et al. 1995) and observed in our laboratory from small to intermediate spatial scale using the promising, tempered t-fADE model. Fitting exercises show that the effective dispersion coefficient in the t-fADE, although differing subtly from the dispersion coefficient in the standard advection-dispersion equation, increases nonlinearly with the travel distance (varying from 0.5 to 12 m) for both heterogeneous and macroscopically homogeneous sand columns. Further analysis reveals that, while solute retention in relatively immobile zones can be efficiently captured by the time nonlocal parameters in the t-fADE, the motion-independent solute movement in the mobile zone is affected by the spatial evolution of local velocities in the host medium, resulting in a scale-dependent dispersion coefficient. The same result may be found for the other standard time nonlocal transport models that separate solute retention and jumps (i.e., displacement). Therefore, the t-fADE with a constant dispersion coefficient cannot capture scale-dependent dispersion in saturated porous media, challenging the application for stochastic hydrogeology methods in quantifying real-world, preasymptotic transport. Hence improvements on time nonlocal models using, for example, the novel subordination
Treeby, Bradley E; Cox, B T
2010-05-01
The efficient simulation of wave propagation through lossy media in which the absorption follows a frequency power law has many important applications in biomedical ultrasonics. Previous wave equations which use time-domain fractional operators require the storage of the complete pressure field at previous time steps (such operators are convolution based). This makes them unsuitable for many three-dimensional problems of interest. Here, a wave equation that utilizes two lossy derivative operators based on the fractional Laplacian is derived. These operators account separately for the required power law absorption and dispersion and can be efficiently incorporated into Fourier based pseudospectral and k-space methods without the increase in memory required by their time-domain fractional counterparts. A framework for encoding the developed wave equation using three coupled first-order constitutive equations is discussed, and the model is demonstrated through several one-, two-, and three-dimensional simulations.
Volume Dispersion of Point Sets and Quasi-Monte Carlo Methods
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Measures of irregularity of a point set or sequence, such as discrepancy and dispersion, play a central role in quasi-Monte Carlo methods. In this paper, we introduce and study a new measure of irregularity, called volume dispersion. It is a measure of deviation of point sets from the uniform distribution. We then generalize the concept of volume dispersion to more general cases as measures of representation of point sets for general probability distributions. Various relations among these measures and the traditional discrepancy and dispersion are investigated.
Bahaya, Bernard
The aim of this thesis is to study the improvement of heat transfer in graphene-water nanofluids. Experiments were conducted with graphene nanoplatelets (GNP) to study the relative benefit of the thermal conductivity improvement in relationship to the potential detriment when considering the effect that more GNP dispersed in the water increases the viscosity of the resulting suspension relative to that of the water. A maximum enhancement ratio for GNP nanofluid thermal conductivity over water was 1.43 at a volume fraction of 0.014. Based upon GNP aspect ratios confirmed in sizing measurements, the DEM model presented by Chu et al., (2012) appears to describe the experimental results of this study when using a fitted interfacial resistance value of 6.25 E -8 m2 K W-1. The well-known Einstein viscosity model for spheres dispersed in fluids was shown to under predict the experimental data. Adjusting the intrinsic model term for spheres from a value of 2.5 to a fitted value of 1938 representative for the GNP of this study provided much closer agreement between measured and predicted values. Heat transfer is a nonlinear function of viscosity and thermal conductivity and heat transfer is predicted to decrease for GNP nanofluids when compared to water alone. Hence the use of nanofluids to enhance heat transfer processes appears not to be viable.
Mendoza, Carlos I; Santamaría-Holek, I
2009-01-28
We propose a simple and general model accounting for the dependence of the viscosity of a hard sphere suspension at arbitrary volume fractions. The model constitutes a continuum-medium description based on a recursive-differential method where correlations between the spheres are introduced through an effective volume fraction. In contrast to other differential methods, the introduction of the effective volume fraction as the integration variable implicitly considers interactions between the spheres of the same recursive stage. The final expression for the viscosity scales with this effective volume fraction, which allows constructing a master curve that contains all the experimental situations considered. The agreement of our expression for the viscosity with experiments at low- and high-shear rates and in the high-frequency limit is remarkable for all volume fractions.
Fractional Brownian motion, the Matérn process, and stochastic modeling of turbulent dispersion
Lilly, Jonathan M.; Sykulski, Adam M.; Early, Jeffrey J.; Olhede, Sofia C.
2017-08-01
Stochastic processes exhibiting power-law slopes in the frequency domain are frequently well modeled by fractional Brownian motion (fBm), with the spectral slope at high frequencies being associated with the degree of small-scale roughness or fractal dimension. However, a broad class of real-world signals have a high-frequency slope, like fBm, but a plateau in the vicinity of zero frequency. This low-frequency plateau, it is shown, implies that the temporal integral of the process exhibits diffusive behavior, dispersing from its initial location at a constant rate. Such processes are not well modeled by fBm, which has a singularity at zero frequency corresponding to an unbounded rate of dispersion. A more appropriate stochastic model is a much lesser-known random process called the Matérn process, which is shown herein to be a damped version of fractional Brownian motion. This article first provides a thorough introduction to fractional Brownian motion, then examines the details of the Matérn process and its relationship to fBm. An algorithm for the simulation of the Matérn process in O(NlogN) operations is given. Unlike fBm, the Matérn process is found to provide an excellent match to modeling velocities from particle trajectories in an application to two-dimensional fluid turbulence.
Fractional Brownian motion, the Matern process, and stochastic modeling of turbulent dispersion
Lilly, J M; Early, J J; Olhede, S C
2016-01-01
Stochastic process exhibiting power-law slopes in the frequency domain are frequently well modeled by fractional Brownian motion (fBm). In particular, the spectral slope at high frequencies is associated with the degree of small-scale roughness or fractal dimension. However, a broad class of real-world signals have a high-frequency slope, like fBm, but a plateau in the vicinity of zero frequency. This low-frequency plateau, it is shown, implies that the temporal integral of the process exhibits diffusive behavior, dispersing from its initial location at a constant rate. Such processes are not well modeled by fBm, which has a singularity at zero frequency corresponding to an unbounded rate of dispersion. A more appropriate stochastic model is a much lesser-known random process called the Matern process, which is shown herein to be a damped version of fractional Brownian motion. This article first provides a thorough introduction to fractional Brownian motion, then examines the details of the Matern process and...
Institute of Scientific and Technical Information of China (English)
HUANG; Guanhua; HUANG; Quanzhong; ZHAN; Hongbin
2005-01-01
The newly developed Fractional Advection-Dispersion Equation (FADE), which is FADE was extended and used in this paper for modelling adsorbing contaminant transport by adding an adsorbing term. A parameter estimation method and its corresponding FORTRAN based program named FADEMain were developed on the basis of Nonlinear Least Square Algorithm and the analytical solution for one-dimensional FADE under the conditions of step input and steady state flow. Data sets of adsorbing contaminants Cd and NH4+-N transport in short homogeneous soil columns and conservative solute NaCI transport in a long homogeneous soil column, respectively were used to estimate the transport parameters both by FADEMain and the advection-dispersion equation (ADE) based program CXTFIT2.1. Results indicated that the concentration simulated by FADE agreed well with the measured data. Compared to the ADE model, FADE can provide better simulation for the concentration in the initial lower concentration part and the late higher concentration part of the breakthrough curves for both adsorbing contaminants. The dispersion coefficients for ADE were from 0.13 to 7.06 cm2/min, while the dispersion coefficients for FADE ranged from 0.119 to 3.05 cm1.856/min for NaCI transport in the long homogeneous soil column. We found that the dispersion coefficient of FADE increased with the transport distance, and the relationship between them can be quantified with an exponential function. Less scale-dependent was also found for the dispersion coefficient of FADE with respect to ADE.
Diffusion related isotopic fractionation effects with one-dimensional advective–dispersive transport
Energy Technology Data Exchange (ETDEWEB)
Xu, Bruce S. [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada); Lollar, Barbara Sherwood [Earth Sciences Department, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1 (Canada); Passeport, Elodie [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada); Chemical Engineering and Applied Chemistry Department, University of Toronto, 200 College Street, Toronto, ON M5S 3E5 (Canada); Sleep, Brent E., E-mail: sleep@ecf.utoronto.ca [Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4 (Canada)
2016-04-15
Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining “observable” DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C{sub 0}), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (D{sub mech}/D{sub eff}). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective–dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C{sub 0}/MDL ratios of 50 or higher. Much larger C{sub 0}/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1 m) for a relatively young diffusive plume (< 100 years), and DRIF will not easily be detected by using the conventional sampling approach with “typical” well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where D{sub mech}/D{sub eff} is
The determination of an unknown source for a space fractional advection dispersion equation
Aldoghaither, Abeer
2014-09-01
In this paper, we are interested in the estimation of the source term for a space fractional advection dispersion equation using concentration and flux measurements at final time. An example of application is the identification of contamination source in groundwater transport. We propose to use the socalled modulating functions method which has been introduced for parameters estimation. This method allows to transfer the estimation problem into solving a system of algebraic equations. Numerical examples are given to illustrate the effectiveness and the robustness of the proposed method. Finally, a comparison between a Tikhonov-based optimization method and the modulating functions approach is presented.
Directory of Open Access Journals (Sweden)
Dali Zhang
2012-01-01
Full Text Available This paper deals with an inverse problem for identifying multiparameters in 1D space fractional advection dispersion equation (FADE on a finite domain with final observations. The parameters to be identified are the fractional order, the diffusion coefficient, and the average velocity in the FADE. The forward problem is solved by a finite difference scheme, and then an optimal perturbation regularization algorithm is introduced to determine the three parameters simultaneously. Numerical inversions are performed both with the accurate data and noisy data, and several factors having influences on realization of the algorithm are discussed. The inversion solutions are in good approximations to the exact solutions demonstrating the efficiency of the proposed algorithm.
Conklin, Lindsey
2017-01-01
Fiber-reinforced composite structures have become more common in aerospace components due to their light weight and structural efficiency. In general, the strength and stiffness of a composite structure are directly related to the fiber volume fraction, which is defined as the fraction of fiber volume to total volume of the composite. The most common method to measure the fiber volume fraction is acid digestion, which is a useful method when the total weight of the composite, the fiber weight, and the total weight can easily be obtained. However, acid digestion is a destructive test, so the material will no longer be available for additional characterization. Acid digestion can also be difficult to machine out specific components of a composite structure with complex geometries. These disadvantages of acid digestion led the author to develop a method to calculate the fiber volume fraction. The developed method uses optical microscopy to calculate the fiber area fraction based on images of the cross section of the composite. The fiber area fraction and fiber volume fraction are understood to be the same, based on the assumption that the shape and size of the fibers are consistent in the depth of the composite. This tutorial explains the developed method for optically determining fiber area fraction performed at NASA Langley Research Center.
Accuracy of cancellous bone volume fraction measured by micro-CT scanning
DEFF Research Database (Denmark)
Ding, Ming; Odgaard, A; Hvid, I
1999-01-01
Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens...... which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner...
Lattuada, Marco; Olivo, Carlos; Gauer, Cornelius; Storti, Giuseppe; Morbidelli, Massimo
2010-05-18
The characterization of complex colloidal dispersions is a relevant and challenging problem in colloidal science. In this work, we show how asymmetric flow-field flow fractionation (AF4) coupled to static light scattering can be used for this purpose. As an example of complex colloidal dispersions, we have chosen two systems undergoing aggregation. The first one is a conventional polystyrene latex undergoing reaction-limited aggregation, which leads to the formation of fractal clusters with well-known structure. The second one is a dispersion of elastomeric colloidal particles made of a polymer with a low glass transition temperature, which undergoes coalescence upon aggregation. Samples are withdrawn during aggregation at fixed times, fractionated with AF4 using a two-angle static light scattering unit as a detector. We have shown that from the analysis of the ratio between the intensities of the scattered light at the two angles the cluster size distribution can be recovered, without any need for calibration based on standard elution times, provided that the geometry and scattering properties of particles and clusters are known. The nonfractionated samples have been characterized also by conventional static and dynamic light scattering to determine their average radius of gyration and hydrodynamic radius. The size distribution of coalescing particles has been investigated also through image analysis of cryo-scanning electron microscopy (SEM) pictures. The average radius of gyration and the average hydrodynamic radius of the nonfractionated samples have been calculated and successfully compared to the values obtained from the size distributions measured by AF4. In addition, the data obtained are also in good agreement with calculations made with population balance equations.
Directory of Open Access Journals (Sweden)
Konrad Wegener
2016-07-01
Full Text Available The influence of fibre volume fraction and temperature on fatigue life of continuous glass fibre reinforced plastics is investigated in detail. The physical causes of the two effects on the slope of the S-N-curve in fibre direction at R = 0.1 are researched and can be explained with help of micrographs. A new phenomenological approach is presented to model both effects in fibre dominated laminates with different stacking sequences using only the static ultimate strength as an input. Static and fatigue tests of different layups and fibre volume fractions are performed at different temperatures to validate the fatigue life predictions. Additionally it is derived that there is an optimal fibre volume fraction regarding a minimum damage sum. This fibre volume fraction is dependent on a given loading spectra and can be calculated using the phenomenological model.
Directory of Open Access Journals (Sweden)
Friedrich Schuler
2015-08-01
Full Text Available The high throughput preparation of emulsions with high internal volume fractions is important for many different applications, e.g., drug delivery. However, most emulsification techniques reach only low internal volume fractions and need stable flow rates that are often difficult to control. Here, we present a centrifugal high throughput step emulsification disk for the fast and easy production of emulsions with high internal volume fractions above 95%. The disk produces droplets at generation rates of up to 3700 droplets/s and, for the first time, enables the generation of emulsions with internal volume fractions of >97%. The coefficient of variation between droplet sizes is very good (4%. We apply our system to show the in situ generation of gel emulsion. In the future, the recently introduced unit operation of centrifugal step emulsification may be used for the high throughput production of droplets as reaction compartments for clinical diagnostics or as starting material for micromaterial synthesis.
Evaluating Volume Fractions of the Elements for Composite Laminates by Using Dielectric Properties
Institute of Scientific and Technical Information of China (English)
周胜; 储才元; 严灏景
2001-01-01
A series and parallel model for investigating the capacity of composite laminates and the relationship between the dielectric properties of the composites and its constituents are presented. Volume fractions of the constituents are considered in this study. The expression of the complex dielectric constants for evaluating volume fractions under discrete frequencies is established and the general solutions for the resultant linear simultaneous equations for system are also exploited.The results show that the high accuracy of proposed method is obtained.
Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz
2016-03-01
Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (
Directory of Open Access Journals (Sweden)
Lingju Kong
2013-04-01
Full Text Available We study the existence of multiple solutions to the boundary value problem $$displaylines{ frac{d}{dt}Big(frac12{}_0D_t^{-eta}(u'(t+frac12{}_tD_T^{-eta}(u'(t Big+lambda abla F(t,u(t=0,quad tin [0,T],cr u(0=u(T=0, }$$ where $T>0$, $lambda>0$ is a parameter, $0leqeta<1$, ${}_0D_t^{-eta}$ and ${}_tD_T^{-eta}$ are, respectively, the left and right Riemann-Liouville fractional integrals of order $eta$, $F: [0,T]imesmathbb{R}^Nomathbb{R}$ is a given function. Our interest in the above system arises from studying the steady fractional advection dispersion equation. By applying variational methods, we obtain sufficient conditions under which the above equation has at least three solutions. Our results are new even for the special case when $eta=0$. Examples are provided to illustrate the applicability of our results.
Energy Technology Data Exchange (ETDEWEB)
CW Stewart; G Chen; JM Alzheimer; PA Meyer
1998-11-10
The void fraction instrument (WI) was deployed in Tank 241-SY-101 three times in 1998 to confm and locate the retained gas (void) postulated to be causing the accelerating waste level rise observed since 1995. The design, operation, and data reduction model of the WI are described along with validation testing and potential sources of uncertainty. The test plans, field observations and void measurements are described in detail, including the total gas volume calculations and the gas volume model. Based on 1998 data, the void fraction averaged 0.013 i 0.001 in the mixed slurry and 0.30 ~ 0.04 in the crust. This gives gas volumes (at standard pressure and temperature) of 87 t 9 scm in the slurry and 138 ~ 22 scm in the crust for a total retained gas volume of221 *25 scm. This represents an increase of about 74 scm in the crust and a decrease of about 34 scm in the slurry from 1994/95 results. The overall conclusion is that the gas retention is occurring mainly in the crust layer and there is very little gas in the mixed slurry and loosely settled layers below. New insights on crust behavior are also revealed.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, we consider a Riesz space-fractional reaction-dispersion equation (RSFRDE). The RSFRDE is obtained from the classical reaction-dispersion equation by replacing the second-order space derivative with a Riesz derivative of order β∈(1, 2].We propose an implicit finite difference approximation for RSFRDE. The stability and convergence of the finite difference approximations are analyzed. Numerical results are found in good agreement with the theoretical analysis.
GEANT4 simulation of water volume fraction measurement in dehydrated crude oil
Institute of Scientific and Technical Information of China (English)
JING Chunguo; XING Guangzhong; LIU Bin
2007-01-01
Online measurement of water volume fraction (WVF) in dehydrated crude oil is a difficult task due to very little water in dehydrated crude oil and high precision requirements. We presents a method to measure water volume fraction in dehydrated crude oil with γ-ray densitometry. The Monte Carlo computer simulation packet GEANT4 was used to analyze the WVF measuring sensitivity of the γ-ray densitometry at different γ-ray energies, and effects of temperature, pressure, salinity and oil components on WVF measurement. The results show that the γ-ray densitome-try has high sensitivity in γ-ray energy ranges of 16～25 keV, and it can distinguish WVF changes of 0.0005. The calculated WVF decreases about 0.0002 with 1 ℃ of temperature increase and they have approximately linear relation with temperature when water volume fraction remains the same. Effects of pressure, salinity and oil components on water volume fraction can be neglected. Experiments were done to analyze sensitivity of the γ-ray densitometry. The results, as compared with simulations, demonstrate that simulation method is reliable and it is feasible to gauge low water volume fraction using low energy γ-rays.
Methods and Algorithms for Solving Inverse Problems for Fractional Advection-Dispersion Equations
Aldoghaither, Abeer
2015-11-12
Fractional calculus has been introduced as an e cient tool for modeling physical phenomena, thanks to its memory and hereditary properties. For example, fractional models have been successfully used to describe anomalous di↵usion processes such as contaminant transport in soil, oil flow in porous media, and groundwater flow. These models capture important features of particle transport such as particles with velocity variations and long-rest periods. Mathematical modeling of physical phenomena requires the identification of pa- rameters and variables from available measurements. This is referred to as an inverse problem. In this work, we are interested in studying theoretically and numerically inverse problems for space Fractional Advection-Dispersion Equation (FADE), which is used to model solute transport in porous media. Identifying parameters for such an equa- tion is important to understand how chemical or biological contaminants are trans- ported throughout surface aquifer systems. For instance, an estimate of the di↵eren- tiation order in groundwater contaminant transport model can provide information about soil properties, such as the heterogeneity of the medium. Our main contribution is to propose a novel e cient algorithm based on modulat-ing functions to estimate the coe cients and the di↵erentiation order for space FADE, which can be extended to general fractional Partial Di↵erential Equation (PDE). We also show how the method can be applied to the source inverse problem. This work is divided into two parts: In part I, the proposed method is described and studied through an extensive numerical analysis. The local convergence of the proposed two-stage algorithm is proven for 1D space FADE. The properties of this method are studied along with its limitations. Then, the algorithm is generalized to the 2D FADE. In part II, we analyze direct and inverse source problems for a space FADE. The problem consists of recovering the source term using final
AEROBIC AND ANAEROBIC TREATMENT OF C.I. DISPERSE BLUE 79 - VOLUME II, APPENDICES
This study was conducted to determine the fate of C.I. Disperse Blue 79, one of the largest production volume dyes, and select biodegradation products in a conventionally operated activated sludge process and an anaerobic sludge digestion system. To achieve this objective, a pilo...
AEROBIC AND ANAEROBIC TREATMENT OF C.I. DISPERSE BLUE 79 - VOLUME I
This study was conducted to determine the fate of C.I. Disperse Blue 79, one of the largest production volume dyes, and select biodegradation products in a conventionally operated activated sludge process and an anaerobic sludge digestion system. To achieve this objective, a pilo...
Sun, HongGuang; Zhang, Yong; Chen, Wen; Reeves, Donald M.
2014-02-01
Field and numerical experiments of solute transport through heterogeneous porous and fractured media show that the growth of contaminant plumes may not exhibit constant scaling, and may instead transition between diffusive states (i.e., superdiffusion, subdiffusion, and Fickian diffusion) at various transport scales. These transitions are likely attributed to physical properties of the medium, such as spatial variations in medium heterogeneity. We refer to this transitory dispersive behavior as "transient dispersion", and propose a variable-index fractional-derivative model (FDM) to describe the underlying transport dynamics. The new model generalizes the standard constant-index FDM which is limited to stationary heterogeneous media. Numerical methods including an implicit Eulerian method (for spatiotemporal transient dispersion) and a Lagrangian solver (for multiscaling dispersion) are utilized to produce variable-index FDM solutions. The variable-index FDM is then applied to describe transient dispersion observed at two field tracer tests and a set of numerical experiments. Results show that 1) uranine transport at the small-scale Grimsel test site transitions from strong subdispersion to Fickian dispersion, 2) transport of tritium at the regional-scale Macrodispersion Experimental (MADE) site transitions from near-Fickian dispersion to strong superdispersion, and 3) the conservative particle transport through regional-scale discrete fracture network transitions from superdispersion to Fickian dispersion. The variable-index model can efficiently quantify these transitions, with the scale index varying linearly in time or space.
Sun, Hongguang; Zhang, Yong; Chen, Wen; Reeves, Donald M
2014-02-01
Field and numerical experiments of solute transport through heterogeneous porous and fractured media show that the growth of contaminant plumes may not exhibit constant scaling, and may instead transition between diffusive states (i.e., superdiffusion, subdiffusion, and Fickian diffusion) at various transport scales. These transitions are likely attributed to physical properties of the medium, such as spatial variations in medium heterogeneity. We refer to this transitory dispersive behavior as "transient dispersion", and propose a variable-index fractional-derivative model (FDM) to describe the underlying transport dynamics. The new model generalizes the standard constant-index FDM which is limited to stationary heterogeneous media. Numerical methods including an implicit Eulerian method (for spatiotemporal transient dispersion) and a Lagrangian solver (for multiscaling dispersion) are utilized to produce variable-index FDM solutions. The variable-index FDM is then applied to describe transient dispersion observed at two field tracer tests and a set of numerical experiments. Results show that 1) uranine transport at the small-scale Grimsel test site transitions from strong subdispersion to Fickian dispersion, 2) transport of tritium at the regional-scale Macrodispersion Experimental (MADE) site transitions from near-Fickian dispersion to strong superdispersion, and 3) the conservative particle transport through regional-scale discrete fracture network transitions from superdispersion to Fickian dispersion. The variable-index model can efficiently quantify these transitions, with the scale index varying linearly in time or space.
Mack, Lauren M; Kim, Sung Yoon; Lee, Sungmin; Sangi-Haghpeykar, Haleh; Lee, Wesley
2016-07-01
The purpose of this study was to document the reproducibility and efficiency of a semiautomated image analysis tool that rapidly provides fetal fractional limb volume measurements. Fifty pregnant women underwent 3-dimensional sonographic examinations for fractional arm and thigh volumes at a mean menstrual age of 31.3 weeks. Manual and semiautomated fractional limb volume measurements were calculated, with the semiautomated measurements calculated by novel software (5D Limb Vol; Samsung Medison, Seoul, Korea). The software applies an image transformation method based on the major axis length, minor axis length, and limb center coordinates. A transformed image is used to perform a global optimization technique for determination of an optimal limb soft tissue boundary. Bland-Altman analysis defined bias with 95% limits of agreement (LOA) between methods, and timing differences between manual versus automated methods were compared by a paired t test. Bland-Altman analysis indicated an acceptable bias with 95% LOA between the manual and semiautomated methods: mean arm volume ± SD, 1.7% ± 4.6% (95% LOA, -7.3% to 10.7%); and mean thigh volume, 0.0% ± 3.8% (95% LOA, -7.5% to 7.5%). The computer-assisted software completed measurements about 5 times faster compared to manual tracings. In conclusion, semiautomated fractional limb volume measurements are significantly faster to calculate when compared to a manual procedure. These results are reproducible and are likely to reduce operator dependency. The addition of computer-assisted fractional limb volume to standard biometry may improve the precision of estimated fetal weight by adding a soft tissue component to the weight estimation process.
Effects of volume fraction condition on thermodynamic restrictions in mixture theory
Institute of Scientific and Technical Information of China (English)
牛永红; 苗天德
2002-01-01
Volume fraction condition is a true constraint that must be taken into consideration in deducing the thermodynamic restrictions of mixture theory applying the axiom of dissipation. For a process to be admissible, the constraints imposed by the volume fraction condition include not only the equation obtained by taking its material derivative with respect to the motion of a given phase, but also those by taking its spatial gradient. The thermodynamic restrictions are deduced under the complete constraints, the results obtained are consistent for the mixtures with or without a compressible phase,and in which the free energy of each phase depends on the densities of all phases.
Institute of Scientific and Technical Information of China (English)
MA Yue; LI Wei; LIANG Zi-qing
2008-01-01
Microstmctures of laminates produced by epoxy/ carbon fibers with different fiber volume fraction were studied by analyzing the composite cross-sections. The main result of the compaction of reinforcement is the flatting of bundle shape, the reducing of gap and the embedment of bundles among each layer. The void content outside the bundle decreased sharply during the compoction until it is less than that inside the bundle when the fiber volume fraction is over 60%. The resin flow velocity in the fiber tow is 102-104 times greater than the flow velocity out the fiber tow no matter the capillary pressure is taken into account or not.
Vibrations of FGM thin cylindrical shells with exponential volume fraction law
Institute of Scientific and Technical Information of China (English)
Abdul Ghafar Shah; Tahir Mahmood; Muhammad Nawaz Naeem
2009-01-01
In this paper,the influence of an exponential volume fraction law on the vibration frequencies of thin functionally graded cylindrical shells is studied. Material properties in the shell thickness direction are graded in accordance with the exponential law. Expressions for the strain-displacement and curvature-displacement relationships are taken from Love's thin shell theory. The Rayleigh-Ritz approach is used to derive the shell eigenfrequency equation. Axial modal dependence is assumed in the characteristic beam functions. Natural frequencies of the shells are observed to be dependent on the constituent volume fractions. The results are compared with those available in the literature for the validity of the present methodology.
Energy Technology Data Exchange (ETDEWEB)
Marques Salgado, Cesar [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil)], E-mail: otero@ien.gov.br; Brandao, Luis E.B. [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil); Schirru, Roberto [Universidade Federal do Rio de Janeiro, PEN/COPPE-DNC/EE-CT, Rio de Janeiro, CEP.: 21941-972-Caixa Postal 68509 (Brazil); Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil); Silva, Ademir Xavier da [Universidade Federal do Rio de Janeiro, PEN/COPPE-DNC/EE-CT, Rio de Janeiro, CEP.: 21941-972-Caixa Postal 68509 (Brazil); Ramos, Robson [Instituto de Engenharia Nuclear, DIRA/IEN/CNEN, Rio de Janeiro, CEP.: 21945-970-Caixa Postal 68550 (Brazil)
2009-10-15
This work presents methodology based on nuclear technique and artificial neural network for volume fraction predictions in annular, stratified and homogeneous oil-water-gas regimes. Using principles of gamma-ray absorption and scattering together with an appropriate geometry, comprised of three detectors and a dual-energy gamma-ray source, it was possible to obtain data, which could be adequately correlated to the volume fractions of each phase by means of neural network. The MCNP-X code was used in order to provide the training data for the network.
Imaging air volume fraction in sea ice using non-destructive X-ray tomography
Directory of Open Access Journals (Sweden)
O. Crabeck
2015-09-01
Full Text Available Although the presence of a gas phase in sea ice creates the potential for gas exchange with the atmosphere, the distribution of gas bubbles and transport of gases within the sea ice are still poorly understood. Currently no straightforward technique exists to measure the vertical distribution of air volume fraction in sea ice. Here, we present a new fast and non-destructive X-ray computed tomography technique to quantify the air volume fraction and produce separate 3-D images of air-volume inclusions in sea ice. The technique was performed on relatively thin (4–22 cm sea ice collected from an experimental ice tank. While most of the internal layers showed air-volume fractions 5 mm. While micro bubbles were the most abundant type of air inclusions, most of the air porosity observed resulted from the presence of large and macro bubbles. The ice microstructure (granular and columnar as well as the permeability state of ice are important factors controlling the air volume fraction. The technique developed is suited for studies related to gas transport and bubble migration and can help considerably improving parameterization of these processes in sea ice biogeochemical models.
Imaging air volume fraction in sea ice using non-destructive X-ray tomography
Crabeck, Odile; Galley, Ryan; Delille, Bruno; Else, Brent; Geilfus, Nicolas-Xavier; Lemes, Marcos; Des Roches, Mathieu; Francus, Pierre; Tison, Jean-Louis; Rysgaard, Søren
2016-05-01
Although the presence of a gas phase in sea ice creates the potential for gas exchange with the atmosphere, the distribution of gas bubbles and transport of gases within the sea ice are still poorly understood. Currently no straightforward technique exists to measure the vertical distribution of air volume fraction in sea ice. Here, we present a new fast and non-destructive X-ray computed tomography technique to quantify the air volume fraction and produce separate images of air volume inclusions in sea ice. The technique was performed on relatively thin (4-22 cm) sea ice collected from an experimental ice tank. While most of the internal layers showed air volume fractions bubbles (Ø bubbles (1 mm bubbles (Ø > 5 mm). While micro bubbles were the most abundant type of gas bubbles, most of the air porosity observed resulted from the presence of large and macro bubbles. The ice texture (granular and columnar) as well as the permeability state of ice are important factors controlling the air volume fraction. The technique developed is suited for studies related to gas transport and bubble migration.
Bueno, Kelly; Adorne, Marcia D; Jornada, Denise S; da Fonseca, Francisco Noé; Guterres, Sílvia S; Pohlmann, Adriana R
2013-01-01
In nanomedicine, different nanomaterials and nanoparticles have been proposed as therapeutic agents or adjuvants, as well as diagnosis devices. Considering that the principal cause of the ulcerations is the imbalance among the gastric juice secretion and the protection provided by the mucosal barrier and the neutralization of the gastric acid, as well as that nanoparticles are able to accumulate in the gastro-intestinal tissues, we proposed a 2(2) factorial design to evaluate the influence of the chemical composition and the volume fraction of the dispersed phase on the gastric protective effect against ulceration induced by ethanol. Cocoa-theospheres (CT) and lipid-core nanocapsules (LNC) (two different kinds of surfaces: lipid and polymeric, respectively) prepared at two different concentrations of soft materials: 4% and 12% (w/v) were produced by high pressure homogenization and solvent displacement methods, respectively. Laser diffraction showed volume-weighted mean diameters ranging from 133 to 207 nm, number median diameters lower than 100 nm and specific surfaces between 41.2 and 51.2 m(2) g(-1). The formulations had pH ranging from 4.7 to 6.3; and zeta potential close to -9 mV due to their coating with polysorbate 80. The ulcer indexes were 0.40 (LNC(4)) and 0.48 (CT(4)) for the lower total administered areas (3.3 and 4.1 m(2)g(-1), respectively), and 0.09 (LNC(12) and CT(12)) for the higher administered areas (10.0 and 12.0 m(2) g(-1), respectively). LNC(4), LNC(12) and CT(12) showed lower levels in the lipid peroxidation assay when compared either to the negative control (saline) or to CT(4). LNC(12) and CT(12) showed similar TBARS levels, as well as CT(4) was similar to the negative control. SEM analysis of the stomach mucosa showed coatings more homogenous and cohesive when LNC formulations were administered compared to the correspondent CT formulations. The higher total area of administered nanoparticles showed film formation. Moreover, LNC(12
Directory of Open Access Journals (Sweden)
Yuksel DOGAN, Aliye SOYLU, Gulay A. EREN, Sule POTUROGLU, Can DOLAPCIOGLU, Kenan SONMEZ, Habibe DUMAN, Isa SEVINDIR
2011-01-01
Full Text Available Background: In inflammatory bowel disease (IBD number of thromboembolic events are increased due to hypercoagulupathy and platelet activation. Increases in mean platelet volume (MPV can lead to platelet activation, this leads to thromboembolic events and can cause acute coronary syndromes. In IBD patients, QT-dispersion and P-wave dispersion are predictors of ventricular arrhythmias and atrial fibrilation; MPV is accepted as a risk factor for acute coronary syndromes, we aimed at evaluating the correlations of these with the duration of disease, its localization and activity.Methods: The study group consisted of 69 IBD (Ulcerative colitis n: 54, Crohn's Disease n:15 patients and the control group included 38 healthy individuals. Disease activity was evaluated both endoscopically and clinically. Patients with existing cardiac conditions, those using QT prolonging medications and having systemic diseases, anemia and electrolyte imbalances were excluded from the study. QT-dispersion, P-wave dispersion and MPV values of both groups were compared with disease activity, its localization, duration of disease and the antibiotics used.Results: The P-wave dispersion values of the study group were significantly higher than those of the control group. Duration of the disease was not associated with QT-dispersion, and MPV levels. QT-dispersion, P-wave dispersion, MPV and platelet count levels were similar between the active and in mild ulcerative colitis patients. QT-dispersion levels were similar between IBD patients and the control group. No difference was observed between P-wave dispersion, QT-dispersion and MPV values; with regards to disease duration, disease activity, and localization in the study group (p>0.05.Conclusions: P-wave dispersion which is accepted as a risk factor for the development of atrial fibirilation was found to be high in our IBD patients. This demonstrates us that the risk of developing atrial fibrillation may be high in patients
Energy Technology Data Exchange (ETDEWEB)
Bautista, Zhierwinjay M.; Shin, Hyung Seop [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of); Lee, Jae Hun; Lee, Hun Ju; Moon, Seung Hyun [SuNAM Co Ltd., Anseong (Korea, Republic of)
2016-09-15
The enhancement of mechanical properties of coated conductor (CC) tapes in practical application are usually achieved by reinforcing through lamination or electroplating metal layers on either sides of the CC tape. Mechanical or electromechanical properties of the CC tapes have been largely affected by the lamination structure under various loading modes such as tension, bending or even cyclic. In this study, the influence of brass laminate volume fraction on electromechanical properties of RCE-DR processed Gadolinium-barium-copper-oxide (GdBCO) CC tapes was investigated. The samples used were composed of single-side and both-side laminate of brass layer to the Cu-stabilized CC tape and their Ic behaviors were compared to those of the Cu-stabilized CC tape without external lamination. The stress/strain dependences of Ic in laminated CC tapes under uniaxial tension were analyzed and the irreversible stress/strain limits were determined. As a result, the increase of brass laminate volume fraction initially increased the irreversible strain limit and became gradual. The corresponding irreversible stress limit, however, showed no difference even though the brass laminate volume fraction increased to 3.4. But the irreversible load limit linearly increased with the brass laminate volume fraction.
Spinal cord tolerance to single-fraction partial-volume irradiation: a swine model
Medin, P.M.; Foster, R.D.; Kogel, A.J. van der; Sayre, J.W.; McBride, W.H.; Solberg, T.D.
2011-01-01
PURPOSE: To determine the spinal cord tolerance to single-fraction, partial-volume irradiation in swine. METHODS AND MATERIALS: A 5-cm-long cervical segment was irradiated in 38-47-week-old Yucatan minipigs using a dedicated, image-guided radiosurgery linear accelerator. The radiation was delivered
[Oil pollution status expressed as the fraction of dissolved and dispersed petroleum hydrocarbons].
Acuña-González, Jenaro; Vargas-Zamora, José A; Gómez-Ramírez, Eddy; García-Céspedes, Jairo
2004-12-01
Four coastal ecosystems with contrasting characteristics were sampled in Costa Rica (2000-2002). Oil pollution status, expressed as the fraction of dissolved/dispersed petroleum hydrocarbons related to chrysene equivalents, was determined by the molecular fluorescence analytical technique. A total of 130 water samples were taken, from the Caribbean (Moín Bay), and from the Pacific (Bahía Culebra, Gulf of Nicoya and Dulce Gulf). On one occasion, seven samples along the Puntarenas estuary were also analysed. In Moín the mean and standard deviation were 0.10 microg x L(-1) +/- 0.18 micro x L(-1), ranging from non detectable (nd) to 0.65 microg x L(-1). For the Pacific ecosystems the total range was from nd to 0.37 microg x L(-1). In Bahia Culebra no fluorescence signals were obtained. In the Gulf of Nicoya the mean and standard deviation were 0.04 microg x L(-1) +/- 0.09 microg x L(-1), from nd to 0.33 microg x L(-1). Values in Dulce Gulf were 0.05 microg x L(-1) +/- 0.11 microg x L(-1), from nd to 0.37 microg x L(-1). Along the Puntarenas estuary the range was 0.17 to 5.91 microg x L(-1), with a mean of 1.21 microg x L(-1) and a standard deviation of +/- 2.10 microg x L(-1). The four coastal ecosystems had concentrations below the 10 microg x L(-1) limit for polluted oceanic areas. The Puntarenas estuary reflects the influence of antropogenic activities from and around the City of Puntarenas. These levels are considered low for inshore waters.
Directory of Open Access Journals (Sweden)
Yong Zhang
2013-01-01
Full Text Available Heterogeneous media consisting of segregated flow regions are fractional-order systems, where the regional-scale anomalous diffusion can be described by the fractional derivative model (FDM. The standard FDM, however, first, cannot characterize the Darcy-scale dispersion through repacked sand columns, and second, the link between medium properties and model parameters remains unknown. To fill these two knowledge gaps, this study applies a tempered fractional derivative model (TFDM to capture bromide transport through laboratory repacked sand. Column transport experiments are conducted first, where glass beads and silica sand with different diameters are repacked individually. Late-time tails are observed in the breakthrough curves (BTC of bromide even in relatively homogeneous glass beads. The TFDM can capture the observed subdiffusion, especially the late-time BTC with a transient declining rate. Results also show that both the size distribution of repacked sand and the magnitude of fluid velocity can affect subdiffusion. In particular, a wider sand size distribution or a smaller flow rate can enhance the subdiffusion, leading to a smaller time index and a higher truncation parameter in the TFDM. Therefore, the Darcy-scale dispersion follows the tempered stable law, and the model parameters might be related to the soil size and flow conditions.
Determination of volume fractions of texture components with standard distributions in Euler space
Cho, Jae-Hyung; Rollett, A. D.; Oh, K. H.
2004-03-01
The intensities of texture components are modeled by Gaussian distribution functions in Euler space. The multiplicities depend on the relation between the texture component and the crystal and sample symmetry elements. Higher multiplicities are associated with higher maximum values in the orientation distribution function (ODF). The ODF generated by Gaussian function shows that the S component has a multiplicity of 1, the brass and copper components, 2, and the Goss and cube components, 4 in the cubic crystal and orthorhombic sample symmetry. Typical texture components were modeled using standard distributions in Euler space to calculate a discrete ODF, and their volume fractions were collected and verified against the volume used to generate the ODF. The volume fraction of a texture component that has a standard spherical distribution can be collected using the misorientation approach. The misorientation approach means integrating the volume-weighted intensity that is located within a specified cut-off misorientation angle from the ideal orientation. The volume fraction of a sharply peaked texture component can be collected exactly with a small cut-off value, but textures with broad distributions (large full-width at half-maximum (FWHM)) need a larger cut-off value. Larger cut-off values require Euler space to be partitioned between texture components in order to avoid overlapping regions. The misorientation approach can be used for texture's volume in Euler space in a general manner. Fiber texture is also modeled with Gaussian distribution, and it is produced by rotation of a crystal located at g 0, around a sample axis. The volume of fiber texture in wire drawing or extrusion also can be calculated easily in the unit triangle with the angle distance approach.
Determination of volume fractions in two-phase flows from sound speed measurement
Energy Technology Data Exchange (ETDEWEB)
Chaudhuri, Anirban [Los Alamos National Laboratory; Sinha, Dipen N. [Los Alamos National Laboratory; Osterhoudt, Curtis F. [University of Alaska
2012-08-15
Accurate measurement of the composition of oil-water emulsions within the process environment is a challenging problem in the oil industry. Ultrasonic techniques are promising because they are non-invasive and can penetrate optically opaque mixtures. This paper presents a method of determining the volume fractions of two immiscible fluids in a homogenized two-phase flow by measuring the speed of sound through the composite fluid along with the instantaneous temperature. Two separate algorithms are developed by representing the composite density as (i) a linear combination of the two densities, and (ii) a non-linear fractional formulation. Both methods lead to a quadratic equation with temperature dependent coefficients, the root of which yields the volume fraction. The densities and sound speeds are calibrated at various temperatures for each fluid component, and the fitted polynomial is used in the final algorithm. We present results when the new algorithm is applied to mixtures of crude oil and process water from two different oil fields, and a comparison of our results with a Coriolis meter; the difference between mean values is less than 1%. Analytical and numerical studies of sensitivity of the calculated volume fraction to temperature changes and calibration errors are also presented.
Energy Technology Data Exchange (ETDEWEB)
Patel, Anup Kumar; Balani, Kantesh, E-mail: kbalani@iitk.ac.in
2015-01-01
Ultrahigh molecular weight polyethylene (UHMWPE) is widely used as bone-replacement material for articulating surfaces due to its excellent wear resistance and low coefficient of friction. But, the wear debris, generated during abrasion between mating surfaces, leads to aseptic loosening of implants. Thus, various reinforcing agents are generally utilized, which may alter the surface and biological properties of UHMWPE. In the current work, the cellular response of compression molded UHMWPE upon reinforcement of bioactive multiwalled carbon nanotubes (MWCNTs) and bioinert aluminum oxide (Al{sub 2}O{sub 3}) is investigated. The phase retention and stability were observed using X-ray diffraction, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The reinforcement of MWCNTs and Al{sub 2}O{sub 3} has shown to alter the wettability (from contact angle of ∼ 88° ± 2° to ∼ 118° ± 4°) and surface energy (from ∼ 23.20 to ∼ 17.75 mN/m) of composites with respect to UHMWPE, without eliciting any adverse effect on cytocompatibility for the L929 mouse fibroblast cell line. Interestingly, the cellular growth of the L929 mouse fibroblast cell line is observed to be dominated by the dispersion fraction of surface free energy (SFE). After 48 h of incubation period, a decrease in metabolic activity of MWCNT–Al{sub 2}O{sub 3} reinforced composites is attributed to apatite formation that reduces the dispersion fraction of surface energy. The mineralized apatite during incubation was confirmed and quantified by energy dispersive spectroscopy and X-ray diffraction respectively. Thus, the dispersion fraction of surface free energy can be engineered to play an important role in achieving enhanced metabolic activity of the MWCNT–Al{sub 2}O{sub 3} reinforced UHMWPE biopolymer composites. - Highlights: • The cellular response of UHMWPE upon MWCNT and Al{sub 2}O{sub 3} reinforcement is highlighted. • Wettability decreases with Al{sub 2}O{sub 3} and
Tumor classification using perfusion volume fractions in breast DCE-MRI
Lee, Sang Ho; Kim, Jong Hyo; Park, Jeong Seon; Park, Sang Joon; Jung, Yun Sub; Song, Jung Joo; Moon, Woo Kyung
2008-03-01
This study was designed to classify contrast enhancement curves using both three-time-points (3TP) method and clustering approach at full-time points, and to introduce a novel evaluation method using perfusion volume fractions for differentiation of malignant and benign lesions. DCE-MRI was applied to 24 lesions (12 malignant, 12 benign). After region growing segmentation for each lesion, hole-filling and 3D morphological erosion and dilation were performed for extracting final lesion volume. 3TP method and k-means clustering at full-time points were applied for classifying kinetic curves into six classes. Intratumoral volume fraction for each class was calculated. ROC and linear discriminant analyses were performed with distributions of the volume fractions for each class, pairwise and whole classes, respectively. The best performance in each class showed accuracy (ACC), 84.7% (sensitivity (SE), 100%; specificity (SP), 66.7% to a single class) to 3TP method, whereas ACC, 73.6% (SE, 41.7%; SP, 100% to a single class) to k-means clustering. The best performance in pairwise classes showed ACC, 75% (SE, 83.3%; SP, 66.7% to four class pairs and SE, 58.3%; SP, 91.7% to a single class pair) to 3TP method and ACC, 75% (SE, 75%; SP, 75% to a single class pair and SE, 66.7%; SP, 83.3% to three class pairs) to k-means clustering. The performance in whole classes showed ACC, 75% (SE, 83.3%; SP, 66.7%) to 3TP method and ACC, 75% (SE, 91.7%; 58.3%) to k-means clustering. The results indicate that tumor classification using perfusion volume fractions is helpful in selecting meaningful kinetic patterns for differentiation of malignant and benign lesions, and that two different classification methods are complementary to each other.
Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.
2001-01-01
The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.
Hyperbranched-polymer dispersed nanocomposite volume gratings for holography and diffractive optics
Tomita, Yasuo; Takeuchi, Shinsuke; Oyaizu, Satoko; Urano, Hiroshi; Fukamizu, Taka-aki; Nishimura, Naoya; Odoi, Keisuke
2016-10-01
We review our experimental investigations of photopolymerizable nanoparticle-polymer composites (NPCs) for holography and diffractive optics. Various types of hyperbranched polymer (HBP) were systhesized and used as transporting organic nanoparticles. These HBPs include hyperbranched poly(ethyl methacrylate) (HPEMA), hyperbranched polystyrene (HPS) and hyperbranched triazine/aromatic polymer units (HTA) whose refractive indices are 1.51, 1.61 and 1.82, respectively. Each HBP was dispersed in (meth)acrylate monomer whose refractive index was so chosen that a refractive index difference between HBP and the formed polymer was large. Such monomer-HBP syrup was mixed with a titanocene photoinitiator for volume holographic recording in the green. We used a two-beam interference setup to write an unslanted transmission volume grating at grating spacing of 1 μm and at a wavelength of 532 nm. It is shown that NPC volume gratings with the saturated refractive index modulation amplitudes as large as 0.008, 0.004 and 0.02 can be recorded in NPCs incorporated with HPEMA, HPS and HTA at their optimum concentrations of 34, 34 and 25 vol.%, respectively. We show the usefulness of HBP-dispersed NPC volume gratings for holographic applications such as holographic data storage and diffractive optical devices.
Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio
2017-01-01
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕp) ranging 10‑7-10‑3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕp ~ 10‑3. Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕp. Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕp. These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters.
Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio
2017-01-01
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash particles at particle volume fractions (ϕp) ranging 10−7-10−3 was performed in laboratory experiments and reproduced by numerical simulations that take into account first the two-way and then the four-way coupling. Results show that the velocity of particles settling together can exceed the velocity of particles settling individually by up to 4 times for ϕp ~ 10−3. Comparisons between experimental and simulation results reveal that, during the sedimentation process, the settling velocity is largely enhanced by particle-fluid interactions but partly hindered by particle-particle interactions with increasing ϕp. Combining the experimental and numerical results, we provide an empirical model allowing correction of the settling velocity of particles of any size, density, and shape, as a function of ϕp. These corrections will impact volcanic plume modelling results as well as remote sensing retrieval techniques for plume parameters. PMID:28045056
The equivalent electrical permittivity of gas-solid mixtures at intermediate solid volume fractions.
Energy Technology Data Exchange (ETDEWEB)
Torczynski, John Robert; Ceccio, Steven Louis; Tortora, Paul Richard
2005-07-01
Several mixture models are evaluated for their suitability in predicting the equivalent permittivity of dielectric particles in a dielectric medium for intermediate solid volume fractions (0.4 to 0.6). Predictions of the Maxwell, Rayleigh, Bottcher and Bruggeman models are compared to computational simulations of several arrangements of solid particles in a gas and to the experimentally determined permittivity of a static particle bed. The experiment uses spherical glass beads in air, so air and glass permittivity values (1 and 7, respectively) are used with all of the models and simulations. The experimental system used to measure the permittivity of the static particle bed and its calibration are described. The Rayleigh model is found to be suitable for predicting permittivity over the entire range of solid volume fractions (0-0.6).
Volume fraction prediction in biphasic flow using nuclear technique and artificial neural network
Energy Technology Data Exchange (ETDEWEB)
Salgado, Cesar M.; Brandao, Luis E.B., E-mail: otero@ien.gov.br, E-mail: brandao@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2015-07-01
The volume fraction is one of the most important parameters used to characterize air-liquid two-phase flows. It is a physical value to determine other parameters, such as the phase's densities and to determine the flow rate of each phase. These parameters are important to predict the flow pattern and to determine a mathematical model for the system. To study, for example, heat transfer and pressure drop. This work presents a methodology for volume fractions prediction in water-gas stratified flow regime using the nuclear technique and artificial intelligence. The volume fractions calculate in biphasic flow systems is complex and the analysis by means of analytical equations becomes very difficult. The approach is based on gamma-ray pulse height distributions pattern recognition by means of the artificial neural network. The detection system uses appropriate broad beam geometry, comprised of a ({sup 137}Cs) energy gamma-ray source and a NaI(Tl) scintillation detector in order measure transmitted beam whose the counts rates are influenced by the phases composition. These distributions are directly used by the network without any parameterization of the measured signal. The ideal and static theoretical models for stratified regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the network. The detector also was modeled with this code and the results were compared to experimental photopeak efficiency measurements of radiation sources. The proposed network could obtain with satisfactory prediction of the volume fraction in water-gas system, demonstrating to be a promising approach for this purpose. (author)
Energy Technology Data Exchange (ETDEWEB)
Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
This work was done to support customer questions about whether a Sylgard/Glass Microballoon (GMB) potting material in current use could be replaced with pure Sylgard and if this would significantly change stresses imparted to internal components under thermal cycling conditions. To address these questions, we provide micromechanics analysis of Sylgard/GMB materials using both analytic composite theory and finite element simulations to better understand the role of the GMB volume fraction in determining thermal expansion coefficient, elastic constants, and behavior in both confined and unconfined compression boundary value problems. A key finding is that damage accumulation in the material from breakage of GMBs significantly limits the global stress magnitude and results in a plateau stress behavior over large ranges of compressive strain. The magnitude of this plateau stress is reduced with higher volume fractions of GMBs. This effect is particularly pronounced in confined compression, which we estimate bears the most similarity to the application of interest. This stress-limiting damage mechanism is not present in pure Sylgard, however, and the result is much higher stresses under confined compression. Thus, we recommend that some volume fraction greater than 10% GMBs be used for confined deformation applications.
Masuram, N. B.; Roux, J. A.; Jeswani, A. L.
2016-06-01
Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.
Energy Technology Data Exchange (ETDEWEB)
Salgado, C.M.; Pereira, Claudio M.N.A.; Brandao, Luis E.B., E-mail: otero@ien.gov.b, E-mail: cmnap@ien.gov.b, E-mail: brandao@ien.gov.b [Instituto de Engenharia Nuclear (DIRA/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Div. de Radiofarmacos
2011-07-01
This work investigates the response of a volume fraction prediction system for water-gas-oil multiphase flows considering variations on water salinity. The approach is based on gamma-ray pulse height distributions pattern recognition by means the artificial neural networks (ANNs). The detection system uses appropriate fan beam geometry, comprised of a dual-energy gamma-ray source and two NaI(Tl) detectors adequately positioned outside the pipe in order measure transmitted and scattered beams. An ideal and static theoretical model for annular flow regime have been developed using MCNP-X code, which was used to provide training, test and validation data for the ANN. More than 500 simulations have been done, in which water salinity have been ranged from 0 to 16% in order to cover a most practical situations. Validation tests have included values of volume fractions and water salinity different from those used in ANN training phase. The results presented here show that the proposed approach may be successfully applied to material volume fraction prediction on watergas- oil multiphase flows considering practical (real) levels of variations in water salinity. (author)
Nisari, Mehtap; Ertekin, Tolga; Ozçelik, Ozlem; Cınar, Serife; Doğanay, Selim; Acer, Niyazi
2012-11-01
Brain development in early life is thought to be critical period in neurodevelopmental disorder. Knowledge relating to this period is currently quite limited. This study aimed to evaluate the volume relation of total brain (TB), cerebrum, cerebellum and bulbus+pons by the use of Archimedes' principle and stereological (point-counting) method and after that to compare these approaches with each other in newborns. This study was carried out on five newborn cadavers mean weighing 2.220 ± 1.056 g with no signs of neuropathology. The mean (±SD) age of the subjects was 39.7 (±1.5) weeks. The volume and volume fraction of the total brain, cerebrum, cerebellum and bulbus+pons were determined on magnetic resonance (MR) images using the point-counting approach of stereological methods and by the use of fluid displacement technique. The mean (±SD) TB, cerebrum, cerebellum and bulbus+pons volumes by fluid displacement were 271.48 ± 78.3, 256.6 ± 71.8, 12.16 ± 6.1 and 2.72 ± 1.6 cm3, respectively. By the Cavalieri principle (point-counting) using sagittal MRIs, they were 262.01 ± 74.9, 248.11 ± 68.03, 11.68 ± 6.1 and 2.21 ± 1.13 cm3, respectively. The mean (± SD) volumes by point-counting technique using axial MR images were 288.06 ± 88.5, 275.2 ± 83.1, 19.75 ± 5.3 and 2.11 ± 0.7 cm3, respectively. There were no differences between the fluid displacement and point-counting (using axial and sagittal images) for all structures (p > 0.05). This study presents the basic data for studies relative to newborn's brain volume fractions according to two methods. Stereological (point-counting) estimation may be accepted a beneficial and new tool for neurological evaluation in vivo research of the brain. Based on these techniques we introduce here, the clinician may evaluate the growth of the brain in a more efficient and precise manner.
Measurement of average density and relative volumes in a dispersed two-phase fluid
Sreepada, Sastry R.; Rippel, Robert R.
1992-01-01
An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.
Takao, H; Hayashi, N; Ohtomo, K
2013-02-12
Diffusion tensor imaging (DTI) provides information regarding white matter microstructure; however, macroscopic fiber architectures can affect DTI measures. A larger brain (fiber tract) has a 'relatively' smaller voxel size, and the voxels are less likely to contain more than one fiber orientation and more likely to have higher fractional anisotropy (FA). Previous DTI studies report left-to-right differences in the white matter; however, these may reflect true microscopic differences or be caused purely by volume differences. Using tract-based spatial statistics, we investigated left-to-right differences in white matter microstructure across the whole brain. Voxel-wise analysis revealed a large number of white matter volume asymmetries, including leftward asymmetry of the arcuate fasciculus and cingulum. In many white matter regions, FA asymmetry was positively correlated with volume asymmetry. Voxel-wise analysis with adjustment for volume asymmetry revealed many white matter FA asymmetries, including leftward asymmetry of the arcuate fasciculus and cingulum. The voxel-wise analysis showed a reduced number of regions with significant FA asymmetry compared with analysis performed without adjustment for volume asymmetry; however, the overall trend of the results was unchanged. The results of the present study suggest that these FA asymmetries are not caused by volume differences and reflect microscopic differences in the white matter.
Directory of Open Access Journals (Sweden)
A. H. Bhrawy
2013-01-01
Full Text Available We propose Jacobi-Gauss-Lobatto collocation approximation for the numerical solution of a class of fractional-in-space advection-dispersion equation with variable coefficients based on Caputo derivative. This approach has the advantage of transforming the problem into the solution of a system of ordinary differential equations in time this system is approximated through an implicit iterative method. In addition, some of the known spectral collocation approximations can be derived as special cases from our algorithm if we suitably choose the corresponding special cases of Jacobi parameters and . Finally, numerical results are provided to demonstrate the effectiveness of the proposed spectral algorithms.
Effect of volume fraction of Polypropylene Fiber on Mechanical Properties of Concrete
Directory of Open Access Journals (Sweden)
R. S. Rajguru,
2014-06-01
Full Text Available In this study, the result of polypropylene fiber on mechanical properties of concrete is studied. Polypropylene fibers of 12mm cut length and 6 denier were added at volume fraction of 0%, 0.25%, 0.50%, 0.75% & 1 %.The cube, cylinder and beams wear tested under two point loads on UTM. The results showed that the addition of polypropylene fiber significantly improved the compressive strength, split tensile strength, flexural strength, reserve strength and ductility of fiber reinforced concrete.
Study of the free volume fraction in polylactic acid (PLA) by thermal analysis
Abdallah, A.; Benrekaa, N.
2015-10-01
The poly (lactic acid) or polylactide (PLA) is a biodegradable polymer with high modulus, strength and thermoplastic properties. In this work, the evolution of various properties of PLA is studied, such as glass transition temperature, mechanical modules and elongation percentage with the aim of investigating the free volume fraction. To do so, two thermal techniques have been used: the dynamic mechanical analysis (DMA) and dilatometry. The results obtained by these techniques are combined to go back to the structural properties of the studied material.
LENUS (Irish Health Repository)
Mullaney, L.
2014-01-10
Organ motion is a contributory factor to the variation in location of the prostate and organs at risk during a course of fractionated prostate radiation therapy (RT). A prospective randomized controlled trial was designed with the primary endpoint to provide evidence-based bladder-filling instructions to achieve a consistent bladder volume (BV) and thus reduce the bladder-related organ motion. The secondary endpoints were to assess the incidence of acute and late genitourinary (GU) and gastrointestinal (GI) toxicity for patients and patients’ satisfaction with the bladder-filling instructions.
Li, Calvin H.; Peterson, G. P.
2006-04-01
An experimental investigation was conducted to examine the effects of variations in the temperature and volume fraction on the steady-state effective thermal conductivity of two different nanoparticle suspensions. Copper and aluminum oxide, CuO and Al2O3, nanoparticles with area weighted diameters of 29 and 36 nm, respectively, were blended with distilled water at 2%, 4%, 6%, and 10% volume fractions and the resulting suspensions were evaluated at temperatures ranging from 27.5 to 34.7 °C. The results indicate that the nanoparticle material, diameter, volume fraction, and bulk temperature, all have a significant impact on the effective thermal conductivity of these suspensions. The 6% volume fraction of CuO nanoparticle/distilled water suspension resulted in an increase in the effective thermal conductivity of 1.52 times that of pure distilled water and the 10% Al2O3 nanoparticle/distilled water suspension increased the effective thermal conductivity by a factor of 1.3, at a temperature of 34 °C. A two-factor linear regression analysis based on the temperature and volume fraction was applied and indicated that the experimental results are in stark contrast to the trends predicted by the traditional theoretical models with respect to both temperature and volume fraction. The available models are reviewed and the possible reasons for the unusually high effective thermal conductivity of nanofluids are analyzed and discussed.
Wille, Marie-Luise; Langton, Christian M
2016-02-01
The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R(2)=99.9% and R(2)=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment.
Prediction of Shrinkage Pore Volume Fraction Using a Dimensionless Niyama Criterion
Carlson, Kent D.; Beckermann, Christoph
2009-01-01
A method is presented to use a dimensionless form of the well-known Niyama criterion to directly predict the amount of shrinkage porosity that forms during solidification of metal alloy castings. The main advancement offered by this method is that it avoids the need to know the threshold Niyama value below which shrinkage porosity forms; such threshold values are generally unknown and alloy dependent. The dimensionless criterion accounts for both the local thermal conditions (as in the original Niyama criterion) and the properties and solidification characteristics of the alloy. Once a dimensionless Niyama criterion value is obtained from casting simulation results, the corresponding shrinkage pore volume fraction can be determined knowing only the solid fraction-temperature curve and the total solidification shrinkage of the alloy. Curves providing the shrinkage pore volume percentage as a function of the dimensionless Niyama criterion are given for WCB steel, aluminum alloy A356, and magnesium alloy AZ91D. The present method is used in a general-purpose casting simulation software package to predict shrinkage porosity in three-dimensional (3-D) castings. Comparisons between simulated and experimental shrinkage porosity results for a WCB steel plate casting demonstrate that this method can reasonably predict shrinkage. Additional simulations for magnesium alloy AZ91D illustrate that this method is applicable to a wide variety of alloys and casting conditions.
Fractionated Mercury Isotopes in Fish: The Effects of Nuclear Mass, Spin, and Volume
Das, R.; Odom, A. L.
2007-12-01
.3, and thus more than one mass-independent isotope effect is inferred. MIF of mercury can be caused by the nuclear volume effect. Schauble, 2007 has calculated nuclear volume fractionation scaling factors for a number of common mercury chemical species in equilibrium with Hg° vapor. From his calculations the nuclear field shift effect is larger in Δ199Hg than in Δ201Hg by approximately a factor of two. The predominant mercury chemical species in fish is methylmercury cysteine. From the experimental studies of Buchachenko and others (2004) on the reaction of methylmercury chloride with creatine kinase it seems reasonable to predicted that the thiol functional groups of cysteine gets enriched in 199Hg and 201Hg. Here the magnetic isotope effect (MIE) produces a kinetic partial separation of isotopes with non-zero nuclear spin quantum numbers from the even-N isotopes. The ratio of enrichment of Δ201Hg /Δ199Hg is predicted from theory to be 1.11, which is the ratio of the magnetic moments of 199Hg and 201Hg. Because mercury possesses two odd-N isotopes, it is possible to detect and evaluate the effects of two distinct, mass-independent isotope fractionating processes. From the data obtained on fish samples, we can deconvolute the contributions of the isotope effects of nuclear mass, spin and volume. For these samples the role of spin or the magnetic isotope effect is the most dominant.
Microchemostat array with small-volume fraction replenishment for steady-state microbial culture.
Park, Jaewon; Wu, Jianzhang; Polymenis, Michael; Han, Arum
2013-11-07
A chemostat is a bioreactor in which microorganisms can be cultured at steady-state by controlling the rate of culture medium inflow and waste outflow, thus maintaining media composition over time. Even though many microbial studies could greatly benefit from studying microbes in steady-state conditions, high instrument cost, complexity, and large reagent consumption hamper the routine use of chemostats. Microfluidic-based chemostats (i.e. microchemostats) can operate with significantly smaller reagent consumption while providing accurate chemostatic conditions at orders of magnitude lower cost compared to conventional chemostats. Also, microchemostats have the potential to significantly increase the throughput by integrating arrays of microchemostats. We present a microchemostat array with a unique two-depth culture chamber design that enables small-volume fraction replenishment of culture medium as low as 1% per replenishment cycle in a 250 nl volume. A system having an array of 8 microchemostats on a 40 × 60 mm(2) footprint could be automatically operated in parallel by a single controller unit as a demonstration for potential high throughput microbial studies. The model organism, Saccharomyces cerevisiae, successfully reached a stable steady-state of different cell densities as a demonstration of the chemostatic functionality by programming the dilution rates. Chemostatic functionality of the system was further confirmed by quantifying the budding index as a function of dilution rate, a strong indicator of growth-dependent cell division. In addition, the small-volume fraction replenishment feature minimized the cell density fluctuation during the culture. The developed system provides a robust, low-cost, and higher throughput solution to furthering studies in microbial physiology.
Development testing of large volume water sprays for warm fog dispersal
Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.; Beard, K. V.
1986-01-01
A new brute-force method of warm fog dispersal is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray induced air flow. Fog droplets are removed by coalescence/rainout. The efficiency of the technique depends upon the drop size spectra in the spray, the height to which the spray can be projected, the efficiency with which fog laden air is processed through the curtain of spray, and the rate at which new fog may be formed due to temperature differences between the air and spray water. Results of a field test program, implemented to develop the data base necessary to assess the proposed method, are presented. Analytical calculations based upon the field test results indicate that this proposed method of warm fog dispersal is feasible. Even more convincingly, the technique was successfully demonstrated in the one natural fog event which occurred during the test program. Energy requirements for this technique are an order of magnitude less than those to operate a thermokinetic system. An important side benefit is the considerable emergency fire extinguishing capability it provides along the runway.
Meng, Yiqing; Lucas, Gary P.
2017-05-01
This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper, the feasibility of measuring the gas volume fraction in a mixed gas-liquid flow by using an acoustic resonant spectroscopy (ARS) method in a transient way is studied theoretically and experimentally. Firstly, the effects of sizes and locations of a single air bubble in a cylindrical cavity with two open ends on resonant frequencies are investigated numerically. Then, a transient measurement system for ARS is established, and the trends of the resonant frequencies (RFs) and resonant amplitudes (RAs) in the cylindrical cavity with gas flux inside are investigated experimentally. The measurement results by the proposed transient method are compared with those by steady-state ones and numerical ones. The numerical results show that the RFs of the cavity are highly sensitive to the volume of the single air bubble. A tiny bubble volume perturbation may cause a prominent RF shift even though the volume of the air bubble is smaller than 0.1% of that of the cavity. When the small air bubble moves, the RF shift will change and reach its maximum value as it is located at the middle of the cavity. As the gas volume fraction of the two-phase flow is low, both the RFs and RAs from the measurement results decrease dramatically with the increasing gas volume, and this decreasing trend gradually becomes even as the gas volume fraction increases further. These experimental results agree with the theoretical ones qualitatively. In addition, the transient method for ARS is more suitable for measuring the gas volume fraction with randomness and instantaneity than the steady-state one, because the latter could not reflect the random and instant characteristics of the mixed fluid due to the time consumption for frequency sweeping. This study will play a very important role in the quantitative measurement of the gas volume fraction of multiphase flows.
1982-11-01
IN FRESH AND SEAWATER(I) (3)Product Mean Minimum Dispersant-to-Oil Ratio Name on Venezuelan Lago Medio Crude Oil (4) 0C in Fresh Water in Salt Water...higher terminal velocity, adding to the mixing energy. Orienting the nozzles aft can be expected to reduce the relative velocity of the drops, and result
MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles
Directory of Open Access Journals (Sweden)
Sandeep Naramgari
2016-06-01
Full Text Available In this study we analyzed the momentum and heat transfer behavior of MHD nanofluid embedded with conducting dust particles past a stretching surface in the presence of volume fraction of dust particles. The governing equations of the flow and heat transfer are transformed into nonlinear ordinary differential equations by using similarity transformation and then solved numerically using Runge–Kutta based shooting technique. The effect of non-dimensional governing parameters on velocity and temperature profiles of the flow are discussed and presented through graphs. Additionally friction factor and the Nusselt number have also been computed. Under some special conditions, numerical results obtained by the present study were compared with the existed studies. The result of the present study proves to be highly satisfactory. The results indicate that an increase in the interaction between the fluid and particle phase enhances the heat transfer rate and reduces the friction factor.
Makarov, C; Gotman, I; Jiang, X; Fuchs, S; Kirkpatrick, C J; Gutmanas, E Y
2010-06-01
Biodegradable calcium phosphate-PCL nanocomposite powders with unusually high ceramic volume fractions (80-95%) and uniform PCL distribution were synthesized by a non-aqueous chemical reaction in the presence of the dissolved polymer. No visible polymer separation occurred during processing. Depending on the reagents combination, either dicalcium phosphate (DCP) or Ca-deficient HA (CDHA) was obtained. CDHA-PCL composite powders were high pressure consolidated at room temperature yielding dense materials with high compressive strengths. Such densification route provides the possibility of incorporating drug and proteins without damaging their biological activity. The CDHA-PCL composites were tested in osteoblastic and endothelial cell line cultures and were found to support the attachment and proliferation of both cell types.
Mechanical behavior of LC4 alloy in semisolid state at high volume fractions of solid
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The mechanical behavior of LC4 alloy in the semisolid state at high volume fractions of solid has been studied through unconstrictive compressing test. The results show that peak stress mainly depends on grain boundary's cohesion and instantaneous strain rate sensitivity in the semisolid state, which is similar to that in the solid state. Analyses on microstructures and status of compressive stress of specimen demonstrate that segregation of liquid-solid phase is mainly affected by strain rate and deformation temperature. There are mainly two kinds of flow in liquid phase: either from the region with relatively large hydrostatic compressive stress to the region with relatively small hydrostatic compressive stress or from the grain boundaries perpendicular to the compression axis to the grain boundaries with a certain directional angle to the compression direction. Based on the above results, compressive deformation mechanism mainly depends on deformation temperature, strain rate and stress state.
Rice, M E; Nicholson, C
1991-02-01
1. Diffusion properties of submerged, superfused slices from the rat neostriatum were measured by quantitative analysis of concentration-time profiles of tetramethylammonium (TMA+) introduced by iontophoresis. TMA+ was sensed at an ion-selective microelectrode (ISM) positioned 100-150 microns from the source pipette. Slice viability was assessed from the extracellular field potentials evoked by intrastriatal electrical stimulation. 2. Under normoxic conditions the extracellular volume fraction (alpha) was 0.21 (range 0.18-0.24), and the tortuosity (lambda) was 1.54, in slices with good field potentials. In slices with poor field potentials, alpha was 0.09-0.16. Extraction of correct alpha and lambda in the slice required evaluation of nonspecific uptake, k', which was 1 x 10(-2) s-1. 3. Slices were made hypoxic by superfusing physiological saline equilibrated with 95% N2-5% CO2 for 10-30 min. Synaptic components of field potentials were inhibited after 3-4 min in hypoxic media. In some experiments extracellular K+ concentration [( K+]o) was monitored with ISMs. During hypoxia, [K+]o rose from an average baseline of 5.1 mM to 7-10 mM. After reoxygenation, [K+]o transiently fell below the original level. 4. The average value for alpha during hypoxia was 0.13 (a 38% decrease), which was significantly different from control (P less than 0.001) and increased progressively during hypoxic exposure. In contrast, tortuosity and k' were unchanged by this treatment. 5. These data represent the first characterization of the diffusion properties of the rat striatal slice and of changes in extracellular volume fraction during hypoxia in a brain slice preparation.(ABSTRACT TRUNCATED AT 250 WORDS)
Energy Technology Data Exchange (ETDEWEB)
Gama, Adriana M., E-mail: adrianaamg@iae.cta.br [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil); Rezende, Mirabel C., E-mail: mirabelmcr@iae.cta.br [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil); Dantas, Christine C., E-mail: christineccd@iae.cta.br [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil)
2011-11-15
We report the analysis of measurements of the complex magnetic permeability ({mu}{sub r}) and dielectric permittivity ({epsilon}{sub r}) spectra of a rubber radar absorbing material (RAM) with various MnZn ferrite volume fractions. The transmission/reflection measurements were carried out in a vector network analyzer. Optimum conditions for the maximum microwave absorption were determined by substituting the complex permeability and permittivity in the impedance matching equation. Both the MnZn ferrite content and the RAM thickness effects on the microwave absorption properties, in the frequency range of 2-18 GHz, were evaluated. The results show that the complex permeability and permittivity spectra of the RAM increase directly with the ferrite volume fraction. Reflection loss calculations by the impedance matching degree (reflection coefficient) show the dependence of this parameter on both thickness and composition of RAM. - Highlights: > Permeability and permittivity spectra of a MnZn ferrite RAM (2-18 GHz) are given. > Higher MnZn volume fraction favors increase of RAM/'s permeability and permittivity. > Minimum RL as a function of frequency, thickness and MnZn volume fraction given. > Higher thicknesses imply better absorption; optimum band shifts to lower frequencies. > For higher volume fractions, smaller thickness might offer better absorption (>10 GHz).
Directory of Open Access Journals (Sweden)
Mohammed Sellab Hamza
2008-01-01
Full Text Available In this study the effect of fiber volume fraction of the glass fiber on the thermal conductivity of the polymer composite material was studied. Different fiber volume fraction of glass fibers were used (3%, 6%, 9%, 12%, and 15%. Specimens were made from polyester which reinforced with glass fibers .The fibers had two arrangements according to the direction of the thermal flow. In the first arrangement the fibers were parallel to the direction of the thermal flow, while the second arrangement was perpendicular; Lee's disk method was used for testing the specimens. The experimental results proved that the values of the thermal conductivity of the specimens was higher when the fibers arranged in parallel direction than that when the fibers arranged in the perpendicular direction. The percentage of increasing of experimental thermal conductivity was 96.91% for parallel arrangement and 13.33% for perpendicular arrangement comparison with its original value before the using of glass fibers. Also the experimental results indicated that the thermal conductivity increases with the increasing of the fiber volume fraction. Minimum value was (0.172 W/m.C for perpendicular arrangement at fiber volume fraction 3% and maximum value was (0.327 W/m.C for parallel arrangement at fiber volume fraction 15%.
Aldoghaither, Abeer
2015-12-01
In this paper, a new method, based on the so-called modulating functions, is proposed to estimate average velocity, dispersion coefficient, and differentiation order in a space-fractional advection-dispersion equation, where the average velocity and the dispersion coefficient are space-varying. First, the average velocity and the dispersion coefficient are estimated by applying the modulating functions method, where the problem is transformed into a linear system of algebraic equations. Then, the modulating functions method combined with a Newton\\'s iteration algorithm is applied to estimate the coefficients and the differentiation order simultaneously. The local convergence of the proposed method is proved. Numerical results are presented with noisy measurements to show the effectiveness and robustness of the proposed method. It is worth mentioning that this method can be extended to general fractional partial differential equations.
RESOLVE Survey Photometry and Volume-limited Calibration of the Photometric Gas Fractions Technique
Eckert, Kathleen D; Stark, David V; Moffett, Amanda J; Norris, Mark A; Snyder, Elaine M; Hoversten, Erik A
2015-01-01
We present custom-processed UV, optical, and near-IR photometry for the RESOLVE survey, a volume-limited census of stellar, gas, and dynamical mass within two subvolumes of the nearby universe (RESOLVE-A and -B), complete down to baryonic mass ~10^9.1-9.3 Msun. In contrast to standard pipeline photometry (e.g., SDSS), our photometry uses optimal background subtraction, avoids suppressing color gradients, and includes systematic errors. With these improvements, we measure brighter magnitudes, larger radii, bluer colors, and a real increase in scatter around the red sequence. Combining stellar masses from our photometry with the RESOLVE-A HI mass census, we create volume-limited calibrations of the photometric gas fractions (PGF) technique, which predicts gas-to-stellar mass ratios (G/S) from galaxy colors and optional additional parameters. We analyze G/S-color residuals vs. potential third parameters, finding that axial ratio is the best independent and physically meaningful third parameter. We define a "modi...
Elastic modulus of Al-Si/SiC metal matrix composites as a function of volume fraction
Energy Technology Data Exchange (ETDEWEB)
Santhosh Kumar, S; Rajasekharan, T [Powder Metallurgy Group, Defence Metallurgical Research Laboratory, Kanchanbagh PO, Hyderabad-500 058 (India); Seshu Bai, V [School of Physics, University of Hyderabad, Central University PO, Hyderabad-500 046 (India); Rajkumar, K V; Sharma, G K; Jayakumar, T, E-mail: dearsanthosh@gmail.co [Non-Destructive Evaluation Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Chennai-603 102 (India)
2009-09-07
Aluminum alloy matrix composites have emerged as candidate materials for electronic packaging applications in the field of aerospace semiconductor electronics. Composites prepared by the pressureless infiltration technique with high volume fractions in the range 0.41-0.70 were studied using ultrasonic velocity measurements. For different volume fractions of SiC, the longitudinal velocity and shear velocity were found to be in the range of 7600-9300 m s{sup -1} and 4400-5500 m s{sup -1}, respectively. The elastic moduli of the composites were determined from ultrasonic velocities and were analysed as a function of the volume fraction of the reinforcement. The observed variation is discussed in the context of existing theoretical models for the effective elastic moduli of two-phase systems.
DEFF Research Database (Denmark)
Poulsen, Stefan Othmar; Voorhees, P.W.; Lauridsen, Erik Mejdal
2013-01-01
The microstructural evolution of a polycrystalline dual-phase material with a constant volume fraction of the phases was investigated using large-scale three-dimensional phase-field simulations. All materials parameters are taken to be isotropic, and microstructures with volume fractions of 50....../50 and 40/60 were examined. After an initial transient, the number of grains decrease from ∼2600 to ∼500. It was found that the mean grain size of grains of both phases obeyed a power law with an exponent of 3, and the microstructural evolution was found to be controlled by diffusion. Steady...... with the topology of single-phase grain structures as determined by experiment and simulation. The evolution of size and number of faces for the minority and majority phase grains in the 40/60 volume fraction simulation is presented and discussed. Non-constant curvature across some interphase boundaries...
Fissel, Laura M; Angilè, Francesco E; Ashton, Peter; Benton, Steven; Devlin, Mark J; Dober, Bradley; Fukui, Yasuo; Galitzki, Nicholas; Gandilo, Natalie N; Klein, J R; Li, Zhi-Yun; Korotkov, Andrei L; Martin, Peter G; Matthews, Tristan G; Moncelsi, Lorenzo; Nakamura, Fumitaka; Netterfield, C Barth; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Santos, Fabio P; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A; Soler, Juan D; Thomas, Nicholas E; Tucker, Carole E; Tucker, Gregory S; Ward-Thompson, Derek
2015-01-01
We present results for Vela C obtained during the 2012 flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol). We mapped polarized intensity across almost the entire extent of this giant molecular cloud, in bands centered at 250, 350, and 500 {\\mu}m. In this initial paper, we show our 500 {\\mu}m data smoothed to a resolution of 2.5 arcminutes (approximately 0.5 pc). We show that the mean level of the fractional polarization p and most of its spatial variations can be accounted for using an empirical three-parameter power-law fit, p = p_0 N^(-0.4) S^(-0.6), where N is the hydrogen column density and S is the polarization-angle dispersion on 0.5 pc scales. The decrease of p with increasing S is expected because changes in the magnetic field direction within the cloud volume sampled by each measurement will lead to cancellation of polarization signals. The decrease of p with increasing N might be caused by the same effect, if magnetic field disorder increases for high colum...
Institute of Scientific and Technical Information of China (English)
LEI Wen-guang; REN Chao
2006-01-01
Ramie cloth/UP resin composite was formed at 0.2 MPa and cured at room temperature for 24 h and treated at 80 ℃ for2 h. The physical and mechanical properties of the composites with different volume fractions of ramie cloth were studied. The results show that,with the increase of the volume fraction of the ramie cloth,densities of the composites become greater and greater,though all lower than the theoretical values,the linear shrinkage during the formation decreases from 1.20% of the original UP resin to 0.18% of the composite with 30% of ramie cloth in volume,all the composites also absorb more water than UP resin casting,greater volume fraction of the fiber,more water will be absorbed,but the increase in water absorption becomes smaller and smaller with time. As regards some mechanical properties,the tensile strength,flexural strength,flexural modulus and impact strength are all improved when more ramie fiber is added. Compared with those of pure UP resin casting,the mechanical properties are increased by 93.93%,76.20%,190.18% and 227.26% respectively when the volume fraction of the ramie cloth in the composite is 30%. The differential scanning calorimetry results show that only one peak will appear for the sample without or with less ramie fiber while two peaks will appear when more ramie cloth is added.
2012-07-01
increasing the fiber-volume fraction by vacuum-assisted resin transfer molding ( VARTM ) in order to produce composite structures with aerospace-grade...processed composites. Using a combination of viscosity control, ARL- based VARTM techniques, and a pressure control system, we increased the fiber-volume...content from 50% (ARL’s normal processing range for a particular material system and VARTM process) to over 60%. Future work will focus on
Energy Technology Data Exchange (ETDEWEB)
Prabhu, B. [Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States); Suryanarayana, C. [Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States)]. E-mail: csuryana@mail.ucf.edu; An, L. [Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States); Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL 32816-2455 (United States); Vaidyanathan, R. [Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States); Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, FL 32816-2455 (United States)
2006-06-15
Al-Al{sub 2}O{sub 3} metal matrix composite (MMC) powders with volume fractions of 20, 30, and 50% Al{sub 2}O{sub 3} were synthesized by high-energy milling of the blended component powders. The particle sizes of Al{sub 2}O{sub 3} studied were 50 nm, 150 nm, and 5 {mu}m. A uniform distribution of the Al{sub 2}O{sub 3} reinforcement in the Al matrix was successfully obtained after milling the powders for a period of 20 h at a ball-to-powder ratio of 10:1 in a SPEX mill. The uniform distribution of Al{sub 2}O{sub 3} in the Al matrix was confirmed by characterizing these nanocomposite powders by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray mapping, and X-ray diffraction (XRD) techniques.
Properties of High Volume Fraction Fly Ash/Al Alloy Composites Produced by Infiltration Process
Kountouras, D. T.; Stergioudi, F.; Tsouknidas, A.; Vogiatzis, C. A.; Skolianos, S. M.
2015-09-01
In the present study, pressure infiltration is employed to synthesize aluminum alloy 7075-fly ash composites. The microstructure and chemical composition of the fly ash and the produced composite material was examined using optical and scanning electron microscopy, as well as x-ray diffraction. Several properties of the produced composite material were examined and evaluated including macro-hardness, wear, thermal expansion, and corrosion behavior. The wear characteristics of the composite, in the as-cast conditions, were studied by dry sliding wear tests. The corrosion behavior of composite material was evaluated by means of potentiodynamic corrosion experiments in a 3.5 wt.% NaCl solution. The composite specimens exhibit a homogeneous distribution of fly ash particles and present enhanced hardness values, compared to the matrix material. The high volume fraction of the fly ash reinforcement (>40%) in the composite material led to increased wear rates, attributed to the fragmentation of the fly ash particles. However, the presence of fly ash particles in the Al alloy matrix considerably decreased the coefficiency of thermal expansion, while resulting in an altered corrosion mechanism of the composite material with respect to the matrix alloy.
Mapping Bone Mineral Density Obtained by Quantitative Computed Tomography to Bone Volume Fraction
Pennline, James A.; Mulugeta, Lealem
2017-01-01
Methods for relating or mapping estimates of volumetric Bone Mineral Density (vBMD) obtained by Quantitative Computed Tomography to Bone Volume Fraction (BVF) are outlined mathematically. The methods are based on definitions of bone properties, cited experimental studies and regression relations derived from them for trabecular bone in the proximal femur. Using an experimental range of values in the intertrochanteric region obtained from male and female human subjects, age 18 to 49, the BVF values calculated from four different methods were compared to the experimental average and numerical range. The BVF values computed from the conversion method used data from two sources. One source provided pre bed rest vBMD values in the intertrochanteric region from 24 bed rest subject who participated in a 70 day study. Another source contained preflight vBMD values from 18 astronauts who spent 4 to 6 months on the ISS. To aid the use of a mapping from BMD to BVF, the discussion includes how to formulate them for purpose of computational modeling. An application of the conversions would be used to aid in modeling of time varying changes in vBMD as it relates to changes in BVF via bone remodeling and/or modeling.
Jovin, Ion S; Ebisu, Keita; Liu, Yi-Hwa; Finta, Laurie A; Oprea, Adriana D; Brandt, Cynthia A; Dziura, James; Wackers, Frans J
2013-01-01
Diastolic dysfunction can be diagnosed on equilibrium radionuclide angiocardiography (ERNA) by a low peak filling rate (PFR) in the setting of a normal left ventricular ejection fraction (LVEF). The authors evaluated the relationship between diastolic dysfunction, LVEF, and end-diastolic volume (EDV). A total of 408 predominantly asymptomatic patients with an LVEF ≥50% by ERNA were studied. LVEF of patients with a low PFR was compared with the LVEF of patients with a normal PFR. Correlation analyses to evaluate the association between PFR and EDV were also performed. The LVEF of patients with a low PFR was lower than the LVEF of patients with normal PFR (59±7 vs 63%±7%; PPFR (r=-0.04; P=.32). The results did not change when the EDV indices were used. In patients who had repeat scans, there was no correlation between the change in EDV and the change in PFR (r=0.16; P=.2). In asymptomatic patients undergoing ERNA who have normal systolic function, a low PFR can be associated with a lower LVEF, but it is not associated with changes in EDV. This suggests that diastolic dysfunction is associated with mild systolic dysfunction.
A framework of whole heart extracellular volume fraction estimation for low-dose cardiac CT images.
Chen, Xinjian; Nacif, Marcelo S; Liu, Songtao; Sibley, Christopher; Summers, Ronald M; Bluemke, David A; Yao, Jianhua
2012-09-01
Cardiac CT (CCT) is widely available and has been validated for the detection of focal myocardial scar using a delayed enhancement technique in this paper. CCT, however, has not been previously evaluated for quantification of diffuse myocardial fibrosis. In our investigation, we sought to evaluate the potential of low-dose CCT for the measurement of myocardial whole heart extracellular volume (ECV) fraction. ECV is altered under conditions of increased myocardial fibrosis. A framework consisting of three main steps was proposed for CCT whole heart ECV estimation. First, a shape-constrained graph cut (GC) method was proposed for myocardium and blood pool segmentation on postcontrast image. Second, the symmetric demons deformable registration method was applied to register precontrast to postcontrast images. So the correspondences between the voxels from precontrast to postcontrast images were established. Finally, the whole heart ECV value was computed. The proposed method was tested on 20 clinical low-dose CCT datasets with precontrast and postcontrast images. The preliminary results demonstrated the feasibility and efficiency of the proposed method.
Role of cardiac CTA in estimating left ventricular volumes and ejection fraction
Institute of Scientific and Technical Information of China (English)
Robin; Man; Singh; Balkrishna; Man; Singh; Jawahar; Lal; Mehta
2014-01-01
Left ventricular ejection fraction(LVEF)is an impor-tant predictor of cardiac outcome and helps in makingimportant diagnostic and therapeutic decisions suchas the treatment of different types of congestive heartfailure or implantation of devices like cardiac resynchro-nization therapy-defibrillator.LVEF can be measuredby various techniques such as transthoracic echo-cardiography,contrast ventriculography,radionuclidetechniques,cardiac magnetic resonance imaging andcardiac computed tomographic angiography(CTA).Thedevelopment of cardiac CTA using multi-detector rowCT(MDCT)has seen a very rapid improvement in thetechnology for identifying coronary artery stenosis andcoronary artery disease in the last decade.During theacquisition,processing and analysis of data to studycoronary anatomy,MDCT provides a unique opportunityto measure left ventricular volumes and LVEF simulta-neously with the same data set without the need foradditional contrast or radiation exposure.The develop-ment of semi-automated and automated software to measure LVEF has now added uniformity,efficiency and reproducibility of practical value in clinical practice rather than just being a research tool.This article will address the feasibility,the accuracy and the limitations of MDCT in measuring LVEF.
Caliman, R.
2017-08-01
This paper contains an analysis of the factors that have an influence on the tribological characteristics of the composite material sintered with metal matrix reinforced with carbon fibers. These composites are used generally if it’s needed the wear resistant materials, whereas these composites have high specific strength in conjunction with a good corrosion resistance at low densities and some self-lubricating properties. Through the knowledge of the better tribological properties of the materials and their behavior to wear, can be generated by dry and the wet friction. Thus, where necessary the use of high temperature resistant material with low friction between the elements, carbon fiber composite materials are very suitable because they have: mechanical strength and good ductility, melting temperature on the higher values, higher electrical and thermal conductivity, lower wear speed and lower friction forces. For this purpose, this paper also contains an experimental program based on the evidence of formaldehyde resin made from fiber reinforced Cu-carbon with the aim to specifically determine the volume of fibers fraction for the consolidation of the composite material. In order to determine the friction coefficient and the wear rates of the various fiber reinforced polymer mixtures of carbon have been used special devices with needle-type with steel disc. These tests were conducted in the atmosphere at the room temperature without external lubrication study taking into consideration the sliding different speeds with constant loading task.
Non-monotonic dependence of Pickering emulsion gel rheology on particle volume fraction.
Kaganyuk, M; Mohraz, A
2017-03-29
The microstructure of Pickering emulsion gels features a tenuous network of faceted droplets, bridged together by shared monolayers of particles. In this investigation, we use standard oscillatory rheometry in conjunction with confocal microscopy to gain a more comprehensive understanding of the role particle bridged interfaces have on the rheology of Pickering emulsion gels. The zero-shear elastic modulus of Pickering emulsion gels shows a non-monotonic dependence on particle loading, with three separate regimes of power-law and linear gel strengthening, and subsequent gel weakening. The transition from power-law to linear scaling is found to coincide with a peak in the volume fraction of particles that participate in bridging, which we indirectly calculate using measureable quantities, and the transition to gel weakening is shown to result from a loss in network connectivity at high particle loadings. These observations are explained via a simple representation of how Pickering emulsion gels arise from an initial population of partially-covered droplets. Based on these considerations, we propose a combined variable related to the initial droplet coverage, to be used in reporting and rationalizing the rheology of Pickering emulsion gels. We demonstrate the applicability of this variable with Pickering emulsions prepared at variable fluid ratios and with different-sized colloidal particles. The results of our investigation have important implications for many technological applications that utilize solid stabilized multi-phase emulsions and require a priori knowledge or engineering of their flow characteristics.
A framework of whole heart extracellular volume fraction estimation for low dose cardiac CT images
Chen, Xinjian; Summers, Ronald M.; Nacif, Marcelo Souto; Liu, Songtao; Bluemke, David A.; Yao, Jianhua
2012-02-01
Cardiac magnetic resonance imaging (CMRI) has been well validated and allows quantification of myocardial fibrosis in comparison to overall mass of the myocardium. Unfortunately, CMRI is relatively expensive and is contraindicated in patients with intracardiac devices. Cardiac CT (CCT) is widely available and has been validated for detection of scar and myocardial stress/rest perfusion. In this paper, we sought to evaluate the potential of low dose CCT for the measurement of myocardial whole heart extracellular volume (ECV) fraction. A novel framework was proposed for CCT whole heart ECV estimation, which consists of three main steps. First, a shape constrained graph cut (GC) method was proposed for myocardium and blood pool segmentation for post-contrast image. Second, the symmetric Demons deformable registrations method was applied to register pre-contrast to post-contrast images. Finally, the whole heart ECV value was computed. The proposed method was tested on 7 clinical low dose CCT datasets with pre-contrast and post-contrast images. The preliminary results demonstrated the feasibility and efficiency of the proposed method.
DEFF Research Database (Denmark)
Ghanbarpour, S.; Mazaheripour, H.; Mirmoradi, S. H.;
2010-01-01
is to investigate the effects of type and volume fraction of steel fiber on the compressive strength, split tensile strength, flexural strength and modulus of elasticity of steel fiber reinforced self-compacting concrete (SFRSCC). Design/methodology/approach – For this purpose, Micro wire and Wave type steel fibers...
Kailasanathan, Ranjith Kumar Abhinavam
2014-05-20
Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both temperature and soot measurements presented are line-of-sight averages. The results aid in understanding the kinetic and thermodynamic behavior of the soot formation and oxidation chemistry with changes in diluents, ultimately leading to possible methods of reducing soot emission from practical combustion hardware. The diluted fuel and coflow exit velocities (top-hat profiles) were matched at all pressures to minimize shear effects. In addition to the velocity-matched flow rates, the mass fluxes were held constant for all pressures. Addition of a diluent has a pronounced effect on both the soot surface temperature and volume fraction, with the helium diluted flame yielding the maximum and carbon dioxide diluted flame yielding minimum soot surface temperature and volume fraction. At low pressures, peak soot volume fraction exists at the tip of the flame, and with an increase in pressure, the location shifts lower to the wings of the flame. Due to the very high diffusivity of helium, significantly higher temperature and volume fraction are measured and explained. Carbon dioxide has the most dramatic soot suppression effect. By comparing the soot yield with previously measured soot precursor concentrations in the same flame, it is clear that the lower soot yield is a result of enhanced oxidation rates rather than a reduction in precursor formation. Copyright © 2014 Taylor & Francis Group, LLC.
Smirnov, A. S.; Belozerov, G. A.; Smirnova, E. O.; Konovalov, A. V.; Shveikin, V. P.; Muizemnek, O. Yu.
2016-07-01
The paper deals with a procedure of preparing a specimen surface for the EBSD analysis of a metal matrix composite (MMC) with a high volume fraction of reinforcing particles. Unlike standard procedures of preparing a specimen surface for the EBSD analysis, the proposed procedure is iterative with consecutive application of mechanical and electrochemical polishing. This procedure significantly improves the results of an indexed MMC matrix in comparison with the standard procedure of specimen preparation. The procedure was verified on a MMC with pure aluminum (99.8% Al) as the matrix, SiC particles being used as reinforcing elements. The average size of the SiC particles is 14 μm, and their volume fraction amounts to 50% of the total volume of the composite. It has been experimentally found that, for making the EBSD analysis of a material matrix near reinforcing particles, the difference in height between the particles and the matrix should not exceed 2 µm.
Sharma, Prabhakar; Poulsen, Tjalfe G
2010-07-01
Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.
Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience
Directory of Open Access Journals (Sweden)
Kellman Peter
2012-09-01
Full Text Available Abstract Background Diffuse myocardial fibrosis, and to a lesser extent global myocardial edema, are important processes in heart disease which are difficult to assess or quantify with cardiovascular magnetic resonance (CMR using conventional late gadolinium enhancement (LGE or T1-mapping. Measurement of the myocardial extracellular volume fraction (ECV circumvents factors that confound T1-weighted images or T1-maps. We hypothesized that quantitative assessment of myocardial ECV would be clinically useful for detecting both focal and diffuse myocardial abnormalities in a variety of common and uncommon heart diseases. Methods A total of 156 subjects were imaged including 62 with normal findings, 33 patients with chronic myocardial infarction (MI, 33 with hypertrophic cardiomyopathy (HCM, 15 with non-ischemic dilated cardiomyopathy (DCM, 7 with acute myocarditis, 4 with cardiac amyloidosis, and 2 with systemic capillary leak syndrome (SCLS. Motion corrected ECV maps were generated automatically from T1-maps acquired pre- and post-contrast calibrated by blood hematocrit. Abnormally-elevated ECV was defined as >2SD from the mean ECV in individuals with normal findings. In HCM the size of regions of LGE was quantified as the region >2 SD from remote. Results Mean ECV of 62 normal individuals was 25.4 ± 2.5% (m ± SD, normal range 20.4%-30.4%. Mean ECV within the core of chronic myocardial infarctions (without MVO (N = 33 measured 68.5 ± 8.6% (p Conclusions ECV mapping appears promising to complement LGE imaging in cases of more homogenously diffuse disease. The ability to display ECV maps in units that are physiologically intuitive and may be interpreted on an absolute scale offers the potential for detection of diffuse disease and measurement of the extent and severity of abnormal regions.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A phase transformation model was presented for predicting the phase fraction transformed and the carbon concentration in austenite for austenite to ferrite transformation during laminar cooling on run-out table in hot rolling strip mill. In this model, the parameter k in Avrami equation was developed for carbon steels. The wide range of chemical composition, the primary austenite grain size, and the retained strain were taken into account. It can be used to predict the ferrite volume fraction and the carbon concentration in austenite of hot-rolled steel strip during laminar cooling on run-out table. The coiling temperature controlling model was also presented to calculate the temperature of steel strip. The transformation kinetics of austenite to ferrite and the evolution of carbon concentration in austenite at different temperatures during cooling were investigated in the hot rolled Q235B strip for thickness of 9.35, 6.4, and 3.2mm. The ferrite volume fraction along the length of the strip was also calculated. The calculated ferrite volume fraction was compared with the log data from hot strip mill and the calculated results were in agreement with the experimental ones. The present study is a part of the prediction of the mechanical properties of hot-rolled steel strip, and it has already been used on-line and off-line in the hot strip mill.
Rheological analysis of stabilized cerium-gadolinium oxide (CGO) dispersions
DEFF Research Database (Denmark)
Marani, Debora; Hjelm, Johan; Wandel, Marie
2014-01-01
The objective of the present work is to generate general rheological criteria to investigate high solid loading dispersions suitable for the shaping of homogeneous ceramic bodies. Systematic analysis of the rheological properties of moderately low specific surface area (SSA) Ce0.9Gd0.1O3-δ (CGO10......) dispersions was performed in rotational and oscillatory modes. The dispersant content was optimized to attain fully stabilized dispersions. A critical upper limit for the ceramic content was introduced and denoted ϕh. It defines the limit to non-Newtonian flow and corresponds to the highest feasible volume...... fraction to which reproducible dispersions are achieved. The method proposed for its determination is based on the analysis of the flow index as function of the ceramic volume fraction. For the CGO dispersions formulated in this work, ϕh was found to be around (0.34 ± 0.04). The maximum volume fraction (ϕm...
Directory of Open Access Journals (Sweden)
Weijie Yan
2017-05-01
Full Text Available A method for simultaneously visualizing the two-dimensional distributions of temperature and soot volume fraction in an ethylene flame was presented. A single-color charge-coupled device (CCD camera was used to capture the flame image in the visible spectrum considering the broad-response spectrum of the R and G bands of the camera. The directional emissive power of the R and G bands were calibrated and used for measurement. Slightly increased temperatures and reduced soot concentration were predicted in the central flame without self-absorption effects considered, an iterative algorithm was used for eliminating the effect of self-absorption. Nine different cases were presented in the experiment to demonstrate the effects of fuel mass flow rate and oxygen concentration on temperature and soot concentration in three different atmospheres. For ethylene combustion in pure-air atmosphere, as the fuel mass flow rate increased, the maximum temperature slightly decreased, and the maximum soot volume fraction slightly increased. For oxygen fractions of 30%, 40%, and 50% combustion in O2/N2 oxygen-enhanced atmospheres, the maximum flame temperatures were 2276, 2451, and 2678 K, whereas combustion in O2/CO2 atmospheres were 1916, 2322, and 2535 K. The maximum soot volume fractions were 4.5, 7.0, and 9.5 ppm in oxygen-enriched O2/N2 atmosphere and 13.6, 15.3, and 14.8 ppm in oxygen-enriched O2/CO2 atmosphere. Compared with the O2/CO2 atmosphere, combustion in the oxygen-enriched O2/N2 atmosphere produced higher flame temperature and larger soot volume fraction. Preliminary results indicated that this technique is reliable and can be used for combustion diagnosis.
DEFF Research Database (Denmark)
Oddershede, Jette; Majkut, Marta; Caosyd, Qinghua
2015-01-01
A method for the extension of the three-dimensional X-ray diffraction technique to allow the extraction of domain volume fractions in polycrystalline ferroic materials is presented. This method gives access to quantitative domain volume fractions of hundreds of independent embedded grains within...
Energy Technology Data Exchange (ETDEWEB)
Raebiger, K. [LEISTRITZ Pumpen GmbH, Nuremberg (Germany); Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Wales (United Kingdom); Maksoud, T.M.A.; Ward, J. [Faculty of Advanced Technology, University of Glamorgan, Pontypridd, Wales (United Kingdom); Hausmann, G. [Department of Mechanical Engineering and Building Services Engineering, University of Applied Sciences, Nuremberg (Germany)
2008-09-15
In the investigation of the pumping behaviour of multiphase screw pumps, handling gas-liquid mixtures with very high gas volume fractions, theoretical and experimental analyses were performed. A new theoretical screw pump model was developed, which calculates the time-dependent conditions inside the several chambers of a screw pump as well as the exchange of mass and energy between these chambers. By means of the performed experimental analysis, the screw pump model was verified, especially at very high gas volume fractions from 90% to 99%. The experiments, which were conducted with the reference fluids water and air, can be divided mainly into the determination of the steady state pumping behaviour on the one hand and into the analysis of selected transient operating conditions on the other hand, whereas the visualisation of the leakage flows through the circumferential gaps was rounded off the experimental analysis. (author)
Directory of Open Access Journals (Sweden)
Hong-Meng Li
2014-07-01
Full Text Available An experimental study of the intrinsic instabilities of H2/CO lean (φ = 0.4 to φ = 1.0 premixed flames at different hydrogen fractions ranging from 0% to 100% at elevated pressure and room temperature was performed in a constant volume vessel using a Schlieren system. The unstretched laminar burning velocities were compared with data from the previous literature and simulated results. The results indicate that excellent agreements are obtained. The cellular instabilities of syngas-air flames were discussed and critical flame radii were measured. When hydrogen fractions are above 50%, the flame tends to be more stable as the equivalence ratio increases; however, the instability increases for flames of lower hydrogen fractions. For the premixed syngas flame with hydrogen fractions greater than 50%, the decline in cellular instabilities induced by the increase in equivalence ratio can be attributed to a reduction of diffusive-thermal instabilities rather than increased hydrodynamic instabilities. For premixed syngas flames with hydrogen fractions lower than 50%, as the equivalence ratio increases, the cellular instabilities become more evident because the enhanced hydrodynamic instabilities become the dominant effect. For premixed syngas flames, the enhancement of cellular instabilities induced by the increase in hydrogen fraction is the result of both increasing diffusive-thermal and hydrodynamic instabilities.
Bevill, Grant; Eswaran, Senthil K; Gupta, Atul; Papadopoulos, Panayiotis; Keaveny, Tony M
2006-12-01
Large-deformation bending and buckling have long been proposed as failure mechanisms by which the strength of trabecular bone can be affected disproportionately to changes in bone density, and thus may represent an important aspect of bone quality. We sought here to quantify the contribution of large-deformation failure mechanisms on strength, to determine the dependence of these effects on bone volume fraction and architecture, and to confirm that the inclusion of large-deformation effects in high-resolution finite element models improves predictions of strength versus experiment. Micro-CT-based finite element models having uniform hard tissue material properties were created from 54 cores of human trabecular bone taken from four anatomic sites (age = 70+/-11; 24 male, 27 female donors), which were subsequently biomechanically tested to failure. Strength predictions were made from the models first including, then excluding, large-deformation failure mechanisms, both for compressive and tensile load cases. As expected, strength predictions versus experimental data for the large-deformation finite element models were significantly improved (p deformation models in both tension and compression. Below a volume fraction of about 0.20, large-deformation failure mechanisms decreased trabecular strength from 5-80% for compressive loading, while effects were negligible above this volume fraction. Step-wise nonlinear multiple regression revealed that structure model index (SMI) and volume fraction (BV/TV) were significant predictors of these reductions in strength (R2 = 0.83, p deformation failure mechanisms on trabecular bone strength is highly heterogeneous and is not well explained by standard architectural metrics.
Sledkov, R. M.; Galkin, I. Yu.; Stepanov, O. E.; Strebnev, N. A.
2017-01-01
When one solves engineering problems related to the cooling of fuel assemblies (FAs) in a spent fuel storage pool (SFSP) and the assessment of nuclear safety of FA storage in an SFSP in the initial event of loss of SFSP cooling, it is essential to determine the coolant density and, consequently, steam volume fractions φ in bundles of fuel elements at a pressure of 0.1-0.5 MPa. Such formulas for calculating φ that remain valid in a wide range of operating parameters and geometric shapes of channels and take the conditions of loss of SFSP cooling into account are currently almost lacking. The results of systematization and analysis of the available formulas for φ are reported in the present study. The calculated values were compared with the experimental data obtained in the process of simulating the conditions of FA cooling in an SFSP in the event of loss of its cooling. Six formulas for calculating the steam volume fraction, which were used in this comparison, were chosen from a total of 11 considered relations. As a result, the formulas producing the most accurate values of φ in the conditions of loss of SFSP cooling were selected. In addition, a relation that allows one to perform more accurate calculations of steam volume fractions in the conditions of loss of SFSP cooling was derived based on the Fedorov formula in the two-group approximation.
Laufer, N.; Hansmann, H.; Koch, M.
2017-01-01
In this study, the rheological properties of wood plastic composites (WPC) with different polymeric matrices (LDPE, low-density polyethylene and PP, polypropylene) and with different types of wood filler (hardwood flour and softwood flour) have been investigated by means of high pressure capillary rheometry. The volume fraction of wood was varied between 0 and 60 %. The shear thinning behaviour of the WPC melts can be well described by the Ostwald - de Waele power law relationship. The flow consistency index K of the power law shows a good correlation with the volume fraction of wood. Interparticular interaction effects of wood particles can be mathematically taken into account by implementation of an interaction exponent (defined as the ratio between flow exponent of WPC and flow exponent of polymeric matrix). The interaction exponent shows a good correlation with the flow consistency index. On the basis of these relationships the concept of shear-stress-equivalent inner shear rate has been modified. Thus, the flow behaviour of the investigated wood filled polymer melts could be well described mathematically by the modified concept of shear-stress-equivalent inner shear rate. On this basis, the shear thinning behaviour of WPC can now be estimated with good accuracy, taking into account the volume fraction of wood.
Santander-Avanceña, Sheryll S; Sadaba, Resurreccion B; Taberna, Hilario S; Tayo, Gilma T; Koyama, Jiro
2016-01-01
This study assessed the toxicity of water-accommodated fraction (WAF) and chemically enhanced WAF (CEWAF) of bunker C oil and dispersant (DISP) to a microalga, Tetraselmis tetrathele. The 72-h median effective concentration (72-h EC50) of CEWAF and DISP were determined at 3.30% and 2.40%, respectively. The no observed effect concentration (NOEC) of CEWAF to T. tetrathele was at 2.0% and lowest observed effect concentration (LOEC) was at 3.0% while NOEC and LOEC of DISP to T. tetrathele were determined at 1.0% and 2.0%, respectively. The addition of dispersant to oil increased the amount of total PAH present in the CEWAF test solutions. DISP alone was highly toxic, and the toxicity of CEWAF was primarily caused by the presence of dispersant.
Kinoshita, Y; Nanbu, I; Tohyama, J; Ooba, S
1998-02-01
We evaluated accuracy of Quantitative Gated SPECT Program that enabled calculation of the left ventricular (LV) volume and ejection fraction by automatically tracing the contour of the cardiac surface. Cardiac phantoms filled with 99mTc-solution were used. Data acquisition was made by 180-degree projection in L type and 360-degree projection in opposed type. Automatic calculation could be done in all processes, which required 3-4 minutes. Reproducibility was sufficient. The adequate cut off value of a prefilter was 0.45. At this value LV volume was 93% of the actual volume in L type acquisition and 95.9% in opposed type acquisition. The LV volume obtained in L type was smaller than that obtained in opposed type (p defects was fair, on the cardiac phantoms with all of 90-degree defects and 180-degree defects of the septal and lateral wall. The LV volume was estimated to be larger on the phantom with 180-degree defect of the anterior wall, and to be smaller on the phantom of 180-degree defect of the inferoposterior wall. Because tracing was deviated anteriorly at the defects. In the patients with similar conditions to 180-degree defect of the anterior wall or inferoposterior wall, the LV volume should be carefully evaluated.
Energy Technology Data Exchange (ETDEWEB)
Kinoshita, Yoshimi; Nanbu, Ichirou [Nagoya Daini Red Cross Hospital (Japan); Tohyama, Junko; Ooba, Satoru
1998-02-01
We evaluated accuracy of Quantitative Gated SPECT Program that enabled calculation of the left ventricular (LV) volume and ejection fraction by automatically tracing the contour of the cardiac surface. Cardiac phantoms filled with {sup 99m}Tc-solution were used. Data acquisition was made by 180-degree projection in L type and 360-degree projection in opposed type. Automatic calculation could be done in all processes, which required 3-4 minutes. Reproducibility was sufficient. The adequate cut off value of a prefilter was 0.45. At this value LV volume was 93% of the actual volume in L type acquisition and 95.9% in opposed type acquisition. The LV volume obtained in L type was smaller than that obtained in opposed type (p<0.05). The tracing of the defects was fair, on the cardiac phantoms with all of 90-degree defects and 180-degree defects of the septal and lateral wall. The LV volume was estimated to be larger on the phantom with 180-degree defect of the anterior wall, and to be smaller on the phantom of 180-degree defect of the inferoposterior wall. Because tracing was deviated anteriorly at the defects. In the patients with similar conditions to 180-degree defect of the anterior wall or inferoposterior wall, the LV volume should be carefully evaluated. (author)
Directory of Open Access Journals (Sweden)
Piotr Kubica
2015-01-01
Full Text Available The transport properties of the poly(ethylene-co-vinyl acetate (EVA materials to He, N2, O2, and CO2 are correlated with two polymer molecular structure parameters, that is, cohesive energy density (CED and fractional free volume (FFV, determined by the group contribution method. In our preceding paper, the attempt was made to approximate EVA permeability using a linear function of 1/FFV as predicted by the free volume theory. However, the deviations from this relationship appeared to be significant. In this paper, it is shown that permeation of gas molecules is controlled not only by free volume but also by the polymer cohesive energy. Moreover, the behavior of CO2 was found to differ significantly from that of other gases. In this instance, the correlation is much better when diffusivity instead of permeability is taken into account in a modified transport model.
Energy Technology Data Exchange (ETDEWEB)
Faroughi, Salah Aldin, E-mail: salah-faroughi@gatech.edu [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332-0340 (United States); Huber, Christian [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta 30332-0340 (United States)
2015-02-07
In this study, we propose a theoretical model to compute the effective thermal conductivity of metal and dielectric spherical particle reinforced composites with interfacial thermal resistance. We consider a wide range of filler volume fraction with sizes ranging from nano- to macro-scale. The model, based on the differential effective medium theory, accounts for particle interactions through two sets of volume fraction corrections. The first correction accounts for a finite volume of composite and the second correction introduces a self-crowding factor that allows us to develop an accurate model for particle interaction even for high volume fraction of fillers. The model is examined to other published models, experiments, and numerical simulations for different types of composites. We observe an excellent agreement between the model and published datasets over a wide range of particle volume fractions and material properties of the composite constituents.
Schleier, Jerome J; Peterson, Robert K D
2014-09-01
Computer models for pesticide drift are widely used tools by regulatory agencies to estimate the deposition of pesticides beyond the intended target area. Currently, there is no model in use that has been validated or verified as an accurate means of estimating concentrations of insecticides after ground-based ultra-low volume (ULV) applications used for adult mosquito management. To address the need for a validated model we created a spreadsheet-based model called Mosquito Ultra-Low Volume Dispersion (MULV-Disp) to aid in the adoption and to provide easier use of a validated model. We explain the origin, use, and utility of MULV-Disp, which can be used by regulatory agencies and other interested parties to estimate deposition of ULV insecticides.
Energy Technology Data Exchange (ETDEWEB)
Sugano, Yasutaka [Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Mizuta, Masahiro [Laboratory of Advanced Data Science, Information Initiative Center, Hokkaido University, Kita-11, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0811 (Japan); Takao, Seishin; Shirato, Hiroki; Sutherland, Kenneth L. [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Date, Hiroyuki, E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan)
2015-11-15
Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of the tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation.
Miller, W. S.
1974-01-01
The cryogenic refrigerator thermal design calculations establish design approach and basic sizing of the machine's elements. After the basic design is defined, effort concentrates on matching the thermodynamic design with that of the heat transfer devices (heat exchangers and regenerators). Typically, the heat transfer device configurations and volumes are adjusted to improve their heat transfer and pressure drop characteristics. These adjustments imply that changes be made to the active displaced volumes, compensating for the influence of the heat transfer devices on the thermodynamic processes of the working fluid. Then, once the active volumes are changed, the heat transfer devices require adjustment to account for the variations in flows, pressure levels, and heat loads. This iterative process is continued until the thermodynamic cycle parameters match the design of the heat transfer devices. By examing several matched designs, a near-optimum refrigerator is selected.
Nguyen, B. V.; Challagulla, K. S.; Venkatesh, T. A.; Hadjiloizi, D. A.; Georgiades, A. V.
2016-12-01
Unit-cell based finite element models are developed to completely characterize the role of porosity distribution and porosity volume fraction in determining the elastic, dielectric and piezoelectric properties as well as relevant figures of merit of 3-3 type piezoelectric foam structures. Eight classes of foam structures which represent structures with different types and degrees of uniformity of porosity distribution are identified; a Base structure (Class I), two H-type foam structures (Classes II, and III), a Cross-type foam structure (Class IV) and four Line-type foam structures (Classes V, VI, VII, and VIII). Three geometric factors that influence the electromechanical properties are identified: (i) the number of pores per face, pore size and the distance between the pores; (ii) pore orientation with respect to poling direction; (iii) the overall symmetry of the pore distribution with respect to the center of the face of the unit cell. To assess the suitability of these structures for such applications as hydrophones, bone implants, medical imaging and diagnostic devices, five figures of merit are determined via the developed finite element model; the piezoelectric coupling constant (K t ), the acoustic impedance (Z), the piezoelectric charge coefficient (d h ), the hydrostatic voltage coefficient (g h ), and the hydrostatic figure of merit (d h g h ). At high material volume fractions, foams with non-uniform Line-type porosity (Classes V and VII) where the pores are preferentially distributed perpendicular to poling direction, are found to exhibit the best combination of desirable piezoelectric figures of merit. For example, at about 50% volume fraction, the d h , g h , and d h g h figures of merit are 55%, 1600% and 2500% higher, respectively, for Classes V and VII of Line-like foam structures compared with the Base structure.
Energy Technology Data Exchange (ETDEWEB)
Johnson, J.
1995-12-31
A preliminary study of a new method for determining respirable mass concentration is described. This method uses a high volume air sampler and subsequent fractionation of the collected mass using a particle sedimentation technique. Side-by-side comparisons of this method with cyclones were made in the field and in the laboratory. There was good agreement among the samplers in the laboratory, but poor agreement in the field. The effect of wind on the samplers` capture efficiencies is the primary hypothesized source of error among the field results. The field test took place at the construction site of a hazardous waste landfill located on the Hanford Reservation.
Energy Technology Data Exchange (ETDEWEB)
Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); McGarrah, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
2016-04-12
The purpose of this document is to provide a theoretical framework for (1) estimating uranium carbide (UC) volume fraction in a final alloy of uranium with 10 weight percent molybdenum (U 10Mo) as a function of final alloy carbon concentration, and (2) estimating effective 235U enrichment in the U 10Mo matrix after accounting for loss of 235U in forming UC. This report will also serve as a theoretical baseline for effective density of as-cast low-enriched U 10Mo alloy. Therefore, this report will serve as the baseline for quality control of final alloy carbon content
Al-Marahleh, G.
2006-05-01
The structure and properties of an aluminum alloy after extrusion in cast and homogenized states are studied. Commercial billets are melted in a horizontal continuous casting installation. After homogenizing the billets are used for fabricating shapes of specified form in an extrusion press. The shapes are subjected to final aging. The volume fraction and the distribution of the second Mg2Si phase are determined after different kinds of treatment. The structure and mechanical properties of shapes obtained from cast and homogenized billets are compared after aging and without aging. The effect of homogenizing on the properties of the alloy after extrusion is analyzed.
DEFF Research Database (Denmark)
Kelbaek, H; Svendsen, Jesper Hastrup; Aldershvile, J;
2011-01-01
The stroke volume (SV) was determined by first passage radionuclide cardiography and the left ventricular ejection fraction (LVEF) by multigated radionuclide cardiography in 20 patients with ischemic heart disease. The results were evaluated against those obtained by the invasive dye dilution...... or thermodilution and left ventricular cardioangiographic techniques. In a paired comparison the mean difference between the invasive and radionuclide SV was -1 ml (SED 3.1) with a correlation coefficient of 0.83 (p less than 0.01). Radionuclide LVEF values also correlated well with cardioangiographic measurements...
Prediction of the Soil Water Characteristic from Soil Particle Volume Fractions
DEFF Research Database (Denmark)
Naveed, Muhammad; Møldrup, Per; Tuller, Markus
2012-01-01
Modelling water distribution and flow in partially saturated soils requires knowledge of the soil-water characteristic (SWC). However, measurement of the SWC is challenging and time-consuming, and in some cases not feasible. This study introduces two predictive models (Xw-model and Xw......*-model) for the SWC, derived from readily available soil properties such as texture and bulk density. A total of 46 soils from different horizons at 15 locations across Denmark were used for models evaluation. The Xw-model predicts the volumetric water content as a function of volumetric fines content (organic matter...... (organic matter, clay, silt, fine and coarse sand), variably included in the model depending on the pF value. The volumetric content of a particular soil particle size fraction was included in the model if it was assumed to contribute to the pore size fraction still occupied with water at the given p...
Hoppmann, Mario; Hunkeler, Priska A.; Hendricks, Stefan; Kalscheuer, Thomas; Gerdes, Rüdiger
2016-04-01
In Antarctica, ice crystals (platelets) form and grow in supercooled waters below ice shelves. These platelets rise, accumulate beneath nearby sea ice, and subsequently form a several meter thick, porous sub-ice platelet layer. This special ice type is a unique habitat, influences sea-ice mass and energy balance, and its volume can be interpreted as an indicator of the health of an ice shelf. Although progress has been made in determining and understanding its spatio-temporal variability based on point measurements, an investigation of this phenomenon on a larger scale remains a challenge due to logistical constraints and a lack of suitable methodology. In the present study, we applied a lateral constrained Marquardt-Levenberg inversion to a unique multi-frequency electromagnetic (EM) induction sounding dataset obtained on the ice-shelf influenced fast-ice regime of Atka Bay, eastern Weddell Sea. We adapted the inversion algorithm to incorporate a sensor specific signal bias, and confirmed the reliability of the algorithm by performing a sensitivity study using synthetic data. We inverted the field data for sea-ice and platelet-layer thickness and electrical conductivity, and calculated ice-volume fractions within the platelet layer using Archie's Law. The thickness results agreed well with drillhole validation datasets within the uncertainty range, and the ice-volume fraction yielded results comparable to other studies. Both parameters together enable an estimation of the total ice volume within the platelet layer, which was found to be comparable to the volume of landfast sea ice in this region, and corresponded to more than a quarter of the annual basal melt volume of the nearby Ekström Ice Shelf. Our findings show that multi-frequency EM induction sounding is a suitable approach to efficiently map sea-ice and platelet-layer properties, with important implications for research into ocean/ice-shelf/sea-ice interactions. However, a successful application of this
1992-02-04
D& similar to those formed by ph3phatidyl choline (pc, egg lecithin vesicles). They are large, unilamellar systems about 3000A in diameter. Their...volume entrapments are also similar to those of egg lecithin vesicles: 1-2%. As might be expected for an amphiphile comprised 100% of cholesteryl... emulsifier with a 1:2 ratio of surfactant (SDS) to cosurfactant (1. pentanol). The composition of the 4E was varied along the two straight, solid
Free energy landscapes and volumes of coexisting phases for a colloidal dispersion
Lang, Trinh Hoa; Wang, G. F.; Lai, S. K.
2010-01-01
Treating the repulsive part of a pairwise potential by the hard-sphere form and its attractive part by the effective depletion potential form, we calculate using this model potential the colloidal domains of phase separation. Differing from the usual recipe of applying the thermodynamic conditions of equal pressure and equal chemical potential where the branches of coexisting phases are the ultimate target, we employ the free energy density minimization approach [G. F. Wang and S. K. Lai, Phys. Rev. E 70, 051402 (2004)] to crosshatch the domains of equilibrium phases, which consist of the gas, liquid, and solid homogeneous phases as well as the coexistence of these phases. This numerical procedure is attractive since it yields naturally the colloidal volume of space occupied by each of the coexisting phases. In this work, we first examine the change in structures of the fluid and solid free energy density landscapes with the effective polymer concentration. We show by explicit illustration the link between the free energy density landscapes and the development of both the metastable and stable coexisting phases. Then, attention is paid to the spatial volumes predicted at the triple point. It is found here that the volumes of spaces of the three coexisting phases at the triple point vary one dimensionally, whereas for the two coexisting phases, they are uniquely determined.
Directory of Open Access Journals (Sweden)
Guo-yuan Sun
2015-05-01
Full Text Available A dendritic β-phase reinforced bulk metallic glass (BMG composite named as D2 was prepared by rapid quenching of a homogenous Zr60Ti14.67Nb5.33Cu5.56Ni4.44Be10 melt, and characterized by means of X-ray diffraction (XRD, scanning electron microscopy (SEM observation and room-temperature compression test. The microstructure and mechanical properties were compared with those of the spherical β-phase reinforced composite named as composite S2. It was found that the composite D2 contains β-phase dendrites up to 56% in volume-fraction, and exhibits a ductile compressive behavior with plastic strain of 12.7%. As the high-volume-fractioned β-phase dendrites transferred to coarse spherical particles of about 20 μm in diameter in the composite S2, a much improved plastic strain up to 20.4% can be achieved. Micrographs of the fractured samples reveal different interaction modes of the propagating shear bands with the dendritic and spherical β phase inclusions, resulting in different shear strains in the composite samples. The matrix of composite S2 undergoes a significantly larger shear strain than that of the composite D2 before ultimate failure, which is thought to be mainly responsible for the greatly increased global plastic strain of the S2 relative to D2.
Kinsey, Erin; Pales, Ashley; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe
2016-04-01
Oil in water emulsions occur during oil extraction due to the presence of water, naturally-occurring surface-active agents and mechanical mixing in pipelines or from oil spillage. Emulsions present difficulties for use of oil in fuel and their rheological properties are important to treat environmental impacts of spills. The objective of this study is to assess the rheological characteristics of oil in water emulsions stabilized by 5% NaCl brine, Tween 20 surfactant and silica nanoparticles to gain knowledge about the behavior of oil flow in pipelines and characterize them for environmental applications. Rheological behaviors such as shear rate, shear stress, and viscosity of Prudhoe Bay crude oil emulsions were analyzed with varying percent of water volume fractions (12.5, 25 and 50%), varying weight percent of silica nanoparticles (0.001, 0.01 and 0.1 weight %), with and without 2 CMC Tween 20 nonionic surfactant. Emulsions with varying water volume fractions were analyzed at 20, 40 and 60 degrees Celsius. Flow curve analysis of the emulsions was performed using an Anton-Paar rheometer. Preliminary findings indicate that increased temperature and increasing the concentration of nanoparticles both produced lower shear stress and that the addition of surfactant decreased the viscosity and shear stress of the emulsions.
Energy Technology Data Exchange (ETDEWEB)
Pai, M. S. [College of Medicine, Univ. of Ewha, Seoul (Korea, Republic of); Moon, D. H.; Kim, H. M.; Yang, Y. J.; Kang, D. H. [Asan Medical Center, Seoul (Korea, Republic of)
2003-07-01
Electrocardiogram-gated TI-201 SPECT measurements of left ventricular ejection fraction (EF), end-diastolic volume (EDV), and end-systolic volume (ESV) have shown high correlation with conventional methods. However, how much these parameters measured by TI-201 gated SPECT differ from those by echocardiography has not been assessed. Adenosine stress (Ad-G) and redistribution TI-201 gated SPECT (Re-G) and resting echocardiography were conducted in 337 patients (184 male, 153 female). EDV, ESV and LVEF measured by QGS software were compared with the results by echocardiography. Patients with arrhythmia (atrial fibrillation or frequent premature contractions) or evidence of fixed or reversible perfusion defects on TI-201 SPECT were excluded. EF, EDV and ESV measured by Ad-G (63.3{+-}9.8,73.8{+-}30.2,29.1{+-}20.1) and Re-G (65.2{+-}11.6,69.1{+-}30.1,26.5{+-}20.3) correlated well with those by Echo (61.4{+-}7.9,78.3{+-}2.7, 30.7{+-} 17.5 ; r of Ad-G=0.547, 0.850, 0.827, p<0.001 ; r of Re-G=0.585, 0.838, 0.819, p<0.001). However the difference (mean, SD, SEE of Echo - gated SPECT) was statistically significant (EF: Ad-G=1.71, 8.92, 0.48, Re-G=3.59, 10.39, 0.56, p<0.001 ; EDV: Ad-G=4.75, 16.21, 0.88, Re-G=9.53, 16.77, 0.91, p<0.001 ; ESV: Ad-G=1.75, 11.35, 0.61, p<0.05, Re-G=4.29, 11.7, 0.63, p<0.001). Bland-Altman plots showed that the difference of EDV and ESV did not vary in any systematic way over the range of measurement, whereas the difference of EF increased with increasing average EF by Echo and gated-SPECT. The difference of EF, EDV, and ESV between Ad-G and Echo was significantly smaller than those between Re-G and Echo (p<0.001). Gated TI-201 SPECT underestimates EDV and ESV over a wide range of volume. As a result, EF by gated TI-201 SPECT is overestimated especially in patients with small LV volume. Ad-G is preferable to Re-G in assessing left ventricular ejection fraction and volume in place of Echo because of smaller bias.
San José Martínez, Fernando; Caniego, Javier; García-Gutiérrez, Carlos
2016-04-01
Lacunarity can be seen as a scale dependent measure of heterogeneity or texture ―in terms of image analysis― that was first introduced to quantify different patterns of dispersion and clustering that display geometrical objects with the same fractal dimension. Notwithstanding, lacunarity functions have been revealed as means to measure the deviation of object's geometrical structure from translational invariance beyond self-similarity and fractal geometry. In this work, we will explore how lacunarity quantifies different patterns of dispersion and clustering of different geometrical structures of soil macropore volumes imaged by X-ray computed tomography. Samples extracted from columns were collected at the experimental farm "Finca La Grajera" in La Rioja (Spain), property of La Rioja Regional Government (northern Spain). The vineyard selected was established in 1996. During the 1996 to 2004 period, the soil management was conventional tillage. Before the vineyard was established in 1996, a pasture-legume-cereal rotation was used. In 2004 an experiment was established with different types of soil cover management in between. On December 2010 columns were extracted vertically by percussion drilling between rows of the vineyard.
Thulborn, Keith; Lui, Elaine; Guntin, Jonathan; Jamil, Saad; Sun, Ziqi; Claiborne, Theodore C; Atkinson, Ian C
2016-02-01
Sodium ion homeostasis is a fundamental property of viable tissue, allowing the tissue sodium concentration to be modeled as the tissue cell volume fraction. The modern neuropathology literature using ex vivo tissue from selected brain regions indicates that human brain cell density remains constant during normal aging and attributes the volume loss that occurs with advancing age to changes in neuronal size and dendritic arborization. Quantitative sodium MRI performed with the enhanced sensitivity of ultrahigh-field 9.4 T has been used to investigate tissue cell volume fraction during normal aging. This cross-sectional study (n = 49; 21-80 years) finds that the in vivo tissue cell volume fraction remains constant in all regions of the brain with advancing age in individuals who remain cognitively normal, extending the ex vivo literature reporting constant neuronal cell density across the normal adult age range. Cell volume fraction, as measured by quantitative sodium MRI, is decreased in diseases of cell loss, such as stroke, on a time scale of minutes to hours, and in response to treatment of brain tumors on a time scale of days to weeks. Neurodegenerative diseases often have prodromal periods of decades in which regional neuronal cell loss occurs prior to clinical presentation. If tissue cell volume fraction can detect such early pathology, this quantitative parameter may permit the objective measurement of preclinical disease progression. This current study in cognitively normal aging individuals provides the basis for the pursuance of investigations directed towards such neurodegenerative diseases.
Rahman, Ziyaur; Siddiqui, Akhtar; Bykadi, Srikant; Khan, Mansoor A
2014-11-20
Clinical performance of an amorphous solid dispersion (ASD) drug product is related to the amorphous drug content because of the greater bioavailability of this form of the drug than its crystalline form. Therefore, it is paramount to monitor the amorphous and the crystalline fractions in the ASD products. The objective of the present investigation was to study the feasibility of using a standardized X-ray powder diffraction (XRPD) in conjunction with chemometric methods to quantitate the amorphous and crystalline fraction of the drug in several tacrolimus ASD products. Three ASD products were prepared in which drug to excipients ratios ranged from 1:19 to 1:49. The amorphous and crystalline drug products were mixed in various proportions so that amorphous/crystalline tacrolimus in the samples vary from 0 to 100%. XRPD of the samples of the drug products were collected, and PLSR and PCR chemometric methods were applied to the data. The R(2) was greater than '0.987' for all the models and bias in the models were statistically insignificant (p>0.05). RMSEP and SEP values were smaller for PLSR models than PCR models. The models prediction capabilities were good and can predict as low as 10% when drug to excipient ratio is as high as 1:49. In summary, XRPD and chemometric provide powerful analytical tools to monitor the crystalline fractions of the drug in the ASD products.
2D and 3D milled surface roughness of high volume fraction SiCp/Al composites
Directory of Open Access Journals (Sweden)
Tao Wang
2015-06-01
Full Text Available This paper presents a study on surface roughness generated by high speed milling of high volume fraction (65% silicon carbide particle-reinforced aluminum matrix (SiCp/Al composites. Typical 2D (Ra and Rz and 3D (Sa and Sq surface roughness parameters were selected to evaluate the influence of the milling parameters on the surface quality in comparison with aluminum alloy. The 3D topography of the milled surface was studied as well. The results indicate that 3D parameters (Sa and Sq are more capable to describe the influence of the milling parameters on the surface quality, and among them Sq is preferable due to its good sensitivity. Sq decreases with milling speed and increases with feed rate. The influence of axial depth of cut (ADOC is negligible.
DEFF Research Database (Denmark)
Wejdemann, Christian; Poulsen, Henning Friis; Lienert, U.
2009-01-01
The evolution of dislocation structures in individual bulk grains in copper during strain path changes is studied with a new in situ synchrotron technique which combines high angular resolution with fast three-dimensional reciprocal space mapping. Deformed copper contains regions with vanishing...... dislocation density called subgrains bounded by dislocation rich walls. With the new technique reciprocal space maps, consisting of sharp peaks arising from the subgrains superimposed on a cloud of lower intensity arising from the dislocation walls, are obtained, which allows properties such as subgrain...... volume fraction to be quantified. The studied strain path changes are tension-tension sequences. Polycrystalline copper sheets are pre-deformed in tension to 5% strain, and tensile samples are cut with varying angles between the first and second loading axis. The second tensile deformation up...
Institute of Scientific and Technical Information of China (English)
X.P. Tan; J.L. Liu; X P Song; T. Jin; X.F. Sun; Z.Q. Hu
2011-01-01
A conventional X-ray difFractometer has been used to determine the -y/y＇ lattice misfit and γ＇ volume fraction for a Ru-containing nickel-based single crystal superalloy at room temperature. The rocking curve was used to characterize the distribution of subgrains. The diffraction peaks obtained by w-20 scan were used to determine the γ/γ＇ lattice misfit and γ＇ volume fraction. A three peaks fitting model was proposed. The peak fitting results are in good agreement with the model. The X-ray diffraction results indicate that the nickel-based single crystal superalloy was not a perfect monocrystalline material, which is comprised of many subgrains; and each subgrain also consists of large numbers of mosaic structures. In addition, two anomalous reflection phenomena were found during the experiment and discussed with respect to their occurrence and impact on the measurement. The experimental results show that the γ/γ＇ lattice misfit and ~/r volume fraction will be various at the different regions of its dendritic microstructure. The average γ/γ＇ lattice misfit and γ＇ volume fraction of the experimental alloy are approximately-0.2% and 70%, respectively. Furthermore, the γ＇ volume fraction calculated by atom microprobe （AP） data is also basically consistent with the experimental results.
Gould, L; Gopalaswamy, C; Yang, D; Patel, D; Kim, B S; Patel, C; Becker, W H
1985-11-01
A first-pass nuclear angiogram and a multiple-gated acquisition study were obtained in 10 normal physicians and in 10 patients with a 7-to-10 day old transmural myocardial infarction. After the scan the subjects drank 2 oz. of whiskey. After 60 minutes, the multiple-gated acquisition study was repeated. In the normal group the left ventricular ejection fraction was 68% before and 72% after alcohol. The left ventricular end-diastolic volume increased from 89 to 97 ml while the left ventricular end-systolic volume decreased from 29 to 27 ml. The stroke volume rose from 61 to 70 ml/beat (p less than 0.05). The cardiac output increased from 4.0 to 5.0 l/min (p less than 0.05). In the infarction group, the left ventricular ejection fraction was 58% before and 56% after alcohol administration. The left ventricular end-diastolic volume fell from 111 to 96 ml, while the left ventricular end-systolic volume declined from 50 to 44 ml. The stroke volume fell from 61 to 52 ml/beat, while the cardiac output fell from 4.5 to 3.8 l/min. In the left ventricular infarction zones, alcohol produced in 9 of the 10 cardiac patients a decline in the left ventricular regional ejection fraction. In the normal group, alcohol produced no significant changes in the regional ejection fraction. The normal and the postinfarction patients responded differently to alcohol.
Spathis, G.; Kontou, E.
2017-06-01
In the present work, the nonlinear viscoelastic/viscoplastic response of polymeric materials is described by introducing essential modifications on a model developed in previous works. A constitutive equation of viscoelasticity, based on the transient network theory, is introduced in a more generalized form, which takes into account volume changes during deformation. This time-dependent equation accounts for the nonlinearity and viscoplasticity at small elastic and finite plastic strain regime. The present description was proved to be more flexible, given that it contains a relaxation function that has been derived by considering instead of first order kinetics a fractional derivative that controls the rate of molecular chain detachment from their junctions. Therefore, the new equation has a more global character, appropriate for cases where heavy tails are expected. On the basis of the distributed nature of free volume, a new functional form of the rate of plastic deformation is developed, which is combined with a proper kinematic formulation and leads to the separation of the total strain into the elastic and plastic part. A three-dimensional constitutive equation is then derived for an isotropic, compressible medium. This analysis was proved to be capable of capturing the main aspects of inelastic response as well as the instability stage taking place at the tertiary creep, related to the creep failure.
Deen, Niels G.; Sint Annaland, van Martin; Kuipers, J.A.M.
2007-01-01
In this paper a hybrid model is presented for the numerical simulation of gas-liquid-solid flows using a combined Volume Of Fluid (VOF) and Discrete Particle (DP) approach applied for respectively dispersed gas bubbles and solid particles present in the continuous liquid phase. The hard sphere DP mo
Deen, Niels G.; Sint Annaland, van Martin; Kuipers, J.A.M.
2006-01-01
In this paper a hybrid model is presented for the numerical simulation of gas-liquid-solid flows using a combined Volume Of Fluid (VOF) and Discrete Particle (DP) approach applied for respectively dispersed gas bubbles and solid particles present in the continuous liquid phase. The hard sphere DP mo
Daniele Tonina; Alberto Bellin
2008-01-01
Pore-scale dispersion (PSD), aquifer heterogeneity, sampling volume, and source size influence solute concentrations of conservative tracers transported in heterogeneous porous formations. In this work, we developed a new set of analytical solutions for the concentration ensemble mean, variance, and coefficient of variation (CV), which consider the effects of all these...
Directory of Open Access Journals (Sweden)
Bas Versluis
Full Text Available OBJECTIVES: The aim of the current study was to describe a method that assesses the hyperemic microvascular blood plasma volume of the calf musculature. The reversibly albumin binding contrast agent gadofosveset was used in dynamic contrast-enhanced magnetic resonance imaging (DCE MRI to assess the microvascular status in patients with peripheral arterial disease (PAD and healthy controls. In addition, the reproducibility of this method in healthy controls was determined. MATERIALS AND METHODS: Ten PAD patients with intermittent claudication and 10 healthy control subjects were included. Patients underwent contrast-enhanced MR angiography of the peripheral arteries, followed by one DCE MRI examination of the musculature of the calf. Healthy control subjects were examined twice on different days to determine normative values and the interreader and interscan reproducibility of the technique. The MRI protocol comprised dynamic imaging of contrast agent wash-in under reactive hyperemia conditions of the calf musculature. Using pharmacokinetic modeling the hyperemic fractional microvascular blood plasma volume (V(p, unit: % of the anterior tibial, gastrocnemius and soleus muscles was calculated. RESULTS: V(p was significantly lower for all muscle groups in PAD patients (4.3±1.6%, 5.0±3.3% and 6.1±3.6% for anterior tibial, gastrocnemius and soleus muscles, respectively compared to healthy control subjects (9.1±2.0%, 8.9±1.9% and 9.3±2.1%. Differences in V(p between muscle groups were not significant. The coefficient of variation of V(p varied from 10-14% and 11-16% at interscan and interreader level, respectively. CONCLUSIONS: Using DCE MRI after contrast-enhanced MR angiography with gadofosveset enables reproducible assessment of hyperemic fractional microvascular blood plasma volume of the calf musculature. V(p was lower in PAD patients than in healthy controls, which reflects a promising functional (hemodynamic biomarker for the
Energy Technology Data Exchange (ETDEWEB)
Harper, F.T.; Young, M.L.; Miller, L.A. [Sandia National Labs., Albuquerque, NM (United States)] [and others
1995-01-01
The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the third of a three-volume document describing the project and contains descriptions of the probability assessment principles; the expert identification and selection process; the weighting methods used; the inverse modeling methods; case structures; and summaries of the consequence codes.
Joo, Jaeyong; Kim, Hyungjun; Han, Sang Soo
2013-11-21
Using a density functional theory calculation including van der Waals (vdW) corrections, we report that H2 adsorption in a cubic-crystalline microporous metal-organic framework (MOF-5) leads to volume shrinkage, which is in contrast to the intuition that gas adsorption in a confined system (e.g., pores in a material) increases the internal pressure and then leads to volumetric expansion. This extraordinary phenomenon is closely related to the vdW interactions between MOF and H2 along with the H2-H2 interaction, rather than the Madelung-type electrostatic interaction. At low temperatures, H2 molecules adsorbed in the MOF-5 form highly symmetrical interlinked nanocages that change from a cube-like shape to a sphere-like shape with H2 loading, helping to exert centrosymmetric forces and hydrostatic (volumetric) stresses from the collection of dispersive interactions. The generated internal negative stress is sufficient to overcome the stiffness of the MOF-5 which is a soft material with a low bulk modulus (15.54 GPa).
Directory of Open Access Journals (Sweden)
Jing Yin
2015-07-01
Full Text Available A total variation diminishing-weighted average flux (TVD-WAF-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing equations were rewritten in the conservative form and then discretized on a uniform grid. The finite volume method was used to discretize the flux term while the remaining terms were approximated with the finite difference method. The second-order TVD-WAF method was employed in conjunction with the Harten-Lax-van Leer (HLL Riemann solver to calculate the numerical flux, and the variables at the cell interface for the local Riemann problem were reconstructed via the fourth-order monotone upstream-centered scheme for conservation laws (MUSCL. The time marching scheme based on the third-order TVD Runge-Kutta method was used to obtain numerical solutions. The model was validated through a series of numerical tests, in which wave breaking and a moving shoreline were treated. The good agreement between the computed results, documented analytical solutions, and experimental data demonstrates the correct discretization of the governing equations and high accuracy of the proposed scheme, and also conforms the advantages of the proposed shock-capturing scheme for the enhanced version of the Boussinesq model, including the convenience in the treatment of wave breaking and moving shorelines and without the need for a numerical filter.
Hindel, Stefan; Söhner, Anika; Maa, Marc; Sauerwein, Wolfgang; Baba, Hideo Andreas; Kramer, Martin; Lüdemann, Lutz
2017-01-01
The aim of our study was to assess the accuracy of fractional interstitial volume determination in low perfused and low vascularized tissue by using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The fractional interstitial volume (ve) was determined in the medial thigh muscle of 12 female pigs by using a 3-dimensional gradient echo sequence with k-space sharing and administering gadolinium-based contrast agent (gadoterate meglumine). Analysis was performed using 3 pharmacokinetic models: the simple Tofts model (TM), the extended TM (ETM), and the 2-compartment exchange model (2CXM). We investigated the effect of varying acquisition durations (ADs) on the model parameter estimates of the 3 models and compared the ve values with the results of histological examinations of muscle sections of the medial thigh muscle. Histological measurements yielded a median value (25%-75% quartile) of 4.8% (3.7%-6.2%) for ve. The interstitial fractional volume determined by DCE-MRI was comparable to the histological results but varied strongly with AD for the TM and ETM. For the TM and the ETM, the results were virtually the same. Choosing arterial hematocrit to Hcta = 0.4, the lowest median ve value determined by DCE-MRI was 5.2% (3.3%-6.1%) for the ETM at a 6-minute AD. The maximum ve value determined with the ETM at a 15-minute AD was 7.7% (4.5%-9.0%). The variation with AD of median ve values obtained with the 2CXM was much smaller: 6.2% (3.1%-9.2%) for the 6-minute AD and 6.3% (4.3%-9.8%) for the 15-minute AD. The best fit for the 2CXM was found at the 10-minute AD with ve values of 6.6% (3.7%-8.2%). No significant correlation between the histological and any DCE-MRI modeling results was found. Considering the expected accuracy of histological measurements, the medians of the MR modeling results were in good agreement with the histological prediction. A parameter determination uncertainty was identified with the use of the TMs. This is due to underfitting and
2012-10-01
increasing the fiber-volume fraction by Vacuum Assisted Resin Transfer Molding ( VARTM ) in order to produce composite structures with aerospace grade...processed composites. Using a combination of viscosity control, U.S. Army Research Laboratory (ARL) based VARTM techniques, and a pressure control...system, we have shown an increase in fiber-volume content from 50% (ARL’s normal processing range for a particular material system and VARTM process) to
Mukherjee, Kanchan Kumar; Kumar, Narendra; Tripathi, Manjul; Oinam, Arun S; Ahuja, Chirag K; Dhandapani, Sivashanmugam; Kapoor, Rakesh; Ghoshal, Sushmita; Kaur, Rupinder; Bhatt, Sandeep
2017-01-01
To evaluate the feasibility, safety and efficacy of dose fractionated gamma knife radiosurgery (DFGKRS) on a daily schedule beyond the linear quadratic (LQ) model, for large volume arteriovenous malformations (AVMs). Between 2012-16, 14 patients of large AVMs (median volume 26.5 cc) unsuitable for surgery or embolization were treated in 2-3 of DFGKRS sessions. The Leksell G frame was kept in situ during the whole procedure. 86% (n = 12) patients had radiologic evidence of bleed, and 43% (n = 6) had presented with a history of seizures. 57% (n = 8) patients received a daily treatment for 3 days and 43% (n = 6) were on an alternate day (2 fractions) regimen. The marginal dose was split into 2 or 3 fractions of the ideal prescription dose of a single fraction of 23-25 Gy. The median follow up period was 35.6 months (8-57 months). In the three-fraction scheme, the marginal dose ranged from 8.9-11.5 Gy, while in the two-fraction scheme, the marginal dose ranged from 11.3-15 Gy at 50% per fraction. Headache (43%, n = 6) was the most common early postoperative complication, which was controlled with short course steroids. Follow up evaluation of at least three years was achieved in seven patients, who have shown complete nidus obliteration in 43% patients while the obliteration has been in the range of 50-99% in rest of the patients. Overall, there was a 67.8% reduction in the AVM volume at 3 years. Nidus obliteration at 3 years showed a significant rank order correlation with the cumulative prescription dose (p 0.95, P value 0.01), with attainment of near-total (more than 95%) obliteration rates beyond 29 Gy of the cumulative prescription dose. No patient receiving a cumulative prescription dose of less than 31 Gy had any severe adverse reaction. In co-variate adjusted ordinal regression, only the cumulative prescription dose had a significant correlation with common terminology criteria for adverse events (CTCAE) severity (P value 0.04), independent of age, AVM volume
DNS of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction
Kidanemariam, Aman G; Doychev, Todor; Uhlmann, Markus
2013-01-01
We have performed direct numerical simulation of turbulent open channel flow over a smooth horizontal wall in the presence of finite-size, heavy particles. The spherical particles have a diameter of approximately 7 wall units, a density of 1.7 times the fluid density and a solid volume fraction of 0.0005. The value of the Galileo number is set to 16.5, while the Shields parameter measures approximately 0.2. Under these conditions, the particles are predominantly located in the vicinity of the bottom wall, where they exhibit strong preferential concentration which we quantify by means of Voronoi analysis and by computing the particle-conditioned concentration field. As observed in previous studies with similar parameter values, the mean streamwise particle velocity is smaller than that of the fluid. We propose a new definition of the fluid velocity "seen" by finite-size particles based on an average over a spherical surface segment, from which we deduce in the present case that the particles are instantaneousl...
Kirkil, Gokhan
2016-11-01
The effect of the Solid Volume Fraction (SVF) on the flow structure within and past a circular array of surface-mounted cylinders that extends over 75% of the water depth, h is investigated using Detached Eddy Simulation (DES). This set up mimics the case of a submerged patch of rigid vegetation in a channel. The diameter of the cylinders in the array is d = 0.02D, where D is the diameter of the circular array. The channel Reynolds number is close to 20,000 and the Reynolds number defined with D is around 24,000. DES is conducted for SVF = 10% and 25%. It is found that as the SVF increases, fairly strong horseshoe vortex system forms around the upstream face of the vegetation patch, the strength of the separated shear layers on the sides of the vegetation patch increases and the length of the recirculation region behind the patch decreases. While an increase of the SVF results in a large increase of the turbulent kinetic energy in the wake, the opposite is observed within the porous vegetation patch.
Jamil, Norazaliza Mohd; Wang, Qi
2017-09-01
Renewable energy or biofuel from lignocellulosic biomass is an alternative way to replace the depleting fossil fuels. The production cost can be reduced by increasing the concentration of biomass particles. However, lignocellulosic biomass is a suspension of natural fibres, and processing at high solid concentration is a challenging task. Thus, understanding the factors that affect the rheology of biomass suspension is crucial in order to maximize the production at a minimum cost. Our aim was to develop a mathematical model for enzymatic hydrolysis of cellulose by combining three scales: the macroscopic flow field, the mesoscopic particle orientation, and the microscopic reactive kinetics. The governing equations for the flow field, particle stress, kinetic equations, and particle orientation were coupled and were simultaneously solved using a finite element method based software, COMSOL. One of the main results was the changes in rheology of biomass suspension were not only due to the decrease in volume fraction of particles, but also due the types of fibres. The results from the simulation model agreed qualitatively with the experimental findings. This approach has enables us to obtain better predictive capabilities, hence increasing our understanding on the behaviour of biomass suspension.
Directory of Open Access Journals (Sweden)
Willy Schuwarten Júnior
2013-10-01
Full Text Available A thermomechanical and a microstructure caracterization and a mathematical model of the evolution of the recrystallized volume fraction of ferrite in hot rolling in a Steckel mill have been carried out here. The proposed model is able to reasonably predict the observed in hot rolling, that is, there is 100% recrystallization of ferrite after roughing and partial recrystallization only after finishing
DEFF Research Database (Denmark)
Haarmark, Christian; Haase, Christine; Jensen, Maria Maj
2016-01-01
BACKGROUND: Estimation of left ventricular ejection fraction (LVEF) using equilibrium radionuclide angiography is an established method for assessment of left ventricular function. The purpose of this study was to establish normative data on left and right ventricular volumes and ejection fractio...
Directory of Open Access Journals (Sweden)
Choong Hoon Lee
2015-10-01
Full Text Available A computer simulation of a gas engine was performed to investigate the effects of the inert gas volume fraction in biogas on engine performance, specifically the engine torque and the brakespecific fuel consumption (BSFC using GT-Power®. The engine speeds used in the simulation were 900 and 1800 rpm, while the simulated engine loads were 25, 50, 75 and 100%. The volume fraction of the inert gas N2 in the biogas was varied from 20 to 80% with an interval of 10%. In a simulation of a naturally aspirated gas engine which is operated with an 80% volume fraction of N2 in biogas, the optimal air-fuel ratio in terms of the fuel economy and brake power generation was 3.5. In a simulation of a turbo intercooler gas engine operated with an 80% volume fraction of N2 in biogas, the optimal air-fuel ratios with regard to the fuel economy and brake power generation were 5.0 and 3.5, respectively.
Directory of Open Access Journals (Sweden)
Omid Ali Akbari
2015-11-01
Full Text Available This article aims to study the impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. To this aim, compulsory convection heat transfer of water–aluminum oxide nanofluid in a rib-roughened microchannel has been numerically studied. The results of this simulation for rib-roughened three-dimensional microchannel have been evaluated in contrast to the smooth (unribbed three-dimensional microchannel with identical geometrical and heat–fluid boundary conditions. Numerical simulation is performed for different nanoparticle volume fractions for Reynolds numbers of 10 and 100. Cold fluid entering the microchannel is heated in order to apply constant flux to external surface of the microchannel walls and then leaves it. Given the results, the fluid has a higher heat transfer with a hot wall in surfaces with ribs rather than in smooth ones. As Reynolds number, number of ribs, and nanoparticle volume fractions increase, more temperature increase happens in fluid in exit intersection of the microchannel. By investigating Nusselt number and friction factor, it is observed that increase in nanoparticle volume fractions causes nanofluid heat transfer properties to have a higher heat transfer and friction factor compared to the base fluid used in cooling due to an increase in viscosity.
Directory of Open Access Journals (Sweden)
Dańko R.
2016-12-01
Full Text Available The aim of the hereby paper is to present the developed model of determining the volume and surface porosity based on the main fraction of polifractional materials, its experimental verification and utilisation for the interpretation of effects accompanying the formation of a moulding sand apparent density, porosity and permeability in the blowing processes of the core and moulds technology.
Buhmann, Stefan Yoshi
2012-01-01
In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...
Institute of Scientific and Technical Information of China (English)
LI Hua; WANG Mi; WU Ying-xiang; MA Yi-xin; WILLIAMS Richard
2005-01-01
This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the mean oil volume fraction is up to 23.1%.A sensitivity coefficient back-projection (SBP) algorithm was adopted to reconstruct the flow distributions and a cross correlation method was applied to obtain the oil velocity distributions. The oil volume fraction and velocity distributions obtained from both measurement techniques were compared and good agreement was found, which indicates that the ERT technique can be used to measure the low fraction oil-water flows. Finally, the factors affecting measurement precision were discussed.
Selbekk, R. S.; Tronnes, R. G.
2007-12-01
In the 50 km wide Icelandic rift zones rhyolite magma is generated by partial melting of hydrated metabasaltic crust, subsiding under the weight of the growing volcanic pile. This mechanism of silicic melt formation is indicated by the basalt-rhyolite bimodality and rhyolite O-isotope composition. The low 18/16O-isotope ratios of rift zone rhyolites trace the high-latitude meteoric water component of the subsiding hydrated basalts [1]. The rhyolites of the volcanic flank zones (VFZ), however, have generally as heavy oxygen as the associated alkaline to transitional basalts and intermediate volcanics [2,3]. The minor volcanic loading of the older, thicker and stronger VFZ crust is insufficient for significant subsidence, and less pronounced basalt-rhyolite bimodality combined with other geochemical features support silicic melt generation by fractional crystallization. An extreme case in Icelandic, as well as global, perspective is the rhyolite magma of the plinian eruption from the large VFZ-volcano, Oraefajokull, in 1362 AD [4]. Glass, mineral and bulk tephra analyses show no chemical variation exceeding the analytical precision for the entire erupted volume of 2 km3 DRE. This applies even to the glass shards from distant locations in Greenland, Norway and Ireland. The total phenocryst content is 0.5-1 wt percent, with oligoclase (An14 Ab81 Or5.5), fayalite (Fa99.7 Fo0.3) and hedenbergite (Wo44.7 En2.6 Fs52.7) constituting 50- 80, 10-25 and 10-25 percent of the total phenocrysts, respectively. The extreme mineral compositions (especially pure fayalite and hedenbergite) resemble those of the granophyres in the Skaergaard and Bushveld complexes and differ from all other investigated rhyolites. The advanced fractionation and homogenisation to form the erupted 2 km3 DRE rhyolite is petrogenetically challenging, and a parental magma chamber of 20-40 km3 seems like a conservative estimate. The time-scale of the historic magma chamber evolution under Oraefajokull is
Maquer, Ghislain; Musy, Sarah N; Wandel, Jasmin; Gross, Thomas; Zysset, Philippe K
2015-06-01
As our population ages, more individuals suffer from osteoporosis. This disease leads to impaired trabecular architecture and increased fracture risk. It is essential to understand how morphological and mechanical properties of the cancellous bone are related. Morphology-elasticity relationships based on bone volume fraction (BV/TV) and fabric anisotropy explain up to 98% of the variation in elastic properties. Yet, other morphological variables such as individual trabeculae segmentation (ITS) and trabecular bone score (TBS) could improve the stiffness predictions. A total of 743 micro-computed tomography (μCT) reconstructions of cubic trabecular bone samples extracted from femur, radius, vertebrae, and iliac crest were analyzed. Their morphology was assessed via 25 variables and their stiffness tensor (CFE) was computed from six independent load cases using micro finite element (μFE) analyses. Variance inflation factors were calculated to evaluate collinearity between morphological variables and decide upon their inclusion in morphology-elasticity relationships. The statistically admissible morphological variables were included in a multiple linear regression model of the dependent variable CFE. The contribution of each independent variable was evaluated (ANOVA). Our results show that BV/TV is the best determinant of CFE(r(2) adj = 0.889), especially in combination with fabric anisotropy (r(2) adj = 0.968). Including the other independent predictors hardly affected the amount of variance explained by the model (r(2) adj = 0.975). Across all anatomical sites, BV/TV explained 87% of the variance of the bone elastic properties. Fabric anisotropy further described 10% of the bone stiffness, but the improvement in variance explanation by adding other independent factors was marginal (variables do not bring any further contribution. These overall conclusions remain to be confirmed for specific bone diseases and postelastic properties.
Nazarian, Ara; von Stechow, Dietrich; Zurakowski, David; Müller, Ralph; Snyder, Brian D
2008-12-01
Preventing nontraumatic fractures in millions of patients with osteoporosis or metastatic cancer may significantly reduce the associated morbidity and reduce health-care expenditures incurred by these fractures. Predicting fracture occurrence requires an accurate understanding of the relationship between bone structure and the mechanical properties governing bone fracture that can be readily measured. The aim of this study was to test the hypothesis that a single analytic relationship with either bone tissue mineral density or bone volume fraction (BV/TV) as independent variables could predict the strength and stiffness of normal and pathologic cancellous bone affected by osteoporosis or metastatic cancer. After obtaining institutional review board approval and informed consent, 15 patients underwent excisional biopsy of metastatic prostate, breast, lung, ovarian, or colon cancer from the spine and/or femur to obtain 41 metastatic cancer specimens. In addition, 96 noncancer specimens were excised from 43 age- and site-matched cadavers. All specimens were imaged using micro-computed tomography (micro-CT) and backscatter emission imaging and tested mechanically by uniaxial compression and nanoindentation. The minimum BV/TV, measured using quantitative micro-CT, accounted for 84% of the variation in bone stiffness and strength for all cancellous bone specimens. While relationships relating bone density to strength and stiffness have been derived empirically for normal and osteoporotic bone, these relationships have not been applied to skeletal metastases. This simple analytic relationship will facilitate large-scale screening and prediction of fracture risk for normal and pathologic cancellous bone using clinical CT systems to determine the load capacity of bones altered by metastatic cancer, osteoporosis, or both.
Feller Fractional Advection-Dispersion and Levy Distribution%Feller算子下的分数阶对流-弥散过程与Levy分布
Institute of Scientific and Technical Information of China (English)
朱波; 韩宝燕
2011-01-01
The paper discusses the fractional Levy-Feller diffusion equation,draws the Green function with Cauchy problem by means of Fourier transform. Here Green function is represented by Levy stable probability densities function with index and skewness θ. It turns out that the presence of asymmetry (θ →0) plays a fundamental role: it produces shift of the maximum concentration location and long tail. When α→ 2,θ → 0,the analytical solution is same to the solution of the classical advection-dispersion equation.%建立了Levy-Feller分数阶扩散方程,利用Fourier变换及其逆变换,给出其Cauchy问题的带有分数阶导数阶数α(1＜α≤2)和扭曲参数θ(｜θ｜≤α-2)的Levy平稳概率密度函数表示的Green函数解.结果表明,在非均匀(θ≠0)扩散过程中,主要由扭曲参数导致了最大浓度位置的偏移和拖尾现象;当α→2,即θ→0时,问题的解与相应整数阶对流-弥散方程的解一致.
Covey, Steven J.
1993-01-01
Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses
Trofymow, J. A.; Gougeon, F.
2015-12-01
After forest harvest significant amounts of woody residues are left dispersed on site and some subsequently piled and burned. Quantification of residues is required for estimating C budgets, billable waste, harvest efficiency, bioenergy potential and smoke emissions. Trofymow (et al 2014 CJFR) compared remote sensing methods to ground-based waste and residue survey (WRS) methods for residue piles in 4 cutblocks in the Oyster River (OR) area in coastal BC. Compared to geospatial methods using 15cm orthophotos and LiDAR acquired in 2011 by helicopter, the WRS method underestimated pile wood by 30% to 50% while a USFS volume method overestimated pile wood by 50% if site specific packing ratios were not used. A geospatial method was developed in PCI Geomatica to analyze 2-bit images of logs >15cm diameters to determine dispersed wood residues in OR and compare to WRS methods. Across blocks, geospatial and WRS method wood volumes were correlated (R2=0.69), however volumes were 2.5 times larger for the geospatial vs WRS method. Methods for dispersed residues could not be properly compared as individual WRS plots were not georeferenced, only 12 plots were sampled in total, and low-resolution images poorly resolved logs. Thus, a new study in 2 cutblocks in the Northwest Bay (NWB) area acquired 2cm resolution RGB air-photography in 2014-15 using an Aeryon Sky Ranger UAV prior to and after burn pile construction. A total of 57 dispersed WRS plots and 24 WRS pile or accumulation plots were georeferenced and measured. Stero-pairs were used to generate point-clouds for pile bulk volumes. Images processed to 8-bit grey scale are being analyzed with a revised PCI method that better accounts for log overlaps. WRS methods depend on a good sample of plots and accurate determination of stratum (dispersed, roadside, piles, accumulations) areas. Analysis of NWB blocks shows WRS field methods for stratum area differ by 5-20% from that determined using orthophotos. Plot-level wood
Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio
2017-01-01
Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash...
Kandasamy, R.; Jeyabalan, C.; Sivagnana Prabhu, K. K.
2016-02-01
This article examines the influence of thermophoresis, Brownian motion of the nanoparticles with variable stream conditions in the presence of magnetic field on mixed convection heat and mass transfer in the boundary layer region of a semi-infinite porous vertical plate in a nanofluid under the convective boundary conditions. The transformed boundary layer ordinary differential equations are solved numerically using Maple 18 software with fourth-fifth order Runge-Kutta-Fehlberg method. Numerical results are presented both in tabular and graphical forms illustrating the effects of these parameters with magnetic field on momentum, thermal, nanoparticle volume fraction and solutal concentration boundary layers. The numerical results obtained for the velocity, temperature, volume fraction, and concentration profiles reveal interesting phenomenon, some of these qualitative results are presented through plots. It is interesting to note that the magnetic field plays a dominant role on nanofluid flow under the convective boundary conditions.
Wear Behavior of Al-Mg2Si Cast In-situ Composite: Effect of Mg2Si Different Volume Fractions
Ghiasinejad, J.; Emamy, M.; Ghorbani, M. R.; Malekan, A.
2010-06-01
Al-Mg2Si in situ composites are great candidates for automobile brake discs due to their low density, reasonably high young's modulus and low thermal expansion coefficient. Thus, understanding wear properties of this composite is of a great importance. In this study wear behavior of an in-situ Al-Mg2Si composite, prepared from a simple casting route, has been investigated using a pin-on-disc configuration concerning the effect of Mg2Si volume fractions, 15, 20 and 25% respectively. It was found that the weight loss increases with increase in reinforce volume fraction which can be due to a coarse morphology of primary Mg2Si particles. It was found that the variations of weight loss with sliding distance comprise different regimes of which the mechanisms are discussed.
Energy Technology Data Exchange (ETDEWEB)
Schwab, K.; Brack, W. [UFZ - Helmholtz Centre or Environmental Research, Leipzig (Germany). Dept. of Effect-Directed Analysis
2007-06-15
Background, Aim and Scope: Effect-directed analysis (EDA) is a powerful tool for the identification of key toxicants in complex environmental samples. In most cases, EDA is based on total extraction of organic contaminants leading to an erroneous prioritization with regard to hazard and risk. Bioaccessibility-directed extraction aims to discriminate between contaminants that take part in partitioning between sediment and biota in a relevant time frame and those that are enclosed in structures, that do not allow rapid desorption. Standard protocols of targeted extraction of rapidly desorbing, and thus bioaccessible fraction using TENAX {sup registered} are based only on small amounts of sediment. In order to get sufficient amounts of extracts for subsequent biotesting, fractionation, and structure elucidation a large volume extraction technique needs to be developed applying one selected extraction time and excluding toxic procedural blanks. Materials and Methods: Desorption behaviour of sediment contaminants was determined by a consecutive solid-solid extraction of sediment using TENAX {sup registered} fitting a tri-compartment model on experimental data. Time needed to remove the rapidly desorbing fraction trap was calculated to select a fixed extraction time for single extraction procedures. Up-scaling by about a factor of 100 provided a large volume extraction technique for EDA. Reproducibility and comparability to small volume approach were proved. Blanks of respective TENAX {sup registered} mass were investigated using Scenedesmus vacuolatus and Artemia salina as test organisms. Results: Desorption kinetics showed that 12 to 30 % of sediment associated pollutants are available for rapid desorption. t{sub r}ap is compound dependent and covers a range of 2 to 18 h. On that basis a fixed extraction time of 24 h was selected. Validation of large volume approach was done by the means of comparison to small method and reproducibility. The large volume showed a good
Institute of Scientific and Technical Information of China (English)
王艳宏; 王秋红; 夏永刚; 匡海学
2011-01-01
Objective; To study relationship between 'pungent dispersing bitter evacuant' antiasthmaticeffect and the chemical split fraction of Ephedrae Herba and to provide scientific evidence for the verification of the new assumption on the theory of properties and flavors of Chinese medicine ' one herbal contains X flavors and Y properties ( Y ≤X ) '. Method: Equal volume of acetylcholine chloride and histamine phosphate solution were used to induce abnormalism asthma in guinea, and water decoction(775 mg·kg-1 ) , alkaloids fraction(7. 8 mg·kg-1 ) , naphtha fraction(3. 87 × 10 -4 mg·kg-1), polysaccharide fraction(45. 6 mg·kg-1), phenolic acids fraction(36. 4 mg·kg-1) , alkaloids and polysaccharide fraction(7. 8 mg·kg-1 +45.6 mg·kg-1) were given The latent period of asthmatic convulsion was observed The effects of water decoction fraction, alkaloids fraction, naphtha fraction, polysaccharide fraction, phenolic acids fraction on spasm tracheal smooth muscle caused by histamine and acetylcholine in guinea was observed. Result; Compared with blank control group, water decoction, alkaloids fraction and polysaccharide fraction inhibited abnormalism asthma occurrence ( P < 0. 01 ) , Compared with water decoction, alkaloids fraction and polysaccharide fraction showed significant difference (P < 0. 05 ) . Compared with water decoction, alkaloids fraction compatibility with polysaccharide fraction according to the former proportion, there was no significant difference. Compared with blank control group, water decoction and alkaloids fraction take the effect to normal tracheal strips from guinea body showed significant difference ( P < 0. 05 ) ; water decoction, phenolic acids fraction, alkaloids fraction and naphtha fraction take the effect to spasticity tracheal strips caused by histamine showed significant difference ( P < 0. 01 , P < 0. 05 ) ; water decoction and alkaloids fraction showed significant difference(P <0. 01) to spasticity tracheal strips caused by acetyl
Directory of Open Access Journals (Sweden)
Kouhei Kamiya
Full Text Available PURPOSE: Previous studies suggest that compression and stretching of the corticospinal tract (CST potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH. Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI analysis. METHODS: Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( = axon diameter and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. RESULTS: Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001, whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. CONCLUSION: Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.
Energy Technology Data Exchange (ETDEWEB)
Amrollahi, A; Hamidi, A A [Faculty of Engineering, University of Teheran, PO Box 11365-4563, Teheran (Iran, Islamic Republic of); Rashidi, A M [Gas Division of Research Institute of Petroleum Industry, PO Box 18745-4163, Tehran (Iran, Islamic Republic of)], E-mail: rashidiam@ripi.ir
2008-08-06
In this investigation, nanofluids of carbon nanotubes are prepared and the thermal conductivity and volumetric heat capacity of these fluids are measured using a thin layer technique as a function of time of ultrasonication, temperature, and volume fraction. It has been observed that after using the ultrasonic disrupter, the size of agglomerated particles and number of primary particles in a particle cluster was significantly decreased and that the thermal conductivity increased with elapsed ultrasonication time. The clustering of carbon nanotubes was also confirmed microscopically. The strong dependence of the effective thermal conductivity on temperature and volume fraction of nanofluids was attributed to Brownian motion and the interparticle potential, which influences the particle motion. The effect of temperature will become much more evident with an increase in the volume fraction and the agglomeration of the nanoparticles, as observed experimentally. The data obtained from this work have been compared with those of other studies and also with mathematical models at present proven for suspensions. Using a 2.5% volumetric concentration of carbon nanotubes resulted in a 20% increase in the thermal conductivity of the base fluid (ethylene glycol).The volumetric heat capacity also showed a pronounced increase with respect to that of the pure base fluid.
Amrollahi, A; Hamidi, A A; Rashidi, A M
2008-08-06
In this investigation, nanofluids of carbon nanotubes are prepared and the thermal conductivity and volumetric heat capacity of these fluids are measured using a thin layer technique as a function of time of ultrasonication, temperature, and volume fraction. It has been observed that after using the ultrasonic disrupter, the size of agglomerated particles and number of primary particles in a particle cluster was significantly decreased and that the thermal conductivity increased with elapsed ultrasonication time. The clustering of carbon nanotubes was also confirmed microscopically. The strong dependence of the effective thermal conductivity on temperature and volume fraction of nanofluids was attributed to Brownian motion and the interparticle potential, which influences the particle motion. The effect of temperature will become much more evident with an increase in the volume fraction and the agglomeration of the nanoparticles, as observed experimentally. The data obtained from this work have been compared with those of other studies and also with mathematical models at present proven for suspensions. Using a 2.5% volumetric concentration of carbon nanotubes resulted in a 20% increase in the thermal conductivity of the base fluid (ethylene glycol).The volumetric heat capacity also showed a pronounced increase with respect to that of the pure base fluid.
Directory of Open Access Journals (Sweden)
H. Shokrollahi
2016-03-01
Full Text Available The purpose of this work is to investigate the effects of the volume fraction and bimodal distribution of solid particles on the compression and tension behavior of the Co-ferrite-based magneto-rheological fluids (MRFs containing silicon oil as a carrier. Hence, Co-ferrite particles (CoFe2O4 with two various sizes were synthesized by the chemical co-precipitation method and mixed so as to prepare the bimodal MRF. The X-Ray Diffraction (XRD analysis, Fourier Transform Infrared Spectroscopy (FTIR, Laser Particle Size Analysis (LPSA and Vibrating Sample Magnetometer (VSM were conducted to examine the structural and magnetic properties, respectively. The results indicated that the increase of the volume fraction has a direct increasing influence on the values of the compression and tension strengths of fluids. In addition, the compression and tension strengths of the mixed MRF sample (1.274 and 0.647 MPa containing 60 and 550 nm samples were higher than those of the MRF sample with the same volume fraction and uniform particle size of 550 nm.
Energy Technology Data Exchange (ETDEWEB)
Anthemidis, Aristidis N., E-mail: anthemid@chem.auth.gr [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124 (Greece); Mitani, Constantina; Balkatzopoulou, Paschalia; Tzanavaras, Paraskevas D. [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124 (Greece)
2012-07-06
Highlights: Black-Right-Pointing-Pointer A dispersive liquid-liquid micro extraction method for lead and copper determination. Black-Right-Pointing-Pointer A micro-volume transportation system for extractant solvent lighter than water. Black-Right-Pointing-Pointer Analysis of natural water samples. - Abstract: A simple and fast preconcentration/separation dispersive liquid-liquid micro extraction (DLLME) method for metal determination based on the use of extraction solvent with lower density than water has been developed. For this purpose a novel micro-volume introduction system was developed enabling the on-line injection of the organic solvent into flame atomic absorption spectrometry (FAAS). The effectiveness and efficiency of the proposed system were demonstrated for lead and copper preconcentration in environmental water samples using di-isobutyl ketone (DBIK) as extraction solvent. Under the optimum conditions the enhancement factor for lead and copper was 187 and 310 respectively. For a sample volume of 10 mL, the detection limit (3 s) and the relative standard deviation were 1.2 {mu}g L{sup -1} and 3.3% for lead and 0.12 {mu}g L{sup -1} and 2.9% for copper respectively. The developed method was evaluated by analyzing certified reference material and it was applied successfully to the analysis of environmental water samples.
Directory of Open Access Journals (Sweden)
A. Pantet
2010-01-01
Full Text Available Coastal erosion results from a combination of various factors, both natural and humaninduced, which have different time and space patterns. In addition, uncertainties still remain about the interactions of the forcing agents, as well as on the significance of non-local causes of erosion. We focused about the surface sediments in the Marennes Oléron bay, after a general description of the site that has many various activities. The superficial sediments show a mechanical behavior, mainly depends on the fine fraction for a composition that contains up to 60% of sandy material. Fine sediments fraction has a typical yield stress depending naturally of concentration or water content. This yield could be modified slightly or significantly by adding silt or sand. As a result, the rheological measurement sensitivity allows us to characterize five typical sediments that correlate with solid fraction and fine fraction.
Karssemakers, L H E; Nolte, J W; Tuinzing, D B; Langenbach, G E J; Raijmakers, P G; Becking, A G
2014-12-01
Unilateral condylar hyperplasia or hyperactivity is a disorder of growth that affects the mandible, and our aim was to visualise the 3-dimensional bony microstructure of resected mandibular condyles of affected patients. We prospectively studied 17 patients with a clinical presentation of progressive mandibular asymmetry and an abnormal single-photon emission computed tomographic (SPECT) scan. All patients were treated by condylectomy to arrest progression. The resected condyles were scanned with micro-CT (18 μm resolution). Rectangular volumes of interest were selected in 4 quadrants (lateromedial and superoinferior) of the trabecular bone of each condyle. Variables of bone architecture (volume fraction, trabecular number, thickness, and separation, degree of mineralisation, and degree of structural anisotrophy) were calculated with routine morphometric software. Eight of the 17 resected condyles showed clear destruction of the subchondral layer of cortical bone. There was a significant superoinferior gradient for all trabecular variables. Mean (SD) bone volume fraction (25.1 (6) %), trabecular number (1.69 (0.26) mm(-1)), trabecular thickness (0.17 (0.03) mm), and degree of mineralisation (695.39 (39.83) mg HA/cm(3)) were higher in the superior region. Trabecular separation (0.6 (0.16) mm) and structural anisotropy (1.84 (0.28)) were higher in the inferior region. The micro-CT analysis showed increased cortical porosity in many of the condyles studied. It also showed a higher bone volume fraction, greater trabecular thickness and trabecular separation, greater trabecular number, and less mineralisation in the condyles of the 17 patients compared with the known architecture of unaffected mandibular condyles.
Meaney, Christopher; Moineddin, Rahim
2014-01-24
In biomedical research, response variables are often encountered which have bounded support on the open unit interval--(0,1). Traditionally, researchers have attempted to estimate covariate effects on these types of response data using linear regression. Alternative modelling strategies may include: beta regression, variable-dispersion beta regression, and fractional logit regression models. This study employs a Monte Carlo simulation design to compare the statistical properties of the linear regression model to that of the more novel beta regression, variable-dispersion beta regression, and fractional logit regression models. In the Monte Carlo experiment we assume a simple two sample design. We assume observations are realizations of independent draws from their respective probability models. The randomly simulated draws from the various probability models are chosen to emulate average proportion/percentage/rate differences of pre-specified magnitudes. Following simulation of the experimental data we estimate average proportion/percentage/rate differences. We compare the estimators in terms of bias, variance, type-1 error and power. Estimates of Monte Carlo error associated with these quantities are provided. If response data are beta distributed with constant dispersion parameters across the two samples, then all models are unbiased and have reasonable type-1 error rates and power profiles. If the response data in the two samples have different dispersion parameters, then the simple beta regression model is biased. When the sample size is small (N0 = N1 = 25) linear regression has superior type-1 error rates compared to the other models. Small sample type-1 error rates can be improved in beta regression models using bias correction/reduction methods. In the power experiments, variable-dispersion beta regression and fractional logit regression models have slightly elevated power compared to linear regression models. Similar results were observed if the
Energy Technology Data Exchange (ETDEWEB)
Eliazar, Iddo I., E-mail: eliazar@post.tau.ac.il [Holon Institute of Technology, P.O. Box 305, Holon 58102 (Israel); Shlesinger, Michael F., E-mail: mike.shlesinger@navy.mil [Office of Naval Research, Code 30, 875 N. Randolph St., Arlington, VA 22203 (United States)
2013-06-10
Brownian motion is the archetypal model for random transport processes in science and engineering. Brownian motion displays neither wild fluctuations (the “Noah effect”), nor long-range correlations (the “Joseph effect”). The quintessential model for processes displaying the Noah effect is Lévy motion, the quintessential model for processes displaying the Joseph effect is fractional Brownian motion, and the prototypical model for processes displaying both the Noah and Joseph effects is fractional Lévy motion. In this paper we review these four random-motion models–henceforth termed “fractional motions” –via a unified physical setting that is based on Langevin’s equation, the Einstein–Smoluchowski paradigm, and stochastic scaling limits. The unified setting explains the universal macroscopic emergence of fractional motions, and predicts–according to microscopic-level details–which of the four fractional motions will emerge on the macroscopic level. The statistical properties of fractional motions are classified and parametrized by two exponents—a “Noah exponent” governing their fluctuations, and a “Joseph exponent” governing their dispersions and correlations. This self-contained review provides a concise and cohesive introduction to fractional motions.
Garcia-Lazaro, Haydee Guadalupe; Becerra-Laparra, Ivonne; Cortez-Conradis, David; Roldan-Valadez, Ernesto
2016-01-01
Summary Several parameters of brain integrity can be derived from diffusion tensor imaging. These include fractional anisotropy (FA) and mean diffusivity (MD). Combination of these variables using multivariate analysis might result in a predictive model able to detect the structural changes of human brain aging. Our aim was to discriminate between young and older healthy brains by combining structural and volumetric variables from brain MRI: FA, MD, and white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) volumes. This was a cross-sectional study in 21 young (mean age, 25.71±3.04 years; range, 21–34 years) and 10 elderly (mean age, 70.20±4.02 years; range, 66–80 years) healthy volunteers. Multivariate discriminant analysis, with age as the dependent variable and WM, GM and CSF volumes, global FA and MD, and gender as the independent variables, was used to assemble a predictive model. The resulting model was able to differentiate between young and older brains: Wilks’ λ = 0.235, χ2 (6) = 37.603, p = .000001. Only global FA, WM volume and CSF volume significantly discriminated between groups. The total accuracy was 93.5%; the sensitivity, specificity and positive and negative predictive values were 91.30%, 100%, 100% and 80%, respectively. Global FA, WM volume and CSF volume are parameters that, when combined, reliably discriminate between young and older brains. A decrease in FA is the strongest predictor of membership of the older brain group, followed by an increase in WM and CSF volumes. Brain assessment using a predictive model might allow the follow-up of selected cases that deviate from normal aging. PMID:27027893
Vassiliou, Vassilios S; Wassilew, Katharina; Cameron, Donnie; Heng, Ee Ling; Nyktari, Evangelia; Asimakopoulos, George; de Souza, Anthony; Giri, Shivraman; Pierce, Iain; Jabbour, Andrew; Firmin, David; Frenneaux, Michael; Gatehouse, Peter; Pennell, Dudley J; Prasad, Sanjay K
2017-06-12
Our objectives involved identifying whether repeated averaging in basal and mid left ventricular myocardial levels improves precision and correlation with collagen volume fraction for 11 heartbeat MOLLI T 1 mapping versus assessment at a single ventricular level. For assessment of T 1 mapping precision, a cohort of 15 healthy volunteers underwent two CMR scans on separate days using an 11 heartbeat MOLLI with a 5(3)3 beat scheme to measure native T 1 and a 4(1)3(1)2 beat post-contrast scheme to measure post-contrast T 1, allowing calculation of partition coefficient and ECV. To assess correlation of T 1 mapping with collagen volume fraction, a separate cohort of ten aortic stenosis patients scheduled to undergo surgery underwent one CMR scan with this 11 heartbeat MOLLI scheme, followed by intraoperative tru-cut myocardial biopsy. Six models of myocardial diffuse fibrosis assessment were established with incremental inclusion of imaging by averaging of the basal and mid-myocardial left ventricular levels, and each model was assessed for precision and correlation with collagen volume fraction. A model using 11 heart beat MOLLI imaging of two basal and two mid ventricular level averaged T 1 maps provided improved precision (Intraclass correlation 0.93 vs 0.84) and correlation with histology (R (2) = 0.83 vs 0.36) for diffuse fibrosis compared to a single mid-ventricular level alone. ECV was more precise and correlated better than native T 1 mapping. T 1 mapping sequences with repeated averaging could be considered for applications of 11 heartbeat MOLLI, especially when small changes in native T 1/ECV might affect clinical management.
Directory of Open Access Journals (Sweden)
A. H. Meysami
2017-01-01
Full Text Available In this paper, the effect of volume fraction of single-walled carbon nanotubes on natural frequencies of polymer composite cone-shaped shells made from Poly(Methyl Methacrylate (PMMA is studied. In order to determine the characterization of materials reinforced with nanoparticles, the molecular dynamics and mixture rule has been used. The motion equations of composite shell based on the classical thin shells theory using Hamilton’s principle are obtained. Then, using the Ritz method, approximate analytical solution of the natural frequency is presented. Results indicate that the nanotubes have a noticeable effect on the natural frequencies.
Gărăjeu, M.; Suquet, P.
2007-04-01
Composite materials often exhibit local fluctuations in the volume fraction of their individual constituents. This paper studies the influence of such small fluctuations on the effective properties of composites. A general asymptotic expansion of these properties in terms of powers of the amplitude of the fluctuations is given first. Then, this general result is applied to porous materials. As is well-known, the effective yield surface of ductile voided materials is accurately described by Gurson's criterion. Suitable extensions for viscoplastic solids have also been proposed. The question addressed in the present study pertains to nonuniform distributions of voids in a typical volume element or in other words to the presence of matrix-rich and pore-rich zones in the material. It is shown numerically and analytically that such deviations from a uniform distribution result in a weakening of the macroscopic carrying capacity of the material.
Jin, BoCheng
2011-12-01
Organic and inorganic fiber reinforced composites with innumerable fiber orientation distributions and fiber geometries are abundantly available in several natural and synthetic structures. Inorganic glass fiber composites have been introduced to numerous applications due to their economical fabrication and tailored structural properties. Numerical characterization of such composite material systems is necessitated due to their intrinsic statistical nature, which renders extensive experimentation prohibitively time consuming and costly. To predict various mechanical behavior and characterizations of Uni-Directional Fiber Composites (UDFC) and Random Fiber Composites (RaFC), we numerically developed Representative Volume Elements (RVE) with high accuracy and efficiency and with complex fiber geometric representations encountered in uni-directional and random fiber networks. In this thesis, the numerical simulations of unidirectional RaFC fiber strand RVE models (VF>70%) are first presented by programming in ABAQUS PYTHON. Secondly, when the cross sectional aspect ratios (AR) of the second phase fiber inclusions are not necessarily one, various types of RVE models with different cross sectional shape fibers are simulated and discussed. A modified random sequential absorption algorithm is applied to enhance the volume fraction number (VF) of the RVE, which the mechanical properties represents the composite material. Thirdly, based on a Spatial Segment Shortest Distance (SSSD) algorithm, a 3-Dimentional RaFC material RVE model is simulated in ABAQUS PYTHON with randomly oriented and distributed straight fibers of high fiber aspect ratio (AR=100:1) and volume fraction (VF=31.8%). Fourthly, the piecewise multi-segments fiber geometry is obtained in MATLAB environment by a modified SSSD algorithm. Finally, numerical methods including the polynomial curve fitting and piecewise quadratic and cubic B-spline interpolation are applied to optimize the RaFC fiber geometries
Green, Philip; Babu, Benson A; Teruya, Sergio; Helmke, Stephen; Prince, Martin; Maurer, Mathew S
2013-01-01
Anemia, a common comorbidity in older adults with heart failure and a preserved ejection fraction (HFPEF), is associated with worse outcomes. The authors quantified the effect of anemia treatment on left ventricular (LV) structure and function as measured by cardiac magnetic resonance (CMR) imaging. A prospective, randomized single-blind clinical trial (NCT NCT00286182) comparing the safety and efficacy of epoetin alfa vs placebo for 24 weeks in which a subgroup (n=22) had cardiac magnetic resonance imaging (MRI) at baseline and after 3 and 6 months to evaluate changes in cardiac structure and function. Pressure volume (PV) indices were derived from MRI measures of ventricular volume coupled with sphygmomanometer-measured pressure and Doppler estimates of filling pressure. The end-systolic and end-diastolic PV relations and the area between them as a function of end-diastolic pressure, the isovolumic PV area (PVAiso), were calculated. Patients (75±10 years, 64% women) with HFPEF (EF=63%±15%) with an average hemoglobin of 10.3±1.1 gm/dL were treated with epoetin alfa using a dose-adjusted algorithm that increased hemoglobin compared with placebo (PHFPEF resulted in a significant increase in hemoglobin, without evident change in LV structure, function, or pressure volume relationships as measured quantitatively using CMR imaging.
Taylor, Graham K; Holbrook, Robert Iain; de Perera, Theresa Burt
2010-09-06
Fish must orient in three dimensions as they navigate through space, but it is unknown whether they are assisted by a sense of depth. In principle, depth can be estimated directly from hydrostatic pressure, but although teleost fish are exquisitely sensitive to changes in pressure, they appear unable to measure absolute pressure. Teleosts sense changes in pressure via changes in the volume of their gas-filled swim-bladder, but because the amount of gas it contains is varied to regulate buoyancy, this cannot act as a long-term steady reference for inferring absolute pressure. In consequence, it is generally thought that teleosts are unable to sense depth using hydrostatic pressure. Here, we overturn this received wisdom by showing from a theoretical physical perspective that absolute depth could be estimated during fast, steady vertical displacements by combining a measurement of vertical speed with a measurement of the fractional rate of change of swim-bladder volume. This mechanism works even if the amount of gas in the swim-bladder varies, provided that this variation occurs over much longer time scales than changes in volume during displacements. There is therefore no a priori physical justification for assuming that teleost fish cannot sense absolute depth by using hydrostatic pressure cues.
Institute of Scientific and Technical Information of China (English)
Jian Hu; Ximing Xu; Guangjin Yuan; Wei Ge; Liming Xu; Aihua Zhang; Junjian Deng
2015-01-01
Objective The aim of this study was to investigate tumor volume changes with kilovoltage cone-beam computed tomography (kV-CBCT) and their dosimetric consequences for non-operative lung cancer during intensity-modulated radiotherapy (IMRT) or fractionated stereotactic radiotherapy. Methods Eighteen patients with non-operative lung cancer who received IMRT consisting of 1.8-2.2 Gy/fraction and five fractions per week or stereotactic radiotherapy with 5-8 Gy/fraction and three fractions a week were studied. kV-CBCT was performed once per week during IMRT and at every fraction during stereotactic radiotherapy. The gross tumor volume (GTV) was contoured on the kV-CBCT images, and adaptive treatment plans were created using merged kV-CBCT and primary planning computed tomogra-phy image sets. Tumor volume changes and dosimetric parameters, including the minimum dose to 95%(D95) or 1% (D1) of the planning target volume (PTV), mean lung dose (MLD), and volume of lung tissue that received more than 5 (V5), 10 (V10), 20 (V20), and 30 (V30) Gy were retrospectively analyzed. Results The average maximum change in GTV observed during IMRT or fractionated stereotactic radio-therapy was -25.85% (range, -13.09% --56.76%). The D95 and D1 of PTV for the adaptive treatment plans in all patients were not significantly different from those for the initial or former adaptive treatment plans. In patients with tumor volume changes of >20% in the third or fourth week of treatment during IMRT, adap-tive treatment plans offered clinically meaningful decreases in MLD and V5, V10, V20, and V30; however, in patients with tumor volume changes of 20% in the third or fourth week of treatment.
Teske, Milton E; Thistle, Harold W; Bonds, Jane A S
2015-09-01
The authors of a recently published paper summarized the development of a regression model for ground-based ultra-low volume applications, suggesting that their model was sufficiently verified that it could be used extensively for mosquito control. These authors claimed that their statistical model was superior in its predictive capability to the extensively developed and Environmental Protection Agency-validated AGDISP mechanistic model. In this technical review, the assumptions, reduction and interpretation of data, and conclusions reached with regard to their model are discussed, and explicit misstatements and incorrect mathematical relationships are pointed out. Two published versions of the model regression equation give substantially different results without explanation. Petri dish collection was used for very small droplets, with no mention of collection efficiency. Meteorological data were misused based on manufacturer's specification of instrument accuracy. We strongly disagree with many of the model results and show that the model misrepresents the actual behavior of aerosol sprays applied in the manner tested.
Energy Technology Data Exchange (ETDEWEB)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.
Energy Technology Data Exchange (ETDEWEB)
Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.
2017-06-01
This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.
den Dunnen, Steven; Dankelman, Jenny; Kerkhoffs, Gino M M J; Tuijthof, Gabrielle J M
2016-09-01
Using water jets for orthopedic procedures that require bone drilling can be beneficial due to the absence of thermal damage and the always sharp cut. Previously, the influence of the water jet diameter and bone architectural properties on the drilling depth have been determined. To develop water jet instruments that can safely drill in orthopedic surgery, the impact of the two remaining primary factors were determined: the jet time (tjet [s]) and pressure (P [MPa]). To this end, 84 holes were drilled in porcine tali and femora with water jets using Ø 0.4mm nozzle. tjet was varied between 1, 3 and 5s and P between 50 and 70MPa. Drilling depths Lhole (mm), diameters Dhole (mm) and the volume of mineralized bone per unit volume (BV/TV) were determined with microCT scans. A non-linear regression analysis resulted in the predictive equation: Lhole= 0.22 * tjet(0.18) * (1.2-BV/TV) * (P-29) (R(2)=0.904). The established relation between the machine settings and drilling depth allows surgeons to adjust jet time and pressure for the patient׳s BV/TV to drill holes at a predetermined depth. For developers, the relation allows design decisions to be made that influence the dimensions, flexibility and accuracy of water jet instruments. For a pressure of 50MPa, the potential hole depth spread indicated by the 95% confidence interval is drilling can be applied in orthopedic surgery to drill holes in bone with controlled depth.
Directory of Open Access Journals (Sweden)
Wust Peter
2010-05-01
Full Text Available Abstract Background To assess radiobiological restrictions and tolerance doses as well as other toxic effects derived from repeated applications of single-fraction high dose rate irradiation of small liver volumes in clinical practice. Methods Twenty patients with liver metastases were treated repeatedly (2 - 4 times at identical or intersecting locations by CT-guided interstitial brachytherapy with varying time intervals. Magnetic resonance imaging using the hepatocyte selective contrast media Gd-BOPTA was performed before and after treatment to determine the volume of hepatocyte function loss (called pseudolesion, and the last acquired MRI data set was merged with the dose distributions of all administered brachytherapies. We calculated the BED (biologically equivalent dose for a single dose d = 2 Gy for different α/β values (2, 3, 10, 20, 100 based on the linear-quadratic model and estimated the tolerance dose for liver parenchyma D90 as the BED exposing 90% of the pseudolesion in MRI. Results The tolerance doses D90 after repeated brachytherapy sessions were found between 22 - 24 Gy and proved only slightly dependent on α/β in the clinically relevant range of α/β = 2 - 10 Gy. Variance analysis showed a significant dependency of D90 with respect to the intervals between the first irradiation and the MRI control (p 90 and the pseudolesion's volume. No symptoms of liver dysfunction or other toxic effects such as abscess formation occurred during the follow-up time, neither acute nor on the long-term. Conclusions Inactivation of liver parenchyma occurs at a BED of approx. 22 - 24 Gy corresponding to a single dose of ~10 Gy (α/β ~ 5 Gy. This tolerance dose is consistent with the large potential to treat oligotopic and/or recurrent liver metastases by CT-guided HDR brachytherapy without radiation-induced liver disease (RILD. Repeated small volume irradiation may be applied safely within the limits of this study.
Nie, Jing; Chen, Fujiang; Song, Zhiyu; Sun, Caixia; Li, Zuguang; Liu, Wenhan; Lee, Mawrong
2016-10-01
A novel method of large volume of water samples directly introduced in dispersive liquid-liquid microextraction was developed, which is based on ultrasound/manual shaking-synergy-assisted emulsification and self-generating carbon dioxide gas (CO2) breaking down the emulsion for the determination of 15 triazole fungicides by gas chromatography-tandem mass spectrometry. This technique makes low-density extraction solvent toluene (180 μL) dissolve in 200 mL of samples containing 0.05 mol L(-1) of HCl and 5 % of NaCl (w/v) to form a well emulsion by synergy of ultrasound and manual shaking, and injects NaHCO3 solution (1.0 mol L(-1)) to generate CO2 achieving phase separation with the assistance of ultrasound. The entire process is accomplished within 8 min. The injection of NaHCO3 to generate CO2 achieves phase separation that breaks through the centrifugation limited large volume aqueous samples. In addition, the device could be easily cleaned, and this kind of vessel could be reconfigured for any volume of samples. Under optimal conditions, the low limits of detection ranging from 0.7 to 51.7 ng L(-1), wide linearity, and enrichment factors obtained were in the range 924-3669 for different triazole fungicides. Southern end of the Beijing-Hangzhou Grand Canal water (Hangzhou, China) was used to verify the applicability of the developed method. Graphical Abstract Flow chart of ultrasound/manual shaking-synergy-assisted emulsification and self-generating carbon dioxide gas breaking down the emulsion.
Energy Technology Data Exchange (ETDEWEB)
Hamadeh, H. [AECS, Physics Department, P.O. Box 6091, Damascus (Syria)
2010-07-15
A comparison of the temperature dependence of the IV characteristics parameters of hydrogenated silicon pin solar cells with intrinsic layers made of polymorphous silicon (pm-Si:H) and of {mu}c-Si:H with low crystalline volume fraction has been performed. When using pm-Si:H, higher efficiency and higher filling factors are achieved over a wide temperature range. Diode quality factors of both types of cells show similar temperature dependence. Recombination processes over the whole intrinsic layer dominates the forward current. A change of the cell parameters under illumination is also observed. The transport mechanism of both cells is similar in the temperature range that is important for most applications. Due to its optical and transport properties, pm-Si:H poses a very interesting alternative to {mu}c-Si:H and a-Si:H in the temperature range of normal terrestrial applications. (author)
Energy Technology Data Exchange (ETDEWEB)
Kearney, Sean P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guildenbecher, Daniel Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Winters, Caroline [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farias, Paul Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grasser, Thomas W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hewson, John C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-09-01
We present a detailed set of measurements from a piloted, sooting, turbulent C _{2} H _{4 }- fueled diffusion flame. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) is used to monitor temperature and oxygen, while laser-induced incandescence (LII) is applied for imaging of the soot volume fraction in the challenging jet-flame environment at Reynolds number, Re = 20,000. Single-laser shot results are used to map the mean and rms statistics, as well as probability densities. LII data from the soot-growth region of the flame are used to benchmark the soot source term for one-dimensional turbulence (ODT) modeling of this turbulent flame. The ODT code is then used to predict temperature and oxygen fluctuations higher in the soot oxidation region higher in the flame.
Shivvers, Isaac; Zheng, Weikang; Filippenko, Alexei V; Silverman, Jeffrey M; Liu, Yuqian; Matheson, Thomas; Pastorello, Andrea; Graur, Or; Foley, Ryan J; Chornock, Ryan; Smith, Nathan; Leaman, Jesse; Benetti, Stefano
2016-01-01
We re-examine the classifications of supernovae (SNe) presented in the Lick Observatory Supernova Search (LOSS) volume-limited sample with a focus on the stripped-envelope SNe. The LOSS volumetric sample, presented by Leaman et al. (2011) and Li et al. (2011b), was calibrated to provide meaningful measurements of SN rates in the local universe; the results presented therein continue to be used for comparisons to theoretical and modeling efforts. Many of the objects from the LOSS sample were originally classified based upon only a small subset of the data now available, and recent studies have both updated some subtype distinctions and improved our ability to perform robust classifications, especially for stripped-envelope SNe. We re-examine the spectroscopic classifications of all events in the LOSS volumetric sample (180 SNe and SN impostors) and update them if necessary. We discuss the populations of rare objects in our sample including broad-lined Type Ic SNe, Ca-rich SNe, SN 1987A-like events (we identify...
Agustini, S.; Wahyuono, R. A.; Sawitri, D.; Risanti, D. D.
2013-09-01
Since its first development, efforts to improve efficiency of Dye Sensitized Solar Cell (DSSC) are continuously carried out, either through selection of dye materials, the type of semiconductor, counter electrode design or the sandwiched structure. It is widely known that anatase and rutile are phases of TiO2 that often being used for fabrication of DSSC. Rutile is thermodynamically more stable phase having band-gap suitable for absorption of sunlight spectrum. On the other hand, anatase has higher electrical conductivity, capability to adsorp dye as well as higher electron diffusion coefficient than those of rutile. Present research uses mangosteen pericarp and Rhoeo spathacea extracted in ethanol as natural dye containing anthocyanin. These dyes were characterized by using UV-Vis and FTIR, showing that the absorption maxima peaks obtained at 389 nm and 413 nm, for mangosteen and Rhoeo spathacea, respectively. The nano TiO2 was prepared by means of co-precipitation method. The particle size were 9-11 nm and 54.5 nm for anatase and rutile, respectively, according to Scherrer's equation. DSSCs were fabricated in various volume fractions of anatase and rutile TiO2. The fabricated DSSCs were tested under 17 mW/cm2 of solar irradiation. The current-voltage (I-V) characteristic of DSSCs employing 75%: 25% volume fraction of anatase and rutile TiO2 have outstanding result than others. The highest conversion efficiencies of 0.037% and 0.013% are obtained for DSSC employing natural dye extract from mangosteen pericarp and Rhoeo spathacea, respectively.
Forghani-Tehrani, Pezhman; Karimipour, Arash; Afrand, Masoud; Mousavi, Sayedali
2017-01-01
Nanofluid flow and heat transfer composed of water-silver nanoparticles is investigated numerically inside a microchannel. Finite volume approach (FVM) is applied and the effects of gravity are ignored. The whole length of Microchannel is considered in three sections as l1=l3=0.151 and l2=0.71. The linear variable heat flux affects the microchannel wall in the length of l2 while a magnetic field with strength of B0 is considered over the whole domain of it. The influences of different values of Hartmann number (Ha=0, 10, 20), volume fraction of the nanoparticles (ɸ=0, 0.02, 0.04) and Reynolds number (Re=10, 50, 200) on the hydrodynamic and thermal properties of flow are reported. The investigation of slip velocity variations under the effects of a magnetic field are presented for the first time (to the best knowledge of author) while the non-dimensional slip coefficient are selected as B=0.01, 0.05, 0.1 at different states.
Rueckriegel, Stefan M; Bruhn, Harald; Thomale, Ulrich W; Hernáiz Driever, Pablo
2015-07-01
Disease and therapy cause brain damage and subsequent functional loss in pediatric patients with posterior fossa tumors. Treatment-related toxicity factors are resection in patients with pilocytic astrocytoma (PA) and, additionally, cranio-spinal irradiation together with chemotherapy in patients with medulloblastoma (MB). We tested whether damage to white matter (WM) as revealed by diffusion tensor MR imaging (DTI) correlated with specific cognitive and motor impairments in survivors of pediatric posterior fossa tumors. Eighteen MB (mean age ± SD, 15.2 ± 4.9 y) and 14 PA (12.6 ± 5.0 y) survivors were investigated with DTI on a 3-Tesla-MR system. We identified fractional anisotropy (FA) of WM, the volume ratio of WM to gray matter and cerebrospinal fluid (WM/GM + CSF), and volume of specific frontocerebellar tracts. Ataxia was assessed using the International Cooperative Ataxia Rating Scale (ICARS), while the Wechsler Intelligence Scale for Children determined full-scale intelligence quotients (FSIQ). Amsterdam Neuropsychological Tasks (ANT) was used to assess processing speed. Handwriting automation was analyzed using a digitizing graphic tablet. The WM/GM + CSF ratio correlated significantly with cognitive measures (IQ, P = 0.002; ANT baseline speed, P = 0.04; ANT shifting attention, P = 0.004). FA of skeletonized tracts correlated significantly with FSIQ (P = 0.008), ANT baseline speed (P = 0.028) and ANT shifting attention (P = 0.045). Moreover, frontocerebellar tract volumes correlated with both the FSIQ (P = 0.011) and ICARS (P = 0.007). DTI provides a method for quantification of WM damage by tumor and by therapy-associated effects in survivors of pediatric posterior fossa tumors. DTI-derived WM integrity may be a representative marker for cognitive and motor deterioration. © 2015 Wiley Periodicals, Inc.
Effect of the size distribution of nanoscale dispersed particles on the Zener drag pressure
Eivani, A.R.; Valipour, S.; Ahmed, H.; Zhou, J; Duszczyk, J.
2010-01-01
In this article, a new relationship for the calculation of the Zener drag pressure is described in which the effect of the size distribution of nanoscale dispersed particles is taken into account, in addition to particle radius and volume fraction, which have been incorporated in the existing relationships. Microstructural observations indicated a clear correlation between the size distribution of dispersed particles and recrystallized grain sizes in the AA7020 aluminum alloy. However, the ex...
Mass Transfer Enhancement of Gas Absorption by Adding the Dispersed Organic Phases
Institute of Scientific and Technical Information of China (English)
张志刚; 许天行; 李文秀; 纪智玲; 许光荣
2011-01-01
Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases （heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane） were tested respectively in the experiment. According to the theoretical model and experimental data, the overall volumetric mass transfer coefficient and enhancement factor were obtained under different dispersed organic phase volume fraction and stirring speed. The experimental results indicate that gas-liquid mass transfer is enhanced at different level by adding a dispersed organic phase. The best performance of enhancement were achieved with the dispersed organic phase volumetric fraction of 5% and under an intermediate stirring speed of 670 r·min^-1. Among the organic phases tested in the experiment, alcohols show better performance, which gave 20% higher enhance-ment of overall volumetric mass transfer coefficient than adding alkanes.
Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M
2016-07-22
A rapid and sensitive procedure for the determination of six NPs in soils by gas chromatography and mass spectrometry (GC-MS) is proposed. Ultrasound assisted extraction (UAE) is used for NP extraction from soil matrices to an organic solvent, while the environmentally friendly technique dispersive liquid-liquid microextraction (DLLME) is used for the preconcentration of the resulting UAE extracts. NPs were derivatized by applying an "in-situ" acetylation procedure, before being injected into the GC-MS system using microvial insert large volume injection (LVI). Several parameters affecting UAE, DLLME, derivatization and injection steps were investigated. The optimized procedure provided recoveries of 86-111% from spiked samples. Precision values of the procedure (expressed as relative standard deviation, RSD) lower than 12%, and limits of quantification ranging from 1.3 to 2.6ngg(-1), depending on the compound, were obtained. Twenty soil samples, obtained from military, industrial and agricultural areas, were analyzed by the proposed method. Two of the analytes were quantified in two of the samples obtained from industrial areas, at concentrations in the 4.8-9.6ngg(-1) range.
The linear-viscoelastic behaviour of a dispersion of transversely rigid spherical capsules
de Bruin, G.J.; de Bruijn, R.A.; Mellema, J.
1985-01-01
A rheological model has been derived for the linear-viscoelastic behaviour of a dispersion of transversely rigid spherical capsules. The model incorporates finite thickness of the elastic shell of the capsules, anisotropy of the mechanical properties of the interface and finite volume fraction. The
Effect of the size distribution of nanoscale dispersed particles on the Zener drag pressure
Eivani, A.R.; Valipour, S.; Ahmed, H.; Zhou, J.; Duszczyk, J.
2010-01-01
In this article, a new relationship for the calculation of the Zener drag pressure is described in which the effect of the size distribution of nanoscale dispersed particles is taken into account, in addition to particle radius and volume fraction, which have been incorporated in the existing relati
Deichmann, Ralf; Pfeilschifter, Waltraud; Hattingen, Elke; Singer, Oliver C.; Wagner, Marlies
2016-01-01
Purpose Quantitative T2'-mapping detects regional changes of the relation of oxygenated and deoxygenated hemoglobin (Hb) by using their different magnetic properties in gradient echo imaging and might therefore be a surrogate marker of increased oxygen extraction fraction (OEF) in cerebral hypoperfusion. Since elevations of cerebral blood volume (CBV) with consecutive accumulation of Hb might also increase the fraction of deoxygenated Hb and, through this, decrease the T2’-values in these patients we evaluated the relationship between T2’-values and CBV in patients with unilateral high-grade large-artery stenosis. Materials and Methods Data from 16 patients (13 male, 3 female; mean age 53 years) with unilateral symptomatic or asymptomatic high-grade internal carotid artery (ICA) or middle cerebral artery (MCA) stenosis/occlusion were analyzed. MRI included perfusion-weighted imaging and high-resolution T2’-mapping. Representative relative (r)CBV-values were analyzed in areas of decreased T2’ with different degrees of perfusion delay and compared to corresponding contralateral areas. Results No significant elevations in cerebral rCBV were detected within areas with significantly decreased T2’-values. In contrast, rCBV was significantly decreased (pperfusion delay and decreased T2’. Furthermore, no significant correlation between T2’- and rCBV-values was found. Conclusions rCBV is not significantly increased in areas of decreased T2’ and in areas of restricted perfusion in patients with unilateral high-grade stenosis. Therefore, T2’ should only be influenced by changes of oxygen metabolism, regarding our patient collective especially by an increase of the OEF. T2’-mapping is suitable to detect altered oxygen consumption in chronic cerebrovascular disease. PMID:27560515
Institute of Scientific and Technical Information of China (English)
Jun ZHANG; Na PENG; Xinan WANG; LI Li; Qingjiang WANG
2007-01-01
An ideal method has been established for calculating the precipitation of α2 ordered phase in near-α titanium alloys based on the theory on the critical electron concentration for the precipitation of α 2 ordered phase in near-α titanium alloys. With complete precipitation of α2 phase in near-α titanium alloys, the alloys can be considered to be composed of two parts: (1) the α2 ordered phase with the stoichiometric atomic ratio of Ti3X; (2) the disorder solid solution with the critical composition in which the α2 ordered phase is just unable to precipitate. By using this method, the volume fractions of α2 ordered phase precipitated in Ti-Al, Ti-Sn,Ti-Al-Sn-Zr alloys with various Al, Sn and/or Zr contents have been calculated. The influences of Al and Sn on the precipitation of α2 ordered phase are discussed. The calculating results show substantial agreement with the experimental ones.
Kockova, Radka; Kacer, Petr; Pirk, Jan; Maly, Jiri; Sukupova, Lucie; Sikula, Viktor; Kotrc, Martin; Barciakova, Lucia; Honsova, Eva; Maly, Marek; Kautzner, Josef; Sedmera, David; Penicka, Martin
2016-04-25
The aim of our study was to investigate the relationship between the cardiac magnetic resonance (CMR)-derived native T1 relaxation time and myocardial extracellular volume (ECV) fraction and the extent of diffuse myocardial fibrosis (DMF) on targeted myocardial left ventricular (LV) biopsy. The study population consisted of 40 patients (age 63±8 years, 65% male) undergoing valve and/or ascending aorta surgery for severe aortic stenosis (77.5%), root dilatation (7.5%) or valve regurgitation (15%). The T1 relaxation time was assessed in the basal interventricular septum pre- and 10-min post-contrast administration using the modified Look-Locker Inversion recovery sequence prior to surgery. LV myocardial biopsy specimen was obtained during surgery from the basal interventricular septal segment matched with the T1 mapping assessment. The percentage of myocardial collagen was quantified using picrosirius red staining. The average percentage of myocardial collagen was 22.0±14.8%. Both native T1 relaxation time with cutoff value ≥1,010 ms (sensitivity=90%, specificity=73%, area under the curve=0.82) and ECV with cutoff value ≥0.32 (sensitivity=80%, specificity=90%, area under the curve=0.85) showed high accuracy to identify severe (>30%) DMF. The native T1 relaxation time showed significant correlation with LV mass (P<0.01). Native T1 relaxation time and ECV at 10 min after contrast administration are accurate markers of DMF. (Circ J 2016; 80: 1202-1209).
Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.
2016-11-01
Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.
Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.
2016-11-01
Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.
Energy Technology Data Exchange (ETDEWEB)
Fisher, R.A.; Phillips, N.E. (Lawrence Berkeley Lab., CA (United States)); Gordon, J.E. (Lawrence Berkeley Lab., CA (United States) Amherst Coll., MA (United States). Dept. of Physics)
1991-12-01
Specific-heat measurements, on polycrystalline samples of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, YBCO, have shown sample-to-sample variations in the volume fraction of superconductivity, f{sub s}, which is correlated with the concentration of Cu{sup 2+} magnetic moments in the YBCO lattice. At low temperatures the lattice specific heat also varies with f{sub s}, but these variations do not persist above {approximately}20K. The low-temperature data show that {Theta}{sub 0}{sup {minus}3} varies linearly with f{sub 3}, and give values of 520 and 390K for {Theta}{sub o} for fully-superconducting and fully-normal'' YBCO, respectively. These results suggest that the long wavelength phonon modes are altered when Cu{sup 2+} magnetic moments are present in the lattice. The fact that different samples have the same lattice specific heat at {approximately}20K and above T{sub c} indicates that the higher energy phonon modes are insensitive to these Cu{sup 2+} moments.
Energy Technology Data Exchange (ETDEWEB)
Fisher, R.A.; Phillips, N.E. [Lawrence Berkeley Lab., CA (United States); Gordon, J.E. [Lawrence Berkeley Lab., CA (United States)]|[Amherst Coll., MA (United States). Dept. of Physics
1991-12-01
Specific-heat measurements, on polycrystalline samples of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, YBCO, have shown sample-to-sample variations in the volume fraction of superconductivity, f{sub s}, which is correlated with the concentration of Cu{sup 2+} magnetic moments in the YBCO lattice. At low temperatures the lattice specific heat also varies with f{sub s}, but these variations do not persist above {approximately}20K. The low-temperature data show that {Theta}{sub 0}{sup {minus}3} varies linearly with f{sub 3}, and give values of 520 and 390K for {Theta}{sub o} for fully-superconducting and ``fully-normal`` YBCO, respectively. These results suggest that the long wavelength phonon modes are altered when Cu{sup 2+} magnetic moments are present in the lattice. The fact that different samples have the same lattice specific heat at {approximately}20K and above T{sub c} indicates that the higher energy phonon modes are insensitive to these Cu{sup 2+} moments.
Yan, Hui; Wang, K. G.; Jones, Jim E.
2016-06-01
A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.
Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid
2017-03-01
In this paper, the effect of dispersion of magnesium oxide nanoparticles on viscosity of a mixture of water and ethylene glycol (50-50% vol.) was examined experimentally. Experiments were performed for various nanofluid samples at different temperatures and shear rates. Measurements revealed that the nanofluid samples with volume fractions of less than 1.5% had Newtonian behavior, while the sample with volume fraction of 3% showed non-Newtonian behavior. Results showed that the viscosity of nanofluids enhanced with increasing nanoparticles volume fraction and decreasing temperature. Results of sensitivity analysis revealed that the viscosity sensitivity of nanofluid samples to temperature at higher volume fractions is more than that of at lower volume fractions. Finally, because of the inability of the existing model to predict the viscosity of MgO/EG-water nanofluid, an experimental correlation has been proposed for predicting the viscosity of the nanofluid.
Hindel, Stefan; Söhner, Anika; Maaß, Marc; Sauerwein, Wolfgang; Möllmann, Dorothe; Baba, Hideo Andreas; Kramer, Martin; Lüdemann, Lutz
2017-01-01
The purpose of this study was to assess the accuracy of fractional blood volume (vb) estimates in low-perfused and low-vascularized tissue using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The results of different MRI methods were compared with histology to evaluate the accuracy of these methods under clinical conditions. vb was estimated by DCE-MRI using a 3D gradient echo sequence with k-space undersampling in five muscle groups in the hind leg of 9 female pigs. Two gadolinium-based contrast agents (CA) were used: a rapidly extravasating, extracellular, gadolinium-based, low-molecular-weight contrast agent (LMCA, gadoterate meglumine) and an extracellular, gadolinium-based, albumin-binding, slowly extravasating blood pool contrast agent (BPCA, gadofosveset trisodium). LMCA data were evaluated using the extended Tofts model (ETM) and the two-compartment exchange model (2CXM). The images acquired with administration of the BPCA were used to evaluate the accuracy of vb estimation with a bolus deconvolution technique (BD) and a method we call equilibrium MRI (EqMRI). The latter calculates the ratio of the magnitude of the relaxation rate change in the tissue curve at an approximate equilibrium state to the height of the same area of the arterial input function (AIF). Immunohistochemical staining with isolectin was used to label endothelium. A light microscope was used to estimate the fractional vascular area by relating the vascular region to the total tissue region (immunohistochemical vessel staining, IHVS). In addition, the percentage fraction of vascular volume was determined by multiplying the microvascular density (MVD) with the average estimated capillary lumen, [Formula: see text], where d = 8μm is the assumed capillary diameter (microvascular density estimation, MVDE). Except for ETM values, highly significant correlations were found between most of the MRI methods investigated. In the cranial thigh, for example, the vb medians
Söhner, Anika; Maaß, Marc; Sauerwein, Wolfgang; Möllmann, Dorothe; Baba, Hideo Andreas; Kramer, Martin; Lüdemann, Lutz
2017-01-01
The purpose of this study was to assess the accuracy of fractional blood volume (vb) estimates in low-perfused and low-vascularized tissue using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The results of different MRI methods were compared with histology to evaluate the accuracy of these methods under clinical conditions. vb was estimated by DCE-MRI using a 3D gradient echo sequence with k-space undersampling in five muscle groups in the hind leg of 9 female pigs. Two gadolinium-based contrast agents (CA) were used: a rapidly extravasating, extracellular, gadolinium-based, low-molecular-weight contrast agent (LMCA, gadoterate meglumine) and an extracellular, gadolinium-based, albumin-binding, slowly extravasating blood pool contrast agent (BPCA, gadofosveset trisodium). LMCA data were evaluated using the extended Tofts model (ETM) and the two-compartment exchange model (2CXM). The images acquired with administration of the BPCA were used to evaluate the accuracy of vb estimation with a bolus deconvolution technique (BD) and a method we call equilibrium MRI (EqMRI). The latter calculates the ratio of the magnitude of the relaxation rate change in the tissue curve at an approximate equilibrium state to the height of the same area of the arterial input function (AIF). Immunohistochemical staining with isolectin was used to label endothelium. A light microscope was used to estimate the fractional vascular area by relating the vascular region to the total tissue region (immunohistochemical vessel staining, IHVS). In addition, the percentage fraction of vascular volume was determined by multiplying the microvascular density (MVD) with the average estimated capillary lumen, π(d2)2, where d = 8μm is the assumed capillary diameter (microvascular density estimation, MVDE). Except for ETM values, highly significant correlations were found between most of the MRI methods investigated. In the cranial thigh, for example, the vb medians (interquartile range
Katugampola, Udita N.
2016-09-01
There is a debate among contemporary mathematicians about what it really means by a fractional derivative. The question arose as a consequence of introducing a 'new' definition of a fractional derivative in [1]. In a reply, Ortigueira and Machado [2] came up with several very important criteria to determine whether a given derivative is a fractional derivative. According to their criterion, the new fractional derivative, called conformable fractional derivative, introduced by Khalil et al. [1] turns out not to be a fractional derivative, but rather a controlled or conformable derivative. In proving the claim the authors in [2] use an example [2, p. 6]. It turns out that the explanation given there needs some corrections and it is the sole purpose of this note.
Energy Technology Data Exchange (ETDEWEB)
Ceron Loayza, Maria L., E-mail: malucelo@hotmail.com; Bravo Cabrejos, Jorge A.; Mejia Santillan, Mirian E. [Universidad Nacional Mayor de San Marcos, Laboratorio de Analisis de Suelos, Laboratorio de Espectroscopia Moessbauer, Facultad de Ciencias Fisicas (Peru)
2011-11-15
The purpose of this work is to report the advances in the elemental and structural characterization of the clay fraction of soils from the terraces of the Moray Archaeological site, located 38 km north of the city of Cusco, Cusco Region. One sample was collected from each of the twelve terraces of this site and its clay fraction was separated by sedimentation. Previously the pH of the raw samples was measured resulting that all of the samples were from alkaline to strongly alkaline. Energy dispersive X-ray fluorescence (EDXRF) was used for the elemental characterization, and X-ray diffractometry (XRD) and transmission Moessbauer spectroscopy (TMS), using the {gamma} 14.4 keV nuclear resonance transition in {sup 57}Fe, were used for the structural characterization of the clays and clay minerals present in each sample. The EDXRF analyses of all the samples show the presence of relatively high concentrations of sulfur in some of the samples and relatively high concentrations of calcium in all of the samples, which may be related to the high alkalinity of the samples. By XRD it is observed the presence of quartz, calcite, gypsum, cronstedtite, 2:1 phyllosilicates, and iron oxides. The mineralogical analysis of Fe by TMS shows that it is present in the form of hematite and occupying Fe{sup 2 + } and Fe{sup 3 + } sites in phyllosilicates, cronstedtite, and other minerals not yet identified.
Cerón Loayza, María L.; Bravo Cabrejos, Jorge A.; Mejía Santillán, Mirian E.
2011-11-01
The purpose of this work is to report the advances in the elemental and structural characterization of the clay fraction of soils from the terraces of the Moray Archaeological site, located 38 km north of the city of Cusco, Cusco Region. One sample was collected from each of the twelve terraces of this site and its clay fraction was separated by sedimentation. Previously the pH of the raw samples was measured resulting that all of the samples were from alkaline to strongly alkaline. Energy dispersive X-ray fluorescence (EDXRF) was used for the elemental characterization, and X-ray diffractometry (XRD) and transmission Mössbauer spectroscopy (TMS), using the γ 14.4 keV nuclear resonance transition in 57Fe, were used for the structural characterization of the clays and clay minerals present in each sample. The EDXRF analyses of all the samples show the presence of relatively high concentrations of sulfur in some of the samples and relatively high concentrations of calcium in all of the samples, which may be related to the high alkalinity of the samples. By XRD it is observed the presence of quartz, calcite, gypsum, cronstedtite, 2:1 phyllosilicates, and iron oxides. The mineralogical analysis of Fe by TMS shows that it is present in the form of hematite and occupying Fe2 + and Fe3 + sites in phyllosilicates, cronstedtite, and other minerals not yet identified.
Institute of Scientific and Technical Information of China (English)
张勇
2011-01-01
Both the fractional advection-dispersion equation (fADE) and the fractional Fokker-Planck equation (fFPE) have been proposed recently as the fractional engine for Lévy motion with a spacedependent diffusion coefficient D.Discrepancy between the two fractional-derivative models however remains obscure, challenging the reliability of applications.This study distinguishes the two models by evaluating the underlying physical process and real-world applicability.The continuity theory first shows that the fADE relies on a generalized Fick's diffusive law, while the fFPE defines a nonlocal diffusive flux deviating significantly from Fick's law.Further dynamic analysis using the Langevin approach reveals that the solute displacement described by the fADE contains an additional Lévy noise of order al, to characterize the spatial variation of D.Numerical experiments using both Eulerian and Lagrangian solvers illustrate the different leading edges of plumes described by different models, where D varies continuously in space.For the ease of a discrete D, the particle plume governed by the fFPE exhibits an abrupt interface, while the plume distributes smoothly if the transport is governed by the fADE.Finally,the two models are applied to capture the well-known MADE-site tritium snapshot.Curve-fitting applications show that a mean water velocity beyond field measurements is needed for the fFPE to capture Lévy motion in non-stationary alluvial aquifers.The fADE model therefore can be more feasible in applications due to the reasonable range of hydrological parameters, although 1 ) the fFPE model can be approximated more efficiently, and 2) physically no model is superior to the other.%分数阶对流-弥散方程(fADE)和分数阶Fokker-Planck方程(fFPE)都被视为一种有效工具来研究含变扩散系数D的Lévy运动.然而,这两种分数阶导数方程的差异并不清楚,给实际应用带来了困难.本文通过系统分析物理机理和应用实例,来区分
He, Hui; Liu, Shuhui; Meng, Zhaofu; Hu, Shibing
2014-09-26
The current routes to couple dispersive liquid-liquid microextraction (DLLME) with capillary electrophoresis (CE) are evaporation of water immiscible extractants and backextraction of analytes. The former is not applicable to extractants with high boiling points, the latter being effective only for acidic or basic analytes, both of which limit the further application of DLLME-CE. In this study, with 1-octanol as a model DLLME extractant and six phenols as model analytes, a novel method based on acetonitrile stacking and sweeping is proposed to accomplish large-volume injection of 1-octanol diluted with a solvent-saline mixture before micellar electrokinetic chromatography. Brij-35 and β-cyclodextrin were employed as pseudostationary phases for sweeping and also for improving the compatibility of sample zone and aqueous running buffer. A short solvent-saline plug was used to offset the adverse effect of the water immiscible extractant on focusing efficiency. The key parameters affecting separation and concentration were systematically optimized; the effect of Brij-35 and 1-octanol on focusing mechanism was discussed. Under the optimized conditions, with ∼ 30-fold concentration enrichment by DLLME, the diluted extractant (8×) was then injected into the capillary with a length of 21 cm (42% of the total length), which yielded the overall improvements in sensitivity of 170-460. Limits of detection and qualification ranged from 0.2 to 1.0 ng/mL and 1.0 to 3.4 g/mL, respectively. Acceptable repeatability lower than 3.0% for migration time and 9.0% for peak areas were obtained. The developed method was successfully applied for analysis of the phenol pollutants in real water samples.
Ohlerth, Stefanie; Bley, Carla Rohrer; Laluhová, Dagmar; Roos, Malgorzata; Kaser-Hotz, Barbara
2010-10-01
Radiation therapy does not only target tumour cells but also affects tumour vascularity. In the present study, changes in tumour vascularity and blood volume were investigated in five grade 1 oral fibrosarcomas, eight other sarcomas (non-oral soft tissue and bone sarcomas) and 12 squamous cell carcinomas in dogs during fractionated radiation therapy (total dose, 45-56 Gy). Contrast-enhanced power Doppler ultrasound was performed before fraction 1, 3, 6, 8, 10, 12, 14 and 15 or 16 (sarcomas) or 17 (squamous cell carcinomas). Prior to treatment, median vascularity and blood volume were significantly higher in squamous cell carcinomas (P=0.0005 and 0.001), whereas measurements did not differ between oral fibrosarcomas and other sarcomas (P=0.88 and 0.999). During the course of radiation therapy, only small, non-significant changes in vascularity and blood volume were observed in all three tumour histology groups (P=0.08 and P=0.213), whereas median tumour volume significantly decreased until the end of treatment (P=0.04 for fibrosarcomas and other sarcomas, P=0.008 for squamous cell carcinomas). It appeared that there was a proportional decrease in tumour volume, vascularity and blood volume. Doppler measurements did not predict progression free interval or survival in any of the three tumour groups (P=0.06-0.86). However, the number of tumours investigated was small and therefore, the results can only be considered preliminary.
Directory of Open Access Journals (Sweden)
A.B. Atkarskaya
2015-03-01
Full Text Available It has been found that the particles size, volume fraction of the film-forming sol disperse phase, the pack-density of the particles in the layer, affect the optical properties of nanodimensional films and composites consisting of a glass substrate coated with the surface film. The threshold energy density of the laser ablation destruction of the films being components of the composites also depends largely on the state of the sol dispersed phase. This value needed for the ablation under the laser radiation with nanosecond pulse duration was found to increase with the dispersed phase particles pack-density in the layer. Moreover, this value increased with the particle size and decreased as the fraction by volume of that phase and particles pack-density rose when using microsecond pulse duration. These relationships are due to low thickness and density of the nanofilm, and as a result the laser beam interacted practically with the dense glass substrate.
Energy Technology Data Exchange (ETDEWEB)
Eble, Michael J. [Dept. of Radiotherapy, RWTH Aachen (Germany); Pinkawa, Michael; Piroth, Marc D.; Fischedick, Karin; Holy, Richard; Klotz, Jens; Nussen, Sandra; Krenkel, Barbara
2009-11-15
Purpose: to evaluate the impact of the clinical target volume (CTV) and fraction dose on quality of life (QoL) after external-beam radiotherapy (EBRT) for prostate cancer. Patients and methods: a group of 283 patients has been surveyed prospectively before, at the last day, at a median time of 2 months and 15 months after EBRT (70.2-72 Gy) using a validated questionnaire (Expanded Prostate Cancer Index Composite). FBRT of prostate alone (P, n = 70) versus prostate with seminal vesicles (PS, n = 213) was compared. Differences of fraction doses (1.8 Gy, n = 80, vs. 2.0 Gy, n = 69) have been evaluated in the patient group receiving a total dose of 72 Gy. Results: significantly higher bladder and rectum volumes were found at all dose levels for the patients with PS versus P within the CTV (p < 0.001). Similar volumes resulted in the groups with different fraction doses. Paradoxically, bowel function scores decreased significantly less 2 and 15 months after EBRT of PS versus P. 2 months after EBRT, patients with a fraction dose of 2.0 Gy versus 1.8 Gy reported pain with urination ({>=} once a day in 12% vs. 3%; p = 0.04) and painful bowel movements ({>=} rarely in 46% vs. 29%; p = 0.05) more frequently. No long-term differences were found. Conclusion: the risk of adverse QoL changes after EBRT for prostate cancer cannot be derived from the dose-volume histogram alone. Seminal vesicles can be included in the CTV up to a moderate total dose without adverse effects on QoL. Apart from a longer recovery period, higher fraction doses were not associated with higher toxicity. (orig.)
Parigi, Valentina; Bimbard, Erwan; Stanojevic, Jovica; Hilliard, Andrew J; Nogrette, Florence; Tualle-Brouri, Rosa; Ourjoumtsev, Alexei; Grangier, Philippe
2012-12-07
We observe and measure dispersive optical nonlinearities in an ensemble of cold Rydberg atoms placed inside an optical cavity. The experimental results are in agreement with a simple model where the optical nonlinearities are due to the progressive appearance of a Rydberg blockaded volume within the medium. The measurements allow a direct estimation of the "blockaded fraction" of atoms within the atomic ensemble.
Structural deformations in liquid crystals with dispersed magnetic nano-colloids
Directory of Open Access Journals (Sweden)
S Shoarinejad
2012-06-01
Full Text Available The stable colloidal dispersions of magnetic nano-particles in nematic liquid crystals are called ferronematics. Their behaviour in magnetic fields depends on various parameters such as anchoring energy, magnetic anisotropy, and shape and volume fraction of the particles. In the present paper, the threshold field is obtained for these colloidal nematics. Then, the influence of magnetic anisotropy, cell thickness, magnetic moment, and volume fraction of the particles are discussed . It is found that due to the influence of some effective parameters, the threshold field changes when compared to pure nematic liquid crystals. The obtained results are consistent with the reported experimental results.
Energy Technology Data Exchange (ETDEWEB)
Peixoto, Philippe Netto Belache
2016-07-01
This study presents a methodology based on the principles of gamma ray attenuation to identify volume fractions in biphasic systems composed of oil-gas-water and gas which are found in the offshore oil industry. This methodology is based on the acknowledgment counts per second on the photopeak energy using a detection system composed of a NaI (Tl) detector, a source of {sup 137}Cs without collimation positioned at 180 ° relative to the detector on a smooth stratified flow regime. The mathematical modeling for computational simulation using the code MCNP-X was performed using the experimental measurements of the detector characteristics (energy resolution and efficiency), characteristics of the material water and oil (density and coefficient attenuation) and measurement of the volume fractions. To predict these fractions were used artificial neural networks (ANNs), and to obtain an adequate training the ANNs for the prediction of volume fractions were simulated a larger number of volume fractions in MCNP-X. The experimental data were used in the set data necessary for validation of ANNs and the data generated using the computer code MCNP-X were used in training and test sets of the ANNs. Were used ANNs of type feed-forward Multilayer Perceptron (MLP) and analyzed two functions of training, Levenberg-Marquardt (LM) and gradient descent with momentum (GDM), both using the Backpropagation training algorithm. The ANNs identified correctly the volume fractions of the multiphase system with mean relative errors lower than 1.21 %, enabling the application of this methodology for this purpose. (author)
Measuring of Volume Fraction for SiC Particles in SiCP/Al Composite%SiC颗粒增强铝基复合材料中SiC颗粒体积分数的测定
Institute of Scientific and Technical Information of China (English)
木二珍; 李强
2013-01-01
利用金相法和XRD定量分析法对SiC颗粒增强铝基复合材料的SiC颗粒体积分数进行测定.用定量金相法测得SiC增强铝基复合材料SiC颗粒的体积分数为58.6％,用XRD定量分析法测得的体积分数为62.7％.%The volume fraction for SiC particle was measured by metallographic method and XRD quantitative analysis.The volume fraction for SiC particles is 56.1％ for metallographic method and 62.7％ for XRD quantitative analysis.
Enhanced convective heat transfer using graphene dispersed nanofluids.
Baby, Tessy Theres; Ramaprabhu, Sundara
2011-04-04
Nanofluids are having wide area of application in electronic and cooling industry. In the present work, hydrogen exfoliated graphene (HEG) dispersed deionized (DI) water, and ethylene glycol (EG) based nanofluids were developed. Further, thermal conductivity and heat transfer properties of these nanofluids were systematically investigated. HEG was synthesized by exfoliating graphite oxide in H2 atmosphere at 200°C. The nanofluids were prepared by dispersing functionalized HEG (f-HEG) in DI water and EG without the use of any surfactant. HEG and f-HEG were characterized by powder X-ray diffractometry, electron microscopy, Raman and FTIR spectroscopy. Thermal and electrical conductivities of f-HEG dispersed DI water and EG based nanofluids were measured for different volume fractions and at different temperatures. A 0.05% volume fraction of f-HEG dispersed DI water based nanofluid shows an enhancement in thermal conductivity of about 16% at 25°C and 75% at 50°C. The enhancement in Nusselts number for these nanofluids is more than that of thermal conductivity.
Enhanced convective heat transfer using graphene dispersed nanofluids
Directory of Open Access Journals (Sweden)
Baby Tessy
2011-01-01
Full Text Available Abstract Nanofluids are having wide area of application in electronic and cooling industry. In the present work, hydrogen exfoliated graphene (HEG dispersed deionized (DI water, and ethylene glycol (EG based nanofluids were developed. Further, thermal conductivity and heat transfer properties of these nanofluids were systematically investigated. HEG was synthesized by exfoliating graphite oxide in H2 atmosphere at 200°C. The nanofluids were prepared by dispersing functionalized HEG (f-HEG in DI water and EG without the use of any surfactant. HEG and f-HEG were characterized by powder X-ray diffractometry, electron microscopy, Raman and FTIR spectroscopy. Thermal and electrical conductivities of f-HEG dispersed DI water and EG based nanofluids were measured for different volume fractions and at different temperatures. A 0.05% volume fraction of f-HEG dispersed DI water based nanofluid shows an enhancement in thermal conductivity of about 16% at 25°C and 75% at 50°C. The enhancement in Nusselts number for these nanofluids is more than that of thermal conductivity.
Lee, Hye-Jeong; Im, Dong Jin; Youn, Jong-Chan; Chang, Suyon; Suh, Young Joo; Hong, Yoo Jin; Kim, Young Jin; Hur, Jin; Choi, Byoung Wook
2016-07-01
Purpose To evaluate the feasibility of equilibrium contrast material-enhanced dual-energy cardiac computed tomography (CT) to determine extracellular volume fraction (ECV) in nonischemic cardiomyopathy (CMP) compared with magnetic resonance (MR) imaging. Materials and Methods This study was approved by the institutional review board; informed consent was obtained. Seven healthy subjects and 23 patients (six with hypertrophic CMP, nine with dilated CMP, four with amyloidosis, and four with sarcoidosis) (mean age ± standard deviation, 57.33 years ± 14.82; 19 male participants [63.3%]) were prospectively enrolled. Twelve minutes after contrast material injection (1.8 mL/kg at 3 mL/sec), dual-energy cardiac CT was performed. ECV was measured by two observers independently. Hematocrit levels were compared between healthy subjects and patients with the Mann-Whitney U test. In per-subject analysis, interobserver agreement for CT was assessed with the intraclass correlation coefficient (ICC), and intertest agreement between MR imaging and CT was assessed with Bland-Altman analysis. In per-segment analysis, Student t tests in the linear mixed model were used to compare ECV on CT images between healthy subjects and patients. Results Hematocrit level was 43.44% ± 1.80 for healthy subjects and 41.23% ± 5.61 for patients with MR imaging (P = .16) and 43.50% ± 1.92 for healthy subjects and 41.35% ± 5.92 for patients with CT (P = .15). For observer 1 in per-subject analysis, ECV was 34.18% ± 8.98 for MR imaging and 34.48% ± 8.97 for CT. For observer 2, myocardial ECV was 34.42% ± 9.03 for MR imaging and 33.98% ± 9.05 for CT. Interobserver agreement for ECV at CT was excellent (ICC = 0.987). Bland-Altman analysis between MR imaging and CT showed a small bias (-0.06%), with 95% limits of agreement of -1.19 and 1.79. Compared with healthy subjects, patients with hypertrophic CMP, dilated CMP, amyloidosis, and sarcoidosis had significantly higher myocardial ECV at dual
Rahman, Ziyaur; Bykadi, Srikant; Siddiqui, Akhtar; Khan, Mansoor A
2015-05-01
The focus of present investigation was to explore X-ray powder diffraction (XRPD) and solid-state nuclear magnetic resonance (ssNMR) techniques for amorphous and crystalline tacrolimus quantification in the sustained-release amorphous solid dispersion (ASD), and to propose discriminating dissolution method that can detect crystalline drug. The ASD and crystalline physical mixture was mixed in various proportions to make sample matrices containing 0%-100% crystalline-amorphous tacrolimus. Partial-least-square regression and principle component regression were applied to the spectral data. Dissolution of the ASD in the US FDA recommended dissolution medium with and without surfactant was performed. R(2) > 0.99 and slope was close to one for all the models. Root-mean-square of prediction, standard error of prediction, and bias were higher in ssNMR-based models when compared with XRPD data models. Dissolution of the ASD decreased with an increase in the crystalline tacrolimus in the formulations. Furthermore, detection of crystalline tacrolimus in the ASD was progressively masked with an increase in the surfactant level in the dissolution medium. XRPD and ssNMR can be used equally to quantitate the crystalline and amorphous fraction of tacrolimus in the ASD with good accuracy; however, ssNMR data collection time is excessively long, and minimum surfactant level in the dissolution medium maximizes detection of crystalline reversion in the formulation.
Alipour, Habibollah; Karimipour, Arash; Safaei, Mohammad Reza; Semiromi, Davood Toghraie; Akbari, Omid Ali
2017-04-01
This study aimed at exploring influence of T-semi attached rib on the turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. For this purpose, convection heat transfer of the silver-water nanofluid in a ribbed microchannel was numerically studied under a constant heat flux on upper and lower walls as well as isolated side walls. Calculations were done for a range of Reynolds numbers between 10,000 and 16,000, and in four different sorts of serrations with proportion of rib width to hole of serration width (R/W). The results of this research are presented as the coefficient of friction, Nusselt number, heat transfer coefficient and thermal efficiency, four different R/W microchannels. The results of numerical modeling showed that the fluid's convection heat transfer coefficient is increased as the Reynolds number and volume fraction of solid nanoparticle are increased. For R/W=0.5, it was also maximum for all the volume fractions of nanoparticle and different Reynolds numbers in comparison to other similar R/W situations. That's while friction coefficient, pressure drop and pumping power is maximum for serration with R/W=0 compared to other serration ratios which lead to decreased fluid-heat transfer performance.
Hamill, Neil; Yeo, Lami; Romero, Roberto; Hassan, Sonia S.; Myers, Stephen A.; Mittal, Pooja; Kusanovic, Juan Pedro; Balasubramaniam, Mamtha; Chaiworapongsa, Tinnakorn; Vaisbuch, Edi; Espinoza, Jimmy; Gotsch, Francesca; Goncalves, Luis F.; Lee, Wesley
2011-01-01
Objective To quantify fetal cardiovascular parameters with Spatio-Temporal Image Correlation (STIC) and Virtual Organ Computed-aided AnaLysis (VOCAL™) utilizing the sub-feature: “Contour Finder: Trace”. Study Design A cross-sectional study was designed consisting of patients with normal pregnancies between 19 and 40 weeks of gestation. After STIC datasets were acquired, analysis was performed offline (4DView) and the following cardiovascular parameters were evaluated: ventricular volume in end systole and end diastole, stroke volume, cardiac output, and ejection fraction. To account for fetal size, cardiac output was also expressed as a function of head circumference, abdominal circumference, or femoral diaphysis length. Regression models were fitted for each cardiovascular parameter to assess the effect of gestational age and paired comparisons were made between the left and right ventricles. Results 1) Two hundred and seventeen patients were retrospectively identified, of whom 184 had adequate STIC datasets (85% acceptance); 2) ventricular volume, stroke volume, cardiac output, and adjusted cardiac output increased with gestational age; whereas, the ejection fraction decreased as gestation advanced; 3) the right ventricle was larger than the left in both systole (Right: 0.50 ml, IQR: 0.2 – 0.9; vs. Left: 0.27 ml, IQR: 0.1 – 0.5; p<0.001) and diastole (Right: 1.20 ml, IQR: 0.7 – 2.2; vs. Left: 1.03 ml, IQR: 0.5 – 1.7; p<0.001); 4) there were no differences between the left and right ventricle with respect to stroke volume, cardiac output, or adjusted cardiac output; and 5) the left ventricular ejection fraction was greater than the right (Left: 72.2%, IQR: 64 – 78; vs. Right: 62.4%, IQR: 56 – 69; p<0.001). Conclusion Fetal echocardiography, utilizing STIC and VOCAL™ with the sub-feature: “Contour Finder: Trace”, allows assessment of fetal cardiovascular parameters. Normal fetal cardiovascular physiology is characterized by ventricular
Directory of Open Access Journals (Sweden)
Cecilia Videla
2008-07-01
Full Text Available El fraccionamiento granulométrico de la materia orgánica (MO se basa en que las fracciones asociadas con partículas de diferente tamaño difieren en estructura y funciones y cumplen diferentes roles en el reciclado de la misma. El objetivo del presente trabajo fue comprobar la calidad del fraccionamiento de la MO de un Molisol a través del uso de: a agua y b hexametafosfato de sodio (HMP como dispersantes y analizar la distribución del C y N y los valores de δ13C en las distintas fracciones separadas. Se compararon la distribución de la fracción mineral del suelo con la MO destruida por calentamiento con agua oxigenada vs. dispersión en agua o dispersión con HMP. Las suspensiones de suelo fueron tamizadas por tamices de 200, 50 y 20 μm y la fraccion >200 μm fue separada en liviana y pesada por flotacion en agua. Las recuperaciones acumuladas de la masa de suelo (98,4 - 99,7%, N (87,4 - 99,4% y C (91,4 - 96,2% fueron altas en general, si bien el agua produjo mayores recuperaciones y HMP presentó mayor variabilidad. El HMP dispersó los agregados de la fracción >200 μm, permitiendo comprobar la gran cantidad de N y C que se acumula en las fracciones más finas, mientras que el agua no dispersó adecuadamente estos agregados. Gran cantidad de N quedó en la fracción Particle-size fractionation is supported by the concept that soil organic matter (SOM fractions associated with different mineral particle sizes have different structure and functions, and play different functions in SOM turnover. The objective of this work was to verify the quality of the organic matter fractionation of a Molisol dispersed with water or Na-hexametaphosphate (HMP and to analyze the C and N distribution and δ13C values of the separated fractions. We compared the mineral fraction distribution of the soil by completely oxidizing SOM through heating with hydrogen peroxide (AGUAOX versus water dispersion and HMP dispersion. The soil suspension was wet
Institute of Scientific and Technical Information of China (English)
修子扬; 陈国钦; 武高辉; 杨文澍; 刘艳梅
2011-01-01
采用压力浸渗法制备Si3N4体积分数分别为45％、50％和55％的颗粒增强铝基复合材料(Si3N4/Al).研究Si3N4体积分数和T6热处理对Si3N4/Al复合材料微观组织和力学性能的影响.结果表明:Si3N4颗粒分散均匀,Si3N4/Al复合材料浸渗良好,没有明显的孔洞和铸造缺陷；在Si3N4颗粒附近的铝基体中,可以观察到高密度位错；Si3N4/Al复合材料的弯曲强度随着Si3N4体积分数的增大而降低；T6热处理能提高复合材料的强度；复合材料的弹性模量随着Si3N4体积分数的增加而线性增加；在低Si3N4体积分数时,可以观察到更多的撕裂棱和韧窝；T6热处理对断口形貌的影响较小.%Si3N4 particles reinforced aluminium matrix composites (Si3N4/Al) with different particle volume fractions (45％,50％,and 55％) were fabricated by pressure infiltration method.The effects of Si3N4 volume fraction and T6 treatment on mierostructure and mechanical properties of Si3N4/Al composite were investigated.The results show that Si3N4/Al composites are well infiltrated with good particles dispersion and no apparent porosity or significant casting defects are observed.High density of dislocations in Al matrix around Si3N4 particles is observed.The bending strength of Si3N4/Al composites decreases with an increase in Si3N4 volume fraction,and can be greatly improved by T6 treatment.Elastic modulus of composites increases linearly with Si3N4 volume fraction.At a lower Si3N4 volume fraction,more tearing ridge and dimples with elongation are observed.T6 heat treatment shows minor effect on the fracture surface of composite.
Energy Technology Data Exchange (ETDEWEB)
Tang, Robert Y., E-mail: rx-tang@laurentian.ca [Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6 (Canada); McDonald, Nancy, E-mail: mcdnancye@gmail.com; Laamanen, Curtis, E-mail: cx-laamanen@laurentian.ca [Department of Physics, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6 (Canada); LeClair, Robert J., E-mail: rleclair@laurentian.ca [Department of Physics, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada and Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6 (Canada)
2014-11-01
Purpose: To develop a method to estimate the mean fractional volume of fat (ν{sup ¯}{sub fat}) within a region of interest (ROI) of a tissue sample for wide-angle x-ray scatter (WAXS) applications. A scatter signal from the ROI was obtained and use of ν{sup ¯}{sub fat} in a WAXS fat subtraction model provided a way to estimate the differential linear scattering coefficient μ{sub s} of the remaining fatless tissue. Methods: The efficacy of the method was tested using animal tissue from a local butcher shop. Formalin fixed samples, 5 mm in diameter 4 mm thick, were prepared. The two main tissue types were fat and meat (fibrous). Pure as well as composite samples consisting of a mixture of the two tissue types were analyzed. For the latter samples, ν{sub fat} for the tissue columns of interest were extracted from corresponding pixels in CCD digital x-ray images using a calibration curve. The means ν{sup ¯}{sub fat} were then calculated for use in a WAXS fat subtraction model. For the WAXS measurements, the samples were interrogated with a 2.7 mm diameter 50 kV beam and the 6° scattered photons were detected with a CdTe detector subtending a solid angle of 7.75 × 10{sup −5} sr. Using the scatter spectrum, an estimate of the incident spectrum, and a scatter model, μ{sub s} was determined for the tissue in the ROI. For the composite samples, a WAXS fat subtraction model was used to estimate the μ{sub s} of the fibrous tissue in the ROI. This signal was compared to μ{sub s} of fibrous tissue obtained using a pure fibrous sample. Results: For chicken and beef composites, ν{sup ¯}{sub fat}=0.33±0.05 and 0.32 ± 0.05, respectively. The subtractions of these fat components from the WAXS composite signals provided estimates of μ{sub s} for chicken and beef fibrous tissue. The differences between the estimates and μ{sub s} of fibrous obtained with a pure sample were calculated as a function of the momentum transfer x. A t-test showed that the mean of the
Tang, Robert Y; McDonald, Nancy; Laamanen, Curtis; LeClair, Robert J
2014-11-01
To develop a method to estimate the mean fractional volume of fat (ν¯fat) within a region of interest (ROI) of a tissue sample for wide-angle x-ray scatter (WAXS) applications. A scatter signal from the ROI was obtained and use of ν¯fat in a WAXS fat subtraction model provided a way to estimate the differential linear scattering coefficient μs of the remaining fatless tissue. The efficacy of the method was tested using animal tissue from a local butcher shop. Formalin fixed samples, 5 mm in diameter 4 mm thick, were prepared. The two main tissue types were fat and meat (fibrous). Pure as well as composite samples consisting of a mixture of the two tissue types were analyzed. For the latter samples, νfat for the tissue columns of interest were extracted from corresponding pixels in CCD digital x-ray images using a calibration curve. The means ν¯fat were then calculated for use in a WAXS fat subtraction model. For the WAXS measurements, the samples were interrogated with a 2.7 mm diameter 50 kV beam and the 6° scattered photons were detected with a CdTe detector subtending a solid angle of 7.75 × 10(-5) sr. Using the scatter spectrum, an estimate of the incident spectrum, and a scatter model, μs was determined for the tissue in the ROI. For the composite samples, a WAXS fat subtraction model was used to estimate the μs of the fibrous tissue in the ROI. This signal was compared to μs of fibrous tissue obtained using a pure fibrous sample. For chicken and beef composites, ν¯fat=0.33±0.05 and 0.32 ± 0.05, respectively. The subtractions of these fat components from the WAXS composite signals provided estimates of μs for chicken and beef fibrous tissue. The differences between the estimates and μs of fibrous obtained with a pure sample were calculated as a function of the momentum transfer x. A t-test showed that the mean of the differences did not vary from zero in a statistically significant way thereby validating the methods. The methodology to
Directory of Open Access Journals (Sweden)
Mahi Fahimian
2016-07-01
Full Text Available Natural fibers can be attractive reinforcing materials in thermosetting polymers due to their low density and high specific mechanical properties. Although the research effort in this area has grown substantially over the last 20 years, manufacturing technologies to make use of short natural fibers in high volume fraction composites; are still limited. Natural fibers, after retting and preprocessing, are discontinuous and easily form entangled bundles. Dispersion and mixing these short fibers with resin to manufacture high quality, high volume fraction composites presents a significant challenge. In this paper, a novel pneumatic design for dispersion of natural fibers in their original discontinuous form is described. In this design, compressed air is used to create vacuum to feed and convey fibres while breaking down fibre clumps and dispersing them in an aerosolized resin stream. Model composite materials, made using proof-of-concept prototype equipment, were imaged with both optical and X-ray tomography to evaluate fibre and resin dispersion. The images indicated that the system was capable of providing an intimate mixture of resin and detangled fibres for two different resin viscosities. The new pneumatic process could serve as the basis of a system to produce well-dispersed high-volume fraction composites containing discontinuous natural fibres drawn directly from a loosely packed source.
Miyake, Y.; Hozumi, T; Mori, I.; Sugioka, K; Yamamuro, A; Akasaka, T; Homma, S; Yoshida, K.; Yoshikawa, J
2002-01-01
Background: The recently introduced automated cardiac flow measurement (ACM) technique provides a quick and an accurate automated calculation of stroke volume and cardiac output. This is obtained by spatio-temporal integration of digital Doppler velocity profile data.
Institute of Scientific and Technical Information of China (English)
吴福飞; 董双快; 宫经伟; 陈亮亮; 李东生; 侍克斌
2016-01-01
Powers theory proposes calculation method for the pure volume of cement hydration products, which does not apply to calculate the volume of cementitious materials with mineral admixture. The formula of cementitious materials volume was proposed that based on the basic principles of cement and mineral admixture hydration, and the proposed method of reliability was verified by the results of Powers theoretical model and volume fraction of cement hydration products. On this basis, the factor such as water-cement ratio, the ratio of admixture and types was further researched for the volumes of cementitious materials hydration products. Mixture in test were designed 2 water-cement ratio (0.30 and 0.40, respectively), two content (20% and 60%, respectively) of mineral admixture, and 3 kinds of mineral admixture (lithium slag, fly ash and steel slag, respectively), forming paste that was stirred according with the designed ratio in 5 mL centrifuge tube in a blender and curing to 1, 7, 14, 28, 60 and 90 d in curing room (temperature was (20±1)℃, humidity was not less than 95%), and then testing reaction extent of cement and mineral admixture (such as fly ash, steel slag. lithium slag) according with the chemical bound water and HCl dissolution method. The results showed that hydration extent of lithium slag, fly ash and steel slag at 28d decreased by 46.63%, 69.56% and 74.82% (P<0.05) when mineral admixture content varied from 20% to 60% and water-cement ratio was 0.30. Hydration extent of cement at 28 d was increased by 7.25% when water-cement ratio increased from 0.30 to 0.40. When mineral admixture content varied from 20% to 60%, hydration extent of lithium slag, fly ash and steel slag at 28 d increased by 24.14% 18.56%, 17.61% and 8.84%, 12.21%, and 29.37% (P<0.05), respectively. In contrast, the influence of the mineral admixture content was bigger than water-cement ratio for the hydration extent of composite cementitious materials. In different water-cement ratio
1980-01-01
Present and future relatively small (30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration can help achieve national energy goals and can be dispersed throughout the distribution portion of an electric utility system. Based on current projections, it appears that dispersed storage and generation (DSG) electrical energy will comprise only a small portion, from 4 to 10 percent, of the national total by the end of this century. In general, the growth potential for DSG seems favorable in the long term because of finite fossil energy resources and increasing fuel prices. Recent trends, especially in the institutional and regulatory fields, favor greater use of the DSGs for the future.
Energy Technology Data Exchange (ETDEWEB)
1980-10-01
A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. The purpose of this survey and identification of DSG technologies is to present an understanding of the special characteristics of each of these technologies in sufficient detail so that the physical principles of their operation and the internal control of each technology are evident. In this way, a better appreciation can be obtained of the monitoring and control requirements for these DSGs from a remote distribution dispatch center. A consistent approach is being sought for both hardware and software which will handle the monitoring and control necessary to integrate a number of different DSG technologies into a common distribution dispatch network. From this study it appears that the control of each of the DSG technologies is compatible with a supervisory control method of operation that lends itself to remote control from a distribution dispatch center.
Savander, V. I.; Shumskiy, B. E.; Pinegin, A. A.
2016-12-01
The possibility of decreasing the vapor fraction at the VVER-1200 fuel assembly outlet by shaping the axial power density field is considered. The power density field was shaped by axial redistribution of the concentration of the burnable gadolinium poison in the Gd-containing fuel rods. The mathematical modeling of the VVER-1200 core was performed using the NOSTRA computer code.
Karras, G; Billard, F; Lavorel, B; Siour, G; Hartmann, J -M; Faucher, O; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh
2016-01-01
We report the observation of fractional echoes in a double-pulse excited nonlinear system. Unlike standard echoes which appear periodically at delays which are integer multiple of the delay between the two exciting pulses, the fractional echoes appear at rational fractions of this delay. We discuss the mechanism leading to this phenomenon, and provide the first experimental demonstration of fractional echoes by measuring third harmonic generation in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses.
Maria Klimikova
2010-01-01
Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.
Maria Klimikova
2010-01-01
Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.
Tapiero, Charles S.; Vallois, Pierre
2016-11-01
The premise of this paper is that a fractional probability distribution is based on fractional operators and the fractional (Hurst) index used that alters the classical setting of random variables. For example, a random variable defined by its density function might not have a fractional density function defined in its conventional sense. Practically, it implies that a distribution's granularity defined by a fractional kernel may have properties that differ due to the fractional index used and the fractional calculus applied to define it. The purpose of this paper is to consider an application of fractional calculus to define the fractional density function of a random variable. In addition, we provide and prove a number of results, defining the functional forms of these distributions as well as their existence. In particular, we define fractional probability distributions for increasing and decreasing functions that are right continuous. Examples are used to motivate the usefulness of a statistical approach to fractional calculus and its application to economic and financial problems. In conclusion, this paper is a preliminary attempt to construct statistical fractional models. Due to the breadth and the extent of such problems, this paper may be considered as an initial attempt to do so.
Institute of Scientific and Technical Information of China (English)
赖家美; 陈显明; 王德盼; 鄢冬冬; 王科
2014-01-01
Effects of the size of infusion media on resin flow behavior,fiber volume fraction distribution and void content in vacuum assisted resin transfer molding(VARTM) were studied.The results showed that with the increase of infusion media size, the resin flow rate increased exponentially;the fiber volume fraction showed a tendency to increase after the first decrease,and the infusion media boundary was just the high and low fiber volume fraction line;the void content increased first and then decreased and increased tremendously at last,varied from 3.86% to 19.92%.%研究了导流介质尺寸对真空辅助树脂传递模塑(VARTM)工艺中树脂流动行为的影响，以及对复合材料制品中纤维分布和空隙率的影响。结果表明，随着导流介质尺寸的增加，树脂在增强体中的流动速度加快，并呈现指数加速趋势；制品中纤维体积含量呈现先减少后增大的趋势，并且以导流介质边界为纤维体积含量高低的分界线；复合材料制品的空隙率范围在3.86%～19.92%，空隙率呈现先增大后减小再加速增大的趋势。
Fractional lattice charge transport
Flach, Sergej; Khomeriki, Ramaz
2017-01-01
We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value. PMID:28102302
Institute of Scientific and Technical Information of China (English)
鞠彦忠; 王德弘; 李秋晨; 贾玉琢; 肖琦
2011-01-01
Basic mechanical properties such as compressive strength, splitting tensile strength and flexural strength of reactive powder concrete were experimentally investigated.The influence of steel fiber volume fraction on mechanical properties of RPC was analyzed.A fitted relation expression between flexural strength and splitting tensile strength was obtained.A mathematical expression for compressive stress-strain curve of reactive powder concrete was established for different steel fiber volume fractions based on experimental analysis.Results show that compressive strength, splitting tensile strength and flexural strength of reactive powder concrete specimens increase along with the steel fiber content increase when the steel fiber volume fraction is in the range from 1.0 ％ to 3.5 ％.When the steel fiber volume fraction is higher than 3.5％, its compressive strength decreases, the splitting tensile strength increases slightly, however, its flexural strength increases obviously.%通过实验研究了活性粉末混凝土的基本力学性能(杭压强度、劈拉强度和杭折强度),分析了钢纤维掺量对活性粉末混凝土力学性能的影响,拟合得到了杭折强度与劈拉强度之间的关系表达式.在实验分析的基础上,建立了不同钢纤维体积含量活性粉末混凝土受压应力-应变全曲线的数学表达式.研究结果表明:钢纤维体积含量在1.0%～3.5%之间时,活性粉末混凝土的抗压强度、臂拉强度和抗折强度均随着钢纤维掺量的增加而增大;当钢纤维体积含量超过3.5%后,活性粉末混凝土杭压强度下降,臂拉强度略有提高,而杭折强度仍有明显的提高.
DEFF Research Database (Denmark)
Mogensen, O.; Sørensen, Flemming Brandt; Bichel, P.
1999-01-01
We evaluated the following nine parameters with respect to their prognostic value in females with endometrial cancer: four stereologic parameters [mean nuclear volume (MNV), nuclear volume fraction, nuclear index and mitotic index], the immunohistochemical expression of cancer antigen (CA125...
Povstenko, Yuriy
2015-01-01
This book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Readers will discover how time-fractional differential operators describe memory effects and space-fractional differential operators deal with the long-range interaction. Fractional calculus, generalized Fourier law, axisymmetric and central symmetric problems and many relevant equations are featured in the book. The latest developments in the field are included and the reader is brought up to date with current research. The book contains a large number of figures, to show the characteristic features of temperature and stress distributions and to represent the whole spectrum of order of fractional operators. This work presents a picture of the state-of-the-art of fractional thermoelasticity and is suitable for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. Corresponding sections of ...
Franzin, Alberto; Panni, Pietro; Spatola, Giorgio; Vecchio, Antonella Del; Gallotti, Alberto L; Gigliotti, Carmen R; Cavalli, Andrea; Donofrio, Carmine A; Mortini, Pietro
2016-12-01
OBJECTIVE There are few reported series regarding volume-staged Gamma Knife radiosurgery (GKRS) for the treatment of large, complex, cerebral arteriovenous malformations (AVMs). The object of this study was to report the results of using volume-staged Gamma Knife radiosurgery for patients affected by large and complex AVMs. METHODS Data from 20 patients with large AVMs were prospectively included in the authors' AVM database between 2004 and 2012. A staging strategy was used when treating lesion volumes larger than 10 cm(3). Hemorrhage and seizures were the presenting clinical feature for 6 (30%) and 8 (40%) patients, respectively. The median AVM volume was 15.9 cm(3) (range 10.1-34.3 cm(3)). The mean interval between stages (± standard deviation) was 15 months (± 9 months). The median margin dose for each stage was 20 Gy (range 18-25 Gy). RESULTS Obliteration was confirmed in 8 (42%) patients after a mean follow-up of 45 months (range 19-87 months). A significant reduction (> 75%) of the original nidal volume was achieved in 4 (20%) patients. Engel Class I-II seizure status was reported by 75% of patients presenting with seizures (50% Engel Class I and 25% Engel Class II) after radiosurgery. After radiosurgery, 71.5% (5/7) of patients who had presented with a worsening neurological deficit reported a complete resolution or amelioration. None of the patients who presented acutely because of hemorrhage experienced a new bleeding episode during follow-up. One (5%) patient developed radionecrosis that caused sensorimotor hemisyndrome. Two (10%) patients sustained a bleeding episode after GKRS, although only 1 (5%) was symptomatic. High nidal flow rate and a time interval between stages of less than 11.7 months were factors significantly associated with AVM obliteration (p = 0.021 and p = 0.041, respectively). Patient age younger than 44 years was significantly associated with a greater than 75% reduction in AVM volume but not with AVM obliteration (p = 0
Multiphase Instabilities in Explosive Dispersal of Particles
Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S. ``Bala''
2015-11-01
Explosive dispersal of particles is a complex multiphase phenomenon that can be observed in volcanic eruptions or in engineering applications such as multiphase explosives. As the layer of particles moves outward at high speed, it undergoes complex interactions with the blast-wave structure following the reaction of the energetic material. Particularly in this work, we are interested in the multiphase flow instabilities related to Richmyer-Meshkov (RM) and Rayleigh-Taylor (RM) instabilities (in the gas phase and particulate phase), which take place as the particle layer disperses. These types of instabilities are known to depend on initial conditions for a relatively long time of their evolution. Using a Eulerian-Lagrangian approach, we study the growth of these instabilities and their dependence on initial conditions related to the particulate phase - namely, (i) particle size, (ii) initial distribution, and (iii) mass ratio (particles to explosive). Additional complexities associated with compaction of the layer of particles are avoided here by limiting the simulations to modest initial volume fraction of particles. A detailed analysis of the initial conditions and its effects on multiphase RM/RT-like instabilities in the context of an explosive dispersal of particles is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.
Bose, S.; Sheffler, K. D.
1988-01-01
The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Two yttria (Y2O3) dispersion strengthened alloys were evaluated; Incoloy MA956 and Haynes Development Alloy (HDA) 8077 (NiCrAl base). Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. MA956 was selected as the final alloy based on manufacturing reproducibility for evaluation as a burner liner. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components and using a louvered configuration was designed and constructed. The louvered configuration was chosen because of field experience and compatibility with the bill of material PW2037 design. The simulated flight cycle for the ground based engine tests consisted of 4.5 min idle, 1.5 min takeoff and intermediate conditions in a PW2037 engine with average uncorrected combustor exit temperature of 1527 C. Post test evaluation consisting of visual observations and fluorescent penetrant inspections was conducted after 500 cycles of testing. No loss of integrity in the burner liner was shown.
Dispersion of Suspensions in Unsteady Microchannel Flows
Maxey, Martin; Howard, Amanda; Winklerprins, Lukas; Tripathi, Anubhuv; Yeo, Kyongmin
2013-11-01
We explore the dispersion of non-Brownian (Pe >> 1) suspensions in unsteady, low Reynolds number shear flows in a microchannel. Prior experimental work on oscillating Couette flows and Poiseuille flows has shown the importance of strain amplitude in determining the long term distribution of particles across the channel. We will present results from numerical simulations for the early development of these flows and the motion of finite length suspension plugs. The distortion of a plug by the shear flow results in inhomogeneous particle fluxes across the channel. This is largely reversible over the course of a full cycle, giving reversibility in the bulk. Self-diffusion gives irreversibility though at the microscale. As the strain amplitude increases or the initial volume fraction increases irreversibility in the bulk is seen. The dynamics behind these processes and the role of particle pressure will be noted, together with related experimental observations.
Study on WC dispersion-strengthened copper
Institute of Scientific and Technical Information of China (English)
WANG Mengjun; ZHANG Liyong; LIU Xinyu
2004-01-01
Dispersion-strengthened copper (DSC) with WC as dispersoid was prepared by means of mechanical alloying (MA) following the traditional powder metallurgy (P/M) route. Influence of WC content on the properties of material was discussed in detail, and result shows that when the volume fraction of WC is 1.6%, the material achieves the best overall property, and a little more particle addition led to a less superior property owing to occurrence of particle agglomeration The as-sintered composite was designed to undergo a deformation of 75%. It is proved that appropriate deformation is helpful to attain a higher density and consequently better properties. Deformed material was then exposed to elevated temperature to test its effect on material. Annealing for 1 h at 1173K caused material to recover quite completely, but no obvious recrystallization was observed. It's supposed the particles handicaps motion of dislocations and material demonstrates good retention of strength with substantial improvement in elongation.
Groskreutz, Stephen R; Horner, Anthony R; Weber, Stephen G
2015-07-31
On-column focusing is essential for satisfactory performance using capillary scale columns. On-column focusing results from generating transient conditions at the head of the column that lead to high solute retention. Solvent-based on-column focusing is a well-known approach to achieve this. Temperature-assisted on-column focusing (TASF) can also be effective. TASF improves focusing by cooling a short segment of the column inlet to a temperature that is lower than the column temperature during the injection and then rapidly heating the focusing segment to the match the column temperature. A troublesome feature of an earlier implementation of TASF was the need to leave the capillary column unpacked in that portion of the column inside the fitting connecting it to the injection valve. We have overcome that problem in this work by packing the head of the column with solid silica spheres. In addition, technical improvements to the TASF instrumentation include: selection of a more powerful thermo-electric cooler to create faster temperature changes and electronic control for easy incorporation into conventional capillary instruments. Used in conjunction with solvent-based focusing and with isocratic elution, volumes of paraben samples (esters of p-hydroxybenzoic acid) up to 4.5-times the column liquid volume can be injected without significant bandspreading due to volume overload. Interestingly, the shapes of the peaks from the lowest volume injections that we can make, 30nL, are improved when using TASF. TASF is very effective at reducing the detrimental effects of pre-column dispersion using isocratic elution. Finally, we show that TASF can be used to focus the neuropeptide galanin in a sample solvent with elution strength stronger than the mobile phase. Here, the stronger solvent is necessitated by the need to prevent peptide adsorption prior to and during analysis.
Henricks, R. J.; Sheffler, K. D.
1984-01-01
The suitability of wrought oxide dispersion strengthened (ODS) superalloy sheet for gas turbine engine combustor applications was evaluated. Incoloy MA 956 (FeCrAl base) and Haynes Developmental Alloy (HDA) 8077 (NiCrAl base) were evaluated. Preliminary tests showed both alloys to be potentially viable combustor materials, with neither alloy exhibiting a significant advantage over the other. Both alloys demonstrated a +167C (300 F) advantage of creep and oxidation resistance with no improvement in thermal fatigue capability compared to a current generation combustor alloy (Hastelloy X). MA956 alloy was selected for further demonstration because it exhibited better manufacturing reproducibility than HDA8077. Additional property tests were conducted on MA956. To accommodate the limited thermal fatigue capability of ODS alloys, two segmented, mechanically attached, low strain ODS combustor design concepts having predicted fatigue lives or = 10,000 engine cycles were identified. One of these was a relatively conventional louvered geometry, while the other involved a transpiration cooled configuration. A series of 10,000 cycle combustor rig tests on subscale MA956 and Hastelloy X combustor components showed no cracking, thereby confirming the beneficial effect of the segmented design on thermal fatigue capability. These tests also confirmed the superior oxidation and thermal distortion resistance of the ODS alloy. A hybrid PW2037 inner burner liner containing MA956 and Hastelloy X components was designed and constructed.
Ethanol-gasoline volume fraction estimation of vehicles%车用乙醇汽油体积分数估计
Institute of Scientific and Technical Information of China (English)
郑太雄; 王波; 李永福; 陈琳
2015-01-01
为获得精确的乙醇体积分数，在发动机进气模型的基础上，设计了高增益观测器估计歧管压力，并对观测器误差进行了收敛性和稳定性分析。设计PI控制器对空燃比进行控制，使过量空气系数趋于理论值。利用PI控制器输出的燃油反馈信号，通过积分清零运算得出化学计量空燃比（Rs ），根据 Rs 与乙醇体积分数的关系计算得出乙醇体积分数估计值。仿真结果表明：乙醇体积分数估计时间在2s以内，估计误差绝对值小于1％，满足汽车的排放性和经济性要求。%For acquiring a precise estimation of ethanol proportion , based on the engine air charge model ,the high gain observer was designed to estimate the manifold absolute pressure ,and property of convergence and stability were analyzed to the observer errors .PI controller was proposed to con‐trol the air to fuel ratio ,which compelled the excess air coefficient to the theoretical value .After‐wards ,the fuel feedback signal from the PI control was utilized ,and the stoichiometric air‐to‐fuel rati‐o (Rs ) was achieved through the integral zero clearing operation .At last ,ethanol volume fracrion es‐timation value was calculated based on the relationship between the Rs and the ethanol volume fracri‐on .Simulation results show that the estimated time of the ethanol volume fracrion is within 2 s ,and the absolute value of the estimated error is less than 1% ,w hich meets the emissions and fuel economy of the vehicles .
D'Errico, Luigia; Lamacie, Mariana M; Jimenez Juan, Laura; Deva, Djeven; Wald, Rachel M; Ley, Sebastian; Hanneman, Kate; Thavendiranathan, Paaladinesh; Wintersperger, Bernd J
2016-09-22
Test-retest reproducibility is of utmost importance in follow-up of right ventricular (RV) volumes and function; optimal slice orientation though is not yet known. We compared test-retest reproducibility and intra-/inter-observer variability of right ventricular (RV) volumes and function assessed with short-axis and transverse cardiovascular magnetic resonance (CMR). Eighteen volunteers underwent cine CMR for RV assessment obtaining ventricular coverage in short-axis and transverse slice orientation. Additional 2D phase contrast flow imaging of the main pulmonary artery (MPA) was performed. After complete repositioning repeat acquisitions were performed. Data sets were contoured by two blinded observers. Statistical analysis included Student's t-test, Bland-Altman plots, intra-class correlation coefficient (ICC) and 2-way ANOVA, SEM and minimal detectable difference calculations. Heart rates (65.0 ± 7.4 vs. 67.6 ± 9.9 bpm; P = 0.1) and MPA flow (89.8 ± 16.6 vs. 87.2 ± 14.9 mL; P = 0.1) did not differ between imaging sessions. EDV and ESV demonstrated an inter-study bias of 0.4 %[-9.5 %,10.3 %] and 2.1 %[-12.3 %,16.4 %] for short-axis and 1.1 %[-7.3 %,9.4 %] and 0.8 %[-16.0 %,17.6 %] for transverse orientation, respectively. There was no significant interaction between imaging orientation and interstudy reproducibility (p = 0.395-0.824), intra-observer variability (p = 0.726-0.862) or inter-observer variability (p = 0.447-0.706) by 2-way ANOVA. Inter-observer agreement by ICC was greater for short axis versus transverse orientation for all parameters (0.769-0.986 vs. 0.625-0.983, respectively). Minimal detectable differences for short axis and transverse orientations were 10.1 mL/11.5 mL for EDV, 8.3 mL/8.4 mL for ESV and 4.1 % vs. 4.7 % for EF, respectively. Short-axis and transverse orientation both provide reliable and reproducible measures for follow-up of RV volumes and global function. Therefore
Van Hoof, Thibaut; Piérard, Olivier; Lani, Frédéric
2007-04-01
In the framework of the European project PROHIPP (New design and manufacturing processes for high pressure fluid power product — NMP 2-CT-2004-50546), CENAERO develops a library of constitutive models used to predict the mechanical response of a family of cast iron. The present contribution focuses on one particular microstructure, corresponding to a ferrite matrix containing spheroidal graphite and isolated inclusions of pearlite. An incremental mean field homogenisation scheme such as the one developed by Doghri and Ouaar is used. In the present application, the ferrite matrix is described by a Gurson type constitutive law (porous plasticity) while the pearlite inclusions are assumed to obey the classical isotropic J2 plasticity. The predictions of the micromechanical model are compared to the results of Finite Element simulations performed on three-dimensional representative volume elements (RVEs).
Institute of Scientific and Technical Information of China (English)
CHENG Rongshi; BO Shuqin
1983-01-01
With the aid of the theoretical relationship between the calibration relation of a SEC column for the monodisperse polymer species under ideal working condition and the effective relations between the molecular weight and the elution volume for characterized polymer samples, a computational procedure for simultaneous calibration of molecular weight separation and column dispersion is proposed. From the experimental chromatograms of narrow MWD polystyrene standards and broad MWD 1,2-polybutadiene fractions the spreading factors of a SEC column was deduced by the proposed method. The variation of the spreading factor with the elution volume is independent upon the polymer sample used.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The dispersion of a solid particle in a liquid may lead to the formation of solvation film onthe particle surface, which can strongly increase the repulsive force between particles and thus strongly affect the stability of dispersions. The solvation film thickness, which varies with the variation of the property of suspension particles and solutions, is one of the most important parameters of the solvation film, and is also one of the most difficult parameters that can be measured accurately. In this paper, a method, based on the Einstein viscosity equation of dispersions, for determining the solvation film thickness of particles is developed. This method was tested on two kinds of silica spherical powders (namely M1 and M2) dispersed in ethyl alcohol, in water, and in a water-ethyl alcohol mixture (1:1 by volume) through measuring the relative viscosity of dispersions of the particles as a function of the volume fraction of the dry particles in the dispersion, and of the specific surface area and the density of the particles. The calculated solvation film thicknesses on M1 are 7.48, 18.65 and 23.74 nm in alcohol, water and the water-ethyl alcohol mixture, 12.41, 12.71 and 13.13 nm on M2 in alcohol, water and the water-ethyl alcohol mixture, respectively.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Q.; Johnson, E.V.; Djeridane, Y.; Abramov, A.; Roca i Cabarrocas, P. [LPICM-CNRS, Ecole Polytechnique, Palaiseau (France)
2008-08-15
Microcrystalline silicon thin film pin solar cells with a highly crystallized intrinsic {mu}c-Si:F:H absorber were prepared by RF-plasma enhanced chemical vapour deposition using SiF{sub 4} as the gas precursor. The cells were produced with a vacuum break between the doped layer and intrinsic layer depositions, and the effect of different subsequent interface treatment processes was studied. The use of an intrinsic {mu}c-Si:H p/i buffer layer before the first air break increased the short circuit current density from 22.3 mA/cm{sup 2} to 24.7 mA/cm{sup 2}. However, the use of a hydrogen-plasma treatment after both air breaks without an interface buffer layer improved both the open circuit voltage and the fill factor. Although the material used for the absorber layer showed a very high crystalline fraction and thus an increased spectral response at long wavelengths, an open-circuit voltage (V{sub OC}) of 0.523 V was nevertheless observed. Such a value of V{sub OC} is higher than is typically obtained in devices that employ a highly crystallized absorber as reported in the literature (see abstract figure). Using a hydrogen-plasma treatment, a single junction {mu}c-Si:F:H pin solar cell with an efficiency of 8.3% was achieved. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Energy Technology Data Exchange (ETDEWEB)
Hadermann, A. F.
1985-04-09
Soluble polymers are fractionated according to molecular weight by cryogenically comminuting the polymer and introducing the polymer particles, while still in the active state induced by cryogenic grinding, into a liquid having a solvent power selected to produce a coacervate fraction containing high molecular weight polymer species and a dilute polymer solution containing lower molecular weight polymer species. The coacervate may be physically separated from the solution and finds use in the production of antimisting jet fuels and the like.
Energy Technology Data Exchange (ETDEWEB)
Vieira, Marcelo L.C.; Nomura, Cesar H.; Tranchesi Junior, Bernardino; Oliveira, Wercules A. de; Naccarato, Gustavo; Serpa, Bruna S.; Cury, Alexandre; Passos, Rodrigo B.D.; Nobrega, Marcel V. da; Funari, Marcelo B.G.; Pfefermam, Abhaham; Makdisse, Marcia; Fischer, Claudio H.; Morhy, Samira S., E-mail: luiz766@terra.com.br [Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil)
2008-10-15
Background and objective: Few studies addressed the comparison between real-time 3D echocardiography (RT3DE) and cardiac computed tomography (CCT) concerning left ventricular ejection fraction and volumes assessment. We sought to compare both techniques regarding left ventricle (LV) ejection fraction function and volumes analysis. Methods: we studied by RT3DE (Philips IE 33, And, MA, USA) and by CCT (Toshiba, 64-slice, Otawara, Japan) 41 consecutive patients (29 males, 58 ± 11 yrs). We analysed by both techniques LVEF, LVEDV, LVESV. RT3DE and CCT data were compared by coefficients of determination (r: Pearson), Bland and Altman test and linear regression, 95% CI. Results: RT3DE data: LVEF ranged from 56.7 to 78.9 % (65.3 + 5.7 ); LVEDV ranged from 49.6 to 178.2 (88 + 27.5) mL; LVESV from 11.4 to 78 ( 33.9 + 13.7) mL. CCT data: LVEF ranged from 53 to 86 % (67.3 + 7.9 ); LVEDV ranged from 51 to 186 (106.4 + 30.7) mL; LVESV from 7 to 72 ( 35.1 + 13.8) mL. Correlations relative to RT3DE and CCT were: LVEF (r: 0. 7877, p<0.0001, 95 % CI 0.6327 to 0.8853 ); LVEDV (r:0.7671, p<0.0001, 95 % CI 0.5974 to 0.8745); LVESV (r: 0.8121, p<0.0001, 95 % CI 0.6659 to 0.8957). Conclusions: it was observed adequate correlation between real-time 3D echocardiography and cardiac computed tomography concerning ejection fraction and volumes assessment. (author)
Energy Technology Data Exchange (ETDEWEB)
Yoo, Yeon Hwa; Kim, Hak Sun; Lee, Young Han [Dept. of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); and others
2015-10-15
To assess whether multi-echo Dixon magnetic resonance (MR) imaging with simultaneous T2{sup *} estimation and correction yields more accurate fat-signal fraction (FF) measurement of the lumbar paravertebral muscles, in comparison with non-T2{sup *}-corrected two-echo Dixon or T2{sup *}-corrected three-echo Dixon, using the FF measurements from single-voxel MR spectroscopy as the reference standard. Sixty patients with low back pain underwent MR imaging with a 1.5T scanner. FF mapping images automatically obtained using T2{sup *}-corrected Dixon technique with two (non-T2{sup *}-corrected), three, and six echoes, were compared with images from single-voxel MR spectroscopy at the paravertebral muscles on levels L4 through L5. FFs were measured directly by two radiologists, who independently drew the region of interest on the mapping images from the three sequences. A total of 117 spectroscopic measurements were performed either bilaterally (57 of 60 subjects) or unilaterally (3 of 60 subjects). The mean spectroscopic FF was 14.3 ± 11.7% (range, 1.9-63.7%). Interobserver agreement was excellent between the two radiologists. Lin's concordance correlation between the spectroscopic findings and all the imaging-based FFs were statistically significant (p < 0.001). FFs obtained from the T2*-corrected six-echo Dixon sequences showed a significantly better concordance with the spectroscopic data, with its concordance correlation coefficient being 0.99 and 0.98 (p < 0.001), as compared with two- or three-echo methods. T2{sup *}-corrected six-echo Dixon sequence would be a better option than two- or three-echo methods for noninvasive quantification of lumbar muscle fat quantification.
Budiansky, Stephen
1980-01-01
This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)
Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.
2016-01-01
Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil biodeg
Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.
2016-01-01
Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil
Understanding Multiplication of Fractions.
Sweetland, Robert D.
1984-01-01
Discussed the use of Cuisenaire rods in teaching the multiplication of fractions. Considers whole number times proper fraction, proper fraction multiplied by proper fraction, mixed number times proper fraction, and mixed fraction multiplied by mixed fractions. (JN)
Jerome, N. P.; d'Arcy, J. A.; Feiweier, T.; Koh, D.-M.; Leach, M. O.; Collins, D. J.; Orton, M. R.
2016-12-01
The bi-exponential intravoxel-incoherent-motion (IVIM) model for diffusion-weighted MRI (DWI) fails to account for differential T 2 s in the model compartments, resulting in overestimation of pseudodiffusion fraction f. An extended model, T2-IVIM, allows removal of the confounding echo-time (TE) dependence of f, and provides direct compartment T 2 estimates. Two consented healthy volunteer cohorts (n = 5, 6) underwent DWI comprising multiple TE/b-value combinations (Protocol 1: TE = 62-102 ms, b = 0-250 mm-2s, 30 combinations. Protocol 2: 8 b-values 0-800 mm-2s at TE = 62 ms, with 3 additional b-values 0-50 mm-2s at TE = 80, 100 ms scanned twice). Data from liver ROIs were fitted with IVIM at individual TEs, and with the T2-IVIM model using all data. Repeat-measures coefficients of variation were assessed for Protocol 2. Conventional IVIM modelling at individual TEs (Protocol 1) demonstrated apparent f increasing with longer TE: 22.4 ± 7% (TE = 62 ms) to 30.7 ± 11% (TE = 102 ms) T2-IVIM model fitting accounted for all data variation. Fitting of Protocol 2 data using T2-IVIM yielded reduced f estimates (IVIM: 27.9 ± 6%, T2-IVIM: 18.3 ± 7%), as well as T 2 = 42.1 ± 7 ms, 77.6 ± 30 ms for true and pseudodiffusion compartments, respectively. A reduced Protocol 2 dataset yielded comparable results in a clinical time frame (11 min). The confounding dependence of IVIM f on TE can be accounted for using additional b/TE images and the extended T2-IVIM model.
Alisultanov, Z. Z.; Meilanov, R. P.
2012-10-01
We consider the problem of the effective interaction potential in a quantum many-particle system leading to the fractional-power dispersion law. We show that passing to fractional-order derivatives is equivalent to introducing a pair interparticle potential. We consider the case of a degenerate electron gas. Using the van der Waals equation, we study the equation of state for systems with a fractional-power spectrum. We obtain a relation between the van der Waals constant and the phenomenological parameter α, the fractional-derivative order. We obtain a relation between energy, pressure, and volume for such systems: the coefficient of the thermal energy is a simple function of α. We consider Bose—Einstein condensation in a system with a fractional-power spectrum. The critical condensation temperature for 1 ideal system, where α = 2.
Parigi, Valentina; Stanojevic, Jovica; Hilliard, Andrew J; Nogrette, Florence; Tualle-Brouri, Rosa; Ourjoumtsev, Alexei; Grangier, Philippe
2012-01-01
We observe and measure dispersive optical non-linearities in an ensemble of cold Rydberg atoms placed inside an optical cavity. The experimental results are in agreement with a simple model where the optical non-linearities are due to the progressive appearance of a Rydberg blockaded volume within the medium. The measurements allow a direct estimation of the "blockaded fraction" of atoms within the atomic ensemble.
Membranes as separators of dispersed emulsion phases
Lefferts, A.G.
1997-01-01
The reuse or discharge of industrial waste waters, containing small fractions of dispersed oil, requires a purification treatment for which membranes can be used. If only little oil is present, removal of the dispersed phase might be preferable to the more commonly applied removal of the
Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max
2016-01-01
Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…
Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max
2016-01-01
Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…
Energy Technology Data Exchange (ETDEWEB)
Balastre, M.
1999-11-10
Instabilities of concentrated colloidal suspensions are a source of many industrial problems, as in drilling fluid formulations where aggregation and severe settling phenomena can occur. Low molecular weight polyelectrolyte dispersants are used to solve these problems, but their optimal use requires a better understanding of the phenomena that are involved. After materials characterization, adsorption mechanisms of two anionic polyelectrolytes (PANa, PSSNa) on a soluble substrate model, barium sulfate powder are studied. Barium sulfate is the principal additive used to adapt the density of drilling fluids. A simple model allows us to propose a distribution of the microscopic species at the interface. Presence of divalent ions induces the formation of a strong complex with the polyelectrolyte. Adsorption and electro-kinetic data are presented and exchange equilibrium are examined in relation with the surface uptake. The binding mechanism and the surface speciation of the polymer groups are deduced from the ion exchange analysis. The macroscopic behavior of suspensions on different conditions (volume fraction, ionic strength, dispersant concentration) is studied by settling and rheological measurements. The macroscopic properties are connected to structural aspects, and we show that dispersing effects are mostly related to electro-steric repulsion. The dispersion state depends on two principal factors adsorbed amounts and adsorbed layer properties, especially the excess charge, and the molecules conformation. (author)
Fraction Reduction through Continued Fractions
Carley, Holly
2011-01-01
This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.
Tian, Yiwei; Booth, Jonathan; Meehan, Elizabeth; Jones, David S; Li, Shu; Andrews, Gavin P
2013-01-07
Amorphous drug-polymer solid dispersions have the potential to enhance the dissolution performance and thus bioavailability of BCS class II drug compounds. The principle drawback of this approach is the limited physical stability of amorphous drug within the dispersion. Accurate determination of the solubility and miscibility of drug in the polymer matrix is the key to the successful design and development of such systems. In this paper, we propose a novel method, based on Flory-Huggins theory, to predict and compare the solubility and miscibility of drug in polymeric systems. The systems chosen for this study are (1) hydroxypropyl methylcellulose acetate succinate HF grade (HPMCAS-HF)-felodipine (FD) and (2) Soluplus (a graft copolymer of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol)-FD. Samples containing different drug compositions were mixed, ball milled, and then analyzed by differential scanning calorimetry (DSC). The value of the drug-polymer interaction parameter χ was calculated from the crystalline drug melting depression data and extrapolated to lower temperatures. The interaction parameter χ was also calculated at 25 °C for both systems using the van Krevelen solubility parameter method. The rank order of interaction parameters of the two systems obtained at this temperature was comparable. Diagrams of drug-polymer temperature-composition and free energy of mixing (ΔG(mix)) were constructed for both systems. The maximum crystalline drug solubility and amorphous drug miscibility may be predicted based on the phase diagrams. Hyper-DSC was used to assess the validity of constructed phase diagrams by annealing solid dispersions at specific drug loadings. Three different samples for each polymer were selected to represent different regions within the phase diagram.
Energy Technology Data Exchange (ETDEWEB)
Kim, Yong Pyo; Kim, Sung Jun; Chung, Tae Sub; Yoo, Yeon Hwa; Yoon, Choon Sik [Dept. of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kanneengiesser, Stephan [MR Applications Development, Siemens AG, Healthcare Sector, Erlangen (Germany); Paek, Moon Young [Siemens Ltd., Seoul (Korea, Republic of); Song, Ho Taek; Lee, Young Han; Suh, Jin Suck [Dept. of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)
2014-12-15
To assess the feasibility of T2{sup *}-corrected fat-signal fraction (FF) map by using the three-echo volume interpolated breath-hold gradient echo (VIBE) Dixon sequence to differentiate between malignant marrow-replacing lesions and benign red marrow deposition of vertebrae. We assessed 32 lesions from 32 patients who underwent magnetic resonance imaging after being referred for assessment of a known or possible vertebral marrow abnormality. The lesions were divided into 21 malignant marrow-replacing lesions and 11 benign red marrow depositions. Three sequences for the parameter measurements were obtained by using a 1.5-T MR imaging scanner as follows: three-echo VIBE Dixon sequence for FF; conventional T1-weighted imaging for the lesion-disc ratio (LDR); pre- and post-gadolinium enhanced fat-suppressed T1-weighted images for the contrast-enhancement ratio (CER). A region of interest was drawn for each lesion for parameter measurements. The areas under the curve (AUC) of the parameters and their sensitivities and specificities at the most ideal cutoff values from receiver operating characteristic curve analysis were obtained. AUC, sensitivity, and specificity were respectively compared between FF and CER. The AUCs of FF, LDR, and CER were 0.96, 0.80, and 0.72, respectively. In the comparison of diagnostic performance between the FF and CER, the FF showed a significantly larger AUC as compared to the CER (p = 0.030), although the difference of sensitivity (p = 0.157) and specificity (p = 0.157) were not significant. Fat-signal fraction measurement using T2{sup *}-corrected three-echo VIBE Dixon sequence is feasible and has a more accurate diagnostic performance, than the CER, in distinguishing benign red marrow deposition from malignant bone marrow-replacing lesions.
Energy Technology Data Exchange (ETDEWEB)
Sanchez, G.; Haro, G.; Herrador, M.
2011-07-01
Different formalisms for the calculation of shielding in Cf equipment, the proposed document 147 of NCRP are widely accepted. Of the three methods mentioned in the protocol, two involve the use of two independent factor a of equipment, called scatter fraction CT in skull and body. Interestingly, the experimental measurement of the same, especially in those models following the publication of the document, which are also coincides with the highest number of detector channels and overall a greater radiation beam in the z axis.
Institute of Scientific and Technical Information of China (English)
熊娥; 闫锋; 张文鹏
2013-01-01
Because of inherent characters of rubber materials,there exists some differences on anti-swelling property of rubber materials in gasoline with different methanol volume fraction.Immersion tests in gasoline 93# or gasoline with different methanol proportions are conducted to show the anti-swelling property of 3 rubber materials commonly used in motor vehicles.The results show that silicone rubber has better anti-swelling property in gasoline with high methanol proportion; on the contrary,fluorine rubber has good resistance to swelling in low-proportion-methanol gasoline; Nitrile Rubber has good antiswelling property in all gasoline with different proportion of methanol.%由于橡胶材料自身的特性不同,对甲醇体积分数不同的甲醇汽油的抗膨胀性存在差异,采用汽车上常见的3种橡胶材料分别在93#汽油和不同甲醇体积分数的甲醇汽油中进行浸泡实验.试验结果表明,硅橡胶在高比例甲醇汽油中抗膨胀性较好,氟橡胶在低比例甲醇汽油中抗膨胀性较好,而丁腈类橡胶在不同比例甲醇汽油中均有很好的抗膨胀性.
Directory of Open Access Journals (Sweden)
Chan-Gi Park
2016-01-01
Full Text Available Hybrid glass/jute fiber reinforced polymer (HGJFRP composite bars were manufactured for concrete structures, and their interlaminar shear stress and tensile performance were evaluated. HGJFRP composite bars were manufactured using a combination of pultrusion and braiding processes. Jute fiber was surface-treated with a silane coupling agent. The mixing ratio of the fiber to the vinyl ester used in the HGJFRP composite bars was 7 : 3. Jute fiber was used to replace glass fiber in proportions of 0, 30, 50, 70, and 100%. The interlaminar shear stress decreased as the proportion of jute fiber increased. Fractures appeared due to delamination between the surface-treated component and the main part of the HGJFRP composite bar. Tensile load-strain curves with 50% jute fiber exhibited linear behavior. With a jute fiber volume fraction of 70%, some plastic deformation occurred. A jute fiber mixing ratio of 100% resulted in a display of linear elastic brittle behavior from the fiber; however, when the surface of the fiber was coated with poly(vinyl acetate, following failure, the jute fiber exhibited partial load resistance. The tensile strength decreased as the jute fiber content increased; however, the tensile strength did not vary linearly with jute fiber content.
Energy Technology Data Exchange (ETDEWEB)
Haslam, J J; Wall, M A; Johnson, D L; Mayhall, D J; Schwartz, A J
2005-07-13
We have measured and modeled the change in electrical resistivity due to partial transformation to the martensitic {alpha}{prime}-phase in a {delta}-phase Pu-Ga matrix. The primary objective is to relate the change in resistance, measured with a 4-probe technique during the transformation, to the volume fraction of the {alpha}{prime} phase created in the microstructure. Analysis by finite element methods suggests that considerable differences in the resistivity may be anticipated depending on the orientational and morphological configurations of the {alpha}{prime} particles. Finite element analysis of the computed resistance of an assembly of lenticular shaped particles indicates that series resistor or parallel resistor approximations are inaccurate and can lead to an underestimation of the predicted amount of {alpha}{prime} in the sample by 15% or more. Comparison of the resistivity of a simulated network of partially transformed grains or portions of grains suggests that a correction to the measured resistivity allows quantification of the amount of {alpha}{prime} phase in the microstructure with minimal consideration of how the {alpha}{prime} morphology may evolve. It is found that the average of the series and parallel resistor approximations provide the most accurate relationship between the measured resistivity and the amount of {alpha}{prime} phase. The methods described here are applicable to any evolving two-phase microstructure in which the resistance difference between the two phases is measurable.
Directory of Open Access Journals (Sweden)
Mallampati S. R.
2013-04-01
Full Text Available Present study, first time we developed a nano-Fe/Ca/CaO dispersion mixture based remediation and volume reduction method of real radioactive cesium contaminated soils. After soil samples treated with 10wt% of nano-Fe/Ca/CaO dispersion mixtures, emitting radiation intensity was reduced from 4.00 μSv/h to 0.95 μSv/h in non-magnetic fraction soils. While, after treatment, about 30wt% magnetic and 70wt% nonmagnetic fraction soils were separated, and it’s condensed radioactive cesium concentration was about 80% and 20%, respectively. By this way, cesium contaminated soil volume can be reduced. These preliminary results appear to be very promising and the simple mixing with the addition of nano-Fe/Ca/CaO may be considered potentially applicable for the remediation and separation of radioactive Cs contaminated soil in dry conditions.
van Dongen, Joris A.; Stevens, Hieronymus P.; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C.
2016-01-01
Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt
van Dongen, Joris A; Stevens, Hieronymus P; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C
2016-01-01
Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt
van Dongen, Joris A.; Stevens, Hieronymus P.; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C.
2016-01-01
Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be obt
Fayngold, Moses
2013-01-01
A state of a single particle can be represented by a quantum blob in the corresponding phase space, or a patch (granule) in its 2-D subspace. Its area is frequently stated to be no less than, implying that such a granule is an indivisible quantum of the 2-D phase space. But this is generally not true, as is evident, for instance, from representation of some states in the basis of innately discrete observables like angular momentum. Here we consider some dispersed states involving the evanescent waves different from that in the total internal reflection. Such states are represented by a set of separated granules with individual areas, but with the total indeterminacy . An idealized model has a discrete Wigner function and is described by a superposition of eigenstates with eigenvalues and forming an infinite periodic array of dots on the phase plane. The question about the total indeterminacy in such state is discussed. We argue that the eigenstates corresponding to the considered EW cannot be singled out by a...
Ryu, Ho Jin; Han, Young Soo; Park, Jong Man; Park, Soon Dal; Kim, Chang Kyu
2003-09-01
The growth behavior of reaction layers and heat generation during the reaction between U-Mo powders and the Al matrix in U-Mo/Al dispersion fuels were investigated. Annealing of 10 vol.% U-10Mo/Al dispersion fuels at temperatures from 500 to 550 °C was carried out for 10 min to 36 h to measure the growth rate and the activation energy for the growth of reaction layers. The concentration profiles of reaction layers between the U-10Mo vs. Al diffusion couples were measured and the integrated interdiffusion coefficients were calculated for the U and Al in the reaction layers. Heat generation of U-Mo/Al dispersion fuels with 10-50 vol.% of U-Mo fuel during the thermal cycle from room temperature to 700 °C was measured employing the differential scanning calorimetry. Exothermic heat from the reaction between U-Mo and the Al matrix is the largest when the volume fraction of U-Mo fuel is about 30 vol.%. The unreacted fraction in the U-Mo powders increases as the volume fraction of U-Mo fuel increases from 30 to 50 vol.%.
Fractional complex transforms for fractional differential equations
National Research Council Canada - National Science Library
Ibrahim, Rabha W
2012-01-01
The fractional complex transform is employed to convert fractional differential equations analytically in the sense of the Srivastava-Owa fractional operator and its generalization in the unit disk...
Institute of Scientific and Technical Information of China (English)
张建云; 张灿铭; 李普同; 崔霞
2014-01-01
对高体积分数 SiCp/Al 复合材料进行前处理,再化学镀镍。研究了除油、粗化、活化对 SiCp/Al复合材料化学镀镍的影响。分析了镀镍层的显微组织。结果表明,有机溶剂除油比碱液除油效果好。H2 O2系粗化比 HF 系粗化更为适宜。在由醋酸镍、次亚磷酸钠和乙醇组成的活化剂中室温浸润,然后160℃温度下热还原30 min,化学镀镍镀速较高。前处理后在 SiCp/Al 复合材料表面化学镀镍可沉积上致密、均匀、结合良好的镀镍层。%The high volume fraction SiCp/Al composite was processed by pretreatment,then it was proceeded by electroless nickel plating.The influence of deoiling,roughening,activating on electroless nickel plating on SiCp/Al composite was investigated.The microstructure of electroless nickel plating on composite was ana-lyzed.The results show that organic solvent was better than alkaline solvent for deoiling.H2 O2 system was more appropriate than HF system for roughening.Infiltrating in activation solution consisted nickel acetate,so-dium hypophosphite and alcohol at room temperature,then thermo deoxidizing at 160 ℃ temperature for 30 min,the procedure makes electroless nickel plating rate higher.After pretreatment,electroless nickel plating deposited on SiCp/Al composite surface was dense,uniform,firmly combined.
Fractional complex transform for fractional differential equations
National Research Council Canada - National Science Library
Lİ, Zheng Biao; HE, Ji Huan
2010-01-01
Fractional complex transform is proposed to convert fractional differential equations into ordinary differential equations, so that all analytical methods devoted to advanced calculus can be easily...
Temperature-dependent gelation process in colloidal dispersions by diffusing wave spectroscopy.
Liu, Jiaxue; Boyko, Volodymyr; Yi, Zhiyong; Men, Yongfeng
2013-11-19
Temperature-dependent microrheology of a concentrated charge-stabilized poly(methyl methacrylate) colloidal dispersion with different salt concentrations was investigated by diffusing wave spectroscopy in backscattering mode. The critical temperature where the system undergoes aggregation and gelation depends upon the particle volume fraction or salt concentration. The viscoelastic properties of the systems have been discussed using Maxwell and Kelvin-Voigt models. Temperature-dependent crossover (G' = G″) frequency has been used to calculate activation energies representing a critical energy of interaction of gel formation.
Hamiltonian description of composite fermions: Magnetoexciton dispersions
Murthy, Ganpathy
1999-11-01
A microscopic Hamiltonian theory of the FQHE, developed by Shankar and myself based on the fermionic Chern-Simons approach, has recently been quite successful in calculating gaps in fractional quantum hall states, and in predicting approximate scaling relations between the gaps of different fractions. I now apply this formalism towards computing magnetoexciton dispersions (including spin-flip dispersions) in the ν=13, 25, and 37 gapped fractions, and find approximate agreement with numerical results. I also analyze the evolution of these dispersions with increasing sample thickness, modelled by a potential soft at high momenta. New results are obtained for instabilities as a function of thickness for 25 and 37, and it is shown that the spin-polarized 25 state, in contrast to the spin-polarized 13 state, cannot be described as a simple quantum ferromagnet.
Pandit, Deepak Kr.; Kundu, Santimoy; Gupta, Shishir
2017-02-01
This theoretical work reports the dispersion and absorption characteristics of horizontally polarized shear wave (SH-wave) in a corrugated medium with void pores sandwiched between two dissimilar half-spaces. The dispersion and absorption equations have been derived in a closed form using the method of separation of variables. It has been established that there are two different kinds of wavefronts propagating in the proposed media. One of the wavefronts depends on the modulus of rigidity of elastic matrix of the medium and satisfies the dispersion equation of SH-waves. The second wavefront depends on the changes in volume fraction of the pores. Numerical computation of the obtained relations has been performed and the results are depicted graphically. The influence of corrugation, sandiness on the phase velocity and the damped velocity of SH-wave has been studied extensively.
Middleton, Beth; van Diggelen, Rudy; Jensen, Kai
2006-01-01
Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and
Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion
Kumar, K. S.; Whittenberger, J. D.
1992-01-01
A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.
Sun, Zhenyu; Nicolosi, Valeria; Bergin, Shane D; Coleman, Jonathan N
2008-12-03
A novel amine solvent, 3-aminopropyltriethoxysilane, has been used to disperse single-walled carbon nanotubes. Well-dispersed nanotubes in the form of small bundles coexist in the liquid phase with large nanotube aggregates. A mild centrifugation step can be used to remove the aggregates. By measurement of the absorbance before and after centrifugation as a function of concentration, the fraction of the dispersed nanotube phase can be estimated. As measured by atomic force microscopy, the mean bundle diameter tends to decrease with decreasing concentration and levels off below a concentration of ∼0.012 mg ml(-1). Individual nanotubes are always observed, whose population increases with decreasing concentration before saturating at a concentration of ∼0.012 mg ml(-1). The absolute number of individual nanotubes per volume of dispersion initially increases with decreasing concentration, and then reaches a peak at a concentration of ∼0.024 mg ml(-1). Further experimental results showed that nanotubes can also be effectively dispersed in a series of aminoalkoxylsilane derivatives. In the light of these findings, possible solvent-nanotube interaction mechanisms are discussed.
Transitional phenomenon of particle dispersion in gas-solid two-phase flows
Institute of Scientific and Technical Information of China (English)
LUO Kun; FAN JianRen; CEN KeFa
2007-01-01
Without using any turbulent model, direct numerical simulation of a three-dimensional gas-solid two-phase turbulent jet was performed by finite volume method. The effects on dispersion of particles with different Stokes numbers by the transitional behavior of turbulent structures were investigated. To produce high-resolution results and reduce the computation and storage, the fractional-step projection algorithm was used to solve the governing equations of gas phase fluid. The low-storage, three-order Runge-Kutta scheme was used for time integration. The governing equations of particles were solved in the Lagrangian framework. These numerical schemes were validated by the good agreement between the statistical results of flow field and the related experimental data. In the study of particle dispersion, it was found that the effects on particle dispersion by the spanwise vortex structures were prominent. The new behaviors of particle dispersion were also observed during the evolution of the flow field, i.e. the transitional phenomenon of particle dispersion occurs for the particles with small and intermediate Stokes numbers.
Effect of the Size Distribution of Nanoscale Dispersed Particles on the Zener Drag Pressure
Eivani, A. R.; Valipour, S.; Ahmed, H.; Zhou, J.; Duszczyk, J.
2011-04-01
In this article, a new relationship for the calculation of the Zener drag pressure is described in which the effect of the size distribution of nanoscale dispersed particles is taken into account, in addition to particle radius and volume fraction, which have been incorporated in the existing relationships. Microstructural observations indicated a clear correlation between the size distribution of dispersed particles and recrystallized grain sizes in the AA7020 aluminum alloy. However, the existing relationship to calculate the Zener drag pressure yielded a negligible difference of 0.016 pct between the two structures homogenized at different conditions resulting in totally different size distributions of nanoscale dispersed particles and, consequently, recrystallized grain sizes. The difference in the Zener drag pressure calculated by the application of the new relationship was 5.1 pct, being in line with the experimental observations of the recrystallized grain sizes. Mathematical investigations showed that the ratio of the Zener drag pressure from the new equation to that from the existing equation is maximized when the number densities of all the particles with different sizes are equal. This finding indicates that in the two structures with identical parameters except the size distribution of nanoscale dispersed particles, the one that possesses a broader size distribution of particles, i.e., the number densities of particles with different sizes being equal, gives rise to a larger Zener drag pressure than that having a narrow size distribution of nanoscale dispersed particles, i.e., most of the particles being in the same size range.
Numerical study of fractional nonlinear Schrodinger equations
Klein, Christian
2014-10-08
Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.
Modeling the dispersion in electromechanically coupled myocardium
Eriksson, Thomas S. E.; Prassl, Anton J.; Plank, Gernot; Holzapfel, Gerhard A.
2014-01-01
SUMMARY We present an approach to model the dispersion of fiber and sheet orientations in the myocardium. By utilizing structure parameters, an existing orthotropic and invariant-based constitutive model developed to describe the passive behavior of the myocardium is augmented. Two dispersion parameters are fitted to experimentally observed angular dispersion data of the myocardial tissue. Computations are performed on a unit myocardium tissue cube and on a slice of the left ventricle indicating that the dispersion parameter has an effect on the myocardial deformation and stress development. The use of fiber dispersions relating to a pathological myocardium had a rather big effect. The final example represents an ellipsoidal model of the left ventricle indicating the influence of fiber and sheet dispersions upon contraction over a cardiac cycle. Although only a minor shift in the pressure–volume (PV) loops between the cases with no dispersions and with fiber and sheet dispersions for a healthy myocardium was observed, a remarkably different behavior is obtained with a fiber dispersion relating to a diseased myocardium. In future simulations, this dispersion model for myocardial tissue may advantageously be used together with models of, for example, growth and remodeling of various cardiac diseases. PMID:23868817
Modeling the dispersion in electromechanically coupled myocardium.
Eriksson, Thomas S E; Prassl, Anton J; Plank, Gernot; Holzapfel, Gerhard A
2013-11-01
We present an approach to model the dispersion of fiber and sheet orientations in the myocardium. By utilizing structure parameters, an existing orthotropic and invariant-based constitutive model developed to describe the passive behavior of the myocardium is augmented. Two dispersion parameters are fitted to experimentally observed angular dispersion data of the myocardial tissue. Computations are performed on a unit myocardium tissue cube and on a slice of the left ventricle indicating that the dispersion parameter has an effect on the myocardial deformation and stress development. The use of fiber dispersions relating to a pathological myocardium had a rather big effect. The final example represents an ellipsoidal model of the left ventricle indicating the influence of fiber and sheet dispersions upon contraction over a cardiac cycle. Although only a minor shift in the pressure-volume (PV) loops between the cases with no dispersions and with fiber and sheet dispersions for a healthy myocardium was observed, a remarkably different behavior is obtained with a fiber dispersion relating to a diseased myocardium. In future simulations, this dispersion model for myocardial tissue may advantageously be used together with models of, for example, growth and remodeling of various cardiac diseases.
Bergstra, Jan A.
2015-01-01
In the context of an involutive meadow a precise definition of fractions is formulated and on that basis formal definitions of various classes of fractions are given. The definitions follow the fractions as terms paradigm. That paradigm is compared with two competing paradigms for storytelling on fractions: fractions as values and fractions as pairs.
Energy Technology Data Exchange (ETDEWEB)
Garcia-Barriocanal, J.; Garces, G.; Perez, P.; Adeva, P.
2005-07-01
The mechanical properties of Ni{sub 3}Al-Cr reinforced with 10% in volume fraction of chromium particles produced by powder metallurgy have been studied. For this purpose, milled powders with composition of Ni-20.9Al-8Cr-0.49B (% st.) with and without the addition of 10% in volume fraction of chromium particles have been produced. Both alloys were consolidated by hot isostatic pressing (HIP). After HIP, heat treatment was applied to homogenize the microstructure. The chromium reinforcement has an important effect in the yield strength and ultimate strength increase. The reinforced alloy presents a yield strength of 1300 MPa at room temperature with respect to 800 MPa for the un-reinforced material. After heat treatment, the yield strength of both alloys does not change significantly. However, a decrease in ductility and ultimate tensile strength have been observed. (Author) 4 refs.
Directory of Open Access Journals (Sweden)
Kawel Nadine
2012-04-01
Full Text Available Abstract Purpose Myocardial T1 relaxation time (T1 time and extracellular volume fraction (ECV are altered in patients with diffuse myocardial fibrosis. The purpose of this study was to perform an intra-individual assessment of normal T1 time and ECV for two different contrast agents. Methods A modified Look-Locker Inversion Recovery (MOLLI sequence was acquired at 3 T in 24 healthy subjects (8 men; 28 ± 6 years at mid-ventricular short axis pre-contrast and every 5 min between 5-45 min after injection of a bolus of 0.15 mmol/kg gadopentetate dimeglumine (Gd-DTPA; Magnevist® (exam 1 and 0.1 mmol/kg gadobenate dimeglumine (Gd-BOPTA; Multihance® (exam 2 during two separate scanning sessions. T1 times were measured in myocardium and blood on generated T1 maps. ECVs were calculated as ΔR1myocardium/ΔR1blood*1−hematocrit. Results Mean pre-contrast T1 relaxation times for myocardium and blood were similar for both the first and second CMR exam (p > 0.5. Overall mean post-contrast myocardial T1 time was 15 ± 2 ms (2.5 ± 0.7% shorter for Gd-DTPA at 0.15 mmol/kg compared to Gd-BOPTA at 0.1 mmol/kg (p 0.05. Between 5 and 45 minutes after contrast injection, mean ECV values increased linearly with time for both contrast agents from 0.27 ± 0.03 to 0.30 ± 0.03 (p pre-contrast myocardial T1 relaxation time (CV 4.5% [exam 1] and 3.0% [exam 2], respectively. ECV with Gd-DTPA was highly correlated to ECV by Gd-BOPTA (r = 0.803; p Conclusion In comparison to pre-contrast myocardial T1 relaxation time, variation in ECV values of normal subjects is larger. However, absolute differences in ECV between Gd-DTPA and Gd-BOPTA were small and rank correlation was high. There is a small and linear increase in ECV over time, therefore ideally images should be acquired at the same delay after contrast injection.
Directory of Open Access Journals (Sweden)
E. M. Nurullaev
2013-04-01
Full Text Available The computational method of optimum fractional composition of a dispersible filler of polymeric composite on the basis of three-dimensionally linked elastomer is developed according to non-linear programming. The coefficient of dynamic viscosity of polymeric suspension or the initial module of a viscoelasticity of the join solidification low-molecular rubbers with the final functional groups, filled by many fractional dioxide of silicon are considered as criteria of optimization. Influence of the limiting volume filling on energy of mechanical destruction was investigated. The elastomeric material is offered for use as a covering of asphalt highways in the form of a frost-proof waterproofing layer, which allowing multiply to increase operating properties.
Dispersed-phase structure of pressure-atomized sprays at various gas densities
Tseng, L.-K.; Wu, P.-K.; Faeth, G. M.
1992-01-01
The dispersed-phase structure of the dense-spray region of pressure-atomized sprays was studied for atomization breakup conditions, considering large-scale (9.5 mm initial diameter) water jets in still air at ambient pressures of 1, 2, and 4 atm., with both fully-developed turbulent pipe flow and nonturbulent slug flow at the jet exit. Drop sizes and velocities, and liquid volume fractions and fluxes, were measured using holography. Measurements were compared with predictions based on the locally-homogeneous flow approximation as well as recent correlations of drop sizes after primary breakup of turbulent and nonturbulent liquids. The dispersed-flow region beyond the liquid surface was relatively dilute (liquid volume fractions less than 0.1 percent), with significant separated-flow effects throughout, and evidence of near-limit secondary breakup and drop deformation near the liquid surface. Turbulent primary breakup predictions were satisfactory at atmospheric pressure, where the correlation was developed, but failed to predict observed trends of decreasing drop sizes with increasing gas density due to aerodynamic effects; in contrast, the laminar primary breakup predictions successfully treated the relatively small effects of gas density for this breakup mechanism. Effects of liquid turbulence at the jet exit were qualitatively similar to single-phase flows, yielding faster mixing rates with increased turbulence levels even though drop sizes tended to increase as well.
Tenreiro Machado, J. A.
2015-08-01
This paper addresses the matrix representation of dynamical systems in the perspective of fractional calculus. Fractional elements and fractional systems are interpreted under the light of the classical Cole-Cole, Davidson-Cole, and Havriliak-Negami heuristic models. Numerical simulations for an electrical circuit enlighten the results for matrix based models and high fractional orders. The conclusions clarify the distinction between fractional elements and fractional systems.
Wear, Keith A
2015-03-01
Through-transmission measurements were performed on 30 human calcaneus samples in vitro. Nonlinear attenuation and dispersion measurements were investigated by estimating 95% confidence intervals of coefficients of polynomial expansions of log magnitude and phase of transmission coefficients. Bone mineral density (BMD) was measured with dual x-ray absorptiometry. Microarchitecture was measured with microcomputed tomography. Statistically significant nonlinear attenuation and nonzero dispersion were confirmed for a clinical bandwidth of 300-750 kHz in 40%-43% of bone samples. The mean linear coefficient for attenuation was 10.3 dB/cm MHz [95% confidence interval (CI): 9.0-11.6 dB/cm MHz]. The mean quadratic coefficient for attenuation was 1.6 dB/cm MHz(2) (95% CI: 0.4-2.8 dB/cm MHz(2)). Nonlinear attenuation provided little information regarding BMD or microarchitecture. The quadratic coefficient for phase (which is related to dispersion) showed moderate correlations with BMD (r = -0.65; 95% CI: -0.82 to -0.36), bone surface-to-volume ratio (r = 0.47; 95% CI: 0.12-0.72) and trabecular thickness (r = -0.40; 95% CI: -0.67 to -0.03). Dispersion was proportional to bone volume fraction raised to an exponent of 2.1 ± 0.2, which is similar to the value for parallel nylon-wire phantoms (2.4 ± 0.2) and supports a multiple-scattering model for dispersion.
Milinkovitch, Thomas; Godefroy, Joachim; Théron, Michaël; Thomas-Guyon, Hélène
2011-10-01
Dispersant use in nearshore areas is likely to increase the exposure of aquatic organisms to petroleum. To measure the toxicity of this controversial response technique, golden grey mullets (Liza aurata) were exposed to mechanically dispersed oil, chemically dispersed oil, dispersant alone in seawater, water-soluble fraction of oil and to seawater as a control treatment. Several biomarkers were assessed in the gills (enzymatic antioxidant activities, glutathione content, lipid peroxidation) and in the gallbladder (polycylic aromatic hydrocarbons metabolites). The significant differences between chemically dispersed oil and water soluble fraction of oil highlight the environmental risk to disperse an oil slick when containment and recovery can be conducted. The lack of significance between chemically and mechanically dispersed oil suggests that dispersant application is no more toxic than the natural dispersion of the oil slick. The results of this study are of interest in order to establish dispersant use policies in nearshore areas.
Energy Technology Data Exchange (ETDEWEB)
Milinkovitch, Thomas, E-mail: thomas.milinkovitch01@univ-lr.fr [Littoral Environnement et Societes (LIENSs), UMR 6250, CNRS-Universite de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01 (France); Godefroy, Joachim [Littoral Environnement et Societes (LIENSs), UMR 6250, CNRS-Universite de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01 (France); Theron, Michael, E-mail: michael.theron@univ-brest.fr [Laboratoire ORPHY EA4324, Universite de Bretagne Occidentale, 6 Avenue le Gorgeu, CS 93837, 29238 Brest Cedex 3 (France); Thomas-Guyon, Helene, E-mail: helene.thomas@univ-lr.fr [Littoral Environnement et Societes (LIENSs), UMR 6250, CNRS-Universite de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01 (France)
2011-10-15
Dispersant use in nearshore areas is likely to increase the exposure of aquatic organisms to petroleum. To measure the toxicity of this controversial response technique, golden grey mullets (Liza aurata) were exposed to mechanically dispersed oil, chemically dispersed oil, dispersant alone in seawater, water-soluble fraction of oil and to seawater as a control treatment. Several biomarkers were assessed in the gills (enzymatic antioxidant activities, glutathione content, lipid peroxidation) and in the gallbladder (polycylic aromatic hydrocarbons metabolites). The significant differences between chemically dispersed oil and water soluble fraction of oil highlight the environmental risk to disperse an oil slick when containment and recovery can be conducted. The lack of significance between chemically and mechanically dispersed oil suggests that dispersant application is no more toxic than the natural dispersion of the oil slick. The results of this study are of interest in order to establish dispersant use policies in nearshore areas. - Highlights: > This study simulates and evaluates the toxicity of dispersant use in nearshore area. > Dispersant use toxicity is assessed through biomarkers measurement in a fish species. > Chemical dispersion of an oil slick increases the petroleum toxicity. > Dispersant use does not enhance the toxicity of a mechanically dispersed oil slick. > This work leads to conclusions concerning dispersant use policies in nearshore area. - When the meteorological conditions induce the dispersion of the oil slick (e.g. wave), the application of dispersant does not increase the toxicity of petroleum.
Axon density and axon orientation dispersion in children born preterm
Kelly, Claire E.; Thompson, Deanne K.; Chen, Jian; Leemans, Alexander; Adamson, Christopher L.; Inder, Terrie E.; Cheong, Jeanie L Y; Doyle, Lex W.; Anderson, Peter J.
2016-01-01
Background Very preterm birth (VPT, <32 weeks' gestation) is associated with altered white matter fractional anisotropy (FA), the biological basis of which is uncertain but may relate to changes in axon density and/or dispersion, which can be measured using Neurite Orientation Dispersion and Density
Directory of Open Access Journals (Sweden)
Jin J.H.
2013-05-01
Full Text Available A gas-liquid Taylor bubble flow occurs in small diameter channels in which gas bubbles are separated by slugs of pure liquid. This type of flow regime is well suited for solid catalyzed gas-liquid reactors in which the reaction efficiency is a strong function of axial dispersion in the regions of pure liquid. This paper presents an experimental study of liquid phase axial dispersion in a Taylor bubble flow developed in a horizontal tube using high speed photography and radiotracer residence time distribution (RTD analysis. A parametric dependence of axial dispersion on average volume fraction of gas phase was also investigated by varying the relative volumetric flow rates of the two phases. 137mBa produced from a 137Cs/137mBa radionuclide generator was used as radiotracer and measurements were made using the NaI(Tl scintillation detectors. Validation of 137mBa in the form of barium chloride as aqueous phase radiotracer was also carried out. Axial Dispersion Model (ADM was used to simulate the hydrodynamics of the system and the results of the experiment are presented. It was observed that the system is characterized by very high values of Peclet Number (Pe∼102 which reveals an approaching plug type flow. The experimental and model estimated values of mean residence times were observed in agreement with each other.
Nelson, RD
1988-01-01
This book provides powder technologists with laboratory procedures for selecting dispersing agents and preparing stable dispersions that can then be used in particle size characterization instruments. Its broader goal is to introduce industrial chemists and engineers to the phenomena, terminology, physical principles, and chemical considerations involved in preparing and handling dispersions on a commercial scale. The book introduces novices to: - industrial problems due to improper degree of dispersion; - the nomenclature used in describing particles; - the basic physica
Dispersion y dinamica poblacional
Dispersal behavior of fruit flies is appetitive. Measures of dispersion involve two different parameter: the maximum distance and the standard distance. Standard distance is a parameter that describes the probalility of dispersion and is mathematically equivalent to the standard deviation around ...
Middleton, Beth; van Diggelen, Rudy; Jensen, Kai
2006-01-01
Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and redu
López-Sanjuan, C; Hernández-Monteagudo, C; Varela, J; Molino, A; Arnalte-Mur, P; Ascaso, B; Castander, F J; Fernández-Soto, A; Huertas-Company, M; Márquez, I; Martínez, V J; Masegosa, J; Moles, M; Pović, M; Aguerri, J A L; Alfaro, E; Benítez, N; Broadhurst, T; Cabrera-Caño, J; Cepa, J; Cerviño, M; Cristóbal-Hornillos, D; Del Olmo, A; Delgado, R M González; Husillos, C; Infante, L; Perea, J; Prada, F; Quintana, J M
2014-01-01
Our goal is to estimate empirically, for the first time, the cosmic variance that affects merger fraction studies based on close pairs. We compute the merger fraction from photometric redshift close pairs with 10h^-1 kpc <= rp <= 50h^-1 kpc and Dv <= 500 km/s, and measure it in the 48 sub-fields of the ALHAMBRA survey. We study the distribution of the measured merger fractions, that follow a log-normal function, and estimate the cosmic variance sigma_v as the intrinsic dispersion of the observed distribution. We develop a maximum likelihood estimator to measure a reliable sigma_v and avoid the dispersion due to the observational errors (including the Poisson shot noise term). The cosmic variance of the merger fraction depends mainly on (i) the number density of the populations under study, both for the principal (n_1) and the companion (n_2) galaxy in the close pair, and (ii) the probed cosmic volume V_c. We find a significant dependence on neither the search radius used to define close companions, t...
Energy Technology Data Exchange (ETDEWEB)
1980-10-01
A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. As a result of visits to four utilities concerned with the use of DSG power sources on their distribution networks, some useful impressions of present and future approaches to the integration of DSGs into electrical distribution network have been obtained. A more extensive communications and control network will be developed by utilities for control of such sources for future use. Different approaches to future utility systems with DSG are beginning to take shape. The new DSG sources will be in decentralized locations with some measure of centralized control. The utilities have yet to establish firmly the communication and control means or their organization. For the present, the means for integrating the DSGs and their associated monitoring and control equipment into a unified system have not been decided.
Initialized Fractional Calculus
Lorenzo, Carl F.; Hartley, Tom T.
2000-01-01
This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.
A Model to Predict Thermal Conductivity of Irradiated U-Mo Dispersion Fuel
Energy Technology Data Exchange (ETDEWEB)
Burkes, Douglas; Huber, Tanja K.; Casella, Andrew M.
2016-05-01
The Office of Materials Management and Minimization Reactor Conversion Program continues to develop existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. The program is focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.
A model to predict thermal conductivity of irradiated U-Mo dispersion fuel
Burkes, Douglas E.; Huber, Tanja K.; Casella, Andrew M.
2016-05-01
Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world's remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on assisting with the development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix and upon the concentration of the dispersed phase within the matrix. This paper extends the use of a simple model developed previously to study the influence of interaction layer formation as well as the size and volume fraction of fuel particles dispersed in the matrix, Si additions to the matrix, and Mo concentration in the fuel particles on the effective thermal conductivity of the U-Mo/Al composite during irradiation. The model has been compared to experimental measurements recently conducted on U-Mo/Al dispersion fuels at two different fission densities with acceptable agreement. Observations of the modeled results indicate that formation of an interaction layer and subsequent consumption of the matrix reveals a rather significant effect on effective thermal conductivity. The modeled interaction layer formation and subsequent consumption of the high thermal conductivity matrix was sensitive to the average dispersed fuel particle size, suggesting this parameter as one of the most effective in minimizing thermal conductivity degradation of the composite, while the influence of Si additions to the matrix in the model was highly dependent upon irradiation conditions.
Institute of Scientific and Technical Information of China (English)
唐青龙; 张鹏; 刘海峰; 尧命发
2015-01-01
激光诱导炽光(LII)法是一种用于测量火焰中碳烟体积分数的光学测试方法.本文介绍了LII的基本原理以及LII实现定量测量的常见标定方法,建立了一套基于双色法-激光诱导炽光法(2C-LII)的用于柴油机缸内燃烧过程碳烟体积分数定量测量的测试系统,该测试系统采用双成像原理,可以实现多点标定和全视场范围内的碳烟体积分数测量.在一台工作在1200 r∙min-1、喷油量21 mg的光学单缸柴油机上,研究了60、100和140 MPa三个不同喷油压力下,缸内燃烧过程碳烟的分布情况,结果表明,碳烟自发光出现在燃烧放热率峰值之后,且随着喷油压力提高,碳烟发光持续期缩短,碳烟发光强度降低.测试区域内火焰中的碳烟体积分数范围约为0-50×10-6.不同喷油压力下,碳烟生成初期、碳烟峰值和碳烟氧化三个阶段内平均碳烟体积分数的范围分别是：5×10-6-9×10-6,15×10-6-20×10-6和14×10-6-16×10-6.喷油压力提高后火焰中的碳烟分布区域面积增大,平均碳烟体积分数减小,碳烟体积分数的空间分布趋于均匀.%Laser-induced incandescence (LII) is an optical diagnostic method used to measure the soot volume fraction in a flame. In this paper, the principle of LII and the calibration methods normal y used are introduced. Based on two-color LII theory, a quantitative test system for determining the in-cylinder soot volume fraction was established. A dual imaging setup was used, which can achieve multipoint calibration and ful field-of-view quantification of soot in a diesel engine chamber. An investigation was carried out on an optical diesel engine with the conditions 1200 r∙min-1 and 21 mg fuel injection per cycle, with various injection pressures (60, 100, and 140 MPa). The results show that the natural soot incandescence emerged after the peak rate of combustion heat release. With increasing injection pressure, the duration of natural soot
Muela, Susana; Escalera, Begoña; Peña, M Angeles; Bustamante, Pilar
2010-01-15
Co-solvents and solid dispersions with polyvinyl pyrrolidone were tested to increase solubility of thiabendazole. Solid dispersions were prepared by the solvent method and analyzed by differential scanning calorimetry. The solubility was measured at 15-35 degrees C in aqueous (ethanol-water) and non-aqueous (ethanol-ethyl acetate) mixtures. Combination of solid dispersions with cosolvents increased the water solubility of thiabendazole in a larger extent that each method separately. The effect of the solid dispersions is greatest in water and it decreases nonlinearly as the volume fraction of ethanol-in water increases. The solubility enhancement is smaller in ethanol-ethyl acetate and is uncorrelated with co-solvent concentration. Solubility parameters delta were used to predict drug/carrier compatibility and related to solubility profiles. Thiabendazole shows an intermediate behaviour between solubility curves with two peaks (more polar drugs with larger delta values) and a single peak (less polar drugs with lower delta values). The solid dispersions increase the solubility parameter of thiabendazole from delta=24 to delta=25.7 MPa(1/2). The model of Bustamante et al. allowed solubility prediction including jointly both mixtures whereas the equation of Jouyban et al. was able to predict the solubility at several temperatures in each binary mixture separately, using a few experiments.
Acoustic Wave Dispersion and Scattering in Complex Marine Sediment Structures
2015-09-30
Acoustic wave dispersion and scattering in complex marine sediment structures Charles W. Holland The Pennsylvania State University Applied...volume scattering and 2) the effects of shear waves in general layered media. These advances will provide the basis for measuring dispersion in in-situ...shear waves on dispersion in marine sediments. The first step will be development of the theory. WORK COMPLETED A brief summary of the work
Predation of cassowary dispersed seeds: is the cassowary an effective disperser?
Bradford, Matt G; Westcott, David A
2011-09-01
Post-dispersal predation is a potentially significant modifier of the distribution of recruiting plants and an often unmeasured determinant of the effectiveness of a frugivore's dispersal service. In the wet tropical forests of Australia and New Guinea, the cassowary provides a large volume, long distance dispersal service incorporating beneficial gut processing; however, the resultant clumped deposition might expose seeds to elevated mortality. We examined the contribution of post-dispersal seed predation to cassowary dispersal effectiveness by monitoring the fate of 11 species in southern cassowary (Casuarius casuarius johnsonii Linnaeus) droppings over a period of 1 year. Across all species, the rate of predation and removal was relatively slow. After 1 month, 70% of seeds remained intact and outwardly viable, while the number fell to 38% after 1 year. The proportion of seeds remaining intact in droppings varied considerably between species: soft-seeded and large-seeded species were more likely to escape removal and predation. Importantly, across all species, seeds in droppings were no more likely to be predated than those left undispersed under the parent tree. We speculate that seed predating and scatter-hoarding rodents are responsible for the vast majority of predation and removal from droppings and that the few seeds which undergo secondary dispersal survive to germination. Our findings reinforce the conclusion that the cassowary is an important seed disperser; however, dispersal effectiveness for particular plant species can be reduced by massive post-dispersal seed mortality. © 2011 ISZS, Blackwell Publishing and IOZ/CAS.
Fraction Sense: Foundational Understandings.
Fennell, Francis Skip; Karp, Karen
2016-08-09
The intent of this commentary is to identify elements of fraction sense and note how the research studies provided in this special issue, in related but somewhat different ways, validate the importance of such understandings. Proficiency with fractions serves as a prerequisite for student success in higher level mathematics, as well as serving as a gateway to many occupations and varied contexts beyond the mathematics classroom. Fraction sense is developed through instructional opportunities involving fraction equivalence and magnitude, comparing and ordering fractions, using fraction benchmarks, and computational estimation. Such foundations are then extended to operations involving fractions and decimals and applications involving proportional reasoning. These components of fraction sense are all addressed in the studies provided in this issue, with particular consideration devoted to the significant importance of the use of the number line as a central representational tool for conceptually understanding fraction magnitude.
Enhanced Mechanical Properties of MgZnCa Bulk Metallic Glass Composites with Ti-Particle Dispersion
Directory of Open Access Journals (Sweden)
Pei Chun Wong
2016-05-01
Full Text Available Rod samples of Mg60Zn35Ca5 bulk metallic glass composites (BMGCs dispersed with Ti particles have been successfully fabricated via injection casting. The glass forming ability (GFA and the mechanical properties of these Mg-based BMGCs have been systematically investigated as a function of the volume fraction (Vf of Ti particles. The results showed that the compressive ductility increased with Vf. The mechanical performance of these BMGCs, with up to 5.4% compressive failure strain and 1187 MPa fracture strength at room temperature, can be obtained for the Mg-based BMGCs with 50 vol % Ti particles, suggesting that these dispersed Ti particles can absorb the energy of the crack propagations and can induce branches of the primary shear band into multiple secondary shear bands. It follows that further propagation of the shear band is blocked, enhancing the overall plasticity.
Applications of fractional calculus in physics
2000-01-01
Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and co
Dispersion management with metamaterials
Energy Technology Data Exchange (ETDEWEB)
Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M.
2017-03-07
An apparatus, system, and method to counteract group velocity dispersion in fibers, or any other propagation of electromagnetic signals at any wavelength (microwave, terahertz, optical, etc.) in any other medium. A dispersion compensation step or device based on dispersion-engineered metamaterials is included and avoids the need of a long section of specialty fiber or the need for Bragg gratings (which have insertion loss).
Chiang, Wen-yu; Chiang, Fang-mei
2013-01-01
This study investigates the dispersion of vowel space in Truku, an endangered Austronesian language in Taiwan. Adaptive Dispersion (Liljencrants and Lindblom, 1972; Lindblom, 1986, 1990) proposes that the distinctive sounds of a language tend to be positioned in phonetic space in a way that maximizes perceptual contrast. For example, languages with large vowel inventories tend to expand the overall acoustic vowel space. Adaptive Dispersion predicts that the distance between the point vowels w...
A new scale-up approach for dispersive mixing in twin-screw compounding
Fukuda, Graeme; Bigio, David I.; Andersen, Paul; Wetzel, Mark
2015-05-01
Scale-up rules in polymer processing are critical in ensuring consistency in product quality and properties when transitioning from low volume laboratory mixing processes to high volume industrial compounding. The scale-up approach investigated in this study evaluates the processes with respect to dispersive mixing. Demand of polymer composites with solid additives, such as carbon microfibers and nanotubes, has become increasingly popular. Dispersive mixing breaks down particles that agglomerate, which is paramount in processing composites because solid additives tend to collect and clump. The amount of stress imparted on the material governs the degree of dispersive mixing. A methodology has been developed to characterize the Residence Stress Distribution (RSD) within a twin-screw extruder in real time through the use of polymeric stress beads. Through this technique, certain mixing scale-up rules can be analyzed. The following research investigated two different scale-up rules. The industry standard for mixing scale-up takes the ratio of outer diameters cubed to convert the volumetric flow rate from the smaller process to a flow rate appropriate in the larger machine. This procedure then resolves both operating conditions since shear rate remains constant. The second rule studied is based on percent drag flow, or the fraction of pumping potential, for different elements along the screw configuration. The percent drag flow rule aims to bring greater focus to operating conditions when scaling-up with respect to dispersive mixing. Through the use of the RSD methodology and a Design of Experiment (DOE) approach, rigorous statistical analysis was used to determine the validity between the scale-up rules of argument.
Dewi, D. A. K.; Suryadi, D.; Suratno, T.; Mulyana, E.; Kurniawan, H.
2017-02-01
Introducing fractions is identical to divide an object. Suppose we divide the apple into two parts. One divided into two parts, the question arises whether one part can be called a half or not. Based on this activity, how can students give meaning to fractions. This study aims at designing a different fractions lesson by applying Didactical Design Research. In doing so, we undertook several research phases: 1) thinking what is fractions and why students should learn this concept; 2) designing didactical situation based on identified learning obstacles; and 3) reflecting retrospectively on the lesson design and its implementation as to redesign the fractions lesson. Our analysis revealed that most students held epistemological obstacles in giving meaning of fractions because they only know fractions as numbers that have numerator and denominator. By positioning ourselves as students, we discuss the ideal design to help students in constructing the meaning of fractions.
Edelman, Mark
2014-01-01
In this paper the author presents the results of the preliminary investigation of fractional dynamical systems based on the results of numerical simulations of fractional maps. Fractional maps are equivalent to fractional differential equations describing systems experiencing periodic kicks. Their properties depend on the value of two parameters: the non-linearity parameter, which arises from the corresponding regular dynamical systems; and the memory parameter which is the order of the fractional derivative in the corresponding non-linear fractional differential equations. The examples of the fractional Standard and Logistic maps demonstrate that phase space of non-linear fractional dynamical systems may contain periodic sinks, attracting slow diverging trajectories, attracting accelerator mode trajectories, chaotic attractors, and cascade of bifurcations type trajectories whose properties are different from properties of attractors in regular dynamical systems. The author argues that discovered properties s...
Directory of Open Access Journals (Sweden)
Edmundo Arteaga
2009-03-01
ó, con éxito, biopsia endomiocárdica del ventrículo derecho en 21 pacientes sintomáticos con CMH. La fracción de volumen de colágeno (FVC miocárdico se determinó por medio de histología. Se determinó la FVC también en fragmentos de nueve corazones normales de individuos fallecidos por causas no cardiacas. Respecto a la FVC, se dividieron a los pacientes en grupos supra e inframedianos (FVC elevada y FVC baja, respectivamente, y se compararon las características clínicas y ecocardiográficas y las curvas de sobrevida. RESULTADOS: Entre los pacientes, la FVC tuvo variación del 1,86% al 29,9%, con mediana en el 6,19%. Ya en los corazones normales, del 0,13% al 1,46%, mediana en el 0,36% (p6,19%, sin que se observara diferencias basales. Sin embargo, tras un período de seguimiento promedio de 110 meses, cuatro muertes ocurrieron (dos súbitas, y otras dos por insuficiencia cardiaca en el grupo con FVC mayor, mientras que los pacientes del grupo con FVC menor estaban vivos al final del período (p=0,02. CONCLUSIÓN: Por primera vez, se asoció prospectivamente la fibrosis miocárdica a un peor diagnóstico en pacientes con CMH. Se deben encaminar esfuerzos hacia la cuantificación de la fibrosis en la CMH, al aceptar que la asociación con el pronóstico puede auxiliar tanto en la estratificación de riesgo para implante de desfibrilador, como en la prescripción de fármacos potencialmente reparadores miocárdicos.BACKGROUND: In hypertrophic cardiomyopathy (HCM, interstitial myocardial fibrosis is an important histological modification that has been associated with sudden death and evolution toward myocardial dilation. OBJECTIVE:To prospectively evaluate the prognostic value of the collagen volume fraction in HCM. METHODS: An endomyocardial biopsy of the right ventricle was successfully performed in 21 symptomatic patients with HCM. The myocardial collagen volume fraction (CVF was determined by histology. The CVF was also determined in fragments of nine normal
Hydrodynamic dispersion within porous biofilms
Davit, Y.
2013-01-23
Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher\\'s equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels\\' network; (2) the solute\\'s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. © 2013 American Physical Society.
Directory of Open Access Journals (Sweden)
Franziska Greifzu
2016-01-01
Full Text Available In the present study two benchmark problems for turbulent dispersed particle-laden flow are investigated with computational fluid dynamics (CFD. How the CFD programs OpenFOAM and ANSYS FLUENT model these flows is tested and compared. The numerical results obtained with Lagrangian–Eulerian (LE point-particle (PP models for Reynolds-averaged Navier–Stokes (RANS simulations of the fluid flow in steady state and transient modes are compared with the experimental data available in the literature. The effect of the dispersion model on the particle motion is investigated in particular, as well as the order of coupling between the continuous carrier phase and the dispersed phase. First, a backward-facing step (BFS case is validated. As a second case, the confined bluff body (CBB is used. The simulated fluid flows correspond well with the experimental data for both test cases. The results for the dispersed solid phase reveal a good accordance between the simulation results and the experiments. It seems that particle dispersion is slightly under-predicted when ANSYS FLUENT is used, whereas the applied solver in OpenFOAM overestimates the dispersion somewhat. Only minor differences between the coupling schemes are detected due to the low volume fractions and mass loadings that are investigated. In the BFS test case the importance of the spatial dimension of the numerical model is demonstrated. Even if it is reasonable to assume a two-dimensional fluid flow structure, it is crucial to simulate the turbulent particle-laden flow with a three-dimensional model since the turbulent dispersion of the particles is three-dimensional.
On continued fraction algorithms
Smeets, Ionica
2010-01-01
Is there a good continued fraction approximation between every two bad ones? What is the entropy of the natural extension for alpha-Rosen fractions? How do you find multi-dimensional continued fractions with a guaranteed quality in polynomial time? These, and many more, questions are answered in thi
Graham, Alan; Graham, Louise
2003-01-01
Describes a very successful attempt to teach fractions to year 5 pupils based on pupils making their own fraction pack. Children decided for themselves how to make the fractional slices used in the activity using colored cardboard sheets and templates of a paper circle consisting of 24 equal slices. (Author/NB)
On continued fraction algorithms
Smeets, Ionica
2010-01-01
Is there a good continued fraction approximation between every two bad ones? What is the entropy of the natural extension for alpha-Rosen fractions? How do you find multi-dimensional continued fractions with a guaranteed quality in polynomial time? These, and many more, questions are answered in thi
Optical mode confinement in three-dimensional Al/SiO2 nano-cavities with hyperbolic dispersion
Bacco, Carla; Kelly, Priscilla; Kuznetsova, Lyuba
2015-09-01
Today's technological needs are demanding for faster and smaller optical components. Optical microcavities offer a high confinement of electromagnetic field in a small volume, with dimensions comparable to the wavelength of light, which provides a unique system for the enhancement of light-matter interactions on the nanoscale. However, further reducing the size of the optical cavity (from microcavity to nanocavity) is limited to the fundamental diffraction limit. In hyperbolic metamaterials, large wave vectors can be achieved. Therefore, optical cavities, created from hyperbolic metamaterials, allow the confinement of the electromagnetic field to an extremely small volume with dimensions significantly smaller than the wavelength of light. This paper presents the results of numerical study of the optical mode confinement in nanocavities with hyperbolic dispersion using nanolayered Al/SiO2 hyperbolic metamaterial with different Al fill fractions. The fundamental properties of the optical modes and resonance frequencies for the nanocavities are studied using the finite-elementmethod numerical technique. Numerical simulations show that the light can be well confined in a disk with radius up to λ/65. This paper will also focus on other variables such as Q-factor and Al fill fraction. Potential future applications for three-dimensional nanocavities with hyperbolic dispersion include: silicon photonics optical communications networks, ultrafast LEDs and biological nanoparticles sensing.
Fractional Differential Equations
Directory of Open Access Journals (Sweden)
Jianping Zhao
2012-01-01
Full Text Available An extended fractional subequation method is proposed for solving fractional differential equations by introducing a new general ansätz and Bäcklund transformation of the fractional Riccati equation with known solutions. Being concise and straightforward, this method is applied to the space-time fractional coupled Burgers’ equations and coupled MKdV equations. As a result, many exact solutions are obtained. It is shown that the considered method provides a very effective, convenient, and powerful mathematical tool for solving fractional differential equations.
Shamim, Atif
2011-03-01
For the first time, a generalized Smith chart is introduced here to represent fractional order circuit elements. It is shown that the standard Smith chart is a special case of the generalized fractional order Smith chart. With illustrations drawn for both the conventional integer based lumped elements and the fractional elements, a graphical technique supported by the analytical method is presented to plot impedances on the fractional Smith chart. The concept is then applied towards impedance matching networks, where the fractional approach proves to be much more versatile and results in a single element matching network for a complex load as compared to the two elements in the conventional approach. © 2010 IEEE.
Middleton, B.; Van Diggelen, R.; Jensen, K.
2006-01-01
Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and reducing genetic exchange. Species in fragmented wetlands may have lower reproductive success, which can lead to biodiversity loss. While fens may have always been relatively isolated from each other, they have become increasingly fragmented in modern times within agricultural and urban landscapes in both Europe and North America. Dispersal by water, animals and wind has been hampered by changes related to development in landscapes surrounding fens. Because the seeds of certain species are long-lived in the seed bank, frequent episodes of dispersal are not always necessary to maintain the biodiversity of fens. However, of particular concern to restoration is that some dominant species, such as the tussock sedge Carex stricta, may not disperse readily between fens. Conclusions: Knowledge of seed dispersal can be used to maintain and restore the biodiversity of fens in fragmented landscapes. Given that development has fragmented landscapes and that this situation is not likely to change, the dispersal of seeds might be enhanced by moving hay or cattle from fens to damaged sites, or by reestablishing lost hydrological connections. ?? IAVS; Opulus Press.
Visualizing Dispersion Interactions
Gottschalk, Elinor; Venkataraman, Bhawani
2014-01-01
An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…
Visualizing Dispersion Interactions
Gottschalk, Elinor; Venkataraman, Bhawani
2014-01-01
An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…
Fractional Dynamics and Control
Machado, José; Luo, Albert
2012-01-01
Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science. Discusses how fractional dynamics and control can be used to solve nonlinear science and complexity issues Shows how fractional differential equations and models can be used to solve turbulence and wave equations in mechanics and gravity theories and Schrodinger’s equation Presents factional relaxation modeling of dielectric materials and wave equations for dielectrics Develops new methods for control and synchronization of...
Dey, Aloke
2009-01-01
A one-stop reference to fractional factorials and related orthogonal arrays.Presenting one of the most dynamic areas of statistical research, this book offers a systematic, rigorous, and up-to-date treatment of fractional factorial designs and related combinatorial mathematics. Leading statisticians Aloke Dey and Rahul Mukerjee consolidate vast amounts of material from the professional literature--expertly weaving fractional replication, orthogonal arrays, and optimality aspects. They develop the basic theory of fractional factorials using the calculus of factorial arrangements, thereby providing a unified approach to the study of fractional factorial plans. An indispensable guide for statisticians in research and industry as well as for graduate students, Fractional Factorial Plans features: * Construction procedures of symmetric and asymmetric orthogonal arrays. * Many up-to-date research results on nonexistence. * A chapter on optimal fractional factorials not based on orthogonal arrays. * Trend-free plans...
Fast Radio Bursts: Constraints on the Dispersing Medium
Dennison, Brian
2014-01-01
Fast radio bursts appear to exhibit large dispersion measures, typically exceeding any expected galactic interstellar contribution, especially along the moderate to high-galactic-latitude directions in which such events have been most often observed. The dispersions have been therefore interpreted as extragalactic, leading to the inference that the sources of the bursts are at Gpc distances. This then implies that the bursts are extremely energetic events, originating from quite small volumes (due to the millisecond burst durations). To circumvent the energetic difficulties, Loeb, Shvartzvald, & Maoz (2014) propose that the bursts are produced by flares near the surfaces of M stars or contact binaries within a local volume of the galaxy. Most of the dispersion would then occur in the overlying stellar coronae. With the dispersion concentrated in a relatively high density region, the quadratic dispersion approximation breaks down as the plasma frequency is comparable to (although less than) the propagation...
Interspecific nematode signals regulate dispersal behavior.
Directory of Open Access Journals (Sweden)
Fatma Kaplan
Full Text Available BACKGROUND: Dispersal is an important nematode behavior. Upon crowding or food depletion, the free living bacteriovorus nematode Caenorhabditis elegans produces stress resistant dispersal larvae, called dauer, which are analogous to second stage juveniles (J2 of plant parasitic Meloidogyne spp. and infective juveniles (IJs of entomopathogenic nematodes (EPN, e.g., Steinernema feltiae. Regulation of dispersal behavior has not been thoroughly investigated for C. elegans or any other nematode species. Based on the fact that ascarosides regulate entry in dauer stage as well as multiple behaviors in C. elegans adults including mating, avoidance and aggregation, we hypothesized that ascarosides might also be involved in regulation of dispersal behavior in C. elegans and for other nematodes such as IJ of phylogenetically related EPNs. METHODOLOGY/PRINCIPAL FINDINGS: Liquid chromatography-mass spectrometry analysis of C. elegans dauer conditioned media, which shows strong dispersing activity, revealed four known ascarosides (ascr#2, ascr#3, ascr#8, icas#9. A synthetic blend of these ascarosides at physiologically relevant concentrations dispersed C. elegans dauer in the presence of food and also caused dispersion of IJs of S. feltiae and J2s of plant parasitic Meloidogyne spp. Assay guided fractionation revealed structural analogs as major active components of the S. feltiae (ascr#9 and C. elegans (ascr#2 dispersal blends. Further analysis revealed ascr#9 in all Steinernema spp. and Heterorhabditis spp. infected insect host cadavers. CONCLUSIONS/SIGNIFICANCE: Ascaroside blends represent evolutionarily conserved, fundamentally important communication systems for nematodes from diverse habitats, and thus may provide sustainable means for control of parasitic nematodes.
Gupta, Shulabh
2015-01-01
Dispersion is at the heart of all ultrafast real-time signal processing systems across the entire electromagnetic spectrum ranging from radio-frequencies to optics. However, following Kramer-Kronig relations, these signal processing systems have been plagued with the parasitic amplitude distortions due to frequency dependent, and non-flat amplitude transmission of naturally dispersive media. This issue puts a serious limitation on the applicability and performance of these signal processing systems. To solve the above mentioned issue, a perfect dispersive medium is proposed in this work, which artificially violates the Kramer-Kronig relations, while satisfying all causality requirements. The proposed dispersive metamaterial is based on loss-gain metasurface pairs and exhibit a perfectly flat transmission response along with arbitrary dispersion in a broad bandwidth, thereby solving a seemingly unavoidable issue in all ultrafast signal processing systems. Such a metamaterial is further shown using sub-waveleng...
Evolution of dispersal distance.
Durrett, Rick; Remenik, Daniel
2012-03-01
The problem of how often to disperse in a randomly fluctuating environment has long been investigated, primarily using patch models with uniform dispersal. Here, we consider the problem of choice of seed size for plants in a stable environment when there is a trade off between survivability and dispersal range. Ezoe (J Theor Biol 190:287-293, 1998) and Levin and Muller-Landau (Evol Ecol Res 2:409-435, 2000) approached this problem using models that were essentially deterministic, and used calculus to find optimal dispersal parameters. Here we follow Hiebeler (Theor Pop Biol 66:205-218, 2004) and use a stochastic spatial model to study the competition of different dispersal strategies. Most work on such systems is done by simulation or nonrigorous methods such as pair approximation. Here, we use machinery developed by Cox et al. (Voter model perturbations and reaction diffusion equations 2011) to rigorously and explicitly compute evolutionarily stable strategies.
Maiti, Moumita; Vinutha, H. A.; Sastry, Srikanth; Heussinger, Claus
2015-10-01
Using an athermal quasistatic simulation protocol, we study the distribution of free volumes in sheared hard-particle packings close to, but below, the random-close packing threshold. We show that under shear, and independent of volume fraction, the free volumes develop features similar to close-packed systems — particles self-organize in a manner as to mimick the isotropically jammed state. We compare athermally sheared packings with thermalized packings and show that thermalization leads to an erasure of these structural features. The temporal evolution in particular the opening-up and the closing of free-volume patches is associated with the single-particle dynamics, showing a crossover from ballistic to diffusive behavior.
The radiosurgery fractionation quandary: single fraction or hypofractionation?
Kirkpatrick, John P; Soltys, Scott G; Lo, Simon S; Beal, Kathryn; Shrieve, Dennis C; Brown, Paul D
2017-04-01
Stereotactic radiosurgery (SRS), typically administered in a single session, is widely employed to safely, efficiently, and effectively treat small intracranial lesions. However, for large lesions or those in close proximity to critical structures, it can be difficult to obtain an acceptable balance of tumor control while avoiding damage to normal tissue when single-fraction SRS is utilized. Treating a lesion in 2 to 5 fractions of SRS (termed "hypofractionated SRS" [HF-SRS]) potentially provides the ability to treat a lesion with a total dose of radiation that provides both adequate tumor control and acceptable toxicity. Indeed, studies of HF-SRS in large brain metastases, vestibular schwannomas, meningiomas, and gliomas suggest that a superior balance of tumor control and toxicity is observed compared with single-fraction SRS. Nonetheless, a great deal of effort remains to understand radiobiologic mechanisms for HF-SRS driving the dose-volume response relationship for tumors and normal tissues and to utilize this fundamental knowledge and the results of clinic studies to optimize HF-SRS. In particular, the application of HF-SRS in the setting of immunomodulatory cancer therapies offers special challenges and opportunities.
Packing Effect of Excluded Volume on Hard-Sphere Colloids
Institute of Scientific and Technical Information of China (English)
肖长明; 金国钧; 马余强
2001-01-01
We apply the principle of maximum entropy to consider the excluded volume effect on the phase separation of binary mixtures consisting of hard spheres with two different diameters. We show that a critical volume fraction of hard spheres exists locating the packing of large spheres. In particular, through numerical calculation, we have found that the critical volume fraction becomes lower when the ratio α = σ1/σ2 of large-to-small sphere diameters increases, but becomes higher when the ratio of the large sphere volume fraction to the total volume fraction of large and small spheres increases.
The hydraulics of a straight bedrock channel: Insights from solute dispersion studies
Richardson, Keith; Carling, Paul Anthony
2006-12-01
Bedrock channels represent a hydraulic environment quite different from that of alluvial channels, but currently, little is known about bedrock channel hydraulics and whether they differ in any fundamental sense from those of alluvial channels. A series of dye dilution experiments was carried out over a range of discharges in a straight reach of a bedrock channel (Birk Beck, U.K.), and an aggregated dead zone (ADZ) model for longitudinal solute transport and dispersion applied to the resulting time-concentration curves. The results of the experiments indicate the existence of two significant threshold discharges, Q1 and Q2. The dispersive fraction parameter of the ADZ model is found to decrease with increasing discharge, levelling off at a value close to zero for moderate to high discharges in excess of Q1. At these discharges, the flow behaves almost as plug flow with very little dispersion taking place. At high discharges (greater than Q2), the stage-discharge relationship deviates from a power law and discharge increases more slowly with increasing stage. In addition, area-weighted and momentum-weighted mean velocity values diverge strongly, as do estimates of reach volume derived from survey and from discharge and mean travel times. Celerity estimated from the slope of the stage-discharge relationship is found to peak at moderate discharges and to fall below momentum-weighted mean velocity estimates at a discharge equal to Q2. Two hypotheses, the Macroturbulent Mixing Hypothesis and the Decoupled Dead Zone Hypothesis, are advanced to account for these observations. The fall in dispersive fraction to near zero at discharges above Q1 is best explained as the result of a combination of increasing flow uniformity and effective lateral mixing across the whole channel cross section due to high turbulence intensities and large turbulent length scales. This means that potential dead zones in the bed and margins of the channel become well flushed and do not act as
Microstructure of the irradiated U 3Si 2/Al silicide dispersion fuel
Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J.-F.; Robinson, A. B.; Madden, J. W.; Medvedev, P. G.; Wachs, D. M.
2011-12-01
The silicide dispersion fuel of U 3Si 2/Al is recognized as the best performance fuel for many nuclear research and test reactors with up to 4.8 gU/cm 3 fuel loading. An irradiated U 3Si 2/Al dispersion fuel ( 235U ˜ 75%) from the high-flux side of a fuel plate (U0R040) from the Reduced Enrichment for Research and Test Reactors (RERTR)-8 test was characterized using transmission electron microscopy (TEM). The fuel was irradiated in the Advanced Test Reactor (ATR) for 105 days. The average irradiation temperature and fission density of the U 3Si 2 fuel particles for the TEM sample are estimated to be approximately 110 °C and 5.4 × 10 27 f/m 3. The characterization was performed using a 200-kV TEM. The U/Si ratio for the fuel particle and (Si + Al)/U for the fuel-matrix-interaction layer are approximately 1.1 and 4-10, respectively. The estimated average diameter, number density and volume fraction for small bubbles (fuel particle are ˜94 nm, 1.05 × 10 20 m -3 and ˜11%, respectively. The results and their implication on the performance of the U 3Si 2/Al silicide dispersion fuel are discussed.
Acar, Rezzan Deniz; Bulut, Mustafa; Ergün, Sunay; Yesin, Mahmut; Boztosun, Bilal; Akçakoyun, Mustafa
2014-01-01
BACKGROUND The aim of our study was to investigate the P-wave dispersion from standard electrocardiograms (ECGs) in patients with acute myocardial infarction (AMI) after cardiac rehabilitation (CR) and determine its relation to arterial stiffness. METHODS This is a prospective study included 33 patients with AMI and successfully re-vascularized by percutaneous coronary intervention (PCI) underwent CR. Left ventricular ejection fraction (LVEF) was measured by biplane Simpson’s method. Left atrium (LA) volume was calculated. The maximum and minimum durations of P-waves (Pmax and Pmin, respectively) were detected, and the difference between Pmax and Pmin was defined as P-wave dispersion (Pd = Pmax-Pmin). Aortic elasticity parameters were measured. RESULTS LVEF was better after CR. The systolic and diastolic blood pressures decreased after CR, these differences were statistically significant. With exercise training, LA volume decreased significantly. Pmax and Pd values were significantly shorter after the CR program. The maximum and minimum P-waves and P-wave dispersion after CR were 97 ± 6 ms, 53 ± 5 ms, and 44 ± 5 ms, respectively. Aortic strain and distensibility increased and aortic stiffness index was decreased significantly. Aortic stiffness index was 0.4 ± 0.2 versus 0.3 ± 0.2, P = 0.001. Aortic stiffness and left atrial volume showed a moderate positive correlation with P-wave dispersion (r = 0.52, P = 0.005; r = 0.64, P < 0.001, respectively). CONCLUSION This study showed decreased arterial stiffness indexes in AMI patient’s participated CR, with a significant relationship between the electromechanical properties of the LA that may raise a question of the preventive effect of CR from atrial fibrillation and stroke in patients with acute myocardial infarction. PMID:25258633
Finite volume schemes for Boussinesq type equations
Dutykh, Denys; Mitsotakis, Dimitrios
2011-01-01
Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions.
Astuti, Valerio; Rovelli, Carlo
2016-01-01
Building on a technical result by Brunnemann and Rideout on the spectrum of the Volume operator in Loop Quantum Gravity, we show that the dimension of the space of the quadrivalent states --with finite-volume individual nodes-- describing a region with total volume smaller than $V$, has \\emph{finite} dimension, bounded by $V \\log V$. This allows us to introduce the notion of "volume entropy": the von Neumann entropy associated to the measurement of volume.
Dividing Fractions: A Pedagogical Technique
Lewis, Robert
2016-01-01
When dividing one fraction by a second fraction, invert, that is, flip the second fraction, then multiply it by the first fraction. To multiply fractions, simply multiply across the denominators, and multiply across the numerators to get the resultant fraction. So by inverting the division of fractions it is turned into an easy multiplication of…
Fractional graph theory a rational approach to the theory of graphs
Scheinerman, Edward R
2013-01-01
A unified treatment of the most important results in the study of fractional graph concepts, this volume explores the various ways in which integer-valued concepts can be modified to derive nonintegral values. It begins with the general fractional theory of hypergraphs and presents in-depth coverage of fundamental and advanced topics. Subjects include fractional matching, fractional coloring, fractional edge coloring, fractional arboricity via matroid methods, and fractional isomorphism. The final chapter examines additional topics such as fractional domination, fractional intersection numbers
Haschenburger, J. K.
2010-12-01
Sediment transfers in gravel-bed rivers involve the three-dimensional dispersion of mixed size sediment. From a kinematics standpoint, few studies are available to inform on the streamwise and vertical rates of sediment dispersion in natural channels. This research uses a gravel tracing program to quantify dispersion rates over 19 flood seasons. Empirical observations come from Carnation Creek, a small gravel-bed river with large woody debris located on the west coast of Vancouver Island, Canada. Frequent floods and the relatively limited armor layer facilitate streambed activity and relatively high bedload transport rates, typically under partial sediment transport conditions. Over 2500 magnetically tagged stones, ranging in size from 16 to 180 mm, were deployed on the bed surface between 1989 and 1992 in four generations. To quantify gravel dispersion over distances up to 2.6 km, observations are taken from 11 recoveries. Over 280 floods capable of moving bedload occurred during this period, with five exceeding the estimated bankfull discharge. Streamwise dispersion is quantified by virtual velocity, while dispersion into the streambed is quantified by a vertical burial rate. The temporal trend in streamwise dispersion rates is described by a power function. Initial virtual velocities decline rapidly from around 1.4 m/hr to approach an asymptote value of about 0.2 m/hr. The rapid change corresponds to a significant increase in the proportion of buried tracers due to vertical mixing. Initial burial rates reflect the magnitude of the first flood after tracer deployment and range from 0.07 to 0.46 cm/hr depending on tracer generation. Burial rates converge to about 0.06 cm/hr after the fourth flood season and then gradually decline to about 0.01 cm/hr. Thus, the rate of streamwise dispersion exceeds that of vertical dispersion by three orders of magnitude when the movement of sediment routinely activated by floods is considered.
Dispersive hydrodynamics: Preface
Biondini, G.; El, G. A.; Hoefer, M. A.; Miller, P. D.
2016-10-01
This Special Issue on Dispersive Hydrodynamics is dedicated to the memory and work of G.B. Whitham who was one of the pioneers in this field of physical applied mathematics. Some of the papers appearing here are related to work reported on at the workshop "Dispersive Hydrodynamics: The Mathematics of Dispersive Shock Waves and Applications" held in May 2015 at the Banff International Research Station. This Preface provides a broad overview of the field and summaries of the various contributions to the Special Issue, placing them in a unified context.
Fractional Pure Birth Processes
Orsingher, Enzo; 10.3150/09-BEJ235
2010-01-01
We consider a fractional version of the classical non-linear birth process of which the Yule-Furry model is a particular case. Fractionality is obtained by replacing the first-order time derivative in the difference-differential equations which govern the probability law of the process, with the Dzherbashyan-Caputo fractional derivative. We derive the probability distribution of the number $ \\mathcal{N}_\
Fractional vortex Hilbert's Hotel
Gbur, Greg
2015-01-01
We demonstrate how the unusual mathematics of transfinite numbers, in particular a nearly perfect realization of Hilbert's famous hotel paradox, manifests in the propagation of light through fractional vortex plates. It is shown how a fractional vortex plate can be used, in principle, to create any number of "open rooms," i.e. topological charges, simultaneously. Fractional vortex plates are therefore demonstrated to create a singularity of topological charge, in which the vortex state is completely undefined and in fact arbitrary.
Fractional Electromagnetic Waves
Gómez, J F; Bernal, J J; Tkach, V I; Guía, M
2011-01-01
In the present work we consider the electromagnetic wave equation in terms of the fractional derivative of the Caputo type. The order of the derivative being considered is 0 <\\gamma<1. A new parameter \\sigma, is introduced which characterizes the existence of the fractional components in the system. We analyze the fractional derivative with respect to time and space, for \\gamma = 1 and \\gamma = 1/2 cases.
Effective spectral dispersion of refractive index modulation
Vojtíšek, Petr; Květoň, Milan; Richter, Ivan
2017-04-01
For diffraction effects inside photopolymer materials, which act as volume diffraction systems (e.g. gratings), refractive index modulation is one of the key parameters. Due to its importance it is necessary to study this parameter from many perspectives, one of which is its value for different spectral components, i.e. its spectral dispersion. In this paper, we discuss this property and present an approach to experimental and numerical extraction and analysis (via rigorous coupled wave analysis and Cauchy’s empirical relation) of the effective dispersion of refractive index modulation based on an analysis of transmittance maps measured in an angular-spectral plane. It is indicated that the inclusion of dispersion leads to a significantly better description of the real grating behavior (which is often necessary in various design implementations of diffraction gratings) and that this estimation can be carried out for all the diffraction orders present.
Humans as long-distance dispersers of rural plant communities.
Directory of Open Access Journals (Sweden)
Alistair G Auffret
Full Text Available Humans are known for their capacity to disperse organisms long distances. Long-distance dispersal can be important for species threatened by habitat destruction, but research into human-mediated dispersal is often focused upon few and/or invasive species. Here we use citizen science to identify the capacity for humans to disperse seeds on their clothes and footwear from a known species pool in a valuable habitat, allowing for an assessment of the fraction and types of species dispersed by humans in an alternative context. We collected material from volunteers cutting 48 species-rich meadows throughout Sweden. We counted 24,354 seeds of 197 species, representing 34% of the available species pool, including several rare and protected species. However, 71 species (36% are considered invasive elsewhere in the world. Trait analysis showed that seeds with hooks or other appendages were more likely to be dispersed by humans, as well as those with a persistent seed bank. More activity in a meadow resulted in more dispersal, both in terms of species and representation of the source communities. Average potential dispersal distances were measured at 13 km. We consider humans capable seed dispersers, transporting a significant proportion of the plant communities in which they are active, just like more traditional vectors such as livestock. When rural populations were larger, people might have been regular and effective seed dispersers, and the net rural-urban migration resulting in a reduction in humans in the landscape may have exacerbated the dispersal failure evident in declining plant populations today. With the fragmentation of habitat and changes in land use resulting from agricultural change, and the increased mobility of humans worldwide, the dispersal role of humans may have shifted from providers of regular local and landscape dispersal to providers of much rarer long-distance and regional dispersal, and international invasion.
Dispersion phenomena in helical flow in a concentric annulus.
Song, Young Seok; Brenner, Howard
2009-12-14
We examined dispersion phenomena of solutes in helical flow in a concentric annulus through a multiscale approach. The helical flow was developed by the combination of the Poiseuille flow and Couette flow. Here, we present an analytic model that can address the multidimensional Taylor dispersion in the helical flow under a lateral field of thermophoresis (or thermal diffusion) in the gapwise direction. Macroscopic parameters including the average solute velocity and dispersivity were analyzed using relevant microscopic physicochemical properties. The mathematically obtained results were validated by the numerical simulation carried out in this study. The findings show that macrotransport processes are robust and straightforward to handle multidimensional dispersion phenomena of solutes in helical flow. This study is expected to provide a theoretical platform for applications of helical flow such as tube exchangers, oil drilling, and multidimensional field flow fractionations (e.g., helical flow field flow fractionation).
Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements
Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing
2009-08-01
Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.
Kim, Ki-Hwan; Park, Jong-Man; Kim, Chang-Kyu; Hofman, Gerard L.; Paik, Kyung-Wook
The interaction between atomized U 3Si 2 and aluminum in dispersion fuel samples has been characterized and compared with that of comminuted U 3Si 2. Fuel samples with atomized powder showed a smaller volume increase compared to those with the comminuted powder, irrespective of heat treatment, and volume fraction of U 3Si 2 powder. The possible reasons for this seem to be as follows: (1) the smaller specific surface area of the atomized spherical powder compared to the irregular comminuted powder translating in a smaller U 3Si 2-Al interface area for the former affecting what appears to be a diffusion-controlled interaction process, (2) the atomized fuel samples also contain lower fraction of as-fabricated porosity than the comminuted fuel samples, which may enhance the restraint force in the swelling fuel meat, (3) the comminuted powder particles have distinctive aluminum penetration paths in the form of deformation zones that originated from the comminution process. There appear to be two pronounced penetration paths of aluminum into atomized U 3Si 2 powder; (1) through the phase interface, leaving a central unreacted island, (2) along grain boundaries, leaving several unreacted islands.
Graphene wrapped multiwalled carbon nanotubes dispersed nanofluids for heat transfer applications
Jyothirmayee Aravind, S. S.; Ramaprabhu, S.
2012-12-01
A two step method is employed for the preparation of graphene wrapped multiwalled carbon nanotubes (MWNT) dispersed nanofluids. Graphene wrapped MWNT composite is prepared by simple chemical vapor deposition technique and further purified prior to the synthesis of nanofluids. The functionalization of MWNT with the poly electrolyte, graphene drives out the need for surfactants or long term harsh chemical treatments as in the case of pristine carbon materials based nanofluids. The enhancement in thermal transport properties of surfactant free graphene wrapped MWNT composite in de-ionized (DI) water and ethylene glycol (EG) base fluids than that of pristine carbon nanomaterial based nanofluids indicates the potential usage of the hybrid composite based nanofluids in heat transfer applications. An enhancement in thermal conductivity of 11.3% and 13.7% has been attained with 0.04% volume fraction of hybrid composite based DI water and EG nanofluids at 25 °C. The nanocomposite possesses extreme stability in a variety of aqueous solvents without any surfactant. Electrical conductivity of the nanofluids analyzed as a function of volume fraction of nanoparticles and temperature shows a positive effect. Further, the analysis of forced convective heat transfer coefficients of the nanofluids flowing through a stain less steel tube shows significant enhancement in heat transfer, attributed to good aspect ratio of graphene wrapped MWNT and synergistic effect of high thermally conducting graphene and MWNT.
Lekkerkerker, H.N.W.; Coulon, P.; Luyckx, R.
1977-01-01
The coefficients of the R-6 and R-7 terms in the series representation of the dispersion interaction between two methane molecules and between methane and helium, neon and argon are calculated by a variation method.
Murthy, Ganpathy
2001-11-01
A microscopic Hamiltonian theory of the fractional quantum Hall effect developed by Shankar and the present author based on the fermionic Chern-Simons approach has recently been quite successful in calculating gaps and finite-tempertature properties in fractional quantum Hall states. Initially proposed as a small-q theory, it was subsequently extended by Shankar to form an algebraically consistent theory for all q in the lowest Landau level. Such a theory is amenable to a conserving approximation in which the constraints have vanishing correlators and decouple from physical response functions. Properties of the incompressible fractions are explored in this conserving approximation, including the magnetoexciton dispersions and the evolution of the small-q structure factor as ν-->12. Finally, a formalism capable of dealing with a nonuniform ground-state charge density is developed and used to show how the correct fractional value of the quasiparticle charge emerges from the theory.
Directory of Open Access Journals (Sweden)
Marcelo Luiz Campos Vieira
2009-04-01
Full Text Available FUNDAMENTO: O ecocardiograma tridimensional em tempo real (ECO 3D e a tomografia computadorizada ultra-rápida (CT são dois novos métodos de análise da fração de ejeção e dos volumes do VE. OBJETIVO: Comparar as medidas da FEVE e dos volumes do VE aferidos pelo ECO 3D e pela CT ultra-rápida. MÉTODOS: Foram estudados pelo ECO 3D e pela CT ultra-rápida de 64 cortes, 39 pacientes consecutivos (27 homens, média etária de 57±12 anos. Foram analisados: FEVE e volumes do VE. Análise estatística: coeficiente de correlação (r: Pearson, teste de Bland & Altman, teste de regressão linear, 95 % IC, pFUNDAMENTO: La ecocardiografía tridimensional en tiempo real (Eco-3DTR y la tomografía computarizada ultrarrápida (TC ultrarrápida son dos nuevos métodos de análisis de la fracción de eyección (FE y de los volúmenes del ventrículo izquierdo (VI. OBJETIVO: Comparar las mediciones de la fracción de eyección del ventrículo izquierdo (FEVI y de los volúmenes del VI apurados por la Eco-3DTR y por la TC ultrarrápida. MÉTODOS: Se estudiaron, mediante la Eco-3DTR y la TC ultrarrápida de 64 cortes, a 39 pacientes consecutivos (27 varones, promedio de edad de 57±12 años. Se analizaron: FEVI y volúmenes del VI. Análisis estadístico: coeficiente de correlación (r: Pearson, prueba de Bland & Altman, prueba de regresión lineal, 95 % IC, pBACKGROUND: Real-time three-dimensional echocargiography (RT-3D-Echo and ultrafast computed tomography (CT are two novel methods for the analysis of LV ejection fraction and volumes. OBJECTIVE: To compare LVEF and volume measurements as obtained using RT-3D-Echo and ultrafast CT. METHODS: Thirty nine consecutive patients (27 men, mean age of 57±12 years were studied using RT-3D-Echo and 64-slice ultrafast CT. LVEF and LV volumes were analyzed. Statistical analysis: coefficient of correlation (r: Pearson, Bland-Altman analysis, linear regression analysis, 95% CI, p<0.05. RESULTS: RT-3D
Fickian dispersion is anomalous
Cushman, John H.; O'Malley, Dan
2015-12-01
The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.
Energy Technology Data Exchange (ETDEWEB)
Ziada, G.; Abdel-Dayem, H.M.; Higazy, E.; Mohamed, M.M.; Bahar, R.; Hayat, N.; Yousof, A.M.
1987-03-01
A dual gated tomography (DGT) program for end systolic and end diastolic acquisition and subsequent processing for calculation of LVEF, end diastolic and end systolic volumes (EDV, ESV) has been evaluated in 20 healthy volunteers (25 years-40 years) and 45 patients (25 years-60 years): 20 with ischaemic heart disease and 25 with valvular heart disease (VHD). All had biplane multigated blood pool (MUGA) studies in the 40/sup 0/ LAO projection using in vivo /sup 99m/Tc-R BCs, immediately followed by DG. The results in the patients group were correlated with contrast ventriculography (CV). In the volunteer group, the normal values for LVEF, EDV and ESV measured with DGT were found to be 63%+10%, 91 ml + 6 ml and 30 ml + 6ml and r value for the LVEF=0.91 compared with MUGA. In the IHD group, r values compared with CV were 0.915 and 0.97 for the EDV and ESV and 0.934 for the LVEF. Compared with the MUGA, the r value for LVEF was 0.883. In the VHD group, r values were 0.98 for both the EDV and ESV and 0.948 for the LVEF (P<0.002) compared with CV and 0.789 for the LVEF compared with the MUGA. We feel that DGT is an accurate and reproducible technique for LV function measurements.
Fractional and noncommutative spacetimes
Arzano, M.; Calcagni, M.; Oriti, D.; Scalisi, M.
2011-01-01
We establish a mapping between fractional and noncommutative spacetimes in configuration space. Depending on the scale at which the relation is considered, there arise two possibilities. For a fractional spacetime with log-oscillatory measure, the effective measure near the fundamental scale determi
Can Kindergartners Do Fractions?
Cwikla, Julie
2014-01-01
Mathematics professor Julie Cwikla decided that she needed to investigate young children's understandings and see what precurricular partitioning notions young minds bring to the fraction table. Cwikla realized that only a handful of studies have examined how preschool-age and early elementary school-age students solve fraction problems (Empson…
Can Kindergartners Do Fractions?
Cwikla, Julie
2014-01-01
Mathematics professor Julie Cwikla decided that she needed to investigate young children's understandings and see what precurricular partitioning notions young minds bring to the fraction table. Cwikla realized that only a handful of studies have examined how preschool-age and early elementary school-age students solve fraction problems (Empson…
Wilkerson, Trena L.; Bryan, Tommy; Curry, Jane
2012-01-01
This article describes how using candy bars as models gives sixth-grade students a taste for learning to represent fractions whose denominators are factors of twelve. Using paper models of the candy bars, students explored and compared fractions. They noticed fewer different representations for one-third than for one-half. The authors conclude…
Categories of Fractions Revisited
Fritz, Tobias
2008-01-01
The theory of categories of fractions as originally developed by Gabriel and Zisman is reviewed in a pedagogical manner giving detailed proofs of all statements. A weakening of the category of fractions axioms used by Higson is discussed and shown to be equivalent to the original axioms.
Energy Technology Data Exchange (ETDEWEB)
Bajona-Xandri, C.; Martinez-Legaz, J.E.
1994-12-31
This paper studies the minimax fractional programming problem, assuming quasiconvexity of the objective function, under the lower subdifferentiability viewpoint. Necessary and sufficient optimality conditions and dual properties are found. We present applications of this theory to find the Pareto efficient solutions of a multiobjective fractional problem and to solve several economic models.
Refractive indices of polymer-dispersed liquid-crystal film materials: Epoxy-based systems
Vaz, Nuno A.; Montgomery, G. Paul, Jr.
1987-10-01
Polymer-dispersed liquid crystal (PDLC) films are potentially useful in applications requiring electrically controllable light transmission. In these applications, both a high on-state transmittance and a strong off-state attenuation are often needed over a wide operating temperature range. These transmittance characteristics depend strongly on the refractive indices of the materials in the PDLC films. We have measured the temperature dependent refractive indices of typical PDLC film materials and the temperature dependent electro-optic transmittance of a PDLC film composed of liquid crystal microdroplets dispersed in an epoxy matrix. We show that our refractive index measurements can account for all the features in the measured transmittance characteristics and discuss several methods for controlling refractive indices to optimize electro-optic transmittance over an extended temperature range. We have also measured the room temperature refractive indices of mixtures of epoxy resins and hardeners as a function of composition. We discuss the problems associated with predicting the refractive indices of such mixtures in terms of either the volume fractions or mole fractions of the mixture components. These considerations are important in matching refractive indices of droplets and matrix materials to maximize on-state transmittance. The refractive indices of epoxy matrix materials increase monotonically with time during their chemical cure. The measured time dependence can be described by a simple model in which the concentrations of the reacting resin and hardener each decay exponentially in time with their own characteristic time constants while the concentration of the cured polymer increases. Finally, we relate the measured rates of index change with temperature to the coefficients of volume expansion of PDLC film materials; the results are used to discuss the mechanical stability of PDLC films.
Do oil dispersants make spilled oil more toxic to fish?
Energy Technology Data Exchange (ETDEWEB)
Hodson, P. [Queen' s Univ., Kingston, ON (Canada)
2010-07-01
The Deepwater Horizon blowout in the Gulf of Mexico was the world's largest oil spill in terms of duration and volume spilled. Clean-up operations, which involved the continuous and wide-spread use of oil dispersant at the surface and at the seabed discharge point at 1500 metres depth, gave rise to public concern about dispersant toxicity. Reports from the United States Environmental Protection Agency (EPA) claimed little difference in acute toxicity to marine fish and invertebrate species among commonly available dispersants and between dispersed and non-dispersed Louisiana Sweet Crude. Technically, the toxicity of waterborne hydrocarbons does not vary with chemical dispersion. However, the EPA omitted any consideration of loading, and misled the public about the risks of dispersant use in oil clean-up. This study examined the chronic toxicity of dispersed oil to fish embryos. The study revealed that toxicity expressed as oil loading increases by a factor of 10 to 1000 times with dispersion, largely because 10 to 1000 times more oil enters the water column. Since the action of dispersant is on the exposure component of the risk equation, not on the potency of the toxic components of oil, then the risk of oil toxicity to fish increases an equivalent amount.
Gamble, John F; Terada, Masako; Holzner, Christian; Lavery, Leah; Nicholson, Sarah J; Timmins, Peter; Tobyn, Mike
2016-08-20
The aim of this study was to investigate the capability of X-ray microtomography to obtain information relating to powder characteristics such as wall thickness and solid volume fraction for hollow, polymer-stabilised spray dried dispersion (SDD) particles. SDDs of varying particle properties, with respect to shell wall thickness and degree of particle collapse, were utilised to assess the capability of the approach. The results demonstrate that the approach can provide insight into the morphological characteristics of these hollow particles, and thereby a means to understand/predict the processability and performance characteristics of the bulk material. Quantitative assessments of particle wall thickness, particle/void volume and thereby solid volume fraction were also demonstrated to be achievable. The analysis was also shown to be able to qualitatively assess the impact of the drying rate on the morphological nature of the particle surfaces, thus providing further insight into the final particle shape. The approach demonstrated a practical means to access potentially important particle characteristics for SDD materials which, in addition to the standard bulk powder measurements such as particle size and bulk density, may enable a better understanding of such materials, and their impact on downstream processability and dosage form performance.
Modeling of dilute and dense dispersed fluid-particle flow
Energy Technology Data Exchange (ETDEWEB)
Laux, Harald
1998-08-01
finite volume method. For the numerical solution of the discretized equations a new algorithm that is based on the SIMPLE algorithm is developed. The new algorithm treats the particle phase as fully compressible. The algorithm is therefore referred to as compressible dispersed phase method (CDP). The CDP method solves the particle volume fraction from the equation-of-state of the particle phase, and both the equation-of-state and the particle continuity equation are always fulfilled simultaneously. Several types of industrial multiphase flows are studied and it is demonstrated that the two-fluid model solved with the CDP method produces stable and physically reliable solutions. First, the flow of sand and the heap building in an hourglass is computed. By means of an comprehensive parameter study it is shown that whereas the instantaneous equations without frictional stress modeling predict mass flow rates in the hourglass orifice that are in good agreement with the empirical Beverloo correlation, only with the frictional stress model realistic shapes of the heap of sand are obtained. A similar effect on the shape of the bulk particles is shown for the sediment bed in a sedimentation column. Second, the flow in two cold gas-fluidized beds is computed. It is shown that the predicted motion and characteristics of large scale bubbles in a bed with a central jet are in good agreement with classical analytical results and available experimental results. It is also shown that the model predicts spontaneous bubble formation in an uniformly fluidized bed. Third, a liquid-particle system is studied, that is, the settling convection in an inclined parallel plate settler. The computations are in excellent agreement with measurements carried out in our laboratory and analytical theories. However, the results suggest that the kinetic theory of granular material needs modification if applied to liquid-particle suspensions. Finally, the turbulence model is applied to three test cases
Impact of Land Surface Heterogeneity on Mesoscale Atmospheric Dispersion
Wu, Yuling; Nair, Udaysankar S.; Pielke, Roger A., Sr.; McNider, Richard T.; Christopher, Sundar A.; Anantharaj, Valentine G.
2009-01-01
Prior numerical modelling studies show that atmospheric dispersion is sensitive to surface heterogeneities, but past studies do not consider the impact of a realistic distribution of surface heterogeneities on mesoscale atmospheric dispersion. While these focussed on dispersion in the convective boundary layer, the present work also considers dispersion in the nocturnal boundary layer and above. Using a Lagrangian particle dispersion model (LPDM) coupled to the Eulerian Regional Atmospheric Modeling System (RAMS), the impact of topographic, vegetation, and soil moisture heterogeneities on daytime and nighttime atmospheric dispersion is examined. In addition, the sensitivity to the use of Moderate Resolution Imaging Spectroradiometer (MODIS)-derived spatial distributions of vegetation characteristics on atmospheric dispersion is also studied. The impact of vegetation and terrain heterogeneities on atmospheric dispersion is strongly modulated by soil moisture, with the nature of dispersion switching from non-Gaussian to near- Gaussian behaviour for wetter soils (fraction of saturation soil moisture content exceeding 40%). For drier soil moisture conditions, vegetation heterogeneity produces differential heating and the formation of mesoscale circulation patterns that are primarily responsible for non-Gaussian dispersion patterns. Nighttime dispersion is very sensitive to topographic, vegetation, soil moisture, and soil type heterogeneity and is distinctly non-Gaussian for heterogeneous land-surface conditions. Sensitivity studies show that soil type and vegetation heterogeneities have the most dramatic impact on atmospheric dispersion. To provide more skillful dispersion calculations, we recommend the utilisation of satellite-derived vegetation characteristics coupled with data assimilation techniques that constrain soil-vegetation-atmosphere transfer (SVAT) models to generate realistic spatial distributions of surface energy fluxes.
Aqueous solubility, dispersibility and toxicity of biodiesels
Energy Technology Data Exchange (ETDEWEB)
Hollebone, B.P.; Fieldhouse, B.; Lumley, T.C.; Landriault, M. [Environment Canada, Ottawa, ON (Canada). ; Doe, K.; Jackman, P. [Environment Canada, Moncton, NB (Canada). Toxicology Laboratory, Environmental Science Centre
2007-07-01
The renewed interest in the use of biological fuels can be attributed to that fact that feedstocks for fatty-acid ester biodiesels are renewable and can be reclaimed from waste. Although there are significant benefits to using biodiesels, their increased use leaves potential for accidental release to the environment. Therefore, their environmental behaviours and impacts must be evaluated along with the risk associated with their use. Biodiesel fuels may be made from soy oil, canola oil, reclaimed restaurant grease, fish oil and animal fat. The toxicological fate of biofuel depends on the variability of its chemical composition. This study provided an initial assessment of the aqueous fate and effects of biodiesel from a broad range of commonly available feedstocks and their blends with petroleum diesels. The study focused primarily on the fate and impact of these fuels in fresh-water. The use of chemical dispersion as a countermeasure for saltwater was also investigated. The exposure of aquatic ecosystems to biodiesels and petroleum diesel occurs via the transfer of material from the non-aqueous phase liquid (NAPL) into the aqueous phase, as both soluble and dispersed components. The aqueous solubilities of the fuels were determined from the equilibrium water-accommodated fraction concentrations. The acute toxicities of many biodiesels were reported for 3 test species used by Environment Canada for toxicological evaluation, namely rainbow trout, the water flea and a luminescent bacterium. This study also evaluated the natural potential for dispersion of the fuels in the water column in both low and high-energy wave conditions. Chemical dispersion as a potential countermeasure for biodiesel spills was also evaluated using solubility testing, acute toxicity testing, and dispersibility testing. It was shown that biodiesels have much different fates and impacts from petroleum diesels. The compounds partitioning into the water column are also very different for each
Fractional calculus in bioengineering.
Magin, Richard L
2004-01-01
Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub
Energy Technology Data Exchange (ETDEWEB)
Chopkar, M. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, WB 721302 (India); Kumar, S. [School of Materials Engineering, Purdue University, Indiana 47907 (United States); Bhandari, D.R. [Thermal Group, ISRO Satellite Center, Vimanapura, Bangalore 560017 (India); Das, P.K. [Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, WB 721302 (India); Manna, I. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, WB 721302 (India)]. E-mail: imanna@metal.iitkgp.ernet.in
2007-05-15
Nanofluids offer excellent scope of enhancing thermal conductivity of common heat transfer fluids. In the present study, we have synthesized Al{sub 2}Cu and Ag{sub 2}Al nanoparticles by mechanical alloying, prepared nanofluids by dispersing about 0.2-1.5 vol.% these nanoparticles in water and ethylene glycol, characterized the size/microstructure of nanoparticles by X-ray diffraction and transmission electron microscopy, and measured the thermal conductivity of nanofluid using a modified thermal comparator. The results indicate that the present nanofluids records 50-150% improvement in thermal conductivity. Both experimental results and analytical study indicate that the degree of enhancement strongly depends on identity/composition, size, volume fraction and shape (aspect ratio) of the dispersed nanoparticles.
Social Trust and Fractionalization:
DEFF Research Database (Denmark)
Bjørnskov, Christian
2008-01-01
This paper takes a closer look at the importance of fractionalization for the creation of social trust. It first argues that the determinants of trust can be divided into two categories: those affecting individuals' trust radii and those affecting social polarization. A series of estimates using...... a much larger country sample than in previous literature confirms that fractionalization in the form of income inequality and political diversity adversely affects social trust while ethnic diversity does not. However, these effects differ systematically across countries, questioning standard...... interpretations of the influence of fractionalization on trust....
Energy Technology Data Exchange (ETDEWEB)
Bučko, Tomáš, E-mail: bucko@fns.uniba.sk [Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, SK-84215 Bratislava, Slovakia and Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84236 Bratislava (Slovakia); Department of Computational Materials Physics, Fakultät für Physik and Center for Computational Materials Science, Universität Wien, Sensengasse, Wien 1090 (Austria); Lebègue, Sébastien, E-mail: sebastien.lebegue@univ-lorraine.fr [Equipe modélisation quantique, Université de Lorraine, CRM2, UMR 7036, Vandoeuvre-lès-Nancy F-54506 (France); CNRS, CRM2, UMR 7036, Vandoeuvre-lès-Nancy F-54506 (France); Ángyán, János G., E-mail: janos.angyan@univ-lorraine.fr [Equipe modélisation quantique, Université de Lorraine, CRM2, UMR 7036, Vandoeuvre-lès-Nancy F-54506 (France); CNRS, CRM2, UMR 7036, Vandoeuvre-lès-Nancy F-54506 (France); Department of General and Inorganic Chemistry, Pannon University, Veszprém H-8201 (Hungary); and others
2014-07-21
Recently we have demonstrated that the applicability of the Tkatchenko-Scheffler (TS) method for calculating dispersion corrections to density-functional theory can be extended to ionic systems if the Hirshfeld method for estimating effective volumes and charges of atoms in molecules or solids (AIM’s) is replaced by its iterative variant [T. Bučko, S. Lebègue, J. Hafner, and J. Ángyán, J. Chem. Theory Comput. 9, 4293 (2013)]. The standard Hirshfeld method uses neutral atoms as a reference, whereas in the iterative Hirshfeld (HI) scheme the fractionally charged atomic reference states are determined self-consistently. We show that the HI method predicts more realistic AIM charges and that the TS/HI approach leads to polarizabilities and C{sub 6} dispersion coefficients in ionic or partially ionic systems which are, as expected, larger for anions than for cations (in contrast to the conventional TS method). For crystalline materials, the new algorithm predicts polarizabilities per unit cell in better agreement with the values derived from the Clausius-Mosotti equation. The applicability of the TS/HI method has been tested for a wide variety of molecular and solid-state systems. It is demonstrated that for systems dominated by covalent interactions and/or dispersion forces the TS/HI method leads to the same results as the conventional TS approach. The difference between the TS/HI and TS approaches increases with increasing ionicity. A detailed comparison is presented for isoelectronic series of octet compounds, layered crystals, complex intermetallic compounds, and hydrides, and for crystals built of molecules or containing molecular anions. It is demonstrated that only the TS/HI method leads to accurate results for systems where both electrostatic and dispersion interactions are important, as illustrated for Li-intercalated graphite and for molecular adsorption on the surfaces in ionic solids and in the cavities of zeolites.
Su, Qian; Tan, Chao; Dong, Feng
2017-03-01
When measuring the phase fraction of oil–water two-phase flow with the ultrasound attenuation, the phase distribution and fraction have direct influence on the attenuation coefficient. Therefore, the ultrasound propagation at various phase fractions and distributions were investigated. Mechanism models describing phase fraction with the ultrasound attenuation coefficient were established by analyzing the interaction between ultrasound and two-phase flow by considering the scattering, absorption and diffusion effect. Experiments were performed to verify the theoretical analysis, and the test results gave good agreement with the theoretical analysis. When the dispersed phase fraction is low, the relationship between ultrasound attenuation coefficient and phase fraction is of monotonic linearity; at higher dispersed phase fraction, ultrasound attenuation coefficient presents an irregular response to the dispersed phase fraction. The presented mechanism models give reasonable explanations about the trend of ultrasound attenuation.
CONCRETE BASED ON MODIFIED DISPERSE CEMENT SYSTEM
Directory of Open Access Journals (Sweden)
D. V. Rudenko
2016-08-01
Full Text Available Purpose. The article considers definition of the bond types occurring in a modified cement concrete matrix, and the evaluation of the quality of these links in a non-uniform material to determine the geometrical and physical relationships between the structure and the cement matrix modifiers. Methodology. To achieve this purpose the studies covered the microstructure of dispersed modified concrete cement matrix, the structure formation mechanism of the modified cement concrete system of natural hardening; as well as identification of the methods of sound concrete strength assessment. Findings. The author proposed a model of the spatial structure of the concrete cement matrix, modified by particulate reinforcement crystal hydrates. The initial object of study is a set of volume elements (cells of the cement matrix and the system of the spatial distribution of reinforcing crystallohydrates in these volume elements. It is found that the most dangerous defects such as cracks in the concrete volume during hardening are formed as a result of internal stresses, mainly in the zone of cement matrix-filler contact or in the area bordering with the largest pores of the concrete. Originality. The result of the study is the defined mechanism of the process of formation of the initial strength and stiffness of the modified cement matrix due to the rapid growth of crystallohydrates in the space among the dispersed reinforcing modifier particles. Since the lack of space prevents from the free growth of crystals, the latter cross-penetrate, forming a dense structure, which contributes to the growth of strength. Practical value. Dispersed modifying cement matrix provides a durable concrete for special purposes with the design performance characteristics. The developed technology of dispersed cement system modification, the defined features of its structure formation mechanism and the use of congruence principle for the complex of technological impacts of physical
Goodrich, Christopher
2015-01-01
This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...
Fractional Derivative Cosmology
Roberts, Mark D
2009-01-01
The degree by which a function can be differentiated need not be restricted to integer values. Usually most of the field equations of physics are taken to be second order, curiosity asks what happens if this is only approximately the case and the field equations are nearly second order. For Robertson-Walker cosmology there is a simple fractional modification of the Friedman and conservation equations. In general fractional gravitational equations similar to Einstein's are hard to define as this requires fractional derivative geometry. What fractional derivative geometry might entail is briefly looked at and it turns out that even asking very simple questions in two dimensions leads to ambiguous or intractable results. A two dimensional line element which depends on the Gamma-function is looked at.
DEFF Research Database (Denmark)
2014-01-01
The last decades have witnessed a significant shift in policy competences away from central governments in Europe. The reallocation of competences spans over three dimensions: upwards; sideways; and downwards. This collection takes the dispersion of powers as a starting point and seeks to assess...... how the actors involved cope with the new configurations. In this introduction, we discuss the conceptualization of power dispersion and highlight the ways in which the contributions add to this research agenda. We then outline some general conclusions and end by indicating future avenues of research...
Intracellular Cadmium Isotope Fractionation
Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.
2011-12-01
Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.
Digestion kinetics of carbohydrate fractions of citrus by-products.
Lashkari, Saman; Taghizadeh, Akbar
2015-01-01
The present experiment was carried out to determine the digestion kinetics of carbohydrate fractions of citrus by-products. Grapefruit pulp (GP), lemon pulp (LE), lime pulp (LI) and orange pulp (OP) were the test feed. Digestion kinetic of whole citrus by-products and neutral detergent fiber (NDF) fraction and acid detergent fiber (ADF) fractions of citrus by-products were measured using the in vitro gas production technique. Fermentation kinetics of the neutral detergent soluble carbohydrates (NDSC) fraction and hemicelluloses were calculated using a curve subtraction. The fermentation rate of whole was the highest for the LE (p fractions. There was no significant difference among potential gas production (A) volumes of whole test feeds (p fractions of citrus by-products have high potential for degradability. It could also be concluded that carbohydrate fractions of citrus by-products have remarkable difference in digestion kinetics and digestive behavior.
Acceptance criteria for urban dispersion model evaluation
Hanna, Steven; Chang, Joseph
2012-05-01
The authors suggested acceptance criteria for rural dispersion models' performance measures in this journal in 2004. The current paper suggests modified values of acceptance criteria for urban applications and tests them with tracer data from four urban field experiments. For the arc-maximum concentrations, the fractional bias should have a magnitude 0.3. For all data paired in space, for which a threshold concentration must always be defined, the normalized absolute difference should be SCIPUFF dispersion model with the urban canopy option and the urban dispersion model (UDM) option. In each set of evaluations, three or four likely options are tested for meteorological inputs (e.g., a local building top wind speed, the closest National Weather Service airport observations, or outputs from numerical weather prediction models). It is found that, due to large natural variability in the urban data, there is not a large difference between the performance measures for the two model options and the three or four meteorological input options. The more detailed UDM and the state-of-the-art numerical weather models do provide a slight improvement over the other options. The proposed urban dispersion model acceptance criteria are satisfied at over half of the field experiments.
Viscosity model of high-viscosity dispersing system
Institute of Scientific and Technical Information of China (English)
魏先福; 王娜; 黄蓓青; 孙承博
2008-01-01
High-viscosity dispersing system is formed by dispersing the solid particles in the high-viscosity continuous medium.It is very easy to form the three-dimensional network structure for solid particles in the system and the rheology behavior becomes complicated.The apparent viscosity of this dispersing system always has the connection with the volume ratio and the shear rate.In order to discuss the rheology behavior and put up the viscosity model,the suspension of silicon dioxide and silicon oil were prepared.Through testing the viscosity,the solid concentration and the shear rate,the effects of the ratio and the shear rate on viscosity was analyzed,the model of the high-viscosity dispersing system was designed and the model with the printing ink were validated.The experiment results show that the model is applicable to the high-viscosity dispersing systems.
Energy Technology Data Exchange (ETDEWEB)
Massol, A.
2004-02-15
The application of statistically averaged two-fluid models for the simulation of complex indus- trial two-phase flows requires the development of adequate models for the drag force exerted on the inclusions and the interfacial heat exchange. This task becomes problematic at high volume fractions of the dispersed phase. The quality of the simulation strongly depends upon the inter- facial exchange terms, starting with the steady drag force. For example, an accurate modelling of the drag force is therefore a crucial point to simulate the expansion of dense fluidized beds. Most models used to study the exchange terms between particles and fluids are based on the interaction between an isolated particle and a surrounding gas. Those models are clearly not adequate in cases where the volume fraction of particles increases and particle-particle interactions become important. Studying such cases is a complex task because of the multiple possible configurations. While the interaction between an isolated sphere and a gas depends only on the particle size and the slip velocity between gas and particles, the interaction between a cloud of particles and a gas depends on many more parameters: size and velocity distribution of particles, relative position of particles. Even if the particles keep relative fixed positions, there is an infinite number of combinations to construct such an array. The objective of the present work is to perform steady and unsteady simulations of the flow in regular arrays of fixed particles in order to analyze the influence of the size and distributions of spheres on drag force and heat transfer (the array of spheres can be either monodispersed, either bi-dispersed). Several authors have studied the drag exerted on the spheres, but only for low Reynolds numbers and/or solid volume fractions close to the packed limit. Moreover some discrepancies are observed between the different studies. On top of that, all existing studies are limited to steady flows
New Fractional Complex Transform for Conformable Fractional Partial Differential Equations
Directory of Open Access Journals (Sweden)
Çenesiz Y.
2016-12-01
Full Text Available Conformable fractional complex transform is introduced in this paper for converting fractional partial differential equations to ordinary differential equations. Hence analytical methods in advanced calculus can be used to solve these equations. Conformable fractional complex transform is implemented to fractional partial differential equations such as space fractional advection diffusion equation and space fractional telegraph equation to obtain the exact solutions of these equations.
Colgan, N; Siow, B; O'Callaghan, J M; Harrison, I F; Wells, J A; Holmes, H E; Ismail, O; Richardson, S; Alexander, D C; Collins, E C; Fisher, E M; Johnson, R; Schwarz, A J; Ahmed, Z; O'Neill, M J; Murray, T K; Zhang, H; Lythgoe, M F
2016-01-15
Increased hyperphosphorylated tau and the formation of intracellular neurofibrillary tangles are associated with the loss of neurons and cognitive decline in Alzheimer's disease, and related neurodegenerative conditions. We applied two diffusion models, diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI), to in vivo diffusion magnetic resonance images (dMRI) of a mouse model of human tauopathy (rTg4510) at 8.5months of age. In grey matter regions with the highest degree of tau burden, microstructural indices provided by both NODDI and DTI discriminated the rTg4510 (TG) animals from wild type (WT) controls; however only the neurite density index (NDI) (the volume fraction that comprises axons or dendrites) from the NODDI model correlated with the histological measurements of the levels of hyperphosphorylated tau protein. Reductions in diffusion directionality were observed when implementing both models in the white matter region of the corpus callosum, with lower fractional anisotropy (DTI) and higher orientation dispersion (NODDI) observed in the TG animals. In comparison to DTI, histological measures of tau pathology were more closely correlated with NODDI parameters in this region. This in vivo dMRI study demonstrates that NODDI identifies potential tissue sources contributing to DTI indices and NODDI may provide greater specificity to pathology in Alzheimer's disease.
LENUS (Irish Health Repository)
Colgan, N
2015-10-23
Increased hyperphosphorylated tau and the formation of intracellular neurofibrillary tangles are associated with the loss of neurons and cognitive decline in Alzheimer\\'s disease, and related neurodegenerative conditions. We applied two diffusion models, diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI), to in vivo diffusion magnetic resonance images (dMRI) of a mouse model of human tauopathy (rTg4510) at 8.5months of age. In grey matter regions with the highest degree of tau burden, microstructural indices provided by both NODDI and DTI discriminated the rTg4510 (TG) animals from wild type (WT) controls; however only the neurite density index (NDI) (the volume fraction that comprises axons or dendrites) from the NODDI model correlated with the histological measurements of the levels of hyperphosphorylated tau protein. Reductions in diffusion directionality were observed when implementing both models in the white matter region of the corpus callosum, with lower fractional anisotropy (DTI) and higher orientation dispersion (NODDI) observed in the TG animals. In comparison to DTI, histological measures of tau pathology were more closely correlated with NODDI parameters in this region. This in vivo dMRI study demonstrates that NODDI identifies potential tissue sources contributing to DTI indices and NODDI may provide greater specificity to pathology in Alzheimer\\'s disease.
Toxicity of oil and dispersed oil on juvenile mud crabs, Rhithropanopeus harrisii.
Anderson, Julie A; Kuhl, Adam J; Anderson, A Nikki
2014-04-01
In order to simulate an offshore oil spill event, we assessed the acute toxicity of the non-dispersed and the chemically dispersed water-accommodated fraction (WAF) of crude oil using Louisiana sweet crude and Corexit(®) 9500A with juvenile Harris mud crabs (Rhithropanopeus harrisii), an important Gulf of Mexico benthic crustacean. The chemical dispersion of crude oil significantly increased acute toxicity of the WAF in juvenile mud crabs compared to naturally dispersed oil. The majority of the mortality in the chemically dispersed treatments occurred within 24 h. While higher concentrations of chemically dispersed WAF had no survivors, at lower concentrations surviving juvenile crabs displayed no long-term effects. These results suggest that if the juvenile crabs survive initial exposure, acute exposure to dispersed or non-dispersed crude oil may not induce long-term effects.
Excitons in the Fractional Quantum Hall Effect
Laughlin, R. B.
1984-09-01
Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.
Jeon, Jae-Hyung; Metzler, Ralf
2010-02-01
Motivated by subdiffusive motion of biomolecules observed in living cells, we study the stochastic properties of a non-Brownian particle whose motion is governed by either fractional Brownian motion or the fractional Langevin equation and restricted to a finite domain. We investigate by analytic calculations and simulations how time-averaged observables (e.g., the time-averaged mean-squared displacement and displacement correlation) are affected by spatial confinement and dimensionality. In particular, we study the degree of weak ergodicity breaking and scatter between different single trajectories for this confined motion in the subdiffusive domain. The general trend is that deviations from ergodicity are decreased with decreasing size of the movement volume and with increasing dimensionality. We define the displacement correlation function and find that this quantity shows distinct features for fractional Brownian motion, fractional Langevin equation, and continuous time subdiffusion, such that it appears an efficient measure to distinguish these different processes based on single-particle trajectory data.
A FrFT based method for measuring chromatic dispersion and SPM in optical fibers
Yang, Aiying; Liu, Xiang; Chen, Xiaoyu
2017-03-01
A fractional Fourier transformation based method is proposed to blindly estimate the chromatic dispersion and self phase modulation in optical fibers. The experimental results demonstrate that up to 20,000 ps/nm accumulative chromatic dispersion of a fiber link is measured with the error less than 0.8%. If the chromatic dispersion is compensated by multiplying an opposite chromatic dispersion function in frequency domain, the 1st order chirp parameter caused by SPM in an optical fiber communication system can be measured by fractional Fourier transformation based method, i.e. the accumulative SPM of a fiber link can be quantitatively measured. The results of equalizing chromatic dispersion and self phase modulation in an optical fiber communication system demonstrated that the FrFT based method is promising to blindly monitor and equalize the chromatic dispersion and SPM of the fiber link in an optical network with dynamical routing function.
Eto, Minoru; Gudnason, Sven Bjarke; Konishi, Kenichi; Nagashima, Takayuki; Nitta, Muneto; Ohashi, Keisuke; Vinci, Walter
2009-01-01
We study what might be called fractional vortices, vortex configurations with the minimum winding from the viewpoint of their topological stability, but which are characterized by various notable substructures in the transverse energy distribution. The fractional vortices occur in diverse Abelian or non-Abelian generalizations of the Higgs model. The global and local features characterizing these are studied, and we identify the two crucial ingredients for their occurrence - the vacuum degeneracy leading to non-trivial vacuum moduli M, and the BPS nature of the vortices. Fractional vortices are further classified into two kinds. The first type of such vortices appear when M has orbifold Z_n singularities; the second type occurs in systems in which the vacuum moduli space M possesses either a deformed geometry or some singularity. These general features are illustrated with several concrete models.
Biswas, Karabi; Caponetto, Riccardo; Mendes Lopes, António; Tenreiro Machado, José António
2017-01-01
This book focuses on two specific areas related to fractional order systems – the realization of physical devices characterized by non-integer order impedance, usually called fractional-order elements (FOEs); and the characterization of vegetable tissues via electrical impedance spectroscopy (EIS) – and provides readers with new tools for designing new types of integrated circuits. The majority of the book addresses FOEs. The interest in these topics is related to the need to produce “analogue” electronic devices characterized by non-integer order impedance, and to the characterization of natural phenomena, which are systems with memory or aftereffects and for which the fractional-order calculus tool is the ideal choice for analysis. FOEs represent the building blocks for designing and realizing analogue integrated electronic circuits, which the authors believe hold the potential for a wealth of mass-market applications. The freedom to choose either an integer- or non-integer-order analogue integrator...
Fractional and noncommutative spacetimes
Arzano, Michele; Calcagni, Gianluca; Oriti, Daniele; Scalisi, Marco
2011-12-01
We establish a mapping between fractional and noncommutative spacetimes in configuration space. Depending on the scale at which the relation is considered, there arise two possibilities. For a fractional spacetime with log-oscillatory measure, the effective measure near the fundamental scale determining the log-period coincides with the nonrotation-invariant but cyclicity-preserving measure of κ-Minkowski spacetime. At scales larger than the log-period, the fractional measure is averaged and becomes a power law with real exponent. This can be also regarded as the cyclicity-inducing measure in a noncommutative spacetime defined by a certain nonlinear algebra of the coordinates, which interpolates between κ-Minkowski and canonical spacetime. These results are based upon a braiding formula valid for any nonlinear algebra which can be mapped onto the Heisenberg algebra.
Fractional and noncommutative spacetimes
Arzano, Michele; Oriti, Daniele; Scalisi, Marco
2011-01-01
We establish a mapping between fractional and noncommutative spacetimes in configuration space. Depending on the scale at which the relation is considered, there arise two possibilities. For a fractional spacetime with log-oscillatory measure, the effective measure near the fundamental scale determining the log-period coincides with the non-rotation-invariant but cyclicity-preserving measure of \\kappa-Minkowski. At scales larger than the log-period, the fractional measure is averaged and becomes a power-law with real exponent. This can be also regarded as the cyclicity-inducing measure in a noncommutative spacetime defined by a certain nonlinear algebra of the coordinates, which interpolates between \\kappa-Minkowski and canonical spacetime. These results are based upon a braiding formula valid for any nonlinear algebra which can be mapped onto the Heisenberg algebra.
Liu, R; Tirelli, N; Cellesi, F; Saunders, B R
2009-01-06
In this work, temperature-triggered gelation of aqueous laponite dispersions containing a cationic poly(N-isopropylacrylamide) (PNIPAm) graft copolymer was investigated. The copolymer used was PDMA(+)(30)-g-(PNIPAm(210))(14) [Liu et al. Langmuir 2008, 24, 7099]. DMA(+) is quarternarized N,N-dimethylaminoethyl methacrylate. The presence of small concentrations of laponite enabled temperature-triggered gel formation to occur at low copolymer concentrations (e.g., 1 wt %). Dynamic rheological measurements of the gels showed that they had storage modulus values of up to 400 Pa when the total solid volume fraction (polymer and laponite) was only about 0.02. The storage modulus was dependent on both the temperature and the composition of the dispersion used for preparation. The key component that provided the temperature-triggered gels with their elasticity was found to be self-assembled nanocomposite (NC) sheets. These NC sheets spontaneously formed at room temperature upon addition of laponite to the copolymer solution. The NC sheets had lateral dimensions on the order of hundreds of micrometers and a thickness of a few micrometers. The NC sheets were present within the temperature-triggered gels and formed elastically effective chains. The NC sheets exhibited temperature-triggered contraction with a contraction onset temperature of 27 degrees C. A conceptual model is proposed to qualitatively explain the relationship between gel elasticity and dispersion composition.
Energy Technology Data Exchange (ETDEWEB)
Edelman, Mark, E-mail: edelman@cims.nyu.ed [Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States)] [Department of Physics, Stern College at Yeshiva University, 245 Lexington Avenue, New York, NY 10016 (United States); Tarasov, Vasily E. [Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States)] [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation)
2009-12-28
Properties of the phase space of the standard map with memory are investigated. This map was obtained from a kicked fractional differential equation. Depending on the value of the map parameter and the fractional order of the derivative in the original differential equation, this nonlinear dynamical system demonstrates attractors (fixed points, stable periodic trajectories, slow converging and slow diverging trajectories, ballistic trajectories, and fractal-like structures) and/or chaotic trajectories. At least one type of fractal-like sticky attractors in the chaotic sea was observed.
Meyer, M.; Yin, S.; Lupoi, R.
2017-01-01
Cold spray (CS) is attracting interest of research and industry due to its rapid, solid-state particle deposition process and respective advantages over conventional deposition technologies. The acceleration of the particles is critical to the efficiency of CS, and previous investigations rarely consider the particle feed rate. However, because higher particle loadings are typically used in the process, the effect of this cannot be assumed negligible. This study therefore investigates the particle velocities in the supersonic jet of an advanced CS system at low- and high pressure levels and varying particle feed rates using particle image velocimetry. The particle dispersion and velocity evolution along the jet axis were investigated for several feedstock materials. It was found that the average particle velocity noticeably decreases with increasing particulate loading in all cases. The velocity distribution and particle dispersion were also observed to be influenced by the feed rate. Effects are driven by both mass loading and volume fraction, depending on the feedstock's particle velocity parameter. Increased particle feed rates hence affect the magnitude and distribution of impact velocity and consequently the efficiency of CS. In particular, numerical models neglecting this interconnection are required to be further improved, based on these experimental studies.
Creep behavior of oxide dispersion strengthened 8Cr-2WVTa and 8Cr-1W steels
Energy Technology Data Exchange (ETDEWEB)
Shinozuka, K. [Department of Material Science and Engineering, National Defense Academy, Yokosuka, Kanagawa 239-8686 (Japan)], E-mail: kshinozu@nda.ac.jp; Tamura, M.; Esaka, H. [Department of Material Science and Engineering, National Defense Academy, Yokosuka, Kanagawa 239-8686 (Japan); Shiba, K.; Nakamura, K. [Japan Atomic Energy Agency, Tokai-mura, Naka-Gun, Ibaraki 319-1195 (Japan)
2009-01-31
Microstructures and creep behavior of two martensitic oxide dispersion strengthened (ODS) steels 8%Cr-2%W-0.2%V-0.1%Ta (J1) and 8%Cr-1%W (J2) with finely dispersed Y{sub 2}Ti{sub 2}O{sub 7} have been investigated. Creep tests have been carried out at 670, 700 and 730 deg. C. Creep strength of J1 is stronger than that of any other ODS martensitic steels and the hoop strength of the ferritic ODS steel cladding. At the beginning of creep test, shrinkage was frequently observed for J1. This is one of the reasons for high creep strength of J1. The {delta}-ferrite, which is untransformed to austenite at hot isostatic press and hot rolling temperatures, was elongated along the rolling direction, and volume fraction of {delta}-ferrite in J1 is larger than J2. Although the elongated {delta}-ferrite affects the anisotropy of creep behavior, the extent of anisotropy in J1 is not so large as that of the ferritic ODS steel.
Energy Technology Data Exchange (ETDEWEB)
Chen Ping, E-mail: chenping@nju.edu.cn [School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Liu Min; Wang Ling; Poo Yin; Wu Ruixin [School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)
2011-12-15
We experimentally studied the frequency dependent complex permittivity {epsilon} and permeability {mu} of composite composed of carbonyl iron powder (CIP) and epoxy resin in the frequency range 1-18 GHz. We found that the intrinsic {epsilon} and {mu} of CIP extracted from the measured {epsilon} and {mu} of composites follow the classical Maxwell equations and the Landau-Lifshitz-Gilbert (LLG) equation, respectively. The dependences of {epsilon} and {mu} of composites on the volume fraction of CIP (vf{sub CIP}) were investigated using the two-exponent phenomenological percolation equation (TEPPE). We found that the TEPPE can fit the experimental results very well. Comparing the results of percolation parameters derived by experimental data at different frequencies, we show that the TEPPE is frequency independent for the composites at microwave frequencies. The results also show that the {epsilon} and {mu} spectrums of composites with definite vf{sub CIP} can be correctly calculated by combining the TEPPE with the theoretical models of intrinsic {epsilon} and {mu}. - Highlights: > Study on frequency dispersive properties of carbonyl iron/resin composite at 1-18 GHz. > Intrinsic properties of carbonyl iron particles were extracted and analyzed. > Effective properties of the composite were correctly described by the Mclachlan formula. > The Mclachlan formula was proved to be invariable versus frequency for dispersion mediums.
Directory of Open Access Journals (Sweden)
Ali Samer Muhsan
2013-01-01
Full Text Available This work presents a novel fabrication approach of multiwalled carbon nanotubes (MWNTs reinforced copper (Cu matrix nanocomposites. A combination of nanoscale dispersion of functionalized MWNTs in low viscose media of dissolved paraffin wax under sonication treatment followed by metal injection molding (MIM technique was adopted. MWNTs contents were varied from 0 to 10 vol.%. Information about the degree of purification and functionalization processes, evidences on the existence of the functional groups, effect of sonication time on the treated MWNTs, and microstructural analysis of the fabricated Cu/MWNTs nanocomposites were determined using TEM, EDX, FESEM, and Raman spectroscopy analysis. The results showed that the impurities of the pristine MWNTs such as Fe, Ni catalyst, and the amorphous carbon have been significantly removed after purification process. Meanwhile, FESEM and TEM observations showed high stability of MWNTs at elevated temperatures and uniform dispersion of MWNTs in Cu matrix at different volume fractions and sintering temperatures (950, 1000 & 1050°C. The experimentally measured thermal conductivities of Cu/MWNTs nanocomposites showed remarkable increase (11.25% higher than sintered pure Cu with addition of 1 vol.% MWNTs, and slight decrease below the value of sintered Cu at 5 and 10 vol.% MWNTs.
Spatially Dispersed Employee Recovery
DEFF Research Database (Denmark)
Hvass, Kristian Anders; Torfadóttir, Embla
2014-01-01
Employee recovery addresses either employee well-being or management's practices in aiding employees in recovering themselves following a service failure. This paper surveys the cabin crew at a small, European, low-cost carrier and investigates employees' perceptions of management practices to aid...... personnel achieve service recovery. Employee recovery within service research often focuses on front-line employees that work in a fixed location, however a contribution to the field is made by investigating the recovery of spatially dispersed personnel, such as operational personnel in the transport sector......, who have a work place away from a fixed or central location and have minimal management contact. Results suggest that the support employees receive from management, such as recognition, information sharing, training, and strategic awareness are all important for spatially dispersed front...
Gapless modes of fractional quantum Hall edges: a Hamiltonian study
Nguyen, Hoang; Joglekar, Yogesh; Murthy, Ganpathy
2004-03-01
We study the collective modes of the fractional quantum Hall edge states using the Hamiltonian formalism [1]. In this theory, the composite fermions are fully interacting; the collective modes are obtained within a conserving approximation which respects the constraints [2]. We present the gapless edge-mode dispersions at 1/3 and 2/5 filling fractions of unreconstructed and reconstructed edges. The dispersions are found to be nonlinear due to the variation of the effective magnetic field on the composite fermions. The implications of our study to the tunneling experiments into the edge of a fractional quantum Hall system [3] are discussed*. 1. R. Shankar and G. Murthy, Phys. Rev. Lett. 79, 4437 (1997). 2. G. Murthy, Phys. Rev. B 64, 195310 (2001). 3. A.M.Chang et. al., Phys. Rev. Lett. 86, 143 (2000). * Work supported by the NSF, Grant number DMR 031176.
Oil and oil dispersant do not cause synergistic toxicity to fish embryos.
Adams, Julie; Sweezey, Michael; Hodson, Peter V
2014-01-01
Atlantic herring (Clupea harengus) embryos were exposed to water accommodated fractions (WAFs; oil dissolved in water) and chemically enhanced water accommodated fractions (CEWAFs; oil dispersed in water with Corexit 9500A) of Medium South American (MESA) crude oil. The CEWAF was approximately 100-fold more toxic than WAF based on nominal loadings of test solutions (% v/v). In contrast, the ratio of WAF and CEWAF toxicity expressed as measured oil concentrations approximated 1.0, indicating that the higher toxicity of CEWAFs was caused by an increase in exposure to hydrocarbons with chemical dispersion. In a second experiment, the chronic toxicity of Corexit 9500A and chemically dispersed heavy fuel oil 7102 (HFO 7102) to rainbow trout (Oncorhynchus mykiss) embryos was compared to chemically dispersed Nujol, a nontoxic mineral oil. Dispersant alone was toxic, but caused different signs of toxicity than HFO 7102. Nujol at a dispersant-to-oil ratio of 1:20 was nontoxic, suggesting that dispersant was sequestered by oil and not present at toxic concentrations. In contrast, the same nominal loadings of dispersed HFO 7102 caused concentration-dependent increases in toxicity. Both experiments suggest that chemically dispersed oil was more toxic to fish embryos than solutions created by mechanical mixing due to the increased exposure of fish to petroleum hydrocarbons and not to changes in hydrocarbon toxicity. The Nujol control discriminated between the toxicity of oil and chemical dispersant and would be a practical addition to programs of dispersant testing.
Barbosa, L. C.
2015-09-01
Considering an idea of F. Arago in 1853 regarding light dispersion through the light ether in the interstellar space, this paper presents a new idea on an alternative interpretation of the cosmological red shift of the galaxies in the universe. The model is based on an analogy with the temporal material dispersion that occurs with light in the optical fiber core. Since intergalactic space is transparent, according to the model, this phenomenon is related to the gravitational potential existing in the whole space. Thus, it is possible to find a new interpretation to Hubble's constant. In space, light undergoes a dispersion process in its path, which is interpreted by a red shift equation of the type Δz = HL, since H = (d2n/dλ2 Δv Δλ), where H means the Hubble constant, n is the refractive index of the intergalactic space, Δλ is the spectral width of the extragalactic source, and Δv is the variation of the speed of light caused by the gravitational potential. We observe that this "constant" is governed by three new parameters. Light traveling the intergalactic space undergoes red shift due to this mechanism, while light amplitude decreases with time, and the wavelength always increases, thus producing the same type of behavior given by Hubble's Law. It can be demonstrated that the dark matter phenomenon is produced by the apparent speed of light of the stars on the periphery of the galaxies, without the existence of dark energy. Based on this new idea, the model of the universe is static, lacking expansion. Other phenomena may be interpreted based on this new model of the universe. We have what we call temporal gravitational dispersion of light in space produced by the variations of the speed of light, due to the presence of the gravitational potential in the whole space.
Disabling Radiological Dispersal Terror
Energy Technology Data Exchange (ETDEWEB)
Hart, M
2002-11-08
Terror resulting from the use of a radiological dispersal device (RDD) relies upon an individual's lack of knowledge and understanding regarding its significance. Disabling this terror will depend upon realistic reviews of the current conservative radiation protection regulatory standards. It will also depend upon individuals being able to make their own informed decisions merging perceived risks with reality. Preparation in these areas will reduce the effectiveness of the RDD and may even reduce the possibility of its use.
Study of oil and residual fractions in products of thermal destruction of bitumen beds
Energy Technology Data Exchange (ETDEWEB)
Diskina, D.Ye.; Kadyrov, M.U.; Shabalina, T.N.; Soldatova, V.G.; Tokareva, R.V.; Tyshchenko, N.Ye.; Usacheva, G.M.; Vigdergauz, M.S.
1981-01-01
Investigation of average and heavy fractions derived from thermodestruction products in the bitumen bed at Mordovo-Karmal in Tatariya. Composition of average fractions is characterized by presence of unsaturated and a certain volume of oxygen-containing compounds, as well as high content of S and a low congelation temp. With respect to content of aromatic compounds, these fractions are similar to fractions of sulphurous oils. Residual fractions (..-->..350/sup 0/) were studied by conversion chromatography; these have low values of viscosity, density, content of S (in comparison with the same fractions of Mordovo-Karmal oil). Examines potential directions for utilizing these fractions.
From Complex Fractional Fourier Transform to Complex Fractional Radon Transform
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; JIANG Nian-Quan
2004-01-01
We show that for n-dimensional complex fractional Fourier transform the corresponding complex fractional Radon transform can also be derived, however, it is different from the direct product of two n-dimensional real fractional Radon transforms. The complex fractional Radon transform of two-mode Wigner operator is calculated.
Hart, Kathleen; Kerslake, Daphne
The Concepts in Secondary Mathematics and Science (CSMS) and Strategies and Errors in Secondary Mathematics (SESM) research projects based at Chelsa College, England, have shown the marked reluctance of secondary school students to use fractions when solving mathematical problems, even though they have been taught the topic for a number of years.…
Brewing with fractionated barley
Donkelaar, van L.H.G.
2016-01-01
Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw
Stephens, Ana C.; Bottge, Brian A.; Rueda, Enrique
2009-01-01
This article describes a technology-based and hands-on instructional intervention designed to advance middle school students' understandings of fractions. This problem-solving experience is based on the principles of Enhanced Anchored Instruction (EAI) and proved instructionally worthwhile and motivating to teachers and students in both inclusive …
Vinogradova, Natalya; Blaine, Larry
2013-01-01
Almost everyone loves chocolate. However, the same cannot be said about fractions, which are loved by markedly fewer. Middle school students tend to view them with wary respect, but little affection. The authors attempt to sweeten the subject by describing a type of game involving division of chocolate bars. The activity they describe provides a…
Momentum fractionation on superstrata
Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.
2016-05-01
Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-degree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.
Fractional statistics and confinement
Gaete, P; Gaete, Patricio; Wotzasek, Clovis
2004-01-01
It is shown that a pointlike composite having charge and magnetic moment displays a confining potential for the static interaction while simultaneously obeying fractional statistics in a pure gauge theory in three dimensions, without a Chern-Simons term. This result is distinct from the Maxwell-Chern-Simons theory that shows a screening nature for the potential.
Brewing with fractionated barley
Donkelaar, van L.H.G.
2016-01-01
Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw
Fractional Differential Equation
Directory of Open Access Journals (Sweden)
Moustafa El-Shahed
2007-01-01
where 2<α<3 is a real number and D0+α is the standard Riemann-Liouville fractional derivative. Our analysis relies on Krasnoselskiis fixed point theorem of cone preserving operators. An example is also given to illustrate the main results.
Ultra Low Volume Dispersal of Insecticides by Ground Equipment
1999-12-01
measured before they evaporate. To prevent excessive spreading, filming, or coalescence, the slide must be coated with an oleophobic substance that will...cleaning solution, dried, then immersed in the oleophobic coating solution, and redried. When dry the slides should be lightly polished with a soft
Electrochemistry in Colloids and Dispersions. Volume 3. Colloidal Semiconductors
1992-02-04
oxidative decomposition of organics have been carried out historically, the superoxide radical anion protonates to give the hYdroPeroxide radical, H02...Chemosphere, 1987, 16, 225. 49. Okamoto, K.; Yamamoto , Y.; Tanaka, H.; Tanaka, M.; Itaya, A. ull.Chem.Soc.Jpn. , 1985, 58, 2015. 50. Minero, C...Matthey. The Ru(bpy) 23- was purchased as Its hydrated chloride salt from Strem. All other chemicals were obtained from BDH in AnalaR form. All water
Effect of reinforcement volume fraction on the density & elastic ...
African Journals Online (AJOL)
صﺧﻟﻣ. ق. ﻲﻧدﻌﻣﻟا جﺎﺟزﻟا نﻣ سﮐﯾرﺗﺎﻣ وﻧ طﯾﻟﺧﻟﻟ ﺔﯾﻟوطﻟا ﺔﻧورﻣﻟا تﺑاوﺛ و ﺔﻓﺎﺛﮐﻟا ﯽﻟﻋ ﺔﯾوﻘﻣﻟا فﺎﯾﻟﻷا ﺔﺑﺳﻧ رﯾﻐﺗ رﯾﺛﺄﺗ ﺔﺳاردﺑ ﺎﻧﻣ. ) Zr41.2Ti13.8Cu12.5Ni10Be22.5. (. نﻣ فﺎﯾﻟﺄﺑ ﺔﻣﻋدﻣﻟا. : glass E. ,. Fe.
High Volume Fraction Carbon Nanotube Composites for Aerospace Applications
Siochi, Emilie J.; Kim, Jae-Woo; Sauti, Godfrey; Cano, Roberto J.; Wincheski, Russell A.; Ratcliffe, James G.; Czabaj, Michael; Jensen, Benjamin D.; Wise, Kristopher E.
2015-01-01
Reported nanoscale mechanical properties of carbon nanotubes (CNTs) suggest that their use may enable the fabrication of significantly lighter structures for use in space applications. To be useful in the fabrication of large structures, however, their attractive nanoscale properties must be retained as they are scaled up to bulk materials and converted into practically useful forms. Advances in CNT production have significantly increased the quantities available for use in manufacturing processes, but challenges remain with the retention of nanoscale properties in larger assemblies of CNTs. This work summarizes recent progress in producing carbon nanotube composites with tensile properties approaching those of carbon fiber reinforced polymer composites. These advances were achieved in nanocomposites with CNT content of 70% by weight. The processing methods explored to yield these CNT composite properties will be discussed, as will the characterization and test methods that were developed to provide insight into the factors that contribute to the enhanced tensile properties. Technology maturation was guided by parallel advancements in computational modeling tools that aided in the interpretation of experimental data.
High Volume Fraction Carbon Nanotube Composites for Aerospace Applications
Siochi, E. J.; Kim, J.-W.; Sauti, G.; Cano, R. J.; Wincheski, R. A.; Ratcliffe, J. G.; Czabaj, M.
2016-01-01
Reported mechanical properties of carbon nanotubes (CNTs) at the nanoscale suggest their potential to enable significantly lighter structures of interest for space applications. However, their utility depends on the retention of these properties in bulk material formats that permit practical fabrication of large structures. This presentation summarizes recent progress made to produce carbon nanotube composites with specific tensile properties that begin to rival those of carbon fiber reinforced polymer composites. CNT content in these nanocomposites was greater than 70% by weight. Tested nanocomposite specimens were fabricated from kilometers or tens of square meters of CNT, depending on the starting material format. Processing methods to yield these results, and characterization and testing to evaluate the performance of these composites will be discussed. The final objective is the demonstration of a CNT composite overwrapped pressure vessel to be flight tested in the Fall of 2016.
A Computer-Interfaced Drop Counter as an Inexpensive Fraction Collector for Column Chromatography
Nash, Barbara T.
2008-01-01
A computer-interfaced drop counter is described that serves as an inexpensive alternative to a fraction collector for column chromatography experiments. Undergraduate biochemistry laboratories frequently do not have the budget to purchase fraction collectors. Protocols that call for the manual measurement of fraction volumes as well as the manual…
A Computer-Interfaced Drop Counter as an Inexpensive Fraction Collector for Column Chromatography
Nash, Barbara T.
2008-01-01
A computer-interfaced drop counter is described that serves as an inexpensive alternative to a fraction collector for column chromatography experiments. Undergraduate biochemistry laboratories frequently do not have the budget to purchase fraction collectors. Protocols that call for the manual measurement of fraction volumes as well as the manual…
Dependence of stability of metastable superconductors on copper fraction
Energy Technology Data Exchange (ETDEWEB)
Elrod, S. A.; Lue, J. W.; Miller, J. R.; Dresner, L.
1980-12-01
The stability of composite superconductors operating in the metastable regime depends upon such factors as matrix resistivity, cooled surface dimensions, fraction of critical current, and volume fraction of stabilizer. By assuming constant thermophysical properties, we developed analytic expressions for the energy and voltage of the minimum propagating zone (MPZ). With other factors held constant, these expressions have been used to predict composite superconductor stability as a function of copper fraction: lower copper fractions lead to higher MPZ energies. MPZ voltages have been measured for three NbTi/Cu composites having different copper fractions and different critical current densities for several magnetic fields and transport currents. Experimental MPZ voltages have been used to calculate an effective heat transfer coefficient, which is subsequently used to calculate the MPZ energy. The experimental MPZ energies support the theoretical expectation that lower copper fractions lead to higher stability in the metastable regime.
Nozzle for electric dispersion reactor
Sisson, Warren G.; Basaran, Osman A.; Harris, Michael T.
1995-01-01
A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.
Absorption and dispersion of ultrasonic waves
Herzfeld, Karl F; Massey, H S W; Brueckner, Keith A
1959-01-01
Absorption and Dispersion of Ultrasonic Waves focuses on the influence of ultrasonics on molecular processes in liquids and gases, including hydrodynamics, energy exchange, and chemical reactions. The book first offers information on the Stokes-Navier equations of hydrodynamics, as well as equations of motion, viscosity, formal introduction of volume viscosity, and linearized wave equation for a nonviscous fluid. The manuscript then ponders on energy exchange between internal and external degrees of freedom as relaxation phenomenon; effect of slow energy exchange on sound propagation; differe
Anomalous Dispersion in a Sand Bed River
Bradley, D. N.; Tucker, G. E.; Benson, D. M.
2009-04-01
There has been a recent surge of interest in non-local, heavy-tailed models of sediment transport and dispersion that are governed by fractional order differential equations. These models have a firm mathematical foundation and have been successfully applied in a variety of transport systems, but their use in geomorphology has been minimal because the data required to validate the models is difficult to acquire. We use data from a nearly 50-year-old tracer experiment to test a fluvial bed load transport model with a two unique features. First, the model uses a heavy-tailed particle velocity distribution with a divergent second moment to reproduce the anomalously high fraction of tracer mass observed in the downstream tail of the spatial distribution. Second, the model partitions mass into a detectable mobile phase and an undetectable, immobile phase. This two-phase transport model predicts two other features observed in the data: a decrease in the amount of detected tracer mass over the course of the experiment and the high initial velocity of the tracer plume. Because our model uses a heavy-tailed velocity distribution with a divergent second moment it is non-local and non-Fickian and able to reproduce aspects of the data that a local, Fickian model cannot. The model's successful prediction of the observed concentration profiles provides some of the first evidence of anomalous dispersion of bed load in a natural river.
Creating, Naming, and Justifying Fractions
Siebert, Daniel; Gaskin, Nicole
2006-01-01
For students to develop meaningful conceptions of fractions and fraction operations, they need to think of fractions in terms other than as just whole-number combinations. In this article, we suggest two powerful images for thinking about fractions that move beyond whole-number reasoning. (Contains 5 figures.)
Institute of Scientific and Technical Information of China (English)
Wei Wang; Lantian Hou; Zhaolun Liu; Guiyao Zhou
2009-01-01
When using normalized dispersion method for the dispersion design of photonic crystal fibers(PCFs),it is vital that the group velocity dispersion of PCF can be seen as the sum of geometrical dispersion and material dispersion.However,the error induced by this way of calculation will deteriorate the final results.Taking 5 ps/(km·nm)and 5% as absolute error and relative error limits,respectively,the structure parameter boundaries of PCFs about when separating total dispersion into geometrical and material components is valid are provided for wavelength shorter than 1700 nm.By using these two criteria together,it is adequate to evaluate the simulatcd dispersion of PCFs when normalized dispersion method is employed.
-Dimensional Fractional Lagrange's Inversion Theorem
Directory of Open Access Journals (Sweden)
F. A. Abd El-Salam
2013-01-01
Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.
Huang, Yufen; Liu, Zhongzhen; He, Yan; Li, Yanliang
2015-03-01
In the current study, a mechanical dispersion method was employed to separate clay (fraction in six bulk soils. Batch equilibrium method was used to conduct atrazine sorption and desorption experiments on soil organo-mineral fractions with bulk soils and their contrasting size fractions separately. The potential contribution of total organic carbon (TOC) for atrazine retention in different fractions was further investigated. It was found that clay fraction had the highest adsorption but the least desorption capacities for atrazine, while sand fraction had the lowest adsorption but the highest desorption capacities for atrazine. The adsorption percentage of atrazine, as compared with adsorption by the corresponding bulk soils, ranged from 53.6 to 80.5%, 35.7 to 56.4%, and 0.2 to 4.5% on the clay, silt, and sand fractions, respectively. TOC was one of the key factors affecting atrazine retention in soils, with the exact contribution dependent on varying degree of coating with mineral component in different soil size fractions. The current study may be useful to predict the bioavailability of atrazine in different soil size fractions.
Mandeep Singh; S.K. Raghuwanshi
2013-01-01
This work presents a theoretical study of harmonic generation of microwave signals after detection of a modulated optical carrier in cascaded two electro-optic modulators. Dispersion is one of the major limiting factors for microwave generation in microwave photonics. In this paper, we analyze influence of chromatic dispersion, dispersion slope, dispersion curvature on microwave generation using two cascaded MZMs and it has been found that output intensity of photodetector reduces when disper...
Simulation modeling of anthrax spore dispersion in a bioterrorism incident.
Reshetin, Vladimir P; Regens, James L
2003-12-01
Recent events have increased awareness of the risk posed by terrorist attacks. Bacillus anthracis has resurfaced in the 21st century as a deadly agent of bioterrorism because of its potential for causing massive civilian casualties. This analysis presents the results of a computer simulation of the dispersion of anthrax spores in a typical 50-story, high-rise building after an intentional release during a bioterrorist incident. The model simulates aerosol dispersion in the case of intensive, small-scale convection, which equalizes the concentration of anthrax spores over the building volume. The model can be used to predict the time interval required for spore dispersion throughout a building after a terrorist attack in a high-rise building. The analysis reveals that an aerosol release of even a relatively small volume of anthrax spores during a terrorist incident has the potential to quickly distribute concentrations that are infectious throughout the building.
Developing a dispersant spraying capability
Energy Technology Data Exchange (ETDEWEB)
Gill, S.D.
1979-01-01
In developing a national dispersant spraying capability, the Canadian Coast Guard (CCG) has undertaken a modification program to enable the conventional offshore spraying gear to be mounted on almost any vessel of convenience. Smaller, more versatile inshore spraying vessels and pumps have been designed and built. With the popularization of concentrated dispersants, the inshore pumping equipment can be used aboard hovercraft for special application situations. A program of acquiring mobile dispersant storage tanks has been undertaken with auxiliary equipment that will facilitate the shipment of dispersants in bulk by air freight. Work also has commenced on extending the dispersant application program to include the CCG fleet of helicopters.
Properties of Zero Dispersion Wavelengths in Silica Strands and Photonic Crystal Fibres
Institute of Scientific and Technical Information of China (English)
ZHANG De-Sheng; SHENG Qiu-Qin; DONG Xiao-Yi
2008-01-01
@@ To design and calculate the zero-dispersion wavelength is one of the important aspects for highly nonlinear photonic crystal fibres.By using the air filling fraction f defined as f=(6d)/(2πA)here for the cladding effective index,and the step effective index model,the relationship between the properties of chromatic dispersion and the two different structures has been analysed.It is pointed that the variation of the zero dispersion wavelength is insensitive to the core diameter change in one range of core diameter D,while keeping the air filling fraction f constant.
RHEOLOGY AND SCALING BEHAVIOR OF SWELLING CLAY DISPERSIONS
Directory of Open Access Journals (Sweden)
S. Chaoui
2015-07-01
Full Text Available The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions can be accounted for by expressing these rheological properties as (f/fg-1n, where fg captures the strength of particle interaction and n the microstructure. The scaling variable (fp/fpc-1, suggested in percolation theory to describe rheological behavior near percolation transition, acts to collapse G’ data suggesting that along lines of constant (f/fg-1 these gels are rheologically identical.
RHEOLOGY AND SCALING BEHAVIOR OF SWELLING CLAY DISPERSIONS
Directory of Open Access Journals (Sweden)
S. CHAOUI
2012-12-01
Full Text Available The microstructure and scaling of rheological properties of colloidal gels of bentonite investigated as a function of volume fraction and strength of interparticle interaction over a range of volume fractions, elastic modulus is well described with a scaling law functions of volume fractions, while the role of interparticle attractions can be accounted for by expressing these rheological properties as (/g-1n, where g captures the strength of particle interaction and n the microstructure.The scaling variable (p/pc-1, suggested in percolation theory to describe rheological behavior near percolation transition, acts to collapse G’ data suggesting that along lines of constant (/g-1 these gels are rheologically identical.
Fractions in elementary education
Quinn, Frank
2013-01-01
This paper is one of a series in which elementary-education practice is analyzed by comparison with the history of mathematics, mathematical structure, modern practice, and (occasionally) cognitive neuroscience. The primary concerns are: Why do so many children find elementary mathematics difficult? And, why are the ones who succeed still so poorly prepared for college material needed for technical careers? The answer provided by conventional wisdom is essentially that mathematics is difficult. Third-graders are not developmentally ready for the subtlety of fractions, for instance, and even high-performing students cannot be expected to develop the skills of experienced users. However we will see that this is far from the whole story and is probably wrong: elementary-education fractions are genuinely harder and less effective than the version employed by experienced users. Experts discard at least 90% of what is taught in schools. Our educational system is actually counterproductive for skill development, and...
Testing Fractional Action Cosmology
Shchigolev, V K
2015-01-01
The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests that gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.
Testing fractional action cosmology
Shchigolev, V. K.
2016-08-01
The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests, which gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.
Nonlinear fractional relaxation
Indian Academy of Sciences (India)
A Tofighi
2012-04-01
We deﬁne a nonlinear model for fractional relaxation phenomena. We use -expansion method to analyse this model. By studying the fundamental solutions of this model we ﬁnd that when → 0 the model exhibits a fast decay rate and when → ∞ the model exhibits a power-law decay. By analysing the frequency response we ﬁnd a logarithmic enhancement for the relative ratio of susceptibility.
Brewing with fractionated barley
Donkelaar, van, CC René
2016-01-01
Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw barley, however, contains less endogenous enzymes and more undesired components for the use of beer brewing, compared to malted barley. The overall aim of this thesis is to investigate how ba...
Aerosol bolus dispersion in acinar airways—influence of gravity and airway asymmetry
Ma, Baoshun
2012-01-01
The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery. PMID:22678957